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Content: Planning and Acting 

1. With Deterministic Models
2. With Refinement Methods
3. With Temporal Models
4. With Nondeterministic Models
5. With Probabilistic Models

6. By Decision Making
A. Foundations
• Utility theory
• Markov decision processes
• Reinforcement learning

B. Extensions
C. Structure

7. With Human-awareness
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Literature

• We leave behind the planning book…
• Content based on 
• Artificial Intelligence: A Modern Approach (3rd ed.; abbreviation: AIMA)
• Stuart Russell, Peter Norvig
• Decision making (Chs. 16 + 17), reinforcement learning (Ch. 21)

• A Concise Introduction to Decentralized POMDPs
• Frans A. Oliehoek, Christopher Amato

• Explainable Human-AI Interaction: A Planning Perspective
• Sarath Sreedharan, Anagha Kulkarni, Subbarao Kambhampati

• Further research papers announced in lectures

• I do not expect you to read all the books!
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Decision Making under Uncertainty

• Goal-based: binary distinction 
between happy and unhappy

• Utility as a distribution over possible 
states
• Essentially an internalisation of a 

performance measure
• If internal utility function agrees with

external performance measure:
• Agent that chooses actions to 

maximize its utility will be rational
according to the external performance 
measure 
• Rationality as a measure of intelligence
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Setting

• Agent can perform actions in an environment
• Environment
• Outcomes of actions not unique
• Associated with probabilities (➝ probabilistic model)

• Agent has preferences over states/action outcomes
• Encoded in utility or utility function ➝ Utility theory

• “Decision theory = Utility theory + Probability theory”
• Model the world with a probabilistic model
• Model preferences with a utility (function)
• Find action that leads to the maximum expected utility, also called decision making 
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Outline: Decision Making – Foundations 

Utility Theory
• Preferences
• Utilities
• Preference structure

Markov Decision Process / Problem (MDP)
• Sequence of actions, history, policy
• Value iteration, policy iteration

Reinforcement Learning (RL)
• Passive and active, model-free and model-based RL
• Multi-armed bandit
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Preferences

• An agent chooses among prizes (𝐴, 𝐵, etc.) and lotteries, i.e., situations with uncertain 
prizes
• Outcome of a nondeterministic action is a lottery 

• Lottery 𝐿 = 𝑝, 𝐴; 1 − 𝑝 , 𝐵
• 𝐴 and 𝐵 can be lotteries again
• Prizes are special lotteries: 1, 𝑅; 0, not 𝑅
• More than two outcomes: 
• 𝐿 = 𝑝!, 𝑆!; 𝑝", 𝑆"; ⋯ ; 𝑝#, 𝑆# , ∑$%!# 𝑝$ = 1

• Notation
• 𝐴 ≻ 𝐵 𝐴 preferred to 𝐵
• 𝐴 ∼ 𝐵 indifference between 𝐴 and 𝐵
• 𝐴 ≿ 𝐵 𝐵 not preferred to 𝐴
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Rational Preferences

• Idea: preferences of a rational agent must obey constraints
• As prerequisite for reasonable preference relations

• Rational preferences ➝ behaviour describable as maximisation of expected utility
• Violating constraints leads to self-evident irrationality
• Example
• An agent with intransitive preferences can be induced to give away all its money
• If 𝐵 ≻ 𝐶, then an agent who has 𝐶 would pay (say) 1 cent to get 𝐵
• If 𝐴 ≻ 𝐵, then an agent who has 𝐵 would pay (say) 1 cent to get 𝐴
• If 𝐶 ≻ 𝐴, then an agent who has 𝐴 would pay (say) 1 cent to get 𝐶
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Axioms of Utility Theory
1. Orderability
• 𝐴 ≻ 𝐵 ∨ 𝐴 ≺ 𝐵 ∨ 𝐴 ∼ 𝐵
• ≺,≻, ~ jointly exhaustive, pairwise disjoint

2. Transitivity
• 𝐴 ≻ 𝐵 ∧ 𝐵 ≻ 𝐶 Þ 𝐴 ≻ 𝐶

3. Continuity
• 𝐴 ≻ 𝐵 ≻ 𝐶 ⇒ ∃𝑝 𝑝, 𝐴; 1 − 𝑝, 𝐶 ∼ 𝐵

4. Substitutability
• 𝐴 ∼ 𝐵 ⇒ 𝑝, 𝐴; 1 − 𝑝, 𝐶 ∼ 𝑝, 𝐵; 1 − 𝑝, 𝐶
• Also holds if replacing ∼ with ≻

5. Monotonicity
• 𝐴 ≻ 𝐵 ⇒ (𝑝 ≥ 𝑞 ⇔ 𝑝, 𝐴; 1 − 𝑝, 𝐵 ≿ 𝑞, 𝐴; 1 − 𝑞, 𝐵 )

6. Decomposability
• 𝑝, 𝐴; 1 − 𝑝, 𝑞, 𝐵; 1 − 𝑞, 𝐶 ∼ 𝑝, 𝐴; 1 − 𝑝 𝑞, 𝐵; 1 − 𝑝 1 − 𝑞 , 𝐶
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And Then There Was Utility

• Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
• Given preferences satisfying the constraints, there exists a real-valued function 𝑈 such that

𝑈 𝐴 ≥ 𝑈 𝐵 ⇔ 𝐴 ≿ 𝐵
• Existence of a utility function

• Expected utility of a lottery:

𝑈 𝑝(, 𝑆(; … ; 𝑝), 𝑆) = 5
*+(

)

𝑝*𝑈 𝑆*

• MEU principle
• Choose the action that maximises expected utility
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Utilities

• Utilities map states to real numbers. 
Which numbers?

