Automated Planning and Acting

Decision Making: Structure

Content: Planning and Acting

1. With Deterministic Models
2. With Refinement Methods
3. With Temporal Models
4. With Nondeterministic Models
5. With Probabilistic Models
6. By Decision Making
A. Foundations
B. Extensions
C. Structure

- Lifted DecPOMDPs
- Factored MDPs
- First-order MDPs

7. Human-aware Planning

Outline: Decision Making - Structure

Structure by Groups in the Agent Set

- Agent types
- Partitioned decPOMDPs

Structure by Features in the State Space

- Dynamic Bayesian networks
- Factored MDPs

Structure by Relations in the State Space

- Situation calculus
- First-order MDPs

Example: Medical Nanoscale Systems

- Nanoscale systems regularly consist of $>10,000$ nanoagents
- Different types of agents: nanosensors, nanobots
- Application: DNA-based medical system
- E.g., for diagnosis (modelled as an AND gate)
- Nanosensors receptive to individual markers for a specific disease
- Release individual tiles in presence of their individual markers
- Tiles assemble themselves to form messages
- Nanobots receptive to completely formed messages
- Release markers of their own that signify presense of the disease
- Formal model necessary to argue about
- Success rates
- Sizes of agent sets

Example: Medical Nanoscale Systems as a DecPOMDP

- Set of agents I consisting of nanosensors, nanobots
- Observations O_{i} : markers / messages present (or not)
- Noisy process \rightarrow probabilistic behaviour
- Actions A_{i} : release of tiles / markers (or not)
- Noisy process \rightarrow probabilistic behaviour
- Environment \rightarrow probabilistic behaviour
- Presence in general of agents, markers, tiles, messages, or position more specifically \rightarrow movement over time
- Reward: Qualitative measure
- Positive diagnosis only in presence of disease

Reprise: Worst-case Complexity of DecPOMDP

- Space complexity
- Transition model: $\mathcal{O}\left(s \cdot s \cdot a^{N}\right)$
- Sensor model: $\mathcal{O}\left(s \cdot o^{N}\right)$ or $\mathcal{O}\left(s \cdot o^{N} \cdot a^{N}\right)$
- Reward function: $\mathcal{O}(s)$ or $\mathcal{O}\left(s \cdot a^{N}\right)$
- Runtime complexity of brute-force search
- Evaluation cost of a joint policy: $\mathcal{O}\left(s \cdot o^{N h}\right)$
- Policy space: $\mathcal{O}\left(a^{\frac{N\left(o^{h}-1\right)}{o-1}}\right)$
- Notations
- $s=|S|$
- State space size
- $a=\max _{i \in I}\left|A_{i}\right|$
- Largest individual action space size
- $o=\max _{i \in I}\left|O_{i}\right|$
- Largest individual action space size
- h
- Horizon

Agent Types \& Partitioned DecPOMDPs

- Types: Agents with the same sets of actions and observations
- E.g., two nanosensors 1,2 receptive to the same marker and releasing the same tile
- $A_{1}=A_{2}=\{0,1\} ; 0$: do nothing, 1 : release tile
- $O_{1}=O_{2}=\{0,1\} ; 0$: marker not present, 1 : marker present
\rightarrow Partitions the set of agents regarding actions, observations
- Agent set $I=\left\{I_{1}, \ldots, I_{K}\right\}$ with I_{1}, \ldots, I_{K} a partitioning of $I\left(I=\bigcup_{k} I_{k}, I_{k} \cap I_{k^{\prime}}=\varnothing, I_{k} \neq \varnothing\right)$
- For each partition I_{k} : one set of actions A_{k}, one set of observations O_{k} for all agents in I_{k}
- Expectation that $K \ll N$
- Additional constraints / assumptions on same behaviour in T, R, Ω
\rightarrow Partitions the set of agents completely, enabling more compact encodings
- How?

Counting DecPOMDPs

- Counting constraint / assumption in T, R, Ω
- Formal: All permutations $\sigma\left(\vec{a}_{k}\right)$ of a partition action \vec{a}_{k} map to the same probability
- Enables counting how many agents do something and not which in particular did
- Encode in a histogram $\left[\#\left(a_{1}\right), \ldots, \#\left(a_{l}\right)\right]$ how many agents did actions

$$
A_{k}=\left\{a_{1}, \ldots, a_{l}\right\}
$$

- Number of histograms

$$
\binom{\left|I_{k}\right|+l-1}{l-1} \leq\left|I_{k}\right|^{l}
$$

			$\bar{T}\left(s, s^{\prime}, a_{1}^{\prime}\right)$
S	S^{\prime}	$A_{1}^{\#}$	 $=P\left(s^{\prime} \mid s, a_{1}^{\prime}\right)$
0	0	$[0,2]$	0.01
0	0	$[1,1]$	0.02
0	0	$[2,0]$	0.03
0	1	$[0,2]$	0.015
0	1	$[1,1]$	0.012
0	1	$[2,0]$	0.01
1	0	$[0,2]$	0.01
		\vdots	

			$T\left(s, s^{\prime}, a_{1}, a_{2}\right)$	
S	S^{\prime}	A_{1}	A_{2}	$=P\left(s^{\prime} \mid s, a_{1}, a_{2}\right)$
0	0	0	0	0.01
0	0	0	1	0.02
0	0	1	0	0.02
0	0	1	1	0.03
0	1	0	0	0.015
0	1	0	1	0.012
0	1	1	0	0.012
0	1	1	1	0.01
1	0	0	0	0.01
			\vdots	

Counting DecPOMDPs

- Complexity-wise, with $n=\max _{k}\left|I_{k}\right|$
- Transition model: $\mathcal{O}\left(s \cdot s \cdot n^{K a}\right)$
- Sensor model: $\mathcal{O}\left(s \cdot n^{K o}\right)$
- Reward function: $\mathcal{O}(s)$
- Evaluation cost: $\mathcal{O}\left(s \cdot n^{K o h}\right)$
- Reduction if $K \ll N$
- Unfortunately,
- Policy space: $\mathcal{O}\left(n^{\frac{a K\left(n^{h o}-1\right)}{n^{o}-1}}\right)$
- Ongoing research how to use counting efficiently

			$\bar{T}\left(s, s^{\prime}, a_{1}^{\prime}\right)$
S	S^{\prime}	$A_{1}^{\#}$	$\left(s^{\prime} \mid s, a_{1}^{\prime}\right)$
0	0	$[0,2]$	0.01
0	0	$[1,1]$	0.02
0	0	$[2,0]$	0.03
0	1	$[0,2]$	0.015
0	1	$[1,1]$	0.012
0	1	$[2,0]$	0.01
1	0	$[0,2]$	0.01
		\vdots	

S	S^{\prime}	A_{1}	A_{2}	$\left(s, s^{\prime}, a_{1}, a_{2}\right)$ $=P\left(s^{\prime} \mid s, a_{1}, a_{2}\right)$
0	0	0	0	0.01
0	0	0	1	0.02
0	0	1	0	0.02
0	0	1	1	0.03
0	1	0	0	0.015
0	1	0	1	0.012
0	1	1	0	0.012
0	1	1	1	0.01
1	0	0	0	0.01
			\vdots	

Ismorphic DecPOMDPs

- Isomorphic constraint / assumption in T, R, Ω :

Conditional independence between agents of a partition given joint state
\rightarrow Enables factorisation of T, R, Ω

- E.g., $T\left(s, s^{\prime}, a_{1}, a_{2}\right)=\underbrace{T_{1}\left(s, s^{\prime}, a_{1}\right)} \cdot T_{2}\left(s, s^{\prime}, a_{2}\right)=\prod_{i \in I_{k}} T^{\prime}\left(s, s^{\prime}, a_{i}\right)$

$$
T_{1}=T_{2}=T^{\prime}
$$

- Space complexities

			$T^{\prime}\left(s, s^{\prime}, a_{i}\right)$ S						
S^{\prime}	A_{i}	$=P\left(s^{\prime} \mid s, a_{i}\right)$		$	$	0	0	0	0.01
:---:	:---:	:---:	:---:						
0	0	1	0.03						
0	1	0	0.015						
0	1	1	0.01						
1	0	0	0.01						
		\vdots							

- Transition model: $\mathcal{O}\left(s \cdot s \cdot a^{K}\right)$
- Sensor model: $\mathcal{O}\left(s \cdot o^{K}\right)$
- Reward function: $\mathcal{O}(s)$
- Ongoing research how to solve isomorphic DecPOMDPs efficiently

Interim Summary: Structure by Groups in the Agent Set

- Types of agents with identical action and observation space
- Partitioned DecPOMDP if agent types + constraints of transition / sensor / reward function
- Counting DecPOMDP
- Permutations of actions of agents of the same partition map to the same probability / reward
- Count occurrences \rightarrow encode in histograms
- Isomorphic DecPOMDP
- Further independences between agents of a partition
- Space complexity polynomial at worst but using compact encoding for efficient decision making not yet solved

Outline: Decision Making - Structure

Structure by Groups in the Agent Set

- Agent types
- Partitioned decPOMDPs

Structure by Features in the State Space

- Dynamic Bayesian networks
- Factored MDPs

Structure by Relations in the State Space

- Situation calculus
- First-order MDPs

State Space

- So far: State space treated as a black box with a set of different states as domain of a random variable S
- However, state space often has structure
- n different features that describe a state space
- Encode in n individual random variables S_{i} with respective domains dom $\left(S_{i}\right)=\left\{v_{1}, \ldots, v_{d_{i}}\right\}$
- State space size then describable as $|S|=\prod_{i} d_{i} \leq d^{n}, d=\max _{i} d_{i}$
- I.e., exponential in the number of random variables
- Given (conditional) independences between different S_{i}, factorisation of probability distributions in model possible
- Applicable to MDPs, POMDPs, DecPOMDPs, partitioned DecPOMDPs
- Most work exists for factored MDPs (also the simplest case to consider)

