

Automated Planning and Acting Decision Making: Structure

living.knowledge

Tanya Braun Research Group Data Science, Computer Science Department

Content: Planning and Acting

- 1. With **Deterministic** Models
- 2. With Refinement Methods
- 3. With **Temporal** Models
- 4. With Nondeterministic Models
- 5. With **Probabilistic** Models

6. By Decision Making

- A. Foundations
- B. Extensions
- C. Structure
 - Lifted DecPOMDPs
 - Factored MDPs
 - First-order MDPs
- 7. Human-aware Planning

Outline: Decision Making – Structure

Structure by Groups in the Agent Set

- Agent types
- Partitioned decPOMDPs
- Structure by Features in the State Space
 - Dynamic Bayesian networks
 - Factored MDPs
- Structure by Relations in the State Space
 - Situation calculus
 - First-order MDPs

Example: Medical Nanoscale Systems

- Nanoscale systems regularly consist of > 10,000 nanoagents
 - Different types of agents: nanosensors, nanobots
- Application: DNA-based medical system
 - E.g., for diagnosis (modelled as an AND gate)
 - Nanosensors receptive to individual markers for a specific disease
 - Release individual tiles in presence of their individual markers
 - Tiles assemble themselves to form messages
 - Nanobots receptive to completely formed messages
 - Release markers of their own that signify presense of the disease
- Formal model necessary to argue about
 - Success rates
 - Sizes of agent sets

Example: Medical Nanoscale Systems as a DecPOMDP

- Set of agents *I* consisting of nanosensors, nanobots
- Observations O_i: markers / messages present (or not)
 - Noisy process → probabilistic behaviour
- Actions A_i: release of tiles / markers (or not)
 - Noisy process → probabilistic behaviour
- Environment → probabilistic behaviour
 - Presence in general of agents, markers, tiles, messages, or position more specifically → movement over time
- Reward: Qualitative measure
 - Positive diagnosis only in presence of disease

Reprise: Worst-case Complexity of DecPOMDP

- Space complexity
 - Transition model: $\mathcal{O}(s \cdot s \cdot a^N)$
 - Sensor model: $\mathcal{O}(s \cdot o^N)$ or $\mathcal{O}(s \cdot o^N \cdot a^N)$
 - Reward function: $\mathcal{O}(s)$ or $\mathcal{O}(s \cdot a^N)$
- Runtime complexity of brute-force search
 - Evaluation cost of a joint policy: $O(s \cdot o^{Nh})$
 - Policy space: $\mathcal{O}\left(\frac{N(o^{h}-1)}{o^{-1}}\right)$

- Notations
 - s = |S|
 - State space size
 - $a = \max_{i \in I} |A_i|$
 - Largest individual action space size
 - $o = \max_{i \in I} |O_i|$
 - Largest individual action space size
 - h
 - Horizon

Agent Types & Partitioned DecPOMDPs

- Types: Agents with the same sets of actions and observations
 - E.g., two nanosensors 1,2 receptive to the same marker and releasing the same tile
 - $A_1 = A_2 = \{0,1\}; 0: \text{ do nothing, } 1: \text{ release tile}$
 - $O_1 = O_2 = \{0,1\}; 0: marker not present, 1: marker present$
- → Partitions the set of agents regarding actions, observations
 - Agent set $I = \{I_1, \dots, I_K\}$ with I_1, \dots, I_K a partitioning of I $(I = \bigcup_k I_k, I_k \cap I_{k'} = \emptyset, I_k \neq \emptyset)$
 - For each partition I_k : one set of actions A_k , one set of observations O_k for all agents in I_k
 - Expectation that $K \ll N$
- Additional constraints / assumptions on same behaviour in T, R, Ω
- → Partitions the set of agents completely, enabling more compact encodings
- How?

Counting DecPOMDPs

- Counting constraint / assumption in T, R, Ω
 - Formal: All permutations $\sigma(\vec{a}_k)$ of a partition action \vec{a}_k map to the same probability
 - Enables counting how many agents do something and not which in particular did
 - Encode in a histogram $[#(a_1), ..., #(a_l)]$ how many agents did actions $A_k = \{a_1, ..., a_l\}$
 - Number of histograms $\binom{|I_k|+l-1}{l-1} \leq |I_k|^l$

S	S'	$A_1^{\#}$	$\overline{T}(s,s',a_1') = P(s' s,a_1')$
0	0	[0,2]	0.01
0	0	[1,1]	0.02
0	0	[2,0]	0.03
0	1	[0,2]	0.015
0	1	[1,1]	0.012
0	1	[2,0]	0.01
1	0	[0,2]	0.01
		• • •	

S	S'	A_1	A_2	$T(s, s', a_1, a_2) = P(s' s, a_1, a_2)$	
0	0	0	0	0.01	
0	0	0	1	0.02	
0	0	1	0	0.02	
0	0	1	1	0.03	
0	1	0	0	0.015	
0	1	0	1	0.012	
0	1	1	0	0.012	
0	1	1	1	0.01	
1	0	0	0	0.01	
			• • •		

Counting DecPOMDPs

- Complexity-wise, with $n = \max_{k} |I_k|$
 - Transition model: $\mathcal{O}(s \cdot s \cdot n^{Ka})$
 - Sensor model: $\mathcal{O}(s \cdot n^{Ko})$
 - Reward function: $\mathcal{O}(s)$
 - Evaluation cost: $O(s \cdot n^{Koh})$
 - Reduction if $K \ll N$
- Unfortunately, Policy space: $O\left(n^{\frac{aK(n^{ho}-1)}{n^{o}-1}}\right)$
- Ongoing research how to use counting efficiently

S	S'	$A_1^{\#}$	$\overline{T}(s, s', a_1')$ = $P(s' s, a_1')$
0	0	[0,2]	0.01
0	0	[1,1]	0.02
0	0	[2,0]	0.03
0	1	[0,2]	0.015
0	1	[1,1]	0.012
0	1	[2,0]	0.01
1	0	[0,2]	0.01
		0 0 0	

S	S'	A_1	A_2	$T(s, s', a_1, a_2) = P(s' s, a_1, a_2)$
0	0	0	0	0.01
0	0	0	1	0.02
0	0	1	0	0.02
0	0	1	1	0.03
0	1	0	0	0.015
0	1	0	1	0.012
0	1	1	0	0.012
0	1	1	1	0.01
1	0	0	0	0.01
			0 0 0	

- Isomorphic constraint / assumption in *T*, *R*, Ω: Conditional independence between agents of a partition given joint state
 - \rightarrow Enables factorisation of T, R, Ω
 - E.g., $T(s, s', a_1, a_2) = T_1(s, s', a_1) \cdot T_2(s, s', a_2) = \prod_{i \in I_k} T'(s, s', a_i)$

 $T_1 = T_2 = T'$

- Space complexities
 - Transition model: $\mathcal{O}(s \cdot s \cdot a^{K})$
 - Sensor model: $\mathcal{O}(s \cdot o^K)$
 - Reward function: O(s)
- Ongoing research how to solve isomorphic DecPOMDPs efficiently

S	S'	A _i	$T'(s, s', a_i) = P(s' s, a_i)$		
0	0	0	0.01		
0	0	1	0.03		
0	1	0	0.015		
0	1	1	0.01		
1	0	0	0.01		
:					

Interim Summary: Structure by Groups in the Agent Set

- Types of agents with identical action and observation space
- Partitioned DecPOMDP if agent types + constraints of transition / sensor / reward function
- Counting DecPOMDP
 - Permutations of actions of agents of the same partition map to the same probability / reward
 - Count occurrences → encode in histograms
- Isomorphic DecPOMDP
 - Further independences between agents of a partition
- Space complexity polynomial at worst but using compact encoding for efficient decision making not yet solved

Outline: Decision Making – Structure

Structure by Groups in the Agent Set

- Agent types
- Partitioned decPOMDPs

Structure by Features in the State Space

- Dynamic Bayesian networks
- Factored MDPs
- Structure by Relations in the State Space
 - Situation calculus
 - First-order MDPs

State Space

- So far: State space treated as a black box with a set of different states as domain of a random variable *S*
- However, state space often has structure
 - *n* different features that describe a state space
 - Encode in *n* individual random variables S_i with respective domains dom $(S_i) = \{v_1, \dots, v_{d_i}\}$
 - State space size then describable as $|S| = \prod_i d_i \le d^n$, $d = \max_i d_i$
 - I.e., exponential in the number of random variables
- Given (conditional) independences between different S_i , factorisation of probability distributions in model possible
 - Applicable to MDPs, POMDPs, DecPOMDPs, partitioned DecPOMDPs
 - Most work exists for factored MDPs (also the simplest case to consider)