• Standard approach to assessment of human utilities:
• Compare a given state 𝐴 to a standard lottery 𝐿, that has 
• “best possible outcome” ⊤ with probability 𝑝
• ”worst possible catastrophe” ⊥ with probability 1 − 𝑝

• Adjust lottery probability 𝑝 until 𝐴 ∼ 𝐿,
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Utility Scales

• Normalised utilities: 𝑢% = 1.0, 𝑢& = 0.0
• Utility of lottery 𝐿 ∼ (pay-$30-and-continue-as-before): 𝑈 𝐿 = 𝑢2 8 0.999999 + 𝑢3 8
0.000001 = 0.999999

• Micromorts: one-millionth chance of death
• Useful for Russian roulette, paying to reduce product risks, etc.
• Example for low risk
• Drive a car for 370km ≈ 1 micromort ➝ lifespan of a car: 150,000km ≈ 400 micromorts
• Studies showed that many people appear to be willing to pay US$10,000 for a safer car that halves the 

risk of death ➝ US$50/micromort
• QALYs: quality-adjusted life years
• Useful for medical decisions involving substantial risk

• In planning: task becomes minimisation of cost instead of maximisation of utility
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Money

• Money does not behave as a utility function
• Given a lottery 𝐿 with expected monetary value 𝐸𝑀𝑉 𝐿 , usually 𝑈 𝐿 < 𝑈 𝑆'() * , i.e., 

people are risk-averse
• 𝑆): state of possessing total wealth $𝑀
• Utility curve
• For what probability 𝑝 am I indifferent 

between a prize 𝑥 and a lottery 
𝑝, $𝑀; 1 − 𝑝 , $0 for large 𝑀?

• Right: Typical empirical 
data, extrapolated with
risk-prone behaviour 
for negative wealth
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Money Versus Utility

• Money ≠ Utility
• More money is better, but not always in a linear relationship to the amount of money

• Expected Monetary Value
• Risk-averse 
• 𝑈 𝐿 < 𝑈 𝑆&#' (

• Risk-seeking
• 𝑈 𝐿 > 𝑈 𝑆&#' (

• Risk-neutral
• 𝑈 𝐿 = 𝑈 𝑆&#' (
• Linear curve
• For small changes in wealth 

relative to current wealth
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Utility Scales

• Behaviour is invariant w.r.t. positive linear transformation
𝑈+ 𝑟 = 𝑘,𝑈 𝑟 + 𝑘-

• No unique utility function; 𝑈4 𝑟 and 𝑈 𝑟 yield same behaviour
• With deterministic prizes only (no lottery choices), only ordinal utility can be determined, 

i.e., total order on prizes 
• Ordinal utility function also called value function 
• Provides a ranking of alternatives (states), but not a meaningful metric scale (numbers do not 

matter) 
• Note:

An agent can be entirely rational (consistent with MEU) without ever representing or 
manipulating utilities and probabilities
• E.g., a lookup table for perfect tic-tac-toe
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Multi-attribute Utility Theory

• A given state may have multiple utilities
• ...because of multiple evaluation criteria
• ...because of multiple agents (interested parties) with different utility functions

• There are:
• Cases in which decisions can be made without combining the attribute values into a single utility 

value
• Strict dominance

• Cases in which the utilities of attribute combinations can be specified very concisely
• Preference structure

Decision Foundations
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Preference Structure

• To specify the complete utility function 𝑈 𝑟,, … , 𝑟( , we need 𝑑( values in the worst case
• 𝑀 attributes
• each attribute with 𝑑 distinct possible values
• Worst case meaning: Agent’s preferences have no regularity at all 

• Supposition in multi-attribute utility theory 
• Preferences of typical agents have much more structure

• Approach
• Identify regularities in the preference behaviour
• Use so-called representation theorems to show that an agent with a certain kind of preference 

structure has a utility function 
𝑈 𝑟(, … , 𝑟) = 𝛯 𝑓( 𝑟( , … , 𝑓) 𝑟)

• where 𝛯 is hopefully a simple function such as addition
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Preference Independence

• 𝑅, and 𝑅- preferentially independent (PI) of 𝑅. iff
• Preference between 𝑟(, 𝑟5, 𝑟6 and 𝑟(4, 𝑟54, 𝑟6 does not depend on 𝑟6
• E.g., 𝑁𝑜𝑖𝑠𝑒, 𝐶𝑜𝑠𝑡, 𝑆𝑎𝑓𝑒𝑡𝑦
• 20,000 𝑠𝑢𝑓𝑓𝑒𝑟, $4.6 𝑏𝑖𝑙𝑙𝑖𝑜𝑛, 0.06 𝑑𝑒𝑎𝑡ℎ𝑠/𝑚𝑜𝑛𝑡ℎ
• 70,000 𝑠𝑢𝑓𝑓𝑒𝑟, $4.2 𝑏𝑖𝑙𝑙𝑖𝑜𝑛, 0.06 𝑑𝑒𝑎𝑡ℎ𝑠/𝑚𝑜𝑛𝑡ℎ

• Theorem (Leontief, 1947)
• If every pair of attributes is PI of its complement, then every subset of attributes is PI of its 

complement
• Called mutual PI (MPI)
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Preference Independence

• Theorem (Debreu, 1960):
• MPI ⇒ ∃ additive value function 

𝑉 𝑟(, … , 𝑟) =5
*+(

)
𝑉* 𝑟*

• Hence assess 𝑀 single-attribute functions
• Decomposition of 𝑉 into a set of summands (additive semantics)
similar to 
• Decomposition of 𝑃𝑹 into a set of factors (multiplicative semantics)

• Often a good approximation
• Example:

𝑉 𝑁𝑜𝑖𝑠𝑒, 𝐶𝑜𝑠𝑡, 𝐷𝑒𝑎𝑡ℎ𝑠 = −𝑁𝑜𝑖𝑠𝑒 8 107 − 𝐶𝑜𝑠𝑡 − 𝐷𝑒𝑎𝑡ℎ𝑠 8 10(5

Decision Foundations
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Interim Summary

• Preferences
• Preferences of a rational agent must obey constraints 

• Utilities
• Rational preferences = describable as maximisation of expected utility
• Utility axioms
• MEU principle

• Multi-attribute utility theory
• Preference structure
• (Mutual) preferential independence
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Outline: Decision Making – Foundations 

Utility Theory
• Preferences
• Utilities
• Preference structure

Markov Decision Process / Problem (MDP)
• Sequence of actions, history, policy
• Value iteration, policy iteration

Reinforcement Learning (RL)
• Passive and active, model-free and model-based RL
• Multi-armed bandit
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Simple Robot Navigation Problem

• In each state, the possible actions are U, D, R, and L
• The effect of action U is as follows (transition model):
• With probability 0.8, move up one square 
• If already in top row or blocked, no move

• With probability 0.1, move right one square 
• If already in rightmost row or blocked, no move

• With probability 0.1, move left one square
• If already in leftmost row or blocked, no move

• Same transition model holds for D, R, and L
and their respective directions
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Markov Property

• Also known as Markov-𝑘 with 𝑘 = 1
• 𝑘 ≤ 𝑡

𝑃 𝑥 !"# 𝑥 ! , … , 𝑥 $ = 𝑃 𝑥 !"# 𝑥 ! , … , 𝑥 !%&"#

• 𝑘 = 1
𝑃 𝑥 !"# 𝑥 ! , … , 𝑥 $ = 𝑃 𝑥 !"# 𝑥 !
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The transition properties depend only 
on the current state, not on previous 
history (how that state was reached).



