

Automated Planning and Acting Decision Making: Foundations

Tanya Braun Research Group Data Science, Computer Science Department

Content: Planning and Acting

- 1. With **Deterministic** Models
- 2. With Refinement Methods
- 3. With **Temporal** Models
- 4. With **Nondeterministic** Models
- 5. With **Probabilistic** Models

6. By **Decision Making**

- A. Foundations
 - Utility theory
 - Markov decision processes
 - Reinforcement learning
- B. Extensions
- C. Structure
- 7. With Human-awareness

Literature

- We leave behind the planning book...
- Content based on
 - Artificial Intelligence: A Modern Approach (3rd ed.; abbreviation: AIMA)
 - Stuart Russell, Peter Norvig
 - Decision making (Chs. 16 + 17), reinforcement learning (Ch. 21)
 - A Concise Introduction to Decentralized POMDPs
 - Frans A. Oliehoek, Christopher Amato
 - **Explainable Human-AI Interaction: A Planning Perspective**
 - Sarath Sreedharan, Anagha Kulkarni, Subbarao Kambhampati
 - Further research papers announced in lectures

I do not expect you to read all the books!

Christopher Amato

A Concise

POMDPs

🖄 Springer

http://aima.cs.berkeley.edu

https://link.springer.com/book/10.1007/978-3-319-28929-8

https://link.springer.com/book/10.1007/978-3-031-03767-2

Acknowledgements

- Slides based on material provided by Dana Nau, Ralf Möller, and Shengyu Zhang
 - In part based on AIMA Book, Chapters 16, 17, 21

Decision Making under Uncertainty

- Goal-based: binary distinction between *happy* and *unhappy*
- Utility as a distribution over possible states
 - Essentially an internalisation of a performance measure
 - If internal utility function *agrees with* external performance measure:
 - Agent that chooses actions to maximize its utility will be *rational* according to the external performance measure
 - Rationality as a measure of intelligence

Setting

- Agent can perform actions in an environment
 - Environment
 - Outcomes of actions not unique
 - Associated with probabilities (→ probabilistic model)
 - Agent has preferences over states/action outcomes
 - Encoded in utility or utility function → Utility theory
- "Decision theory = Utility theory + Probability theory"
 - Model the world with a probabilistic model
 - Model preferences with a utility (function)
 - Find action that leads to the maximum expected utility, also called decision making

Outline: Decision Making – Foundations

Utility Theory

- Preferences
- Utilities
- Preference structure

Markov Decision Process / Problem (MDP)

- Sequence of actions, history, policy
- Value iteration, policy iteration

Reinforcement Learning (RL)

- Passive and active, model-free and model-based RL
- Multi-armed bandit

Preferences

- An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations with uncertain prizes
 - Outcome of a nondeterministic action is a lottery
- Lottery L = [p, A; (1 p), B]
 - A and B can be lotteries again
 - Prizes are special lotteries: [1, *R*; 0, not *R*]
 - More than two outcomes:

•
$$L = [p_1, S_1; p_2, S_2; \dots; p_M, S_M], \sum_{i=1}^M p_i = 1$$

- Notation
 - A > B A preferred to B
 - $A \sim B$ indifference between A and B
 - $A \gtrsim B$ B not preferred to A

Rational Preferences

- Idea: preferences of a rational agent must obey constraints
 - As prerequisite for reasonable preference relations
- Rational preferences → behaviour describable as maximisation of expected utility
- Violating constraints leads to self-evident irrationality
 - Example
 - An agent with intransitive preferences can be induced to give away all its money
 - If B > C, then an agent who has C would pay (say) 1 cent to get B
 - If A > B, then an agent who has B would pay (say) 1 cent to get A
 - If C > A, then an agent who has A would pay (say) 1 cent to get C

Axioms of Utility Theory

- 1. Orderability
 - $(A > B) \lor (A \prec B) \lor (A \sim B)$
 - {<, ≻, ~} jointly exhaustive, pairwise disjoint
- 2. Transitivity
 - $(A > B) \land (B > C) \Rightarrow (A > C)$
- 3. Continuity
 - $A > B > C \Rightarrow \exists p [p, A; 1 p, C] \sim B$
- 4. Substitutability
 - $A \sim B \Rightarrow [p, A; 1 p, C] \sim [p, B; 1 p, C]$
 - Also holds if replacing \sim with \succ
- 5. Monotonicity
 - $A > B \Rightarrow (p \ge q \Leftrightarrow [p, A; 1 p, B] \gtrsim [q, A; 1 q, B])$
- 6. Decomposability
 - $[p, A; 1-p, [q, B; 1-q, C]] \sim [p, A; (1-p)q, B; (1-p)(1-q), C]$

And Then There Was Utility

- Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
 - Given preferences satisfying the constraints, there exists a real-valued function U such that $U(A) \ge U(B) \Leftrightarrow A \gtrsim B$
 - Existence of a utility function
 - Expected utility of a lottery:

$$U([p_1, S_1; ...; p_M, S_M]) = \sum_{i=1}^M p_i U(S_i)$$

- MEU principle
 - Choose the action that maximises expected utility

Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment of human utilities:
 - Compare a given state A to a standard lottery L_p that has
 - "best possible outcome" \top with probability p
 - "worst possible catastrophe" \perp with probability (1-p)
 - Adjust lottery probability p until $A \sim L_p$

Utility Scales

- Normalised utilities: $u_{T} = 1.0$, $u_{\perp} = 0.0$
- Micromorts: one-millionth chance of death
 - Useful for Russian roulette, paying to reduce product risks, etc.
 - Example for low risk
 - Drive a car for 370km ≈ 1 micromort → lifespan of a car: 150,000km ≈ 400 micromorts
 - Studies showed that many people appear to be willing to pay US\$10,000 for a safer car that halves the risk of death → US\$50/micromort
- QALYs: quality-adjusted life years
 - Useful for medical decisions involving substantial risk
- In planning: task becomes minimisation of cost instead of maximisation of utility