Factorisation in General

- (Conditional) independences:
 - $A \perp B$ (A, B independent) $\Leftrightarrow P(A, B) = P(A) \cdot P(B)$
 - $A \perp B \mid C (A, B \text{ conditionally independent given } C) \Leftrightarrow P(A, B \mid C) = P(A \mid C) \cdot P(B \mid C)$
 - Alternate version: $A \perp B \mid C \Leftrightarrow P(A \mid B, C) = P(A \mid C)$
- (Conditional) independences allow for factorising a distribution into smaller factors
 - In general: Factorisation of a full joint probability distribution $P(S_1, ..., S_n)$ into m factors over subsets C of random variables that form $P(S_1, ..., S_n)$ after multiplication (and normalisation):

$$P(S_1, \dots, S_n) = \frac{1}{Z} \prod_{j=1}^m \phi(C_j)$$

- Where C_j refers to sets of random variables that are mutually dependent on each other
- Memory complexity: $\mathcal{O}(d^n)$ vs. $\mathcal{O}(m \cdot d^{|\mathcal{C}_{max}|})$

Probabilistic Graphical Models (PGMs)

- PGMs use a graph structure to represent dependences
 - Common formalism: Bayesian network (BN) B
 - Directed acyclic graph
 - Nodes: random variables S_i
 - Edges: if S_i depends on S_j , edge $S_j \rightarrow S_i$
 - Factors: conditional probability distributions (CPDs) $\forall i P(S_i | pa(S_i))$
 - Roots: $pa(S_i) = \emptyset \rightarrow Prior distributions P(S_i)$
 - Usually not depicted in graph; have to be denoted somewhere
 - Semantics: $P(S_1, ..., S_n) = \prod_{i=1}^n P(S_i | pa(S_i))$
 - Not further considered here: Undirected version with potential functions ϕ as factors:
 - Factor graphs, Markov networks
 - Same semantics, different graphical representation

Full joint probability distribution size:
$$d^5$$

Sizes of CPDs: $d + d + d^3 + d^2 + d^2$
Given $d = 2$: $2^5 = 32$ vs. 20
(As probabilities add to 1:
-1 for each probability distribution in each CPD,
i.e., $1 + 1 + 4 + 2 + 2 = 10$)

size

Dynamic Bayesian Networks

- MDP models a sequential, i.e., temporal, stationary, Markovian probabilistic setting
 - Factorisation also needs to encode a sequential, stationary, Markovian probabilistic setting
- Popular modeling formalism used: Dynamic BN (DBN) is a two-tuple $(B^{(0)}, B^{(\rightarrow)})$
 - Template variables S_i indexed by time step τ in BNs \rightarrow Can be instantiated for particular time steps t
 - BN $B^{(0)}$ for time step 0 to encode
 - If set to uniform distributions or using DBN for fix point calculations, can be safely ignored
 - BN $B^{(\rightarrow)}$ for time step τ with connections from time step $\tau 1$ (copy pattern)
 - Markov-1 \rightarrow Only connections from $\tau 1$ to τ
 - Stationary $\rightarrow B^{(\rightarrow)}$ identical for all $t \in \{1, ...\}$
 - Semantics: unroll for *T* time steps and multiply

Dynamic Bayesian Networks: Example

 Left: vehicle localization task, where a moving car tries to track its current location using the data obtained from a, possibly faulty, sensor

• Right: Toy example of a special case of a DBN with one latent and one observable variable (*hidden Markov model, HMM*)

$P(r^{(t)} R^{(t-1)})$	$R^{(t)}$	$P(u^{(t)} K$
0.7	true	0.9
0.3	false	0.2

true

false

Factored MDPs

- MDP with its state space S structured according to S_1, \ldots, S_n , which in general means that
 - Transition probability distribution T(S', S, A) = P(S'|S, A) is given by $T(S'_1, \dots, S'_n, S_1, \dots, S_n, A) = P(S'_1, \dots, S'_n|S_1, \dots, S_n, A)$
 - Or using the template notation: $T(S^{(\tau)}, S^{(\tau-1)}, A^{(\tau-1)}) = P(S^{(\tau)}|S^{(\tau-1)}, A^{(\tau-1)})$ is given by $T(S_1^{(\tau)}, \dots, S_n^{(\tau)}, S_1^{(\tau-1)}, \dots, S_n^{(\tau-1)}, A^{(\tau-1)}) = P(S_1^{(\tau)}, \dots, S_n^{(\tau)}|S_1^{(\tau-1)}, \dots, S_n^{(\tau-1)}, A^{(\tau-1)})$
 - Note that the overall size of T does not increase as the state space size is identical
 - Given that S_1, \ldots, S_n represent features of (hopefully weakly) connected parts of a system, T can be factored according to (conditional) independences \rightarrow often represented using a DBN
 - Factorisation of *T*:

$$T(S', S, A) = P(S'_1, \dots, S'_n | S_1, \dots, S_n, A) = \prod_{i=1}^n P(S'_i | pa(S'_i)) =: T_B$$

Factored MDPs: Actions and Rewards

- To be correct, the DBN just described is a standard DBN extended with random variable nodes for actions, whose assignment we want to determine, and reward nodes to denote that a reward function outputs a reward depending on the state (and action)
 - BN extended with so-called decision and utility nodes called influence or decision diagram

Side note: Since the state in MDPs is fully observable, every random variable in a DBN is observable, which is not the general case for DBNs, where usually there is a set of latent variables, which are never observed and as such often queried, and a set of evidence variables, which are usually observed (save for sensor failures).

Factored MDPs: Actions and Rewards

- What about rewards? If the reward remains a function over the complete state space without any factorisation, we have not gained much
- But remember: Multi-attribute utility theory
 - Reward function with preference independence between subsets of random variables
 → additive reward function
 - Factorisation of *R*:

$$R(S) = R(S_1, ..., S_n) = \sum_{j=1}^{m} R_j(C_j)$$

- Best case $R(S_1, ..., S_n) = \sum_{i=1}^n R_i(S_i)$
- Compare factorisation of $T: T(S', S, A) = P(S'_1, \dots, S'_n | S_1, \dots, S_n, A) = \prod_{i=1}^n P(S'_i | pa(S'_i))$

Factored MDPs: Space Complexity

- With a structured state space, representation size down
 - Given
 - State space with *n* features and a maximum domain size of *d*
 - DBN over *n* features and a maximum domain size of *d*, with $c = \max_{i \in \{1,...,n\}} |pa(S_i)| + 1$
 - Given action space of size *a*
 - Space complexity
 - Transition function T(S', S, A): $\mathcal{O}(d^n \cdot a)$ vs. $\mathcal{O}(n \cdot d^c \cdot a)$
 - Reward function R(S): $\mathcal{O}(d^n)$ vs. $\mathcal{O}(n \cdot d^c)$

Solving Factored MDPs

• Bellman equation:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{\substack{s' \in \text{dom}(S)}} P(s'|a,s)U(s')$$

Becomes
$$J(s_1, \dots, s_n)$$
$$= \sum_{j=1}^m R_j(C_j) + \gamma \max_{a \in A(s_1,\dots,s_n)} \sum_{\substack{s'_1 \in \text{dom}(S_1)}} \dots \sum_{\substack{s'_n \in \text{dom}(S_n)}} \prod_{i=1}^N P\left(s_i^{(\tau)} \middle| \text{pa}\left(s_i^{(\tau)}\right)\right) U(s'_1,\dots,s'_n)$$

- Unfortunately, a factored MDP does not induce a factored value function U
 - One way to go: concentrate on value functions that have a factored representation
 - Approximate the unfactored value function with a factored one

