

Automated Planning and Acting Human-aware Planning

Tanya Braun Research Group Data Science, Computer Science Department

Content: Planning and Acting

- 1. With **Deterministic** Models
- 2. With Refinement Methods
- 3. With **Temporal** Models
- 4. With Nondeterministic Models
- 5. With **Probabilistic** Models

6. By **Decision Making**

- A. Foundations
- B. Extensions
- C. Structure

7. Human-aware Planning

- a. Mental Models
- b. Interpretable Behaviour
- c. Explanations

Acknowledgements

- Slides based on material provided by Subbarao (Rao) Kambhampati and his colleagues (for more material on human-aware planning by Rao: <u>http://rakaposhi.eas.asu.edu</u>)
 - Content can also be found in the HA-AI book

Outline: Human-awareness

Mental Models

• Human-aware agent

Interpretable Behaviour

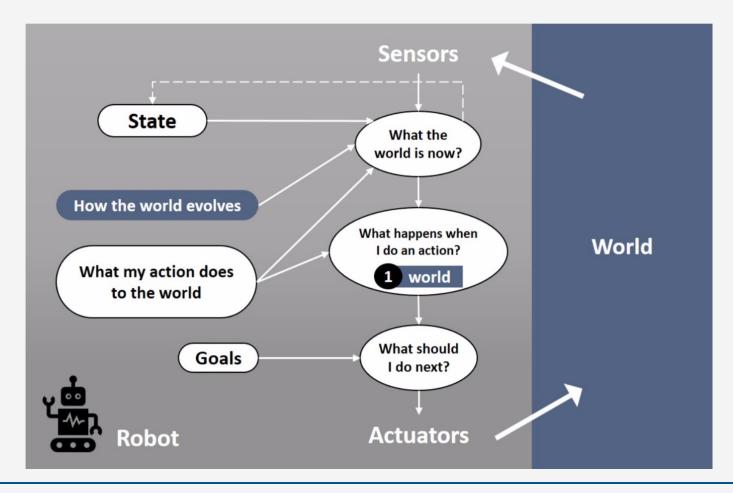
- Explicability
- Legibility
- Predictability

Explanations

• Model reconciliation

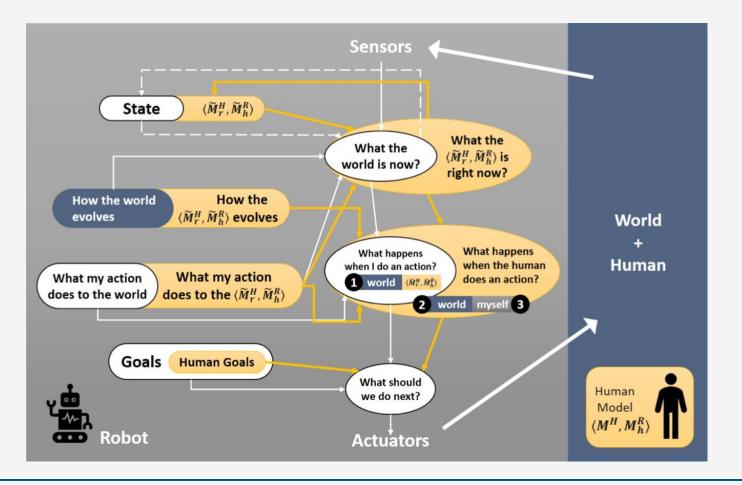
Motivation

- Collaborations between people and AI systems
 - I.e., systems with humans in the loop
 - Augment perception, cognition, problem-solving abilities of people
 - Examples
 - Help physicians make more timely and accurate diagnoses
 - Assistance provided to drivers of cars to help them avoid dangerous situations and crashes
- Objective: Systems that can interact intuitively with users and enable seamless machinehuman collaborations
 - Explainable behaviour
 - Explainable AI = XAI

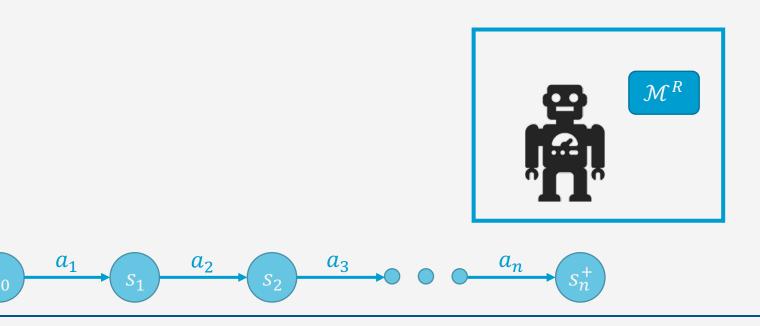


Proposed Solution

- Goal: Synthesise explainable behaviour
- Take into account the mental model of the human in the loop
 - Mental model:
 - Goals + capabilities of the humans in the loop
 - Human's model of AI agent's goals + capabilities