Money

- Money does not behave as a utility function
- Given a lottery *L* with expected monetary value EMV(L), usually $U(L) < U(S_{EMV(L)})$, i.e., people are risk-averse
 - S_M : state of possessing total wealth \$M
 - Utility curve
 - For what probability p am I indifferent between a prize x and a lottery [p, \$M; (1 − p), \$0] for large M?
 - Right: Typical empirical data, extrapolated with risk-prone behaviour for negative wealth

Money Versus Utility

- Money \neq Utility
 - More money is better, but not always in a linear relationship to the amount of money
- Expected Monetary Value
 - Risk-averse
 - $U(L) < U(S_{EMV(L)})$
 - Risk-seeking
 - $U(L) > U(S_{EMV(L)})$
 - Risk-neutral
 - $U(L) = U(S_{EMV(L)})$
 - Linear curve
 - For small changes in wealth relative to current wealth

Utility Scales

• Behaviour is invariant w.r.t. positive linear transformation

$$U'(r) = k_1 U(r) + k_2$$

- No unique utility function; U'(r) and U(r) yield same behaviour
- With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes
 - Ordinal utility function also called value function
 - Provides a ranking of alternatives (states), but not a meaningful metric scale (numbers do not matter)
- Note:

An agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities

• E.g., a lookup table for perfect tic-tac-toe

Multi-attribute Utility Theory

- A given state may have multiple utilities
 - ...because of multiple evaluation criteria
 - ...because of multiple agents (interested parties) with different utility functions
- There are:
 - Cases in which decisions can be made *without* combining the attribute values into a single utility value
 - Strict dominance
 - Cases in which the utilities of attribute combinations can be specified very concisely
 - Preference structure

Preference Structure

- To specify the complete utility function $U(r_1, ..., r_M)$, we need d^M values in the worst case
 - *M* attributes
 - each attribute with *d* distinct possible values
 - Worst case meaning: Agent's preferences have no regularity at all
- Supposition in multi-attribute utility theory
 - Preferences of typical agents have much more structure
- Approach
 - Identify regularities in the preference behaviour
 - Use so-called representation theorems to show that an agent with a certain kind of preference structure has a utility function

$$U(r_1, \dots, r_M) = \Xi[f_1(r_1), \dots, f_M(r_M)]$$

• where Ξ is hopefully a simple function such as *addition*

Preference Independence

- R_1 and R_2 preferentially independent (PI) of R_3 iff
 - Preference between $\langle r_1, r_2, r_3 \rangle$ and $\langle r'_1, r'_2, r_3 \rangle$ does not depend on r_3
 - E.g., (Noise, Cost, Safety)
 - (20,000 suffer, \$4.6 billion, 0.06 deaths/month)
 - (70,000 suffer, \$4.2 billion, 0.06 deaths/month)
- Theorem (Leontief, 1947)
 - If every pair of attributes is PI of its complement, then every subset of attributes is PI of its complement
 - Called mutual PI (MPI)

Preference Independence

- Theorem (Debreu, 1960):
 - MPI $\Rightarrow \exists$ additive value function

$$V(r_1, \dots, r_M) = \sum_{i=1}^M V_i(r_i)$$

- Hence assess *M* single-attribute functions
 - Decomposition of V into a set of summands (additive semantics) similar to
 - Decomposition of $P_{\mathbf{R}}$ into a set of factors (multiplicative semantics)
- Often a good approximation
- Example:

 $V(Noise, Cost, Deaths) = -Noise \cdot 10^4 - Cost - Deaths \cdot 10^{12}$

Interim Summary

- Preferences
 - Preferences of a rational agent must obey constraints
- Utilities
 - Rational preferences = describable as maximisation of expected utility
 - Utility axioms
 - MEU principle
- Multi-attribute utility theory
 - Preference structure
 - (Mutual) preferential independence

Outline: Decision Making – Foundations

Utility Theory

- Preferences
- Utilities
- Preference structure

Markov Decision Process / Problem (MDP)

- Sequence of actions, history, policy
- Value iteration, policy iteration

Reinforcement Learning (RL)

- Passive and active, model-free and model-based RL
- Multi-armed bandit

Simple Robot Navigation Problem

- In each state, the possible actions are U, D, R, and L
- The effect of action U is as follows (transition model):
 - With probability 0.8, move up one square
 - If already in top row or blocked, no move
 - With probability 0.1, move right one square
 - If already in rightmost row or blocked, no move
 - With probability 0.1, move left one square
 - If already in leftmost row or blocked, no move
- Same transition model holds for D, R, and L and their respective directions

Markov Property

The transition properties depend only on the current state, not on previous history (how that state was reached).

• Also known as Markov-k with k = 1

•
$$k \leq t$$

$$P(x^{(t+1)}|x^{(t)}, \dots, x^{(0)}) = P(x^{(t+1)}|x^{(t)}, \dots, x^{(t-k+1)})$$

$$P(x^{(t+1)}|x^{(t)}, \dots, x^{(0)}) = P(x^{(t+1)}|x^{(t)})$$

Decision Foundations

Sequence of Actions

- In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
- Current position: [3,2]
- Planned sequence of actions: (U, R)

Decision Foundations

Sequence of Actions

- In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
- Current position: [3,2]
- Planned sequence of actions: (U, R)
 - U is executed

Decision Foundations

Sequence of Actions

- In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
- Current position: [3,2]
- Planned sequence of actions: (U, R)
 - U has been executed
 - R is executed

Histories

 In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):

[3,1]

• Current position: [3,2]