Linear Value Functions

- Linear value function \mathcal{V} over a set of basis functions $H = \{h_1, \dots, h_k\}$
 - Function \mathcal{V} that can be written as $\mathcal{V}(s_1, \dots, s_n) = \sum_{j=1}^k w_j \cdot h_j(s_1, \dots, s_n)$ for some coefficients $w = (w_1, \dots, w_k)'$
 - Let \mathcal{H} be the linear subspace of \mathbb{R}^n spanned by H
 - Let H be an $n \times k$ matrix whose columns are the k basis functions viewed as vectors
 - Then, \mathcal{V} can be written as Hw
 - Equivalent expressive power to, e.g., single layer neural network
 - Features corresponding to the basis functions
 - Optimise the coefficients w to obtain a good approximation for true value function
 - Separates the problem of defining a reasonable space of features and the induced space \mathcal{H} , from the problem of searching within the space
 - Former problem is typically purview of domain experts, latter is focus of analysis + algorithmic design

Decision Structure

Approximate Policy Iteration with Linear Value Functions

- Restrict policy iteration algorithm to only use value functions ${\mathcal V}$ within the provided ${\mathcal H}$
 - Policy improvement as before
 - Policy evaluation changes
 - Whenever policy iteration takes a step that results in a \mathcal{V} outside of \mathcal{H} , project result back into \mathcal{H} by finding a value function within \mathcal{H} closest to \mathcal{V}
- Projection operator Π
 - Mapping Π : $\mathbb{R}^n \to \mathcal{H}$
 - Π is said to be a projection w.r.t. a norm $\|\cdot\|$ if $\Pi \mathcal{V} = Hw^*$ such that $w^* \in \arg \min \|Hw \mathcal{V}\|$
 - Π is the linear combination of the basis functions that is closest to $\mathcal V$ w.r.t. chosen norm

Approximate Policy Iteration with Linear Value Functions

- Policy evaluation for a policy $\pi^{(t)}$
 - Value function the value of acting according to the current policy $\pi^{(t)}$ is approximated through a linear combination of basis functions
- Given $\pi^{(t)}$, i.e., actions are fixed,
 - $T(S', S, A) = T(S', S, \pi^{(t)}) = T(S', S)$
- Policy evaluation can be written in terms of matrices and vectors
 - \mathcal{V} and R as n-dimensional vectors and T as an $n \times n$ -dimensional matrix, denoted V, R, T
 - Then, $\mathcal{V} = \mathbf{R} + \gamma \mathbf{T} \mathcal{V}$
 - System of linear equations with one equation for each state \rightarrow approximate solution within \mathcal{H} : $w^{(t)} = \arg\min ||Hw - (R + \gamma THw)|| = \arg\min ||(H - \gamma TH)w^{(t)} - R||$
 - Problem: How to choose $\|\cdot\|$ wisely, i.e., providing error bounds?

Approximate Policy Iteration with Linear Value Functions

- Convergence and error analysis for MDPs use max-norm (\mathcal{L}_{∞}) \rightarrow Tie projection operator to \mathcal{L}_{∞} norm
- Minimising the \mathcal{L}_{∞} norm studied in optimisation literature as the problem of finding the Chebyshev solution to an overdetermined linear system of equations
 - I.e., finding w^{*} such that $w^* \in \arg \min_w ||Cw b||_{\infty}$
 - $C = (H \gamma TH), b = R$
 - Algorithm due to Stiefel (1960) solves problem by linear programming:
 - Variables: $w_1, \ldots, w_k, \phi;$
 - Minimise: ϕ ;
 - Subject to:
- $\phi \ge \sum_{j=1}^{k} c_{ij} \cdot w_j b_i \quad \text{and} \\ \phi \ge b_i \sum_{j=1}^{k} c_{ij} \cdot w_j, \quad i = 1, \dots, n.$

Only k + 1 variables but 2n constraints: Impractical in general but in factored MDPs with linear value functions, constraints can be represented efficiently \rightarrow tractable

• At solution (w^*, ϕ^*) , w^* is the Chebyshev solution and ϕ^* is the \mathcal{L}_∞ projection error

Factored Value Functions

- Factored (linear) value function
 - Linear function over the basis set h_1, \dots, h_k where scope of each basis function h_i restricted to some subset of variables $C_i \subset S$
 - Goal: the scopes of h_1, \ldots, h_k correspond to cliques in graph of DBN representing transition model T
- Not considered so far: How can we use this factored function to our advantage in policy evaluation where we need to
 - Solve the value function as a combination of h_1, \ldots, h_k and
 - Problem: Sum over exponential state space
 - Optimise the weights to have a good approximation
 - Problem: LP with exponentially many constraints

Factored Value Functions: Use in Q Value Function

• Efficient computation of value function using h_1, \ldots, h_k ($s = s_1, \ldots, s_n$) using Q value function

$$Q(s,a) = R(s,a) + \gamma \sum_{\substack{s' \in S \\ s' \in S}} P(s'|s,a) \mathcal{V}(s) = R(s,a) + \gamma \sum_{\substack{s' \in S \\ s' \in S}} P(s'|s,a) \sum_{i} w_i h_i(s')$$

Define $G(s,a)$ with $g_i(s,a) \coloneqq \sum_{s' \in S} P(s'|s,a) h_i(s')$
 $G(s,a) \coloneqq \sum_{\substack{s' \in S \\ s' \in S}} P(s'|s,a) \sum_{i} w_i h_i(s') = \sum_{i} w_i \sum_{\substack{s' \in S \\ s' \in S}} P(s'|s,a) h_i(s') = \sum_{i} w_i g_i(s,a)$

• Can compute each basis function separately

Factored Value Functions: Use in Q Value Function

- Consider $g(\mathbf{s}, a) \coloneqq \sum_{\mathbf{s}' \in \mathbf{S}} P(\mathbf{s}' | \mathbf{s}, a) h(\mathbf{s}') = T_B h$
 - P(s'|s, a) factored as a DBN T_B
 - *h* has restricted scope over *C*
- Sum over C' conditioned on ancestors $R = \operatorname{anc}(C')$ of C' in T_B

$$g_i(\mathbf{s}, a) = \sum_{\mathbf{s}' \in \mathbf{S}'} P(\mathbf{s}' | \mathbf{s}, a) h_i(\mathbf{s}') = \sum_{\mathbf{s}' \in \mathbf{S}'} P(\mathbf{s}' | \mathbf{s}, a) h_i(\mathbf{c}')$$
$$= \sum_{\mathbf{c}' \in \mathbf{C}'} P(\mathbf{c}' | \mathbf{s}, a) h_i(\mathbf{c}') \sum_{\mathbf{r}' \in \mathbf{S}' \setminus \mathbf{C}'} P(\mathbf{r}' | \mathbf{s}, a) = \sum_{\mathbf{c}' \in \mathbf{C}'} P(\mathbf{c}' | \mathbf{r}, a) h_i(\mathbf{c}')$$
$$= 1$$

• Depends on the number of values \mathbf{R} can take, which depends on \mathbf{C}' and complexity of dynamics represented in T_B , i.e., connectivity of graph B

Factored Value Functions: Use in LP with Exponentially Many Constraints

- Constraints of form $\phi \ge \sum_i w_i c_i(s) b(s), \forall s \in S$
 - ϕ , w_1 , ..., w_k free variables
 - *s* ranges over all states
- Can be replaced by one equivalent non-linear constraint $\phi \ge \max_{i} \sum_{i} w_{i}c_{i}(s) b(s)$
 - Tackle problem of representing non-linear constraint by
 - Computing maximum assignment for a fixed set of weights
 - Simpler problem: Given fixed weights w_i , compute $\phi^* = \max_{s} \sum_{i} w_i c_i(s) b(s)$
 - Representing non-linear constraint by small set of linear constraints using a construction called factored LP

Factored Value Functions: Use in LP with Exponentially Many Constraints

- Computing maximum assignment for a fixed set of weights
 - Given fixed weights w_i , compute $\phi^* = \max_{s} \sum_i w_i c_i(s) b(s)$
 - Remember: Each c(s) involves only a subset C of S
- Follow idea of variable elimination in Bayesian networks
 - Eliminate one variable $S \in \mathbf{S}$ at a time by
 - Combining all functions involving *S* and
 - Replacing the result with a new function in which we keep only the mappings for each $s \setminus \{S\}$ where S leads to a maximum value
 - Cost exponential in the width of network (largest number of variables combined in a function during overall computation)

