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Outline: Decision Making – Structure 

Structure by Groups in the Agent Set
• Agent types
• Partitioned decPOMDPs

Structure by Features in the State Space 
• Dynamic Bayesian networks
• Factored MDPs

Structure by Relations in the State Space
• Situation calculus
• First-order MDPs
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Example: Medical Nanoscale Systems

• Nanoscale systems regularly consist of > 10,000 nanoagents
• Different types of agents: nanosensors, nanobots

• Application: DNA-based medical system
• E.g., for diagnosis (modelled as an AND gate)
• Nanosensors receptive to individual markers for a specific disease
• Release individual tiles in presence of their individual markers

• Tiles assemble themselves to form messages
• Nanobots receptive to completely formed messages
• Release markers of their own that signify presense of the disease

• Formal model necessary to argue about 
• Success rates
• Sizes of agent sets
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Example: Medical Nanoscale Systems as a DecPOMDP

• Set of agents 𝐼 consisting of nanosensors, nanobots
• Observations 𝑂': markers / messages present (or not)
• Noisy process ➝ probabilistic behaviour

• Actions 𝐴': release of tiles / markers (or not)
• Noisy process ➝ probabilistic behaviour

• Environment ➝ probabilistic behaviour
• Presence in general of agents, markers, tiles, messages,

or position more specifically ➝ movement over time
• Reward: Qualitative measure
• Positive diagnosis only in presence of disease
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Reprise: Worst-case Complexity of DecPOMDP

• Space complexity
• Transition model: 𝒪 𝑠 ⋅ 𝑠 ⋅ 𝑎!

• Sensor model: 𝒪 𝑠 ⋅ 𝑜! or 𝒪 𝑠 ⋅ 𝑜! ⋅ 𝑎!

• Reward function: 𝒪 𝑠 or 𝒪 𝑠 ⋅ 𝑎!

• Runtime complexity of brute-force search

• Evaluation cost of a joint policy: 𝒪 𝑠 ⋅ 𝑜!"

• Policy space: 𝒪

• Notations
• 𝑠 = 𝑆
• State space size

• 𝑎 = max
#∈%

𝐴#
• Largest individual action space size

• 𝑜 = max
#∈%

𝑂#
• Largest individual action space size

• ℎ
• Horizon
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Agent Types & Partitioned DecPOMDPs

• Types: Agents with the same sets of actions and observations
• E.g., two nanosensors 1,2 receptive to the same marker and releasing the same tile
• 𝐴! = 𝐴" = 0,1 ; 0: do nothing, 1: release tile
• 𝑂! = 𝑂" = 0,1 ; 0: marker not present, 1: marker present

➝ Partitions the set of agents regarding actions, observations
• Agent set 𝐼 = 𝐼(, … , 𝐼) with 𝐼(, … , 𝐼) a partitioning of 𝐼 (𝐼 = ⋃* 𝐼* , 𝐼* ∩ 𝐼*% = ∅, 𝐼* ≠ ∅)
• For each partition 𝐼*: one set of actions 𝐴*, one set of observations 𝑂* for all agents in 𝐼*
• Expectation that 𝐾 ≪ 𝑁

• Additional constraints / assumptions on same behaviour in 𝑇, 𝑅, 𝛺
➝ Partitions the set of agents completely, enabling more compact encodings
• How?

Decision Structure
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Counting DecPOMDPs

• Counting constraint / assumption in 𝑇, 𝑅, 𝛺
• Formal: All permutations 𝜎 �⃗�*

of a partition action �⃗�* map to 
the same probability

• Enables counting how many 
agents do something and not 
which in particular did
• Encode in a histogram 

# 𝑎! , … , # 𝑎# how 
many agents did actions 
𝐴$ = 𝑎!, … , 𝑎#

• Number of histograms 
%! &#'!
#'! ≤ 𝐼$ #
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Counting DecPOMDPs

• Complexity-wise, with 𝑛 = max
5

𝐼5
• Transition model: 𝒪 𝑠 ⋅ 𝑠 ⋅ 𝑛)+

• Sensor model: 𝒪 𝑠 ⋅ 𝑛)&
• Reward function: 𝒪 𝑠
• Evaluation cost: 𝒪 𝑠 ⋅ 𝑛)&"

• Reduction if 𝐾 ≪ 𝑁
• Unfortunately,
• Policy space: 𝒪

• Ongoing research how to use 
counting efficiently
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Ismorphic DecPOMDPs

• Isomorphic constraint / assumption in 𝑇, 𝑅, 𝛺: 
Conditional independence between agents of a partition given 
joint state 
➝ Enables factorisation of 𝑇, 𝑅, 𝛺
• E.g., 𝑇 𝑠, 𝑠(, 𝑎!, 𝑎" = 𝑇! 𝑠, 𝑠(, 𝑎! ⋅ 𝑇" 𝑠, 𝑠(, 𝑎" = ∏)∈%! 𝑇

( 𝑠, 𝑠(, 𝑎)

• Space complexities
• Transition model: 𝒪 𝑠 ⋅ 𝑠 ⋅ 𝑎)

• Sensor model: 𝒪 𝑠 ⋅ 𝑜)
• Reward function: 𝒪 𝑠

• Ongoing research how to solve isomorphic DecPOMDPs efficiently
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Interim Summary: Structure by Groups in the Agent Set

• Types of agents with identical action and observation space
• Partitioned DecPOMDP if agent types + constraints of transition / sensor / reward function
• Counting DecPOMDP
• Permutations of actions of agents of the same partition map to the same probability / reward
• Count occurrences ➝ encode in histograms

• Isomorphic DecPOMDP
• Further independences between agents of a partition

• Space complexity polynomial at worst but using compact encoding for efficient decision 
making not yet solved
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Outline: Decision Making – Structure 

Structure by Groups in the Agent Set
• Agent types
• Partitioned decPOMDPs

Structure by Features in the State Space 
• Dynamic Bayesian networks
• Factored MDPs

Structure by Relations in the State Space
• Situation calculus
• First-order MDPs
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State Space

• So far: State space treated as a black box with a set of different states as domain of a 
random variable 𝑆

• However, state space often has structure
• 𝑛 different features that describe a state space
• Encode in 𝑛 individual random variables 𝑆# with respective domains dom 𝑆# = 𝑣(, … , 𝑣-+
• State space size then describable as 𝑆 = ∏) 𝑑) ≤ 𝑑+, 𝑑 = max

)
𝑑)

• I.e., exponential in the number of random variables

• Given (conditional) independences between different 𝑆', factorisation of probability 
distributions in model possible
• Applicable to MDPs, POMDPs, DecPOMDPs, partitioned DecPOMDPs
• Most work exists for factored MDPs (also the simplest case to consider)

Decision Structure
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Factorisation in General

• (Conditional) independences: 
• 𝐴 ⊥ 𝐵 (𝐴, 𝐵 independent) ⇔𝑃 𝐴,𝐵 = 𝑃 𝐴 ⋅ 𝑃 𝐵
• 𝐴 ⊥ 𝐵 | 𝐶 (𝐴, 𝐵 conditionally independent given 𝐶) ⇔𝑃 𝐴,𝐵 𝐶 = 𝑃 𝐴 𝐶 ⋅ 𝑃 𝐵 𝐶
• Alternate version: 𝐴 ⊥ 𝐵 | 𝐶 ⇔ 𝑃 𝐴 𝐵, 𝐶 = 𝑃 𝐴 𝐶

• (Conditional) independences allow for factorising a distribution into smaller factors
• In general: Factorisation of a full joint probability distribution 𝑃 𝑆(, … , 𝑆, into 𝑚 factors over 

subsets 𝑪 of random variables that form 𝑃 𝑆(, … , 𝑆, after multiplication (and normalisation):

𝑃 𝑆6, … , 𝑆7 =
1
𝑍
4
896

:

𝜙 𝑪8

• Where 𝑪, refers to sets of random variables that are mutually dependent on each other
• Memory complexity: 𝒪 𝑑+ vs. 𝒪 𝑚 ⋅ 𝑑 𝑪"#$
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Probabilistic Graphical Models (PGMs)

• PGMs use a graph structure to represent dependences
• Common formalism: Bayesian network (BN) 𝐵
• Directed acyclic graph
• Nodes: random variables 𝑆*
• Edges: if 𝑆* depends on 𝑆,, edge 𝑆, ⟶ 𝑆*

• Factors: conditional probability distributions (CPDs) ∀𝑖 𝑃 𝑆) pa 𝑆)
• Roots: pa 𝑆* = ∅➝ Prior distributions 𝑃 𝑆*
• Usually not depicted in graph; have to be denoted somewhere
• Semantics: 𝑃 𝑆#, … , 𝑆- = ∏*.#

- 𝑃 𝑆* pa 𝑆*
• Not further considered here:

Undirected version with potential functions 𝜙 as factors:
• Factor graphs, Markov networks
• Same semantics, different graphical representation

Decision Structure
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𝑀𝑎𝑟𝑦𝐶𝑎𝑙𝑙

𝑃 𝐴𝑙𝑎𝑟𝑚 𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦, 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒

𝑃 𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦 𝑃 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒

𝑃 𝐽𝑜ℎ𝑛𝐶𝑎𝑙𝑙 𝐴𝑙𝑎𝑟𝑚 𝑃 𝑀𝑎𝑟𝑦𝐶𝑎𝑙𝑙 𝐴𝑙𝑎𝑟𝑚

Full joint probability distribution size: 𝑑!
Sizes of CPDs: 𝑑 + 𝑑 + 𝑑" + 𝑑# + 𝑑#

Given 𝑑 = 2: 2! = 32 vs. 20
(As probabilities add to 1: 

size −1 for each probability distribution in each CPD, 
i.e., 1 + 1 + 4 + 2 + 2 = 10)