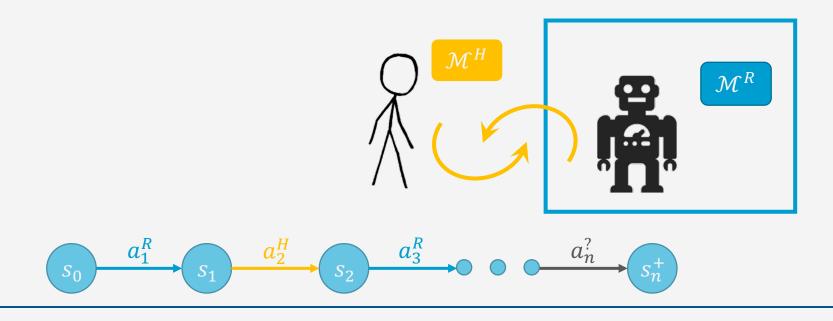


Classical Intelligent Agent


Human-aware Intelligent Agent

Classical Planning

- Given a planning problem (Σ, s_0, S_g) , i.e., the agent's model \mathcal{M}^R
- Find a plan $\pi = \langle a_1, a_2, ..., a_n \rangle$ that transforms s_0 to a state $s_n \in S_q$



9

Collaborative Planning

- Given a planning problem (Σ, s_0, S_g) , i.e., the agent's model \mathcal{M}^R
- Find a joint plan $\pi = \langle a_1^R, a_2^H, ..., a_n^? \rangle$ that transforms s_0 to a state $s_n^+ \in S_g$

Human-aware Planning

- Next to \mathcal{M}^R
- Agent's model \mathcal{M}_{r}^{H} of the human's model \mathcal{M}^{H}
 - Allows the agent to anticipate human behaviour to
 - assist
 - avoid
 - team

Mr

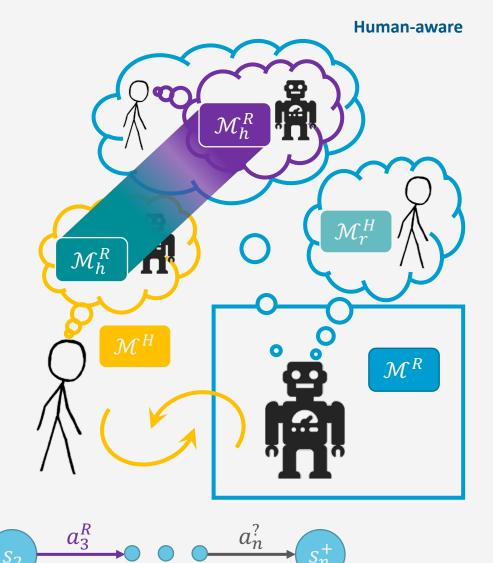
 a_3^R

 a_2^H

 a_1^R

 $a_n^?$

 \mathcal{M}^{R}

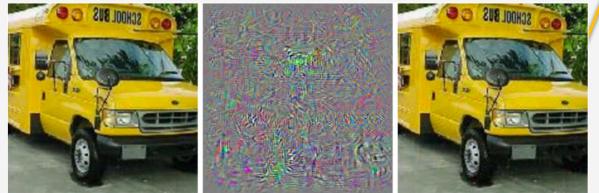


Human-aware Planning

- Next to \mathcal{M}^R and \mathcal{M}^H_r
- Agent's model $\widetilde{\mathcal{M}}_h^R$ that the agent expects the human to have of \mathcal{M}^R
 - Allows the agent to anticipate human expectations to
 - conform to those expectations
 - explain its own behaviour in terms of those expectations

 a_2^H

 a_1^R

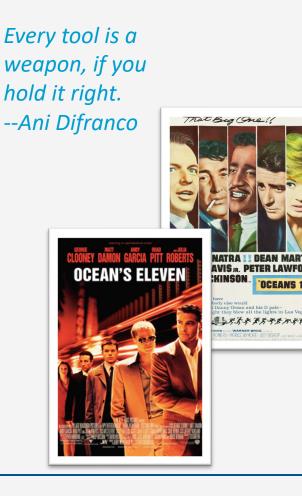

Generating Mental Models

- Known beforehand (handcrafted/researched)
 - Urban Search and Rescue
 - Teaching
- Learning simple models for generating explanations/explicability
- Learning full models (transition functions, rewards)
 - Through interaction with users

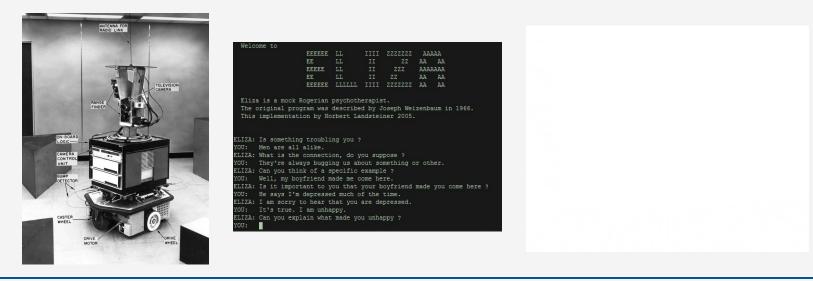
XAI & Explanations

- Standard XAI: view of explanations too simple
 - Debugging tool for "inscrutable" representations
 - "Pointing" explanations (primitive)
 - Explaining decisions will involve pointing over space-time tubes
- Explanations critical for collaboration
 - But not as a monologue from the agent
 - \rightarrow interaction

