
Automated Planning and Acting
Decision Making: Structure

Tanya Braun
Research Group Data Science, Computer Science Department

𝑂 !

𝑆 !𝑆 !"#

𝐴 !"#

𝑅 !𝛺

𝑇

Content: Planning and Acting

1. With Deterministic Models
2. With Refinement Methods
3. With Temporal Models
4. With Nondeterministic Models
5. With Probabilistic Models

6. By Decision Making
A. Foundations
B. Extensions
C. Structure
• Lifted DecPOMDPs
• Factored MDPs
• First-order MDPs

7. Human-aware Planning

Decision Structure

T. Braun - APA 2

Outline: Decision Making – Structure

Structure by Groups in the Agent Set
• Agent types
• Partitioned decPOMDPs

Structure by Features in the State Space
• Dynamic Bayesian networks
• Factored MDPs

Structure by Relations in the State Space
• Situation calculus
• First-order MDPs

Decision Structure

T. Braun - APA 3

Example: Medical Nanoscale Systems

• Nanoscale systems regularly consist of > 10,000 nanoagents
• Different types of agents: nanosensors, nanobots

• Application: DNA-based medical system
• E.g., for diagnosis (modelled as an AND gate)
• Nanosensors receptive to individual markers for a specific disease
• Release individual tiles in presence of their individual markers

• Tiles assemble themselves to form messages
• Nanobots receptive to completely formed messages
• Release markers of their own that signify presense of the disease

• Formal model necessary to argue about
• Success rates
• Sizes of agent sets

Decision Structure

T. Braun - APA 4

J
k Ø 0 markers

J
i ∫ 1 nanosensors

J
j Ø 0 messages

J
n ∫ 1 nanobots

Nano-
sensor1

Nano-
sensor2 Nano-

sensor3 Nano-
sensor4

1 2
2

3
3 4

4
‡

R

R

T T

‡

B
R T T T T
4 3 2 1 ‡

R B B B B
R T T T T
4 3 2 1 ‡

R B B B B

T
4 3 2 1 ‡

B B B

Nano-
bot

X

Y

Nano-
bot

X

Y

R T T T T
4 3 2 1 ‡

R B B B B

R T T T T
4 3 2 1 ‡

R B B B B

Example: Medical Nanoscale Systems as a DecPOMDP

• Set of agents 𝐼 consisting of nanosensors, nanobots
• Observations 𝑂': markers / messages present (or not)
• Noisy process ➝ probabilistic behaviour

• Actions 𝐴': release of tiles / markers (or not)
• Noisy process ➝ probabilistic behaviour

• Environment ➝ probabilistic behaviour
• Presence in general of agents, markers, tiles, messages,

or position more specifically ➝ movement over time
• Reward: Qualitative measure
• Positive diagnosis only in presence of disease

T. Braun - APA 5

J
k Ø 0 markers

J
i ∫ 1 nanosensors

J
j Ø 0 messages

J
n ∫ 1 nanobots

Nano-
sensor1

Nano-
sensor2 Nano-

sensor3 Nano-
sensor4

1 2
2

3
3 4

4
‡

R

R

T T

‡

B
R T T T T
4 3 2 1 ‡

R B B B B
R T T T T
4 3 2 1 ‡

R B B B B

T
4 3 2 1 ‡

B B B

Nano-
bot

X

Y

Nano-
bot

X

Y

R T T T T
4 3 2 1 ‡

R B B B B

R T T T T
4 3 2 1 ‡

R B B B B

Decision Structure

Reprise: Worst-case Complexity of DecPOMDP

• Space complexity
• Transition model: 𝒪 𝑠 ⋅ 𝑠 ⋅ 𝑎!

• Sensor model: 𝒪 𝑠 ⋅ 𝑜! or 𝒪 𝑠 ⋅ 𝑜! ⋅ 𝑎!

• Reward function: 𝒪 𝑠 or 𝒪 𝑠 ⋅ 𝑎!

• Runtime complexity of brute-force search

• Evaluation cost of a joint policy: 𝒪 𝑠 ⋅ 𝑜!"

• Policy space: 𝒪

• Notations
• 𝑠 = 𝑆
• State space size

• 𝑎 = max
#∈%

𝐴#
• Largest individual action space size

• 𝑜 = max
#∈%

𝑂#
• Largest individual action space size

• ℎ
• Horizon

Decision Structure

T. Braun - APA 6

𝑎
! &$'(
&'(

Agent Types & Partitioned DecPOMDPs

• Types: Agents with the same sets of actions and observations
• E.g., two nanosensors 1,2 receptive to the same marker and releasing the same tile
• 𝐴! = 𝐴" = 0,1 ; 0: do nothing, 1: release tile
• 𝑂! = 𝑂" = 0,1 ; 0: marker not present, 1: marker present

➝ Partitions the set of agents regarding actions, observations
• Agent set 𝐼 = 𝐼(, … , 𝐼) with 𝐼(, … , 𝐼) a partitioning of 𝐼 (𝐼 = ⋃* 𝐼* , 𝐼* ∩ 𝐼*% = ∅, 𝐼* ≠ ∅)
• For each partition 𝐼*: one set of actions 𝐴*, one set of observations 𝑂* for all agents in 𝐼*
• Expectation that 𝐾 ≪ 𝑁

• Additional constraints / assumptions on same behaviour in 𝑇, 𝑅, 𝛺
➝ Partitions the set of agents completely, enabling more compact encodings
• How?

Decision Structure

T. Braun - APA 7

Counting DecPOMDPs

• Counting constraint / assumption in 𝑇, 𝑅, 𝛺
• Formal: All permutations 𝜎 �⃗�*

of a partition action �⃗�* map to
the same probability

• Enables counting how many
agents do something and not
which in particular did
• Encode in a histogram

𝑎! , … , # 𝑎# how
many agents did actions
𝐴$ = 𝑎!, … , 𝑎#

• Number of histograms
%! &#'!
#'! ≤ 𝐼$ #

Decision Structure

T. Braun - APA 8

𝑆 𝑆& 𝐴# 𝐴'
𝑇 𝑠, 𝑠&, 𝑎#, 𝑎'
= 𝑃 𝑠& 𝑠, 𝑎#, 𝑎'

0 0 0 0 0.01
0 0 0 1 0.02
0 0 1 0 0.02
0 0 1 1 0.03
0 1 0 0 0.015
0 1 0 1 0.012
0 1 1 0 0.012
0 1 1 1 0.01
1 0 0 0 0.01

⋮

𝑆 𝑆& 𝐴##
4𝑇 𝑠, 𝑠&, 𝑎#&
= 𝑃 𝑠& 𝑠, 𝑎#&

0 0 0,2 0.01
0 0 1,1 0.02
0 0 2,0 0.03
0 1 0,2 0.015
0 1 1,1 0.012
0 1 2,0 0.01
1 0 0,2 0.01

⋮

Counting DecPOMDPs

• Complexity-wise, with 𝑛 = max
5

𝐼5
• Transition model: 𝒪 𝑠 ⋅ 𝑠 ⋅ 𝑛)+

• Sensor model: 𝒪 𝑠 ⋅ 𝑛)&
• Reward function: 𝒪 𝑠
• Evaluation cost: 𝒪 𝑠 ⋅ 𝑛)&"

• Reduction if 𝐾 ≪ 𝑁
• Unfortunately,
• Policy space: 𝒪

• Ongoing research how to use
counting efficiently

Decision Structure

T. Braun - APA 9

𝑆 𝑆& 𝐴# 𝐴'
𝑇 𝑠, 𝑠&, 𝑎#, 𝑎'
= 𝑃 𝑠& 𝑠, 𝑎#, 𝑎'

0 0 0 0 0.01
0 0 0 1 0.02
0 0 1 0 0.02
0 0 1 1 0.03
0 1 0 0 0.015
0 1 0 1 0.012
0 1 1 0 0.012
0 1 1 1 0.01
1 0 0 0 0.01

⋮

𝑆 𝑆& 𝐴##
4𝑇 𝑠, 𝑠&, 𝑎#&
= 𝑃 𝑠& 𝑠, 𝑎#&

0 0 0,2 0.01
0 0 1,1 0.02
0 0 2,0 0.03
0 1 0,2 0.015
0 1 1,1 0.012
0 1 2,0 0.01
1 0 0,2 0.01

⋮

𝑛
+) ,$)'(

,)'(

Ismorphic DecPOMDPs

• Isomorphic constraint / assumption in 𝑇, 𝑅, 𝛺:
Conditional independence between agents of a partition given
joint state
➝ Enables factorisation of 𝑇, 𝑅, 𝛺
• E.g., 𝑇 𝑠, 𝑠(, 𝑎!, 𝑎" = 𝑇! 𝑠, 𝑠(, 𝑎! ⋅ 𝑇" 𝑠, 𝑠(, 𝑎" = ∏)∈%! 𝑇

(𝑠, 𝑠(, 𝑎)

• Space complexities
• Transition model: 𝒪 𝑠 ⋅ 𝑠 ⋅ 𝑎)

• Sensor model: 𝒪 𝑠 ⋅ 𝑜)
• Reward function: 𝒪 𝑠

• Ongoing research how to solve isomorphic DecPOMDPs efficiently

Decision Structure

T. Braun - APA 10

𝑆 𝑆& 𝐴*
𝑇& 𝑠, 𝑠&, 𝑎*
= 𝑃 𝑠& 𝑠, 𝑎*

0 0 0 0.01
0 0 1 0.03
0 1 0 0.015
0 1 1 0.01
1 0 0 0.01

⋮

𝑇# = 𝑇' = 𝑇&

Interim Summary: Structure by Groups in the Agent Set

• Types of agents with identical action and observation space
• Partitioned DecPOMDP if agent types + constraints of transition / sensor / reward function
• Counting DecPOMDP
• Permutations of actions of agents of the same partition map to the same probability / reward
• Count occurrences ➝ encode in histograms

• Isomorphic DecPOMDP
• Further independences between agents of a partition

• Space complexity polynomial at worst but using compact encoding for efficient decision
making not yet solved

Decision Structure

T. Braun - APA 11

Outline: Decision Making – Structure

Structure by Groups in the Agent Set
• Agent types
• Partitioned decPOMDPs

Structure by Features in the State Space
• Dynamic Bayesian networks
• Factored MDPs

Structure by Relations in the State Space
• Situation calculus
• First-order MDPs

Decision Structure

T. Braun - APA 12

State Space

• So far: State space treated as a black box with a set of different states as domain of a
random variable 𝑆

• However, state space often has structure
• 𝑛 different features that describe a state space
• Encode in 𝑛 individual random variables 𝑆# with respective domains dom 𝑆# = 𝑣(, … , 𝑣-+
• State space size then describable as 𝑆 = ∏) 𝑑) ≤ 𝑑+, 𝑑 = max

