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Content: Planning and Acting

1. With Deterministic Models 6. By Decision Making

2. With Refinement Methods A. Foundations

3. With Temporal Models * Utility theory

4. With Nondeterministic Models * Markov decision processes
5. With Probabilistic Models * Reinforcement earning

B. Extensions
C. Structure
7. With Human-awareness
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* We leave behind the planning book...
e Content based on

* Artificial Intelligence: A Modern Approach (3™ ed.; abbreviation: AIMA)
e Stuart Russell, Peter Norvig e T
« Decision making (Chs. 16 + 17), reinforcement learning (Ch. 21) e
* A Concise Introduction to Decentralized POMDPs
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Decision Making under Uncertainty

* Goal-based: binary distinction
between happy and unhappy

 Utility as a distribution over possible CET)

states

* Essentially an internalisation of a
if | do action A

performance measure

 If internal utility function agrees with - o
. " How happy | will be
external performance measure:
e Agent that chooses actions to
maximize its utility will be rational e

according to the external performance should do now
measure

e Rationality as a measure of intelligence

T. Braun - APA 5
Figure: AIMA, Russell/Norvig
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Setting

e Agent can perform actions in an environment
* Environment
e Qutcomes of actions not unique
* Associated with probabilities (— probabilistic model)
* Agent has preferences over states/action outcomes
* Encoded in utility or utility function — Utility theory
e “Decision theory = Utility theory + Probability theory”
* Model the world with a probabilistic model
* Model preferences with a utility (function)
* Find action that leads to the maximum expected utility, also called decision making

T. Braun - APA 6
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Outline: Decision Making — Foundations

Utility Theory
* Preferences
e Utilities
* Preference structure
Markov Decision Process / Problem (MDP)
* Sequence of actions, history, policy
e Value iteration, policy iteration
Reinforcement Learning (RL)
e Passive and active, model-free and model-based RL
 Multi-armed bandit

T. Braun - APA 7
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Preferences

Decision Foundations

* An agent chooses among prizes (A4, B, etc.) and lotteries, i.e., situations with uncertain

prizes

 Qutcome of a nondeterministic action is a lottery
* Lottery L = [p,A4; (1 —p), B]

A and B can be lotteries again

* Prizes are special lotteries: [1, R; 0, not R]

 More than two outcomes:

c L= [pl'Sl;pZJSZ; '";pMJSM]:ZIiVilpi =1

* Notation

- A>B A preferred to B

e A~B indifference between A and B

c AZB B not preferred to A

T. Braun - APA
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Rational Preferences

* |dea: preferences of a rational agent must obey constraints
e As prerequisite for reasonable preference relations
e Rational preferences — behaviour describable as maximisation of expected utility

* Violating constraints leads to self-evident irrationality

e Example
* An agent with intransitive preferences can be induced to give away all its money

 If B > C, then an agent who has C would pay (say) 1 cent to get B C B
 If A > B, then an agent who has B would pay (say) 1 cent to get A
 If C > A, then an agent who has A would pay (say) 1 cent to get C

T. Braun - APA 9
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Axioms of Utility Theory

1. Orderability
- (A>B)V(A<B)V(A~B)
* {<,>, ~}jointly exhaustive, pairwise disjoint
2. TranSitiVity Equivalent lotteries:
e A>B)AB>=C)=(A4>0C)
3. Continuity
« A>B>C=>13p|p, 4 1—p,C|]~B
4. Substitutability
* A~B=[pA41-pC]~[pB;1—pC(]
* Also holds if replacing ~ with >
5.  Monotonicity

c A>B=>(p=2q<|pA1—pB| =|[q,A4;1—q,B])
6. Decomposability

Ip.4; 1-p,[q,B; 1—q,Cl] ~ [p.4; (1 —p)g,B; (1 —p)(1—q),C]

Decomposability:
There is no fun in gambling.

T. Braun - APA 10
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And Then There Was Utility

 Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):

* Given preferences satisfying the constraints, there exists a real-valued function U such that
UA)>UB)=AxzZB
e Existence of a utility function
e Expected utility of a lottery:

M
U([p, Sus 3w SuD) = ) piUCS)
i=1

 MEU principle
e Choose the action that maximises expected utility

T. Braun - APA 11
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Utilities

 Utilities map states to real numbers.
Which numbers?

e Standard approach to assessment of human utilities:
* Compare a given state A to a standard lottery L,, that has

* “best possible outcome” T with probability p
» "worst possible catastrophe” L with probability (1 — p)

* Adjust lottery probability p until A ~ L,

0.999999 continue as before

pay-S30-and-
continue-as- ~ L
before

0.000001 instant death

Decision Foundations

T. Braun - APA
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Utility Scales

* Normalised utilities: u+ = 1.0,u; = 0.0
o Utility of lottery L ~ (pay-$30-and-continue-as-before): U(L) = u+ - 0.999999 + u, -
0.000001 = 0.999999
* Micromorts: one-millionth chance of death
e Useful for Russian roulette, paying to reduce product risks, etc.