Prediction:Difference between leftPrediction:School busand right magnified by 10Ostrich


Please point to he "ostrich" part

Ethical Quandaries of Interaction

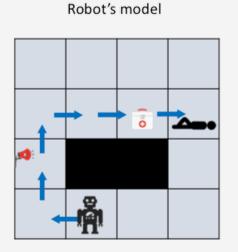

- Evolutionary, mental modelling allowed us to both cooperate or compete/sabotage each other
 - Lying is only possible because we can model others' mental states
- Human-aware AI systems with mental modelling capabilities bring additional ethical quandaries
 - E.g., automated negotiating agents that misrepresent their intentions to gain material advantage
 - Your personal assistant that tells you white lies to get you to eat healthy (or not...)

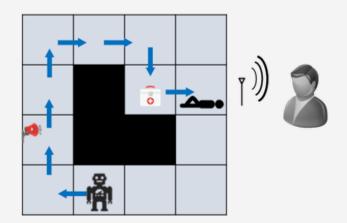
Ethical Quandaries of Interaction

- Humans' example closure tendencies are more pronounced for emotional/social intelligence aspects
 - No on who saw Shakey the first time thought it could shoot hoops, yet the first people interacting with Eliza assumed it was a real doctor
 - Concerns about human-aware AI "toys" such as Cozmo (e.g., Sherry Turkle)

Differences in Mental Models

- Expectations on capabilities
 - Human may have misconceptions about robot's actions
 - Certain actions in human's mental model may not be feasible for robot
- Expected state of the world
 - Human may assume certain facts are true (when they are not true)
- Expected goals
 - Human may have misconceptions about robot's objectives/intentions


- Sensor model differences
 - Human may have partial observability of robot's activities
 - Human may have incorrect beliefs about robot's observational capabilities
- Different representations
 - Robot's innate representation scheme might be too complex for human
 - Human may be thinking in terms of a different vocabulary


Urban Search and Rescue (USAR)

- Robot deployed to a disaster area
- Tasks robot can perform tasks:
 - Survey particular rooms
 - Identify survivors
 - Perform triage

- Two agents in domain
 - Internal agent Robot
 - External agent Human
- Their models may diverge leading to different expectation on behaviours

Human's mental model of the Robot Model

Model Differences

- Robot and human may have different models of same task
 - Divergence in models can lead to expectation mismatch
 - Consequence: Plans that are optimal to robot may not be so in model of human
 - Inexplicable plans
- Robot has two options
 - Explicable planning sacrifice optimality in own model to be explicable to human
 → interpretable behaviour
 - Plan Explanations resolve perceived suboptimality by revealing relevant model differences
 → model reconciliation

Intermediate Summary

- Different mental models
 - Mental model of the human
 - Mental model that the human has of the agent
 - Mental model that the agent assumes the human has of the agent
- Differences between mental models
 - May lead to inexplicable behaviour
- Ethical quandaries
 - Modelling mental state of humans requires ethical behaviour of agent

Outline: Human-awareness

Mental Models

• Human-aware agent

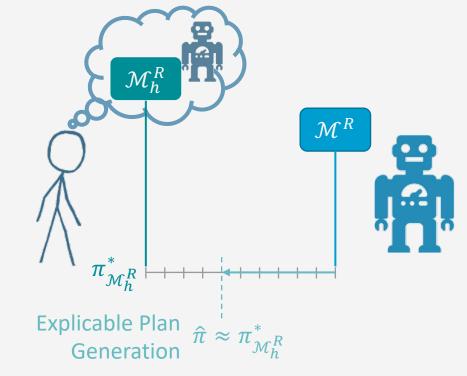
Interpretable Behaviour

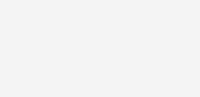
- Explicability
- Legibility
- Predictability

Explanations

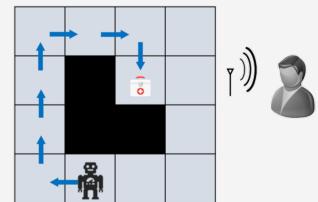
• Model reconciliation

Interpretable Behaviour

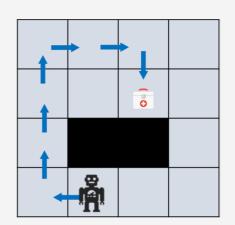

- Explicable behaviour
 - Acting in a way that makes sense to the user
- Legible behaviour
 - Acting in a way that conveys necessary information to the user
- Predictable behaviour
 - Acting in a way that allows users to accurately anticipate future behaviour


Why *Explicable* Behaviour?