Sequence of Actions

• In each state, the possible actions are U, D, R, and L; 
the transition model for each action is (pictured):

• Current position: [3,2]
• Planned sequence of actions: (U, R)

Decision Foundations
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Sequence of Actions

• In each state, the possible actions are U, D, R, and L; 
the transition model for each action is (pictured):

• Current position: [3,2]
• Planned sequence of actions: (U, R)
• U is executed
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Sequence of Actions

• In each state, the possible actions are U, D, R, and L; 
the transition model for each action is (pictured):

• Current position: [3,2]
• Planned sequence of actions: (U, R)
• U has been executed
• R is executed
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Histories

• In each state, the possible actions are U, D, R, and L; 
the transition model for each action is (pictured):

• Current position: [3,2]
• Planned sequence of actions: (U, R)
• U has been executed
• R is executed

• History: sequence of states generated
by sequence of actions
• 9 possible sequences with

6 possible final states, only
1 of which is a goal state
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Probability of Reaching the Goal

• In each state: possible actions U, D, R, L; trans. model:
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𝑃 4,3 | U, R , 3,2 =
𝑃 4,3 | R, 3,3 < 𝑃 3,3 | U, 3,2
+𝑃 4,3 | R, 4,2 < 𝑃 4,2 | U, 3,2

𝑃 4,3 | R, 3,3 = 0.8 𝑃 3,3 | U, 3,2 = 0.8
𝑃 4,3 | R, 4,2 = 0.1 𝑃 4,2 | U, 3,2 = 0.1

𝑃 4,3 | U, R , 3,2 = 0.8 < 0.8 + 0.1 < 0.1 = 0.65

Note importance of Markov 
property in this derivation
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Utility Function

• [4,3] : power supply (stops the run)
• [4,2] : sand area the robot cannot escape (stops the run)
• Goal: robot needs to recharge its batteries
• [4,3] and [4,2] are terminal states
• In this example, we define the utility of a history by 
• The utility of the last state (+1 or –1) minus 0.04 8 𝑛
• 𝑛 is the number of moves
• I.e., each move costs 0.04, which provides an incentive 

to reach the goal fast
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Utility of an Action Sequence

• Consider the action sequence 𝒂 = (U,R) from [3,2]
• A run produces one of 7 possible histories, each with a probability
• Utility of the sequence is the expected utility of histories ℎ:

𝑈(𝒂) =>
@
𝑈@𝑃 ℎ

• Optimal sequence = the one with maximum utility
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Act()
 repeat
  s ← sensed state
  if s is terminal then
   exit 
  a ← choose action (given s)
  perform a

Reactive Agent Algorithm
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Policy (Reactive/Closed-loop Strategy)

• Policy 𝜋
• Complete mapping from states to actions

• Optimal policy 𝜋∗
• Always yields a history (ending at terminal state) with maximum 

expected utility
• Due to Markov property
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Note that [3,2] is a “dangerous” state 
that the optimal policy tries to avoid

How to compute 𝜋∗?
Solving a Markov Decision Process

Act()
 repeat
  s ← sensed state
  if s is terminal then
   exit 
  a ← 𝜋(s)
  perform a



Markov Decision Process / Problem (MDP)

• Sequential decision problem 
for a fully observable, stochastic environment 
with a Markovian transition model 
and additive rewards (next slide)

• MDP is a four-tuple 𝑆, 𝐴, 𝑇, 𝑅 with
• 𝑆 a random variable whose domain is a set of states 

(with an initial state 𝑠$)
• For each 𝑠 ∈ dom 𝑆
• a set 𝐴 𝑠 of actions
• a transition model 𝑇 𝑠*, 𝑠, 𝑎 = 𝑃 𝑠* 𝑠, 𝑎
• a reward function 𝑅(𝑠) (also with 𝑎 possible)

• Robot navigation example to the right
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Additive Utility

• History ℎ = 𝑠 C = 𝑠C, 𝑠 , , … , 𝑠 D

• In each state 𝑠, agent receives reward 𝑅 𝑠
• Utility of ℎ is additive iff 

= 𝑈 𝑠 C , 𝑠 , , … , 𝑠 D = 𝑅 𝑠 C + 𝑈 𝑠 , , … , 𝑠 D

=>
EFC

D
𝑅 𝑠 E

• Discount factor 𝛾 ∈]0,1]: 

𝑈 𝑠 $ , 𝑠 # , … , 𝑠 ' =5
!($

'
𝛾!𝑅 𝑠 !

• Close to 0: future rewards insignificant
• Corresponds to interest rate O!+,

,
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Principle of MEU

• Bellman equation: 
𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max

)∈+ ,
5

,"∈-./ 0

𝑃 𝑠1 𝑎, 𝑠 𝑈 𝑠1

• Optimal policy: 
𝜋∗ 𝑠 = argmax

)∈+ ,
5

,"∈-./ 0

𝑃 𝑠1 𝑎, 𝑠 𝑈 𝑠1

• Bellman equation for 1,1 with 𝛾 = 1 as discount factor
• 𝑈 1,1 = −0.04 + 𝛾 max

-,/,0,1
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{ 0.8𝑈 1,2 + 0.1𝑈 2,1 + 0.1𝑈 1,1 , (U)
0.8𝑈 1,1 + 0.1𝑈 1,1 + 0.1𝑈 1,2 , (L)
0.8𝑈 1,1 + 0.1𝑈 2,1 + 0.1𝑈 1,1 , (D)
0.8𝑈 2,1 + 0.1𝑈 1,2 + 0.1𝑈 1,1 } (R)
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Value Iteration

• Initialise the utility of each non-terminal state 𝑠 to 𝑈 C 𝑠 = 0
• For 𝑡 = 0, 1, 2, …, do

𝑈 !"# 𝑠 ← 𝑅 𝑠 + 𝛾 max
)∈+ ,

5
,"∈-./ 0

𝑃 𝑠1 𝑎, 𝑠 𝑈 ! 𝑠1

• So called Bellman update
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Value Iteration: Algorithm