Dynamic Bayesian Networks

• MDP models a sequential, i.e., temporal, stationary, Markovian probabilistic setting
• Factorisation also needs to encode a sequential, stationary, Markovian probabilistic setting

• Popular modeling formalism used: 
Dynamic BN (DBN) is a two-tuple 𝐵 S , 𝐵 →

• Template variables 𝑆# indexed by time step 𝜏 in BNs 
➝ Can be instantiated for particular time steps 𝑡

• BN 𝐵 . for time step 0 to encode 
• If set to uniform distributions or using DBN for fix point calculations, can be safely ignored

• BN 𝐵 → for time step 𝜏 with connections from time step 𝜏 − 1 (copy pattern)
• Markov-1➝ Only connections from 𝜏 − 1 to 𝜏
• Stationary ➝ 𝐵 → identical for all 𝑡 ∈ 1,…

• Semantics: unroll for 𝑇 time steps and multiply

Decision Structure
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Dynamic Bayesian Networks: Example
• Left: vehicle localization task, where a moving car tries to track its 

current location using the data obtained from a, possibly faulty, 
sensor 

• Right: Toy example of a special 
case of a DBN with one latent 
and one observable variable 
(hidden Markov model, HMM)
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Factored MDPs

• MDP with its state space 𝑆 structured according to 𝑆6, … , 𝑆7, which in general means that
• Transition probability distribution 𝑇 𝑆0, 𝑆, 𝐴 = 𝑃 𝑆0 𝑆, 𝐴 is given by 
𝑇 𝑆(0 , … , 𝑆,0 , 𝑆(, … , 𝑆,, 𝐴 = 𝑃 𝑆(0 , … , 𝑆,0 𝑆(, … , 𝑆,, 𝐴
• Or using the template notation: 𝑇 𝑆 / , 𝑆 /'! , 𝐴 /'! = 𝑃 𝑆 / 𝑆 /'! , 𝐴 /'! is given by 
𝑇 𝑆!

/ , … , 𝑆+
/ , 𝑆!

/'! , … , 𝑆+
/'! , 𝐴 /'! = 𝑃 𝑆!

/ , … , 𝑆+
/ 𝑆!

/'! , … , 𝑆+
/'! , 𝐴 /'!

• Note that the overall size of 𝑇 does not increase as the state space size is identical
• Given that 𝑆(, … , 𝑆, represent features of (hopefully weakly) connected parts of a system, 𝑇 can 

be factored according to (conditional) independences ➝ often represented using a DBN
• Factorisation of 𝑇: 

𝑇 𝑆(, 𝑆, 𝐴 = 𝑃 𝑆!( , … , 𝑆+( 𝑆!, … , 𝑆+, 𝐴 =E
)0!

+

𝑃 𝑆)( pa 𝑆)( =∶ 𝑇1

Decision Structure

T. Braun - APA 18



Factored MDPs: Actions and Rewards

• To be correct, the DBN just described is a standard DBN extended with random variable 
nodes for actions, whose assignment we want to determine, and reward nodes to denote 
that a reward function outputs a reward depending on the state (and action)
• BN extended with so-called decision and utility nodes called influence or decision diagram

Decision Structure

T. Braun - APA 19

Side note: Since the state in MDPs is fully observable, every random variable in a DBN is observable, which is 
not the general case for DBNs, where usually there is a set of latent variables, which are never observed and 
as such often queried, and a set of evidence variables, which are usually observed (save for sensor failures).



Factored MDPs: Actions and Rewards

• What about rewards?
If the reward remains a function over the complete state space without any factorisation, 
we have not gained much

• But remember: Multi-attribute utility theory
• Reward function with preference independence between subsets of random variables 
➝ additive reward function
• Factorisation of 𝑅:

𝑅 𝑆 = 𝑅 𝑆!, … , 𝑆+ =H
,0!

2

𝑅, 𝑪,

• Best case 𝑅 𝑆#, … , 𝑆- = ∑*.#- 𝑅* 𝑆*
• Compare factorisation of 𝑇: 𝑇 𝑆(, 𝑆, 𝐴 = 𝑃 𝑆!( , … , 𝑆+( 𝑆!, … , 𝑆+, 𝐴 = ∏)0!

+ 𝑃 𝑆)( pa 𝑆)(
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Factored MDPs: Space Complexity

• With a structured state space, representation size down
• Given
• State space with 𝑛 features and a maximum domain size of 𝑑
• DBN over 𝑛 features and a maximum domain size of 𝑑, with 𝑐 = max

)∈ !,…,+
pa 𝑆) + 1

• Given action space of size 𝑎
• Space complexity
• Transition function 𝑇 𝑆(, 𝑆, 𝐴 : 𝒪 𝑑+ ⋅ 𝑎 vs. 𝒪 𝑛 ⋅ 𝑑5 ⋅ 𝑎
• Reward function 𝑅 𝑆 : 𝒪 𝑑+ vs. 𝒪 𝑛 ⋅ 𝑑5

Decision Structure
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Solving Factored MDPs

• Bellman equation: 
𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max

+∈1 2
R

2%∈345 6

𝑃 𝑠0 𝑎, 𝑠 𝑈 𝑠0

• Becomes
𝑈 𝑠(, … , 𝑠,

=R
78(

9

𝑅7 𝑪7 + 𝛾 max
+∈1 20,…,21

R
20%∈345 60

… R
21% ∈345 61

S
#8(

!

𝑃 𝑠#
< pa 𝑠#

< 𝑈 𝑠(0 , … , 𝑠,0

• Unfortunately, a factored MDP does not induce a factored value function 𝑈
• One way to go: concentrate on value functions that have a factored representation
• Approximate the unfactored value function with a factored one
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Linear Value Functions

• Linear value function 𝒱 over a set of basis functions 𝐻 = ℎ6, … , ℎ5
• Function 𝒱 that can be written as 𝒱 𝑠(, … , 𝑠, = ∑78(* 𝑤7 ⋅ ℎ7 𝑠(, … , 𝑠, for some coefficients 
w = 𝑤(, … , 𝑤* 0

• Let ℋ be the linear subspace of ℝ+ spanned by 𝐻
• Let H be an 𝑛×𝑘 matrix  whose columns are the 𝑘 basis functions viewed as vectors
• Then, 𝒱 can be written as Hw

• Equivalent expressive power to, e.g., single layer neural network 
• Features corresponding to the basis functions 
• Optimise the coefficients w to obtain a good approximation for true value function

• Separates the problem of defining a reasonable space of features and the induced space ℋ, 
from the problem of searching within the space
• Former problem is typically purview of domain experts, latter is focus of analysis + algorithmic design
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Approximate Policy Iteration with Linear Value Functions

• Restrict policy iteration algorithm to only use 
value functions 𝒱 within the provided ℋ
• Policy improvement as before
• Policy evaluation changes
• Whenever policy iteration takes a step that results 

in a 𝒱 outside of ℋ, project result back into ℋ by 
finding a value function within ℋ closest to 𝒱

• Projection operator Π
• Mapping Π ∶ ℝ, → ℋ
• Π is said to be a projection w.r.t. a norm ⋅ if Π𝒱 = Hw∗ such that w∗ ∈ arg min

>
Hw− 𝒱

• Π is the linear combination of the basis functions that is closest to 𝒱 w.r.t. chosen norm
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Approximate Policy Iteration with Linear Value Functions

• Policy evaluation for a policy 𝜋 Y

• Value function — the value of acting according to the current policy 𝜋 ? — is approximated 
through a linear combination of basis functions

• Given 𝜋 Y , i.e., actions are fixed, 
• 𝑇 𝑆0, 𝑆, 𝐴 = 𝑇 𝑆0, 𝑆, 𝜋 ? = 𝑇 𝑆0, 𝑆

• Policy evaluation can be written in terms of matrices and vectors
• 𝒱 and 𝑅 as 𝑛-dimensional vectors and 𝑇 as an 𝑛×𝑛-dimensional matrix, denoted V, R, T
• Then, 𝒱 = R + 𝛾T𝒱
• System of linear equations with one equation for each state ➝ approximate solution within ℋ:

w 6 = arg min
7

Hw − R + 𝛾THw = arg min
7

H − 𝛾TH w 6 − R

• Problem: How to choose ⋅ wisely, i.e., providing error bounds?
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Approximate Policy Iteration with Linear Value Functions

• Convergence and error analysis for MDPs use max-norm (ℒ[) 
➝ Tie projection operator to ℒ[ norm

• Minimising the ℒ[ norm studied in optimisation literature as the problem of finding the 
Chebyshev solution to an overdetermined linear system of equations
• I.e., finding w∗ such that w∗ ∈ arg min> 𝐶w − 𝑏 @
• 𝐶 = H − 𝛾TH , 𝑏 = 𝑅

• Algorithm due to Stiefel (1960) solves problem by linear programming:
• Variables: 𝑤!, … , 𝑤$, 𝜙;
• Minimise: 𝜙;
• Subject to: 𝜙 ≥ ∑,0!$ 𝑐), ⋅ 𝑤, − 𝑏) and

𝜙 ≥ 𝑏) − ∑,0!$ 𝑐), ⋅ 𝑤,, 𝑖 = 1,… , 𝑛.
• At solution w∗, 𝜙∗ , w∗ is the Chebyshev solution and 𝜙∗ is the ℒ3 projection error
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Factored Value Functions

