
0.1. PSEUDOSPECTRAL METHOD FOR NONLINEAR PDES 1

0.1 Pseudospectral Method for Nonlinear PDEs

0.2 Problem Statement and Solution

Up to now we have considered linear problems, which may be treated ex-
clusively in Fourier space. We have seen that in this case spectral methods
yield a highly accurate and simple way to calculate derivatives. We now
want to generalize this method to nonlinear partial differential equations.
To this end consider the PDE for the field f(x, t)

∂

∂t
f(x, t) = L(f(x, t)) + N(f(x, t)) (1)

The right hand side involves a linear operator L, which may contain linear
functions of f like multiplication with a constant factor or linear differential
operators like the Laplacian. N denotes a nonlinear operator, which for
example contains powers of f or nonlinear differential operators. The Fourier
transform of equation (1) yields

∂

∂t
f̃(k, t) = L̃(f̃(k, t)) + F [N(f(x, t))] (2)

While the Fourier transforms of the linear terms of equation (1) can be
written down in a straight-forward manner, the nonlinear term needs further
treatment. It has to be noted, that it is possible in principle to treat the
nonlinear term in Fourier space, which is made clear best with an example.
Consider the nonlinearity

N(f(x, t)) = f(x, t)f(x, t) (3)

The Fourier transform is readily written down as

F [N(f(x, t))] = F(f(x, t)) ∗ F(f(x, t)) = f̃(k, t) ∗ f̃(k, t) (4)

That is, this simple quadratic nonlinearity leads to a convolution in Fourier
space. Let n denote the number of grid points used for the discretization of f .
Then the above expression involves n2 operations. Of course, the situation
gets even worse for a higher nonlinearity. To circumvent this problem we
proceed as follows. Instead of evaluating the nonlinearity in Fourier space,
we may transform f̃(k, t) back to real space. The computational cost for this
operation scales with n log n thanks to the fast fourier transform algorithm.
Back in real space the multiplication may easily be done with an operation
scaling with n. After evaluating the nonlinearity in real space, we transform



2

Figure 1: A rapidly oscillating sinusoidal function cannot be resolved by the
red grid points and hence is misinterpreted as a sinusoidal function with a
lower frequency.

back to Fourierspace, again at a cost scaling with n log n. If the nonlinearity
contains not only powers of f but also linear derivatives, these may also be
calculated in Fourier space and transformed back together with f̃ . Within
this procedure no operation more expensive than n log n had to be executed,
yielding an excellent overall performance of the algorithm compared to the
brute force way.

0.3 Aliasing and Dealiasing

Whenever treating a nonlinear partial differential equation, the danger of
introducing aliasing errors to the numerical solution lurks around the corner.
Consider for example the simple nonlinearity f(x, t)f(x, t) introduced in the
last paragraph. Now let f be initialized with a highly oscillating sine, which
is hardly resolved by the numerical grid. Evaluating the the nonlinearity
yields

f(x, t)f(x, t) = sin(ωx) sin(ωx) = −
1

2
cos(2ωx) (5)

i.e. the nonlinearity introduces an even more rapid oscillating cosine, which
cannot be resolved by the numerical grid. As a consequence this oscillat-
ing function is interpreted as a oscillating function with a lower frequency.
This is also visualized in figure 1. Depending on your problem, this effect
may introduce severe errors to your numerical solution or even result in a
numerical instability.



0.3. ALIASING AND DEALIASING 3

There are a at least two ways which help to avoid this effect. Probably
the most simple one is to choose a grid which is fine enough to accurately
resolve all the scales which may appear during the course of the simulation.
This is an appropriate solution for many physical systems. Considering for
example model equations for pattern formation, here often a small wave
vector band is excited and the spectral density of the field rapidly decays
far from these excited modes.

In case of, for example, Navier-Stokes turbulence the situation turns
out to be a bit different. Here, the spectral density of, say, the kinetic
energy decays algebraically (with a k−

5

3 spectrum) indicating that a wide
range of spatial modes are excited. Together with the fact, that we have
a quadratic nonlinearity for this problems, a pseudospectral treatment of
this problems yields an alternative solution called dealiasing. Different ap-
proaches to de-alias the fields have been proposed in the literature, the
easiest being the two-thirds rule introduced by Orszag. Let kmax denote the
highest wavenumber resolved by the numerical grid. Provided, that all fields
involved in calculating the nonlinearity are filtered according to

f̃(k, t) =

{

f̃(k, t) if k < 2

3
kmax

0 else
(6)

ensures that the numerical solution is free from aliasing errors. It may be
reasoned from figure 2, that by this truncation of the input fields in Fourier
space a quadratic nonlinearity may only produce higher modes which are
readily filtered after calculating the nonlinearity. It is very easy to apply
this method. You only have to

• null the upper third of Fourier coefficients of all fields which are in-
volved in calculating the nonlinearity

• null the upper third of Fourier coefficients of the array holding the
Fourier coefficients of the nonlinearity after transforming back into
Fourier space.