)
𝑑)

• I.e., exponential in the number of random variables

• Given (conditional) independences between different 𝑆', factorisation of probability
distributions in model possible
• Applicable to MDPs, POMDPs, DecPOMDPs, partitioned DecPOMDPs
• Most work exists for factored MDPs (also the simplest case to consider)

Decision Structure

T. Braun - APA 13

Factorisation in General

• (Conditional) independences:
• 𝐴 ⊥ 𝐵 (𝐴, 𝐵 independent) ⇔𝑃 𝐴,𝐵 = 𝑃 𝐴 ⋅ 𝑃 𝐵
• 𝐴 ⊥ 𝐵 | 𝐶 (𝐴, 𝐵 conditionally independent given 𝐶) ⇔𝑃 𝐴,𝐵 𝐶 = 𝑃 𝐴 𝐶 ⋅ 𝑃 𝐵 𝐶
• Alternate version: 𝐴 ⊥ 𝐵 | 𝐶 ⇔ 𝑃 𝐴 𝐵, 𝐶 = 𝑃 𝐴 𝐶

• (Conditional) independences allow for factorising a distribution into smaller factors
• In general: Factorisation of a full joint probability distribution 𝑃 𝑆(, … , 𝑆, into 𝑚 factors over

subsets 𝑪 of random variables that form 𝑃 𝑆(, … , 𝑆, after multiplication (and normalisation):

𝑃 𝑆6, … , 𝑆7 =
1
𝑍
4
896

:

𝜙 𝑪8

• Where 𝑪, refers to sets of random variables that are mutually dependent on each other
• Memory complexity: 𝒪 𝑑+ vs. 𝒪 𝑚 ⋅ 𝑑 𝑪"#$

Decision Structure

T. Braun - APA 14

Probabilistic Graphical Models (PGMs)

• PGMs use a graph structure to represent dependences
• Common formalism: Bayesian network (BN) 𝐵
• Directed acyclic graph
• Nodes: random variables 𝑆*
• Edges: if 𝑆* depends on 𝑆,, edge 𝑆, ⟶ 𝑆*

• Factors: conditional probability distributions (CPDs) ∀𝑖 𝑃 𝑆) pa 𝑆)
• Roots: pa 𝑆* = ∅➝ Prior distributions 𝑃 𝑆*
• Usually not depicted in graph; have to be denoted somewhere
• Semantics: 𝑃 𝑆#, … , 𝑆- = ∏*.#

- 𝑃 𝑆* pa 𝑆*
• Not further considered here:

Undirected version with potential functions 𝜙 as factors:
• Factor graphs, Markov networks
• Same semantics, different graphical representation

Decision Structure

T. Braun - APA 15

𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦

𝐽𝑜ℎ𝑛𝐶𝑎𝑙𝑙

𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒

𝐴𝑙𝑎𝑟𝑚

𝑀𝑎𝑟𝑦𝐶𝑎𝑙𝑙

𝑃 𝐴𝑙𝑎𝑟𝑚 𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦, 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒

𝑃 𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦 𝑃 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒

𝑃 𝐽𝑜ℎ𝑛𝐶𝑎𝑙𝑙 𝐴𝑙𝑎𝑟𝑚 𝑃 𝑀𝑎𝑟𝑦𝐶𝑎𝑙𝑙 𝐴𝑙𝑎𝑟𝑚

Full joint probability distribution size: 𝑑!
Sizes of CPDs: 𝑑 + 𝑑 + 𝑑" + 𝑑# + 𝑑#

Given 𝑑 = 2: 2! = 32 vs. 20
(As probabilities add to 1:

size −1 for each probability distribution in each CPD,
i.e., 1 + 1 + 4 + 2 + 2 = 10)

Dynamic Bayesian Networks

• MDP models a sequential, i.e., temporal, stationary, Markovian probabilistic setting
• Factorisation also needs to encode a sequential, stationary, Markovian probabilistic setting

• Popular modeling formalism used:
Dynamic BN (DBN) is a two-tuple 𝐵 S , 𝐵 →

• Template variables 𝑆# indexed by time step 𝜏 in BNs
➝ Can be instantiated for particular time steps 𝑡

• BN 𝐵 . for time step 0 to encode
• If set to uniform distributions or using DBN for fix point calculations, can be safely ignored

• BN 𝐵 → for time step 𝜏 with connections from time step 𝜏 − 1 (copy pattern)
• Markov-1➝ Only connections from 𝜏 − 1 to 𝜏
• Stationary ➝ 𝐵 → identical for all 𝑡 ∈ 1,…

• Semantics: unroll for 𝑇 time steps and multiply

Decision Structure

T. Braun - APA 16

Dynamic Bayesian Networks: Example
• Left: vehicle localization task, where a moving car tries to track its

current location using the data obtained from a, possibly faulty,
sensor

• Right: Toy example of a special
case of a DBN with one latent
and one observable variable
(hidden Markov model, HMM)

Decision Structure

T. Braun - APA 17

𝑊𝑒𝑎𝑡ℎ𝑒𝑟 $%&

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 $%&

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 $%&

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 $%&

𝑊𝑒𝑎𝑡ℎ𝑒𝑟 $

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 $

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 $

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 $

𝑂𝑏𝑠 $

𝑃 𝑊 ! 𝑊 !"#

𝑃 𝑉 ! 𝑊 !"# , 𝑉 !"#

𝑃 𝐿 ! 𝑉 !"# , 𝐿 !"#

𝑃 𝐹 ! 𝑊 !"# , 𝐹 !"#

𝑃 𝑂 ! 𝐿 ! , 𝐹 !

𝑊𝑒𝑎𝑡ℎ𝑒𝑟 '

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 '

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 '

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 '

𝑂𝑏𝑠 '

𝑃 𝑊 $

𝑃 𝑉 $

𝑃 𝐿 $

𝑃 𝐹 $

𝑃 𝑂 $ 𝐿 $, 𝐹 $

𝑈𝑚𝑏𝑟𝑒𝑙𝑙𝑎 !

𝑅𝑎𝑖𝑛 !

𝑅 ! 𝑃 𝑢 ! 𝑅 !

𝑡𝑟𝑢𝑒 0.9

𝑓𝑎𝑙𝑠𝑒 0.2

𝑅 !"# 𝑃 𝑟 ! 𝑅 !"#

𝑡𝑟𝑢𝑒 0.7

𝑓𝑎𝑙𝑠𝑒 0.3

𝑃 𝑟 $

0.5𝑅𝑎𝑖𝑛 /

𝑅𝑎𝑖𝑛 !"#

Factored MDPs

• MDP with its state space 𝑆 structured according to 𝑆6, … , 𝑆7, which in general means that
• Transition probability distribution 𝑇 𝑆0, 𝑆, 𝐴 = 𝑃 𝑆0 𝑆, 𝐴 is given by
𝑇 𝑆(0 , … , 𝑆,0 , 𝑆(, … , 𝑆,, 𝐴 = 𝑃 𝑆(0 , … , 𝑆,0 𝑆(, … , 𝑆,, 𝐴
• Or using the template notation: 𝑇 𝑆 / , 𝑆 /'! , 𝐴 /'! = 𝑃 𝑆 / 𝑆 /'! , 𝐴 /'! is given by
𝑇 𝑆!

/ , … , 𝑆+
/ , 𝑆!

/'! , … , 𝑆+
/'! , 𝐴 /'! = 𝑃 𝑆!

/ , … , 𝑆+
/ 𝑆!

/'! , … , 𝑆+
/'! , 𝐴 /'!

• Note that the overall size of 𝑇 does not increase as the state space size is identical
• Given that 𝑆(, … , 𝑆, represent features of (hopefully weakly) connected parts of a system, 𝑇 can

be factored according to (conditional) independences ➝ often represented using a DBN
• Factorisation of 𝑇:

𝑇 𝑆(, 𝑆, 𝐴 = 𝑃 𝑆!(, … , 𝑆+(𝑆!, … , 𝑆+, 𝐴 =E
)0!

+

𝑃 𝑆)(pa 𝑆)(=∶ 𝑇1

Decision Structure

T. Braun - APA 18

Factored MDPs: Actions and Rewards

• To be correct, the DBN just described is a standard DBN extended with random variable
nodes for actions, whose assignment we want to determine, and reward nodes to denote
that a reward function outputs a reward depending on the state (and action)
• BN extended with so-called decision and utility nodes called influence or decision diagram

Decision Structure

T. Braun - APA 19

Side note: Since the state in MDPs is fully observable, every random variable in a DBN is observable, which is
not the general case for DBNs, where usually there is a set of latent variables, which are never observed and
as such often queried, and a set of evidence variables, which are usually observed (save for sensor failures).

Factored MDPs: Actions and Rewards

• What about rewards?
If the reward remains a function over the complete state space without any factorisation,
we have not gained much

• But remember: Multi-attribute utility theory
• Reward function with preference independence between subsets of random variables
➝ additive reward function
• Factorisation of 𝑅:

𝑅 𝑆 = 𝑅 𝑆!, … , 𝑆+ =H
,0!

2

𝑅, 𝑪,

• Best case 𝑅 𝑆#, … , 𝑆- = ∑*.#- 𝑅* 𝑆*
• Compare factorisation of 𝑇: 𝑇 𝑆(, 𝑆, 𝐴 = 𝑃 𝑆!(, … , 𝑆+(𝑆!, … , 𝑆+, 𝐴 = ∏)0!

+ 𝑃 𝑆)(pa 𝑆)(

Decision Structure

T. Braun - APA 20

Factored MDPs: Space Complexity

• With a structured state space, representation size down
• Given
• State space with 𝑛 features and a maximum domain size of 𝑑
• DBN over 𝑛 features and a maximum domain size of 𝑑, with 𝑐 = max

)∈ !,…,+
pa 𝑆) + 1

• Given action space of size 𝑎
• Space complexity
• Transition function 𝑇 𝑆(, 𝑆, 𝐴 : 𝒪 𝑑+ ⋅ 𝑎 vs. 𝒪 𝑛 ⋅ 𝑑5 ⋅ 𝑎
• Reward function 𝑅 𝑆 : 𝒪 𝑑+ vs. 𝒪 𝑛 ⋅ 𝑑5

Decision Structure

T. Braun - APA 21

Solving Factored MDPs

• Bellman equation:
𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max

+∈1 2
R

2%∈345 6

𝑃 𝑠0 𝑎, 𝑠 𝑈 𝑠0

• Becomes
𝑈 𝑠(, … , 𝑠,

=R
78(

9

𝑅7 𝑪7 + 𝛾 max
+∈1 20,…,21

R
20%∈345 60

… R
21% ∈345 61

S
#8(

!