• Factored (linear) value function
• Linear function over the basis set ℎ(, … , ℎ* where scope of each basis function ℎ# restricted to 

some subset of variables 𝑪# ⊂ 𝑆
• Goal: the scopes of ℎ(, … , ℎ* correspond to cliques in graph of DBN representing transition 

model 𝑇

• Not considered so far: How can we use this factored function to our advantage in policy 
evaluation where we need to
• Solve the value function as a combination of ℎ(, … , ℎ* and 
• Problem: Sum over exponential state space

• Optimise the weights to have a good approximation
• Problem: LP with exponentially many constraints 

Decision Structure

T. Braun - APA 27



Factored Value Functions: Use in Q Value Function

• Efficient computation of value function using ℎ6, … , ℎ5 (𝒔 = 𝑠6, … , 𝑠7) using Q value 
function

𝑄 𝒔, 𝑎 = 𝑅 𝒔, 𝑎 + 𝛾 R
𝒔%∈𝑺

𝑃 𝒔0 𝒔, 𝑎 𝒱 𝒔 = 𝑅 𝒔, 𝑎 + 𝛾 R
𝒔%∈𝑺

𝑃 𝒔0 𝒔, 𝑎 R
#

𝑤#ℎ# 𝒔0

• Define 𝐺 𝒔, 𝑎 with 𝑔# 𝒔, 𝑎 ≔ ∑𝒔%∈𝑺𝑃 𝒔0 𝒔, 𝑎 ℎ# 𝒔0

𝐺 𝒔, 𝑎 ∶= R
𝒔%∈𝑺

𝑃 𝒔0 𝒔, 𝑎 R
#

𝑤#ℎ# 𝒔0 =R
#

𝑤# R
𝒔%∈𝑺

𝑃 𝒔0 𝒔, 𝑎 ℎ# 𝒔0 =R
#

𝑤#𝑔# 𝒔, 𝑎

• Can compute each basis function separately
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Factored Value Functions: Use in Q Value Function

• Consider 𝑔 𝒔, 𝑎 ≔ ∑𝒔I∈𝑺𝑃 𝒔c 𝒔, 𝑎 ℎ 𝒔c = 𝑇dℎ
• 𝑃 𝒔0 𝒔, 𝑎 factored as a DBN 𝑇C
• ℎ has restricted scope over 𝑪

• Sum over 𝑪c conditioned on ancestors 𝑹 = anc 𝑪c of 𝑪c in 𝑇d
𝑔# 𝒔, 𝑎 = R

𝒔%∈𝐒%
𝑃 𝒔0 𝒔, 𝑎 ℎ# 𝒔0 = R

𝒔%∈𝐒%
𝑃 𝒔0 𝒔, 𝑎 ℎ# 𝒄0

= R
𝒄%∈𝑪%

𝑃 𝒄0 𝒔, 𝑎 ℎ# 𝒄0 R
𝒓%∈𝑺%∖𝑪%

𝑃 𝒓0 𝒔, 𝑎 = R
𝒄%∈𝑪%

𝑃 𝒄0 𝒓, 𝑎 ℎ# 𝒄0

• Depends on the number of values 𝑹 can take, which depends on 𝑪( and complexity of dynamics 
represented in 𝑇1, i.e., connectivity of graph 𝐵
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Factored Value Functions: Use in LP with Exponentially Many Constraints

• Constraints of form 𝜙 ≥ ∑'𝑤'𝑐' 𝒔 − 𝑏 𝒔 , ∀𝒔 ∈ 𝑺
• 𝜙,𝑤(, … , 𝑤* free variables
• 𝒔 ranges over all states

• Can be replaced by one equivalent non-linear constraint 𝜙 ≥ max
𝒔
∑'𝑤'𝑐' 𝒔 − 𝑏 𝒔

• Tackle problem of representing non-linear constraint by
• Computing maximum assignment for a fixed set of weights
• Simpler problem: Given fixed weights 𝑤*, compute 𝜙∗ = max

𝒔
∑*𝑤*𝑐* 𝒔 − 𝑏 𝒔

• Representing non-linear constraint by small set of linear constraints using a construction called 
factored LP
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Factored Value Functions: Use in LP with Exponentially Many Constraints

• Computing maximum assignment for a fixed set of weights
• Given fixed weights 𝑤#, compute 𝜙∗ = max

𝒔
∑#𝑤#𝑐# 𝒔 − 𝑏 𝒔

• Remember: Each 𝑐 𝒔 involves only a subset 𝑪 of 𝑺
• Follow idea of variable elimination in Bayesian networks
• Eliminate one variable 𝑆 ∈ 𝑺 at a time by 
• Combining all functions involving 𝑆 and 
• Replacing the result with a new function in which we keep only the mappings for each 𝒔 ∖ 𝑆 where 𝑆

leads to a maximum value
• Cost exponential in the width of network (largest number of variables combined in a function 

during overall computation)
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Factored Value Functions: Use in LP with Exponentially Many Constraints

• Factored LP to construct a (polynomial) set of constraints for the exponential set of 
constraints 𝜙 ≥ ∑'𝑤'𝑐' 𝒔 + ∑8 𝑏8 𝒔 to use to compute max-norm projections
• Set of constraints Ω = ∅, set of intermediate functions ℱ = ∅
• For each 𝑐# with scope 𝒁: 
• For each assignment 𝒛 to 𝒁, create new LP variable 𝑢𝒛

9,, add 𝑢𝒛
9, = 𝑤)𝑐) 𝒛 to Ω and 𝑓) = 𝑤)𝑐) 𝒛 to ℱ

• For each 𝑏7 with scope 𝒛:
• For each assignment 𝒛 to 𝒁, create new LP variable 𝑢𝒛

9-, add 𝑢𝒛
9- = 𝑏, 𝒛 to Ω and 𝑓, = 𝑏, 𝒛 to ℱ

• Eliminate all variables 𝑆 ∈ 𝑆(, … , 𝑆,
• Select functions 𝑭 from ℱ containing 𝑆
• Define a new function 𝑒 over all variables 𝒁 in 𝑭 minus 𝑆 to represent max

:
∑9∈𝑭𝑓 to replace 𝑭 in ℱ

• For each assignment 𝒛 to 𝒁, add constraint 𝑢𝒛< ≥ ∑9∈𝑭𝑢𝒛.
9
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Factored POMDP

• Difference between MDP and POMDP: 
partial observability of state
• State 𝑆 no longer directly observable ➝ latent
• Additional sensor model 𝛺 𝑂, 𝑆 = 𝑃 𝑂 𝑆 for observation 𝑂

• Given a factorisation of state space
• Sensor model becomes 𝛺 𝑂, 𝑆(, … , 𝑆, = 𝑃 𝑂 𝑆(, … , 𝑆,
• Alternate version using template notation: 
𝛺 𝑂/, 𝑆!/, … , 𝑆+/ = 𝑃 𝑂/ 𝑆!/, … , 𝑆+/

• 𝑂 could also be possibly factored if more than one observation signal incoming 
• 𝛺 𝑂!/, … , 𝑂$/, 𝑆!/, … , 𝑆+/ = 𝑃 𝑂!/, … , 𝑂$/ 𝑆!/, … , 𝑆+/

• Given (conditional) independences, 𝛺 can also be factored like 𝑇 and represented by a BN 𝐵< or 
incorporated into the DBN 𝐵., 𝐵→ representing 𝑇

Decision Structure

T. Braun - APA 33

𝑂 !

𝑆 !𝑆 !"#

𝐴 !"#

𝑅 !𝛺

𝑇

Graph representation of a POMDP



Interim Summary: Structure by Features in the State Space

• State space characterised by set of attributes
• (Conditional) independences allow for factorisation of functions in MDP
• Probabilistic graphical models represent such factorisations

• Factored MDP: MDP with a DBN as a representation of the transition model
• Reduction in space complexity
• Factored transition function does not lead to factored value function

• Factored (linear) value functions over a set of basis functions
• Enable computing policy evaluation efficiently

• Approximate policy iteration
• Project results outside of subspace spanned by basis functions back into subspace
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Outline: Decision Making – Structure 

Structure by Groups in the Agent Set
• Agent types
• Partitioned decPOMDPs

Structure by Features in the State Space
• Dynamic Bayesian networks
• Factored MDPs

Structure by Relations in the State Space
• Situation calculus
• First-order MDPs

Decision Structure
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Motivation: Planning Languages

• Common languages:
• STRIPS
• PDDL
• More expressive than STRIPS
• For example, universal and conditional effects:
(:action put-all-blue-blocks-on-table

:parameters ( )
:precondition ( )
:effect (forall (?b)

(when (Blue ?b)
(not (OnTable ?b)))))

• General Game Playing (GGP)
• One or more agents

Decision Structure
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Motivation: Benefits of Relational Languages

• STRIPS, PDDL, GGP are relational languages…
• Refer to relational fluents:
• E.g., 𝐵𝑜𝑥𝐼𝑛 ? 𝑏, ? 𝑐 , 𝑂𝑛𝑇𝑎𝑏𝑙𝑒(? 𝑏)

• Specify relations between objects
• Change over time

• Use first-order logic to specify…
• Action preconditions
• Action effects
• Goals / rewards
• E.g., (forall (?b ?c) ((Destination ?b ?c) ⇒ (BoxIn ?b ?c)))

• Are domain-independent and often compact!
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Motivation: How to Solve?