Factored Value Functions: Use in LP with Exponentially Many Constraints

- Factored LP to construct a (polynomial) set of constraints for the exponential set of constraints $\phi \ge \sum_i w_i c_i(s) + \sum_j b_j(s)$ to use to compute max-norm projections
 - Set of constraints $\Omega = \emptyset$, set of intermediate functions $\mathcal{F} = \emptyset$
 - For each c_i with scope **Z**:
 - For each assignment z to Z, create new LP variable $u_z^{f_i}$, add $u_z^{f_i} = w_i c_i(z)$ to Ω and $f_i = w_i c_i(z)$ to \mathcal{F}
 - For each b_j with scope z:
 - For each assignment z to Z, create new LP variable $u_z^{f_j}$, add $u_z^{f_j} = b_j(z)$ to Ω and $f_j = b_j(z)$ to \mathcal{F}
 - Eliminate all variables $S \in \{S_1, \dots, S_n\}$
 - Select functions F from \mathcal{F} containing S
 - Define a new function *e* over all variables *Z* in *F* minus *S* to represent $\max_{s} \sum_{f \in F} f$ to replace *F* in *F*
 - For each assignment z to Z, add constraint $u_z^e \ge \sum_{f \in F} u_{z_f}^f$

Factored POMDP

- Difference between MDP and POMDP: partial observability of state
 - State S no longer directly observable \rightarrow latent
 - Additional sensor model $\Omega(O, S) = P(O|S)$ for observation O
- Given a factorisation of state space
 - Sensor model becomes $\Omega(O, S_1, \dots, S_n) = P(O|S_1, \dots, S_n)$
 - Alternate version using template notation: $\Omega(O^{\tau}, S_1^{\tau}, \dots, S_n^{\tau}) = P(O^{\tau} | S_1^{\tau}, \dots, S_n^{\tau})$
 - O could also be possibly factored if more than one observation signal incoming
 - $\Omega(O_1^{\tau}, \dots, O_k^{\tau}, S_1^{\tau}, \dots, S_n^{\tau}) = P(O_1^{\tau}, \dots, O_k^{\tau}|S_1^{\tau}, \dots, S_n^{\tau})$
 - Given (conditional) independences, Ω can also be factored like T and represented by a BN B^{τ} or incorporated into the DBN (B_0, B_{\rightarrow}) representing T

Graph representation of a POMDP

Interim Summary: *Structure by Features in the State Space*

- State space characterised by set of attributes
 - (Conditional) independences allow for factorisation of functions in MDP
 - Probabilistic graphical models represent such factorisations
- Factored MDP: MDP with a DBN as a representation of the transition model
 - Reduction in space complexity
 - Factored transition function does not lead to factored value function
- Factored (linear) value functions over a set of basis functions
 - Enable computing policy evaluation efficiently
- Approximate policy iteration
 - Project results outside of subspace spanned by basis functions back into subspace

Outline: Decision Making – Structure

Structure by Groups in the Agent Set

- Agent types
- Partitioned decPOMDPs
- Structure by Features in the State Space
 - Dynamic Bayesian networks
 - Factored MDPs

Structure by Relations in the State Space

- Situation calculus
- First-order MDPs

Decision Structure

Acknowledgement

• Thanks to Scott Sanner!

Motivation: Planning Languages

- Common languages:
 - STRIPS
 - PDDL
 - More expressive than STRIPS
 - For example, universal and conditional effects:

```
(:action put-all-blue-blocks-on-table
            :parameters ( )
            :precondition ( )
            :effect (forall (?b)
                  (when (Blue ?b)
                        (not (OnTable ?b))))))
```

- General Game Playing (GGP)
 - One or more agents

Motivation: Benefits of Relational Languages

- STRIPS, PDDL, GGP are relational languages...
 - Refer to relational fluents:
 - E.g., *BoxIn*(?*b*,?*c*), *OnTable*(?*b*)
 - Specify relations between objects
 - Change over time
- Use first-order logic to specify...
 - Action preconditions
 - Action effects
 - Goals / rewards
 - E.g., (forall (?b ?c) ((Destination ?b ?c) ⇒ (BoxIn ?b ?c)))
- Are domain-independent and often compact!

Motivation: How to Solve?

- Relational planning problem
 - E.g., box world
 Paris
 Paris
 Moscow
 Berlin
 Rome

(:action load-box-on-truck-in-city

:parameters (?b - box ?t - truck ?c - city)

:precondition (and (BoxIn ?b ?c) (TruckIn ?t ?c))

:effect (and (On ?b ?t) (not (BoxIn ?b ?c))))

- Solve ground problem for each domain instance?
 - E.g., instance with 3 trucks 🖊 🖊 🖊 2 planes 🆄 🖄, 3 boxes 📦 📦
- Or solve lifted specification for *all* domains at once?

Box World: Full (Relational) Specification

- Relational fluents: *BoxIn(Box, City), TruckIn(Truck, City), BoxOn(Box, Truck)*
- Goal: [∃Box : b.BoxIn(b, paris)]
- Actions:
 - load(Box : b,Truck : t):
 - Effects:
 - when $[\exists City : c. BoxIn(b, c) \land TruckIn(t, c)]$ then [BoxOn(b, t)]
 - $\forall City : c.$ when $[BoxIn(b,c) \land TruckIn(t,c)]$ then $[\neg BoxIn(b,c)]$
 - unload(Box : b,Truck : t):
 - Effects:
 - $\forall City : c.$ when $[BoxOn(b,t) \land TruckIn(t,c)]$ then [BoxIn(b,c)]
 - when $[\exists City : c. BoxOn(b,t) \land TruckIn(t,c)]$ then $[\neg BoxOn(b,t)]$
 - drive(Truck : t, City : c):
 - Effects:
 - when $[\exists City : c_1.TruckIn(t, c_1)]$ then [TruckIn(t, c)]
 - $\forall City : c_1.when [TruckIn(t, c_1)]$ then $[\neg TruckIn(t, c_1)]$

Solving Ground Box World

- Apply planner to Box World grounded with respect to domain, e.g.,
 - Domain object instantiations:
 - $Box = \{box_1, box_2, box_3\}, Truck = \{truck_1, truck_2\}, City = \{paris, berlin, rome\}$
 - Ground fluents:
 - BoxIn: {BoxIn(box₁, paris), BoxIn(box₂, paris), BoxIn(box₃, paris), BoxIn(box₁, berlin), BoxIn(box₂, berlin), BoxIn(box₁, rome), BoxIn(box₂, rome), BoxIn(box₃, rome)}
 - TruckIn: {TruckIn(truck₁, paris), TruckIn(truck₂, paris), TruckIn(truck₁, berlin), TruckIn(truck₂, berlin), TruckIn(truck₁, rome), TruckIn(truck₂, rome)}
 - BoxOn: {BoxOn(box₁, truck₁), BoxOn(box₂, truck₁), BoxOn(box₃, truck₁), BoxOn(box₁, truck₂), BoxOn(box₂, truck₂), BoxOn(box₃, truck₂)}
 - Ground actions:
 - load: {load(box₁, truck₁), load(box₂, truck₁), load(box₃, truck₁), load(box₁, truck₂), load(box₂, truck₂), load(box₃, truck₂)}
 - unload: {unload(box₁, truck₁), unload(box₂, truck₁), unload(box₃, truck₁), unload(box₁, truck₂), unload(box₂, truck₂), unload(box₃, truck₂)}
 - drive: {drive(truck₁, paris), drive(truck₂, paris), drive(truck₁, berlin), drive(truck₂, berlin), drive(truck₁, rome), drive(truck₂, rome)}
 - Goal: [BoxIn(box₁, paris) ∨ BoxIn(box₂, paris) ∨ BoxIn(box₃, paris)]

Goal description exponential in number of nested quantifiers

Number of actions

exponential in arity

Number of fluents exponential in arity

A First-order Solution to Box World

 Derive solution deductively at lifted PDDL level → Optimal for any domain instantiation! if (∃b. BoxIn(b, paris)) then

do *noop*

```
else if (\exists b^*, t^*. TruckIn(t^*, paris) \land BoxOn(b^*, t^*)) then
do unload(b^*, t^*)
```

```
else if (\exists b, c, t^*. BoxOn(b, t^*) \land TruckIn(t, c)) then
do drive(t^*, paris)
```

```
else if (\exists b^*, c, t^*. BoxIn(b^*, c) \land TruckIn(t^*, c)) then
do load(b^*, t^*)
```

```
else if (\exists b, c_1^*, t^*, c_2. BoxIn(b, c_1^*) \land TruckIn(t^*, c_2)) then
do drive(t^*, c_1^*)
```

else do noop

• Great, but how do I obtain this solution?