𝑃 𝑠#
< pa 𝑠#

< 𝑈 𝑠(0 , … , 𝑠,0

• Unfortunately, a factored MDP does not induce a factored value function 𝑈
• One way to go: concentrate on value functions that have a factored representation
• Approximate the unfactored value function with a factored one

Decision Structure

T. Braun - APA 22

Linear Value Functions

• Linear value function 𝒱 over a set of basis functions 𝐻 = ℎ6, … , ℎ5
• Function 𝒱 that can be written as 𝒱 𝑠(, … , 𝑠, = ∑78(* 𝑤7 ⋅ ℎ7 𝑠(, … , 𝑠, for some coefficients
w = 𝑤(, … , 𝑤* 0

• Let ℋ be the linear subspace of ℝ+ spanned by 𝐻
• Let H be an 𝑛×𝑘 matrix whose columns are the 𝑘 basis functions viewed as vectors
• Then, 𝒱 can be written as Hw

• Equivalent expressive power to, e.g., single layer neural network
• Features corresponding to the basis functions
• Optimise the coefficients w to obtain a good approximation for true value function

• Separates the problem of defining a reasonable space of features and the induced space ℋ,
from the problem of searching within the space
• Former problem is typically purview of domain experts, latter is focus of analysis + algorithmic design

Decision Structure

T. Braun - APA 23Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman: Efficient Solution
Algorithms for Factored MDPs. In Journal of Artificial Intelligence Research, 2003.

Approximate Policy Iteration with Linear Value Functions

• Restrict policy iteration algorithm to only use
value functions 𝒱 within the provided ℋ
• Policy improvement as before
• Policy evaluation changes
• Whenever policy iteration takes a step that results

in a 𝒱 outside of ℋ, project result back into ℋ by
finding a value function within ℋ closest to 𝒱

• Projection operator Π
• Mapping Π ∶ ℝ, → ℋ
• Π is said to be a projection w.r.t. a norm ⋅ if Π𝒱 = Hw∗ such that w∗ ∈ arg min

>
Hw− 𝒱

• Π is the linear combination of the basis functions that is closest to 𝒱 w.r.t. chosen norm

Decision Structure

T. Braun - APA 24Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman: Efficient Solution
Algorithms for Factored MDPs. In Journal of Artificial Intelligence Research, 2003.

Approximate Policy Iteration with Linear Value Functions

• Policy evaluation for a policy 𝜋 Y

• Value function — the value of acting according to the current policy 𝜋 ? — is approximated
through a linear combination of basis functions

• Given 𝜋 Y , i.e., actions are fixed,
• 𝑇 𝑆0, 𝑆, 𝐴 = 𝑇 𝑆0, 𝑆, 𝜋 ? = 𝑇 𝑆0, 𝑆

• Policy evaluation can be written in terms of matrices and vectors
• 𝒱 and 𝑅 as 𝑛-dimensional vectors and 𝑇 as an 𝑛×𝑛-dimensional matrix, denoted V, R, T
• Then, 𝒱 = R + 𝛾T𝒱
• System of linear equations with one equation for each state ➝ approximate solution within ℋ:

w 6 = arg min
7

Hw − R + 𝛾THw = arg min
7

H − 𝛾TH w 6 − R

• Problem: How to choose ⋅ wisely, i.e., providing error bounds?

Decision Structure

T. Braun - APA 25

Approximate Policy Iteration with Linear Value Functions

• Convergence and error analysis for MDPs use max-norm (ℒ[)
➝ Tie projection operator to ℒ[norm

• Minimising the ℒ[norm studied in optimisation literature as the problem of finding the
Chebyshev solution to an overdetermined linear system of equations
• I.e., finding w∗ such that w∗ ∈ arg min> 𝐶w − 𝑏 @
• 𝐶 = H − 𝛾TH , 𝑏 = 𝑅

• Algorithm due to Stiefel (1960) solves problem by linear programming:
• Variables: 𝑤!, … , 𝑤$, 𝜙;
• Minimise: 𝜙;
• Subject to: 𝜙 ≥ ∑,0!$ 𝑐), ⋅ 𝑤, − 𝑏) and

𝜙 ≥ 𝑏) − ∑,0!$ 𝑐), ⋅ 𝑤,, 𝑖 = 1,… , 𝑛.
• At solution w∗, 𝜙∗ , w∗ is the Chebyshev solution and 𝜙∗ is the ℒ3 projection error

Decision Structure

T. Braun - APA 26

Only 𝑘 + 1 variables but 2𝑛 constraints:
Impractical in general but in factored MDPs
with linear value functions, constraints can
be represented efficiently ➝ tractable

Factored Value Functions

• Factored (linear) value function
• Linear function over the basis set ℎ(, … , ℎ* where scope of each basis function ℎ# restricted to

some subset of variables 𝑪# ⊂ 𝑆
• Goal: the scopes of ℎ(, … , ℎ* correspond to cliques in graph of DBN representing transition

model 𝑇

• Not considered so far: How can we use this factored function to our advantage in policy
evaluation where we need to
• Solve the value function as a combination of ℎ(, … , ℎ* and
• Problem: Sum over exponential state space

• Optimise the weights to have a good approximation
• Problem: LP with exponentially many constraints

Decision Structure

T. Braun - APA 27

Factored Value Functions: Use in Q Value Function

• Efficient computation of value function using ℎ6, … , ℎ5 (𝒔 = 𝑠6, … , 𝑠7) using Q value
function

𝑄 𝒔, 𝑎 = 𝑅 𝒔, 𝑎 + 𝛾 R
𝒔%∈𝑺

𝑃 𝒔0 𝒔, 𝑎 𝒱 𝒔 = 𝑅 𝒔, 𝑎 + 𝛾 R
𝒔%∈𝑺

𝑃 𝒔0 𝒔, 𝑎 R
#

𝑤#ℎ# 𝒔0

• Define 𝐺 𝒔, 𝑎 with 𝑔# 𝒔, 𝑎 ≔ ∑𝒔%∈𝑺𝑃 𝒔0 𝒔, 𝑎 ℎ# 𝒔0

𝐺 𝒔, 𝑎 ∶= R
𝒔%∈𝑺

𝑃 𝒔0 𝒔, 𝑎 R
#

𝑤#ℎ# 𝒔0 =R
#

𝑤# R
𝒔%∈𝑺

𝑃 𝒔0 𝒔, 𝑎 ℎ# 𝒔0 =R
#

𝑤#𝑔# 𝒔, 𝑎

• Can compute each basis function separately

Decision Structure

T. Braun - APA 28

Factored Value Functions: Use in Q Value Function

• Consider 𝑔 𝒔, 𝑎 ≔ ∑𝒔I∈𝑺𝑃 𝒔c 𝒔, 𝑎 ℎ 𝒔c = 𝑇dℎ
• 𝑃 𝒔0 𝒔, 𝑎 factored as a DBN 𝑇C
• ℎ has restricted scope over 𝑪

• Sum over 𝑪c conditioned on ancestors 𝑹 = anc 𝑪c of 𝑪c in 𝑇d
𝑔# 𝒔, 𝑎 = R

𝒔%∈𝐒%
𝑃 𝒔0 𝒔, 𝑎 ℎ# 𝒔0 = R

𝒔%∈𝐒%
𝑃 𝒔0 𝒔, 𝑎 ℎ# 𝒄0

= R
𝒄%∈𝑪%

𝑃 𝒄0 𝒔, 𝑎 ℎ# 𝒄0 R
𝒓%∈𝑺%∖𝑪%

𝑃 𝒓0 𝒔, 𝑎 = R
𝒄%∈𝑪%

𝑃 𝒄0 𝒓, 𝑎 ℎ# 𝒄0

• Depends on the number of values 𝑹 can take, which depends on 𝑪(and complexity of dynamics
represented in 𝑇1, i.e., connectivity of graph 𝐵

Decision Structure

T. Braun - APA 29

= 1

Factored Value Functions: Use in LP with Exponentially Many Constraints

• Constraints of form 𝜙 ≥ ∑'𝑤'𝑐' 𝒔 − 𝑏 𝒔 , ∀𝒔 ∈ 𝑺
• 𝜙,𝑤(, … , 𝑤* free variables
• 𝒔 ranges over all states

• Can be replaced by one equivalent non-linear constraint 𝜙 ≥ max
𝒔
∑'𝑤'𝑐' 𝒔 − 𝑏 𝒔

• Tackle problem of representing non-linear constraint by
• Computing maximum assignment for a fixed set of weights
• Simpler problem: Given fixed weights 𝑤*, compute 𝜙∗ = max

𝒔
∑*𝑤*𝑐* 𝒔 − 𝑏 𝒔

• Representing non-linear constraint by small set of linear constraints using a construction called
factored LP

Decision Structure

T. Braun - APA 30

Factored Value Functions: Use in LP with Exponentially Many Constraints

• Computing maximum assignment for a fixed set of weights
• Given fixed weights 𝑤#, compute 𝜙∗ = max

𝒔
∑#𝑤#𝑐# 𝒔 − 𝑏 𝒔

• Remember: Each 𝑐 𝒔 involves only a subset 𝑪 of 𝑺
• Follow idea of variable elimination in Bayesian networks
• Eliminate one variable 𝑆 ∈ 𝑺 at a time by
• Combining all functions involving 𝑆 and
• Replacing the result with a new function in which we keep only the mappings for each 𝒔 ∖ 𝑆 where 𝑆

leads to a maximum value
• Cost exponential in the width of network (largest number of variables combined in a function

during overall computation)

Decision Structure

T. Braun - APA 31

Factored Value Functions: Use in LP with Exponentially Many Constraints

• Factored LP to construct a (polynomial) set of constraints for the exponential set of
constraints 𝜙 ≥ ∑'𝑤'𝑐' 𝒔 + ∑8 𝑏8 𝒔 to use to compute max-norm projections
• Set of constraints Ω = ∅, set of intermediate functions ℱ = ∅
• For each 𝑐# with scope 𝒁:
• For each assignment 𝒛 to 𝒁, create new LP variable 𝑢𝒛

9,, add 𝑢𝒛
9, = 𝑤)𝑐) 𝒛 to Ω and 𝑓) = 𝑤)𝑐) 𝒛 to ℱ

• For each 𝑏7 with scope 𝒛:
• For each assignment 𝒛 to 𝒁, create new LP variable 𝑢𝒛

9-, add 𝑢𝒛
9- = 𝑏, 𝒛 to Ω and 𝑓, = 𝑏, 𝒛 to ℱ

• Eliminate all variables 𝑆 ∈ 𝑆(, … , 𝑆,
• Select functions 𝑭 from ℱ containing 𝑆
• Define a new function 𝑒 over all variables 𝒁 in 𝑭 minus 𝑆 to represent max

:
∑9∈𝑭𝑓 to replace 𝑭 in ℱ

• For each assignment 𝒛 to 𝒁, add constraint 𝑢𝒛< ≥ ∑9∈𝑭𝑢𝒛.
9

Decision Structure

T. Braun - APA 32

Factored POMDP

• Difference between MDP and POMDP:
partial observability of state
• State 𝑆 no longer directly observable ➝ latent
• Additional sensor model 𝛺 𝑂, 𝑆 = 𝑃 𝑂 𝑆 for observation 𝑂

• Given a factorisation of state space
• Sensor model becomes 𝛺 𝑂, 𝑆(, … , 𝑆, = 𝑃 𝑂 𝑆(, … , 𝑆,
• Alternate version using template notation:
𝛺 𝑂/, 𝑆!/, … , 𝑆+/ = 𝑃 𝑂/ 𝑆!/, … , 𝑆+/

• 𝑂 could also be possibly factored if more than one observation signal incoming
• 𝛺 𝑂!/, … , 𝑂$/, 𝑆!/, … , 𝑆+/ = 𝑃 𝑂!/, … , 𝑂$/ 𝑆!/, … , 𝑆+/

• Given (conditional) independences, 𝛺 can also be factored like 𝑇 and represented by a BN 𝐵< or
incorporated into the DBN 𝐵., 𝐵→ representing 𝑇

Decision Structure

T. Braun - APA 33

𝑂 !