 Example for low risk
* Drive a car for 370km = 1 micromort — lifespan of a car: 150,000km = 400 micromorts

» Studies showed that many people appear to be willing to pay USS10,000 for a safer car that halves the
risk of death = USS50/micromort

* QALYs: quality-adjusted life years
e Useful for medical decisions involving substantial risk

* In planning: task becomes minimisation of instead of maximisation of utility

T. Braun - APA 13
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Money

* Money does behave as a utility function
* Given a lottery L with expected monetary value EMV (L), usually U(L) < U(SEMV(L)), i.e.,

people are risk-averse

« S, state of possessing total wealth SM

e Utility curve

* For what probability p am | indifferent
between a prize x and a lottery
[p, $M; (1 — p), $0] for large M?
* Right: Typical empirical
data, extrapolated with
risk-prone behaviour
for negative wealth

Decision Foundations

T. Braun - APA

Figure: AIMA, Russell/Norvig
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Money Versus Utility

* Money # Utility
 More money is better, but not always in a linear relationship to the amount of money
e Expected Monetary Value
* Risk-averse
« U(L) < U(Semvwy)
* Risk-seeking
« U(L) > U(Semvwy)
* Risk-neutral
« U(L) =U(Semvy)
* Linear curve

* For small changes in wealth
relative to current wealth

U

Decision Foundations

T. Braun - APA
Figure: AIMA, Russell/Norvig
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Utility Scales

* Behaviour is invariant w.r.t. positive linear transformation
U(r) =kU) +k,
* No unique utility function; U'(r) and U(r) yield same behaviour
* With deterministic prizes only (no lottery choices), only ordinal utility can be determined,
i.e., total order on prizes
* Ordinal utility function also called value function

* Provides a ranking of alternatives (states), but not a meaningful metric scale (numbers do not
matter)

* Note:
An agent can be entirely rational (consistent with MEU) without ever representing or
manipulating utilities and probabilities
 E.g., alookup table for perfect tic-tac-toe

T. Braun - APA 16
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Multi-attribute Utility Theory

* A given state may have multiple utilities
e ...because of multiple evaluation criteria
» ...because of multiple agents (interested parties) with different utility functions

* There are:

e Cases in which decisions can be made without combining the attribute values into a single utility
value

e Cases in which the utilities of attribute combinations can be specified very concisely
* Preference structure

T. Braun - APA 17
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Preference Structure

* To specify the complete utility function U(r, ..., 1)), we need values in the worst case
M attributes
e each attribute with d distinct possible values
* Worst case meaning: Agent’s preferences have no regularity at all

e Supposition in multi-attribute utility theory
* Preferences of typical agents have much more structure
* Approach

* |dentify regularities in the preference behaviour

* Use so-called representation theorems to show that an agent with a certain kind of preference
structure has a utility function

UCry, ....mm) = Elfi(r1), .., fu (rar) ]

* where Z' is hopefully a simple function such as addition

T. Braun - APA 18
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Preference Independence

* R; and R, preferentially independent (PI) of R iff
* Preference between (ry, 1, 73) and (r{, r,, 13) does not depend on 13
* E.g., (Noise,Cost,Safety)
* (20,000 suffer,$4.6 billion, 0.06 deaths /month)
* (70,000 suffer,$4.2 billion, 0.06 deaths /month)

 Theorem (Leontief, 1947)

* If every pair of attributes is Pl of its complement, then every subset of attributes is Pl of its
complement

e (Called mutual PI (MPI)

T. Braun - APA 19
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Preference Independence

e Theorem (Debreu, 1960):
e MPI = 3 additive value function

M
V(rlr 'TM) — zi:1Vi(ri)

 Hence assess M single-attribute functions
 Decomposition of VV into a set of summands (additive semantics)
similar to
e Decomposition of Pg into a set of factors (multiplicative semantics)
e Often a good approximation

* Example:
V(Noise, Cost, Deaths) = —Noise - 10* — Cost — Deaths - 102

Decision Foundations

T. Braun - APA
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Interim Summary

* Preferences
* Preferences of a rational agent must obey constraints
e Utilities
e Rational preferences = describable as maximisation of expected utility
e Utility axioms
* MEU principle
e Multi-attribute utility theory
* Preference structure
e (Mutual) preferential independence

Decision Foundations

T. Braun - APA
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Outline: Decision Making — Foundations

Utility Theory
* Preferences
e Utilities
* Preference structure
Markov Decision Process / Problem (MDP)
* Sequence of actions, history, policy
e Value iteration, policy iteration
Reinforcement Learning (RL)
e Passive and active, model-free and model-based RL
 Multi-armed bandit

T. Braun - APA 22
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Simple Robot Navigation Problem

* |In each state, the possible actions are U, D, R, and

e The effect of action U is as follows (transition model):

* With probability 0.8, move up one square

* If already in top row or blocked, no move
* With probability 0.1, move right one square

e If already in rightmost row or blocked, no move
* With probability 0.1, move left one square

e If already in leftmost row or blocked, no move

 Same transition model holds for D, R, and
and their respective directions

Decision Foundations

%

T. Braun - APA
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Markov Property

The transition properties depend only

on the current state, not on previous
history (how that state was reached).