- Robot's behaviour may diverge from human's expectations of it
- Human may get surprised by robot's inexplicable behaviour
- One way to avoid surprising a human involves generating explicable behaviour by conforming to human's expectations
 - Account for human's mental model

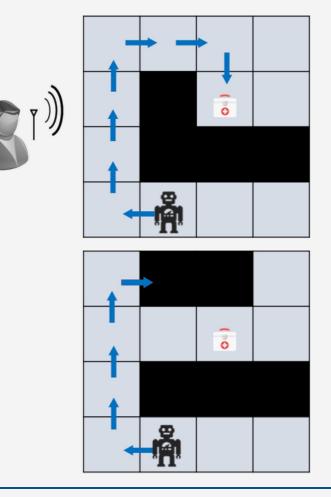

Explicable Behaviour

• Example: Robot may have to sacrifice its optimality to improve explicability

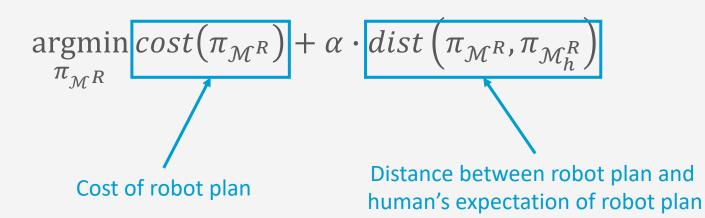


Robot's model Human's m

Robot's model

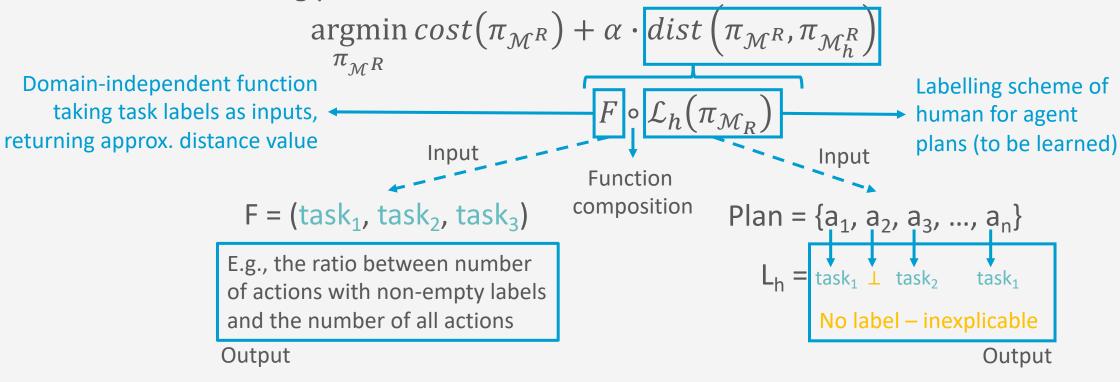


Model-based Explicable Behaviour


- Human's mental model is available to the robot
- But robot may not be able to plan directly with human mental model
- Find a valid plan that is "closest" to the expected plan
- Involves minimising distance w.r.t. expected plans
 - Cost difference in human model
 - Action set difference

Model-free Explicable Planning

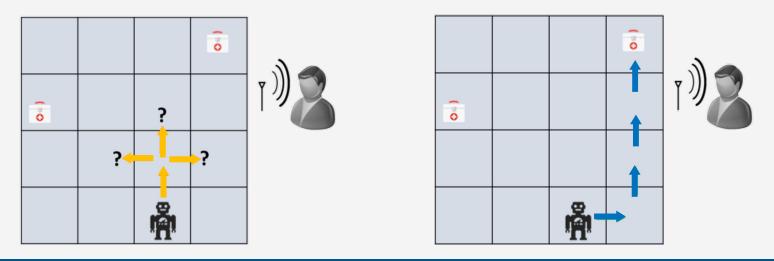
• Problem to solve:



- Robot may not have human's mental model \mathcal{M}_h^R upfront
 - But: We do not necessarily need to learn the full model

Model-free Explicable Planning

- Understand = Associate abstract tasks with actions
- Consider as a labelling process

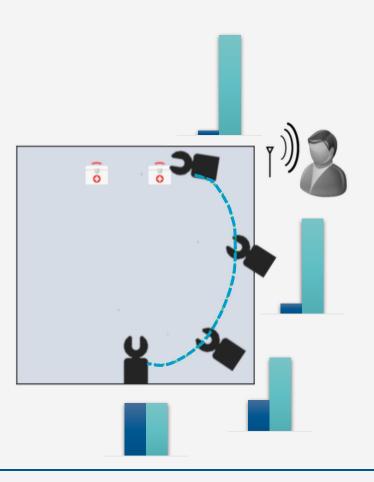

Why Legible Behaviour?

- In human-robot teams, essential for the robot to communicate its intentions and objectives to the human
 - Explicitly communicate its intentions to the human
 - Generating a behaviour which implicitly reveals robot's intentions to the human
 - Might be easier for the human teammate

Legible Behaviour

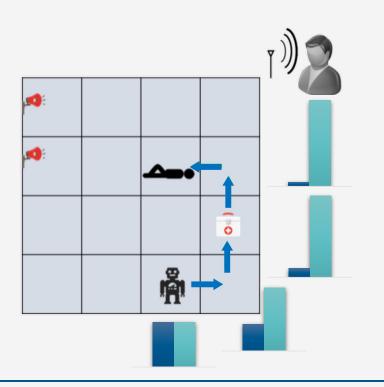
- In general, involves a setting where
 - Human has access to candidate goals but does not know true goal
- Robot's objective: Convey true goal implicitly through its behaviour
- Human updates its belief on set of candidate goals when it receives observations
- By synthesising legible behaviour, robot reduces human's uncertainty over candidate goals