Factorisation in General

- (Conditional) independences:
- $A \perp B(A, B$ independent $) \Leftrightarrow P(A, B)=P(A) \cdot P(B)$
- $A \perp B \mid C(A, B$ conditionally independent given $C) \Leftrightarrow P(A, B \mid C)=P(A \mid C) \cdot P(B \mid C)$
- Alternate version: $A \perp B \mid C \Leftrightarrow P(A \mid B, C)=P(A \mid C)$
- (Conditional) independences allow for factorising a distribution into smaller factors
- In general: Factorisation of a full joint probability distribution $P\left(S_{1}, \ldots, S_{n}\right)$ into m factors over subsets \boldsymbol{C} of random variables that form $P\left(S_{1}, \ldots, S_{n}\right)$ after multiplication (and normalisation):

$$
P\left(S_{1}, \ldots, S_{n}\right)=\frac{1}{Z} \prod_{j=1}^{m} \phi\left(C_{j}\right)
$$

- Where \boldsymbol{C}_{j} refers to sets of random variables that are mutually dependent on each other
- Memory complexity: $\mathcal{O}\left(d^{n}\right)$ vs. $\mathcal{O}\left(m \cdot d^{\left|\boldsymbol{C}_{\text {max }}\right|}\right)$

Probabilistic Graphical Models (PGMs)

- PGMs use a graph structure to represent dependences
- Common formalism: Bayesian network (BN) B
- Directed acyclic graph
- Nodes: random variables S_{i}
- Edges: if S_{i} depends on S_{j}, edge $S_{j} \rightarrow S_{i}$
- Factors: conditional probability distributions (CPDs) $\forall i P\left(S_{i} \mid \mathrm{pa}\left(S_{i}\right)\right)$
- Roots: pa $\left(S_{i}\right)=\varnothing \rightarrow$ Prior distributions $P\left(S_{i}\right)$
- Usually not depicted in graph; have to be denoted somewhere
- Semantics: $P\left(S_{1}, \ldots, S_{n}\right)=\prod_{i=1}^{n} P\left(S_{i} \mid \mathrm{pa}\left(S_{i}\right)\right)$
- Not further considered here:

Undirected version with potential functions ϕ as factors:

- Factor graphs, Markov networks
- Same semantics, different graphical representation
size -1 for each probability distribution in each CPD,
Full joint probability distribution size: d^{5}
Sizes of CPDs: $d+d+d^{3}+d^{2}+d^{2}$
Given $d=2: 2^{5}=32$ vs. 20
(As probabilities add to 1 : i.e., $1+1+4+2+2=10$) Münster

Dynamic Bayesian Networks

- MDP models a sequential, i.e., temporal, stationary, Markovian probabilistic setting
- Factorisation also needs to encode a sequential, stationary, Markovian probabilistic setting
- Popular modeling formalism used:

Dynamic BN (DBN) is a two-tuple $\left(B^{(0)}, B^{(\rightarrow)}\right)$

- Template variables S_{i} indexed by time step τ in BNs
\rightarrow Can be instantiated for particular time steps t
- $\mathrm{BN} B^{(0)}$ for time step 0 to encode
- If set to uniform distributions or using DBN for fix point calculations, can be safely ignored
- BN $B^{(\rightarrow)}$ for time step τ with connections from time step $\tau-1$ (copy pattern)
- Markov-1 \rightarrow Only connections from $\tau-1$ to τ
- Stationary $\rightarrow B^{(\rightarrow)}$ identical for all $t \in\{1, \ldots\}$
- Semantics: unroll for T time steps and multiply Münster

Dynamic Bayesian Networks: Example

- Left: vehicle localization task, where a moving car tries to track its current location using the data obtained from a, possibly faulty, sensor

- Right: Toy example of a special case of a DBN with one latent and one observable variable (hidden Markov model, HMM)

$R^{(t-1)}$	$P\left(r^{(t)} \mid R^{(t-1)}\right)$
true	0.7
false	0.3

$R^{(t)}$	$P\left(u^{(t)} \mid R^{(t)}\right)$
true	0.9
false	0.2

Factored MDPs

- MDP with its state space S structured according to S_{1}, \ldots, S_{n}, which in general means that
- Transition probability distribution $T\left(S^{\prime}, S, A\right)=P\left(S^{\prime} \mid S, A\right)$ is given by $T\left(S_{1}^{\prime}, \ldots, S_{n}^{\prime}, S_{1}, \ldots, S_{n}, A\right)=P\left(S_{1}^{\prime}, \ldots, S_{n}^{\prime} \mid S_{1}, \ldots, S_{n}, A\right)$
- Or using the template notation: $T\left(S^{(\tau)}, S^{(\tau-1)}, A^{(\tau-1)}\right)=P\left(S^{(\tau)} \mid S^{(\tau-1)}, A^{(\tau-1)}\right)$ is given by $T\left(S_{1}^{(\tau)}, \ldots, S_{n}^{(\tau)}, S_{1}^{(\tau-1)}, \ldots, S_{n}^{(\tau-1)}, A^{(\tau-1)}\right)=P\left(S_{1}^{(\tau)}, \ldots, S_{n}^{(\tau)} \mid S_{1}^{(\tau-1)}, \ldots, S_{n}^{(\tau-1)}, A^{(\tau-1)}\right)$
- Note that the overall size of T does not increase as the state space size is identical
- Given that S_{1}, \ldots, S_{n} represent features of (hopefully weakly) connected parts of a system, T can be factored according to (conditional) independences \rightarrow often represented using a DBN
- Factorisation of T :

$$
T\left(S^{\prime}, S, A\right)=P\left(S_{1}^{\prime}, \ldots, S_{n}^{\prime} \mid S_{1}, \ldots, S_{n}, A\right)=\prod_{i=1}^{n} P\left(S_{i}^{\prime} \mid \mathrm{pa}\left(S_{i}^{\prime}\right)\right)=: T_{B}
$$

Factored MDPs: Actions and Rewards

- To be correct, the DBN just described is a standard DBN extended with random variable nodes for actions, whose assignment we want to determine, and reward nodes to denote that a reward function outputs a reward depending on the state (and action)
- BN extended with so-called decision and utility nodes called influence or decision diagram

Side note: Since the state in MDPs is fully observable, every random variable in a DBN is observable, which is not the general case for DBNs, where usually there is a set of latent variables, which are never observed and as such often queried, and a set of evidence variables, which are usually observed (save for sensor failures).

Factored MDPs: Actions and Rewards

- What about rewards?

If the reward remains a function over the complete state space without any factorisation, we have not gained much

- But remember: Multi-attribute utility theory
- Reward function with preference independence between subsets of random variables \rightarrow additive reward function
- Factorisation of R :

$$
R(S)=R\left(S_{1}, \ldots, S_{n}\right)=\sum_{j=1}^{m} R_{j}\left(C_{j}\right)
$$

- Best case $R\left(S_{1}, \ldots, S_{n}\right)=\sum_{i=1}^{n} R_{i}\left(S_{i}\right)$
- Compare factorisation of $T: T\left(S^{\prime}, S, A\right)=P\left(S_{1}^{\prime}, \ldots, S_{n}^{\prime} \mid S_{1}, \ldots, S_{n}, A\right)=\prod_{i=1}^{n} P\left(S_{i}^{\prime} \mid \operatorname{pa}\left(S_{i}^{\prime}\right)\right)$

Factored MDPs: Space Complexity

- With a structured state space, representation size down
- Given
- State space with n features and a maximum domain size of d
- DBN over n features and a maximum domain size of d, with $c=\max _{i \in\{1, \ldots, n\}}\left|\operatorname{pa}\left(S_{i}\right)\right|+1$
- Given action space of size a
- Space complexity
- Transition function $T\left(S^{\prime}, S, A\right)$:
- Reward function $R(S)$:

$$
\begin{aligned}
& \mathcal{O}\left(d^{n} \cdot a\right) \\
& \mathcal{O}\left(d^{n}\right)
\end{aligned}
$$

vs. $\quad \mathcal{O}\left(n \cdot d^{c} \cdot a\right)$
vs. $\quad \mathcal{O}\left(n \cdot d^{c}\right)$

Solving Factored MDPs

- Bellman equation:

$$
U(s)=R(s)+\gamma \max _{a \in A(s)} \sum_{s^{\prime} \in \operatorname{dom}(s)} P\left(s^{\prime} \mid a, s\right) U\left(s^{\prime}\right)
$$

- Becomes
$U\left(s_{1}, \ldots, s_{n}\right)$
$=\sum_{j=1}^{m} R_{j}\left(C_{j}\right)+\gamma \max _{a \in A\left(s_{1}, \ldots, s_{n}\right)} \sum_{s_{1}^{\prime} \in \operatorname{dom}\left(s_{1}\right)} \ldots \sum_{s_{n}^{\prime} \in \operatorname{dom}\left(s_{n}\right)} \prod_{i=1}^{N} P\left(s_{i}^{(\tau)} \mid \operatorname{pa}\left(s_{i}^{(\tau)}\right)\right) U\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right)$
- Unfortunately, a factored MDP does not induce a factored value function U
- One way to go: concentrate on value functions that have a factored representation
- Approximate the unfactored value function with a factored one
$\stackrel{\perp}{-}$