Universität

Münster

- Planned sequence of actions: (U, R)
 - U has been executed
 - R is executed
- History: sequence of states generated by sequence of actions
 - 9 possible sequences with
 6 possible final states, only
 1 of which is a goal state

4

Probability of Reaching the Goal

• In each state: possible actions U, D, R, L; trans. model:

[3,1]

```
P([4,3] | (U, R), [3,2]) = P([4,3] | R, [3,3]) \cdot P([3,3] | U, [3,2]) + P([4,3] | R, [4,2]) \cdot P([4,2] | U, [3,2])
P([4,3] | R, [3,3]) = 0.8 P([3,3] | U, [3,2]) = 0.8 P([4,3] | R, [4,2]) = 0.1 P([4,2] | U, [3,2]) = 0.1
```

 $P([4,3] | (U, R), [3,2]) = 0.8 \cdot 0.8 + 0.1 \cdot 0.1 = 0.65$

Note importance of Markov property in this derivation

Utility Function

- [4,3] : power supply (stops the run)
- [4,2] : sand area the robot cannot escape (stops the run)
- Goal: robot needs to recharge its batteries
- [4,3] and [4,2] are terminal states
- In this example, we define the utility of a history by
 - The utility of the last state (+1 or –1) minus $0.04 \cdot n$
 - *n* is the number of moves
 - I.e., each move costs 0.04, which provides an incentive to reach the goal fast

Utility of an Action Sequence

- Consider the action sequence a = (U,R) from [3,2]
- A run produces one of 7 possible histories, each with a probability
- Utility of the sequence is the expected utility of histories *h*:

$$U(\boldsymbol{a}) = \sum_{h} U_h P(h)$$

• Optimal sequence = the one with maximum utility

Reactive Agent Algorithm

Act()	
repeat	
$s \leftarrow ext{sensed stat}$	te
if <i>s</i> is termina	al then
exit	
$a \leftarrow \text{choose act}$	ion (given <i>s</i>)
perform a	

Policy (Reactive/Closed-loop Strategy)

• Policy π

- Complete mapping from states to actions
- Optimal policy π^*
 - Always yields a history (ending at terminal state) with maximum expected utility
 - Due to Markov property

Note that [3,2] is a "dangerous" state that the optimal policy tries to avoid

Act()				
rep	eat			
	$s \leftarrow \text{sens}$	ed sta [.]	te	
	if s is	termina	al	then
exit				
	$a \leftarrow \pi(s)$			
	perform	a		

How to compute π^* ? Solving a Markov Decision Process

Markov Decision Process / Problem (MDP)

- Sequential decision problem for a fully observable, stochastic environment with a Markovian transition model and additive rewards (next slide)
- MDP is a four-tuple (S, A, T, R) with
 - S a random variable whose domain is a set of states (with an initial state s₀)
 - For each $s \in \text{dom}(S)$
 - a set A(s) of actions
 - a transition model T(s', s, a) = P(s'|s, a)
 - a reward function R(s) (also with a possible)
- Robot navigation example to the right

Additive Utility

- History $h = (s^{(0)} = s_0, s^{(1)}, \dots, s^{(T)})$
- In each state s, agent receives reward R(s)
- Utility of *h* is additive iff $U(s^{(0)}, s^{(1)}, ..., s^{(T)}) = R(s^{(0)}) + U(s^{(1)}, ..., s^{(T)})$ $= \sum_{t=0}^{T} R(s^{(t)})$
 - **Discount** factor $\gamma \in]0,1]$:

$$U(s^{(0)}, s^{(1)}, \dots, s^{(T)}) = \sum_{t=0}^{T} \gamma^{t} R(s^{(t)})$$

- Close to 0: future rewards insignificant
- Corresponds to interest rate $^{1-\gamma}/_{\gamma}$

D, L, R each move costs 0.04

Principle of MEU

Bellman equation:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s' \in \operatorname{dom}(S)} P(s'|a,s)U(s')$$

Optimal policy:

$$\pi^*(s) = \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s' \in \operatorname{dom}(S)} P(s'|a,s)U(s')$$

- Bellman equation for [1,1] with $\gamma = 1$ as discount factor
 - $U(1,1) = -0.04 + \gamma \max_{U,L,D,R} \{ \begin{array}{l} 0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1), \\ 0.8U(1,1) + 0.1U(1,1) + 0.1U(1,2), \end{array} \}$ (U)
 - (L)
 - 0.8U(1,1) + 0.1U(2,1) + 0.1U(1,1),(D)
 - 0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)(R)

0.8

Value Iteration

- Initialise the utility of each non-terminal state s to $U^{(0)}(s) = 0$
- For *t* = 0, 1, 2, ..., do

$$U^{(t+1)}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s' \in \operatorname{dom}(S)} P(s'|a,s) U^{(t)}(s')$$

• So called Bellman update

Note the importance of terminal states and connectivity of the state-transition graph

Value Iteration: Algorithm

- Returns a policy π that is optimal
- Inputs
 - MDP mpd = (S, A, T, R)
 - Set of states *S*
 - For each $s \in S$
 - Set *A*(*s*) of applicable actions
 - Transition model T = P(s'|s, a)
 - Reward function R(s)
 - Maximum error allowed ϵ

```
function value-iteration (mdp, \epsilon)

U' \leftarrow 0, \pi \leftarrow \langle \rangle

repeat

U \leftarrow U'

\delta \leftarrow 0

for each state s \in S do

U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \Sigma_{s'} P(s' | a.s) U[s']

if |U'[s] - U[s]| > \delta then

\delta \leftarrow |U'[s] - U[s]|

until \delta < \epsilon (1-\gamma)/\gamma

for each state s \in S do

\pi(s) \leftarrow \arg\max_{a \in A(s)} \Sigma_{s'} P(s' | a.s) U[s']

return \pi
```