• Returns a policy 𝜋 that is optimal
• Inputs
• MDP 𝑚𝑝𝑑 = 𝑆, 𝐴, 𝑇, 𝑅
• Set of states 𝑆
• For each 𝑠 ∈ 𝑆
• Set 𝐴 𝑠 of applicable actions
• Transition model 𝑇 = 𝑃 𝑠$ 𝑠, 𝑎
• Reward function 𝑅(𝑠)

• Maximum error allowed 𝜖
• Local variables
• 𝑈,𝑈1 vectors of utilities for states in 𝑆
• 𝛿 maximum change in utility of any state in 

an iteration
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function value-iteration(mdp,𝜖)
 U’ ← 0, π ←〈〉
 repeat
  U ← U’
  𝛿 ← 0
  for each state s ∈ S do
   U’[s] ← R(s) + 𝛾 maxa∈A(s)Σs’P(s’|a.s)U[s’]
   if |U’[s] - U[s]| > 𝛿 then
    𝛿 ← |U’[s] - U[s]|
 until 𝛿 < 𝜖(1-𝛾)/𝛾
 for each state s ∈ S do
  π(s) ← argmaxa∈A(s)Σs’P(s’|a.s)U[s’]
 return π



Evolution of Utilities

• For 𝑡 = 0, 1, 2, …, do
𝑈 !"# 𝑠 ← 𝑅 𝑠 + 𝛾 max

)∈+ ,
5

,"∈-./ 0

𝑃 𝑠1 𝑎, 𝑠 𝑈 ! 𝑠1

• Value iteration ≈ information propagation
• Argmax action may change over 

time due to utilities changing 

Decision Foundations
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Effect of Rewards

• For 𝑡 = 0, 1, 2, …, do
𝑈 !"# 𝑠 ← 𝑅 𝑠 + 𝛾 max

)∈+ ,
5

,"∈-./ 0

𝑃 𝑠1 𝑎, 𝑠 𝑈 ! 𝑠1

• Optimal policies for different rewards:
• For 𝑅 𝑠 = −0.04, see right ⇢
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Data for figures: AIMA, Russell/Norvig
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Effect of Allowed Error & Discount

• For 𝑡 = 0, 1, 2, …, do
𝑈 !"# 𝑠 ← 𝑅 𝑠 + 𝛾 max

)∈+ ,
5

,"∈-./ 0

𝑃 𝑠1 𝑎, 𝑠 𝑈 ! 𝑠1

• Iterations required to ensure a maximum error of 𝜀 = 𝑐 · 𝑅QRS
• 𝑅3)4 maximum reward
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Policy Iteration

• Pick a policy 𝜋C at random
• Repeat:
• Policy evaluation: Compute the utility of each state for 𝜋!
• 𝑈 2 𝑠 = 𝑅 𝑠 + 𝛾∑3!∈567 8 𝑃 𝑠* 𝑎, 𝑠 𝑈 2 𝑠*

• No longer involves a max operation as action is determined by 𝜋#
• Policy improvement: Compute the policy 𝜋!"# given 𝑈!
• 𝜋 29! 𝑠 = argmax

:∈; 3
∑3!∈567 8 𝑃 𝑠* 𝑎, 𝑠 𝑈 2 𝑠*

• If 𝜋 !"# = 𝜋 ! , then return 𝜋 !
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Solve the set of linear equations:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 X
%!∈'() *

𝑃 𝑠$ 𝑎, 𝑠 𝑈 𝑠$

(often a sparse system)



Policy Iteration: Algorithm

• Returns a policy 𝜋 that is optimal
• Inputs: MDP 𝑚𝑝𝑑 = 𝑆, 𝐴, 𝑇, 𝑅
• Set of states 𝑆
• For each 𝑠 ∈ 𝑆
• Set 𝐴 𝑠 of applicable actions
• Transition model 𝑇 = 𝑃 𝑠$ 𝑠, 𝑎
• Reward function 𝑅(𝑠)

• Local variables
• 𝑈 vectors of utilities for states in 𝑆, initially 
0

• 𝜋 a policy vector indexed by state, initially 
random
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function policy-iteration(mdp)
 repeat
  U ← policy-evaluation(𝜋,U,mdp)
  unchanged ← true
  for each state s ∈ S do
   if maxa∈A(s)Σs’P(s’|a.s)U[s’] > Σs’P(s’|𝜋[s].s)U[s’] then
    𝜋[s] ← argmaxa∈A(s)Σs’P(s’|a.s)U[s’]
    unchanged ← false
 until unchanged
 return 𝜋



Policy Evaluation

• Compute the utility of each state for 𝜋
• 𝑈 ! 𝑠 = 𝑅 𝑠 + 𝛾∑,"∈-./ 0 𝑃 𝑠1 𝑎, 𝑠 𝑈 ! 𝑠1

• Complexity of policy evaluation: 𝑂 𝑛. , 𝑛 = dom 𝑆
• For 𝑛 states, 𝑛 linear equations with 𝑛 unknowns
• Prohibitive for large 𝑛

• Approximation of utilities
• Perform 𝑘 value iteration steps with fixed policy 𝜋!, return utilities
• Simplified Bellman update: 𝑈 29! 𝑠 = 𝑅 𝑠 + 𝛾∑3!∈567 8 𝑃 𝑠* 𝑎, 𝑠 𝑈 2 𝑠*

• Asynchronous policy iteration (next slide)
• Pick any subset of states

Decision Foundations

T. Braun - APA 44



Asynchronous Policy Iteration

• Further approximation of policy iteration
• Pick any subset of states and do one of the following 
• Update utilities 
• Using simplified value iteration as described on previous slide

• Update the policy 
• Policy improvement as before

• Is not guaranteed to converge to an optimal policy
• Possible if each state is still visited infinitely often, knowledge about unimportant states, etc.