* Also known as Markov-k with k = 1
e k<t
P(x(t+1)|x(t), ...,x(o)) = P(x(t+1)|x(t), ...,x(t_k“))

P(xtD|x® . x(©) = p(xt+D|x®)

Decision Foundations

T. Braun - APA
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Sequence of Actions

* |In each state, the possible actions are U, D, R, and |;
the transition model for each action is (pictured):

e Current position: [3,2]
* Planned sequence of actions: (U, R)

[3,2] 3

T. Braun - APA 25
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Sequence of Actions

* |In each state, the possible actions are

e Current position: [3,2]
* Planned sequence of actions: (U, R)
U is executed

V4 )

,and
the transition model for each action is (pictured):

[3,2]

Decision Foundations

3,2]

[3,3]

4,2]

T. Braun - APA
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Sequence of Actions

* |In each state, the possible actions are U, D, R, and |;
the transition model for each action is (pictured):

e Current position: [3,2]
* Planned sequence of actions: (U, R)

e U has been executed
e Ris executed

[3,2] 3

3,2]

[3,3]

4,2]

[3,1]

3,2]

3,3]

[4,1]

4,2]

[4,3]

T. Braun - APA
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Histories

* |In each state, the possible actions are U, D, R, and |;
the transition model for each action is (pictured):

e Current position: [3,2]
* Planned sequence of actions: (U, R)

e U has been executed
e Ris executed

* History: sequence of states generated [3,2] 3
by sequence of actions
* 9 possible sequences with 13,21 |1 13,31 | | [4,2] 2

6 possible final states, only 1
1 of which is a goal state m

[3,1] | [3,2] || [3,3] || [4,1] || [4,2] || [4,3]

T. Braun - APA 28
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Decision Foundations

Probability of Reaching the Goal

* |In each state: possible actions U, D, R, L; trans. model: 0.8
P([4,3] | (U,R),[3,2]) =

= 0.8 = 0.8 -
P([43] IR [42]) =01  P([42]|U,[32]) = 0.1

P([4,3] | (U,R),[3,2]) = 0.8-0.8 + 0.1- 0.1 = 0.65

[3,2] 3

Note importance of Markov

. . A 1 2
property in this derivation [3,2] | | [3,3] |[4,2]

TN~

[3,1] || [3,2] || [3,3] || [4,1] || [4,2] || [4,3] 1

T. Braun - APA 29
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Utility Function

* [4,3] : power supply (stops the run)

[4,2] : the robot cannot escape (stops the run)
Goal: robot needs to recharge its batteries

[4,3] and [4,2] are terminal states

In this example, we define the utility of a history by

e The utility of the last state (+1 or —1) minus 0.04 - n
* nisthe number of moves

* |.e., each move costs 0.04, which provides an incentive
to reach the goal fast

Decision Foundations

+1
7
Y
2 4

T. Braun - APA
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Utility of an Action Sequence

e Consider the action sequence a = (U,R) from [3,2]
* A run produces one of 7 possible histories, each with a probability
e Utility of the sequence is the expected utility of histories h:

U(a) = zhuhp(h)

* Optimal sequence = the one with maximum utility

o [3,2] )
| | 7
\\-»\/‘/ 3,21 || 13,3] %,
31113211331 ]| 14.1] [4,3] 2 4

T. Braun - APA
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Reactive Agent Algorithm

What the world
is like now
. . What action |
Condition-action rules
should do now

Act ()
repeat
s — sensed state
if s is terminal then

exit
a « choose action (given
perform a

Agent

T. Braun - APA
Figure: AIMA, Russell/Norvig
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Policy (Reactive/Closed-loop Strategy)

 Policym
 Complete mapping from states to actions
e Optimal policy *
* Always yields a history (ending at terminal state) with maximum
expected utility

e Due to Markov property

Decision Foundations

Act ()
repeat
s — sensed state
if s is terminal then

exit
a « 1m(s)
perform a

3 —_— | — | — +1
1 Db
1 T |‘ |
How to compute m*? ‘
Solving a Markov Decision Process 1 2 3 4
T. Braun - APA 33



——— = Universitat
Miinster

Markov Decision Process / Problem (MDP)

e Sequential decision problem
for a fully observable, stochastic environment
with a Markovian transition model
and additive rewards (next slide)
 MDP is a four-tuple (S, 4, T, R) with
e S arandom variable whose domain is a set of states
(with an initial state s;)
* Foreachs € dom(S)
* aset A(s) of actions
* atransition model T(s',s,a) = P(s’'|s, a)
* areward function R(s) (also with a possible)
* Robot navigation example to the right