Linear Value Functions

- Linear value function \mathcal{V} over a set of basis functions $H=\left\{h_{1}, \ldots, h_{k}\right\}$
- Function \mathcal{V} that can be written as $\mathcal{V}\left(s_{1}, \ldots, s_{n}\right)=\sum_{j=1}^{k} w_{j} \cdot h_{j}\left(s_{1}, \ldots, s_{n}\right)$ for some coefficients $\mathrm{w}=\left(w_{1}, \ldots, w_{k}\right)^{\prime}$
- Let \mathcal{H} be the linear subspace of \mathbb{R}^{n} spanned by H
- Let H be an $n \times k$ matrix whose columns are the k basis functions viewed as vectors
- Then, \mathcal{V} can be written as Hw
- Equivalent expressive power to, e.g., single layer neural network
- Features corresponding to the basis functions
- Optimise the coefficients w to obtain a good approximation for true value function
- Separates the problem of defining a reasonable space of features and the induced space \mathcal{H}, from the problem of searching within the space
- Former problem is typically purview of domain experts, latter is focus of analysis + algorithmic design

Approximate Policy Iteration with Linear Value Functions

- Restrict policy iteration algorithm to only use value functions \mathcal{V} within the provided \mathcal{H}
- Policy improvement as before
- Policy evaluation changes
- Whenever policy iteration takes a step that results in a \mathcal{V} outside of \mathcal{H}, project result back into \mathcal{H} by finding a value function within \mathcal{H} closest to \mathcal{V}
- Projection operator Π
- Mapping $\Pi: \mathbb{R}^{n} \rightarrow \mathcal{H}$
- = wwu

Policy Iteration

- Pick a policy π_{0} at random
- Repeat:

Repeat.
Policy evaluation $U^{(t)}(s)=R(s)+\gamma \sum_{s^{\prime} \in \operatorname{dom}(s)} P\left(s^{\prime} \mid a, s\right) U^{(t)}\left(s^{\prime}\right)$. $U^{(t)}(s)=R(s)+\gamma \sum_{s^{\prime} \in d a m ~ o p e r a t i o n ~ a s ~ a c t i o n ~ i s ~ d e t e r m i n e d ~} U_{t}$

- No longer involent: Compute the policy π_{t+1} giv
- Policy improvencrax $\sum_{s^{\prime} \in \operatorname{dom}(s)} P\left(s^{\prime} \mid a, s\right) U^{(t)}\left(s^{\prime}\right)$
- $\pi^{(t+1)}(s)=\underset{a \in A(s)}{\operatorname{argmax}}$
$\pi^{(t)}$ then return $\pi^{(t)}$
- If $\pi^{(t+1)}=\pi^{(t)}$, then return $\pi^{(t)}$
- Π is said to be a projection w.r.t. a norm $\|\cdot\|$ if $\Pi \mathcal{V}=H w^{*}$ such that $w^{*} \in \underset{\mathrm{w}}{\arg \min \| H w}-\mathcal{V} \|$
- Π is the linear combination of the basis functions that is closest to \mathcal{V} w.r.t. chosen norm

Approximate Policy Iteration with Linear Value Functions

- Policy evaluation for a policy $\pi^{(t)}$
- Value function - the value of acting according to the current policy $\pi^{(t)}$ - is approximated through a linear combination of basis functions
- Given $\pi^{(t)}$, i.e., actions are fixed,
- $T\left(S^{\prime}, S, A\right)=T\left(S^{\prime}, S, \pi^{(t)}\right)=T\left(S^{\prime}, S\right)$
- Policy evaluation can be written in terms of matrices and vectors
- \mathcal{V} and R as n-dimensional vectors and T as an $n \times n$-dimensional matrix, denoted $\mathrm{V}, \mathrm{R}, \mathrm{T}$
- Then, $\mathcal{V}=\mathrm{R}+\gamma \mathrm{T} \mathcal{V}$
- System of linear equations with one equation for each state \rightarrow approximate solution within \mathcal{H} :

$$
\mathrm{w}^{(t)}=\underset{\mathrm{w}}{\arg \min }\|\mathrm{Hw}-(\mathrm{R}+\gamma \mathrm{THw})\|=\underset{\mathrm{w}}{\arg \min }\left\|(\mathrm{H}-\gamma \mathrm{TH}) \mathrm{w}^{(t)}-\mathrm{R}\right\|
$$

- Problem: How to choose $\|\cdot\|$ wisely, i.e., providing error bounds?

Approximate Policy Iteration with Linear Value Functions

- Convergence and error analysis for MDPs use max-norm (\mathcal{L}_{∞})
\rightarrow Tie projection operator to \mathcal{L}_{∞} norm
- Minimising the \mathcal{L}_{∞} norm studied in optimisation literature as the problem of finding the Chebyshev solution to an overdetermined linear system of equations
- I.e., finding w^{*} such that $\mathrm{w}^{*} \in \arg \min _{\mathrm{w}}\|C \mathrm{w}-b\|_{\infty}$
- $C=(H-\gamma \mathrm{TH}), b=R$
- Algorithm due to Stiefel (1960) solves problem by linear programming:
- Variables:

$$
w_{1}, \ldots, w_{k}, \phi
$$

- Minimise:
ϕ;
$\begin{array}{ll}\phi \geq \sum_{j=1}^{k} c_{i j} \cdot w_{j}-b_{i} & \text { and } \\ \phi \geq b_{i}-\sum_{j=1}^{k} c_{i j} \cdot w_{j}, & i=1, \ldots, n .\end{array}$

$$
\phi \geq b_{i}-\sum_{j=1}^{k} c_{i j} \cdot w_{j}, \quad i=1, \ldots, n
$$

Only $k+1$ variables but $2 n$ constraints: Impractical in general but in factored MDPs with linear value functions, constraints can be represented efficiently \rightarrow tractable

- At solution $\left(\mathrm{w}^{*}, \phi^{*}\right), \mathrm{w}^{*}$ is the Chebyshev solution and ϕ^{*} is the \mathcal{L}_{∞} projection error

Factored Value Functions

- Factored (linear) value function
- Linear function over the basis set h_{1}, \ldots, h_{k} where scope of each basis function h_{i} restricted to some subset of variables $\boldsymbol{C}_{i} \subset S$
- Goal: the scopes of h_{1}, \ldots, h_{k} correspond to cliques in graph of DBN representing transition model T
- Not considered so far: How can we use this factored function to our advantage in policy evaluation where we need to
- Solve the value function as a combination of h_{1}, \ldots, h_{k} and
- Problem: Sum over exponential state space
- Optimise the weights to have a good approximation
- Problem: LP with exponentially many constraints

Factored Value Functions: Use in Q Value Function

- Efficient computation of value function using $h_{1}, \ldots, h_{k}\left(s=s_{1}, \ldots, s_{n}\right)$ using Q value function

$$
Q(\boldsymbol{s}, a)=R(\boldsymbol{s}, a)+\gamma \sum_{\boldsymbol{s}^{\prime} \in S} P\left(\boldsymbol{s}^{\prime} \mid \boldsymbol{s}, a\right) \mathcal{V}(\boldsymbol{s})=R(\boldsymbol{s}, a)+\gamma \sum_{\boldsymbol{s}^{\prime} \in S} P\left(\boldsymbol{s}^{\prime} \mid \boldsymbol{s}, a\right) \sum_{i} w_{i} h_{i}\left(\boldsymbol{s}^{\prime}\right)
$$

- Define $G(\boldsymbol{s}, a)$ with $g_{i}(\boldsymbol{s}, a):=\sum_{\boldsymbol{s}^{\prime} \in \boldsymbol{S}} P\left(\boldsymbol{s}^{\prime} \mid \boldsymbol{s}, a\right) h_{i}\left(\boldsymbol{s}^{\prime}\right)$

$$
G(\boldsymbol{s}, a):=\sum_{s^{\prime} \in S} P\left(\boldsymbol{s}^{\prime} \mid \boldsymbol{s}, a\right) \sum_{i} w_{i} h_{i}\left(\boldsymbol{s}^{\prime}\right)=\sum_{i} w_{i} \sum_{\boldsymbol{s}^{\prime} \in S} P\left(\boldsymbol{s}^{\prime} \mid \boldsymbol{s}, a\right) h_{i}\left(\boldsymbol{s}^{\prime}\right)=\sum_{i} w_{i} g_{i}(\boldsymbol{s}, a)
$$

- Can compute each basis function separately

Factored Value Functions: Use in Q Value Function

- Consider $g(\boldsymbol{s}, a):=\sum_{\boldsymbol{s}^{\prime} \in \boldsymbol{S}} P\left(\boldsymbol{s}^{\prime} \mid \boldsymbol{s}, a\right) h\left(\boldsymbol{s}^{\prime}\right)=T_{B} h$
- $P\left(\boldsymbol{s}^{\prime} \mid \boldsymbol{s}, a\right)$ factored as a DBN T_{B}
- h has restricted scope over C
- Sum over \boldsymbol{C}^{\prime} conditioned on ancestors $\boldsymbol{R}=\operatorname{anc}\left(\boldsymbol{C}^{\prime}\right)$ of \boldsymbol{C}^{\prime} in T_{B}

$$
\begin{aligned}
& g_{i}(\boldsymbol{s}, a)=\sum_{\boldsymbol{s}^{\prime} \in \mathbf{S}^{\prime}} P\left(\boldsymbol{s}^{\prime} \mid \boldsymbol{s}, a\right) h_{i}\left(\boldsymbol{s}^{\prime}\right)=\sum_{\boldsymbol{c}^{\prime} \in \boldsymbol{C}^{\prime}} P\left(\boldsymbol{s}^{\prime} \mid \boldsymbol{s}, a\right) h_{i}\left(\boldsymbol{c}^{\prime}\right) \\
&=\sum_{\boldsymbol{s}^{\prime} \in \mathbf{S}^{\prime}}^{\boldsymbol{s}^{\prime} \in \boldsymbol{S}^{\prime} \backslash \boldsymbol{C}^{\prime}} \\
& P\left(\boldsymbol{c}^{\prime} \mid \boldsymbol{s}, a\right) h_{i}\left(\boldsymbol{c}^{\prime}\right) \sum_{\boldsymbol{c}^{\prime} \in \boldsymbol{C}^{\prime}} P\left(\boldsymbol{r}^{\prime} \mid \boldsymbol{s}, a\right)=\sum_{\substack{ }} P\left(\boldsymbol{c}^{\prime} \mid \boldsymbol{r}, a\right) h_{i}\left(\boldsymbol{c}^{\prime}\right)
\end{aligned}
$$