• Relaaonal planning problem
• E.g., box world

(:action load-box-on-truck-in-city 
:parameters (?b - box ?t - truck ?c – city) 
:precondition (and (BoxIn ?b ?c) (TruckIn ?t ?c)) 
:effect (and (On ?b ?t) (not (BoxIn ?b ?c)))) 

• Solve ground problem for each domain instance?
• E.g., instance with 3 trucks 🚚🚚🚚, 2 planes 🛩🛩, 3 boxes 📦📦📦

• Or solve libed specificaaon for all domains at once?

Decision Structure
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Box World: Full (Relational) Specification
• Relational fluents: 𝐵𝑜𝑥𝐼𝑛 𝐵𝑜𝑥, 𝐶𝑖𝑡𝑦 , 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑇𝑟𝑢𝑐𝑘, 𝐶𝑖𝑡𝑦 , 𝐵𝑜𝑥𝑂𝑛 𝐵𝑜𝑥, 𝑇𝑟𝑢𝑐𝑘
• Goal: ∃𝐵𝑜𝑥 ∶ 𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠
• Actions:
• 𝑙𝑜𝑎𝑑 𝐵𝑜𝑥 ∶ 𝑏, 𝑇𝑟𝑢𝑐𝑘 ∶ 𝑡 :
• Effects:
• when ∃𝐶𝑖𝑡𝑦 ∶ 𝑐. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐 then 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡
• ∀𝐶𝑖𝑡𝑦 ∶ 𝑐. when 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐 then ¬𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐

• 𝑢𝑛𝑙𝑜𝑎𝑑 𝐵𝑜𝑥 ∶ 𝑏, 𝑇𝑟𝑢𝑐𝑘 ∶ 𝑡 :
• Effects:
• ∀𝐶𝑖𝑡𝑦 ∶ 𝑐. when 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐 then 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐
• when ∃𝐶𝑖𝑡𝑦 ∶ 𝑐. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐 then ¬𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡

• 𝑑𝑟𝑖𝑣𝑒 𝑇𝑟𝑢𝑐𝑘 ∶ 𝑡, 𝐶𝑖𝑡𝑦 ∶ 𝑐 :
• Effects:
• when ∃𝐶𝑖𝑡𝑦 ∶ 𝑐/. 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/ then 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐
• ∀𝐶𝑖𝑡𝑦 ∶ 𝑐/. 𝑤ℎ𝑒𝑛 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/ then ¬𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/
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Solving Ground Box World
• Apply planner to Box World grounded with respect to domain, e.g.,
• Domain object instantiations:
• 𝐵𝑜𝑥 = 𝑏𝑜𝑥/, 𝑏𝑜𝑥0, 𝑏𝑜𝑥1 , 𝑇𝑟𝑢𝑐𝑘 = 𝑡𝑟𝑢𝑐𝑘/, 𝑡𝑟𝑢𝑐𝑘0 , 𝐶𝑖𝑡𝑦 = 𝑝𝑎𝑟𝑖𝑠, 𝑏𝑒𝑟𝑙𝑖𝑛, 𝑟𝑜𝑚𝑒

• Ground fluents:
• 𝐵𝑜𝑥𝐼𝑛: {𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥/, 𝑝𝑎𝑟𝑖𝑠 , 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥0, 𝑝𝑎𝑟𝑖𝑠 , 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥1, 𝑝𝑎𝑟𝑖𝑠 , 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥/, 𝑏𝑒𝑟𝑙𝑖𝑛 , 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥0, 𝑏𝑒𝑟𝑙𝑖𝑛 , 
𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥1, 𝑏𝑒𝑟𝑙𝑖𝑛 , 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥/, 𝑟𝑜𝑚𝑒 , 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥0, 𝑟𝑜𝑚𝑒 , 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥1, 𝑟𝑜𝑚𝑒 }

• 𝑇𝑟𝑢𝑐𝑘𝐼𝑛: {𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡𝑟𝑢𝑐𝑘/, 𝑝𝑎𝑟𝑖𝑠 , 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡𝑟𝑢𝑐𝑘0, 𝑝𝑎𝑟𝑖𝑠 , 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡𝑟𝑢𝑐𝑘/, 𝑏𝑒𝑟𝑙𝑖𝑛 , 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡𝑟𝑢𝑐𝑘0, 𝑏𝑒𝑟𝑙𝑖𝑛 , 
𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡𝑟𝑢𝑐𝑘/, 𝑟𝑜𝑚𝑒 , 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡𝑟𝑢𝑐𝑘0, 𝑟𝑜𝑚𝑒 }

• 𝐵𝑜𝑥𝑂𝑛: {𝐵𝑜𝑥𝑂𝑛 𝑏𝑜𝑥/, 𝑡𝑟𝑢𝑐𝑘/ , 𝐵𝑜𝑥𝑂𝑛 𝑏𝑜𝑥0, 𝑡𝑟𝑢𝑐𝑘/ , 𝐵𝑜𝑥𝑂𝑛 𝑏𝑜𝑥1, 𝑡𝑟𝑢𝑐𝑘/ , 
𝐵𝑜𝑥𝑂𝑛 𝑏𝑜𝑥/, 𝑡𝑟𝑢𝑐𝑘0 , 𝐵𝑜𝑥𝑂𝑛 𝑏𝑜𝑥0, 𝑡𝑟𝑢𝑐𝑘0 , 𝐵𝑜𝑥𝑂𝑛 𝑏𝑜𝑥1, 𝑡𝑟𝑢𝑐𝑘0 }

• Ground actions:
• 𝑙𝑜𝑎𝑑: {𝑙𝑜𝑎𝑑 𝑏𝑜𝑥/, 𝑡𝑟𝑢𝑐𝑘/ , 𝑙𝑜𝑎𝑑 𝑏𝑜𝑥0, 𝑡𝑟𝑢𝑐𝑘/ , 𝑙𝑜𝑎𝑑 𝑏𝑜𝑥1, 𝑡𝑟𝑢𝑐𝑘/ , 
𝑙𝑜𝑎𝑑 𝑏𝑜𝑥/, 𝑡𝑟𝑢𝑐𝑘0 , 𝑙𝑜𝑎𝑑 𝑏𝑜𝑥0, 𝑡𝑟𝑢𝑐𝑘0 , 𝑙𝑜𝑎𝑑 𝑏𝑜𝑥1, 𝑡𝑟𝑢𝑐𝑘0 }

• 𝑢𝑛𝑙𝑜𝑎𝑑: {𝑢𝑛𝑙𝑜𝑎𝑑 𝑏𝑜𝑥/, 𝑡𝑟𝑢𝑐𝑘/ , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏𝑜𝑥0, 𝑡𝑟𝑢𝑐𝑘/ , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏𝑜𝑥1, 𝑡𝑟𝑢𝑐𝑘/ , 
𝑢𝑛𝑙𝑜𝑎𝑑 𝑏𝑜𝑥/, 𝑡𝑟𝑢𝑐𝑘0 , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏𝑜𝑥0, 𝑡𝑟𝑢𝑐𝑘0 , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏𝑜𝑥1, 𝑡𝑟𝑢𝑐𝑘0 }

• 𝑑𝑟𝑖𝑣𝑒: {𝑑𝑟𝑖𝑣𝑒 𝑡𝑟𝑢𝑐𝑘/, 𝑝𝑎𝑟𝑖𝑠 , 𝑑𝑟𝑖𝑣𝑒 𝑡𝑟𝑢𝑐𝑘0, 𝑝𝑎𝑟𝑖𝑠 , 𝑑𝑟𝑖𝑣𝑒 𝑡𝑟𝑢𝑐𝑘/, 𝑏𝑒𝑟𝑙𝑖𝑛 , 
𝑑𝑟𝑖𝑣𝑒 𝑡𝑟𝑢𝑐𝑘0, 𝑏𝑒𝑟𝑙𝑖𝑛 , 𝑑𝑟𝑖𝑣𝑒 𝑡𝑟𝑢𝑐𝑘/, 𝑟𝑜𝑚𝑒 , 𝑑𝑟𝑖𝑣𝑒 𝑡𝑟𝑢𝑐𝑘0, 𝑟𝑜𝑚𝑒 }

• Goal: 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥J, 𝑝𝑎𝑟𝑖𝑠 ∨ 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥K, 𝑝𝑎𝑟𝑖𝑠 ∨ 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥L, 𝑝𝑎𝑟𝑖𝑠
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Number of fluents 
exponenSal in arity

Number of actions 
exponential in arity

Goal description exponential in 
number of nested quantifiers



A First-order Solution to Box World

• Derive solution deductively at lifted PDDL level ➝ Optimal for any domain instantiation!
if (∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠 ) then

do 𝑛𝑜𝑜𝑝
else if ∃𝑏∗, 𝑡∗. 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑝𝑎𝑟𝑖𝑠 ∧ 𝐵𝑜𝑥𝑂𝑛 𝑏∗, 𝑡∗ then

do 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗

else if (∃𝑏, 𝑐, 𝑡∗. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡∗ ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐 ) then
do 𝑑𝑟𝑖𝑣𝑒 𝑡∗, 𝑝𝑎𝑟𝑖𝑠

else if (∃𝑏∗, 𝑐, 𝑡∗. 𝐵𝑜𝑥𝐼𝑛 𝑏∗, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑐 ) then
do 𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗

else if (∃𝑏, 𝑐!∗, 𝑡∗, 𝑐". 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐!∗ ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑐" ) then
do 𝑑𝑟𝑖𝑣𝑒 𝑡∗, 𝑐!∗

else do 𝑛𝑜𝑜𝑝
• Great, but how do I obtain this solution?
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SituaUon Calculus

