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Outline: Decision Making — Extensions

Partially Observable Markov Decision Process (POMDP)
« POMDP agent, belief state, belief MDP
* Conditional plans, value iteration

Decentralised POMDP (Dec-POMDP)
 Dec-POMDP, local policy, joint policy, value function
 Communication, full observability, Dec-MDP
e Solutions for finite, infinite, indefinite horizon

Decision Extensions

T. Braun - APA



— = Universitat . . .
Miinster Decision Extensions

POMDP
e POMDP = Partially Observable MDP , )
e Sensing operation returns multiple states, with a probability distribution -
* Sensor model 2 that encodes P(o|s) (or P(ol|s, a)) 2 /
* Probability of observing o given state s (and action a) A
* Example: 1 A

* Sensing number of adjacent walls (1 or 2)
e Return correct value with probability 0.9

* Formally, POMDP is a six-tuple (S,4,T,R, 0, 12)
* MDP (S,4,T,R) extended with a set of observations O and a sensor model 2

* Choosing action that maximizes expected utility of state distribution assuming “state utilities”
computed as before not good enough — Does not make sense (not rational)

e POMDP agent: Constructing a new MDP in which the current probability distribution over
states plays the role of the state variable

T. Braun - APA 5



—— == Universitat . . .
Miinster Decision Extensions

Decision cycle of a POMDP agent

* Given the current belief state b and a policy i, execute the action
a =1(b)
* Receive observation o
 Set the current belief state to SE (b, a, 0) and repeat
* SE = State Estimation

Observation o Action a

T. Braun - APA 6
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Belief State & Update

 Belief state b(s) is the probability assigned to the actual state s by belief state b
* Initial belief state

* Probability of O for terminal states

e Uniform distribution for rest

* Robot navigation example:

'b_(lllllllll

5757557575797579°00)
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Belief State & Update
 Update b’ = SE(b,a,0)

bl( I) P( I| b) P(OlS,, a’)
s')=P(s'|o,a,b) =
Ysedom(s) P (015", @) Xsedom(s) P(s" Is, a)b(s)
e Consider as two-stage update: (1) Update for the (2) Update for the observation
b b b =p’
3/101]/01]|0.1|0.0 3102 (0.1 |0.02/0.0 3 | 0.06569]0.03650| 0.06569| 0.0
7z, 7z . 7
. / . Move | once 5 | 0.1 7 0.1 Perceive 1 wall - 0_03650// a0
% , % - my Y

1101101011/ 0.1 1102 |0.11|0.110.01 1 |0.065690.03650|0.328470.00365

1 2 3 4 1 2 3 4 1 2 3 4
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Belief MDP

* A belief MDP is a tuple (B, A4,p,T, 0, 2)
* B =infinite set of belief states
e Continuous!
A = finite set of actions
Reward function p(b) (can also be defined with a)
* Reward of belief state b
Transition function T(b’,b,a) = P(b'|b, a)
* Probability of new belief state b’ given belief state b and action a
O = finite set of observations
Sensor model 2(0,b) = P(o|b) (can also be defined with a)
* Probability of observation o given belief state b (and action a)

Decision Extensions

b
0.1/0.1| 0.1/0.0
s
0.1 / 0.1
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0.1/0.1] 0.1/ 0.1
1 2 3 4
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Belief MDP: Express Functions using POMDP Functions

 Reward function: Sum over all actual states that the agent can be in

p(b) = ) b(SIR()
* Transition function: Sum over all possible observations
P(b'|b, a) = ZP(b Iy, a0 ) = ZP(b I, a1 b)ZP(0|S)ZP(S s, )b (s)

* where P(b'|o,a,b) =1ifb" =SE(b,a,o) and 0 oth.
e Sensor model: Sum over all actual states that the agent might reach

P(ola,b) = zP(0|a s',b)P(s'|a,b) = zP(O|S')P(S la,b) = 2P(0|S’)ZP(S |s,a)b(s)

« P(b'|b,a) and p(b) define an observable MDP on the space of belief states

T. Braun - APA 10
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Belief MDP

* Optimal action depends only on agent’s current belief state
* Does not depend on actual state the agent is in

— Solving a POMDP on a physical state space is reduced to
solving an MDP on the corresponding belief-state space

