Mathe-Repetitorium zur Physik I

Vorlesung: Prof. Dr. P.Krüger, Prof. Dr. A.Kappes

Mathe-Rep: Dr. K.Kovařík

Woche 8 - Ableitungen III

Aufgabe 1: Taylorentwicklung I

Entwickeln Sie die folgende Funktionen als eine Reihe in x und bestimmen Sie das Interval der Konvergenz

(a)
$$f(x) = \frac{2x-3}{(x-1)^2}$$
 (c) $f(x) = xe^{-2x}$ (d) $f(x) = \sinh x$ (e) $f(x) = \sin 3x + x \cos 3x$

(c)
$$f(x) = xe^{-2x}$$

(f)
$$f(x) = \ln \frac{1+x}{1-x}$$

(b)
$$f(x) = \frac{3x-5}{x^2-4x+3}$$

(e)
$$f(x) = \sin 3x + x \cos 3x$$

(g)
$$f(x) = \frac{1}{\sqrt{4-x^2}}$$

Aufgabe 2: Taylorentwicklung II

Entwickeln Sie die folgende Funktionen als eine Reihe in x und bestimmen Sie das Interval der Konvergenz

(a)
$$f(x) = \sin^2 x \cos^2 x$$

(c)
$$(1+x)e^{-x}$$

(b)
$$f(x) = \frac{x^2 - 3x + 1}{x^2 - 5x + 6}$$

(d)
$$\sqrt[3]{8+x}$$

(e)
$$\ln(x^2 + 3x + 2)$$

Aufgabe 3: Taylorentwicklung III

Entwickeln Sie

(a) $\ln x$ als eine Reihe in (x-1)

(c) $\frac{1}{x^2+3x+2}$ als eine Reihe in (x+4)

(b) $\frac{1}{x}$ als eine Reihe in (x-1)

(d) $\cos x$ als eine Reihe in $\left(x - \frac{\pi}{2}\right)$

Aufgabe 4: Wurzel

- (a) Berechnen Sie die Wurzel $\sqrt[3]{7}$ bis zur zweiten Nachkommastelle mit Hilfe einer Entwicklung von $\sqrt[3]{8+x}$ als eine Reihe in x.
- (b) Berechnen Sie die Wurzel $\sqrt[4]{19}$.