Situation Calculus

- Logic formalism designed for representing and reasoning about dynamic domains
 - First introduced by John McCarthy in 1963
- Basic elements
 - Actions that can be performed in the world
 - Situations
 - Fluents that describe the state of the world
- Domain
 - Action precondition axioms, one for each action
 - Successor state axioms, one for each fluent
 - Axioms describing the world in various situations
 - Foundational axioms of the situation calculus: situations are histories, induction on situations

Situation Calculus: Ingredients

- Actions
 - First-order terms with action parameters
 - E.g., load(b,t), unload(b,t), drive(t,c)
- Situations
 - Term that encoes action history
 - E.g., *s*, *s*₀, *do*(*load*(*b*, *t*), *s*), *do*(*load*(*b*, *t*), *drive*(*t*, *c*), *s*)
- Fluents
 - Relation whose truth value varies between situations
 - E.g., BoxOn(b,t,s), TruckIn(t,c,s), Box(t,c,s)
- Effects?

Situation Calculus: PDDL to Effects

- Translate action effects into positive and negative effect axioms
 - load(Box : b,Truck : t):
 - when $[\exists City : c. BoxIn(b,c) \land TruckIn(t,c)]$ then [BoxOn(b,t)]
 - $\forall City : c.$ when $[BoxIn(b,c) \land TruckIn(t,c)]$ then $[\neg BoxIn(b,c)]$
 - unload(Box : b,Truck : t):
 - $\forall City : c.$ when $[BoxOn(b,t) \land TruckIn(t,c)]$ then [BoxIn(b,c)]
 - when $[\exists City : c. BoxOn(b, t) \land TruckIn(t, c)]$ then $[\neg BoxOn(b, t)]$
 - drive(Truck : t, City : c):
 - when $[\exists City : c_1.TruckIn(t, c_1)]$ then [TruckIn(t, c)]
 - $\forall City : c_1. when [TruckIn(t, c_1)]$ then $[\neg TruckIn(t, c_1)]$

 $[\exists c. a = load(b,t) \land BoxIn(b,c,s) \land TruckIn(t,c,s)]$ $\Rightarrow BoxOn(b,t,do(a,s))$

 $[\exists t. a = load(b,t) \land BoxIn(b,c,s) \land TruckIn(t,c,s)]$ $\Rightarrow \neg BoxIn(b,c,do(a,s))$

- $[\exists t. a = unload(b,t) \land BoxOn(b,t,s) \land TruckIn(t,c,s)]$ $\Rightarrow BoxIn(b,c,do(a,s))$
- $[\exists c. a = unload(b,t) \land BoxOn(b,t,s) \land TruckIn(t,c,s)]$ $\Rightarrow \neg BoxOn(b,t,do(a,s))$
- $[\exists c_1. a = drive(t, c) \land TruckIn(t, c_1, s)]$ $\Rightarrow TruckIn(t, c, do(a, s))$
- $[\exists c. a = drive(t, c) \land TruckIn(t, c_1, s)]$ $\Rightarrow \neg TruckIn(t, c_1, do(a, s))$

Situation Calculus: PDDL to Effects

- Use rule to combine multiple effects $C_1 \Rightarrow F$, $C_2 \Rightarrow F$ over the same fluent F into effect axioms: $\gamma_F^+(\vec{x}, a, s) \Rightarrow F(\vec{x}, do(a, s)), \gamma_F^-(\vec{x}, a, s) \Rightarrow F(\vec{x}, do(a, s))$
 - Rule: $[(C_1 \Rightarrow F) \land (C_2 \Rightarrow F)] \equiv [(C_1 \lor C_2) \Rightarrow F]$
 - As a sort of shorthand notation
 - E.g.,
 - $[\exists c. a = load(b,t) \land BIn(b,c,s) \land TIn(t,c,s)] \Rightarrow BOn(b,t,do(a,s)) \rightarrow \gamma^+_{BOn}(\vec{x},a,s) \Rightarrow BOn(\vec{x},do(a,s))$
 - $[\exists c. a = unload(b, t) \land BOn(b, t, s) \land TIn(t, c, s)] \Rightarrow \neg BOn(b, t, do(a, s))$ $\rightarrow \gamma_{BOn}(\vec{x}, a, s) \Rightarrow \neg BOn(\vec{x}, do(a, s))$
 - $[\exists t. a = unload(b, t) \land BOn(b, t, s) \land TIn(t, c, s)] \Rightarrow BIn(b, c, do(a, s)) \rightarrow \gamma^+_{BIn}(\vec{x}, a, s) \Rightarrow BIn(\vec{x}, do(a, s))$
 - $[\exists t. a = load(b, t) \land BIn(b, c, s) \land TIn(t, c, s)] \Rightarrow \neg BIn(b, c, do(a, s)) \rightarrow \gamma_{BIn}^{-}(\vec{x}, a, s) \Rightarrow \neg BIn(\vec{x}, do(a, s))$
 - $[\exists c_1. a = drive(t,c) \land TIn(t,c_1,s)] \Rightarrow TIn(t,c,do(a,s)) \rightarrow \gamma^+_{TIn}(\vec{x},a,s) \Rightarrow TIn(\vec{x},do(a,s))$
 - $[\exists c. a = drive(t, c) \land TIn(t, c_1, s)] \Rightarrow \neg TIn(t, c_1, do(a, s)) \rightarrow \gamma_{TIn}^-(\vec{x}, a, s) \Rightarrow \neg TIn(\vec{x}, do(a, s))$

Frame Problem

- Positive and negative effect axioms specify what changes
 - $\gamma^+_{BOn}(\vec{x}, a, s) \Rightarrow BOn(\vec{x}, do(a, s))$
 - $\gamma_{BIn}^+(\vec{x}, a, s) \Rightarrow BIn(\vec{x}, do(a, s))$
 - $\gamma_{TIn}^+(\vec{x}, a, s) \Rightarrow TIn(\vec{x}, do(a, s))$

$$\begin{aligned} \gamma_{BOn}^{-}(\vec{x}, a, s) &\Rightarrow \neg BOn(\vec{x}, do(a, s)) \\ \gamma_{BIn}^{-}(\vec{x}, a, s) &\Rightarrow \neg BIn(\vec{x}, do(a, s)) \\ \gamma_{TIn}^{-}(\vec{x}, a, s) &\Rightarrow \neg TIn(\vec{x}, do(a, s)) \end{aligned}$$

- Assume completeness regarding these effect axioms:
 - That is, assume that $\gamma_F^+(\vec{x}, a, s) \Rightarrow F(\vec{x}, do(a, s)), \gamma_F^-(\vec{x}, a, s) \Rightarrow \neg F(\vec{x}, do(a, s))$ characterise all the conditions under which an action a changes the value of fluent F
 - Formalise as explanation closure axioms
 - $\neg F(\vec{x},s) \land F(\vec{x},do(a,s)) \Rightarrow \gamma_F^+(\vec{x},a,s) \equiv \neg F(\vec{x},s) \land \neg \gamma_F^+(\vec{x},a,s) \Rightarrow \neg F(\vec{x},do(a,s))$
 - If F was false and was made true by doing action a, then condition γ_F^+ must have been true
 - $F(\vec{x},s) \wedge \neg F(\vec{x},do(a,s)) \Rightarrow \gamma_F^-(\vec{x},a,s) \equiv F(\vec{x},s) \wedge \neg \gamma_F^-(\vec{x},a,s) \Rightarrow F(\vec{x},do(a,s))$
 - If F was true and was made false by doing action a then condition γ_F^- must have been true

Frame Problem

- Frame problem: How to (*compactly*) specify what does not change?
 - Intuition: "What does not change, remains the same."
 - Reiter's so-called Default Solution
 - Not so easy to specify
 - Moving one thing might move another thing, even though the other thing is never directly touched
 - How to distinguish between relevant and irrelevant side effects? And use that efficiently?
- Default solution to frame problem given as successor state axioms (SSAs), which we construct next

Successor State Axioms (SSAs)