- Local variables
 - *U*, *U*' vectors of utilities for states in *S*
 - δ maximum change in utility of any state in an iteration

Evolution of Utilities

- For t = 0, 1, 2, ..., do $U^{(t+1)}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s' \in dom(s)} P(s'|a, s) U^{(t)}(s')$
- Value iteration ≈ information propagation
 - Argmax action may change over time due to utilities changing

Effect of Rewards

- For t = 0, 1, 2, ..., do $U^{(t+1)}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s' \in dom(s)} P(s'|a, s) U^{(t)}(s')$
- Optimal policies for different rewards:
 - For R(s) = -0.04, see right \rightarrow

Effect of Allowed Error & Discount

• Iterations required to ensure a maximum error of $\varepsilon = c \cdot R_{max}$

Policy Iteration

- Pick a policy π_0 at random
- Repeat:
 - Policy evaluation: Compute the utility of each state for π_t $U^{(t)}(s) = R(s) + \gamma \sum_{s' \in \text{dom}(s)} P(s'|a, s) U^{(t)}(s')$
 - - No longer involves a max operation as action is determined by π_t
 - Policy improvement: Compute the policy π_{t+1} given U_t

•
$$\pi^{(t+1)}(s) = \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s' \in \operatorname{dom}(s)} P(s'|a,s) U^{(t)}(s')$$

• If $\pi^{(t+1)} = \pi^{(t)}$, then return $\pi^{(t)}$

Solve the set of linear equations:

$$U(s) = R(s) + \gamma$$
 $\sum P(s'|a,s)U(s')$

 $s' \in \overline{\text{dom}}(S)$ (often a sparse system)

Policy Iteration: Algorithm

- Returns a policy π that is optimal
 - Inputs: MDP mpd = (S, A, T, R)
 - Set of states *S*
 - For each $s \in S$
 - Set *A*(*s*) of applicable actions
 - Transition model T = P(s'|s, a)
 - Reward function R(s)

```
function policy-iteration(mdp)

repeat

U \leftarrow \text{policy-evaluation}(\pi, U, mdp)

unchanged \leftarrow true

for each state s \in S do

if \max_{a \in A(s)} \Sigma_{s'} P(s' | a.s) U[s'] > \Sigma_{s'} P(s' | \pi[s].s) U[s'] then

\pi[s] \leftarrow \arg\max_{a \in A(s)} \Sigma_{s'} P(s' | a.s) U[s']

unchanged \leftarrow false

until unchanged

return \pi
```

- Local variables
 - U vectors of utilities for states in S, initially 0
 - π a policy vector indexed by state, initially random

Policy Evaluation

- Compute the utility of each state for π
 - $U^{(t)}(s) = R(s) + \gamma \sum_{s' \in \text{dom}(s)} P(s'|a, s) U^{(t)}(s')$
- Complexity of policy evaluation: $O(n^3)$, n = |dom(S)|
 - For *n* states, *n* linear equations with *n* unknowns
 - Prohibitive for large *n*
- Approximation of utilities
 - Perform k value iteration steps with fixed policy π_t , return utilities
 - Simplified Bellman update: $U^{(t+1)}(s) = R(s) + \gamma \sum_{s' \in \text{dom}(s)} P(s'|a,s) U^{(t)}(s')$
 - Asynchronous policy iteration (next slide)
 - Pick any subset of states

Asynchronous Policy Iteration

- Further approximation of policy iteration
 - Pick any subset of states and do one of the following
 - Update utilities
 - Using simplified value iteration as described on previous slide
 - Update the policy
 - Policy improvement as before
- Is not guaranteed to converge to an optimal policy
 - Possible if each state is still visited infinitely often, knowledge about unimportant states, etc.
- Freedom to work on any states allows for design of domain-specific heuristics
 - Update states that are likely to be reached by a good policy

Intermediate Summary

- Markov property
 - Current state depends only on previous state
- Sequence of actions, history, policy
 - Sequence of actions may yield multiple histories, i.e., sequences of states, with a utility
 - Policy: complete mapping of states to actions
 - Optimal policy: policy with maximum expected utility
- MDP
 - State space, actions, transition model, reward function
- Value iteration, policy iteration
 - Algorithms for calculating an optimal policy for an MDP

Outline: Decision Making – Foundations

Utility Theory

- Preferences
- Utilities
- Preference structure

Markov Decision Process / Problem (MDP)

- Sequence of actions, history, policy
- Value iteration, policy iteration

Reinforcement Learning (RL)

- Passive and active, model-free and model-based RL
- Multi-armed bandit

Acting as Reinforcement Learning (RL)

- Agent, placed in an environment, must learn to act optimally in it
- Assume that the world behaves like an MDP, except
 - Agent can act but does not know the transition model
 - Agent observes its current state and its reward but does not know the reward function
- Goal: learn an optimal policy

Factors That Make RL Hard

- Actions have non-deterministic <u>effects</u>
 - which are initially <u>unknown</u> and must be learned
- Rewards / punishments can be infrequent
 - Often at the end of long sequences of actions
 - How does an agent determine what action(s) were really responsible for reward or punishment?
 - Credit assignment problem
 - World is large and complex

Passive vs. Active Learning

- Passive learning
 - Agent acts based on a fixed policy π and tries to learn how good the policy is by observing the world go by
 - Analogous to policy iteration (without the optimisation part)
- Active learning
 - Agent attempts to find an optimal (or at least good) policy by exploring different actions in the world
 - Analogous to solving the underlying MDP

Model-based vs. Model-free RL

- Model-based approach to RL
 - Learn the MDP model (P(s'|s, a) and R), or an approximation of it
 - Use it to find the optimal policy
- Model-free approach to RL
 - Derive the optimal policy without explicitly learning the model