Decision Foundations

+1

T. Braun - APA
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Additive Utility

e History h = (5(0) = g, s, ...,S(T))
* |n each state s, agent receives reward R(s)
» Utility of h is additive iff
U(s©@ s M) =R(s®) + y(sD, .. s
( ) = R(©) + U )

_ zt:oR(s(t))

* Discount factor y €]0,1]: 3 +1
T
U(s©@,sW, .., sM) = z yER(s®) , 7
t=0

* Close to 0: future rewards insignificant 1 A
» Corresponds to interest rate ' 77/,

T. Braun - APA 35
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Principle of MEU

e Bellman equation:

U(s) = R(s) + yaréfl()s() z P(s'|la,s)U(s")
s’edom(S)

e Optimal policy:

n*(s) = argmax z P(s'|a,s)U(s")
a€cA(s)

s’edom(S)
* Bellman equation for [1,1] with y = 1 as discount factor = =
e U(1,1) = —0.04 + y max {0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1),  (U) 7
ULDR 08y(1,1) + 0.1U(1,1) + 0.1U(1,2), (L) 2 %
0.8U(1,1) + 0.1U(2,1) + 0.1U(1,1), (D)
0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1) } (R) 1

T. Braun - APA 36
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Value Iteration

0.812 | 0.868 | 0.918

e Initialise the utility of each non-terminal state s to U@ (s) = 0 |
0.762 y 0.660

e Fort=0,1,2,...,do 2
(t+,1)’ o (t) T é
U s) « R(s) + v max z P(s'|a,s)U s’ 0.705 | 0.655 | 0.611 | 0.388
(5) < R(s) + max (s'la,$)UO(s") 1 [oges | osss [ o | a8
s’edom(S)
* So called Bellman update 1 2 3 4
Ut 3,1 4 0 0 0
([3,1]) ; B
0'601.% . Note the importance n 7 5
of terminal states and 2 /
0 connectivity of the 5 oA - -
state-transition graph 1
| | L,
0 10 20 30 ¢t 1 2 3 4

T. Braun - APA 37
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Value Iteration: Algorithm

e Returns a policy  that is optimal function value—i<>teration (mdp, €)
U~ O, IT
® |npUtS repeat
U U
« MDPmpd = (S,A,T,R) -
e Set of states S for each state s € S do
U'[s] « R(8) + Y maxX e 525 P(s' la.s)U[s’]
* Foreachs €S if |U’'[s] - U[s]| > & then
. i i § « |U' [s] - Uls]|
Set A(s) of applicable actions e e
* Transition model T = P(s'|s, a) for each state s € S do

m(s) « argmax,es(sy2s P(s’ |a.s)Ul[s’]
return oI

* Reward function R(s)
e Maximum error allowed e

* Local variables
o U, U’ vectors of utilities for states in S

* 0 maximum change in utility of any state in
an iteration

T. Braun - APA 38
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Evolution of Utilities

Decision Foundations

0.812 | 0.868 | 0.918
— | — | — | +1
e Fort =0,1,2,..,do ]
(t+1) , O for 0.762 W/ 0.660
U S) < R(s) +y max z P(s'|a,s)U/ (s
() = R(s) +y max (s'1a, HUO(s") 7
s’edom(S) 0.705 | 0.655 | 0.611 | 0.388
. . . . . +— +— +—
* Value iteration = information propagation T
* Argmax action may change over 1 3) 1 2 3 4
time due to utilities changing A )
@ | (1,1) 0 0 0
‘é 0.6 1! s (3,1) 9]
F VS S — -@a.0) 7
> i - 0 0
Z 02 f /
. 0 - j":: A
/i 0 0 0 0
-0.2 1
0 5 10 15 20 25 30
Number of iterations 1 2 3 4
T. Braun - APA 39
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Effect of Rewards
e Fort =0,1,2,..,do ]
(t+1) R P , U(t) , 0.762 / 0.660
UED() R +y max > P(s'la, HUO(S) /A
s’edom(S) 0.705 | 0.655 | 0.611 | 0.388
 Optimal policies for different rewards: I
* For R(s) = —0.04, see right - 1 2 3 4
0 0 0
+1
— | — | — | +1 — | — | — | +1 — | — | — | +1 4%"%"_4‘1 07 0
777/ IR 77 777/ 77/
VY YA 'Y W . ===
R(s) < —1.6284 —0.4278 < R(s) < —0.0850 —0.0221 < R(s) <0 R(s)>0 1 2 3 4
T. Braun - APA 40
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Effect of Allowed Error & Discount

Decision Foundations

0.812 | 0.868 | 0.918
— | — | — | +1
e Fort =0,1,2,..,do I
(t+1) , (t) , 0.762 / 0.660
U S) < R(s) + y max z P(s'|a,s)U' (s
(5) « R(s) +y max (s'la, HUD(s") 7
s’edom(S) 0.705 | 0.655 | 0.611 | 0.388
o . . +— <+— <+—
* [terations required to ensure a maximum error of € = ¢ -+ R4« T
R4 maximum reward les07 - 1 2 3 4
1e+06 1
- 0 0 0
100000 1 +1
§ 10000 1 7
é 1000 0 / 0
E 100 A
10 {7 0 0 0 0
0.50.550.60.650.70.750.80.850.90.95 1
Discount factor y 1 2 3 4
T. Braun - APA 41
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Decision Foundations