• Freedom to work on any states allows for design of domain-specific heuristics
• Update states that are likely to be reached by a good policy

Decision Foundations
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Intermediate Summary

• Markov property
• Current state depends only on previous state

• Sequence of actions, history, policy
• Sequence of actions may yield multiple histories, i.e., sequences of states, with a utility
• Policy: complete mapping of states to actions
• Optimal policy: policy with maximum expected utility

• MDP
• State space, actions, transition model, reward function

• Value iteration, policy iteration
• Algorithms for calculating an optimal policy for an MDP

Decision Foundations
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Outline: Decision Making – Foundations 

Utility Theory
• Preferences
• Utilities
• Preference structure

Markov Decision Process / Problem (MDP)
• Sequence of actions, history, policy
• Value iteration, policy iteration

Reinforcement Learning (RL)
• Passive and active, model-free and model-based RL
• Multi-armed bandit

Decision Foundations
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Acting as Reinforcement Learning (RL)

• Agent, placed in an environment, must learn to act optimally in it
• Assume that the world behaves like an MDP, except
• Agent can act but does not know the transition model
• Agent observes its current state and its reward but does not know the reward function

• Goal: learn an optimal policy

Decision Foundations
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Factors That Make RL Hard

• Actions have non-deterministic effects
• which are initially unknown and must be learned

• Rewards / punishments can be infrequent
• Often at the end of long sequences of actions
• How does an agent determine what action(s) were really responsible for reward or punishment?
• Credit assignment problem

• World is large and complex

Decision Foundations
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Passive vs. Active Learning

• Passive learning
• Agent acts based on a fixed policy 𝜋 and tries to learn how good the policy is by observing the 

world go by
• Analogous to policy iteration (without the optimisation part)

• Active learning
• Agent attempts to find an optimal (or at least good) policy by exploring different actions in the 

world
• Analogous to solving the underlying MDP

Decision Foundations
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Model-based vs. Model-free RL

• Model-based approach to RL
• Learn the MDP model (𝑃 𝑠1 𝑠, 𝑎 and 𝑅), or an approximation of it
• Use it to find the optimal policy

• Model-free approach to RL
• Derive the optimal policy without explicitly learning the model

Decision Foundations
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Passive RL

• Suppose the agent is given a policy
• Wants to determine how good it is

• Given 𝜋: Need to learn 𝑈Y 𝑠 :

Decision Foundations
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Passive RL

• Given policy 𝜋:
• Estimate 𝑈5 𝑠

• Not given
• Transition model 𝑃 𝑠1 𝑠, 𝑎
• Reward function 𝑅(𝑠)

• Simply follow the policy for many epochs
• Epochs: training sequences / trials

• Assumption: restart or reset possible (or no terminal states with the end of an epoch given by 
the receipt of a reward)
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Direct Utility Estimation (DUE)

• Model-free approach
• Estimate 𝑈5 𝑠 as average total reward of epochs containing 𝑠
• Calculating from 𝑠 to end of epoch

• Reward-to-go of a state 𝑠
• The sum of the (discounted) rewards from that state until a terminal state is reached

• Key: use observed reward-to-go of the state as the direct evidence of the actual expected 
utility of that state
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DUE: Example

• Suppose the agent observes the following trial:
• 1,1 %$.$7 → 1,2 %$.$7 → 1,3 %$.$7 → 1,2 %$.$7 → 1,3 %$.$7 → 2,3 %$.$7 → 3,3 %$.$7 →

4,3 "#
• The total reward starting at 1,1 is 7 ⋅ −0.04 + 1 = 0.72
• I.e., a sample of the observed-reward-to-go for 1,1

• For 1,2 , there are two samples of the observed-reward-to-go 
• Assuming 𝛾 = 1
1. 1,2 %$.$7 → 1,3 %$.$7 → 1,2 %$.$7 → 1,3 %$.$7 → 2,3 %$.$7 →

3,3 %$.$7 → 4,3 "#
[Total: 0.76]

2. 1,2 %$.$7 → 1,3 %$.$7 → 2,3 %$.$7 → 3,3 %$.$7 → 4,3 "#
[Total: 0.84]

Decision Foundations
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DUE: Convergence

• Keep a running average of the observed reward-to-go for each state
• E.g., for state 1,2 , it stores $.89"$.:7

;
= 0.8

• As the number of trials goes to infinity, the sample average converges to the true utility
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DUE: Problem

• Big problem: it converges very slowly!
• Why?
• Does not exploit the fact that utilities of states are not independent
• Utilities follow the Bellman equation

𝑈5 𝑠 = 𝑅 𝑠 + 𝛾 5
,"∈-./ 0

𝑃 𝑠1 𝜋 𝑠 , 𝑠 𝑈5 𝑠1
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T. Braun - APA 57

Dependence on neighbouring states



DUE: Problem

• Using the dependence to your advantage
• Suppose you know that state 3,3 has a high utility
• Suppose you are now at 3,2
• Bellman equation would be able to tell you that 3,2 is likely to have a high utility because 3,3

is a neighbour
• DUE cannot tell you that until the end of the trial
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Adaptive Dynamic Programming (ADP)

• Model-based approach
• Given policy 𝜋:
• Estimate 𝑈5 𝑠
• All while acting in the environment

How?
• Basically learns the transition model 𝑃 𝑠+ 𝑠, 𝑎 and the reward function 𝑅(𝑠)
• Takes advantage of constraints in the Bellman equation

• Based on 𝑃 𝑠+ 𝑠, 𝑎 and 𝑅(𝑠), performs policy evaluation (part of policy iteration)

Decision Foundations
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Recap: Policy Iteration

• Pick a policy 𝜋C at random
• Repeat:
• Policy evaluation: Compute the utility of each state for 𝜋!
• 𝑈 2 𝑠 = 𝑅 𝑠 + 𝛾∑3!∈567 8 𝑃 𝑠* 𝑎, 𝑠 𝑈 2 𝑠*

• No longer involves a max operation as action is determined by 𝜋#
• Policy improvement: Compute the policy 𝜋!"# given 𝑈!
• 𝜋 29! 𝑠 = argmax

:∈; 3
∑3!∈567 8 𝑃 𝑠* 𝑎, 𝑠 𝑈 2 𝑠*

• If 𝜋 !"# = 𝜋 ! , then return 𝜋 !
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Solve the set of linear equations:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 X
%!∈'() *

𝑃 𝑠$ 𝑎, 𝑠 𝑈 𝑠$

(often a sparse system)

Can be solved 
in 𝑂 𝑛+ , 
where 𝑛 = |𝑆|



ADP: Estimate the Utilities

• Make use of policy evaluation to estimate the utilities of states
• To use policy equation

𝑈 E], 𝑠 = 𝑅 𝑠 + 𝛾 >
^6∈`ab c

𝑃 𝑠+ 𝜋 𝑠 , 𝑠 𝑈 E 𝑠+

agent needs to learn 𝑃 𝑠+ 𝑠, 𝑎 and 𝑅 𝑠
• How?
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ADP: Learn the Model

• Learning 𝑅 𝑠
• Easy because it is deterministic
• Whenever you see a new state, store the observed reward value as 𝑅 𝑠