Passive RL

- Suppose the agent is given a policy
- Wants to determine how good it is

Passive RL

- Given policy π :
 - Estimate $U^{\pi}(s)$

Universität

• Not given

T. Braun - APA

- Transition model P(s'|s, a)
- Reward function R(s)
- Simply follow the policy for many epochs
 - Epochs: training sequences / trials

$$(1,1) \to (1,2) \to (1,3) \to (1,2) \to (1,3) \to (2,3) \to (3,3) \to (4,3) + 1$$

$$(1,1) \to (1,2) \to (1,3) \to (2,3) \to (3,3) \to (3,2) \to (3,3) \to (4,3) + 1$$

$$(1,1) \to (2,1) \to (3,1) \to (3,2) \to (4,2) - 1$$

 Assumption: restart or reset possible (or no terminal states with the end of an epoch given by the receipt of a reward)

Direct Utility Estimation (DUE)

- Model-free approach
 - Estimate $U^{\pi}(s)$ as average total reward of epochs containing s
 - Calculating from *s* to end of epoch
- Reward-to-go of a state *s*
 - The sum of the (discounted) rewards from that state until a terminal state is reached
- Key: use observed reward-to-go of the state as the direct evidence of the actual expected utility of that state

DUE: Example

- Suppose the agent observes the following trial:
 - $(1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{+1}$
- The total reward starting at (1,1) is $7 \cdot -0.04 + 1 = 0.72$
 - I.e., a sample of the observed-reward-to-go for (1,1)
- For (1,2), there are two samples of the observed-reward-to-go
 - Assuming $\gamma = 1$
 - 1. $(1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{+1}$ [Total: 0.76]
 - 2. $(1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{+1}$ [Total: 0.84]

DUE: Convergence

- Keep a running average of the observed reward-to-go for each state
 - E.g., for state (1,2), it stores $\frac{(0.76+0.84)}{2} = 0.8$
- As the number of trials goes to infinity, the sample average converges to the true utility

DUE: Problem

- Big problem: it converges very slowly!
- Why?
 - Does not exploit the fact that utilities of states are not independent
 - Utilities follow the Bellman equation

$$U^{\pi}(s) = R(s) + \gamma \sum_{\substack{s' \in \text{dom}(S)}} P(s'|\pi(s), s) U^{\pi}(s')$$

Dependence on neighbouring states

DUE: Problem

- Using the dependence to your advantage
 - Suppose you know that state (3,3) has a high utility
 - Suppose you are now at (3,2)
 - Bellman equation would be able to tell you that (3,2) is likely to have a high utility because (3,3) is a neighbour
- DUE cannot tell you that until the end of the trial

Adaptive Dynamic Programming (ADP)

- Model-based approach
- Given policy π :
 - Estimate $U^{\pi}(s)$
 - All while acting in the environment

How?

- Basically learns the transition model P(s'|s, a) and the reward function R(s)
 - Takes advantage of constraints in the Bellman equation
- Based on P(s'|s, a) and R(s), performs policy evaluation (part of policy iteration)

Recap: Policy Iteration

- Pick a policy π_0 at random
- Repeat:
 - Policy evaluation: Compute the utility of each state for π_t

•
$$U^{(t)}(s) = R(s) + \gamma \sum_{s' \in \text{dom}(s)} P(s'|a, s) U^{(t)}(s')$$

- No longer involves a max operation as action is determined by π_t
- Policy improvement: Compute the policy π_{t+1} given U_t

•
$$\pi^{(t+1)}(s) = \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s' \in \operatorname{dom}(s)} P(s'|a,s) U^{(t)}(s')$$

• If
$$\pi^{(t+1)} = \pi^{(t)}$$
, then return $\pi^{(t)}$

Solve the set of linear equations:

$$U(s) = R(s) + \gamma$$
 $\sum P(s)$

$$P(s'|a,s)U(s')$$

 $s' \in \overline{\text{dom}}(S)$ (often a sparse system)

> Can be solved in $O(n^3)$, where n = |S|

ADP: Estimate the Utilities

- Make use of policy evaluation to estimate the utilities of states
- To use policy equation

$$U^{(t+1)}(s) = R(s) + \gamma \sum_{\substack{s' \in \text{dom}(S)}} P(s'|\pi(s), s) U^{(t)}(s')$$

agent needs to learn $P(s'|s, a)$ and $R(s)$

• How?

ADP: Learn the Model

- Learning R(s)
 - Easy because it is deterministic
 - Whenever you see a new state, store the observed reward value as R(s)
- Learning P(s'|s, a)
 - Keep track of how often you get to state s' given that you are in state s and do action a
 - E.g., if you are in s = (1,3) and you execute R three times and you end up in s' = (2,3) twice, then $P(s'|\mathbf{R}, s) = \frac{2}{3}$

Decision Foundations

ADP: Algorithm

• Learning the MDP while acting according to a fixed policy π

Update reward function Update transition model

function passive-ADP-agent(percept) returns an action input: percept, indicating current state s', reward r' static: π , fixed policy mdp, MDP with P[s'|s,a], R(s), γ U, table of utilities, initially empty N_{ca} , table of freq. for s-a pairs, initially 0 $N_{sas'}$, table of freq. for s-a-s' triples, initially 0 s, a, previous state and action, initially null if s' is new then $U[s'] \leftarrow r'$ $R[s'] \leftarrow r'$ if s is not null then increment $N_{sa}[s,a]$ and $N_{sas'}[s,a,s']$ → for each t s.t. $N_{sas'}[s, a, t] \neq 0$ do $P[t|s,a] \leftarrow N_{sas'}[s,a,t] / N_{sa}[s,a]$ $U \leftarrow \text{Policy-evaluation}(\pi, U, mdp)$ if Terminal?(s') then $s, a \leftarrow \text{null}$ else $s, a \leftarrow s', \pi[s']$ return a

ADP: Problem

- Need to solve a system of simultaneous equations costs $O(n^3)$
 - Very hard to do if you have 10^{50} states like in Backgammon
 - Could make things a little easier with modified policy iteration
- Can the agent avoid the computational expense of full policy evaluation?