Policy Iteration

* Pick a policy Ty at random Solve the set of linear equations:
* Repeat: U(s) = R(s) + 7 Z P(s'|a,$)U(s")
e Policy evaluation: Compute the utility of each state fg s'edom(s)

ft t
° U(t)(s) — R(S) 4+ yzs’Edom(S) P(S’la, S)U(t)(sl) (0 én a sparse Ssys em)
* No longer involves a max operation as action is determined by 7,
* Policy improvement: Compute the policy ;1 given U;

e gt (g) = argmax Y.¢eqomcs) P ('@, SUO (s

a€cA(s)
o f7(ttD) = 7O then return 7®

T. Braun - APA 42
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Policy Iteration: Algorithm

e Returns a policy  that is optimal EREEEE TIE e IS TRYEE D)

repeat

* |nputs: MDP mpd = (S, AT, R) U — policy-evaluation (m, U, mdp)
e Set of states S unchanged « true

e Foreachs €S if max, e, )2 P(s' la.s)Uls'] > 5, P(s’' |m[s].s)U[s’"] then

. . M[S] « argmax,e, o2 P(s’'la.s)Uls’]
* Set A(s) of applicable actions unchanged - false

* Transition model T = P(s'|s,a) until unchanged
 Reward function R(s) return 7

for each state s € S do

* Local variables

* U vectors of utilities for states in S, initially
0

* 11 a policy vector indexed by state, initially
random

T. Braun - APA 43
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Policy Evaluation

 Compute the utility of each state for

e UD(s) =R(s)+ ¥ 2s’edomes) P8’ la, SYUD (s
« Complexity of policy evaluation: 0(n3), n = |dom(S)]
* For n states, n linear equations with n unknowns
* Prohibitive for large n
e Approximation of utilities
* Perform k value iteration steps with fixed policy m;, return utilities
« Simplified Bellman update: UtV (s) = R(s) + Y Xs’edom(s) P(s'la, SUWD (s"
e Asynchronous policy iteration (next slide)
* Pick any subset of states
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Asynchronous Policy Iteration

e Further approximation of policy iteration

* Pick any subset of states and do one of the following
e Update utilities
* Using simplified value iteration as described on previous slide
e Update the policy
e Policy improvement as before
* |s not guaranteed to converge to an optimal policy
e Possible if each state is still visited infinitely often, knowledge about unimportant states, etc.

* Freedom to work on any states allows for design of domain-specific heuristics
e Update states that are likely to be reached by a good policy
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Intermediate Summary

Markov property

e Current state depends only on previous state

Sequence of actions, history, policy

e Sequence of actions may yield multiple histories, i.e., sequences of states, with a utility
e Policy: complete mapping of states to actions

e Optimal policy: policy with maximum expected utility

MDP

e State space, actions, transition model, reward function

Value iteration, policy iteration

* Algorithms for calculating an optimal policy for an MDP

T. Braun - APA 46



— = Universitat .. .
Miinster Decision Foundations

Outline: Decision Making — Foundations

Utility Theory
* Preferences
e Utilities
* Preference structure
Markov Decision Process / Problem (MDP)
* Sequence of actions, history, policy
e Value iteration, policy iteration
Reinforcement Learning (RL)
e Passive and active, model-free and model-based RL
 Multi-armed bandit
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Acting as Reinforcement Learning (RL)

* Agent, placed in an environment, must learn to act optimally in it

e Assume that the world behaves like an MDP, except

* Agent can act but does not know the transition model
e Agent observes its current state and its reward but does not know the reward function

e Goal: learn an optimal policy

e

X
A

<

Decision Foundations
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Factors That Make RL Hard

e Actions have non-deterministic effects

* which are initially unknown and must be learned
e Rewards / punishments can be infrequent

e Often at the end of long sequences of actions

 How does an agent determine what action(s) were really responsible for reward or punishment?
e Credit assignment problem
 World is large and complex
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Passive vs. Active Learning

* Passive learning
e Agent acts based on a fixed policy m and tries to learn how good the policy is by observing the
world go by
* Analogous to policy iteration (without the optimisation part)

e Active learning
* Agent attempts to find an optimal (or at least good) policy by exploring different actions in the
world
e Analogous to solving the underlying MDP

Decision Foundations
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Model-based vs. Model-free RL

 Model-based approach to RL
e Learn the MDP model (P(s'|s,a) and R), or an approximation of it
* Use it to find the optimal policy

* Model-free approach to RL
* Derive the optimal policy without explicitly learning the model

Decision Foundations
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Passive RL

e Suppose the agent is given a policy
* Wants to determine how good it is

e Given : Need to learn U™(s):
0.812 | 0.868 | 0.918
3 |—| — — | — | — | +1
5 T 7 0.762 7 0.660
% Z
1 T 0.705 | 0.655 | 0.611 | 0.388
. T : - -
1 2 1 2 3 4
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Passive RL