Online Legible Behaviour


- Enables human to quickly and confidently infer robot's true goal
- Human's belief update is captured using a probabilistic goal recognition system
- Actions that maximise the posterior probability of the true goal G are favoured

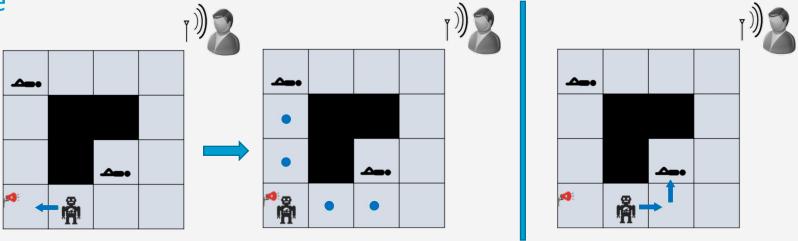
 $\underset{G \in \mathcal{G}}{\operatorname{argmax}} P(G|Observations)$

Legible Robot Motion


- Example: Which med kit will the robot pick up?
- While performing goal recognition, human considers shortest distances
- Approach involves finding a trajectory endpoint between start point and true goal such that posterior probability of true goal is maximised
 - The sooner the goal is recognised in the trajectory, the better is the trajectory's legibility

Transparent Planning

- Example: Is the robot surveying the rooms or performing triage?
- Whenever an action is performed, goal recognition system is used to update human's belief
- Objective: Reach a target belief where true goal is more probable than other goals
- Take the first applicable action associated with a belief of highest utility (closest to target belief)

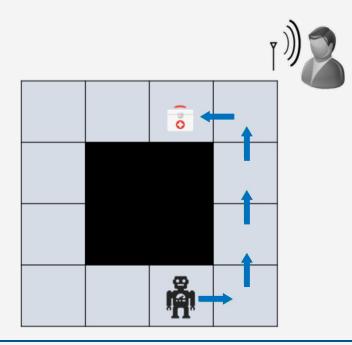

Offline Goal Legibility

- Generalises problem of goal legibility in terms of
 - Partial observability of the human
 - Amount of goal legibility achieved
- Partial observability:
 - Multiple action and state pairs may yield the same observation
 - Human's belief update consists of all possible states that emit given observation and are valid considering previous belief
 - $b_{i+1} = update(b_i, o_{i+1})$

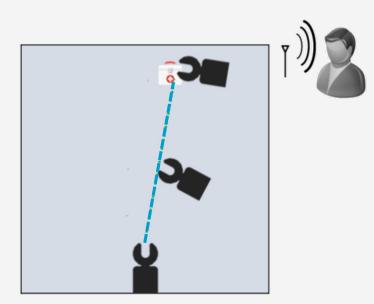
Offline Goal Legibility

- Example: Robot has to survey and treat a victim
 - Has to convey which victim it is treating
- Key idea: Limit number of candidate goals (at most j goals) possible in observer's final belief
- Explores legible behaviour that satisfies predetermined amount of goal legibility, i.e., the plan is *j*-legible

Why *Predictable* Behaviour?

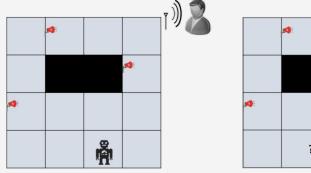

- In human-robot teams, if robot's behaviour cannot be anticipated by human, it can hamper team performance
- Predictable robot behaviours are easy for the human to understand and help in engendering trust in the robot
- Predictability and legibility are fundamentally different and often contradictory properties of motion

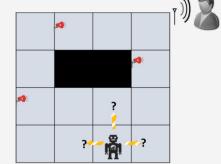
Predictable Behaviour

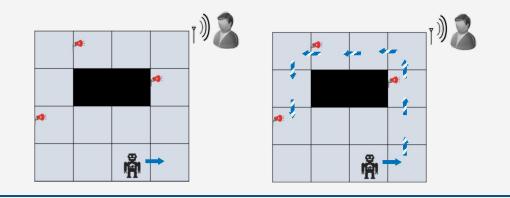

- In general, involves a setting where
 - Human knows start state and goal but does not know which plan will be executed
- Robot's objective is to behave in a way that can be anticipated by the human
- Observer updates its belief on set of valid plans when it receives observations
- By synthesising predictable behaviour, robot reduces human's uncertainty over possible behaviours

Predictable Robot Motion

- Example: What trajectory will robot take?
- Human assumes that robot is rational and that it prefers short length trajectory
- Most predictable trajectory optimises path towards the goal (*C* cost function modelling human's expectation) argmin *C*(*traj*)
 - traj
- There are two aspects of generating predictable motion:
 - Learning *C*
 - Minimising *C*