- Depends on the number of values \boldsymbol{R} can take, which depends on \boldsymbol{C}^{\prime} and complexity of dynamics represented in T_{B}, i.e., connectivity of graph B

Factored Value Functions: Use in LP with Exponentially Many Constraints

- Constraints of form $\phi \geq \sum_{i} w_{i} c_{i}(\boldsymbol{s})-b(\boldsymbol{s}), \forall \boldsymbol{s} \in \boldsymbol{S}$
- $\phi, w_{1}, \ldots, w_{k}$ free variables
- \boldsymbol{s} ranges over all states
- Can be replaced by one equivalent non-linear constraint $\phi \geq \max _{\boldsymbol{s}} \sum_{i} w_{i} c_{i}(\boldsymbol{s})-b(\boldsymbol{s})$
- Tackle problem of representing non-linear constraint by
- Computing maximum assignment for a fixed set of weights
- Simpler problem: Given fixed weights w_{i}, compute $\phi^{*}=\max _{\boldsymbol{s}} \sum_{i} w_{i} c_{i}(\boldsymbol{s})-b(\boldsymbol{s})$
- Representing non-linear constraint by small set of linear constraints using a construction called factored LP

Factored Value Functions: Use in LP with Exponentially Many Constraints

- Computing maximum assignment for a fixed set of weights
- Given fixed weights w_{i}, compute $\phi^{*}=\max _{s} \sum_{i} w_{i} c_{i}(\boldsymbol{s})-b(\boldsymbol{s})$
- Remember: Each $c(\boldsymbol{s})$ involves only a subset \boldsymbol{C} of \boldsymbol{S}
- Follow idea of variable elimination in Bayesian networks
- Eliminate one variable $S \in S$ at a time by
- Combining all functions involving S and
- Replacing the result with a new function in which we keep only the mappings for each $\boldsymbol{s} \backslash\{S\}$ where S leads to a maximum value
- Cost exponential in the width of network (largest number of variables combined in a function during overall computation)

Factored Value Functions: Use in LP with Exponentially Many Constraints

- Factored LP to construct a (polynomial) set of constraints for the exponential set of constraints $\phi \geq \sum_{i} w_{i} c_{i}(\boldsymbol{s})+\sum_{j} b_{j}(\boldsymbol{s})$ to use to compute max-norm projections
- Set of constraints $\Omega=\varnothing$, set of intermediate functions $\mathcal{F}=\emptyset$
- For each c_{i} with scope \boldsymbol{Z} :
- For each assignment \mathbf{z} to \mathbf{Z}, create new LP variable $u_{\mathbf{z}}^{f_{i}}$, add $u_{\mathbf{z}}^{f_{i}}=w_{i} c_{i}(\mathbf{z})$ to Ω and $f_{i}=w_{i} c_{i}(\mathbf{z})$ to \mathcal{F}
- For each b_{j} with scope z :
- For each assignment \mathbf{z} to \mathbf{Z}, create new LP variable $u_{\boldsymbol{z}}^{f_{j}}$, add $u_{\boldsymbol{z}}^{f_{j}}=b_{j}(\mathbf{z})$ to Ω and $f_{j}=b_{j}(\mathbf{z})$ to \mathcal{F}
- Eliminate all variables $S \in\left\{S_{1}, \ldots, S_{n}\right\}$
- Select functions \boldsymbol{F} from \mathcal{F} containing S
- Define a new function e over all variables \boldsymbol{Z} in \boldsymbol{F} minus S to represent $\max _{S} \sum_{f \in \boldsymbol{F}} f$ to replace \boldsymbol{F} in \mathcal{F}
- For each assignment \boldsymbol{z} to \boldsymbol{Z}, add constraint $u_{\boldsymbol{Z}}^{e} \geq \sum_{f \in \boldsymbol{F}} u_{\boldsymbol{z}_{f}}^{f}$

Factored POMDP

- Difference between MDP and POMDP: partial observability of state
- State S no longer directly observable \rightarrow latent
- Additional sensor model $\Omega(0, S)=P(O \mid S)$ for observation 0
- Given a factorisation of state space
- Sensor model becomes $\Omega\left(0, S_{1}, \ldots, S_{n}\right)=P\left(O \mid S_{1}, \ldots, S_{n}\right)$

Graph representation of a POMDP

- Alternate version using template notation:

$$
\Omega\left(O^{\tau}, S_{1}^{\tau}, \ldots, S_{n}^{\tau}\right)=P\left(O^{\tau} \mid S_{1}^{\tau}, \ldots, S_{n}^{\tau}\right)
$$

- O could also be possibly factored if more than one observation signal incoming
- $\Omega\left(O_{1}^{\tau}, \ldots, O_{k}^{\tau}, S_{1}^{\tau}, \ldots, S_{n}^{\tau}\right)=P\left(O_{1}^{\tau}, \ldots, O_{k}^{\tau} \mid S_{1}^{\tau}, \ldots, S_{n}^{\tau}\right)$
- Given (conditional) independences, Ω can also be factored like T and represented by a BN B^{τ} or incorporated into the DBN $\left(B_{0}, B_{\rightarrow}\right)$ representing T

Interim Summary: Structure by Features in the State Space

- State space characterised by set of attributes
- (Conditional) independences allow for factorisation of functions in MDP
- Probabilistic graphical models represent such factorisations
- Factored MDP: MDP with a DBN as a representation of the transition model
- Reduction in space complexity
- Factored transition function does not lead to factored value function
- Factored (linear) value functions over a set of basis functions
- Enable computing policy evaluation efficiently
- Approximate policy iteration
- Project results outside of subspace spanned by basis functions back into subspace

Outline: Decision Making - Structure

Structure by Groups in the Agent Set

- Agent types
- Partitioned decPOMDPs

Structure by Features in the State Space

- Dynamic Bayesian networks
- Factored MDPs

Structure by Relations in the State Space

- Situation calculus
- First-order MDPs

Acknowledgement

- Thanks to Scott Sanner!

First-order MDPs

Motivation

Scott Sanner
NICTA / ANU

Motivation: Planning Languages

- Common languages:
- STRIPS
- PDDL
- More expressive than STRIPS
- For example, universal and conditional effects:

```
(:action put-all-blue-blocks-on-table
    :parameters ( )
    :precondition ( )
    :effect (forall (?b)
        (when (Blue ?b)
        (not (OnTable ?b)))))
```


- General Game Playing (GGP)
- One or more agents

Motivation: Benefits of Relational Languages

- STRIPS, PDDL, GGP are relational languages...
- Refer to relational fluents:
- E.g., BoxIn(? b, ? c), OnTable(? b)
- Specify relations between objects
- Change over time
- Use first-order logic to specify...
- Action preconditions
- Action effects
- Goals / rewards
- E.g., (forall (?b ?c) ((Destination ?b ?c) \Rightarrow (BoxIn ?b ?c)))
- Are domain-independent and often compact!

Motivation: How to Solve?

- Relational planning problem
- E.g., box world


```
(:action load-box-on-truck-in-city
    :parameters (?b - box ?t - truck ?c - city)
    :precondition (and (BoxIn ?b ?c) (TruckIn ?t ?c))
    :effect (and (On ?b ?t) (not (BoxIn ?b ?c))))
```

- Solve ground problem for each domain instance?
- E.g., instance with 3 trucks
- Or solve lifted specification for all domains at once?

Box World: Full (Relational) Specification

- Relational fluents: BoxIn(Box,City), TruckIn(Truck,City), BoxOn(Box,Truck)
- Goal: [ヨBox : b.BoxIn(b,paris)]
- Actions:
- load(Box : b,Truck : t):
- Effects:
- when $[\exists \operatorname{City}: c . \operatorname{BoxIn}(b, c) \wedge \operatorname{TruckIn}(t, c)]$ then $[\operatorname{BoxOn}(b, t)]$
- $\forall C$ City : c. when $[\operatorname{BoxIn}(b, c) \wedge \operatorname{TruckIn}(t, c)]$ then $[\neg \operatorname{BoxIn}(b, c)]$
- unload(Box:b,Truck: t):
- Effects:
- \forall City : c. when $[\operatorname{BoxOn}(b, t) \wedge \operatorname{TruckIn}(t, c)]$ then $[\operatorname{BoxIn}(b, c)]$
- when $[\exists \operatorname{City}: \operatorname{c.BoxOn}(b, t) \wedge \operatorname{TruckIn}(t, c)]$ then $[\neg \operatorname{BoxOn}(b, t)]$
- drive(Truck : t, City : c):
- Effects:
- when $\left[\exists \operatorname{City}: c_{1} \cdot \operatorname{TruckIn}\left(t, c_{1}\right)\right]$ then $[\operatorname{TruckIn}(t, c)]$
- \forall City : c_{1}. when $\left[\operatorname{TruckIn}\left(t, c_{1}\right)\right]$ then $\left[\neg \operatorname{TruckIn}\left(t, c_{1}\right)\right]$