It has to be stressed that this method only helps to suppress aliasing errors
and does not increase the resolution of the numerical solution. A further
disadvantage of this simple method is that, being a sharp filter in Fourier
space, it may introduce Gibbs oscillations to your numerical solution. So
the best way to avoid aliasing errors is to accurately resolve the numerical
solution of your problem not pushing it to the limit.



4

0
kmax

−kmax

2

3
kmax

−
2

3
kmax

j1

j2

j3 = j1 + j2

Figure 2: Two-thirds rule by Orszag. A coupling of two modes corresponds
to a addition of angles in this figure. After the Fourier coefficients of the
input fields are nulled according to the gray-shaded areas, the sum of two
arbitrary modes j1 and j2 results in a mode j3 lying in the gray-shaded
area. This is nulled again after the nonlinearity is transformed back to
Fourier space.



0.4. A SIMPLE EXAMPLE: BURGERS EQUATION 5

0.4 A Simple Example: Burgers Equation

Consider a real velocity field u(x, t) which obeys the simple nonlinear PDE

∂

∂t
u(x, t) + u(x, t)

∂

∂x
u(x, t) = ν

∂2

∂x2
u(x, t) (7)

which is known as Burgers equation. It shares the advective nonlinearity
with the Navier-Stokes equation, albeit in a single spatial dimension. At
the same time, the huge mathematical difficulty arising due to the nonlocal
pressure term is absent in this equation. According to the above notation
the linear and nonlinear operators for this PDE take the form

L(u(x, t)) = ν
∂2

∂x2
u(x, t) (8)

N(u(x, t)) = −u(x, t)
∂

∂x
u(x, t)

ν denotes the kinematic viscosity. The Burgers equation is known to steepen
negative gradients leading to the formation of so-called shocks. These shocks
are smoothed out by viscous effects. For a sufficiently high viscosity, this
equation may efficiently be solved by a pseudospectral method, as we want to
exemplify in the following. Time-stepping can be achieved with a numerical
scheme of your choice, fourth-order Runge-Kutta methods turn out to do a
rather good job. After initializing an initial condition u(x, t = 0) the field is
transformed to Fourier space yielding ũ(k, t = 0). The right hand side then
may be treated in several easy steps according to

• dealias ũ(k, t)

• calculate the derivative according to ikũ(k, t)

• transform ũ(k, t) and ikũ(k, t) back to real space

• calculate the nonlinearity N(x, t) = u(x, t) · ∂
∂x

u(x, t)

• transform N(x, t) back to Fourier space

• dealias Ñ(k, t)

• calculate the Laplacian −k2ũ(k, t)

• build the output array according to Ñ(k, t) − νk2ũ(k, t)

Taking for example a sinusoidal function as an initial conditions, negative
gradients steepen yielding the characteristic shock structure.



6

0.5 Appendix: Ordering of Fourier Coefficients

Due to algorithmic details of the fast Fourier transform the Fourier coeffi-
cients are ordered in a somewhat “strange” manner, at least for a newby.
This causes problems especially when calculating derivatives of functions in
Fourier space, as calculating the derivative corresponds to a multiplication
with a real wave number (or vector in more than one spatial dimension).
Hence the wave vectors have to be stored in a real array with exactly the
same ordering as the Fourier coefficients. A complex field sampled by N

grid points is transformed to a complex array of Fourier coefficients being
ordered according to

f̃0, f̃1, . . . , f̃N

2

, f̃
−

N

2
+1

, f̃
−

N

2
+2

, . . . , f̃−1 (9)

If we consider a real field f the Fourier coefficients exhibit a symmetry f̃−j =
f̃∗

j . This is exploited by most Fourier transform by only storing roughly half
of the array, reducing the memory needed for holding the coefficients and
giving a speed increase of roughly a factor of two. The Fourier coefficients
in Fourier space are then ordered according to

f̃0, f̃1, . . . , f̃N

2

(10)

Let L denote the physical length of the simulation domain. The real array
of wave numbers then takes the form

k(i) =

{

2π
L

i if i = 0, . . . , N
2

2π
L

(−N + i) if i = N
2

+ 1, . . . , N − 1
(11)

In case of a real field, the above-mentioned symmetry may be exploited.
Then the array holding the wave vectors has also roughly half the size re-
sulting in the index i running only i = 0, . . . , N

2
. These considerations are

generalized to a two-dimensional field f(x, t) in a straight-forward manner.
In this case we have a two-dimensional array for the Fourier coefficients. In
case f represents a complex field, the wave vectors are arranged according
to

kx(i, j) =

{

2π
L

i if i = 0, . . . , N
2

2π
L

(−N + i) if i = N
2

+ 1, . . . , N − 1
(12)

ky(i, j) =

{

2π
L

j if j = 0, . . . , N
2

2π
L

(−N + j) if j = N
2

+ 1, . . . , N − 1



0.5. APPENDIX: ORDERING OF FOURIER COEFFICIENTS 7

In case of a real field, half of the Fourier coefficients suffice and the index i

for the wave vectors reduces to i = 0, . . . , N
2
. One should note that different

implementations of the fast Fourier algorithms exhibit a different ordering
of Fourier coefficients. The ordering presented here is for example used by
the FFTW library.



8

0.6 Appendix: Flow Diagram for a Typical Simu-

lation Code