* Mapping *(b) from belief states to actions

Decision Extensions

b
0.1/0.1| 0.1/0.0
s
0.1 / 0.1
7
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Example Scenario
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Conditional Plans

* Example:
e Two state world 0,1
e Two actions: stay(P), go(P)
e Actions achieve intended effect with some probability P
e One-step plan [go], [stay]
* Two-step plans are conditional
* [al, IF percept = 0 THEN a2 ELSE a3]
 Shorthand notation: [al,a2/a3]
* n-step plans are trees with
* Nodes attached with actions and
* Edges attached with percepts

T. Braun - APA 13
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Value Iteration for POMDPs

e Cannot compute a single utility value for each state of all belief states
e Consider an optimal policy ™ and its application in belief state b
 For this b, the policy is a conditional plan p
* Let the utility of executing a fixed conditional plan p in s be u,, (s)
* Expected utility U,(b) = X.s b(s)u,(s)
It varies linearly with b, a hyperplane in a belief space

e At any b, the optimal policy will choose the conditional plan with the highest expected utility
U(b) = U™ (b) = max ) b(s)uy(s)
S

m* = arg max b(s)uy,(s)
D S
U(b) is the maximum of a collection of hyperplanes and will be piecewise linear and convex

T. Braun - APA 14
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General Formula

* Let p be a depth-d conditional plan whose initial action is a and whose depth-d — 1
subplan for percept e is p. e, then

u,(s) = R(s) + 2 P(s'| s, a) z P(els') uy(s")

* d = 0:uy(s) = R(s) for theempty planp = 1L
* d =1:p.e = 1 forall ¢, simplifying the last sum:

D Plels) upe(s) = ) Plels)uy(s) = us(s) ) Plels) =uy(s) - 1= R(s)

* This gives us a value iteration algorithm
e Elimination of dominated plans is essential for reducing doubly exponential growth:

« Number of undominated plans with d = 8 is just 144, otherwise 22°>° (|A|0(|E|d_1))
* For large POMDPs this approach is highly inefficient

T. Braun - APA 15
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Example

* Compute the utilities for conditional plans of depth 2 by

* considering each possible first action
e each possible subsequent percept

e each way of choosing a depth-1 plan to execute for each percept

2.5
Utility of two one- ,
step plans as a z
function of b(1) = Lo

Decision Extensions

[Stay]

[Go] -

0.2 0.4 0.6 0.8 1
Probability of state 1
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Example
 Two state world 0,1 5
e RewardsR(0) =0,R(1) =1 25 1
* Two actions: stay(0.9), go(0.9) z 1_? - [Stay]
* Sensor reports correct state with probability of 0.6 S ] el o~
e Consider the one-step plans and [go] 0.5 1 i
state 0 state 1 (U :

! \ . ) | 0 0.2 0.4 0.6 0.8 1

Probability of state 1

u[go](O) = R(0) + 0.1R(0) + 0.9R(1) =09 "
u[go](l) =R(1)+09R(0) + 0.1R(1) =1.1"°
e This is just the direct reward function (taking into account the probabilistic transitions)

T. Braun - APA 17



= Utility of depth-1 plan given state,

— nl\jn':;'r\::tr;tat outcome of first action, and percept \Decision Extensions
8 distinct depth-2 plans for each state (16 plans) Choose action based on

percept (0 : stay); receive

Utilities of depth-1 plans utility of actual state (1):

Urstay](0) = 0.1 upg01(0) = 0.9 Probability of Probability of Ustay (1) = 1.9
u[stay](l) =19 u[go](l) =1.1 next state percept

Sum over states reachable / state 0 stafevl
with first action Sum over possible percepts

Ulgo.stay/stay] (0) = R(0) + (0.1 (0.6 - 0.1 + 0.4-0.1) + 0.9 - (0.4- 1.9 + 0.6 - 1.9)) = 1.72
Ulgostay/stay] (1) = R(1) + (0.9 (0.6 - 0.1 + 0.4 - 0.1) + 0.1 (0.4 - 1.9 + 0.6 - 1.9)) = 1.28
Ulgo,go/stay] (0): Ulgo,stay/go] (O); Ulgo,go/go] (0)
u[go,go/stay](l): u[go,stay/go](l); u[go,go/go](l)