𝑆 !𝑆 !"#

𝐴 !"#

𝑅 !𝛺

𝑇

Graph representation of a POMDP

Interim Summary: Structure by Features in the State Space

• State space characterised by set of attributes
• (Conditional) independences allow for factorisation of functions in MDP
• Probabilistic graphical models represent such factorisations

• Factored MDP: MDP with a DBN as a representation of the transition model
• Reduction in space complexity
• Factored transition function does not lead to factored value function

• Factored (linear) value functions over a set of basis functions
• Enable computing policy evaluation efficiently

• Approximate policy iteration
• Project results outside of subspace spanned by basis functions back into subspace

Decision Structure

T. Braun - APA 34

Outline: Decision Making – Structure

Structure by Groups in the Agent Set
• Agent types
• Partitioned decPOMDPs

Structure by Features in the State Space
• Dynamic Bayesian networks
• Factored MDPs

Structure by Relations in the State Space
• Situation calculus
• First-order MDPs

Decision Structure

T. Braun - APA 35

Acknowledgement

• Thanks to Scott Sanner!

Decision Structure

T. Braun - APA 36

Motivation: Planning Languages

• Common languages:
• STRIPS
• PDDL
• More expressive than STRIPS
• For example, universal and conditional effects:
(:action put-all-blue-blocks-on-table

:parameters ()
:precondition ()
:effect (forall (?b)

(when (Blue ?b)
(not (OnTable ?b)))))

• General Game Playing (GGP)
• One or more agents

Decision Structure

T. Braun - APA 37

Motivation: Benefits of Relational Languages

• STRIPS, PDDL, GGP are relational languages…
• Refer to relational fluents:
• E.g., 𝐵𝑜𝑥𝐼𝑛 ? 𝑏, ? 𝑐 , 𝑂𝑛𝑇𝑎𝑏𝑙𝑒(? 𝑏)

• Specify relations between objects
• Change over time

• Use first-order logic to specify…
• Action preconditions
• Action effects
• Goals / rewards
• E.g., (forall (?b ?c) ((Destination ?b ?c) ⇒ (BoxIn ?b ?c)))

• Are domain-independent and often compact!

Decision Structure

T. Braun - APA 38

Motivation: How to Solve?

• Relaaonal planning problem
• E.g., box world

(:action load-box-on-truck-in-city
:parameters (?b - box ?t - truck ?c – city)
:precondition (and (BoxIn ?b ?c) (TruckIn ?t ?c))
:effect (and (On ?b ?t) (not (BoxIn ?b ?c))))

• Solve ground problem for each domain instance?
• E.g., instance with 3 trucks 🚚🚚🚚, 2 planes 🛩🛩, 3 boxes 📦📦📦

• Or solve libed specificaaon for all domains at once?

Decision Structure

T. Braun - APA 39

London
Paris

Rome
Berlin

Moscow
🚚

🚚 📦
📦

🛩

Box World: Full (Relational) Specification
• Relational fluents: 𝐵𝑜𝑥𝐼𝑛 𝐵𝑜𝑥, 𝐶𝑖𝑡𝑦 , 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑇𝑟𝑢𝑐𝑘, 𝐶𝑖𝑡𝑦 , 𝐵𝑜𝑥𝑂𝑛 𝐵𝑜𝑥, 𝑇𝑟𝑢𝑐𝑘
• Goal: ∃𝐵𝑜𝑥 ∶ 𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠
• Actions:
• 𝑙𝑜𝑎𝑑 𝐵𝑜𝑥 ∶ 𝑏, 𝑇𝑟𝑢𝑐𝑘 ∶ 𝑡 :
• Effects:
• when ∃𝐶𝑖𝑡𝑦 ∶ 𝑐. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐 then 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡
• ∀𝐶𝑖𝑡𝑦 ∶ 𝑐. when 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐 then ¬𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐

• 𝑢𝑛𝑙𝑜𝑎𝑑 𝐵𝑜𝑥 ∶ 𝑏, 𝑇𝑟𝑢𝑐𝑘 ∶ 𝑡 :
• Effects:
• ∀𝐶𝑖𝑡𝑦 ∶ 𝑐. when 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐 then 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐
• when ∃𝐶𝑖𝑡𝑦 ∶ 𝑐. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐 then ¬𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡

• 𝑑𝑟𝑖𝑣𝑒 𝑇𝑟𝑢𝑐𝑘 ∶ 𝑡, 𝐶𝑖𝑡𝑦 ∶ 𝑐 :
• Effects:
• when ∃𝐶𝑖𝑡𝑦 ∶ 𝑐/. 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/ then 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐
• ∀𝐶𝑖𝑡𝑦 ∶ 𝑐/. 𝑤ℎ𝑒𝑛 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/ then ¬𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/

Decision Structure

T. Braun - APA 40

Solving Ground Box World
• Apply planner to Box World grounded with respect to domain, e.g.,
• Domain object instantiations:
• 𝐵𝑜𝑥 = 𝑏𝑜𝑥/, 𝑏𝑜𝑥0, 𝑏𝑜𝑥1 , 𝑇𝑟𝑢𝑐𝑘 = 𝑡𝑟𝑢𝑐𝑘/, 𝑡𝑟𝑢𝑐𝑘0 , 𝐶𝑖𝑡𝑦 = 𝑝𝑎𝑟𝑖𝑠, 𝑏𝑒𝑟𝑙𝑖𝑛, 𝑟𝑜𝑚𝑒

• Ground fluents:
• 𝐵𝑜𝑥𝐼𝑛: {𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥/, 𝑝𝑎𝑟𝑖𝑠 , 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥0, 𝑝𝑎𝑟𝑖𝑠 , 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥1, 𝑝𝑎𝑟𝑖𝑠 , 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥/, 𝑏𝑒𝑟𝑙𝑖𝑛 , 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥0, 𝑏𝑒𝑟𝑙𝑖𝑛 ,
𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥1, 𝑏𝑒𝑟𝑙𝑖𝑛 , 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥/, 𝑟𝑜𝑚𝑒 , 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥0, 𝑟𝑜𝑚𝑒 , 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥1, 𝑟𝑜𝑚𝑒 }

• 𝑇𝑟𝑢𝑐𝑘𝐼𝑛: {𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡𝑟𝑢𝑐𝑘/, 𝑝𝑎𝑟𝑖𝑠 , 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡𝑟𝑢𝑐𝑘0, 𝑝𝑎𝑟𝑖𝑠 , 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡𝑟𝑢𝑐𝑘/, 𝑏𝑒𝑟𝑙𝑖𝑛 , 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡𝑟𝑢𝑐𝑘0, 𝑏𝑒𝑟𝑙𝑖𝑛 ,
𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡𝑟𝑢𝑐𝑘/, 𝑟𝑜𝑚𝑒 , 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡𝑟𝑢𝑐𝑘0, 𝑟𝑜𝑚𝑒 }

• 𝐵𝑜𝑥𝑂𝑛: {𝐵𝑜𝑥𝑂𝑛 𝑏𝑜𝑥/, 𝑡𝑟𝑢𝑐𝑘/ , 𝐵𝑜𝑥𝑂𝑛 𝑏𝑜𝑥0, 𝑡𝑟𝑢𝑐𝑘/ , 𝐵𝑜𝑥𝑂𝑛 𝑏𝑜𝑥1, 𝑡𝑟𝑢𝑐𝑘/ ,
𝐵𝑜𝑥𝑂𝑛 𝑏𝑜𝑥/, 𝑡𝑟𝑢𝑐𝑘0 , 𝐵𝑜𝑥𝑂𝑛 𝑏𝑜𝑥0, 𝑡𝑟𝑢𝑐𝑘0 , 𝐵𝑜𝑥𝑂𝑛 𝑏𝑜𝑥1, 𝑡𝑟𝑢𝑐𝑘0 }

• Ground actions:
• 𝑙𝑜𝑎𝑑: {𝑙𝑜𝑎𝑑 𝑏𝑜𝑥/, 𝑡𝑟𝑢𝑐𝑘/ , 𝑙𝑜𝑎𝑑 𝑏𝑜𝑥0, 𝑡𝑟𝑢𝑐𝑘/ , 𝑙𝑜𝑎𝑑 𝑏𝑜𝑥1, 𝑡𝑟𝑢𝑐𝑘/ ,
𝑙𝑜𝑎𝑑 𝑏𝑜𝑥/, 𝑡𝑟𝑢𝑐𝑘0 , 𝑙𝑜𝑎𝑑 𝑏𝑜𝑥0, 𝑡𝑟𝑢𝑐𝑘0 , 𝑙𝑜𝑎𝑑 𝑏𝑜𝑥1, 𝑡𝑟𝑢𝑐𝑘0 }

• 𝑢𝑛𝑙𝑜𝑎𝑑: {𝑢𝑛𝑙𝑜𝑎𝑑 𝑏𝑜𝑥/, 𝑡𝑟𝑢𝑐𝑘/ , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏𝑜𝑥0, 𝑡𝑟𝑢𝑐𝑘/ , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏𝑜𝑥1, 𝑡𝑟𝑢𝑐𝑘/ ,
𝑢𝑛𝑙𝑜𝑎𝑑 𝑏𝑜𝑥/, 𝑡𝑟𝑢𝑐𝑘0 , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏𝑜𝑥0, 𝑡𝑟𝑢𝑐𝑘0 , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏𝑜𝑥1, 𝑡𝑟𝑢𝑐𝑘0 }