Temporal Difference Learning (TD)

- Instead of calculating the exact utility for a state, can the agent approximate it and possibly make it less computationally expensive?
- Yes, it can! Using TD:

$$U^{\pi}(s) = R(s) + \gamma \sum_{s' \in \operatorname{dom}(S)} P(s'|\pi(s), s) U^{\pi}(s')$$

- Instead of doing the sum over all successors, only adjust the utility of the state based on the successor observed in the trial
- Does not estimate the transition model model-free

TD: Example

- Suppose you see that $U^{\pi}(1,3) = 0.84$ and $U^{\pi}(2,3) = 0.92$
- If the transition $(1,3) \rightarrow (2,3)$ happens all the time, you would expect to see: $U^{\pi}(1,3) = R(1,3) + U^{\pi}(2,3)$ $\Rightarrow U^{\pi}(1,3) = -0.04 + U^{\pi}(2,3)$ $\Rightarrow U^{\pi}(1,3) = -0.04 + 0.92 = 0.88$
- Since you observe $U^{\pi}(1,3) = 0.84$ in the first trial and it is a little lower than 0.88, so you might want to "bump" it towards 0.88

Aside: Online Mean Estimation

sample n + 1

learning rate

- Suppose that we want to incrementally compute the mean of a sequence of numbers
 - E.g., to estimate the mean of a random variable from a sequence of samples

$$\begin{split} \hat{X}_{n+1} &= \frac{1}{n+1} \sum_{i=1}^{n+1} x_i = \left(\frac{1}{n+1} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} x_{n+1} = \left(\frac{n}{n(n+1)} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} x_{n+1} \\ \text{average} \\ \text{of } n+1 \\ \text{samples} &= \left(\frac{n+1-1}{n(n+1)} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} x_{n+1} = \left(\frac{n+1}{n(n+1)} \sum_{i=1}^n x_i\right) - \left(\frac{1}{n(n+1)} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} x_{n+1} \\ &= \left(\frac{1}{n} \sum_{i=1}^n x_i\right) - \left(\frac{1}{(n+1)} \cdot \frac{1}{n} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} x_{n+1} = \left(\frac{1}{n} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} \left(x_{n+1} - \frac{1}{n} \sum_{i=1}^n x_i\right) \\ &= \hat{X}_n + \frac{1}{n+1} \left(x_{n+1} - \hat{X}_n\right) \end{split}$$
Given a new sample x_{n+1} , the new mean is the old extinct (for n correct) also the variable of difference of the main base of the m

estimate (for n samples) plus the weighted difference between the new sample and old estimate

T. Braun - APA

TD Update

• TD update for transition from s to s'

$$U^{\pi}(s) = U^{\pi}(s) + \alpha (R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$

learning rate

new (noisy) sample of utility based on next state

- Similar to one step of value iteration
- Equation called backup
- So, the update is maintaining a "mean" of the (noisy) utility samples
- If the learning rate decreases with the number of samples (e.g., 1/n), then the utility estimates will eventually converge to true values

$$U^{\pi}(s) = R(s) + \gamma \sum_{s' \in \operatorname{dom}(S)} P(s'|\pi(s), s) U^{\pi}(s')$$

TD: Convergence

- Since TD uses the observed successor s' instead of all the successors, what happens if the transition s → s' is very rare and there is a big jump in utilities from s to s'?
 - How can $U^{\pi}(s)$ converge to the true equilibrium value?
- Answer:

The average value of $U^{\pi}(s)$ will converge to the correct value

- This means the agent needs to observe enough trials that have transitions from s to its successors
- Essentially, the effects of the TD backups will be averaged over a large number of transitions
- Rare transitions will be rare in the set of transitions observed

Comparison between ADP and TD

- Advantages of ADP
 - Converges to true utilities in fewer iterations
 - Utility estimates do not vary as much from the true utilities
- Advantages of TD
 - Simpler, less computation per observation
 - Crude but efficient first approximation to ADP
 - Do not need to build a transition model to perform its updates

ADP and TD

- Utility estimates for 4x3 grid
 - ADP, given optimal policy (above)
 - Notice the large changes occurring around the 78th trial—this is the first time that the agent falls into the -1 terminal state at (4,2)
 - TD (below)
 - More epochs required
 - Faster runtime per epoch

Overall comparisons

- DUE (model-free)
 - Simple to implement
 - Each update is fast
 - Does not exploit Bellman constraints and converges slowly
- ADP (model-based)
 - Harder to implement
 - Each update is a full policy evaluation (expensive)
 - Fully exploits Bellman constraints
 - Fast convergence (in terms of epochs)

- TD (model-free)
 - Update speed and implementation similar to direct estimation
 - Partially exploits Bellman constraints adjusts state to "agree" with observed successor
 - Not all possible successors
 - Convergence in between DUE and ADP

Passive Learning: Disadvantage

- Learning $U^{\pi}(s)$ does not lead to an optimal policy, why?
 - Only evaluated π (no optimisation)
 - Models are incomplete/inaccurate
 - Agent has only tried limited actions, cannot gain a good overall understanding of P(s'|s, a)
- Solution: Active learning

Goal of Active Learning

- Assume that the agent still has access to some sequence of trials performed by the agent
 - Agent is not following any specific policy
 - Assume for now that the sequences should include a thorough exploration of the space
 - We will talk about how to get such sequences later
- The goal is to learn an optimal policy from such sequences
 - Active RL agents
 - Active ADP agent
 - Q-learner (based on TD algorithm)