T. Braun - APA 18
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Example

e 8 distinct depth-2 plans for state 1
* 4 are suboptimal across the entire belief space (dashed lines)
* With probability b(1) =0

3 -
* U[go,stay/stay] (0) =17 2.5
* With probability b(1) = 1: 2
’ u[QO,Stay/stay](l) = 1.28 .
0.5 -

Probability of state 1
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Example

Utility
=
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Decision Extensions
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Value Iteration: Algorithm

e Returns an optimal set of plans function value-iteration (pomdp, €)
U' —~ a set containing the empty plan [] with uj (s)=R(S)
® |npUtS repeat
U~ U’
* POMDP pomdp U’ « the set of all plans consisting of an action and,
for each possible next percept, a plan in U with
[ ]
StateS(iorn(S) utility vectors computed as on previous slide
* Foralls € dom(S), U’ « Remove-dominated-plans(U’)

until Max-difference(U,U’) < €(1-y)/y
return U

* Applicable actions A(s)

* Transition model P(s'|a, s)

* Sensor model P(0]s) e Local variables
* Rewards p(s) « U, U’ sets of plans with associated utility
* Discounty vectors u,

e Maximum error allowed €

T. Braun - APA 21
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Solutions for POMDP

e Belief MDP has reduced POMDP to MDP
* MDP obtained has a multidimensional continuous state space
e Extract a policy from utility function returned by value-iteration algorithm

* Policy m(b) can be represented as a set
of regions of belief state space

* Each region associated with a particular
optimal action |

e Value function associates distinct
linear function of b with each region

* Each value or policy iteration step \K

refines the boundaries of the regions |

and may introduce new regions _

T. Braun - APA 22
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Intermediate Summary

* POMDP
e Uncertainty about state — belief state
* Solving a POMDP = Solving an MDP on space of belief states
* Policy = conditional plans

e Value iteration to find optimal policy
* \ery expensive, even with deletion of dominated plans

What to do alternatively? Find sub-optimal plans

* Sampling approaches
* |n combination with deep learning methods

Decision Extensions

T. Braun - APA
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Outline: Decision Making — Extensions

Partially Observable Markov Decision Process (POMDP)
e POMDP agent, belief state, belief MDP
* Conditional plans, value iteration
Decentralised POMDP (Dec-POMDP)
 Dec-POMDP, local policy, joint policy, value function
e Communication, full observability, Dec-MDP
e Solutions for finite, infinite, indefinite horizon

Decision Extensions

T. Braun - APA
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Multi-agent Scenarios

 Ambulance allocation * Firefighters
 Multiple ambulance services * Maintain effort toward saving the building
- Business oriented operation or draw back and minimise spread of fire?
» Competition for government funds and e Concentrate on a multitude of smaller fires
public opinion or allow controlled unification and deal with
* Given several locations that require only one location?
medical assistance, how many ambulances * Will transportation routes be endangered?
from which firm will go to which location? * Are there still civilians evacuating from the

area / building?
e Push through the fire to victims or save the
fire crew and pull out?

* If multiple crews are on site, which one goes?
When?

T. Braun - APA 25
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Setting

* Single and repeated interactions with joint rewards: traditional game theory

* Interactions involving joint state + reward focus of decision-theory inspired approaches to
game theory

* Extensions of single-agent models to multi-agent settings
* Multi-agent setting
e Co-operation of agents (team)
* Vs, self-interested acting (all the way to hostile settings)

* Problem: planning how to act ;\Qﬁﬂ - .
* Joint payoff r but decentralised actions ¢; and observations o;
e Joint state, influenced by actions, can influence rewards
* Perfect vs. incomplete information about others tll—!: -— on

T. Braun - APA 26
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Decentralised POMDP (Dec-POMDP)

* Dec-POMDP: tuple (1, S, {Ai}iep {Oi}iEI' T, R, .Q)
I = a finite set of agents indexed 1, ..., N
 dom(S) = a finite set of states