• 𝑑𝑟𝑖𝑣𝑒: {𝑑𝑟𝑖𝑣𝑒 𝑡𝑟𝑢𝑐𝑘/, 𝑝𝑎𝑟𝑖𝑠 , 𝑑𝑟𝑖𝑣𝑒 𝑡𝑟𝑢𝑐𝑘0, 𝑝𝑎𝑟𝑖𝑠 , 𝑑𝑟𝑖𝑣𝑒 𝑡𝑟𝑢𝑐𝑘/, 𝑏𝑒𝑟𝑙𝑖𝑛 ,
𝑑𝑟𝑖𝑣𝑒 𝑡𝑟𝑢𝑐𝑘0, 𝑏𝑒𝑟𝑙𝑖𝑛 , 𝑑𝑟𝑖𝑣𝑒 𝑡𝑟𝑢𝑐𝑘/, 𝑟𝑜𝑚𝑒 , 𝑑𝑟𝑖𝑣𝑒 𝑡𝑟𝑢𝑐𝑘0, 𝑟𝑜𝑚𝑒 }

• Goal: 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥J, 𝑝𝑎𝑟𝑖𝑠 ∨ 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥K, 𝑝𝑎𝑟𝑖𝑠 ∨ 𝐵𝑜𝑥𝐼𝑛 𝑏𝑜𝑥L, 𝑝𝑎𝑟𝑖𝑠

Decision Structure

T. Braun - APA 41

Number of fluents
exponenSal in arity

Number of actions
exponential in arity

Goal description exponential in
number of nested quantifiers

A First-order Solution to Box World

• Derive solution deductively at lifted PDDL level ➝ Optimal for any domain instantiation!
if (∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠) then

do 𝑛𝑜𝑜𝑝
else if ∃𝑏∗, 𝑡∗. 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑝𝑎𝑟𝑖𝑠 ∧ 𝐵𝑜𝑥𝑂𝑛 𝑏∗, 𝑡∗ then

do 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗

else if (∃𝑏, 𝑐, 𝑡∗. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡∗ ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐) then
do 𝑑𝑟𝑖𝑣𝑒 𝑡∗, 𝑝𝑎𝑟𝑖𝑠

else if (∃𝑏∗, 𝑐, 𝑡∗. 𝐵𝑜𝑥𝐼𝑛 𝑏∗, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑐) then
do 𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗

else if (∃𝑏, 𝑐!∗, 𝑡∗, 𝑐". 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐!∗ ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑐") then
do 𝑑𝑟𝑖𝑣𝑒 𝑡∗, 𝑐!∗

else do 𝑛𝑜𝑜𝑝
• Great, but how do I obtain this solution?

Decision Structure

T. Braun - APA 42

SituaUon Calculus

• Logic formalism designed for representing and reasoning about dynamic domains
• First introduced by John McCarthy in 1963

• Basic elements
• Actions that can be performed in the world
• Situations
• Fluents that describe the state of the world

• Domain
• Action precondition axioms, one for each action
• Successor state axioms, one for each fluent
• Axioms describing the world in various situations
• Foundational axioms of the situation calculus: situations are histories, induction on situations

Decision Structure

T. Braun - APA 43

SituaUon Calculus: Ingredients

• Actions
• First-order terms with action parameters
• E.g., 𝑙𝑜𝑎𝑑 𝑏, 𝑡 , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 , 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑐

• Situations
• Term that encoes action history
• E.g., 𝑠, 𝑠., 𝑑𝑜 𝑙𝑜𝑎𝑑 𝑏, 𝑡 , 𝑠 , 𝑑𝑜 𝑙𝑜𝑎𝑑 𝑏, 𝑡 , 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑐 , 𝑠

• Fluents
• Relation whose truth value varies between situations
• E.g., 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 , 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠 , 𝐵𝑜𝑥 𝑡, 𝑐, 𝑠

• Effects?

Decision Structure

T. Braun - APA 44

Situation Calculus: PDDL to Effects
• Translate action effects into positive and negative effect axioms

• 𝑙𝑜𝑎𝑑 𝐵𝑜𝑥 ∶ 𝑏, 𝑇𝑟𝑢𝑐𝑘 ∶ 𝑡 :
• when ∃𝐶𝑖𝑡𝑦 ∶ 𝑐. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐
then 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡

• ∀𝐶𝑖𝑡𝑦 ∶ 𝑐. when 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐
then ¬𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐

• 𝑢𝑛𝑙𝑜𝑎𝑑 𝐵𝑜𝑥 ∶ 𝑏, 𝑇𝑟𝑢𝑐𝑘 ∶ 𝑡 :
• ∀𝐶𝑖𝑡𝑦 ∶ 𝑐. when 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐
then 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐

• when ∃𝐶𝑖𝑡𝑦 ∶ 𝑐. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐
then ¬𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡

• 𝑑𝑟𝑖𝑣𝑒 𝑇𝑟𝑢𝑐𝑘 ∶ 𝑡, 𝐶𝑖𝑡𝑦 ∶ 𝑐 :
• when ∃𝐶𝑖𝑡𝑦 ∶ 𝑐/. 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/
then 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐

• ∀𝐶𝑖𝑡𝑦 ∶ 𝑐/. 𝑤ℎ𝑒𝑛 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/
then ¬𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/

Decision Structure

T. Braun - APA 45

• ∃𝑐. 𝑎 = 𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠
⇒ 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑑𝑜 𝑎, 𝑠

• ∃𝑡. 𝑎 = 𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠
⇒ ¬𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑑𝑜 𝑎, 𝑠

• ∃𝑡. 𝑎 = 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠
⇒ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑑𝑜 𝑎, 𝑠

• ∃𝑐. 𝑎 = 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠
⇒ ¬𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑑𝑜 𝑎, 𝑠

• ∃𝑐/. 𝑎 = 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/, 𝑠
⇒ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑑𝑜 𝑎, 𝑠

• ∃𝑐. 𝑎 = 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/, 𝑠
⇒ ¬𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐/, 𝑑𝑜 𝑎, 𝑠

SituaUon Calculus: PDDL to Effects

• Use rule to combine multiple effects 𝐶6 ⇒ 𝐹, 𝐶n ⇒ 𝐹 over the same fluent 𝐹 into effect
axioms: 𝛾op �⃗�, 𝑎, 𝑠 ⇒ 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 , 𝛾oq �⃗�, 𝑎, 𝑠 ⇒ 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠
• Rule: 𝐶(⇒ 𝐹 ∧ 𝐶I ⇒ 𝐹 ≡ 𝐶(∨ 𝐶I ⇒ 𝐹
• As a sort of shorthand notation
• E.g.,
• ∃𝑐. 𝑎 = 𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝐼𝑛 𝑏, 𝑐, 𝑠 ∧ 𝑇𝐼𝑛 𝑡, 𝑐, 𝑠 ⇒ 𝐵𝑂𝑛 𝑏, 𝑡, 𝑑𝑜 𝑎, 𝑠 ➝ 𝛾56-7 �⃗�, 𝑎, 𝑠 ⇒ 𝐵𝑂𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠
• ∃𝑐. 𝑎 = 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝐼𝑛 𝑡, 𝑐, 𝑠 ⇒ ¬𝐵𝑂𝑛 𝑏, 𝑡, 𝑑𝑜 𝑎, 𝑠
➝ 𝛾56-" �⃗�, 𝑎, 𝑠 ⇒ ¬𝐵𝑂𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠

• ∃𝑡. 𝑎 = 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝐼𝑛 𝑡, 𝑐, 𝑠 ⇒ 𝐵𝐼𝑛 𝑏, 𝑐, 𝑑𝑜 𝑎, 𝑠 ➝ 𝛾58-7 �⃗�, 𝑎, 𝑠 ⇒ 𝐵𝐼𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠
• ∃t. 𝑎 = 𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝐼𝑛 𝑏, 𝑐, 𝑠 ∧ 𝑇𝐼𝑛 𝑡, 𝑐, 𝑠 ⇒ ¬𝐵𝐼𝑛 𝑏, 𝑐, 𝑑𝑜 𝑎, 𝑠 → 𝛾58-" �⃗�, 𝑎, 𝑠 ⇒ ¬𝐵𝐼𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠
• ∃𝑐#. 𝑎 = 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑐 ∧ 𝑇𝐼𝑛 𝑡, 𝑐#, 𝑠 ⇒ 𝑇𝐼𝑛 𝑡, 𝑐, 𝑑𝑜 𝑎, 𝑠 ➝ 𝛾98-7 �⃗�, 𝑎, 𝑠 ⇒ 𝑇𝐼𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠
• ∃𝑐. 𝑎 = 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑐 ∧ 𝑇𝐼𝑛 𝑡, 𝑐#, 𝑠 ⇒ ¬𝑇𝐼𝑛 𝑡, 𝑐#, 𝑑𝑜 𝑎, 𝑠 ➝ 𝛾98-" �⃗�, 𝑎, 𝑠 ⇒ ¬𝑇𝐼𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠

Decision Structure

T. Braun - APA 46

Frame Problem

• Positive and negative effect axioms specify what changes
• 𝛾CJ,K �⃗�, 𝑎, 𝑠 ⇒ 𝐵𝑂𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠 𝛾CJ,' �⃗�, 𝑎, 𝑠 ⇒ ¬𝐵𝑂𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠
• 𝛾C%,K �⃗�, 𝑎, 𝑠 ⇒ 𝐵𝐼𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠 𝛾C%,' �⃗�, 𝑎, 𝑠 ⇒ ¬𝐵𝐼𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠
• 𝛾L%,K �⃗�, 𝑎, 𝑠 ⇒ 𝑇𝐼𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠 𝛾L%,' �⃗�, 𝑎, 𝑠 ⇒ ¬𝑇𝐼𝑛 �⃗�, 𝑑𝑜 𝑎, 𝑠

• Assume completeness regarding these effect axioms:
• That is, assume that 𝛾MK �⃗�, 𝑎, 𝑠 ⇒ 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 , 𝛾M' �⃗�, 𝑎, 𝑠 ⇒ ¬𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 characterise all

the conditions under which an action 𝑎 changes the value of fluent 𝐹
• Formalise as explanation closure axioms
• ¬𝐹 �⃗�, 𝑠 ∧ 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 ⇒ 𝛾>& �⃗�, 𝑎 , 𝑠 ≡ ¬𝐹 �⃗�, 𝑠 ∧ ¬𝛾>& �⃗�, 𝑎 , 𝑠 ⇒ ¬𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠
• If 𝐹 was false and was made true by doing action 𝑎, then condition 𝛾:7 must have been true

• 𝐹 �⃗�, 𝑠 ∧ ¬𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 ⇒ 𝛾>' �⃗�, 𝑎 , 𝑠 ≡ 𝐹 �⃗�, 𝑠 ∧ ¬𝛾>' �⃗�, 𝑎 , 𝑠 ⇒ 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠
• If 𝐹 was true and was made false by doing action 𝑎 then condition 𝛾:" must have been true

Decision Structure

T. Braun - APA 47

Frame Problem

• Frame problem: How to (compactly) specify what does not change?
• Intuition: “What does not change, remains the same.”
• Reiter’s so-called Default Solution

• Not so easy to specify
• Moving one thing might move another thing, even though the other thing is never directly touched
• How to distinguish between relevant and irrelevant side effects? And use that efficiently?