• Learning 𝑃 𝑠+ 𝑠, 𝑎
• Keep track of how often you get to state 𝑠1 given that you are in state 𝑠 and do action 𝑎
• E.g., if you are in 𝑠 = 1,3 and you execute R three times and you end up in 𝑠1 = 2,3 twice, 

then 𝑃 𝑠1 R, 𝑠 = ;
<
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ADP: Algorithm

• Learning the MDP while acting 
according to a fixed policy 𝜋
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function passive-ADP-agent(percept) 
 returns an action
 input: percept, indicating current state s’, reward r’
 static:
  𝜋, fixed policy
  mdp, MDP with P[s’|s,a], R(s), 𝛾
  U, table of utilities, initially empty
  Nsa, table of freq. for s-a pairs, initially 0
  Nsas’, table of freq. for s-a-s’ triples, initially 0
  s,a, previous state and action, initially null 
 if s’ is new then
  U[s’] ← r’
  R[s’] ← r’
 if s is not null then
  increment Nsa[s,a] and Nsas’[s,a,s’]
  for each t s.t. Nsas’[s,a,t] ≠ 0 do
   P[t|s,a] ← Nsas’[s,a,t] / Nsa[s,a]
 U ← Policy-evaluation(𝜋,U,mdp)
 if Terminal?(s’) then
  s,a ← null
 else
  s,a ← s’,𝜋[s’]
 return a

Update reward function

Update transition model



ADP: Problem

• Need to solve a system of simultaneous equations – costs 𝑂 𝑛.
• Very hard to do if you have 10=$ states like in Backgammon
• Could make things a little easier with modified policy iteration

• Can the agent avoid the computational expense of full policy evaluation?

Decision Foundations
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Temporal Difference Learning (TD)

• Instead of calculating the exact utility for a state, can the agent approximate it and possibly 
make it less computationally expensive?

• Yes, it can! Using TD:
𝑈5 𝑠 = 𝑅 𝑠 + 𝛾 5

,"∈-./ 0

𝑃 𝑠1 𝜋 𝑠 , 𝑠 𝑈5 𝑠1

• Instead of doing the sum over all successors, only adjust the utility of the state based on the 
successor observed in the trial

• Does not estimate the transition model – model-free
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T. Braun - APA 65



TD: Example

• Suppose you see that 𝑈Y 1,3 = 0.84 and 𝑈Y 2,3 = 0.92
• If the transition 1,3 → 2,3 happens all the time, you would expect to see:

𝑈Y 1,3 = 𝑅 1,3 + 𝑈Y 2,3
⇒ 𝑈Y 1,3 = −0.04 + 𝑈Y 2,3
⇒ 𝑈Y 1,3 = −0.04 + 0.92 = 0.88

• Since you observe 𝑈Y 1,3 = 0.84 in the first trial and it is a little lower than 0.88, so you 
might want to “bump” it towards 0.88
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Aside: Online Mean Estimation
• Suppose that we want to incrementally compute the mean of a sequence of numbers
• E.g., to estimate the mean of a random variable from a sequence of samples
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TD Update

• TD update for transition from 𝑠 to 𝑠+
𝑈Y 𝑠 = 𝑈Y 𝑠 + 𝛼 𝑅 𝑠 + 𝛾𝑈Y 𝑠′ − 𝑈Y 𝑠

• Similar to one step of value iteration
• Equation called backup

• So, the update is maintaining a “mean” of the (noisy) utility samples
• If the learning rate decreases with the number of samples (e.g., 1/𝑛), then the utility 

estimates will eventually converge to true values

𝑈Y 𝑠 = 𝑅 𝑠 + 𝛾 >
^6∈`ab c

𝑃 𝑠+ 𝜋 𝑠 , 𝑠 𝑈Y 𝑠+
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TD: Convergence

• Since TD uses the observed successor 𝑠+ instead of all the successors, what happens if the 
transition 𝑠 ⟶ 𝑠+ is very rare and there is a big jump in utilities from 𝑠 to 𝑠+?
• How can 𝑈5 𝑠 converge to the true equilibrium value?

• Answer: 
The average value of 𝑈Y 𝑠 will converge to the correct value
• This means the agent needs to observe enough trials that have transitions from 𝑠 to its 

successors
• Essentially, the effects of the TD backups will be averaged over a large number of transitions
• Rare transitions will be rare in the set of transitions observed
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Comparison between ADP and TD

• Advantages of ADP
• Converges to true utilities in fewer iterations
• Utility estimates do not vary as much from the true utilities

• Advantages of TD
• Simpler, less computation per observation
• Crude but efficient first approximation to ADP
• Do not need to build a transition model to perform its updates
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ADP and TD

• Utility estimates for 4x3 grid
• ADP, given optimal policy (above)
• Notice the large changes occurring around the 78th trial—this is the first 

time that the agent falls into the −1 terminal state at (4,2) 

• TD (below)
• More epochs required
• Faster runtime per epoch
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Overall comparisons

• DUE (model-free)
• Simple to implement
• Each update is fast
• Does not exploit Bellman constraints and 

converges slowly
• ADP (model-based)
• Harder to implement
• Each update is a full policy evaluation 

(expensive)
• Fully exploits Bellman constraints
• Fast convergence (in terms of epochs)

• TD (model-free)
• Update speed and implementation similar 

to direct estimation
• Partially exploits Bellman constraints –

adjusts state to “agree” with observed 
successor
• Not all possible successors

• Convergence in between DUE and ADP
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Passive Learning: Disadvantage

• Learning 𝑈Y 𝑠 does not lead to an optimal policy, 
why?
• Only evaluated 𝜋 (no optimisation)
• Models are incomplete/inaccurate
• Agent has only tried limited actions, cannot gain a good overall understanding of 𝑃 𝑠1 𝑠, 𝑎

• Solution: Active learning
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Goal of Active Learning

• Assume that the agent still has access to some sequence of trials performed by the agent
• Agent is not following any specific policy
• Assume for now that the sequences should include a thorough exploration of the space
• We will talk about how to get such sequences later

• The goal is to learn an optimal policy from such sequences
• Active RL agents
• Active ADP agent
• Q-learner (based on TD algorithm)
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Active ADP Agent

• Model-based approach
• Using the data from its trials, agent estimates a transition model \𝑇 and a reward function 
\𝑅
• With o𝑇 𝑠, 𝑎, 𝑠1 and o𝑅 𝑠 , it has an estimate of the underlying MDP
• Like passive ADP using policy evaluation

• Given estimate of the MDP, it can compute the optimal policy by solving the Bellman 
equations using value or policy iteration