Active ADP Agent

- Model-based approach
- Using the data from its trials, agent estimates a transition model \widehat{T} and a reward function \widehat{R}
 - With $\hat{T}(s, a, s')$ and $\hat{R}(s)$, it has an estimate of the underlying MDP
 - Like passive ADP using policy evaluation
- Given estimate of the MDP, it can compute the optimal policy by solving the Bellman equations using value or policy iteration

$$U(s) = \hat{R}(s) + \gamma \max_{a \in A(s)} \sum_{s' \in \operatorname{dom}(S)} \hat{T}(s, a, s') U(s')$$

• If \hat{T} and \hat{R} are accurate estimations of the underlying MDP model, agent can find the optimal policy this way

Issues with ADP Approach

- Need to maintain MDP model
- T can be very large, $O(|S|^2 \cdot |A|)$
- Also, finding the optimal action requires solving the Bellman equation time consuming
- Can the agent avoid this large computational complexity both in terms of time and space?

Q-learning

- So far, focus on utilities for states
 - U(s) = utility of state s = expected maximum future rewards
- Alternative: store Q-values
 - Q(a, s) = utility of taking action a at state s
 = expected maximum future reward if action a taken at state s
- Relationship between U(s) and Q(a, s)?

$$U(s) = \max_{a \in A(s)} Q(a, s)$$

Q-learning can be model-free

• Note that after computing U(s), to obtain the optimal policy, the agent needs to compute

$$\pi(s) = \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s' \in \operatorname{dom}(S)} T(s, a, s') U(s')$$

- Requires *T*, model of the world
- Even if it uses TD learning (model-free), it still needs the model to get the optimal policy
- However, if the agent successfully estimates Q(a, s) for all a and s, it can compute the optimal policy without using the model

 $\pi(s) = \operatorname*{argmax}_{a \in A(s)} Q(a, s)$

Q-learning

• At equilibrium when Q-values are correct, we can write the constraint equation:

Q-learning

• At equilibrium when Q-values are correct, we can write the constraint equation:

Q-learning without a Model

• Q-update: after moving from s to state s' using action a

- TD approach
- Transition model does not appear anywhere!
- Once converged, optimal policy can be computed without transition model
 - Completely model-free learning algorithm

Q-learning: Convergence

- Guaranteed to converge to true Q-values given enough exploration
- Very general procedure
 - Because it is model-free
- Converges slower than ADP agent
 - Because it is completely model-free and it does not enforce consistency among values through the model

Exploitation vs. Exploration

- Actions are always taken for one of the two following purposes
 - Exploitation: Execute the current optimal policy to get high payoff
 - Exploration: Try new sequences of (possibly random) actions to improve the agent's knowledge of the environment even though current model does not show they have a high payoff
- Pure exploitation: gets stuck in a rut
- Pure exploration: not much use if you do not put that knowledge into practice

Multi-Arm Bandit Problem

- So far, we assumed that the agent has a set of epochs of sufficient exploration
 - Problem: How to get a set of epochs that sufficiently explores the state space?
- Multi-arm bandit problem: Statistical model of sequential experiments
 - Name comes from a traditional slot machine (one-armed bandit)
- Question: Which machine to play?

Actions

- *n* arms, each with a fixed but unknown distribution of reward
 - In terms of actions: Multiple actions a_1, a_2, \dots, a_n
 - Each a_i provides a reward from an unknown (but stationary) probability distribution p_i
 - Specifically, expectation μ_i of machine *i*'s reward unknown
 - If all μ_i 's were known, then the task is easy: just pick $\underset{i}{\operatorname{argmax}} \mu_i$
- With μ_i 's unknown, question is which arm to pull

Formal Model

- At each time step t = 1, 2, ..., T:
 - Each machine *i* has a random reward $X_i^{(t)}$
 - $E\left[X_i^{(t)}\right] = \mu_i$ independent of the past (Markov property again)
 - Pick a machine I_t and get reward $X_{I_t}^{(t)}$
 - Other machines' rewards hidden

- Over T time steps, the agent has a total reward of $\sum_{t=1}^{T} X_{I_t}^{(t)}$
 - If all μ_i 's known, it would have selected argmax μ_i at each time t
 - Expected total reward $T \cdot \max_{i} \mu_{i}$
- Agent's regret: $T \cdot \max_{i} \mu_{i} \sum_{t=1}^{T} X_{I_{t}}^{(t)}$

best machine's age reward (in expectation)

Exploitation vs. Exploration Reprise

- Exploration: to find the best
 - Overhead: big loss when trying bad arms
- Exploitation: to exploit what the agent has discovered
 - Weakness: there may be better arms that it has not explored and identified

• Question:

With a fixed budget, how to balance exploration and exploitation such that the total loss (or regret) is small?

Where Does the Loss Come from?

- If μ_i is small, trying this arm too many times makes a big loss
 - So, the agent should try it less if it finds the previous samples from it are bad
- But how to know whether an arm is good?
- The more the agent tries an arm *i*, the more information it gets about its distribution
 - In particular, the better estimate to its mean μ_i

Where Does the Loss Come from?