• Default solution to frame problem given as successor state axioms (SSAs), which we
construct next

Decision Structure

T. Braun - APA 48

Successor State Axioms (SSAs)

• Inputs / Requirements
• Unique names for ac`ons / arguments
• Posi`ve and nega`ve effect axioms
• 𝛾>& �⃗�, 𝑎, 𝑠 ⇒ 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 , 𝛾>' �⃗�, 𝑎, 𝑠 ⇒ 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠

• Explana`on closure axioms
• ¬𝐹 �⃗�, 𝑠 ∧ 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 ⇒ 𝛾>& �⃗�, 𝑎 , 𝑠 , 𝐹 �⃗�, 𝑠 ∧ ¬𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 ⇒ 𝛾>' �⃗�, 𝑎 , 𝑠

• Integrity: ¬∃�⃗�, 𝑎, 𝑠. 𝛾MK �⃗�, 𝑎, 𝑠 ∧ 𝛾M' �⃗�, 𝑎, 𝑠
• SSA for each 𝐹:
• 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 ≡ 𝛾MK �⃗�, 𝑎, 𝑠 ∨ 𝐹 �⃗�, 𝑠 ∧ ¬𝛾M' �⃗�, 𝑎, 𝑠
• Shorthand:
• 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 ≡ 𝛷> �⃗�, 𝑎, 𝑠

Decision Structure

T. Braun - APA 49

Successor State Axioms (SSAs): Example

• SSA for each 𝐹: 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 ≡ 𝛾op �⃗�, 𝑎, 𝑠 ∨ 𝐹 �⃗�, 𝑠 ∧ ¬𝛾oq �⃗�, 𝑎, 𝑠
• Shorthand: 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 ≡ 𝛷M �⃗�, 𝑎, 𝑠

• 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑑𝑜 𝑎, 𝑠 ≡ 𝛷d{|}7 𝑏, 𝑡, 𝑎, 𝑠
≡ ∃𝑐. 𝑎 = 𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵ox𝐼𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠
∨ 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ ¬ ∃𝑐. 𝑎 = 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠

• 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑑𝑜 𝑎, 𝑠 ≡ 𝛷d{|~7 𝑏, 𝑐, 𝑎, 𝑠
≡ ∃𝑡. 𝑎 = 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠
∨ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 ∧ ¬ ∃t. 𝑎 = 𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠

• 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑑𝑜 𝑎, 𝑠 ≡ 𝛷����5~7 𝑡, 𝑐, 𝑎, 𝑠
≡ ∃𝑐6. 𝑎 = 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐6, 𝑠
∨ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠 ∧ ¬ ∃𝑐6. 𝑎 = 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑐 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐6, 𝑠

Decision Structure

T. Braun - APA 50

Regression

• Idea: Use SSAs to regress from goal towards a (possibly only partially defined) intial state
• A bit like lifted backward search

• Regression
• If 𝜙 held after action 𝑎, then regression is the 𝜙0 that held before action 𝑎
• Exploit following properties
• 𝑅𝑒𝑔𝑟 ¬𝜓 = ¬𝑅𝑒𝑔𝑟 𝜓
• 𝑅𝑒𝑔𝑟 𝜓! ∧ 𝜓" = 𝑅𝑒𝑔𝑟 𝜓! ∧ 𝑅𝑒𝑔𝑟 𝜓"
• 𝑅𝑒𝑔𝑟 ∃𝑥 𝜓 = ∃𝑥 𝑅𝑒𝑔𝑟 𝜓

• 𝑅𝑒𝑔𝑟 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 = 𝛷> �⃗�, 𝑎, 𝑠

Decision Structure

T. Braun - APA 51

Regression: Example

• Given: ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠
• Regress through 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗

• 𝑅𝑒𝑔𝑟 ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠
= ∃𝑏. 𝑅𝑒𝑔𝑟 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠
= ∃𝑏.𝛷C&N%, 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠
= ∃𝑏. ∃𝑡. 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ = 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑝𝑎𝑟𝑖𝑠, 𝑠
∨ (

)
𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

∧ ¬ ∃𝑡. 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ = 𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∧ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑝𝑎𝑟𝑖𝑠, 𝑠
= ∃𝑏, 𝑡. 𝑏 = 𝑏∗ ∧ 𝑡 = 𝑡∗ ∧ 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑝𝑎𝑟𝑖𝑠, 𝑠 ∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠
= ∃𝑏. 𝑏 = 𝑏∗ ∧ ∃𝑡. 𝑡 = 𝑡∗ ∧ 𝐵𝑜𝑥𝑂𝑛 𝑏∗, 𝑡∗, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑝𝑎𝑟𝑖𝑠, 𝑠
∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠
= 𝐵𝑜𝑥𝑂𝑛 𝑏∗, 𝑡∗, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑝𝑎𝑟𝑖𝑠, 𝑠 ∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

Decision Structure

T. Braun - APA 52

• If 𝜙 held after action 𝑎, then regression is the
𝜙& that held before action 𝑎

• Exploit following properties
• 𝑅𝑒𝑔𝑟 ¬𝜓 = ¬𝑅𝑒𝑔𝑟 𝜓
• 𝑅𝑒𝑔𝑟 𝜓# ∧ 𝜓' = 𝑅𝑒𝑔𝑟 𝜓# ∧ 𝑅𝑒𝑔𝑟 𝜓'
• 𝑅𝑒𝑔𝑟 ∃𝑥 𝜓 = ∃𝑥 𝑅𝑒𝑔𝑟 𝜓
• 𝑅𝑒𝑔𝑟 𝐹 �⃗�, 𝑑𝑜 𝑎, 𝑠 = 𝛷: �⃗�, 𝑎, 𝑠

Make non-empty domain
assumption for 𝑏, 𝑡

Cannot be made true
➝ 𝜙 ∧ ¬ ⊥ ≡ 𝜙 ∧ ⊤ ≡ 𝜙

Regression: Example

• Given: ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠
• Regress through 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗

• 𝑅𝑒𝑔𝑟 ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠
= 𝐵𝑜𝑥𝑂𝑛 𝑏∗, 𝑡∗, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑝𝑎𝑟𝑖𝑠, 𝑠 ∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

• To get action instantiations of 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , query knowledge base (KB, i.e., planning
domain)
• Existentially quantify 𝑏∗, 𝑡∗ and obtain instances via query extraction w.r.t. KB
• KB consists of first-order state and action abstraction ➝ do not have to enumerate all states, 𝑏∗, 𝑡∗

• ∃𝑏∗, 𝑡∗. 𝑅𝑒𝑔𝑟 ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠
= ∃𝑏∗, 𝑡∗. 𝐵𝑜𝑥𝑂𝑛 𝑏∗, 𝑡∗, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑝𝑎𝑟𝑖𝑠, 𝑠 ∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠
= ∃𝑏∗, 𝑡∗. 𝐵𝑜𝑥𝑂𝑛 𝑏∗, 𝑡∗, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑝𝑎𝑟𝑖𝑠, 𝑠 ∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

Decision Structure

T. Braun - APA 53

Regression Planning

• Define abstract goal state
• E.g., ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠
• Check if regression through

action sequence holds in
initial state

➝ Goal regression planning
• Provide initial state, actions
• Initial state description can

be partial
• Use regression to tell

whether goal will hold

Decision Structure

T. Braun - APA 54

∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

∃𝑏∗, 𝑡∗. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑝𝑎𝑟𝑖𝑠, 𝑠
∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

𝑢𝑛𝑙𝑜𝑎𝑑 𝑏 ∗, 𝑡 ∗

𝑑𝑟𝑖𝑣
𝑒 𝑡

∗ , 𝑐#
∗ , 𝑐'

∗

Captures
iniSal state?

Goal State:
Captures

initial state?
Captures

initial state?

…

…

…

…

Progression and Forward Search?

• Can we do libed forward-search planning?

• Progression not first-order definable! (Reiter, 2001)
• Could progress ground state
• But this does not exploit first-order structure

Decision Structure

T. Braun - APA 55

?

∃𝑏∗, 𝑡∗. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑝𝑎𝑟𝑖𝑠, 𝑠
∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

?
𝑢𝑛𝑙𝑜𝑎𝑑 𝑏 ∗, 𝑡 ∗

𝑑𝑟𝑖𝑣𝑒
𝑡∗ , 𝑐#

∗ , 𝑐'∗ Captures goal
state?

Intial State:
Captures goal state?

Captures goal
state?

Golog: Restricted Plan Search

• AlGOl in LOGic
• Search the space of sequential action plans
• Regress actions to initial state to test reachability
• Restrict action space with program:

Decision Structure

T. Braun - APA 56

𝛼
𝜙?
𝛿#, 𝛿'

if 𝜙 then 𝛿 endIf
while 𝜙 then 𝛿 endWhile

primitive action
condition test
sequence
conditional
loop

𝛿# 𝛿'
𝜋 �⃗� 𝛿
𝛿∗

nondeterministic choice of actions
nondeterministic choice of arguments
nondeterministic iteration

proc 𝛽 �⃗� 𝛿 endProc
𝛽 𝑡

procedure call definition
procedure call

Golog: Example

• Golog program
• 𝜋𝑏 ¬𝑂𝑛𝑇𝑎𝑏𝑙𝑒 𝑏, 𝑠 ? , 𝑝𝑖𝑐𝑘𝑢𝑝 𝑏 , 𝑝𝑢𝑡𝑂𝑛𝑇𝑎𝑏𝑙𝑒 𝑏 ∗,
∀𝑏. 𝑂𝑛𝑇𝑎𝑏𝑙𝑒 𝑏, 𝑠 ?