- Inputs / Requirements
 - Unique names for actions / arguments
 - Positive and negative effect axioms
 - $\gamma_F^+(\vec{x}, a, s) \Rightarrow F(\vec{x}, do(a, s)), \gamma_F^-(\vec{x}, a, s) \Rightarrow F(\vec{x}, do(a, s))$
 - Explanation closure axioms
 - $\neg F(\vec{x},s) \land F(\vec{x},do(a,s)) \Rightarrow \gamma_F^+(\vec{x},a,s), F(\vec{x},s) \land \neg F(\vec{x},do(a,s)) \Rightarrow \gamma_F^-(\vec{x},a,s)$
 - Integrity: $\neg \exists \vec{x}, a, s. \gamma_F^+(\vec{x}, a, s) \land \gamma_F^-(\vec{x}, a, s)$
- SSA for each *F* :
 - $F(\vec{x}, do(a, s)) \equiv \gamma_F^+(\vec{x}, a, s) \lor (F(\vec{x}, s) \land \neg \gamma_F^-(\vec{x}, a, s))$
 - Shorthand:

•
$$F(\vec{x}, do(a, s)) \equiv \Phi_F(\vec{x}, a, s)$$

Successor State Axioms (SSAs): Example

- SSA for each $F: F(\vec{x}, do(a, s)) \equiv \gamma_F^+(\vec{x}, a, s) \lor (F(\vec{x}, s) \land \neg \gamma_F^-(\vec{x}, a, s))$
 - Shorthand: $F(\vec{x}, do(a, s)) \equiv \Phi_F(\vec{x}, a, s)$
- $BoxOn(b,t,do(a,s)) \equiv \Phi_{BoxOn}(b,t,a,s)$ $\equiv [\exists c. a = load(b,t) \land BoxIn(b,t,s) \land TruckIn(t,c,s)]$ $\lor (BoxOn(b,t,s) \land \neg [\exists c. a = unload(b,t) \land BoxOn(b,t,s) \land TruckIn(t,c,s)])$
- $BoxIn(b,c,do(a,s)) \equiv \Phi_{BoxIn}(b,c,a,s)$ $\equiv [\exists t.a = unload(b,t) \land BoxOn(b,t,s) \land TruckIn(t,c,s)]$ $\lor (BoxIn(b,c,s) \land \neg [\exists t.a = load(b,t) \land BoxIn(b,c,s) \land TruckIn(t,c,s)])$
- $TruckIn(t, c, do(a, s)) \equiv \Phi_{TruckIn}(t, c, a, s)$ $\equiv [\exists c_1. a = drive(t, c) \land TruckIn(t, c_1, s)]$ $\lor (TruckIn(t, c, s) \land \neg [\exists c_1. a = drive(t, c) \land TruckIn(t, c_1, s)])$

Regression

- Idea: Use SSAs to regress from goal towards a (possibly only partially defined) intial state
 - A bit like lifted backward search
- Regression
 - If ϕ held after action a, then *regression* is the ϕ' that held before action a
 - Exploit following properties
 - $Regr(\neg \psi) = \neg Regr(\psi)$
 - $Regr(\psi_1 \land \psi_2) = Regr(\psi_1) \land Regr(\psi_2)$
 - $Regr((\exists x)\psi) = (\exists x)Regr(\psi)$
 - $Regr(F(\vec{x}, do(a, s))) = \Phi_F(\vec{x}, a, s)$

Decision Structure

Regression: Example

- Given: ∃b.BoxIn(b, paris, do(unload(b*, t*), s))
- Regress through $unload(b^*, t^*)$
 - $Regr(\exists b. BoxIn(b, paris, do(unload(b^*, t^*), s)))$ $= \exists b. Regr(BoxIn(b, paris, do(unload(b^*, t^*), s)))$
 - $= \exists b. \Phi_{BoxIn}(b, paris, unload(b^*, t^*), s)$
 - $= \exists b. [\exists t. unload(b^*, t^*) = unload(b, t) \land BoxOn(b, t, s) \land TruckIn(t, paris, s)]$ \vee (*BoxIn*(*b*, *paris*, *s*)
 - $\land \neg [\exists t. unload(b^*, t^*) = \load(b, t) \land BoxIn(b, paris, s) \land TruckIn(t, paris, s)])$
 - $= [\exists b, t. b = b^* \land t = t^* \land BoxOn(b, t, s) \land TruckIn(t, paris, s)] \lor \exists b. BoxIn(b, paris, s)$
 - $= [(\exists b. b = b^*) \land (\exists t. t = t^*) \land BoxOn(b^*, t^*, s) \land TruckIn(t^*, paris, s)]$ $\lor \exists b. BoxIn(b, paris, s)$
 - $= [BoxOn(b^*, t^*, s) \land TruckIn(t^*, paris, s)] \lor \exists b. BoxIn(b, paris, s)$

Make non-empty domain assumption for b, t

52

•
$$Regr((\exists x)\psi) = (\exists x)Regr(\psi)$$

• $Regr(F(\vec{x}, do(a, s))) = \Phi_F(\vec{x}, a, s)$

 $Regr(\psi_1 \land \psi_2) = Regr(\psi_1) \land Regr(\psi_2)$

If ϕ held after action a, then *regression* is the

Cannot be made true $\rightarrow \phi \land \neg [\bot] \equiv \phi \land \top \equiv \phi$

 ϕ' that held before action a

Exploit following properties

• $Regr(\neg \psi) = \neg Regr(\psi)$

Regression: Example

- Given: ∃b.BoxIn(b, paris, do(unload(b*, t*), s))
- Regress through $unload(b^*, t^*)$
 - $Regr(\exists b. BoxIn(b, paris, do(unload(b^*, t^*), s)))$
 - $= [BoxOn(b^*, t^*, s) \land TruckIn(t^*, paris, s)] \lor \exists b. BoxIn(b, paris, s)$
- To get action instantiations of unload(b^{*}, t^{*}), query knowledge base (KB, i.e., planning domain)
 - Existentially quantify b^* , t^* and obtain instances via query extraction w.r.t. KB
 - KB consists of first-order state and action abstraction \rightarrow do not have to enumerate all states, b^* , t^*
 - ∃b*,t*.Regr(∃b.BoxIn(b,paris,do(unload(b*,t*),s)))
 = ∃b*,t*.[BoxOn(b*,t*,s) ∧ TruckIn(t*,paris,s)] ∨ ∃b.BoxIn(b,paris,s)
 = [∃b*,t*.BoxOn(b*,t*,s) ∧ TruckIn(t*,paris,s)] ∨ ∃b.BoxIn(b,paris,s)

Regression Planning

- Define abstract goal state
 - E.g., $\exists b. BoxIn(b, paris, s)$
 - Check if regression through action sequence holds in initial state
- → Goal regression planning
 - Provide initial state, actions
 - Initial state description can be partial
 - Use regression to tell whether goal will hold

Progression and Forward Search?

• Can we do lifted forward-search planning?

- Progression not first-order definable! (Reiter, 2001)
- Could progress ground state
 - But this does not exploit first-order structure

Golog: Restricted Plan Search

- AlGOI in LOGic
 - Search the space of sequential action plans
 - Regress actions to initial state to test reachability
 - Restrict action space with program:

α φ?	primitive action condition test
(δ_1, δ_2) if ϕ then δ end of	sequence
while ϕ then δ endWhile	loop
$ \begin{array}{c} (\delta_1 \delta_2) \\ \pi \ \vec{x} \ [\delta] \\ \delta^* \end{array} $	nondeterministic choice of actions nondeterministic choice of arguments nondeterministic iteration
$ \begin{array}{c} \operatorname{proc} \beta(\vec{x}) \ \delta \ \operatorname{endProc} \\ \beta(\vec{t}) \end{array} \end{array} $	procedure call definition procedure call

Decision Structure

Golog: Example	α φ?	primitive action condition test
• Golog program	(δ_1, δ_2) if ϕ then δ endIf while ϕ then δ endWhile	sequence conditional loop
 (πb[¬0nTable(b,s)?,pickup(b),putOnTable(b)])*, ∀b.OnTable(b,s)? Diagram of Golog planning 	$ \begin{array}{c} (\delta_1 \delta_2) \\ \pi \ \vec{x} \ [\delta] \\ \delta^* \end{array} $	nondeterministic choice of actions nondeterministic choice of arguments nondeterministic iteration
	proc $\beta(\vec{x}) \delta$ endProc $\beta(\vec{t})$	procedure call definition procedure call

- Heavily restricted action sequences
- Program exploits first-order action abstraction ${}^{\bullet}$
- Initial state need not be fully known •

Interim (Interim) Summary

- Situation calculus to describe a relational world
 - Can convert PDDL (and state-variable domains) into effect axioms
 - Derive SSAs from effect axioms
 - Using default solution to frame problem
- Regression operator
 - Extract action instantiation to achieve goal
- Regression planning
 - Initial state need not be fully specified
 - Exploit state and action abstraction
 - Avoid enumerating all state and action instances