𝑈 𝑠 = \𝑅 𝑠 + 𝛾 max
R∈e ^

>
^6∈`ab c

\𝑇 𝑠, 𝑎, 𝑠+ 𝑈 𝑠+

• If \𝑇 and \𝑅 are accurate estimations of the underlying MDP model, agent can find the 
optimal policy this way

Decision Foundations

T. Braun - APA 75



Issues with ADP Approach

• Need to maintain MDP model
• 𝑇 can be very large, 𝑂 𝑆 - ⋅ 𝐴
• Also, finding the optimal action requires solving the Bellman equation – time consuming

• Can the agent avoid this large computational complexity both in terms of time and space?
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Q-learning

• So far, focus on utilities for states
• 𝑈 𝑠 = utility of state 𝑠 = expected maximum future rewards

• Alternative: store Q-values
• 𝑄 𝑎, 𝑠 = utility of taking action 𝑎 at state 𝑠

= expected maximum future reward if action 𝑎 taken at state 𝑠

• Relationship between 𝑈 𝑠 and 𝑄 𝑎, 𝑠 ?

𝑈 𝑠 = max
R∈e ^

𝑄 𝑎, 𝑠
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Q-learning can be model-free

• Note that after computing 𝑈 𝑠 , to obtain the optimal policy, the agent needs to compute

𝜋 𝑠 = argmax
R∈e ^

>
^6∈`ab c

𝑇 𝑠, 𝑎, 𝑠+ 𝑈 𝑠+

• Requires 𝑇, model of the world
• Even if it uses TD learning (model-free), it still needs the model to get the optimal policy

• However, if the agent successfully estimates 𝑄 𝑎, 𝑠 for all 𝑎 and 𝑠, it can compute the 
optimal policy without using the model

𝜋 𝑠 = argmax
R∈e ^

𝑄 𝑎, 𝑠

Decision Foundations

T. Braun - APA 78



Q-learning

• At equilibrium when Q-values are correct, we can write the constraint equation:

𝑄 𝑎, 𝑠 = 𝑅 𝑠 + 𝛾 >
^6∈`ab c

𝑇 𝑠, 𝑎, 𝑠+ max
R6∈e ^6

𝑄 𝑎+, 𝑠+
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𝑈 𝑠+

Expected value for 
action-state pair 𝑎, 𝑠

Reward at state 𝑠

Expected value averaged over all 
possible states 𝑠$ that can be reached 

from 𝑠 after executing action 𝑎



Q-learning

• At equilibrium when Q-values are correct, we can write the constraint equation:

𝑄 𝑎, 𝑠 = 𝑅 𝑠 + 𝛾 >
^6∈`ab c

𝑇 𝑠, 𝑎, 𝑠+ max
R6∈e ^6

𝑄 𝑎+, 𝑠+
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Best value at the 
next state = max 
over all actions in 

state 𝑠$

Expected value for 
action-state pair 𝑎, 𝑠

Reward at state 𝑠

Expected value averaged over all 
possible states 𝑠$ that can be reached 

from 𝑠 after executing action 𝑎



Q-learning without a Model

• Q-update: after moving from 𝑠 to state 𝑠+ using action 𝑎
𝑄 𝑎, 𝑠 ← 𝑄 𝑎, 𝑠 + 𝛼 𝑅 𝑠 + 𝛾 max

R6∈e ^6
𝑄 𝑎+, 𝑠+ − 𝑄(𝑎, 𝑠)

• TD approach
• Transition model does not appear anywhere!
• Once converged, optimal policy can be computed without transition model
• Completely model-free learning algorithm
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New estimate 
of 𝑄 𝑎, 𝑠

Old estimate 
of 𝑄 𝑎, 𝑠 Difference between old 

estimate 𝑄 𝑎, 𝑠  and the 
new noisy sample after 

taking action 𝑎
Learning rate
0 < 𝛼 < 1



Q-learning: Convergence

• Guaranteed to converge to true Q-values given enough exploration
• Very general procedure
• Because it is model-free

• Converges slower than ADP agent
• Because it is completely model-free and it does not enforce consistency among values through 

the model
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Exploitation vs. Exploration

• Actions are always taken for one of the two following purposes
• Exploitation: Execute the current optimal policy to get high payoff
• Exploration: Try new sequences of (possibly random) actions to improve the agent’s knowledge 

of the environment even though current model does not show they have a high payoff
• Pure exploitation: gets stuck in a rut
• Pure exploration: not much use if you do not put that knowledge into practice
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Multi-Arm Bandit Problem

• So far, we assumed that the agent has a set of epochs of 
sufficient exploration
• Problem: How to get a set of epochs that sufficiently explores the 

state space?

• Multi-arm bandit problem: 
Statistical model of sequential experiments
• Name comes from a traditional slot machine (one-armed bandit)

• Question: 
Which machine to play?
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Actions

• 𝑛 arms, each with a fixed but unknown distribution of reward
• In terms of actions: Multiple actions 𝑎#, 𝑎;, … , 𝑎A
• Each 𝑎$ provides a reward from an unknown (but stationary) probability distribution 𝑝$
• Specifically, expectation 𝜇$ of machine 𝑖’s reward unknown
• If all 𝜇/’s were known, then the task is easy: 

just pick argmax
/

𝜇/

• With 𝜇l’s unknown, question is 
which arm to pull
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Formal Model

• At each time step 𝑡 = 1, 2, … , 𝑇:
• Each machine 𝑖 has a random reward 𝑋B

!

• 𝐸 𝑋$
2 = 𝜇$ independent of the past 

(Markov property again)

• Pick a machine 𝐼! and get reward 𝑋C0
!

• Other machines’ rewards hidden

• Over 𝑇 time steps, the agent has a total 
reward of ∑EF,D 𝑋m7

E

• If all 𝜇B’s known, it would have selected 
argmax

B
𝜇B at each time 𝑡

• Expected total reward 𝑇 ] max
$
𝜇$

• Agent’s regret:  𝑇 f max
l
𝜇l − ∑EF,D 𝑋m7

E
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agent’s rewardbest machine’s 
reward

(in expectation) 



Exploitation vs. Exploration Reprise

• Exploration: to find the best
• Overhead: big loss when trying bad arms

• Exploitation: to exploit what the agent has discovered
• Weakness: there may be better arms that it has not explored and identified

• Question: 
With a fixed budget, how to balance exploration 
and exploitation such that the total loss (or regret) 
is small?
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Where Does the Loss Come from?