• Diagram of Golog planning

• Heavily restricted action sequences
• Program exploits first-order action abstraction
• Initial state need not be fully known

Decision Structure

T. Braun - APA 57

𝛼
𝜙?
𝛿&, 𝛿#

if 𝜙 then 𝛿 endIf
while 𝜙 then 𝛿 endWhile

primitive action
condition test
sequence
conditional
loop

𝛿& 𝛿#
𝜋 �⃗� 𝛿
𝛿∗

nondeterministic choice of actions
nondeterministic choice of arguments
nondeterministic iteration

proc 𝛽 �⃗� 𝛿 endProc
𝛽 𝑡

procedure call definition
procedure call

∃𝑏. ¬𝑂𝑛𝑇𝑎𝑏𝑙𝑒 𝑏, 𝑠 ?𝑝𝑖𝑐𝑘𝑢𝑝 ? 𝑏' ;
𝑝𝑢𝑡𝑂𝑛𝑇𝑎𝑏𝑙𝑒 ? 𝑏'

𝑝𝑖𝑐𝑘𝑢𝑝 ? 𝑏# ;
𝑝𝑢𝑡𝑂𝑛𝑇𝑎𝑏𝑙𝑒 ? 𝑏#

Initial State IniSal state?Initial state?

Interim (Interim) Summary

• Situation calculus to describe a relational world
• Can convert PDDL (and state-variable domains) into effect axioms
• Derive SSAs from effect axioms
• Using default solution to frame problem

• Regression operator
• Extract action instantiation to achieve goal

• Regression planning
• Initial state need not be fully specified
• Exploit state and action abstraction
• Avoid enumerating all state and action instances

Decision Structure

T. Braun - APA 58

Next step: Extend this idea for
decision-theoretic planning
with uncertain action outcomes

First-order MDPs: MDPs

• MDP with discount factor
• Tuple 𝑆, 𝐴, 𝑇, 𝑅, 𝛾
• State space 𝑆
• E.g., 𝑆 = 1,2

• Actions 𝐴
• E.g., 𝐴 = 𝑠𝑡𝑎𝑦, 𝑔𝑜

• Immediate reward function 𝑅
• E.g., 𝑅 𝑠 = 1, 𝑎 = 𝑠𝑡𝑎𝑦 = 2,…

• Transition function 𝑇
• E.g., 𝑇 𝑠 = 1, 𝑎 = 𝑠𝑡𝑎𝑦, 𝑠& = 1 = 𝑃 𝑠& = 1 𝑠 = 1, 𝑎 = 𝑠𝑡𝑎𝑦 = 0.9

• Discount factor 𝛾
• Acting ➝ define policy 𝜋 ∶ 𝑆 → 𝐴

Decision Structure

T. Braun - APA 59

𝑠 = 1 𝑠 = 2

𝑅 = 10
𝑎 = 𝑐ℎ𝑎𝑛𝑔𝑒 (𝑃 = 1.0)
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 0.1)

𝑅 = 2
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 0.9)

𝑅 = 0
𝑎 = 𝑐ℎ𝑎𝑛𝑔𝑒 (𝑃 = 1.0)
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 1.0)

Policy, Value, Solution

• Immediate vs. long-term gain?
• Reward criterion to optimise
• Discount factor 𝛾 important

(𝛾 = 0.9 vs. 𝛾 = 0.1)
• Define value of policy 𝜋

𝑉? 𝑠 = 𝐸? ∑60@A 𝛾6 ⋅ 𝑟6|𝑠 = 𝑠@
• Tells how much value to expect

to get by following 𝜋 starting
from state 𝑠

• MDP optimal solution
• Policy 𝜋∗ 𝑠 = argmaxO 𝑉O 𝑠

Decision Structure

T. Braun - APA 60

𝑠 = 1 𝑠 = 2

𝑅 = 10
𝑎 = 𝑐ℎ𝑎𝑛𝑔𝑒 (𝑃 = 1.0)
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 0.1)

𝑅 = 2
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 0.9)

𝑅 = 0
𝑎 = 𝑐ℎ𝑎𝑛𝑔𝑒 (𝑃 = 1.0)
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 1.0)

𝑠 = 1

𝑠 = 2

𝑠 = 1

𝑠 = 2

𝑠 = 1

𝑠 = 2

𝑅 = 10
𝑎 = 𝑐ℎ𝑎𝑛𝑔𝑒

𝑅 = 0

𝑅 = 2
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 0.9)

𝑅 = 10
𝑎 = 𝑐ℎ𝑎𝑛𝑔𝑒

𝑅 = 0

𝑅 = 2
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 0.9)

𝑅 = 10
𝑎 = 𝑐ℎ𝑎𝑛𝑔𝑒

𝑅 = 0

𝑅 = 2
𝑎 = 𝑠𝑡𝑎𝑦 (𝑃 = 0.9)

Value Iteration & Value Function to Policy

• How to act optimally with 𝑡 decisions?
• Given optimal 𝑡 − 1-state-to-go value fct.
• Take action 𝑎, then act so as to achieve
𝑉?'(thereafter:

𝑄? 𝑠, 𝑎 ∶= 𝑅 𝑠, 𝑎 + 𝛾 R
2%∈6

𝑇 𝑠, 𝑎, 𝑠0 𝑉?'(𝑠0

• Expected value of best action 𝑎 at stage 𝑡?
𝑉? 𝑠 ≔ max

+∈1
𝑄? 𝑠, 𝑎

• At ∞ horizon, get same value (= 𝑉∗)
lim
?→@

max
2

𝑉? 𝑠 − 𝑉?'(𝑠 = 0
• 𝜋∗ says act the same at each decision stage

for ∞ horizon

• Given arbitrary value 𝑉 (opamal or not)
• Greedy policy 𝜋P takes ac`on in each state

that maximises expected value w.r.t. 𝑉
𝜋P 𝑠

= arg max
+∈1

𝑅 𝑠, 𝑎 + 𝛾 R
2%∈6

𝑇 𝑠, 𝑎, 𝑠0 𝑉 𝑠0

• If can act so as to obtain 𝑉 afer doing
ac`on 𝑎 in state 𝑠, 𝜋P guarantees 𝑉 𝑠 in
expecta`on

Decision Structure

T. Braun - APA 61

First-order MDP (FOMDP)

• Components of MDP in an FOMDP specified as a collection of case statements
• E.g., express reward in Box World FOMDP as

• Operators: define unary and binary case operations
• E.g., cross-sum ⊕ (or ⊖, ⊗) of cases

Decision Structure

T. Braun - APA 63

𝑟𝐶𝑎𝑠𝑒 𝑠 =
∀𝑏, 𝑐. 𝐷𝑒𝑠𝑡 𝑏, 𝑐 ⇒ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 1

¬ ∀𝑏, 𝑐. 𝐷𝑒𝑠𝑡 𝑏, 𝑐 ⇒ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 0

𝜙 ∧ 𝜑 10 + 3
𝜙 10

⊕
𝜑 3

=
𝜙 ∧ ¬𝜑 10 + 4

¬𝜙 20 ¬𝜑 4 ¬𝜙 ∧ 𝜑 20 + 3
¬𝜙 ∧ ¬𝜑 20 + 4

Stochastic Actions and First-order Decision-theoretic Regression (FODTR)

• Stochastic actions using deterministic situation calculus
• User’s stochastic action, e.g., 𝐴 𝑥 = 𝑙𝑜𝑎𝑑 𝑏, 𝑡
• Nature’s choice, e.g., 𝑛 𝑥 ∈ 𝑙𝑜𝑎𝑑𝑆 𝑏, 𝑡 , 𝑙𝑜𝑎𝑑𝐹 𝑏, 𝑡
• Probability distribution over nature’s choice, e.g.,

• First-order decision-theoretic regression (FODTR)
• FODTR = expectation of regression:

𝐹𝑂𝐷𝑇𝑅 𝑣𝐶𝑎𝑠𝑒 𝑠 , 𝐴 �⃗� = 𝑬Q(, N⃗ |1 N⃗) 𝑅𝑒𝑔𝑟 𝑣𝐶𝑎𝑠𝑒 𝑠 , 𝑛 �⃗�

Decision Structure

T. Braun - APA 64

𝑃 𝑙𝑜𝑎𝑑𝑆 𝑏, 𝑡 𝑙𝑜𝑎𝑑 𝑏, 𝑡 =
𝑠𝑛𝑜𝑤 𝑠 0.1
¬𝑠𝑛𝑜𝑤 𝑠 0.6

𝑃 𝑙𝑜𝑎𝑑𝐹 𝑏, 𝑡 𝑙𝑜𝑎𝑑 𝑏, 𝑡 =
𝑠𝑛𝑜𝑤 𝑠 0.9
¬𝑠𝑛𝑜𝑤 𝑠 0.4

Probability distribution ➝ Adds up
to 1 over success and failure choice

0.1 + 0.9 = 1
0.6 + 0.4 = 1

FODTR & Q-Functions

• Result of FODTR is a case statement encoding a first-order Q-function

𝐹𝑂𝐷𝑇𝑅 𝑣𝐶𝑎𝑠𝑒 𝑠 , 𝐴 �⃗� = 𝑅 𝑠 ⊕ 𝛾�
78(

*

𝑃 𝑛7 �⃗� , 𝐴 �⃗� , 𝑠 ⊗ 𝑅𝑒𝑔𝑟 𝑉 𝑑𝑜 𝑛7 �⃗� , 𝑠

• E.g.,

Decision Structure

T. Braun - APA 65

𝑟𝐶𝑎𝑠𝑒 𝑠 =
∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 10

¬ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 0

𝑝𝐶𝑎𝑠𝑒 𝑙𝑜𝑎𝑑𝑆 𝑏, 𝑡 , 𝑙𝑜𝑎𝑑 𝑏, 𝑡 , 𝑠 = ⊤ 0.9

𝑝𝐶𝑎𝑠𝑒 𝑢𝑛𝑙𝑜𝑎𝑑𝑆 𝑏, 𝑡 , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 , 𝑠 = ⊤ 0.9

𝑝𝐶𝑎𝑠𝑒 𝑑𝑟𝑖𝑣𝑒𝑆 𝑏, 𝑡 , 𝑑𝑟𝑖𝑣𝑒 𝑏, 𝑡 , 𝑠 = ⊤ 1

𝐹𝑂𝐷𝑇𝑅 𝑣𝐶𝑎𝑠𝑒 𝑠 , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗

= 𝑟𝐶𝑎𝑠𝑒 𝑠 ⊕ 𝛾�
,.#

;

𝑝𝐶𝑎𝑠𝑒 𝑛, �⃗� , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠

⊗
𝑅𝑒𝑔𝑟 ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑛, �⃗� , 𝑠 10

𝑅𝑒𝑔𝑟 ¬∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑛, �⃗� , 𝑠 0

FODTR & Q-Functions

Decision Structure

T. Braun - APA 66

𝐹𝑂𝐷𝑇𝑅 𝑣𝐶𝑎𝑠𝑒 𝑠 , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗

= 𝑟𝐶𝑎𝑠𝑒 𝑠 ⊕ 𝛾�
,.#

;