Solving Ground Box World

- Apply planner to Box World grounded with respect to domain, e.g.,
- Domain object instantiations:
- Box $=\left\{\right.$ box $_{1}$, box $_{2}$, box $\left._{3}\right\}$, Truck $=\left\{\right.$ truck $_{1}$, truck $\left._{2}\right\}$, City $=\{$ paris, berlin, rome $\}$
- Ground fluents:
- BoxIn: \{BoxIn(box ${ }_{1}$, paris), BoxIn(box ${ }_{2}$, paris), BoxIn(box ${ }_{3}$, paris), BoxIn(box ${ }_{1}$, berlin), BoxIn(box ${ }_{2}$, berlin), BoxIn(box 3 , berlin), BoxIn(box b rome $^{\text {, , BoxIn(box }}$, rome), BoxIn(box ${ }_{3}$, rome) \}
- TruckIn: \{TruckIn(truck ${ }_{1}$, paris), TruckIn(truck ${ }_{2}$, paris), TruckIn(truck ${ }_{1}$, berlin $), ~ T r u c k I n\left(t r u c k ~_{2}\right.$, berlin), TruckIn(truck 1_{1},rome), TruckIn(truck $_{2}$,rome) \}
- BoxOn:\{BoxOn(box , truck $_{1}$), BoxOn(box ,truck $_{1}$), BoxOn(box ${ }_{3}$,truck ${ }_{1}$), BoxOn(box Br $_{1}$ truck 2), BoxOn(box , truck $_{2}$), BoxOn(box ${ }_{3}$ truck 2) \}
- Ground actions:
 load(box , truck $_{2}$), load (box , $_{2}$ truck 2), load (box ${ }_{3}$, truck $_{2}$)\}

Number of actions exponential in arity

- unload:\{unload(box ,truck $_{1}$), unload (box b $_{2}$, truck $_{1}$), unload (box ${ }_{3}$, truck $_{1}$),

- drive: \{drive(truck 1, paris), drive(truck ${ }_{2}$, paris), drive(truck ${ }_{1}$, berlin), drive (truck ${ }_{2}$, berlin), drive (truck ${ }_{1}$, rome), drive (truck ${ }_{2}$, rome) \}

Goal description exponential in

- Goal: [BoxIn(box, paris) V BoxIn(box ${ }_{2}$, paris) V BoxIn(box ${ }_{3}$, paris)] number of nested quantifiers

A First-order Solution to Box World

- Derive solution deductively at lifted PDDL level \rightarrow Optimal for any domain instantiation!
if $(\exists b$. BoxIn(b, paris)) then
do noop
else if $\left(\exists b^{*}, t^{*} . \operatorname{TruckIn}\left(t^{*}\right.\right.$, paris $\left.) \wedge \operatorname{BoxOn}\left(b^{*}, t^{*}\right)\right)$ then
do unload (b^{*}, t^{*})
else if $\left(\exists b, c, t^{*}\right.$. BoxOn $\left.\left(b, t^{*}\right) \wedge \operatorname{TruckIn}(t, c)\right)$ then
do drive (t^{*}, paris)
else if $\left(\exists b^{*}, c, t^{*} . \operatorname{BoxIn}\left(b^{*}, c\right) \wedge \operatorname{TruckIn}\left(t^{*}, c\right)\right)$ then
do load (b^{*}, t^{*})
else if $\left(\exists b, c_{1}^{*}, t^{*}, c_{2}\right.$. BoxIn $\left.\left(b, c_{1}^{*}\right) \wedge \operatorname{TruckIn}\left(t^{*}, c_{2}\right)\right)$ then
do drive $\left(t^{*}, c_{1}^{*}\right)$
else do noop
- Great, but how do I obtain this solution?

Situation Calculus

- Logic formalism designed for representing and reasoning about dynamic domains
- First introduced by John McCarthy in 1963
- Basic elements
- Actions that can be performed in the world
- Situations
- Fluents that describe the state of the world
- Domain
- Action precondition axioms, one for each action
- Successor state axioms, one for each fluent
- Axioms describing the world in various situations
- Foundational axioms of the situation calculus: situations are histories, induction on situations

Situation Calculus: Ingredients

- Actions
- First-order terms with action parameters
- E.g., load (b, t), unload (b, t), drive (t, c)
- Situations
- Term that encoes action history
- E.g., $s, s_{0}, \operatorname{do}(\operatorname{load}(b, t), s), d o(\operatorname{load}(b, t), \operatorname{drive}(t, c), s)$
- Fluents
- Relation whose truth value varies between situations
- E.g., BoxOn $(b, t, s), \operatorname{TruckIn}(t, c, s), \operatorname{Box}(t, c, s)$
- Effects?

Situation Calculus: PDDL to Effects

- Translate action effects into positive and negative effect axioms
- $\operatorname{load}(B o x: b$, Truck : $t)$:
- when $[\exists \operatorname{City}: c . \operatorname{BoxIn}(b, c) \wedge \operatorname{TruckIn}(t, c)]$ • $[\exists c . a=\operatorname{load}(b, t) \wedge \operatorname{BoxIn}(b, c, s) \wedge \operatorname{TruckIn}(t, c, s)]$ then $[\operatorname{BoxOn}(b, t)]$
$\Rightarrow \operatorname{BoxOn}(b, t, \operatorname{do}(a, s))$
- $\forall C$ ity : c. when $[B o x \operatorname{In}(b, c) \wedge \operatorname{TruckIn}(t, c)]$ - $[\exists t . a=\operatorname{load}(b, t) \wedge B o x \operatorname{In}(b, c, s) \wedge \operatorname{TruckIn}(t, c, s)]$ then $[\neg \operatorname{Box} \operatorname{In}(b, c)]$
- unload(Box : b,Truck : t):
- \forall City : c. when $[\operatorname{BoxOn}(b, t) \wedge \operatorname{TruckIn}(t, c)] \cdot[\exists t . a=\operatorname{unload}(b, t) \wedge B o x O n(b, t, s) \wedge \operatorname{TruckIn}(t, c, s)]$ then $[\operatorname{BoxIn}(b, c)]$
$\Rightarrow B o x \operatorname{In}(b, c, d o(a, s))$
- when $[\exists C i t y: c . \operatorname{BoxOn}(b, t) \wedge \operatorname{TruckIn}(t, c)] \cdot[\exists c . a=\operatorname{unload}(b, t) \wedge B o x 0 n(b, t, s) \wedge \operatorname{TruckIn}(t, c, s)]$ then $[\neg \operatorname{BoxOn}(b, t)]$
- drive(Truck : t, City : c):
$\Rightarrow \neg \operatorname{BoxOn}(b, t, \operatorname{do}(a, s))$
- when $\left[\exists\right.$ City : $\left.c_{1} \cdot \operatorname{TruckIn}\left(t, c_{1}\right)\right]$ then [TruckIn (t, c)]
- $\left[\exists c_{1} \cdot a=\operatorname{drive}(t, c) \wedge \operatorname{TruckIn}\left(t, c_{1}, s\right)\right]$ $\Rightarrow \operatorname{TruckIn}(t, c, d o(a, s))$
- \forall City: c_{1}. when $\left[\operatorname{TruckIn}\left(t, c_{1}\right)\right.$] then $\left[\neg \operatorname{TruckIn}\left(t, c_{1}\right)\right]$
- $\left[\exists c . a=\operatorname{drive}(t, c) \wedge \operatorname{TruckIn}\left(t, c_{1}, s\right)\right]$ $\Rightarrow \neg \operatorname{TruckIn}\left(t, c_{1}, \operatorname{do}(a, s)\right)$

Situation Calculus: PDDL to Effects

- Use rule to combine multiple effects $C_{1} \Rightarrow F, C_{2} \Rightarrow F$ over the same fluent F into effect axioms: $\gamma_{F}^{+}(\vec{x}, a, s) \Rightarrow F(\vec{x}, d o(a, s)), \gamma_{F}^{-}(\vec{x}, a, s) \Rightarrow F(\vec{x}, d o(a, s))$
- Rule: $\left[\left(C_{1} \Rightarrow F\right) \wedge\left(C_{2} \Rightarrow F\right)\right] \equiv\left[\left(C_{1} \vee C_{2}\right) \Rightarrow F\right]$
- As a sort of shorthand notation
- E.g.,
- $[\exists c . a=\operatorname{load}(b, t) \wedge B \operatorname{In}(b, c, s) \wedge T \operatorname{In}(t, c, s)] \Rightarrow B O n(b, t, d o(a, s)) \rightarrow \gamma_{B O n}^{+}(\vec{x}, a, s) \Rightarrow B O n(\vec{x}, d o(a, s))$
- $[\exists c . a=\operatorname{unload}(b, t) \wedge B O n(b, t, s) \wedge T \operatorname{In}(t, c, s)] \Rightarrow \neg B O n(b, t, d o(a, s))$

$$
\rightarrow \gamma_{B O n}^{-}(\vec{x}, a, s) \Rightarrow \neg \operatorname{BOn}(\vec{x}, d o(a, s))
$$

- $[\exists t . a=\operatorname{unload}(b, t) \wedge B O n(b, t, s) \wedge \operatorname{TIn}(t, c, s)] \Rightarrow B \operatorname{In}(b, c, d o(a, s)) \rightarrow \gamma_{B I n}^{+}(\vec{x}, a, s) \Rightarrow \operatorname{BIn}(\vec{x}, \operatorname{do}(a, s))$
- $[\exists \mathrm{t} . a=\operatorname{load}(b, t) \wedge B \operatorname{In}(b, c, s) \wedge T \operatorname{In}(t, c, s)] \Rightarrow \neg B \operatorname{In}(b, c, d o(a, s)) \rightarrow \gamma_{B I n}^{-}(\vec{x}, a, s) \Rightarrow \neg B \operatorname{In}(\vec{x}, d o(a, s))$
- $\left[\exists c_{1} \cdot a=\operatorname{drive}(t, c) \wedge \operatorname{TIn}\left(t, c_{1}, s\right)\right] \Rightarrow \operatorname{TIn}(t, c, d o(a, s)) \rightarrow \gamma_{T I n}^{+}(\vec{x}, a, s) \Rightarrow \operatorname{TIn}(\vec{x}, d o(a, s))$
- $\left[\exists c . a=\operatorname{drive}(t, c) \wedge \operatorname{TIn}\left(t, c_{1}, s\right)\right] \Rightarrow \neg \operatorname{TIn}\left(t, c_{1}, d o(a, s)\right) \rightarrow \gamma_{T I n}^{-}(\vec{x}, a, s) \Rightarrow \neg \operatorname{TIn}(\vec{x}, d o(a, s))$