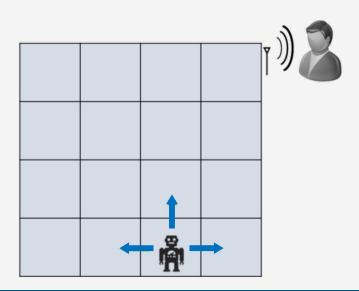




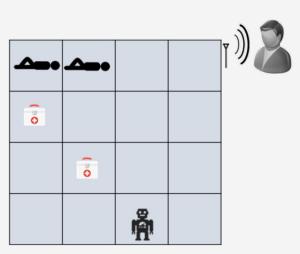

t-Predictability

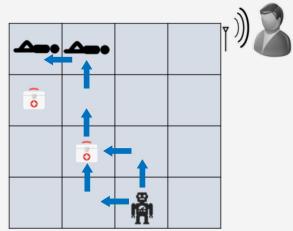
- Key idea: first t actions should foreshadow rest of actions
- Example: What route would the robot take to survey the rooms?
- *t*-predictability score P_t = probability of sequence $a_{t+1} \dots a_T$, given start state, goal and $a_1 \dots a_t$
- *t*-predictable planner finds action sequence *a*^{*} such that

$$a^* = \operatorname*{argmax}_{a \in A} P_t(a)$$



Offline Plan Predictability


- Assume offline setting
 - Human has partial observability
 - Belief update performed after receiving all observations
- Human guesses robot's actions based on plans that
 - Are consistent with observation sequence
 - Achieve goal
- Generalises the problem of conveying actions to observer



Offline Plan Predictability

- Example:
 - Robot has to perform triage
 - Which med kit should the robot pick?
- Solution: Generate a plan whose observation sequence is associated with
 - At least *m* plans to the same goal,
 - And the plans have high similarity.
 - i.e., m plans that are at most d distance from each other m-similar plans
- Using plan distance metrics
 - Action set distance gives the number of similar actions given two plans

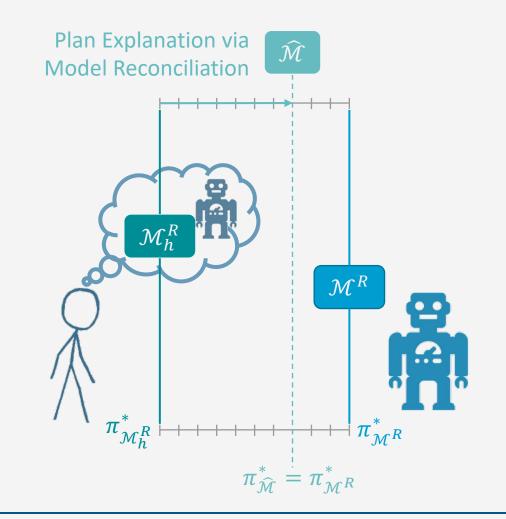
T. Braun - APA

Summary

- Aspects of interpretable behaviour
- Explicability
 - Act in a way that is comprehensible to the human agent
- Legibility
 - Act in a way such that a human agent can determine which goal is pursued by agent
- Predictability
 - Act in a way such that a human agent can predict the next steps given the previous steps

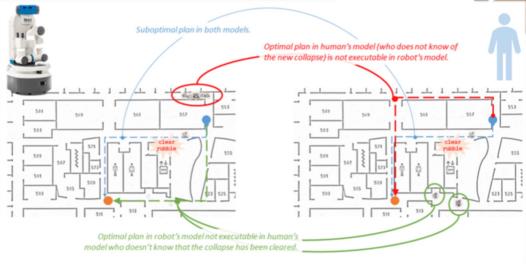
Outline: Human-awareness

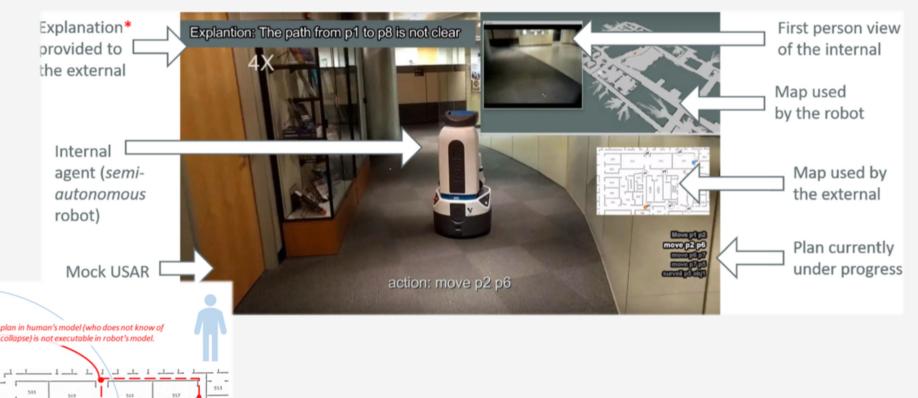
- Mental Models
 - Human-aware agent
- Interpretable Behaviour
 - Explicability
 - Legibility
 - Predictability


Explanations

• Model reconciliation

Plan Explanations


- Conforming to expectations of human
 - E.g., by explicable planning; may involve giving up optimal plan
 - But: May *not* be feasible
- Model reconciliation: Bring mental model closer by explanations
 - Planner is optimal in own but not in human's model
 - Given a plan, explanation is a model update
 - After explanation, plan is also optimal in the updated human model