* A; = afinite set of actions available to agent i € |

« A= ®; A set of joint actions
* 0O; = afinite set of observations available to agenti € I
¢ 0= ® ;¢ O; set of joint observations
 Transition function T(s',s,a) = P(s'|s, a)
« Reward function R(s) or R(a, s)
* Sensor model (observation function) 2(0, a,s) = P(0o|a, s)
* Co-operative, decision-theoretic setting: Joint reward function R, joint state space S

T. Braun - APA 27
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Generalising Dec-POMDPs

* Partially observable stochastic game (POSG)
e Dec-POMDP (I,S,{A;}ic;,10;}ie;, T, 2, 2) but with individual reward functions {R; };¢;
* Reward function R; for each agenti € |

* For self-interested or adversarial acting
* Local optimum not guaranteed to be the global optimum
 Dominant strategy equilibrium: best response (highest utility) given any state

* Not guaranteed to exist
* Prisoner’s dilemma: Dominant strategy not always pareto-optimal strategy

 Nash Equilibrium: No agent has incentive to change its strategy if no other agent changes its
strategy

* Always exists

T. Braun - APA 28
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Policies for Dec-POMDPs

* Local policy ir; for agent i
* Representations: Mappings...
» from local histories of observations h; = (oi(l), e oi(t)) over 0; to actions in A;

* from local abstraction of joint state s in S to actions in 4;
* from (generalised) belief states B; to actions in A4;
e Belief MDP
e from internal memory states to actions
* Joint policy m = (74, ..., Ty)
e Tuple of local policies, one for each agent in [

Decision Extensions

T. Braun - APA
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Value Functions for Dec-POMDPs

e Value functions work as before given a joint policy
e Value of a joint policy it for a finite-horizon Dec-POMDP with initial state s(0)

-1
vr(s@) = E zR(aa),S(t)NS(O),ﬂ]
t=0

e Value of a joint policy i for a infinite-horizon Dec-POMDP with initial state 59 and discount
factory € [0,1)

co

Ve(s©@) =E

th(a(t), s(t))|s(°), n]
t=0
* d, joint action at time step t

Miinster Decision Extensions
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Example: Two-agent Grid World

* Agents: two

 States: grid cell pairs

* Actions: move U, D, L, R, stay

* Transitions: noisy

* Observations: cell occupancy in the directions of the red lines
* Rewards: negative unless sharing the same square

T. Braun - APA 31
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Example: The Dec-Tiger Problem

e Atoy problem: decentralized tiger
State space:

* Position of tiger behind one of two doors (left / right)
* Treasure behind other door

Reward:

* Opening correct door: both receive treasure
 Opening wrong door: both get attacked by a tiger
Actions: Agents can open a door, or listen

* After opening a door, game is reset with tiger behind a randomly chosen door
Observations: Two noisy observations: hear tiger left or right

Agents do not know the other’s actions or observations

T. Braun - APA 32
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Worst-case Complexity of DecPOMDP

e Space complexity
e Transition model: O(s - s - a¥)
 Sensor model: O(s - oY) or O(s - oV - a")
« Reward function: O(s) or O(s - aV)

* Runtime complexity of brute-force search

e Evaluation cost of a joint policy: O(S : oNh)

h_
. PoIicyspace:O(aN(o 1))

o—1

Decision Extensions

* Notations

e s =|S]
* State space size
a = max|A4;|

L€l
e Largest individual action space size
* 0 = max|0;|
i€l

* Largest individual observation space size
* h

* Horizon
e N

 Number of agents

T. Braun - APA
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Communication?

e Can make working towards a common goal easier

e Agents in grid world can communicate their intent (direction of travel) * Doagents
.. . . always share
* Definitely makes the formalism more complicated S
e Dec-POMDP with communication (Dec-POMDP-Com) Can they
e Dec-POMDP (I, S,{A;}ic1, {0;}ic;, T, R, 2) defined as before extended with intentionally

withhold
information?
* (Canthey lie?

