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Femtosecond pulse optical amorphisation

Instead of using nanosecond voltage pulses, femtose- nanoseconds and reveals deviations

Germanium telluride as a fragile glass former

Germanium telluride (GeTe) is a phase change Phase change materials are of interest for

cond laser pulses can be used to amorphise the material. from the power law dependence of
This enables measurements of the resistance down to the resistance on time.

material and, therefor, a fragile glass former with applications such as (multibit) non-volatile
a large contrast in electrical properties between data storage and as model systems for glass
the crystalline and amorphous phase. dynamics.

Switching the cell between crystalline and Relaxation of the GeTe Resistance drift over 12 orders of magnitude In time

amorphous phase: glass:

- to avoid crystallisation: high quenching rates e upon cooling the Amorphisation of GeTe using laser pulses Slow setup
(~ 10° K/s) necessary — nanoscopic volumes supercooled liquid * pulse length of 60 fs SMU Shutter ’

the system falls out
of equilibrium

. TAmp Scope

* melting the material using 100 ns voltage * wavelength of 1550 nm for selective absorption in GeTe
pulses of varying amplitude leads to different
amorphous volumes e the formed glass
relaxes towards this
equilibrium, result-
Ing In time depen-
» the cell can be switched back and forth at dent properties
least ten thousand times

(A Relay P
: y RSer RPCM

Two deviations from power law on short timescales

* drift absent for first 40 ns: Minimum energy barrier to =

e recrystallisation using the platinum micro overcome as first relaxation step? PG

heater underneath the GeTe cell * fast resistance increase afterwards: recombination of free

charge carriers (as described in [2])?
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Resistance drift upon electrical amorphisation Elecrical versus optical amorphisation
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_ _ Reducing the volume of amorphous phase change ~ moving through the energy landscape.
Collective structural relaxation model [1] material reveals a different deviaton from the Being highly sensitive to the microstucture,
power law: fluctuations of the resistance between  the electric resisistance can be used as an
* Unrelaxed glass differs from the * linear increase in activation dis-crete levels. This could be explained by the glass 0Observable to analyse this energy landscape.
relaxed supercooled liquid by a Increase In activation energy: energy to remove defects
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