Example

 Mock search and reconnaissance scenario with internal robot and external human

Aspects to Explanations

- Completeness: No better explanation exists, no aspect of plan remains inexplicable
 - Requires explanations of a plan to be comparable
- Conciseness: Explanations are easily understandable to the explainee
 - The larger an explanation, the harder for the human to incorporate information into deliberation process
- Monotonicity: Remaining model differences cannot change completeness of explanation, i.e., all aspects of model that yielded plan are reconciled
 - Subsumes completeness
- Computability: Ease of computing explanation from robot's point of view

Types of Explanations

- Plan Patch Explanation (PPE)
 - Provide model differences pertaining to only the actions present in the plan that need to be explained
- Model Patch Explanation (MPE)
 - Provide all model differences to the human
- Minimally Complete Explanation (MCE)
 - Shortest complete explanation
 - Can be rendered invalid given further updates
- Minimally Monotonic Explanation (MME)
 - Shortest explanation preserving monotonicity
 - Not necessarily unique as there may be model differences supporting the same causal links in the plan; exposing one link is enough (to guarantee optimality in the updated model)

Aspects of Types of Explanations

- Plan Patch Explanation (PPE)
- Model Patch Explanation (MPE)
- Minimally Complete Explanation (MCE)
- Minimally Monotonic Explanation (MME)

* In the sense that it focuses on the differences w.r.t. the plan but not necessarily a short explanation

Explanation Type	Completeness	Conciseness	Monotonicity	Computability
PPE	×	√*	×	\checkmark
MPE	\checkmark	X	\checkmark	\checkmark
MCE	\checkmark	\checkmark	×	?
MME	\checkmark	\checkmark	\checkmark	?

$|approx. MCE| \leq |exact MCE| < |MME| \ll |MPE|$

Example – FetchWorld

Human-aware

```
(:action move
:parameters (?from ?to - location)
:precondition (and (robot-at ?from)
                (hand-tucked) (crouched))
:effect
           (and (robot-at ?to)
                (not (robot-at ?from))))
(:action tuck
:parameters ()
:precondition
              ()
:effect (and (hand-tucked)
                (crouched)))
(:action crouch
:parameters ()
:precondition
              ()
:effect (and (crouched)))
```

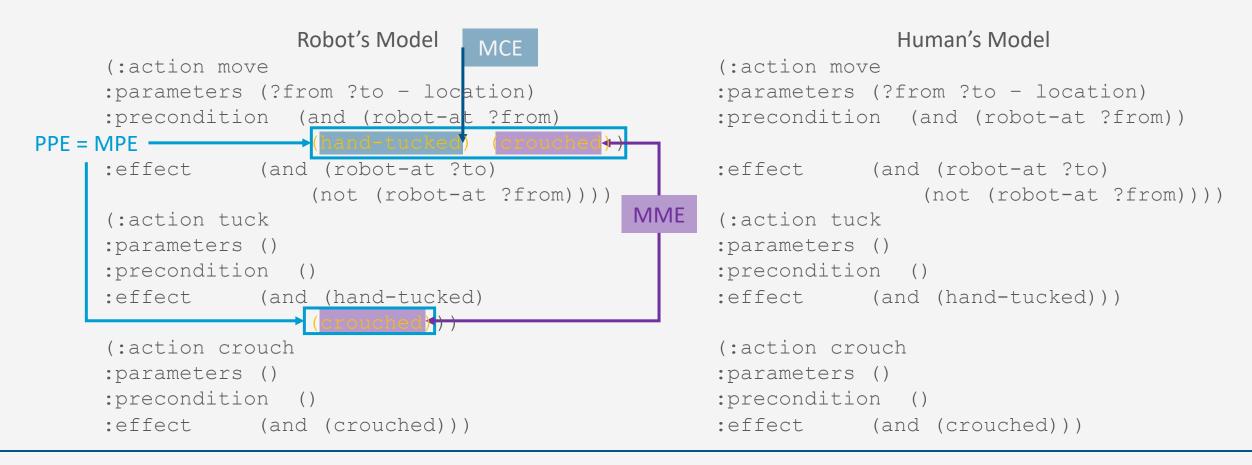
```
Human's Model
(:action move
:parameters (?from ?to - location)
:precondition (and (robot-at ?from))
:effect
       (and (robot-at ?to)
                (not (robot-at ?from))))
(:action tuck
:parameters ()
:precondition
              ()
:effect (and (hand-tucked)))
(:action crouch
:parameters ()
:precondition
              ()
```

```
:effect (and (crouched)))
```