* Given policy m:
* Estimate U™(s)
* Not given
* Transition model P(s’|s, a)
* Reward function R(s)
e Simply follow the policy for many epochs
* Epochs: training sequences / trials

Decision Foundations

0.812

0.918

—— | —> | — +1
Of62 7 Of60
7
OfOS 0.655 | 0.611 | 0.388
«— |— |—
1 2 3 4

1,1)-(12)-13)-(1,2)-(1,3)-23)—>33)—>(4,3)+1
1,1)->(1,2)-»(1,3)—-(23)—~33)>32)»33)»43)+1

(1,1) - (2,1) - (3,1) » (3,2) » (4,2)

e Assumption: restart or reset possible (or no terminal states with the end of an epoch given by

the receipt of a reward)

T. Braun - APA
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Direct Utility Estimation (DUE)

* Model-free approach

* Estimate U™(s) as average total reward of epochs containing s
e Calculating from s to end of epoch

 Reward-to-go of a state s
* The sum of the (discounted) rewards from that state until a terminal state is reached

* Key: use observed reward-to-go of the state as the direct evidence of the actual expected
utility of that state
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DUE: Example

* Suppose the agent observes the following trial:

¢ 8}»51)%—0.04 = (1,2) .04 = (1,3)—0.04 = (1,2)_g.04 = (1,3)—0.04 = (2,3)_0.04 = (3,3)—0.04
) +1

* The total reward startingat (1,1)is7 - —0.04 + 1 = 0.72
* |.e., a sample of the observed-reward-to-go for (1,1)

* For (1,2), there are two samples of the observed-reward-to-go
* Assumingy =1

1. (1,2)_g.04 = (1,3) 004 = (1,2) 904 = (1,3)_0.04 = (2,3)_0.04 =
(313)—0.04 - (413)-1-1
[Total: 0.76]

2. (1,2) 04 = (1,3)—0.04 = (2,3)—0.04 = (3,3) 004 = (43) .4
[Total: 0.84]
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DUE: Convergence

e Keep a running average of the observed reward-to-go for each state
(0.76+0.84) 0.8

* As the number of trials goes to infinity, the sample average converges to the true utility

* E.g., for state (1,2), it stores
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DUE: Problem

* Big problem:

e Why?
* Does not exploit the fact that utilities of states are not independent

» Utilities follow the Bellman equation

UHS) =R +y ) P In(s),)U(s)

T s’edom(S) T

Dependence on neighbouring states

Decision Foundations
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DUE: Problem

e Using the dependence to your advantage
* Suppose you know that state (3,3) has a high utility

* Suppose you are now at (3,2)
* Bellman equation would be able to tell you that (3,2) is likely to have a high utility because (3,3)
is a neighbour

 DUE cannot tell you that until the end of the trial
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Adaptive Dynamic Programming (ADP)

 Model-based approach
* Given policy m:
e Estimate U™(s)
e All while acting in the environment
How?
* Basically learns the transition model P(s’|s, a) and the reward function R(s)
* Takes advantage of constraints in the Bellman equation
e Based on P(s’|s,a) and R(s), performs policy evaluation (part of policy iteration)
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Decision Foundations

Recap: Policy Iteration

* Pick a policy Ty at random Solve the set of linear equations:
* Repeat: e Z i
e Policy evaluation: Compute the utility of each state fg s’edom(s)
, , (often a sparse system)
« lUD(s) = R(s) + ¥ Xs’edom(s) PG'la, SUO(s"
* No longer involves a max operation as action is determined by 7,
* Policy improvement: Compute the policy ;. given U, Can be solved

!/ !/ in 0 ns)l
e gt (g) = argmax Y.¢eqomcs) P ('@, SUO (s (

a€cA(s)
o f7(ttD) = 7O then return 7®

wheren = |S|
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Decision Foundations

ADP: Estimate the Utilities

* Make use of policy evaluation to estimate the utilities of states
e To use policy equation

UEDE) =R +y ) P (), HUO()

s’edom(S)
agent needs to learn P(s’|s,a) and R(s)

 How?
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ADP: Learn the Model

* Learning R(s)
e Easy because it is deterministic
« Whenever you see a new state, store the observed reward value as R(s)
* Learning P(s'|s,a)
» Keep track of how often you get to state s’ given that you are in state s and do action a
 E.g., ifyouareins = (1,3) and you execute R three times and you end up in s" = (2,3) twice,
then P(s’|R,s) = g

Decision Foundations
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function passive-ADP-agent (percept)

ADP: Algorithm returns an action

input: percept, indicating current state s’, reward r’

. . . static:
* Learning the MDP while acting n, fixed policy
: : : mdp, MDP with P[s’|s,al, R(s), VY
accordlng to a fixed pOhCy n U, table of utilities, initially empty