Alphabet X for communication
0; € X an atomic message sent by agent i
o = (04, ..., 0,) a joint message

&s; € X a null message, sent by an agent that does not want to transmit anything to the others (no cost of
sending &,)

Cost function Csx for transmitting atomic message
Reward function R(a, s’, &) incorporating joint message

Decision Extensions

New dimensions:

T. Braun - APA
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Dec-MDP

* Joint full observability
* Collective observability

« A DEC-POMDP is jointly fully observable if the N-tuple of observations made by all the agents
uniquely determine the current global state

e Thatis, if P(0la,s’) > 0, then P(s'|0) =1
* Dec-MDP £ Dec-POMDP with joint full observability

e Same as before:
MDP £ POMDP with full observability

* Alternative name: multi-agent MDP

T. Braun - APA 35
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Solving Dec-POMDPs

* Problem: No joint belief available
* Only partial information about state available to each agent

 Complexity:
e Optimal solutions using dynamic programming paradigm + exploiting structure if present

* Reduction to NP when agents mostly independent + communication can be explicitly modelled
and analysed

e Requires that one can factorise the joint state space into a state space for each agent that is mostly
independent of all others

* The same goes for the observations and the reward function

T. Braun - APA 36
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Exhaustive Search

e Optimal solution approach for general models with a finite horizon h
* Procedure:

* Do a search for each agent to find optimal local policies with a limited depth of h

* Prune dominated search paths/strategies locally by considering the joint state and other agents’
policies (globally)

* Requires central oversight
e Cannot be done locally without a huge amount of communication

e Even with pruning, still limited to small problems

T. Braun - APA 37
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Exhaustive Search and Pruning

Without Pruning With Pruning

T. Braun - APA 38
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Exhaustive Search and Pruning

Without Pruning
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Exhaustive Search and Pruning

Without Pruning
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Exhaustive Search and Pruning
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Exhaustive Search and Pruning
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Exhaustive Search and Pruning
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Exhaustive Search and Pruning

Without Pruning
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With Pruning
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A3 &3 &3 &2
A% 43 &3 &3

A3 & &8 A
A3 & &8 A

Bh &3 &3 &3
Ah &3 43 A&
A% &3 &3 43
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Joint Equilibrium Search for Policies

Approximate solution approach for general JESP (dec-pomdp, h) .
. . . . while t d do
models with a finite horizon h for i - 1 te b ae
o . Fix other agent policies
InpUt' Find a best response policy for agent 1

* DecPOMDP (I, S) {Ai}iEI) {Oi}iEI' T' Rl Q)
* Horizon h Turns DecPOMDP
* Possibly error margin ¢ into a POMDP for {

Instead of exhaustive search, find best response
* Nash equilibrium: no agent has incentive to change its policy if no other agent changes its policy

* Convergence criterion needed
* E.g., nochange (or only € change) in any policy
* Same worst-case complexity, but in practice much faster
e Can include pruning, further heuristics when looking for best response policy
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Multi-agent A* (MAA*)

e Optimal solution approach for general models with a finite horizon h
* |nputs:
* DecPOMDP (I, S,{A;}ier, {Oi}ier, Pers R, Pobs)
 Horizon h
* Heuristics V (¢p?)
* A*-like search over partially specified joint policies
« ot = (69, ..,6t7YH
e 5t =(8¢,...,6L)
+ 8f: 0f = A
* Requires an admissible heuristic function V (¢?)
V(got) — VO...t—l((pt) 4 Vt"'h_l(got)

————

F G H
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How to Get a Heuristic Function?

e Solve simplified settings, e.g.,
* Solve the underlying MDP (approximately or optimally) given assumptions:
e Centralised observations

e Full observability
* Simulate / sample unobserved values

e Solve a belief MDP given assumption
e Centralised observations

* Domain-specific heuristics

Decision Extensions
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Memory Bounded Search

e Approximate solution approach for general

models with a finite horizon h

* |nputs:
* DecPOMDP (I,S,{A;}ic1,{0;}ic1, T, R, 2)
 Horizon h
* Do not keep all policies at each step

but a fixed number for each agent maxTrees

* Select maxTrees in a way that maxTrees - |I| trees fit into memory
e (Can be difficult to choose; often small in practice

* Select trees by using heuristic (like A*)

Decision Extensions

MBDP (dec-pomdp, h)
Start with a one-step policy for each agent
for t = h downto 1 do
Backup each agent’s policy

for Kk = 1 to maxTrees do
Compute heuristic policy and resulting
belief state b
Choose best set of trees starting at b
Select best set of trees for initial state b,