Frame Problem

- Positive and negative effect axioms specify what changes
- $\gamma_{B O n}^{+}(\vec{x}, a, s) \Rightarrow B O n(\vec{x}, d o(a, s))$
$\gamma_{B O n}^{-}(\vec{x}, a, s) \Rightarrow \neg B O n(\vec{x}, d o(a, s))$
- $\gamma_{B I n}^{+}(\vec{x}, a, s) \Rightarrow B \operatorname{In}(\vec{x}, d o(a, s))$
$\gamma_{B I n}^{-}(\vec{x}, a, s) \Rightarrow \neg B \operatorname{In}(\vec{x}, d o(a, s))$
- $\gamma_{\operatorname{TIn}}^{+}(\vec{x}, a, s) \Rightarrow \operatorname{TIn}(\vec{x}, d o(a, s))$
$\gamma_{T I n}^{-}(\vec{x}, a, s) \Rightarrow \neg \operatorname{TIn}(\vec{x}, d o(a, s))$
- Assume completeness regarding these effect axioms:
- That is, assume that $\gamma_{F}^{+}(\vec{x}, a, s) \Rightarrow F(\vec{x}, d o(a, s)), \gamma_{F}^{-}(\vec{x}, a, s) \Rightarrow \neg F(\vec{x}, d o(a, s))$ characterise all the conditions under which an action a changes the value of fluent F
- Formalise as explanation closure axioms
- $\neg F(\vec{x}, s) \wedge F(\vec{x}, d o(a, s)) \Rightarrow \gamma_{F}^{+}(\vec{x}, a, s) \equiv \neg F(\vec{x}, s) \wedge \neg \gamma_{F}^{+}(\vec{x}, a, s) \Rightarrow \neg F(\vec{x}, d o(a, s))$
- If F was false and was made true by doing action a, then condition γ_{F}^{+}must have been true
- $F(\vec{x}, s) \wedge \neg F(\vec{x}, d o(a, s)) \Rightarrow \gamma_{F}^{-}(\vec{x}, a, s) \equiv F(\vec{x}, s) \wedge \neg \gamma_{F}^{-}(\vec{x}, a, s) \Rightarrow F(\vec{x}, d o(a, s))$
- If F was true and was made false by doing action a then condition $\gamma_{\bar{F}}^{-}$must have been true

Frame Problem

- Frame problem: How to (compactly) specify what does not change?
- Intuition: "What does not change, remains the same."
- Reiter's so-called Default Solution
- Not so easy to specify
- Moving one thing might move another thing, even though the other thing is never directly touched
- How to distinguish between relevant and irrelevant side effects? And use that efficiently?
- Default solution to frame problem given as successor state axioms (SSAs), which we construct next

Successor State Axioms (SSAs)

- Inputs / Requirements
- Unique names for actions / arguments
- Positive and negative effect axioms
- $\gamma_{F}^{+}(\vec{x}, a, s) \Rightarrow F(\vec{x}, d o(a, s)), \gamma_{F}^{-}(\vec{x}, a, s) \Rightarrow F(\vec{x}, d o(a, s))$
- Explanation closure axioms
- $\neg F(\vec{x}, s) \wedge F(\vec{x}, d o(a, s)) \Rightarrow \gamma_{F}^{+}(\vec{x}, a, s), F(\vec{x}, s) \wedge \neg F(\vec{x}, d o(a, s)) \Rightarrow \gamma_{F}^{-}(\vec{x}, a, s)$
- Integrity: $\neg \exists \vec{x}, a, s . \gamma_{F}^{+}(\vec{x}, a, s) \wedge \gamma_{F}^{-}(\vec{x}, a, s)$
- SSA for each F :
- $F(\vec{x}, d o(a, s)) \equiv \gamma_{F}^{+}(\vec{x}, a, s) \vee\left(F(\vec{x}, s) \wedge \neg \gamma_{F}^{-}(\vec{x}, a, s)\right)$
- Shorthand:
- $F(\vec{x}, d o(a, s)) \equiv \Phi_{F}(\vec{x}, a, s)$

Successor State Axioms (SSAs): Example

- SSA for each $F: F(\vec{x}, d o(a, s)) \equiv \gamma_{F}^{+}(\vec{x}, a, s) \vee\left(F(\vec{x}, s) \wedge \neg \gamma_{F}^{-}(\vec{x}, a, s)\right)$
- Shorthand: $F(\vec{x}, d o(a, s)) \equiv \Phi_{F}(\vec{x}, a, s)$
- BoxOn $(b, t, d o(a, s)) \equiv \Phi_{\text {BoxOn }}(b, t, a, s)$
$\equiv[\exists c . a=\operatorname{load}(b, t) \wedge B \operatorname{oxIn}(b, t, s) \wedge \operatorname{TruckIn}(t, c, s)]$

$$
\vee(B o x O n(b, t, s) \wedge \neg[\exists c \cdot a=\operatorname{unload}(b, t) \wedge \operatorname{BoxOn}(b, t, s) \wedge \operatorname{TruckIn}(t, c, s)])
$$

- $\operatorname{BoxIn}(b, c, d o(a, s)) \equiv \Phi_{\text {BoxIn }}(b, c, a, s)$

$$
\begin{aligned}
\equiv & {[\exists t \cdot a=\operatorname{unload}(b, t) \wedge \operatorname{BoxOn}(b, t, s) \wedge \operatorname{TruckIn}(t, c, s)] } \\
& \vee(B o x \operatorname{In}(b, c, s) \wedge \neg[\exists \mathrm{t} \cdot a=\operatorname{load}(b, t) \wedge \operatorname{BoxIn}(b, c, s) \wedge \operatorname{TruckIn}(t, c, s)])
\end{aligned}
$$

- TruckIn $(t, c, d o(a, s)) \equiv \Phi_{\text {TruckIn }}(t, c, a, s)$

$$
\begin{aligned}
\equiv & {\left[\exists c_{1} \cdot a=\operatorname{drive}(t, c) \wedge \operatorname{TruckIn}\left(t, c_{1}, s\right)\right] } \\
& \vee\left(\operatorname{TruckIn}(t, c, s) \wedge \neg\left[\exists c_{1} \cdot a=\operatorname{drive}(t, c) \wedge \operatorname{TruckIn}\left(t, c_{1}, s\right)\right]\right)
\end{aligned}
$$

Regression

- Idea: Use SSAs to regress from goal towards a (possibly only partially defined) intial state - A bit like lifted backward search
- Regression
- If ϕ held after action a, then regression is the ϕ^{\prime} that held before action a
- Exploit following properties
- $\operatorname{Regr}(\neg \psi)=\neg \operatorname{Regr}(\psi)$
- $\operatorname{Regr}\left(\psi_{1} \wedge \psi_{2}\right)=\operatorname{Regr}\left(\psi_{1}\right) \wedge \operatorname{Regr}\left(\psi_{2}\right)$
- $\operatorname{Regr}((\exists x) \psi)=(\exists x) \operatorname{Regr}(\psi)$
- $\operatorname{Regr}(F(\vec{x}, d o(a, s)))=\Phi_{F}(\vec{x}, a, s)$

Regression: Example

- Given: $\exists b . \operatorname{BoxIn}\left(b, p a r i s, d o\left(\operatorname{unload}\left(b^{*}, t^{*}\right), s\right)\right)$
- Regress through unload $\left(b^{*}, t^{*}\right)$
- $\operatorname{Regr}\left(\exists b . \operatorname{BoxIn}\left(b\right.\right.$, paris, do(unload $\left.\left.\left.\left(b^{*}, t^{*}\right), s\right)\right)\right)$
$=\exists b . \operatorname{Regr}\left(\operatorname{BoxIn}\left(b\right.\right.$, paris, $\left.\left.\operatorname{do}\left(\operatorname{unload}\left(b^{*}, t^{*}\right), s\right)\right)\right)$
$=\exists b . \Phi_{\text {BoxIn }}\left(b\right.$, paris,unload $\left.\left(b^{*}, t^{*}\right), s\right)$
$=\exists b \cdot\left[\exists t . \operatorname{unload}\left(b^{*}, t^{*}\right)=\operatorname{unload}(b, t) \wedge \operatorname{BoxOn}(b, t, s) \wedge \operatorname{TruckIn}(t\right.$, paris, $\left.s)\right]$
V (BoxIn(b,paris, s)
$\wedge \neg\left[\exists t . \operatorname{unload}\left(b^{*}, t^{*}\right)=\operatorname{Toad}(b, t) \wedge \operatorname{BoxIn}(b\right.$, paris, $s) \wedge \operatorname{TruckIn}(t$, paris, $\left.\left.s)\right]\right)$
$=\left[\exists b, t . b=b^{*} \wedge t=t^{*} \wedge \operatorname{BoxOn}(b, t, s) \wedge \operatorname{TruckIn}(t, p a r i s, s)\right] \vee \exists b . \operatorname{BoxIn}(b$, paris,s)
$=\left[\left(\exists b . b=b^{*}\right) \wedge\left(\exists t . t=t^{*}\right) \wedge \operatorname{BoxOn}\left(b^{*}, t^{*}, s\right) \wedge \operatorname{TruckIn}\left(t^{*}\right.\right.$, paris,s$\left.)\right]$
$\vee \exists b . \operatorname{BoxIn}(b$, paris, $s)$
$=\left[\operatorname{BoxOn}\left(b^{*}, t^{*}, s\right) \wedge \operatorname{TruckIn}\left(t^{*}\right.\right.$, paris, $\left.\left.s\right)\right] \vee \exists b . \operatorname{BoxIn}(b, \operatorname{paris}, s)$
Make non-empty domain
assumption for b, t