• Logic formalism designed for representing and reasoning about dynamic domains
• First introduced by John McCarthy in 1963

• Basic elements
• Actions that can be performed in the world
• Situations
• Fluents that describe the state of the world

• Domain
• Action precondition axioms, one for each action
• Successor state axioms, one for each fluent
• Axioms describing the world in various situations
• Foundational axioms of the situation calculus: situations are histories, induction on situations
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SituaUon Calculus: Ingredients

• Actions
• First-order terms with action parameters
• E.g., 𝑙𝑜𝑎𝑑 𝑏, 𝑡 , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 , 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑐

• Situations
• Term that encoes action history
• E.g., 𝑠, 𝑠., 𝑑𝑜 𝑙𝑜𝑎𝑑 𝑏, 𝑡 , 𝑠 , 𝑑𝑜 𝑙𝑜𝑎𝑑 𝑏, 𝑡 , 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑐 , 𝑠

• Fluents
• Relation whose truth value varies between situations
• E.g., 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 , 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠 , 𝐵𝑜𝑥 𝑡, 𝑐, 𝑠

• Effects?
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Situation Calculus: PDDL to Effects
• Translate action effects into positive and negative effect axioms

• 𝑙𝑜𝑎𝑑 𝐵𝑜𝑥 ∶ 𝑏, 𝑇𝑟𝑢𝑐𝑘 ∶ 𝑡 :
• when ∃𝐶𝑖𝑡𝑦 ∶ 𝑐. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐
then 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡

• ∀𝐶𝑖𝑡𝑦 ∶ 𝑐. when 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐
then ¬𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐

• 𝑢𝑛𝑙𝑜𝑎𝑑 𝐵𝑜𝑥 ∶ 𝑏, 𝑇𝑟𝑢𝑐𝑘 ∶ 𝑡 :
• ∀𝐶𝑖𝑡𝑦 ∶ 𝑐. when 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐
then 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐

• when ∃𝐶𝑖𝑡𝑦 ∶ 𝑐. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐
then ¬𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡

• 𝑑𝑟𝑖𝑣𝑒 𝑇𝑟𝑢𝑐𝑘 ∶ 𝑡, 𝐶𝑖𝑡𝑦 ∶ 𝑐 :
• when ∃𝐶𝑖𝑡𝑦 ∶ 𝑐/. 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/
then 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐

• ∀𝐶𝑖𝑡𝑦 ∶ 𝑐/. 𝑤ℎ𝑒𝑛 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/
then ¬𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/
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• ∃𝑐. 𝑎 = 𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠
⇒ 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑑𝑜 𝑎, 𝑠

• ∃𝑡. 𝑎 = 𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠
⇒ ¬𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑑𝑜 𝑎, 𝑠

• ∃𝑡. 𝑎 = 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠
⇒ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑑𝑜 𝑎, 𝑠

• ∃𝑐. 𝑎 = 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠
⇒ ¬𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑑𝑜 𝑎, 𝑠

• ∃𝑐/. 𝑎 = 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/, 𝑠
⇒ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑑𝑜 𝑎, 𝑠

• ∃𝑐. 𝑎 = 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/, 𝑠
⇒ ¬𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/, 𝑑𝑜 𝑎, 𝑠



SituaUon Calculus: PDDL to Effects

• Use rule to combine multiple effects 𝐶6 ⇒ 𝐹, 𝐶n ⇒ 𝐹 over the same fluent 𝐹 into effect 
axioms: 𝛾op �⃗�, 𝑎, 𝑠 ⇒ 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 , 𝛾oq �⃗�, 𝑎, 𝑠 ⇒ 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠
• Rule: 𝐶( ⇒ 𝐹 ∧ 𝐶I ⇒ 𝐹 ≡ 𝐶( ∨ 𝐶I ⇒ 𝐹
• As a sort of shorthand notation
• E.g.,
• ∃𝑐. 𝑎 = 𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝐼𝑛 𝑏, 𝑐, 𝑠 ∧ 𝑇𝐼𝑛 𝑡, 𝑐, 𝑠 ⇒ 𝐵𝑂𝑛 𝑏, 𝑡, 𝑑𝑜 𝑎, 𝑠 ➝ 𝛾56-7 �⃗�, 𝑎, 𝑠 ⇒ 𝐵𝑂𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠
• ∃𝑐. 𝑎 = 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝐼𝑛 𝑡, 𝑐, 𝑠 ⇒ ¬𝐵𝑂𝑛 𝑏, 𝑡, 𝑑𝑜 𝑎, 𝑠
➝ 𝛾56-" �⃗�, 𝑎, 𝑠 ⇒ ¬𝐵𝑂𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠

• ∃𝑡. 𝑎 = 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝐼𝑛 𝑡, 𝑐, 𝑠 ⇒ 𝐵𝐼𝑛 𝑏, 𝑐, 𝑑𝑜 𝑎, 𝑠 ➝ 𝛾58-7 �⃗�, 𝑎, 𝑠 ⇒ 𝐵𝐼𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠
• ∃t. 𝑎 = 𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝐼𝑛 𝑏, 𝑐, 𝑠 ∧ 𝑇𝐼𝑛 𝑡, 𝑐, 𝑠 ⇒ ¬𝐵𝐼𝑛 𝑏, 𝑐, 𝑑𝑜 𝑎, 𝑠 → 𝛾58-" �⃗�, 𝑎, 𝑠 ⇒ ¬𝐵𝐼𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠
• ∃𝑐#. 𝑎 = 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑐 ∧ 𝑇𝐼𝑛 𝑡, 𝑐#, 𝑠 ⇒ 𝑇𝐼𝑛 𝑡, 𝑐, 𝑑𝑜 𝑎, 𝑠 ➝ 𝛾98-7 �⃗�, 𝑎, 𝑠 ⇒ 𝑇𝐼𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠
• ∃𝑐. 𝑎 = 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑐 ∧ 𝑇𝐼𝑛 𝑡, 𝑐#, 𝑠 ⇒ ¬𝑇𝐼𝑛 𝑡, 𝑐#, 𝑑𝑜 𝑎, 𝑠 ➝ 𝛾98-" �⃗�, 𝑎, 𝑠 ⇒ ¬𝑇𝐼𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠

Decision Structure

T. Braun - APA 46



Frame Problem

• Positive and negative effect axioms specify what changes
• 𝛾CJ,K �⃗�, 𝑎, 𝑠 ⇒ 𝐵𝑂𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠 𝛾CJ,' �⃗�, 𝑎, 𝑠 ⇒ ¬𝐵𝑂𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠
• 𝛾C%,K �⃗�, 𝑎, 𝑠 ⇒ 𝐵𝐼𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠 𝛾C%,' �⃗�, 𝑎, 𝑠 ⇒ ¬𝐵𝐼𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠
• 𝛾L%,K �⃗�, 𝑎, 𝑠 ⇒ 𝑇𝐼𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠 𝛾L%,' �⃗�, 𝑎, 𝑠 ⇒ ¬𝑇𝐼𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠

• Assume completeness regarding these effect axioms: 
• That is, assume that 𝛾MK �⃗�, 𝑎, 𝑠 ⇒ 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 , 𝛾M' �⃗�, 𝑎, 𝑠 ⇒ ¬𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 characterise all 

the conditions under which an action 𝑎 changes the value of fluent 𝐹
• Formalise as explanation closure axioms
• ¬𝐹 �⃗�, 𝑠 ∧ 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 ⇒ 𝛾>& �⃗�, 𝑎 , 𝑠 ≡ ¬𝐹 �⃗�, 𝑠 ∧ ¬𝛾>& �⃗�, 𝑎 , 𝑠 ⇒ ¬𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠
• If 𝐹 was false and was made true by doing action 𝑎, then condition 𝛾:7 must have been true

• 𝐹 �⃗�, 𝑠 ∧ ¬𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 ⇒ 𝛾>' �⃗�, 𝑎 , 𝑠 ≡ 𝐹 �⃗�, 𝑠 ∧ ¬𝛾>' �⃗�, 𝑎 , 𝑠 ⇒ 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠
• If 𝐹 was true and was made false by doing action 𝑎 then condition 𝛾:" must have been true
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Frame Problem

• Frame problem: How to (compactly) specify what does not change?
• Intuition: “What does not change, remains the same.”
• Reiter’s so-called Default Solution

• Not so easy to specify
• Moving one thing might move another thing, even though the other thing is never directly touched
• How to distinguish between relevant and irrelevant side effects? And use that efficiently?