MBDP =
Memory
Bounded
Dynamic
Programming
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48



m— T — Universitit
Miinster

Infinite Horizon

e Approximate using a large enough horizon h
* Neither efficient, nor compact
 Selection of solution approaches based on solution approaches already seen for MDPs /
POMDPs:
* Policy iteration
e Start with one-step plans, extend further
* Automata-based approaches (Moore/Mealy automata to represent policy)
* Intractable for all but the smallest problems
e Best-first search
* Finds optimal fixed-size solutions; use start state info
* High search time — small sizes only
* Further solution approaches use non-linear programming

Decision Extensions
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Indefinite Horizon

Many natural problems terminate after a goal is reached
 Meeting or catching a target

* Cooperatively completing a task

Unclear how many steps are needed until termination

Under certain assumptions can produce an optimal solution

* E.g., terminal actions and negative rewards

e Such as the 4x3 grid:
terminal states, negative rewards for all but one terminal state

Otherwise, can bound the solution quality by sampling
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Benchmark Problems

DEC-Tiger

* (Nair et al., 2003)
BroadcastChannel

* (Hansen et al., 2004)
Meeting on a grid

e (Bernstein et al., 2005)
Cooperative Box Pushing
* (Seuken and Zilberstein, 2007a)
Recycling Robots
 (Amato et al., 2007)
FireFighting

* (Oliehoek et al., 2008b)
Sensor network problems

* (Nair et al., 2005; Kumar and Zilberstein, 2009a,b)

Decision Extensions
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Software for Dec-POMDPs

The MADP toolbox aims to provide a software platform for research in decision-theoretic
multiagent planning

(Spaan and Oliehoek, 2008)
* Main features:

* Uniform representation for several popular multiagent models

e Parser for a file format for discrete Dec-POMDPs

e Shared functionality for planning algorithms

* Implementation of several Dec-POMDP planners
* Released as free software, with special attention to the extensibility of the toolbox
* Provides benchmark problems

* Such as on the previous slide
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agents: 2
discount: 1

Decision Extensions

values: reward

states: tiger-left tiger-right
start:

uniform (
actions:

listen open-left open-right

# Transitions

T: *

uniform

T: listen listen
identity

# Observations
O: *

uniform

O: listen listen
O: listen listen
[...]

O: listen listen
# Rewards

R: listen listen
R

[

R

. ]

listen open-left open-right
observations:

hear-left hear-right
hear-left hear-right

tiger-left : hear-left hear-left : 0.722 )

#include "ProblemDecTiger.h"
#include "JESPExhaustivePlanner.h"
int main ()

ProblemDecTiger dectiger;
JESPExhaustivePlanner jesp (3, &dectiger);
jesp.Plan() ;
std: :cout
<< jesp.GetExpectedReward()
<< std::endl;
std: :cout
<< jesp.GetJointPolicy () ->SoftPrint ()
<< std::endl;
return (0) ;

tiger-left : hear-left hear-right : 0.1275

tiger-right : hear-left hear-left : 0.0225

* 0 *x e Kk . _2

open-left open-left : tiger-left : * : * : =50

open-left listen: tiger-right : * : * : 9

Dec-Tiger Problem Specification
and Program
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Interim Summary

* Dec-POMDPs
* Local policies, joint policy, value functions
 Communication, full observability, Dec-MDP
* Solutions for
* Finite horizon
* |nfinite horizon
* |ndefinite horizon
 MADP toolbox
 Benchmark problems

Decision Extensions
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Hierarchy of Formalisms

* Most general: POSG
e Set of agents, individual reward functions

* Environment only partially observable
e Specifications
1. Decentralisation
e Joint reward function

2a. Observable environment
2b. Multi to single agent

* Most specific: MDP
* One agent, (therefore) one reward function

e (Observable environment

Decision Extensions

POSG

Dec-POMDP

Modelling without any structure
in the agent set or state space
— potential for efficiency wasted
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Outline: Decision Making — Extensions

Partially Observable Markov Decision Process (POMDP)
e POMDP agent, belief state, belief MDP
* Conditional plans, value iteration

Decentralised POMDP (Dec-POMDP)
 Dec-POMDP, local policy, joint policy, value function
 Communication, full observability, Dec-MDP
e Solutions for finite, infinite, indefinite horizon

— Next: Decision Making — Structure
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