Regression: Example

- Given: $\exists b . \operatorname{BoxIn}\left(b, p a r i s, d o\left(\operatorname{unload}\left(b^{*}, t^{*}\right), s\right)\right)$
- Regress through unload $\left(b^{*}, t^{*}\right)$
- $\operatorname{Regr}\left(\exists b . \operatorname{BoxIn}\left(b\right.\right.$, paris, do(unload $\left.\left.\left.\left(b^{*}, t^{*}\right), s\right)\right)\right)$

$$
=\left[\operatorname{BoxOn}\left(b^{*}, t^{*}, s\right) \wedge \operatorname{TruckIn}\left(t^{*}, \text { paris, } s\right)\right] \vee \exists b . \operatorname{BoxIn}(b, \text { paris, } s)
$$

- To get action instantiations of unload $\left(b^{*}, t^{*}\right)$, query knowledge base (KB, i.e., planning domain)
- Existentially quantify b^{*}, t^{*} and obtain instances via query extraction w.r.t. KB
- KB consists of first-order state and action abstraction \rightarrow do not have to enumerate all states, b^{*}, t^{*}
- $\exists b^{*}, t^{*} . \operatorname{Regr}\left(\exists b . \operatorname{BoxIn}\left(b\right.\right.$, paris, $\left.\left.\operatorname{do}\left(\operatorname{unload}\left(b^{*}, t^{*}\right), s\right)\right)\right)$
$=\exists b^{*}, t^{*} \cdot\left[\operatorname{BoxOn}\left(b^{*}, t^{*}, s\right) \wedge \operatorname{TruckIn}\left(t^{*}\right.\right.$, paris, $\left.\left.s\right)\right] \vee \exists b . \operatorname{BoxIn}(b$, paris, $s)$
$=\left[\exists b^{*}, t^{*} . \operatorname{BoxOn}\left(b^{*}, t^{*}, s\right) \wedge \operatorname{TruckIn}\left(t^{*}\right.\right.$, paris, $\left.\left.s\right)\right] \vee \exists b . \operatorname{BoxIn}(b$, paris, $s)$

Regression Planning

- Define abstract goal state
- E.g., ヨb.BoxIn(b, paris, s)
- Check if regression through action sequence holds in initial state

Progression and Forward Search?

- Can we do lifted forward-search planning?

- Progression not first-order definable! (Reiter, 2001)
- Could progress ground state
- But this does not exploit first-order structure

Golog: Restricted Plan Search

- AIGOI in LOGic
- Search the space of sequential action plans
- Regress actions to initial state to test reachability
- Restrict action space with program:

α	primitive action
$\phi ?$	condition test
$\left(\delta_{1}, \delta_{2}\right)$	sequence
if ϕ then δ endlf	conditional
while ϕ then δ endWhile	loop
$\left(\delta_{1} \mid \delta_{2}\right)$	nondeterministic choice of actions
$\pi \vec{x}[\delta]$	nondeterministic choice of arguments
δ^{*}	nondeterministic iteration
proc $\beta(\vec{x}) \delta$ endProc	procedure call definition
$\beta(\vec{t})$	procedure call

Golog: Example

- Golog program
- ($\pi b[\neg O n T a b l e(b, s)$?, pickup (b), putOnTable $(b)])^{*}$, $\forall b$. OnTable (b, s) ?
- Diagram of Golog planning

Initial State

α	primitive action
ϕ ?	condition test
$\left(\delta_{1}, \delta_{2}\right)$	sequence
if ϕ then δ endlf	conditional
while ϕ then δ endWhile	loop
$\left(\delta_{1} \mid \delta_{2}\right)$	nondeterministic choice of actions
$\pi \vec{x}[\delta]$	nondeterministic choice of arguments
δ^{*}	nondeterministic iteration
$\operatorname{proc} \beta(\vec{x}) \delta$ endProc	procedure call definition
$\beta(\vec{t})$	procedure call

- Heavily restricted action sequences
- Program exploits first-order action abstraction
- Initial state need not be fully known

Interim (Interim) Summary

- Situation calculus to describe a relational world
- Can convert PDDL (and state-variable domains) into effect axioms
- Derive SSAs from effect axioms
- Using default solution to frame problem
- Regression operator
- Extract action instantiation to achieve goal
- Regression planning
- Initial state need not be fully specified
- Exploit state and action abstraction
- Avoid enumerating all state and action instances

Next step: Extend this idea for decision-theoretic planning
with uncertain action outcomes

First-order MDPs: MDPs

- MDP with discount factor

$$
R=10
$$

- Tuple (S, A, T, R, γ)

$$
\begin{aligned}
& a=\operatorname{change}(P=1.0) \\
& a=\operatorname{stay}(P=0.1)
\end{aligned}
$$

- State space S
- E.g., $S=\{1,2\}$
- Actions A

- E.g., $A=\{$ stay, go $\}$
- Immediate reward function R
- E.g., $R(s=1, a=$ stay $)=2$,...
- Transition function T
- E.g., $T\left(s=1, a=\right.$ stay, $\left.s^{\prime}=1\right)=P\left(s^{\prime}=1 \mid s=1, a=\right.$ stay $)=0.9$
- Discount factor γ
- Acting \rightarrow define policy $\pi: S \rightarrow A$

Policy, Value, Solution

- Immediate vs. long-term gain?
- Reward criterion to optimise

- Discount factor γ important ($\gamma=0.9$ vs. $\gamma=0.1$)

$$
a=\operatorname{stay}(P=0.9)
$$

$$
R=2 \quad R=2 \quad R=2
$$

- Define value of policy π

$$
V_{\pi}(s)=E_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} \cdot r_{t} \mid s=s_{0}\right]
$$

 to get by following π starting from state s

- MDP optimal solution
- Policy $\pi^{*}(s)=\operatorname{argmax}_{\pi} V_{\pi}(s)$

$$
\begin{gathered}
R=10 \\
a=\text { change }
\end{gathered}
$$

$$
\begin{gathered}
R=10 \\
a=\text { change }
\end{gathered}
$$

Value Iteration \& Value Function to Policy

- How to act optimally with t decisions?
- Given optimal $t-1$-state-to-go value fct.
- Take action a, then act so as to achieve V^{t-1} thereafter:
$Q^{t}(s, a):=R(s, a)+\gamma \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right) V^{t-1}\left(s^{\prime}\right)$
- Expected value of best action a at stage t ?

$$
V^{t}(s):=\max _{a \in A}\left\{Q^{t}(s, a)\right\}
$$

- At ∞ horizon, get same value $\left(=V^{*}\right)$

$$
\lim _{t \rightarrow \infty} \max _{s}\left|V^{t}(s)-V^{t-1}(s)\right|=0
$$

- π^{*} says act the same at each decision stage for ∞ horizon
- Given arbitrary value V (optimal or not)
- Greedy policy π_{V} takes action in each state that maximises expected value w.r.t. V
$\pi_{V}(s)$
$=\underset{a \in A}{\arg \max }\left\{R(s, a)+\gamma \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right) V\left(s^{\prime}\right)\right\}$
- If can act so as to obtain V after doing action a in state s, π_{V} guarantees $V(s)$ in expectation

First-order MDP (FOMDP)

- Components of MDP in an FOMDP specified as a collection of case statements
- E.g., express reward in Box World FOMDP as

$$
r \operatorname{Case}(s)=\begin{array}{c|c|}
\forall b, c \cdot \operatorname{Dest}(b, c) \Rightarrow B \operatorname{oxIn}(b, c, s) & 1 \\
\neg(\forall b, c . \operatorname{Dest}(b, c) \Rightarrow B \operatorname{oxIn}(b, c, s)) & 0
\end{array}
$$

- Operators: define unary and binary case operations
- E.g., cross-sum \bigoplus (or $\ominus, \otimes)$ of cases

ϕ	10				$\phi \wedge \varphi$	$10+3$
		\oplus	φ	3	$\phi \wedge \neg \varphi$	$10+4$
$\neg \phi$			$\neg \varphi$	4	$\neg \phi \wedge \varphi$	$20+3$
					$\neg \phi \wedge \neg \varphi$	$20+4$

Stochastic Actions and First-order Decision-theoretic Regression (FODTR)

- Stochastic actions using deterministic situation calculus
- User's stochastic action, e.g., $A(x)=\operatorname{load}(b, t)$
- Nature's choice, e.g., $n(x) \in\{\operatorname{loadS}(b, t), \operatorname{loadF}(b, t)\}$

Probability distribution \rightarrow Adds up to 1 over success and failure choice
$0.1+0.9=1$
$0.6+0.4=1$

- Probability distribution over nature's choice, e.g.,

$$
P(\operatorname{loadS}(b, t) \mid \operatorname{load}(b, t))=\begin{array}{c|c}
\operatorname{snow}(s) & 0.1 \\
\neg \operatorname{Snow}(s) & 0.6
\end{array} \leftrightarrow \quad P(\operatorname{loadF}(b, t) \mid \operatorname{load}(b, t))=\begin{array}{c|c|}
\hline \operatorname{snow}(s) & 0.9 \\
\hline \neg \operatorname{snow}(s) & 0.4
\end{array}
$$

- First-order decision-theoretic regression (FODTR)
- FODTR = expectation of regression:

$$
\operatorname{FODTR}[v \operatorname{Case}(s), A(\vec{x})]=\boldsymbol{E}_{P(n(\vec{x}) \mid A(\vec{x}))}[\operatorname{Regr}(v \operatorname{Case}(s), n(\vec{x}))]
$$

