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Resistance dri� over 12 orders of magnitude in time

Femtosecond pulse optical amorphisation 
Instead of using nanosecond voltage pulses, femtose-
cond laser pulses can be used to amorphise the material.
This enables measurements of the resistance down to 

nanoseconds and reveals deviations 
from the power law dependence of 
the resistance on time.

Amorphisation of GeTe using laser pulses
pulse length of 60 fs•
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Elecrical versus optical amorphisation

wavelength of 1550 nm for selective absorption in GeTe•
Two deviations from power law on short timescales

drift absent for first 40 ns: Minimum energy barrier to 
overcome as first relaxation step? 

•

fast resistance increase afterwards: recombination of free 
charge carriers (as described in [2])? 

•

Slow setup

Discrete relaxation steps in small volumes
Reducing the volume of amorphous phase change 
material reveals a di�erent deviaton from the 
power law: fluctuations of the resistance between 
dis-crete levels. This could be explained by the glass 

moving through the energy landscape. 
Being highly sensitive to the microstucture, 
the electric resisistance can be used as an 
observable to analyse this energy landscape. 
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Sketch of
the underlying
energy landscape:
System evolves through
metabasins with multiple local 
energy minima 

the transition rates can be used to 
estimate an energy landscape (as 
done on the left)

•

Metabasin 1 Metabasin 2 Metabasin 3 Metabasin 4 Metabasin 5

small, unrelaxed glass upon 100 ns voltage pulse•

fitting a (hidden) Markov model with the re-
sistance as the only emission

•

model asumptions: Transition probabilities 
as well as state emissions (observables) 
only depend on the current state

•

In grey: Transition propability graph from the  
Markov model.

Time since amorphisaton in s

Germanium telluride as a fragile glass former 
Germanium telluride (GeTe) is a phase change 
material and, therefor, a fragile glass former with 
a large contrast in electrical properties between 
the crystalline and amorphous phase.

Phase change materials are of interest for 
applications such as (multibit) non-volatile 
data storage and as model systems for glass 
dynamics. 
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Switching the cell between crystalline and 
amorphous phase:

to avoid crystallisation: high quenching rates 
(~ 109 K/s) necessary       nanoscopic volumes
melting the material using 100 ns voltage 
pulses of varying amplitude leads to di�erent 
amorphous volumes
recrystallisation using the platinum micro 
heater underneath the GeTe cell
the cell can be switched back and forth at 
least ten thousand times

Relaxation of the GeTe 
glass:

upon cooling the 
supercooled liquid 
the system falls out 
of equilibrium
the formed glass 
relaxes towards this 
equilibrium, result-
ing in time depen-
dent properties

•

•

•

•

•

•

Time since amorphisaton in sTime since amorphisaton in s

capacitive 
current
deviations in 
electrical case

measurement 
artefact in 
optical case

Time since amorphisaton in s

Resistance dri� upon electrical amorphisation 

Measurements on nanosecond timescales - Capacitative currents
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Resistance drift

In the moment of amorphisation the 
applied voltage has to be reduced as 
fast as possible.

Current on short 
timescales dominated by 
capacitive currents. 

Collective structural relaxation model [1]

Resistance of phase change material glasses 
increases with a power law:

Unrelaxed glass di�ers from the 
relaxed supercooled liquid by a 
finite number of structural defects

Every relaxation step leads to a 
local stabilisation: incresing 
activation energy for subsequent 
relaxation steps

linear increase in activation 
energy to remove defects 
leads to logarithmic relaxation 
with time

with multiple trapping model:
power law increase of 
resistance over time
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Thorough analy-
sis of the measu-
rement setup:

measurements of the 
scatter parameters 
through di�erent ports

• fit the model on the left 
to get electrical equiva-
lent circuit

•

Sketch of
an electrical 
equivalent 
circuit 

in a log-log plot: straight line with drift 
coe�cient    as the slope 

•

at larger temperatures: recrystallisation •

Resistance drift describes the resistance increase 
of phase change material glasses over time. This 
presents a challenge for multi-bit storage 
applications.

The mechanism behind drift is not well 
understood. Looking beyond usually consi-
dered measurement regimes might help to 
decipher the mechanism.

The resistance drift could be linked to structural 
relaxation as suggested in the following model:

This makes resistance 
measurement on these 
short timescales very 
challenging!
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optical pulse:      electrical pulse:

Reaction coordinate
towards fully relaxedtowards fully unrelaxed
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Eb+1

Increase in activation energy:
Eb>Eb+1