- So, the agent wants to estimate each μ_i precisely, and at the same time, it does not want to try bad arms too often
 - Two competing tasks
 - Exploration vs. exploitation dilemma
- Rough idea: the agent tries an arm if
 - Either

it has not tried it often enough

• Or

its estimate of μ_i so far is high

UCB (Upper Confidence Bound) Algorithm

- Input: Set of actions A
- Assume rewards between 0 and 1
 - If they are not, normalise them
- For each action a_i , let
 - r_i = average reward from a_i
 - t_i = number of times a_i tried
- $t = \sum_i t_i$
- Confidence interval around r_i

$$\frac{(\cdot, \cdot, \cdot)}{r_i} r_i + \sqrt{\frac{2 \ln t}{t_i}}$$

UCB (A)

Try each action a_i once **loop** choose an action a_i that has the highest value of $r_i + \sqrt{2 \cdot \ln(t) / t_i}$ perform a_i update r_i , t_i , t

UCB: Performance

- Uses principle of optimism in face of uncertainty
 - Agent does not have a good estimate $\hat{\mu}_i$ of μ_i before trying it many times
 - Thus, give a big confidence interval $[-c_i, c_i]$ for such *i*

•
$$c_i = \sqrt{\frac{2 \ln t}{t_i}}$$

- And select an *i* with maximum $\mu_i + c_i$
- If an action has not been tried many times, then the big confidence interval makes it still possible to be tried
- I.e., in face of uncertainty (of μ_i), the agent acts optimistically by giving chances to those that have not been tried enough

UCB: Performance

• Theorem: If each distribution of reward has support in [0,1], i.e., rewards are normalised, then the regret of the UCB algorithm is at most

$$O\left(\sum_{i:\mu_i<\mu^*}\frac{\ln T}{\Delta_i}+\sum_{j\in\{1,\dots,n\}}\Delta_j\right)$$

•
$$\mu^* = \max_i \mu_i$$

- $\Delta_i = \mu^* \mu_i$
 - Expected loss of choosing a_i once
- [without proof]
- Loss grows very slowly with T

UCT Algorithm for Cost-based Planning

- Recursive UCB computation to compute Q(s, a) for cost
 - Min ops instead of max
 - Planning domain Σ , state s
 - Horizon *h* (steps into the future)
 - Constant C:
 - Relative weight of exploration of less sampled actions (*C* high) to exploitation of promising actions (*C* low)
 - Empirical tuning significantly affects performance of UCT
- Anytime algorithm:
 - Call repeatedly until time runs out
 - Then choose action $\operatorname{argmin} Q(s, a)$

```
UCT (\Sigma, s, h)
     if s \in S then
           return 0
     if h = 0 then
           return V_0(s)
     if s ∉ Envelope then
           add s to Envelope
           n(s) \leftarrow 0
           for all a \in Applicable(s) do
                 Q(s,a) \leftarrow 0
                 n(s,a) \leftarrow 0
     Untried \leftarrow \{a \in Applicable(s) \mid n(s,a)=0\}
     if Untried \neq \emptyset then
           \tilde{a} \leftarrow \text{Choose}(\text{Untried})
     else
           \tilde{a} \leftarrow \operatorname{argmin}_{a \in Applicable(s)}
                 \{Q(s, a) - C \cdot [log(n(s)) / n(s, a)]^{\frac{1}{2}}\}
     s' \leftarrow \text{Sample}(\Sigma, s, \tilde{a})
     cost-rollout \leftarrow cost(s, \tilde{a}) + UCT(s', h-1)
     Q(s, \tilde{a}) \leftarrow [n(s, \tilde{a}) \cdot Q(s, \tilde{a}) + cost - rollout]
                      /(1+n(s, \tilde{a}))
     n(s) \leftarrow n(s) + 1
     n(s,\tilde{a}) \leftarrow n(s,\tilde{a}) + 1
     return cost-rollout
```


UCT as an Acting Procedure

- Suppose probabilities and costs unknown
- Suppose you can restart your actor as many times as you want
- Can modify UCT to be an acting procedure
 - Use it to explore the environment

UCT as a Learning Procedure

- Suppose probabilities and costs unknown
 - But you have an accurate simulator for the environment
- Run UCT multiple times in the simulated environment
 - Learn what actions work best

```
UCT (\Sigma, s, h)
                                                if s \in S then
                                                      return 0
                                                if h = 0 then
                                                      return V_0(s)
                                                if s ∉ Envelope then
                                                      add s to Envelope
                                                      n(s) \leftarrow 0
                                                      for all a E Applicable(s) do
                                                            Q(s,a) \leftarrow 0
                                                            n(s,a) \leftarrow 0
                                                 Untried \leftarrow \{a \in Applicable(s) \mid n(s,a)=0\}
                                                if Untried ≠ Ø then
                                                      \tilde{a} \leftarrow \text{Choose}(\text{Untried})
                                                else
                                                      \tilde{a} \leftarrow \operatorname{argmin}_{a \in Applicable(s)}
                                                            \{Q(s,a) - C \cdot [log(n(s)) / n(s,a)]^{\frac{1}{2}}\}
                                                 s' \longrightarrow Sample (\Sigma, s, \tilde{a})
                                                 cost-rollout \leftarrow cost(s, \tilde{a}) + UCT(s', h-1)
                                                Q(s, \tilde{a}) \leftarrow [n(s, \tilde{a}) \cdot Q(s, \tilde{a}) + cost - rollout]
                                                                 /(1+n(s,ã))
                                                n(s) \leftarrow n(s) + 1
simulate \tilde{a}; observe s'
                                                n(s,\tilde{a}) \leftarrow n(s,\tilde{a}) + 1
                                                return cost-rollout
```


Decision Foundations

Intermediate Summary

- Passive learning
 - DUE
 - ADP
 - TD
- Active learning
 - Active ADP
 - Q-learning
- Multi-armed bandit problem
 - UCB, UCT

Outline: Decision Making – Foundations

Utility Theory

- Preferences
- Utilities
- Preference structure

Markov Decision Process / Problem (MDP)

- Sequence of actions, history, policy
- Value iteration, policy iteration

Reinforcement Learning (RL)

- Passive and active, model-free and model-based RL
- Multi-armed bandit

⇒ Next: Decision Making – Extensions