• Default solution to frame problem given as successor state axioms (SSAs), which we 
construct next
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Successor State Axioms (SSAs)

• Inputs / Requirements
• Unique names for ac`ons / arguments
• Posi`ve and nega`ve effect axioms 
• 𝛾>& �⃗�, 𝑎, 𝑠 ⇒ 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 , 𝛾>' �⃗�, 𝑎, 𝑠 ⇒ 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠

• Explana`on closure axioms
• ¬𝐹 �⃗�, 𝑠 ∧ 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 ⇒ 𝛾>& �⃗�, 𝑎 , 𝑠 , 𝐹 �⃗�, 𝑠 ∧ ¬𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 ⇒ 𝛾>' �⃗�, 𝑎 , 𝑠

• Integrity: ¬∃�⃗�, 𝑎, 𝑠. 𝛾MK �⃗�, 𝑎, 𝑠 ∧ 𝛾M' �⃗�, 𝑎, 𝑠
• SSA for each 𝐹:
• 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 ≡ 𝛾MK �⃗�, 𝑎, 𝑠 ∨ 𝐹 �⃗�, 𝑠 ∧ ¬𝛾M' �⃗�, 𝑎, 𝑠
• Shorthand:
• 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 ≡ 𝛷> �⃗�, 𝑎, 𝑠
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Successor State Axioms (SSAs): Example

• SSA for each 𝐹: 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 ≡ 𝛾op �⃗�, 𝑎, 𝑠 ∨ 𝐹 �⃗�, 𝑠 ∧ ¬𝛾oq �⃗�, 𝑎, 𝑠
• Shorthand: 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 ≡ 𝛷M �⃗�, 𝑎, 𝑠

• 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑑𝑜 𝑎, 𝑠 ≡ 𝛷d{|}7 𝑏, 𝑡, 𝑎, 𝑠
≡ ∃𝑐. 𝑎 = 𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵ox𝐼𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠
∨ 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ ¬ ∃𝑐. 𝑎 = 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠

• 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑑𝑜 𝑎, 𝑠 ≡ 𝛷d{|~7 𝑏, 𝑐, 𝑎, 𝑠
≡ ∃𝑡. 𝑎 = 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠
∨ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 ∧ ¬ ∃t. 𝑎 = 𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠

• 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑑𝑜 𝑎, 𝑠 ≡ 𝛷����5~7 𝑡, 𝑐, 𝑎, 𝑠
≡ ∃𝑐6. 𝑎 = 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐6, 𝑠
∨ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠 ∧ ¬ ∃𝑐6. 𝑎 = 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐6, 𝑠
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Regression

• Idea: Use SSAs to regress from goal towards a (possibly only partially defined) intial state
• A bit like lifted backward search

• Regression
• If 𝜙 held after action 𝑎, then regression is the 𝜙0 that held before action 𝑎
• Exploit following properties
• 𝑅𝑒𝑔𝑟 ¬𝜓 = ¬𝑅𝑒𝑔𝑟 𝜓
• 𝑅𝑒𝑔𝑟 𝜓! ∧ 𝜓" = 𝑅𝑒𝑔𝑟 𝜓! ∧ 𝑅𝑒𝑔𝑟 𝜓"
• 𝑅𝑒𝑔𝑟 ∃𝑥 𝜓 = ∃𝑥 𝑅𝑒𝑔𝑟 𝜓

• 𝑅𝑒𝑔𝑟 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 = 𝛷> �⃗�, 𝑎, 𝑠
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Regression: Example

• Given: ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠
• Regress through 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗

• 𝑅𝑒𝑔𝑟 ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠
= ∃𝑏. 𝑅𝑒𝑔𝑟 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠
= ∃𝑏.𝛷C&N%, 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠
= ∃𝑏. ∃𝑡. 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ = 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑝𝑎𝑟𝑖𝑠, 𝑠
∨ (

)
𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

∧ ¬ ∃𝑡. 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ = 𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑝𝑎𝑟𝑖𝑠, 𝑠
= ∃𝑏, 𝑡. 𝑏 = 𝑏∗ ∧ 𝑡 = 𝑡∗ ∧ 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑝𝑎𝑟𝑖𝑠, 𝑠 ∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠
= ∃𝑏. 𝑏 = 𝑏∗ ∧ ∃𝑡. 𝑡 = 𝑡∗ ∧ 𝐵𝑜𝑥𝑂𝑛 𝑏∗, 𝑡∗, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑝𝑎𝑟𝑖𝑠, 𝑠
∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠
= 𝐵𝑜𝑥𝑂𝑛 𝑏∗, 𝑡∗, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑝𝑎𝑟𝑖𝑠, 𝑠 ∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠
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• If 𝜙 held after action 𝑎, then regression is the 
𝜙& that held before action 𝑎

• Exploit following properties
• 𝑅𝑒𝑔𝑟 ¬𝜓 = ¬𝑅𝑒𝑔𝑟 𝜓
• 𝑅𝑒𝑔𝑟 𝜓# ∧ 𝜓' = 𝑅𝑒𝑔𝑟 𝜓# ∧ 𝑅𝑒𝑔𝑟 𝜓'
• 𝑅𝑒𝑔𝑟 ∃𝑥 𝜓 = ∃𝑥 𝑅𝑒𝑔𝑟 𝜓
• 𝑅𝑒𝑔𝑟 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 = 𝛷: �⃗�, 𝑎, 𝑠

Make non-empty domain 
assumption for 𝑏, 𝑡

Cannot be made true
➝ 𝜙 ∧ ¬ ⊥ ≡ 𝜙 ∧ ⊤ ≡ 𝜙 



Regression: Example

• Given: ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠
• Regress through 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗

• 𝑅𝑒𝑔𝑟 ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠
= 𝐵𝑜𝑥𝑂𝑛 𝑏∗, 𝑡∗, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑝𝑎𝑟𝑖𝑠, 𝑠 ∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

• To get action instantiations of 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , query knowledge base (KB, i.e., planning 
domain)
• Existentially quantify 𝑏∗, 𝑡∗ and obtain instances via query extraction w.r.t. KB
• KB consists of first-order state and action abstraction ➝ do not have to enumerate all states, 𝑏∗, 𝑡∗

• ∃𝑏∗, 𝑡∗. 𝑅𝑒𝑔𝑟 ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠
= ∃𝑏∗, 𝑡∗. 𝐵𝑜𝑥𝑂𝑛 𝑏∗, 𝑡∗, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑝𝑎𝑟𝑖𝑠, 𝑠 ∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠
= ∃𝑏∗, 𝑡∗. 𝐵𝑜𝑥𝑂𝑛 𝑏∗, 𝑡∗, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑝𝑎𝑟𝑖𝑠, 𝑠 ∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠
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Regression Planning

• Define abstract goal state
• E.g., ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠
• Check if regression through 

action sequence holds in 
initial state 

➝ Goal regression planning
• Provide initial state, actions
• Initial state description can 

be partial
• Use regression to tell 

whether goal will hold
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∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

∃𝑏∗, 𝑡∗. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑝𝑎𝑟𝑖𝑠, 𝑠
∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

𝑢𝑛𝑙𝑜𝑎𝑑 𝑏 ∗, 𝑡 ∗

𝑑𝑟𝑖𝑣
𝑒 𝑡

∗ , 𝑐#
∗ , 𝑐'

∗

Captures 
iniSal state?

Goal State: 
Captures 

initial state?
Captures 

initial state?

…

…

…

…



Progression and Forward Search?

• Can we do libed forward-search planning?

• Progression not first-order definable! (Reiter, 2001)
• Could progress ground state
• But this does not exploit first-order structure
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?

∃𝑏∗, 𝑡∗. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑝𝑎𝑟𝑖𝑠, 𝑠
∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

?
𝑢𝑛𝑙𝑜𝑎𝑑 𝑏 ∗, 𝑡 ∗

𝑑𝑟𝑖𝑣𝑒
𝑡∗ , 𝑐#

∗ , 𝑐'∗ Captures goal 
state?

Intial State: 
Captures goal state?

Captures goal 
state?



Golog: Restricted Plan Search

• AlGOl in LOGic
• Search the space of sequential action plans
• Regress actions to initial state to test reachability
• Restrict action space with program:
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𝛼
𝜙?
𝛿#, 𝛿'

if 𝜙 then 𝛿 endIf
while 𝜙 then 𝛿 endWhile

primitive action
condition test
sequence
conditional
loop

𝛿# 𝛿'
𝜋 �⃗� 𝛿
𝛿∗

nondeterministic choice of actions
nondeterministic choice of arguments
nondeterministic iteration

proc 𝛽 �⃗� 𝛿 endProc
𝛽 𝑡

procedure call definition
procedure call



Golog: Example

• Golog program
• 𝜋𝑏 ¬𝑂𝑛𝑇𝑎𝑏𝑙𝑒 𝑏, 𝑠 ? , 𝑝𝑖𝑐𝑘𝑢𝑝 𝑏 , 𝑝𝑢𝑡𝑂𝑛𝑇𝑎𝑏𝑙𝑒 𝑏 ∗,
∀𝑏. 𝑂𝑛𝑇𝑎𝑏𝑙𝑒 𝑏, 𝑠 ?

• Diagram of Golog planning

• Heavily restricted action sequences
• Program exploits first-order action abstraction
• Initial state need not be fully known
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𝛼
𝜙?
𝛿&, 𝛿#

if 𝜙 then 𝛿 endIf
while 𝜙 then 𝛿 endWhile

primitive action
condition test
sequence
conditional
loop

𝛿& 𝛿#
𝜋 �⃗� 𝛿
𝛿∗

nondeterministic choice of actions
nondeterministic choice of arguments
nondeterministic iteration

proc 𝛽 �⃗� 𝛿 endProc
𝛽 𝑡

procedure call definition
procedure call

∃𝑏. ¬𝑂𝑛𝑇𝑎𝑏𝑙𝑒 𝑏, 𝑠 ?𝑝𝑖𝑐𝑘𝑢𝑝 ? 𝑏' ;
𝑝𝑢𝑡𝑂𝑛𝑇𝑎𝑏𝑙𝑒 ? 𝑏'

𝑝𝑖𝑐𝑘𝑢𝑝 ? 𝑏# ;
𝑝𝑢𝑡𝑂𝑛𝑇𝑎𝑏𝑙𝑒 ? 𝑏#

Initial State IniSal state?Initial state?