N,,, table of freq. for s-a pairs, initially O
N,..,» table of freq. for s-a-s’ triples, initially O
s,a, previous state and action, initially null
if s’ is new then
Uls"] « '
R[s'"] « r'
if s is not null then
increment N_,[s,al] and N, . [s,a,s’]
Update transition model for each t s.t. Ny l[s,a,t] # 0 do
Plt|s,al « N, . [s,a,t]l / N, [s,al

U — Policy-evaluation (m, U, mdp)
if Terminal? (s’) then

S,a « null

Update reward function

else
S,a « s’ ,m[s’]
return a
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ADP: Problem

* Need to solve a system of simultaneous equations — costs O (n3)
e Very hard to do if you have 10°° states like in Backgammon
e Could make things a little easier with modified policy iteration
e Can the agent avoid the computational expense of full policy evaluation?

Decision Foundations
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Temporal Difference Learning (TD)

* |Instead of calculating the exact utility for a state, can the agent approximate it and possibly
make it less computationally expensive?

* Yes, it can! Using TD:

UHs) =R +y Y PG Ir(s), U
s’edom(S)
* |nstead of doing the sum over all successors, only adjust the utility of the state based on the
successor observed in the trial

 Does not estimate the transition model — model-free
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TD: Example

e Suppose you see that U™(1,3) = 0.84 and U™(2,3) = 0.92

* |f the transition (1,3) — (2,3) happens all the time, you would expect to see:
U™(1,3) = R(1,3) + U™(2,3)
= U™(1,3) = —0.04 + U™(2,3)
= U™(1,3) = —0.04 + 0.92 = 0.88
* Since you observe U™(1,3) = 0.84 in the first trial and it is a little lower than 0.88, so you
might want to “bump” it towards 0.88
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Aside: Online Mean Estimation

e Suppose that we want to incrementally compute the mean of a sequence of numbers
* E.g., to estimate the mean of a random variable from a sequence of samples

1 n+1 1 n 1 n 1
Xn+1 = xl = xl +—xn+1 — " xl +—xn+1
t n+1Z1 n+1Z1 n+1 n(n+1)z1 n+1
= = 1=

average

Decision Foundations

n
ofn+1 n+1-1 o) 1 y n+1 - 1 - N 1
1= i=1 =1
n n
S n) (s e = (530w g (23
nt) \(m+1) n&™t) n+1M n_le T e rle
=1 1=1 i=1 =1
N 1 N
= 4p + n+1 (xn+1 — Xn) Given a new sample x,,, 1, the new mean is the old
» estimate (for n samples) plus the weighted difference
samplen + 1 between the new sample and old estimate

T.Braun-APA learningrate
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TD Update

* TD update for transition from s to s’
U™(s) =U™(s) + a(R(s) + yU™(s") — U”(s))}
|

new (noisy) sample of utility

learning rate
£ based on next state

e Similar to one step of value iteration
e Equation called backup
* So, the update is maintaining a “mean” of the (noisy) utility samples

* |If the learning rate decreases with the number of samples (e.g., 1/n), then the utility
estimates will eventually converge to true values

) =R +y ) P Ir(s), U
s’edom(S)
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TD: Convergence

 Since TD uses the observed successor s’ instead of all the successors, what happens if the
transition s — s’ is very rare and there is a big jump in utilities from s to s'?

* How can U™(s) converge to the true equilibrium value?

* Answer:
The average value of U™ (s) will converge to the correct value

e This means the agent needs to observe enough trials that have transitions from s to its
SuCCcessors

* Essentially, the effects of the TD backups will be averaged over a large number of transitions
e Rare transitions will be rare in the set of transitions observed
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Comparison between ADP and TD

e Advantages of ADP
e Converges to true utilities in fewer iterations
e Utility estimates do not vary as much from the true utilities
* Advantages of TD
* Simpler, less computation per observation
* Crude but efficient first approximation to ADP
* Do not need to build a transition model to perform its updates
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Miinster
ADP and TD
e Utility estimates for 4x3 grid g |
2 0.8 s
* ADP, given optimal policy (above) i, i
N I (3.2)
* Notice the large changes occurring around the 78t trial—this is the first 2.
time that the agent falls into the -1 terminal state at (4,2) .
0 * r . - .
¢ TD (beIOW) ’ ? I:Smberéoofepocios =
* More epochs required ]
* Faster runtime per epoch 5 08
£ 0s
§0.4 :
=)
0.2
0

0 100 200 300 400 500
Number of epochs
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Overall comparisons

 DUE (model-free) e TD (model-free)
* Simple to implement  Update speed and implementation similar
 Does not exploit Bellman constraints and * Partially exploits Bellman constraints —
converges slowly adjusts state to “agree” with observed

successor
* Not all possible successors
* Convergence in between DUE and ADP

 ADP (model-based)

 Harder to implement

* Each update is a full policy evaluation
(expensive)

* Fully exploits Bellman constraints
* Fast convergence (in terms of epochs)
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Passive Learning: Disadvantage