Next step: Extend this idea for decision-theoretic planning with uncertain action outcomes

First-order MDPs: MDPs

- MDP with discount factor
 - Tuple (S, A, T, R, γ)
 - State space *S*
 - E.g., $S = \{1,2\}$
 - Actions A
 - E.g., $A = \{stay, go\}$
 - Immediate reward function *R*
 - E.g., R(s = 1, a = stay) = 2, ...
 - Transition function *T*
 - E.g., T(s = 1, a = stay, s' = 1) = P(s' = 1|s = 1, a = stay) = 0.9

а

- Discount factor γ
- Acting \rightarrow define policy $\pi : S \rightarrow A$

$$a = change (P = 1.0)$$

$$a = stay (P = 0.1)$$

$$R = 0$$

$$R = 0$$

$$a = change (P = 1.0)$$

$$a = stay (P = 0.9)$$

R = 10

Policy, Value, Solution

- Immediate vs. long-term gain?
 - Reward criterion to optimise
 - Discount factor γ important ($\gamma = 0.9$ vs. $\gamma = 0.1$)
- Define value of policy π
 - $V_{\pi}(s) = E_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} \cdot r_{t} | s = s_{0}\right]$
 - Tells how much value to expect to get by following π starting from state s
- MDP optimal solution

• Policy
$$\pi^*(s) = \operatorname{argmax}_{\pi} V_{\pi}(s)$$

Value Iteration & Value Function to Policy

• How to act optimally with *t* decisions?

Universität

Münster

- Given optimal t 1-state-to-go value fct.
- Take action a, then act so as to achieve V^{t-1} thereafter:

$$Q^{t}(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') V^{t-1}(s')$$

- Expected value of best action a at stage t? $V^t(s) \coloneqq \max_{a \in A} \{Q^t(s, a)\}$
- At ∞ horizon, get same value (= V^*) $\lim_{t \to \infty} \max_{s} |V^t(s) - V^{t-1}(s)| = 0$
 - π^* says act the same at each decision stage for ∞ horizon

- Given arbitrary value V (optimal or not)
 - Greedy policy π_V takes action in each state that maximises expected value w.r.t. V $\pi_V(s)$

$$= \arg \max_{a \in A} \left\{ R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V(s') \right\}$$

• If can act so as to obtain V after doing action a in state s, π_V guarantees V(s) in expectation

First-order MDP (FOMDP)

- Components of MDP in an FOMDP specified as a collection of *case statements*
 - E.g., express reward in Box World FOMDP as

 $rCase(s) = \begin{cases} \forall b, c. Dest(b, c) \Rightarrow BoxIn(b, c, s) & 1 \\ \neg (\forall b, c. Dest(b, c) \Rightarrow BoxIn(b, c, s)) & 0 \end{cases}$

- Operators: define unary and binary case operations
 - E.g., cross-sum \oplus (or \ominus , \otimes) of cases

Stochastic Actions and First-order Decision-theoretic Regression (FODTR)

- User's stochastic action, e.g., A(x) = load(b, t)
- Nature's choice, e.g., $n(x) \in \{loadS(b,t), loadF(b,t)\}$

snow(s)

 $\neg snow(s)$

0.1

• Probability distribution over nature's choice, e.g.,

Probability distribution \rightarrow Adds up to 1 over success and failure choice 0.1 + 0.9 = 10.6 + 0.4 = 1

snow(s)

 $\neg snow(s)$

0.9

0.4

First-order decision-theoretic regression (FODTR)

• FODTR = *expectation* of regression:

P(loadS(b,t)|load(b,t)) =

 $FODTR[vCase(s), A(\vec{x})] = \mathbf{E}_{P(n(\vec{x})|A(\vec{x}))} \left[Regr(vCase(s), n(\vec{x}))\right]$

P(loadF(b,t)|load(b,t)) =

FODTR & Q-Functions

• Result of FODTR is a case statement encoding a first-order Q-function $FODTR[vCase(s), A(\vec{x})] = R(s) \oplus \gamma \bigoplus_{j=1}^{k} P(n_j(\vec{x}), A(\vec{x}), s) \otimes Regr\left(V\left(do\left(n_j(\vec{x})\right), s\right)\right)$

E.g.,

$$FODTR[vCase(s), unload(b^*, t^*)]$$

$$= rCase(s) \oplus \gamma \bigoplus_{j=1}^{k} pCase(n_j(\vec{x}), unload(b^*, t^*), s)$$

$$\otimes \frac{Regr\left(\exists b. BoxIn\left(b, paris, do(n_j(\vec{x}), s\right)\right)\right)}{Regr\left(\neg \exists b. BoxIn\left(b, paris, do(n_j(\vec{x}), s\right)\right)\right)} \quad 0$$

$$rCase(s) = \begin{cases} \exists b. BoxIn(b, paris, s) & 10 \\ \neg(\exists b. BoxIn(b, paris, s)) & 0 \end{cases}$$

$$pCase(loadS(b,t), load(b,t), s) = \top 0.9$$

$$pCase(unloadS(b,t),unload(b,t),s) = \top 0.9$$

 $pCase(driveS(b,t), drive(b,t), s) = \top 1$

FODTR & Q-Functions

$$\begin{aligned} FODTR[vCase(s), unload(b^*, t^*)] &= rCase(s) \oplus \gamma \bigoplus_{j=1}^{k} pCase(n_j(\vec{x}), unload(b^*, t^*), s) \otimes \\ &= rCase(s) \oplus \gamma \left[\begin{array}{c} \top & 0.9 \end{array} \right] \otimes \left[\begin{array}{c} Regr\left(\exists b. BoxIn(b, paris, do(unloadS(b^*, t^*), s))\right) & 10 \\ Regr\left(\neg \exists b. BoxIn(b, paris, do(unloadS(b^*, t^*), s))\right) & 10 \\ Regr\left(\neg \exists b. BoxIn(b, paris, do(unloadS(b^*, t^*), s))\right) & 10 \\ \end{array} \right] \end{aligned}$$

FODTR & Q-Functions

$$FODTR[vCase(s), unload(b^*, t^*)] = rCase(s) \oplus \gamma \bigoplus_{j=1}^{k} pCase(n_j(\vec{x}), unload(b^*, t^*), s) \otimes \frac{Regr(\exists b. BoxIn(b, paris, do(n_j(\vec{x}), s)))}{Regr(\neg \exists b. BoxIn(b, paris, do(n_j(\vec{x}), s)))}$$

$$0.0$$

Symbolic Dynamic Programming (SDP)

- What value if 0-stages-to-go?
 - Immediate reward: $V^0(s) = rCase(s)$
- What value if 1-state-to-go?
 - We know value for each action \rightarrow Take maximum for each state

$$V^{1}(s) = \max_{s} \begin{cases} \begin{array}{ccc} \phi_{1} & 9 \\ \phi_{2} & 0 \\ \end{array} & = V^{0}(s, A_{1}) \\ \\ \frac{\phi_{3}}{\phi_{4}} & 1 \\ \end{array} & = V^{0}(s, A_{2}) \end{cases} V^{1}(s) = \begin{array}{ccc} \phi_{1} & 9 \\ \phi_{1} & 9 \\ \phi_{1} & 9 \\ \phi_{2} & 0 \\ \end{array} & \begin{array}{ccc} \phi_{1} & 9 \\ \phi_{2} & 0 \\ \end{array} & \begin{array}{ccc} \phi_{2} & 0 \\ \phi_{3} & 3 \\ \phi_{3} & 3 \\ \phi_{4} & 1 \end{array} & = V^{0}(s, A_{2}) \end{cases}$$

- Value iteration
 - Obtain V^{n+1} from V^n until $(V^{n-1} \ominus V^n) < \epsilon$