Interim (Interim) Summary

• Situation calculus to describe a relational world
• Can convert PDDL (and state-variable domains) into effect axioms
• Derive SSAs from effect axioms
• Using default solution to frame problem

• Regression operator
• Extract action instantiation to achieve goal

• Regression planning
• Initial state need not be fully specified
• Exploit state and action abstraction
• Avoid enumerating all state and action instances
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Next step: Extend this idea for 
decision-theoretic planning 
with uncertain action outcomes



First-order MDPs: MDPs

• MDP with discount factor
• Tuple 𝑆, 𝐴, 𝑇, 𝑅, 𝛾
• State space 𝑆
• E.g., 𝑆 = 1,2

• Actions 𝐴
• E.g., 𝐴 = 𝑠𝑡𝑎𝑦, 𝑔𝑜

• Immediate reward function 𝑅
• E.g., 𝑅 𝑠 = 1, 𝑎 = 𝑠𝑡𝑎𝑦 = 2,…

• Transition function 𝑇
• E.g., 𝑇 𝑠 = 1, 𝑎 = 𝑠𝑡𝑎𝑦, 𝑠& = 1 = 𝑃 𝑠& = 1 𝑠 = 1, 𝑎 = 𝑠𝑡𝑎𝑦 = 0.9

• Discount factor 𝛾
• Acting ➝ define policy 𝜋 ∶ 𝑆 → 𝐴
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𝑠 = 1 𝑠 = 2

𝑅 = 10
𝑎 = 𝑐ℎ𝑎𝑛𝑔𝑒 (𝑃 = 1.0)
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 0.1)

𝑅 = 2
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 0.9)

𝑅 = 0
𝑎 = 𝑐ℎ𝑎𝑛𝑔𝑒 (𝑃 = 1.0)
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 1.0)



Policy, Value, Solution

• Immediate vs. long-term gain?
• Reward criterion to optimise
• Discount factor 𝛾 important

(𝛾 = 0.9 vs. 𝛾 = 0.1)
• Define value of policy 𝜋

𝑉? 𝑠 = 𝐸? ∑60@A 𝛾6 ⋅ 𝑟6|𝑠 = 𝑠@
• Tells how much value to expect 

to get by following 𝜋 starting 
from state 𝑠

• MDP optimal solution
• Policy 𝜋∗ 𝑠 = argmaxO 𝑉O 𝑠
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𝑠 = 1 𝑠 = 2

𝑅 = 10
𝑎 = 𝑐ℎ𝑎𝑛𝑔𝑒 (𝑃 = 1.0)
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 0.1)

𝑅 = 2
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 0.9)

𝑅 = 0
𝑎 = 𝑐ℎ𝑎𝑛𝑔𝑒 (𝑃 = 1.0)
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 1.0)

𝑠 = 1

𝑠 = 2

𝑠 = 1

𝑠 = 2

𝑠 = 1

𝑠 = 2

𝑅 = 10
𝑎 = 𝑐ℎ𝑎𝑛𝑔𝑒

𝑅 = 0

𝑅 = 2
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 0.9)

𝑅 = 10
𝑎 = 𝑐ℎ𝑎𝑛𝑔𝑒

𝑅 = 0

𝑅 = 2
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 0.9)

𝑅 = 10
𝑎 = 𝑐ℎ𝑎𝑛𝑔𝑒

𝑅 = 0

𝑅 = 2
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 0.9)



Value Iteration & Value Function to Policy

• How to act optimally with 𝑡 decisions?
• Given optimal 𝑡 − 1-state-to-go value fct.
• Take action 𝑎, then act so as to achieve 
𝑉?'( thereafter: 

𝑄? 𝑠, 𝑎 ∶= 𝑅 𝑠, 𝑎 + 𝛾 R
2%∈6

𝑇 𝑠, 𝑎, 𝑠0 𝑉?'( 𝑠0

• Expected value of best action 𝑎 at stage 𝑡?
𝑉? 𝑠 ≔ max

+∈1
𝑄? 𝑠, 𝑎

• At ∞ horizon, get same value (= 𝑉∗)
lim
?→@

max
2

𝑉? 𝑠 − 𝑉?'( 𝑠 = 0
• 𝜋∗ says act the same at each decision stage 

for ∞ horizon

• Given arbitrary value 𝑉 (opamal or not)
• Greedy policy 𝜋P takes ac`on in each state 

that maximises expected value w.r.t. 𝑉
𝜋P 𝑠

= arg max
+∈1

𝑅 𝑠, 𝑎 + 𝛾 R
2%∈6

𝑇 𝑠, 𝑎, 𝑠0 𝑉 𝑠0

• If can act so as to obtain 𝑉 afer doing 
ac`on 𝑎 in state 𝑠, 𝜋P guarantees 𝑉 𝑠 in 
expecta`on
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First-order MDP (FOMDP)

• Components of MDP in an FOMDP specified as a collection of case statements
• E.g., express reward in Box World FOMDP as

• Operators: define unary and binary case operations
• E.g., cross-sum ⊕ (or ⊖, ⊗) of cases
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𝑟𝐶𝑎𝑠𝑒 𝑠 =
∀𝑏, 𝑐. 𝐷𝑒𝑠𝑡 𝑏, 𝑐 ⇒ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 1

¬ ∀𝑏, 𝑐. 𝐷𝑒𝑠𝑡 𝑏, 𝑐 ⇒ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 0

𝜙 ∧ 𝜑 10 + 3
𝜙 10

⊕
𝜑 3

=
𝜙 ∧ ¬𝜑 10 + 4

¬𝜙 20 ¬𝜑 4 ¬𝜙 ∧ 𝜑 20 + 3
¬𝜙 ∧ ¬𝜑 20 + 4



Stochastic Actions and First-order Decision-theoretic Regression (FODTR)

• Stochastic actions using deterministic situation calculus
• User’s stochastic action, e.g., 𝐴 𝑥 = 𝑙𝑜𝑎𝑑 𝑏, 𝑡
• Nature’s choice, e.g., 𝑛 𝑥 ∈ 𝑙𝑜𝑎𝑑𝑆 𝑏, 𝑡 , 𝑙𝑜𝑎𝑑𝐹 𝑏, 𝑡
• Probability distribution over nature’s choice, e.g.,

• First-order decision-theoretic regression (FODTR)
• FODTR = expectation of regression:

𝐹𝑂𝐷𝑇𝑅 𝑣𝐶𝑎𝑠𝑒 𝑠 , 𝐴 �⃗� = 𝑬Q(, N⃗ |1 N⃗ ) 𝑅𝑒𝑔𝑟 𝑣𝐶𝑎𝑠𝑒 𝑠 , 𝑛 �⃗�
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𝑃 𝑙𝑜𝑎𝑑𝑆 𝑏, 𝑡 𝑙𝑜𝑎𝑑 𝑏, 𝑡 =
𝑠𝑛𝑜𝑤 𝑠 0.1
¬𝑠𝑛𝑜𝑤 𝑠 0.6

𝑃 𝑙𝑜𝑎𝑑𝐹 𝑏, 𝑡 𝑙𝑜𝑎𝑑 𝑏, 𝑡 =
𝑠𝑛𝑜𝑤 𝑠 0.9
¬𝑠𝑛𝑜𝑤 𝑠 0.4

Probability distribution ➝ Adds up 
to 1 over success and failure choice

0.1 + 0.9 = 1
0.6 + 0.4 = 1



FODTR & Q-Functions

• Result of FODTR is a case statement encoding a first-order Q-function

𝐹𝑂𝐷𝑇𝑅 𝑣𝐶𝑎𝑠𝑒 𝑠 , 𝐴 �⃗� = 𝑅 𝑠 ⊕ 𝛾�
78(

*

𝑃 𝑛7 �⃗� , 𝐴 �⃗� , 𝑠 ⊗ 𝑅𝑒𝑔𝑟 𝑉 𝑑𝑜 𝑛7 �⃗� , 𝑠

• E.g., 
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𝑟𝐶𝑎𝑠𝑒 𝑠 =
∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 10

¬ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 0

𝑝𝐶𝑎𝑠𝑒 𝑙𝑜𝑎𝑑𝑆 𝑏, 𝑡 , 𝑙𝑜𝑎𝑑 𝑏, 𝑡 , 𝑠 = ⊤ 0.9

𝑝𝐶𝑎𝑠𝑒 𝑢𝑛𝑙𝑜𝑎𝑑𝑆 𝑏, 𝑡 , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 , 𝑠 = ⊤ 0.9

𝑝𝐶𝑎𝑠𝑒 𝑑𝑟𝑖𝑣𝑒𝑆 𝑏, 𝑡 , 𝑑𝑟𝑖𝑣𝑒 𝑏, 𝑡 , 𝑠 = ⊤ 1

𝐹𝑂𝐷𝑇𝑅 𝑣𝐶𝑎𝑠𝑒 𝑠 , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗

= 𝑟𝐶𝑎𝑠𝑒 𝑠 ⊕ 𝛾�
,.#

;

𝑝𝐶𝑎𝑠𝑒 𝑛, �⃗� , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠

⊗
𝑅𝑒𝑔𝑟 ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑛, �⃗� , 𝑠 10

𝑅𝑒𝑔𝑟 ¬∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑛, �⃗� , 𝑠 0



FODTR & Q-Functions
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𝐹𝑂𝐷𝑇𝑅 𝑣𝐶𝑎𝑠𝑒 𝑠 , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗

= 𝑟𝐶𝑎𝑠𝑒 𝑠 ⊕ 𝛾�
,.#

;