• If 𝜇l is small, trying this arm too many times makes a big loss
• So, the agent should try it less if it finds the previous samples from it are bad

• But how to know whether an arm is good? 
• The more the agent tries an arm 𝑖, the more information it gets about its distribution 
• In particular, the better estimate to its mean 𝜇B
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Where Does the Loss Come from?

• So, the agent wants to estimate each 𝜇l precisely, and at the same time, it does not want 
to try bad arms too often
• Two competing tasks
• Exploration vs. exploitation dilemma

• Rough idea: the agent tries an arm if 
• Either 

it has not tried it often enough
• Or 

its estimate of 𝜇B so far is high
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UCB (Upper Confidence Bound) Algorithm

• Input: Set of actions 𝐴
• Assume rewards between 0 and 1
• If they are not, normalise them

• For each action 𝑎l , let
• 𝑟B = average reward from 𝑎B
• 𝑡B = number of times 𝑎B tried

• 𝑡 = ål𝑡l
• Confidence interval around 𝑟l
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UCB(A)
 Try each action ai once
 loop
  choose an action ai that has 
   the highest value of ri + Ö2⋅ln(t)/ti
  perform ai
  update ri , ti , t

𝑟/
(                  )

𝑟/ +
2 ln 𝑡
𝑡/



UCB: Performance

• Uses principle of optimism in face of uncertainty
• Agent does not have a good estimate �̂�B of 𝜇B before trying it many times
• Thus, give a big confidence 

interval [−𝑐$, 𝑐$] for such 𝑖

• 𝑐/ =
1 23 #
#"

• And select an 𝑖 with maximum 𝜇$ + 𝑐$

• If an action has not been tried many times, then the big confidence 
interval makes it still possible to be tried

• I.e., in face of uncertainty (of 𝜇B), the agent acts optimistically by 
giving chances to those that have not been tried enough
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𝑟/
(                  )

𝑟/ +
2 ln 𝑡
𝑡/



UCB: Performance

• Theorem: If each distribution of reward has support in [0,1], i.e., rewards are normalised, 
then the regret of the UCB algorithm is at most 

𝑂 >
l:s9ts∗

ln 𝑇
Δl

+ >
u∈{,,…,w}

Δu

• 𝜇∗ = max
D
𝜇B

• ΔB = 𝜇∗ − 𝜇B
• Expected loss of choosing 𝑎$ once

• [without proof]

• Loss grows very slowly with 𝑇
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UCT Algorithm for Cost-based Planning

• Recursive UCB computation to compute 𝑄 𝑠, 𝑎 for 
cost
• Min ops instead of max
• Planning domain Σ, state 𝑠
• Horizon ℎ (steps into the future)
• Constant 𝐶: 
• Relative weight of exploration of less sampled actions (𝐶

high) to exploitation of promising actions (𝐶 low)
• Empirical tuning significantly affects performance of UCT

• Anytime algorithm:
• Call repeatedly until time runs out
• Then choose action argmin

)
𝑄 𝑠, 𝑎
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UCT(𝛴,s,h)
 if s ∈ S then
  return 0
 if h = 0 then
  return V0(s)
 if s ∉ Envelope then
  add s to Envelope
  n(s) ← 0
  for all a ∈ Applicable(s) do
   Q(s,a) ← 0
   n(s,a) ← 0
 Untried ← {a ∈ Applicable(s)| n(s,a)=0}
 if Untried ≠ ∅ then
  ã ← Choose(Untried)
 else
  ã ← argmina∈Applicable(s)
   {Q(s,a)-C⋅[log(n(s))/n(s,a)]½}
 s’ ← Sample(𝛴,s,ã)
 cost—rollout ← cost(s,ã) + UCT(s’,h-1)
 Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]
    /(1+n(s,ã))
 n(s) ← n(s) + 1
 n(s,ã) ← n(s,ã) + 1
 return cost-rollout



UCT as an Acting Procedure

• Suppose probabilities and costs unknown
• Suppose you can restart your actor as 

many times as you want
• Can modify UCT to be an acting procedure
• Use it to explore the environment
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UCT(𝛴,s,h)
 if s ∈ S then
  return 0
 if h = 0 then
  return V0(s)
 if s ∉ Envelope then
  add s to Envelope
  n(s) ← 0
  for all a ∈ Applicable(s) do
   Q(s,a) ← 0
   n(s,a) ← 0
 Untried ← {a ∈ Applicable(s)| n(s,a)=0}
 if Untried ≠ ∅ then
  ã ← Choose(Untried)
 else
  ã ← argmina∈Applicable(s)
   {Q(s,a)-C⋅[log(n(s))/n(s,a)]½}
 s’ ← Sample(𝛴,s,ã)
 cost—rollout ← cost(s,ã) + UCT(s’,h-1)
 Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]
    /(1+n(s,ã))
 n(s) ← n(s) + 1
 n(s,ã) ← n(s,ã) + 1
 return cost-rollout

perform x𝑎; observe 𝑠$



UCT as a Learning Procedure

• Suppose probabilities and costs unknown
• But you have an accurate simulator for the 

environment
• Run UCT multiple times in the simulated 

environment
• Learn what actions work best
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UCT(𝛴,s,h)
 if s ∈ S then
  return 0
 if h = 0 then
  return V0(s)
 if s ∉ Envelope then
  add s to Envelope
  n(s) ← 0
  for all a ∈ Applicable(s) do
   Q(s,a) ← 0
   n(s,a) ← 0
 Untried ← {a ∈ Applicable(s)| n(s,a)=0}
 if Untried ≠ ∅ then
  ã ← Choose(Untried)
 else
  ã ← argmina∈Applicable(s)
   {Q(s,a)-C⋅[log(n(s))/n(s,a)]½}
 s’ ← Sample(𝛴,s,ã)
 cost—rollout ← cost(s,ã) + UCT(s’,h-1)
 Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]
    /(1+n(s,ã))
 n(s) ← n(s) + 1
 n(s,ã) ← n(s,ã) + 1
 return cost-rollout

simulate x𝑎; observe 𝑠$



Intermediate Summary

• Passive learning
• DUE
• ADP
• TD

• Active learning
• Active ADP
• Q-learning

• Multi-armed bandit problem
• UCB, UCT
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Outline: Decision Making – Foundations 

Utility Theory
• Preferences
• Utilities
• Preference structure

Markov Decision Process / Problem (MDP)
• Sequence of actions, history, policy
• Value iteration, policy iteration

Reinforcement Learning (RL)
• Passive and active, model-free and model-based RL
• Multi-armed bandit

⟹ Next: Decision Making – Extensions
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