FODTR \& Q-Functions

- Result of FODTR is a case statement encoding a first-order Q-function

$$
\operatorname{FODTR}[v \operatorname{Case}(s), A(\vec{x})]=R(s) \oplus \gamma \bigoplus_{j=1}^{k} P\left(n_{j}(\vec{x}), A(\vec{x}), s\right) \otimes \operatorname{Regr}\left(V\left(\operatorname{do}\left(n_{j}(\vec{x})\right), s\right)\right)
$$

- E.g.,

FODTR[vCase(s),unload ($\left.\left.b^{*}, t^{*}\right)\right]$

$$
\begin{aligned}
& =r \operatorname{Case}(s) \oplus r \bigoplus_{j=1}^{k} p \operatorname{Case}\left(n_{j}(\vec{x}), \text { unload }\left(b^{*}, t^{*}\right), s\right) \\
& \otimes \begin{array}{l}
\operatorname{Regr}\left(\exists b \cdot \operatorname{BoxIn}\left(b, \operatorname{paris}, \operatorname{do}\left(n_{j}(\vec{x}), s\right)\right)\right) \\
\\
\quad \operatorname{Regr}\left(\neg \exists b . \operatorname{BoxIn}\left(b, \operatorname{paris}, \operatorname{do}\left(n_{j}(\vec{x}), s\right)\right)\right)
\end{array} \\
& 0
\end{aligned}
$$

$$
\begin{array}{cc|c|}
\text { rCase }(s)=\begin{array}{c}
\exists b . \operatorname{BoxIn}(b, \text { paris, } s) \\
\neg(\exists b . \operatorname{BoxIn}(b, \text { paris, } s))
\end{array} & 10 \\
p \operatorname{Case}(\operatorname{loadS}(b, t), \operatorname{load}(b, t), s)= & \text { T } & 0.9 \\
p \operatorname{Case}(\operatorname{unloadS}(b, t), \operatorname{unload}(b, t), s)= & \text { T } & 0.9 \\
p \operatorname{Case}(\operatorname{driveS}(b, t), \operatorname{drive}(b, t), s)= & \text { T } & 1
\end{array}
$$

FODTR \& Q-Functions

$$
\begin{aligned}
& \text { FODTR[vCase(s), unload } \left.\left(b^{*}, t^{*}\right)\right] \\
& =r \operatorname{Case}(s) \oplus \gamma \bigoplus_{j=1}^{k} p \operatorname{Case}\left(n_{j}(\vec{x}), \operatorname{unload}\left(b^{*}, t^{*}\right), s\right) \otimes \\
& \begin{array}{c|c}
\operatorname{Regr}\left(\exists b . \operatorname{BoxIn}\left(b, \text { paris, } \operatorname{do}\left(n_{j}(\vec{x}), s\right)\right)\right) & 10 \\
\operatorname{Regr}\left(\neg \exists b \cdot \operatorname{BoxIn}\left(b, \text { paris, } \operatorname{do}\left(n_{j}(\vec{x}), s\right)\right)\right) & 0.0
\end{array} \\
& =r \operatorname{Case}(s) \oplus \gamma\left[\begin{array}{l|l|l|l|l}
& & \begin{array}{l}
\operatorname{Regr}\left(\exists b . \operatorname{BoxIn}\left(b, \text { paris,do }\left(\text { unloadS }\left(b^{*}, t^{*}\right), s\right)\right)\right)
\end{array} & 10 \\
\hline & 0.9 \otimes \begin{array}{l}
\operatorname{Regr}\left(\neg \exists b . \operatorname{BoxIn}\left(b, \text { paris, do }\left(\text { unloadS }\left(b^{*}, t^{*}\right), s\right)\right)\right)
\end{array} & 0.0
\end{array}\right.
\end{aligned}
$$

FODTR \& Q-Functions

$$
\begin{aligned}
& \text { FODTR[vCase(s), unload } \left.\left(b^{*}, t^{*}\right)\right] \\
& =r \operatorname{Case}(s) \oplus \gamma \bigoplus_{j=1}^{k} p \operatorname{Case}\left(n_{j}(\vec{x}), \operatorname{unload}\left(b^{*}, t^{*}\right), s\right) \otimes \\
& \begin{array}{|l|l|}
\hline \operatorname{Regr}\left(\exists b . \operatorname{BoxIn}\left(b, \text { paris, } \operatorname{do}\left(n_{j}(\vec{x}), s\right)\right)\right) & 10 \\
\operatorname{Regr}\left(\neg \exists b . \operatorname{BoxIn}\left(b, \text { paris, } \operatorname{do}\left(n_{j}(\vec{x}), s\right)\right)\right) & 0.0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \oplus \\
& \begin{array}{c|c|l}
\exists b . \operatorname{BoxIn}(b, \text { paris,s)} & 19.0 & \rightarrow \text { noop } \\
=\quad \neg " \wedge[\exists b, t . \operatorname{BoxOn}(b, t, s) \wedge \operatorname{TruckIn}(t, \text { paris }, s)] & 8.1 & \rightarrow \operatorname{unload}\left(b^{*}, t^{*}\right) \\
\neg^{\prime \prime} & 0.0 & \rightarrow \text { noop }
\end{array}
\end{aligned}
$$

Symbolic Dynamic Programming (SDP)

- What value if 0-stages-to-go?
- Immediate reward: $V^{0}(s)=r \operatorname{Case}(s)$
- What value if 1 -state-to-go?
- We know value for each action \rightarrow Take maximum for each state
- Value iteration
- Obtain V^{n+1} from V^{n} until $\left(V^{n-1} \ominus V^{n}\right)<\epsilon$

Value Iteration for $t=\mathbf{1 , 2}$ of the Box World Example

- With increasing iterations, the sequence of actions considered gets longer

First-order Algebraic Decision Diagrams (FOADDs)

- We want to compactly represent arbitrary case statements
- E.g.,

$$
\operatorname{case}(s)=\begin{array}{c|l}
\exists x \cdot[A(x) \vee \forall y \cdot A(x) \wedge B(x) \wedge \neg A(y)] & 1 \\
\neg(\exists x \cdot[A(x) \vee \forall y \cdot A(x) \wedge B(x) \wedge \neg A(y)]) & 0
\end{array}
$$

- Push down quantifiers, expose propositional structure \rightarrow convert into FOADD

$$
[\exists x \cdot A(x)] \vee([\exists x \cdot A(x) \wedge B(x)] \wedge[\forall y \cdot \neg A(y)])
$$

Results for SDP with FOADDs

- Encode case statements with FOADDs

$$
r \operatorname{Case}(s)=\exists b \cdot \operatorname{BoxIn}(b, \text { paris,s) }
$$

- Solid line: true case
- Dotted line: false case
- Use FOADD operations for structured SDP
- E.g., Box World
- Using $\gamma=0.9$

```
vCase(s) = \existsb.BIn(b,paris,s)
100: noop \existsb,t.TIn(b,paris,s)^BOn(b,t,s)
89:\operatorname{unload(b,t) \existsb,t.BOn(b,t,s)}
```


Münster

Correctness of SDP

- Show SDP for FOMDPs is correct w.r.t. ground MDP

| FOMDP \longrightarrow | Lifted FOMDP Solution
 Function |
| :---: | :---: | :---: |
| Ground | |
| MDP | |

Caveats of First-order Planning

- Many problems have topologies
- E.g., reachability constraints in logistics

- If topology not fixed a priori
- First-order solution must consider ∞ topologies r Case $(s)=$
- In general case, leads to ∞ values / policies
- Universal rewards
- Value function must distinguish ∞ cases
- Policy will also likely be ∞

$V^{t}(s)=$| $\forall b, c . \operatorname{Dest}(b, c) \Rightarrow \operatorname{BoxIn}(b, c, s)$ | 1 |
| :--- | :---: |
| One box not at destination | γ |
| Two boxes not at destination | γ^{2} |
| \vdots | \vdots |
| $t-1$ boxes not at destination | γ^{t-1} |

Caveats of First-order Planning

- Unreachable states
- PDDL domains often under-constrained
- E.g., logistics: one box cannot be in two cities at once
- Constraints implicitly obeyed in initial state
- Action effects cannot violate constraints
- Reachable legal states are small subset of all states
- But (P)PDDL does not constrain legal states

Suggests need for hybrid first-order / search-based approaches

- If no background theory to restrict legal states
- First-order planning must solve for all states
- When initial state unknown
- Where majority of states are actually illegal
- First-order planning w/o initial state solves more difficult problem than search-based solutions
- Initial state contains implicit constraint information
- Reachable state space is small subset of all states

A Note on First-order Modelling in Reinforcement Learning

- Novel propositional situations worth exploring may be instances of a well-known context in the relational setting \rightarrow exploitation promising
- E.g., household robot learning water-taps
- Having opened one or two water-taps in a kitchen, one can expect other water-taps in kitchens to work similarly
\Rightarrow Priority for exploring water-taps in kitchens in general reduced
\Rightarrow Information gathered likely to carry over to water-taps in other places
* Hard to model in propositional setting: each water-tap is novel

Interim Summary

- FOMDPs are one model for lifted decision-theoretic planning
- Exploit state and action abstraction for MDPs
- Use situation calculus specified action theory
- Use case statements to represent reward, probabilities
- Symbolic dynamic programming = lifted DP
- Use FOADDs to compactly represent case statements
- First-order context-specific independence to compactify FOADDs

Outline: Decision Making - Structure

Structure by Groups in the Agent Set

- Agent types
- Partitioned decPOMDPs

Structure by Features in the State Space

- Dynamic Bayesian networks
- Factored MDPs

Structure by Relations in the State Space

- Situation calculus
- First-order MDPs
\Rightarrow Next: Human-awareness