𝑝𝐶𝑎𝑠𝑒 𝑛, �⃗� , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠

=
=
=
= 𝑟𝐶𝑎𝑠𝑒 𝑠 ⊕ 𝛾	

⊗
𝑅𝑒𝑔𝑟 ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑛, �⃗� , 𝑠 10

𝑅𝑒𝑔𝑟 ¬∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑛, �⃗� , 𝑠 0.0

⊤ 0.9 ⊗
𝑅𝑒𝑔𝑟 ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑𝑆 𝑏∗, 𝑡∗ , 𝑠 10

𝑅𝑒𝑔𝑟 ¬∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑𝑆 𝑏∗, 𝑡∗ , 𝑠 0.0

⊕ ⊤ 0.1 ⊗
𝑅𝑒𝑔𝑟 ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑𝐹 𝑏∗, 𝑡∗ 10

𝑅𝑒𝑔𝑟 ¬∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑𝐹 𝑏∗, 𝑡∗ 0.0



FODTR & Q-Functions
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𝐹𝑂𝐷𝑇𝑅 𝑣𝐶𝑎𝑠𝑒 𝑠 , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗

= 𝑟𝐶𝑎𝑠𝑒 𝑠 ⊕ 𝛾�
,.#

;

𝑝𝐶𝑎𝑠𝑒 𝑛, �⃗� , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠

=
=
=
=
=
=
=
=
=
=

⊗
𝑅𝑒𝑔𝑟 ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑛, �⃗� , 𝑠 10

𝑅𝑒𝑔𝑟 ¬∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑛, �⃗� , 𝑠 0.0

∃𝑏∗, 𝑡∗. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑝𝑎𝑟𝑖𝑠, 𝑠 ∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 8.1
¬“ 0.0

⊕
∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 0.9

¬“ 0.0
⊕

∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 10
¬“ 0.0

∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 19.0 ➝ 𝑛𝑜𝑜𝑝
¬“ ∧ ∃𝑏, 𝑡. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑝𝑎𝑟𝑖𝑠, 𝑠 8.1 ➝ 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗

¬“ 0.0 ➝ 𝑛𝑜𝑜𝑝



Symbolic Dynamic Programming (SDP)

• What value if 0-stages-to-go?
• Immediate reward: 𝑉. 𝑠 = 𝑟𝐶𝑎𝑠𝑒 𝑠

• What value if 1-state-to-go?
• We know value for each action ➝ Take maximum for each state

• Value iteration
• Obtain 𝑉,K( from 𝑉, until 𝑉,'(⊖𝑉, < 𝜖
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𝑉# 𝑠 = max
<

𝜙# 9
= 𝑉/ 𝑠, 𝐴#𝜙' 0

𝜙= 3
= 𝑉/ 𝑠, 𝐴'𝜙> 1

𝑉# 𝑠 =

𝜙# 9
= 𝑉/ 𝑠, 𝐴#𝜙' 0

𝜙= 3
𝑉/ 𝑠, 𝐴'𝜙> 1

𝜙# 9
else 𝜙= 3
else 𝜙> 1
else 𝜙' 0

𝜙# 9
else 𝜙= 3
else 𝜙> 1

𝜙# 9
else 𝜙= 3
𝜙# 9



Value Iteration for 𝒕 = 𝟏, 𝟐 of the Box World Example

• With increasing iterations, the sequence of 
actions considered gets longer
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𝑣𝐶𝑎𝑠𝑒# 𝑠 =
∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 19.0

¬“ ∧ ∃𝑐. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑝𝑎𝑟𝑖𝑠, 𝑠 8.1
¬“ 0.0

𝑣𝐶𝑎𝑠𝑒' 𝑠 =
∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 26.1

¬“ ∧ ∃𝑏, 𝑡. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑝𝑎𝑟𝑖𝑠, 𝑠 15.4
¬“ ∧ ∃𝑏, 𝑐, 𝑡. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠 7.3

¬“ 0.0



First-order Algebraic Decision Diagrams (FOADDs)

• We want to compactly represent arbitrary case statements
• E.g.,

• Push down quantifiers, expose propositional structure ➝ convert into FOADD
∃𝑥. 𝐴 𝑥 ∨ ∃𝑥. 𝐴 𝑥 ∧ 𝐵 𝑥 ∧ ∀𝑦.¬𝐴 𝑦
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𝑐𝑎𝑠𝑒 𝑠 =
∃𝑥. 𝐴 𝑥 ∨ ∀𝑦. 𝐴 𝑥 ∧ 𝐵 𝑥 ∧ ¬𝐴 𝑦 1

¬ ∃𝑥. 𝐴 𝑥 ∨ ∀𝑦. 𝐴 𝑥 ∧ 𝐵 𝑥 ∧ ¬𝐴 𝑦 0

𝑐𝑎𝑠𝑒 𝑠 =
𝑎 ∨ 𝑏 ∧ ¬𝑎 1

¬ 𝑎 ∨ 𝑏 ∧ ¬𝑎 0

Variable Variable ⇔ FOL KB

𝑎 ≡ ∃𝑥. 𝐴 𝑥
𝑏 ≡ ∃𝑥. 𝐴 𝑥 ∧ 𝐵 𝑥

𝑐𝑎𝑠𝑒 𝑠 =

𝑎

𝑏

1 0

𝑎

1 0
=

First-order context-specific independence



Results for SDP with FOADDs

• Encode case statements 
with FOADDs
• Solid line: true case
• Dotted line: false case

• Use FOADD operations for 
structured SDP 
• E.g., Box World
• Using 𝛾 = 0.9
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∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

10 0
𝑟𝐶𝑎𝑠𝑒 𝑠 =

∃𝑏. 𝐵𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

100 ∶ 𝑛𝑜𝑜𝑝

…

𝑣𝐶𝑎𝑠𝑒 𝑠 =

∃𝑏, 𝑡. 𝑇𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 ∧ 𝐵𝑂𝑛 𝑏, 𝑡, 𝑠

89 ∶ 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∃𝑏, 𝑡. 𝐵𝑂𝑛 𝑏, 𝑡, 𝑠

80 ∶ 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑝𝑎𝑟𝑖𝑠 ∃𝑏, 𝑐. 𝐵𝐼𝑛 𝑏, 𝑐, 𝑠 ∧ ∃𝑡. 𝑇𝐼𝑛 𝑡, 𝑐, 𝑠

72 ∶ 𝑙𝑜𝑎𝑑 𝑏, 𝑡
Factored SDP for factored FOMDPs
[Sanner and Boutilier, 2007]



Correctness of SDP

• Show SDP for FOMDPs is correct w.r.t. ground MDP
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FOMDP

Ground
MDP

FOMDP Value
Function

Ground MDP
Value Function

Lifted FOMDP Solution

Ground MDP Solution

Ground

Ground



Caveats of First-order Planning

• Many problems have topologies
• E.g., reachability constraints in logistics

• If topology not fixed a priori
• First-order solution must consider ∞ topologies
• In general case, leads to ∞ values / policies
• Universal rewards
• Value function must distinguish ∞ cases
• Policy will also likely be ∞
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London
Paris

Rome
Berlin

Moscow
🚚

🚚 📦
📦

🛩

𝑟𝐶𝑎𝑠𝑒 𝑠 =
∀𝑏, 𝑐. 𝐷𝑒𝑠𝑡 𝑏, 𝑐 ⇒ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 1

¬ ∀𝑏, 𝑐. 𝐷𝑒𝑠𝑡 𝑏, 𝑐 ⇒ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 0

𝑉? 𝑠 =

∀𝑏, 𝑐. 𝐷𝑒𝑠𝑡 𝑏, 𝑐 ⇒ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 1
One box not at destination 𝛾
Two boxes not at destination 𝛾'

⋮ ⋮
𝑡 − 1 boxes not at destination 𝛾?"#



Caveats of First-order Planning

• Unreachable states
• PDDL domains often under-constrained
• E.g., logistics: one box cannot be in two cities 

at once
• Constraints implicitly obeyed in initial state 
• Action effects cannot violate constraints 
• Reachable legal states are small subset of all 

states 
• But (P)PDDL does not constrain legal states 

• If no background theory to restrict legal 
states 
• First-order planning must solve for all states 
• When initial state unknown 

• Where majority of states are actually illegal
• First-order planning w/o initial state solves 

more difficult problem than search-based 
solutions
• Initial state contains implicit constraint 

information 
• Reachable state space is small subset of all 

states
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Suggests need for hybrid 
first-order / search-based approaches



A Note on First-order Modelling in Reinforcement Learning

• Novel propositional situations worth exploring may be instances of a well-known context 
in the relational setting ➝ exploitation promising 
• E.g., household robot learning water-taps
• Having opened one or two water-taps in a kitchen, one can expect other water-taps in kitchens to work 

similarly
⇒ Priority for exploring water-taps in kitchens in general reduced
⇒ Information gathered likely to carry over to water-taps in other places
vHard to model in propositional setting: each water-tap is novel
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Interim Summary

• FOMDPs are one model for lifted decision-theoretic planning 
• Exploit state and action abstraction for MDPs 

• Use situation calculus specified action theory
• Use case statements to represent reward, probabilities 
• Symbolic dynamic programming = lifted DP 
• Use FOADDs to compactly represent case statements
• First-order context-specific independence to compactify FOADDs
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Outline: Decision Making – Structure 

Structure by Groups in the Agent Set
• Agent types
• Partitioned decPOMDPs

Structure by Features in the State Space 
• Dynamic Bayesian networks
• Factored MDPs

Structure by Relations in the State Space
• Situation calculus
• First-order MDPs

⟹ Next: Human-awareness
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