Problem Sheet 1:

To hand in until: 01.05.2017

Problem 1: Competitive Lotka-Volterra equations

Interspecific competition is a form of competition in which individuals of different species compete for the same resource in an ecosystem. The impacts of interspecific competition on two populations $p_{1}=p_{1}(t)$ and $p_{2}=p_{2}(t)$ can be described by the following dynamical system:

$$
\begin{gather*}
\dot{p}_{1}=r_{1} p_{1}\left(1-\left(\frac{p_{1}+\alpha_{12} p_{2}}{K_{1}}\right)\right), \tag{1}\\
\dot{p}_{2}=r_{2} p_{2}\left(1-\left(\frac{p_{2}+\alpha_{21} p_{1}}{K_{2}}\right)\right) . \tag{2}
\end{gather*}
$$

Here, r_{i} and K_{i} are the growth rate and the carrying capacity of the population p_{i}, whereas $\alpha_{i j}$ describe the effect that the species p_{j} has on the population of species $p_{i}, i, j=1,2$.
a) Find the fixed points $\left(p_{1}^{*}, p_{2}^{*}\right)$.
b) Calculate the Jacobian matrix J of the system in question.
c) Find all eigenvalues λ of J and classify the fixed points $\left(p_{1}^{*}, p_{2}^{*}\right)$ for $r_{1}=0.2, r_{2}=0.1, K_{1}=50.0$, $K_{2}=100.0, \alpha_{12}=0.75, \alpha_{21}=3.0$.
d) Sketch the neighboring to $\left(p_{1}^{*}, p_{2}^{*}\right)$ trajectories, and try to fill the rest of the phase portrait. Which population shall survive?

Problem 2: Lorenz system

The Lorenz equations are given by

$$
\begin{aligned}
\dot{x} & =\sigma(y-x), \\
\dot{y} & =r x-y-x z, \\
\dot{z} & =x y-b z .
\end{aligned}
$$

Here, $\sigma>0$ is the Prandtl number, $b>0$ is connected with the cell geometry and $r>0$ is the relative Rayleigh number. In what follows, we will always use r as the control parameter.
a) Find the fixed points $\left(x^{*}, y^{*}, z^{*}\right)$ of the system in question: Show that the origin is a fixed point of the system for any values of the parameters, whereas the other two fixed points C^{+}and C^{-}exist if and only if $r>1$.
b) Demonstrate that the Jacobian \mathbf{J} of the system is given by

$$
\mathbf{J}=\left(\begin{array}{ccc}
-\sigma & \sigma & 0 \\
r-z^{*} & -1 & -x^{*} \\
y^{*} & x^{*} & -b
\end{array}\right)
$$

c) Find the eigenvalues at the origin and show that the origin is a stable node for $r<1$. Further, show that for $r>1$ the origin changes from a stable node to a saddle point.
Tip: Note that for $\left(x^{*}, y^{*}, z^{*}\right)=(0,0,0)$ the matrix \mathbf{J} can be written as a 2×2 matrix, as the linearized equation for $z(t)$ is decoupled.
d) Now consider the case $r>1$, so that both non-trivial fixed points C^{+}and C^{-}exist. Demonstrate that the characteristic polynomial reads

$$
\lambda^{3}+(\sigma+b+1) \lambda^{2}+(r+\sigma) b \lambda+2 b \sigma(r-1)=0 .
$$

d) Show now that C^{+}and C^{-}are stable for

$$
1<r<r_{\mathrm{H}}, \quad r_{\mathrm{H}}=\frac{\sigma(\sigma+b+3)}{\sigma-b-1}, \quad \sigma>b+1 .
$$

Tip: Calculate, under which condition the characteristic equation has one negative real root λ_{1} and a pair of complex conjugated roots $\lambda_{2,3}$ that are purely imaginary. Use the ansatz $\lambda_{2,3}= \pm \mathrm{i} \omega$ and find ω.
e) Using the information about the fixed points of the system and the results from linear stability analysis discuss the possible types of bifurcations at $r=1$ as well as at $r=r_{\mathrm{H}}$.