𝑝𝐶𝑎𝑠𝑒 𝑛, �⃗� , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠

=
=
=
= 𝑟𝐶𝑎𝑠𝑒 𝑠 ⊕ 𝛾	

⊗
𝑅𝑒𝑔𝑟 ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑛, �⃗� , 𝑠 10

𝑅𝑒𝑔𝑟 ¬∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑛, �⃗� , 𝑠 0.0

⊤ 0.9 ⊗
𝑅𝑒𝑔𝑟 ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑𝑆 𝑏∗, 𝑡∗ , 𝑠 10

𝑅𝑒𝑔𝑟 ¬∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑𝑆 𝑏∗, 𝑡∗ , 𝑠 0.0

⊕ ⊤ 0.1 ⊗
𝑅𝑒𝑔𝑟 ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑𝐹 𝑏∗, 𝑡∗ 10

𝑅𝑒𝑔𝑟 ¬∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑢𝑛𝑙𝑜𝑎𝑑𝐹 𝑏∗, 𝑡∗ 0.0

FODTR & Q-Functions

Decision Structure

T. Braun - APA 67

𝐹𝑂𝐷𝑇𝑅 𝑣𝐶𝑎𝑠𝑒 𝑠 , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗

= 𝑟𝐶𝑎𝑠𝑒 𝑠 ⊕ 𝛾�
,.#

;

𝑝𝐶𝑎𝑠𝑒 𝑛, �⃗� , 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗ , 𝑠

=
=
=
=
=
=
=
=
=
=

⊗
𝑅𝑒𝑔𝑟 ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑛, �⃗� , 𝑠 10

𝑅𝑒𝑔𝑟 ¬∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑑𝑜 𝑛, �⃗� , 𝑠 0.0

∃𝑏∗, 𝑡∗. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑝𝑎𝑟𝑖𝑠, 𝑠 ∨ ∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 8.1
¬“ 0.0

⊕
∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 0.9

¬“ 0.0
⊕

∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 10
¬“ 0.0

∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 19.0 ➝ 𝑛𝑜𝑜𝑝
¬“ ∧ ∃𝑏, 𝑡. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑝𝑎𝑟𝑖𝑠, 𝑠 8.1 ➝ 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏∗, 𝑡∗

¬“ 0.0 ➝ 𝑛𝑜𝑜𝑝

Symbolic Dynamic Programming (SDP)

• What value if 0-stages-to-go?
• Immediate reward: 𝑉. 𝑠 = 𝑟𝐶𝑎𝑠𝑒 𝑠

• What value if 1-state-to-go?
• We know value for each action ➝ Take maximum for each state

• Value iteration
• Obtain 𝑉,K(from 𝑉, until 𝑉,'(⊖𝑉, < 𝜖

Decision Structure

T. Braun - APA 68

𝑉# 𝑠 = max
<

𝜙# 9
= 𝑉/ 𝑠, 𝐴#𝜙' 0

𝜙= 3
= 𝑉/ 𝑠, 𝐴'𝜙> 1

𝑉# 𝑠 =

𝜙# 9
= 𝑉/ 𝑠, 𝐴#𝜙' 0

𝜙= 3
𝑉/ 𝑠, 𝐴'𝜙> 1

𝜙# 9
else 𝜙= 3
else 𝜙> 1
else 𝜙' 0

𝜙# 9
else 𝜙= 3
else 𝜙> 1

𝜙# 9
else 𝜙= 3
𝜙# 9

Value Iteration for 𝒕 = 𝟏, 𝟐 of the Box World Example

• With increasing iterations, the sequence of
actions considered gets longer

Decision Structure

T. Braun - APA 69

𝑣𝐶𝑎𝑠𝑒# 𝑠 =
∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 19.0

¬“ ∧ ∃𝑐. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡∗, 𝑝𝑎𝑟𝑖𝑠, 𝑠 8.1
¬“ 0.0

𝑣𝐶𝑎𝑠𝑒' 𝑠 =
∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 26.1

¬“ ∧ ∃𝑏, 𝑡. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑝𝑎𝑟𝑖𝑠, 𝑠 15.4
¬“ ∧ ∃𝑏, 𝑐, 𝑡. 𝐵𝑜𝑥𝑂𝑛 𝑏, 𝑡, 𝑠 ∧ 𝑇𝑟𝑢𝑐𝑘𝐼𝑛 𝑡, 𝑐, 𝑠 7.3

¬“ 0.0

First-order Algebraic Decision Diagrams (FOADDs)

• We want to compactly represent arbitrary case statements
• E.g.,

• Push down quantifiers, expose propositional structure ➝ convert into FOADD
∃𝑥. 𝐴 𝑥 ∨ ∃𝑥. 𝐴 𝑥 ∧ 𝐵 𝑥 ∧ ∀𝑦.¬𝐴 𝑦

Decision Structure

T. Braun - APA 70

𝑐𝑎𝑠𝑒 𝑠 =
∃𝑥. 𝐴 𝑥 ∨ ∀𝑦. 𝐴 𝑥 ∧ 𝐵 𝑥 ∧ ¬𝐴 𝑦 1

¬ ∃𝑥. 𝐴 𝑥 ∨ ∀𝑦. 𝐴 𝑥 ∧ 𝐵 𝑥 ∧ ¬𝐴 𝑦 0

𝑐𝑎𝑠𝑒 𝑠 =
𝑎 ∨ 𝑏 ∧ ¬𝑎 1

¬ 𝑎 ∨ 𝑏 ∧ ¬𝑎 0

Variable Variable ⇔ FOL KB

𝑎 ≡ ∃𝑥. 𝐴 𝑥
𝑏 ≡ ∃𝑥. 𝐴 𝑥 ∧ 𝐵 𝑥

𝑐𝑎𝑠𝑒 𝑠 =

𝑎

𝑏

1 0

𝑎

1 0
=

First-order context-specific independence

Results for SDP with FOADDs

• Encode case statements
with FOADDs
• Solid line: true case
• Dotted line: false case

• Use FOADD operations for
structured SDP
• E.g., Box World
• Using 𝛾 = 0.9

Decision Structure

T. Braun - APA 71

∃𝑏. 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

10 0
𝑟𝐶𝑎𝑠𝑒 𝑠 =

∃𝑏. 𝐵𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠

100 ∶ 𝑛𝑜𝑜𝑝

…

𝑣𝐶𝑎𝑠𝑒 𝑠 =

∃𝑏, 𝑡. 𝑇𝐼𝑛 𝑏, 𝑝𝑎𝑟𝑖𝑠, 𝑠 ∧ 𝐵𝑂𝑛 𝑏, 𝑡, 𝑠

89 ∶ 𝑢𝑛𝑙𝑜𝑎𝑑 𝑏, 𝑡 ∃𝑏, 𝑡. 𝐵𝑂𝑛 𝑏, 𝑡, 𝑠

80 ∶ 𝑑𝑟𝑖𝑣𝑒 𝑡, 𝑝𝑎𝑟𝑖𝑠 ∃𝑏, 𝑐. 𝐵𝐼𝑛 𝑏, 𝑐, 𝑠 ∧ ∃𝑡. 𝑇𝐼𝑛 𝑡, 𝑐, 𝑠

72 ∶ 𝑙𝑜𝑎𝑑 𝑏, 𝑡
Factored SDP for factored FOMDPs
[Sanner and Boutilier, 2007]

Correctness of SDP

• Show SDP for FOMDPs is correct w.r.t. ground MDP

Decision Structure

T. Braun - APA 72

FOMDP

Ground
MDP

FOMDP Value
Function

Ground MDP
Value Function

Lifted FOMDP Solution

Ground MDP Solution

Ground

Ground

Caveats of First-order Planning

• Many problems have topologies
• E.g., reachability constraints in logistics

• If topology not fixed a priori
• First-order solution must consider ∞ topologies
• In general case, leads to ∞ values / policies
• Universal rewards
• Value function must distinguish ∞ cases
• Policy will also likely be ∞

Decision Structure

T. Braun - APA 73

London
Paris

Rome
Berlin

Moscow
🚚

🚚 📦
📦

🛩

𝑟𝐶𝑎𝑠𝑒 𝑠 =
∀𝑏, 𝑐. 𝐷𝑒𝑠𝑡 𝑏, 𝑐 ⇒ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 1

¬ ∀𝑏, 𝑐. 𝐷𝑒𝑠𝑡 𝑏, 𝑐 ⇒ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 0

𝑉? 𝑠 =

∀𝑏, 𝑐. 𝐷𝑒𝑠𝑡 𝑏, 𝑐 ⇒ 𝐵𝑜𝑥𝐼𝑛 𝑏, 𝑐, 𝑠 1
One box not at destination 𝛾
Two boxes not at destination 𝛾'

⋮ ⋮
𝑡 − 1 boxes not at destination 𝛾?"#

Caveats of First-order Planning

• Unreachable states
• PDDL domains often under-constrained
• E.g., logistics: one box cannot be in two cities

at once
• Constraints implicitly obeyed in initial state
• Action effects cannot violate constraints
• Reachable legal states are small subset of all

states
• But (P)PDDL does not constrain legal states

• If no background theory to restrict legal
states
• First-order planning must solve for all states
• When initial state unknown

• Where majority of states are actually illegal
• First-order planning w/o initial state solves

more difficult problem than search-based
solutions
• Initial state contains implicit constraint

information
• Reachable state space is small subset of all

states

Decision Structure

T. Braun - APA 74

Suggests need for hybrid
first-order / search-based approaches

A Note on First-order Modelling in Reinforcement Learning

• Novel propositional situations worth exploring may be instances of a well-known context
in the relational setting ➝ exploitation promising
• E.g., household robot learning water-taps
• Having opened one or two water-taps in a kitchen, one can expect other water-taps in kitchens to work

similarly
⇒ Priority for exploring water-taps in kitchens in general reduced
⇒ Information gathered likely to carry over to water-taps in other places
vHard to model in propositional setting: each water-tap is novel

Decision Structure

T. Braun - APA 75

Interim Summary

• FOMDPs are one model for lifted decision-theoretic planning
• Exploit state and action abstraction for MDPs

• Use situation calculus specified action theory
• Use case statements to represent reward, probabilities
• Symbolic dynamic programming = lifted DP
• Use FOADDs to compactly represent case statements
• First-order context-specific independence to compactify FOADDs

Decision Structure

T. Braun - APA 76

Outline: Decision Making – Structure

Structure by Groups in the Agent Set
• Agent types
• Partitioned decPOMDPs

Structure by Features in the State Space
• Dynamic Bayesian networks
• Factored MDPs

Structure by Relations in the State Space
• Situation calculus
• First-order MDPs

⟹ Next: Human-awareness

Decision Structure

T. Braun - APA 77