Value Iteration for t = 1, 2 of the Box World Example

$vCase^{1}(s) = \frac{\exists b. BoxIn(b, paris, s)}{\neg`` \land [\exists c. BoxOn(b, t, s) \land TruckIn(t^{*}, paris, s)]} = \frac{19.0}{\circ} do drive(t^{*}, paris)} do drive(t^{*}, paris)}{do load(b^{*}, t^{*})} else if (\exists b^{*}, c, t^{*}, BoxIn(b^{*}, c) \land TruckIn(t^{*}, c)) t^{*}} do load(b^{*}, t^{*})} else if (\exists b^{*}, c, t^{*}, BoxIn(b, c_{1}^{*}) \land TruckIn(t^{*}, c))} do drive(t^{*}, c_{1}^{*})} else if (\exists b, c_{1}^{*}, t^{*}, c_{2}, BoxIn(b, c_{1}^{*}) \land TruckIn(t^{*}, c))} do drive(t^{*}, c_{1}^{*})} else if (\exists b, c_{1}^{*}, t^{*}, c_{2}, BoxIn(b, c_{1}^{*}) \land TruckIn(t^{*}, c))} do drive(t^{*}, c_{1}^{*})} else do noop$	• With increations con	asing iterations, the sequence of sidered gets longer		<pre>if (∃b. BoxIn(b, paris)) then do noop else if (∃b*, t*. TruckIn(t*, paris) ∧ BoxOn(b*, t*)) do unload(b*, t*) else if (∃b, c, t*. BoxOn(b, t*) ∧ TruckIn(t, c)) then </pre>
$vCase^{1}(s) = \neg^{"} \wedge [\exists c. BoxOn(b, t, s) \wedge TruckIn(t^{*}, paris, s)] = 8.1$ $alpha BoxIn(b, paris, s) = \exists b. BoxIn(b, paris, s) = 15.4$ $vCase^{2}(s) = \neg^{"} \wedge [\exists b, t. BoxOn(b, t, s) \wedge TruckIn(t, paris, s)] = 15.4$ $\neg^{"} \wedge [\exists b, c, t. BoxOn(b, t, s) \wedge TruckIn(t, c, s)] = 7.3$		$\exists b. BoxIn(b, paris, s)$	19.0	do drive $(t^*, paris)$ do drive $(t^*, paris)$ $\wedge TruckIn(t^*, c))$ th
$vCase^{2}(s) = \begin{cases} \exists b. BoxIn(b, paris, s) \\ \neg`` \land [\exists b, t. BoxOn(b, t, s) \land TruckIn(t, paris, s)] \\ \neg`` \land [\exists b, c, t. BoxOn(b, t, s) \land TruckIn(t, c, s)] \end{cases} \begin{cases} 15.4 \\ \neg`` \land [\exists b, c, t. BoxOn(b, t, s) \land TruckIn(t, c, s)] \\ \neg`` \land [\exists b, c, t. BoxOn(b, t, s) \land TruckIn(t, c, s)] \end{cases} \end{cases}$	$vCase^1(s) =$	$\neg`` \land [\exists c. BoxOn(b, t, s) \land TruckIn(t^*, paris, s)]$	8.1	else if $(\exists b^*, c, t^*)$ do load (b^*, t^*) $=$ Im $(b, c^*) \wedge TruckIn(t^*, c_2)$
$vCase^{2}(s) = \frac{\exists b. BoxIn(b, paris, s)}{\neg`` \land [\exists b, t. BoxOn(b, t, s) \land TruckIn(t, paris, s)]} 26.1$ $\frac{do \ drive(t^{*}, c_{1})}{else \ do \ noop}$ $\frac{do \ drive(t^{*}, c_{1})}{else \ do \ noop}$		_"	0.0	else if $(\exists b, c_1^*, t^*, c_2, BoxIn(b, c_1))$
$vCase^{2}(s) = \frac{\exists b. BoxIn(b, paris, s)}{\neg`` \land [\exists b, t. BoxOn(b, t, s) \land TruckIn(t, paris, s)]} \frac{26.1}{15.4}$ $\frac{\neg`` \land [\exists b, c, t. BoxOn(b, t, s) \land TruckIn(t, c, s)]}{\neg`` \land [\exists b, c, t. BoxOn(b, t, s) \land TruckIn(t, c, s)]} \frac{7.3}{0.0}$				do $drive(t^*, c_1)$
$vCase^{2}(s) = \frac{\neg`` \land [\exists b, t. BoxOn(b, t, s) \land TruckIn(t, paris, s)]}{\neg`` \land [\exists b, c, t. BoxOn(b, t, s) \land TruckIn(t, c, s)]} $ 7.3		$\exists b. BoxIn(b, paris, s)$	26.2	1 else do noop
$\neg `` \land [\exists b, c, t. BoxOn(b, t, s) \land TruckIn(t, c, s)] $ 7.3 $\neg `` 0.0$	$vCase^2(s) =$	$\neg`` \land [\exists b, t. BoxOn(b, t, s) \land TruckIn(t, paris, s)]$	15.4	4
¬" 0.0		$\neg`` \land [\exists b, c, t. BoxOn(b, t, s) \land TruckIn(t, c, s)]$	7.3	
		「	0.0	

First-order Algebraic Decision Diagrams (FOADDs)

- We want to compactly represent arbitrary case statements
 - E.g.,

$$case(s) = \frac{\exists x. [A(x) \lor \forall y. A(x) \land B(x) \land \neg A(y)]}{\neg (\exists x. [A(x) \lor \forall y. A(x) \land B(x) \land \neg A(y)])} \quad 0$$

• Push down quantifiers, expose propositional structure \rightarrow convert into FOADD $\exists x. A(x) \lor (\exists x. A(x) \land B(x)] \land [\forall y. \neg A(y)])$

Results for SDP with FOADDs

- Encode case statements with FOADDs
 - Solid line: true case
 - Dotted line: false case
- Use FOADD operations for structured SDP
 - E.g., Box World
 - Using $\gamma = 0.9$

Factored SDP for factored FOMDPs [Sanner and Boutilier, 2007]

Correctness of SDP

• Show SDP for FOMDPs is correct w.r.t. ground MDP

Caveats of First-order Planning

- Many problems have topologies
 - E.g., reachability constraints in logistics •
- If topology not fixed a priori
 - First-order solution must consider ∞ topologies rCase(s) =
 - In general case, leads to ∞ values / policies
 - Universal rewards

Universität

Münster

- Value function must distinguish ∞ cases
- Policy will also likely be ∞

Paris Moscow London Berlin Rome

 $\forall b, c. Dest(b, c) \Rightarrow BoxIn(b, c, s)$

 $\neg (\forall b, c. Dest(b, c) \Rightarrow BoxIn(b, c, s))$

	$\forall b, c. Dest(b, c) \Rightarrow BoxIn(b, c, s)$	1
	One box not at destination	γ
$t^t(s) =$	Two boxes not at destination	γ^2
	:	0 0 0
	t-1 boxes not at destination	γ^{t-1}

73

Caveats of First-order Planning

- Unreachable states
 - PDDL domains often under-constrained
 - E.g., logistics: one box cannot be in two cities at once
 - Constraints implicitly obeyed in initial state
 - Action effects cannot violate constraints
 - Reachable legal states are small subset of all states
 - But (P)PDDL does not constrain legal states

Suggests need for hybrid first-order / search-based approaches

- If no background theory to restrict legal states
 - First-order planning must solve for all states
 - When initial state unknown
 - Where majority of states are actually illegal
- First-order planning w/o initial state solves more difficult problem than search-based solutions
 - Initial state contains implicit constraint information
 - Reachable state space is small subset of all states

A Note on First-order Modelling in Reinforcement Learning

- Novel propositional situations worth exploring may be instances of a well-known context in the relational setting → *exploitation* promising
 - E.g., household robot learning water-taps
 - Having opened one or two water-taps in a kitchen, one can expect other water-taps in kitchens to work similarly
 - \Rightarrow Priority for exploring water-taps in kitchens in general reduced
 - \Rightarrow Information gathered likely to carry over to water-taps in other places
 - Hard to model in propositional setting: each water-tap is novel

Interim Summary

- FOMDPs are one model for lifted decision-theoretic planning
 - Exploit state and action abstraction for MDPs
- Use situation calculus specified action theory
- Use case statements to represent reward, probabilities
- Symbolic dynamic programming = lifted DP
 - Use FOADDs to compactly represent case statements
 - First-order context-specific independence to compactify FOADDs

Outline: Decision Making – Structure

Structure by Groups in the Agent Set

- Agent types
- Partitioned decPOMDPs
- Structure by Features in the State Space
 - Dynamic Bayesian networks
 - Factored MDPs
- Structure by Relations in the State Space
 - Situation calculus
 - First-order MDPs

 \Rightarrow Next: Human-awareness