Example – FetchWorld

Robot's Model

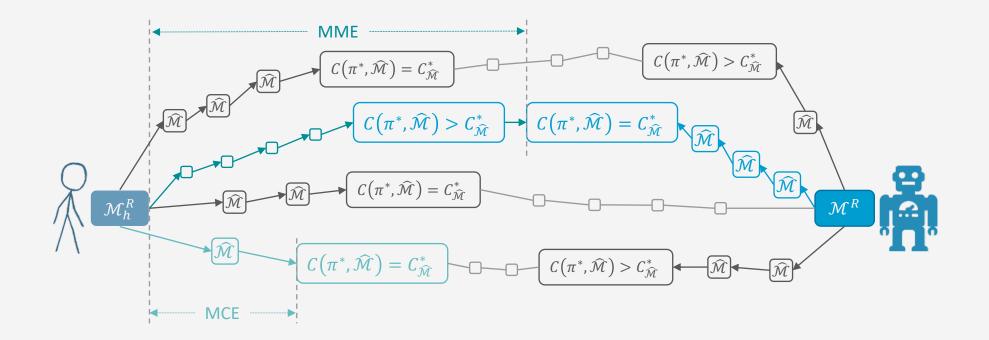
Initial state and goal:
Robot's optimal plan:
Human's expected plan: pick-up b1 -> move loc1 loc2 -> put-down b1
(:init (block-at b1 loc1) (robot-at loc1) (hand-empty))
(:goal (and (block-at b1 loc2)))
pick-up b1 -> tuck -> move loc1 loc2 -> put-down b1


Human's Model

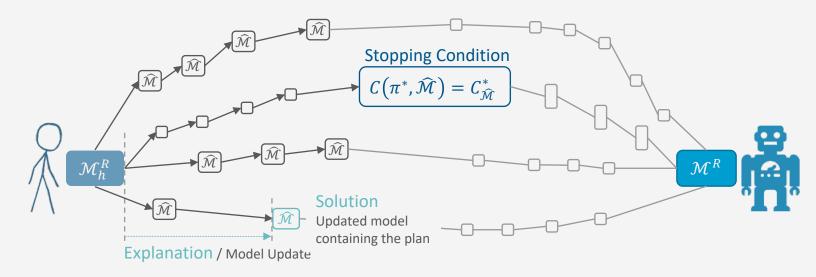
```
(:action move
(:action move
:parameters (?from ?to - location)
                                                 :parameters (?from ?to - location)
:precondition (and (robot-at ?from)
                                                 :precondition (and (robot-at ?from))
                (hand-tucked) (crouched))
:effect
            (and (robot-at ?to)
                                                 :effect
                                                             (and (robot-at ?to)
                (not (robot-at ?from))))
                                                                 (not (robot-at ?from))))
(:action tuck
                                                 (:action tuck
:parameters ()
                                                 :parameters ()
:precondition
                                                 :precondition
              ()
                                                                ()
:effect (and (hand-tucked)
                                                 :effect
                                                             (and (hand-tucked)))
                (crouched)))
                                                 (:action crouch
(:action crouch
:parameters ()
                                                 :parameters ()
:precondition
                                                 :precondition
              ()
                                                                ()
:effect
            (and (crouched)))
                                                 :effect
                                                             (and (crouched)))
```


Example – FetchWorld

Initial state and goal:
Robot's optimal plan:
Human's expected plan: pick-up b1 -> move loc1 loc2 -> put-down b1
(:init (block-at b1 loc1) (robot-at loc1) (hand-empty))
(:goal (and (block-at b1 loc2)))
pick-up b1 -> tuck -> move loc1 loc2 -> put-down b1

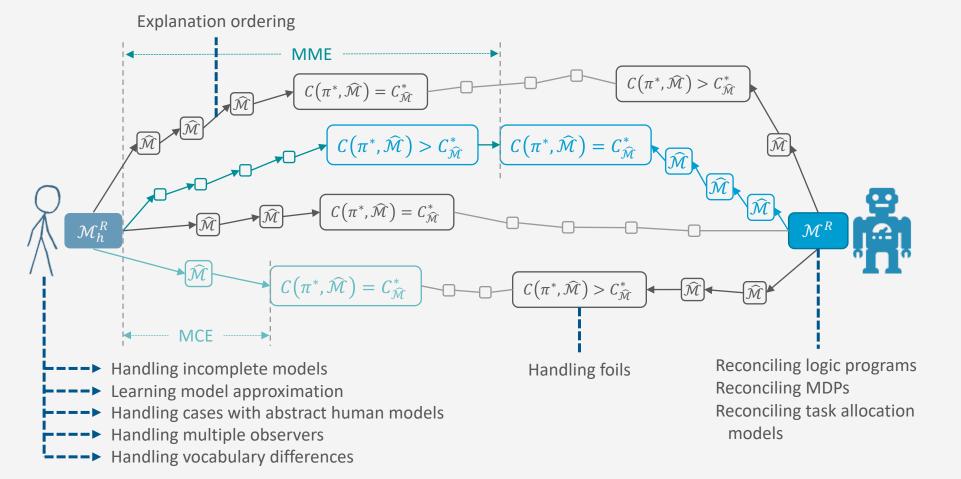


Model Space Search


• Search algorithms for finding MCEs and MMEs

Model Space Search

- Human-aware planning: Given model of planning problem and mental model of human, find right model to plan in
 - Trade-off explicability and explanation



• Minimise

$cost/length of explanations + \alpha \cdot departure from optimality$

Extensions (Outlook)

Summary

- Model reconciliation
 - Explain differences in model
 - PPE, MPE, MCE, MME

Outline: Human-awareness

Mental Models

- Human-aware agent
- Interpretable Behaviour
 - Explicability
 - Legibility
 - Predictability
- Explanations
 - Model reconciliation