* Learning U™(s) does not lead to an optimal policy,
why?
* Only evaluated m (no optimisation)
* Models are incomplete/inaccurate
* Agent has only tried limited actions, cannot gain a good overall understanding of P(s'|s, a)

e Solution: Active learning
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Goal of Active Learning

* Assume that the agent still has access to some sequence of trials performed by the agent
* Agent is not following any specific policy
e Assume for now that the sequences should include a thorough exploration of the space
 We will talk about how to get such sequences later

 The goal is to learn an optimal policy from such sequences
* Active RL agents
* Active ADP agent
* Q-learner (based on TD algorithm)
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Active ADP Agent

Model-based approach

Using the data from its trials, agent estimates a transition model T and a reward function
R

e With T(s,a,s’) and R(s), it has an estimate of the underlying MDP

* Like passive ADP using policy evaluation

Given estimate of the MDP, it can compute the optimal policy by solving the Bellman
equations using value or policy iteration

U(s) = R(s) + y max 2 T(s,a,s)U(s")
a€cA(s)
~ ~ s’edom(S)
If T and R are accurate estimations of the underlying MDP model, agent can find the
optimal policy this way
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Issues with ADP Approach

Need to maintain MDP model
T can be very large, O(|S|? - |A|)
Also, finding the optimal action requires solving the Bellman equation — time consuming

Can the agent avoid this large computational complexity both in terms of time and space?
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Q-learning

e So far, focus on utilities for states
* U(s) = utility of state s = expected maximum future rewards
e Alternative: store Q-values

* Q(a,s) = utility of taking action a at state s
= expected maximum future reward if action a taken at state s

 Relationship between U(s) and Q(a, s)?

U(s) = e Q(a,s)
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Q-learning can be model-free

* Note that after computing U(s), to obtain the optimal policy, the agent needs to compute

m(s) = argmax 2 T(s,a,s")U(s")
A s’edom(S)
* Requires T, model of the world
 Even if it uses TD learning (model-free), it still needs the model to get the optimal policy

* However, if the agent successfully estimates Q(a, s) for all a and s, it can compute the
optimal policy without using the model

n(s) = argmax Q(a, s)
a€cA(s)
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Q-learning

e At equilibrium when Q-values are correct, we can write the constraint equation:

lQ(a,s)’=‘R(s)'+y 2 T(s,a,s")U(s")

4 s’edom(S)
|

Reward at state s

Expected value for
action-state pair (a, s)

Expected value averaged over all
possible states s’ that can be reached
from s after executing action a

Decision Foundations
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Q-learning

e At equilibrium when Q-values are correct, we can write the constraint equation:

0@s)=RE+y Y T(s,as) max 0(d,s)
l ) l a'€eA(s’)
4 |S’Edom(S) \ ' /

Reward at state s

Best value at the

next state = max

over all actions in
state s’

Expected value for
action-state pair (a, s)

Expected value averaged over all
possible states s’ that can be reached
from s after executing action a
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Q-learning without a Model

e Q-update: after moving from s to state s’ using action a
a,s) < 0(a,s)+ a(R(s) + max a' ' s'")—0(a,s
9~ 2s) @ (RG)+y max, 0(d's) - Q(@s))
Old estimate

of Q(a, s) Difference between old
estimate Q(a, s) and the

New estimate Learning rate new noisy sample after
of Q(a, s) 0<a<l1 taking action a

 TD approach
* Transition model does not appear anywhere!

* Once converged, optimal policy can be computed without transition model
 Completely model-free learning algorithm
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Q-learning: Convergence

* Guaranteed to converge to true Q-values given enough exploration
* Very general procedure

* Because it is model-free
* Converges slower than ADP agent

* Because it is completely model-free and it does not enforce consistency among values through
the model
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Exploitation vs. Exploration

* Actions are always taken for one of the two following purposes
* Exploitation: Execute the current optimal policy to get high payoff

* Exploration: Try new sequences of (possibly random) actions to improve the agent’s knowledge
of the environment even though current model does not show they have a high payoff

* Pure exploitation: gets stuck in a rut
* Pure exploration: not much use if you do not put that knowledge into practice
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Multi-Arm Bandit Problem

e So far, we assumed that the agent has a set of epochs of
sufficient exploration

* Problem: How to get a set of epochs that sufficiently explores the
state space?

e Multi-arm bandit problem:
Statistical model of sequential experiments

 Name comes from a traditional slot machine (one-armed bandit)

* Question:
Which machine to play?

T. Braun - APA 84



—— " — Universitat N .
Miinster Decision Foundations

Actions

* n arms, each with a fixed but unknown distribution of reward
* In terms of actions: Multiple actions a4, a,, ..., a,

* Each a; provides a reward from an unknown (but stationary) probability distribution p;

» Specifically, expectation y; of machine i’s reward unknown

e If all u;’s were known, then the task is easy:
just pick argmax y;
i

* With y;’s unknown, question is
which arm to pull
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Formal Model

e Ateachtimestept=1,2,..,T:  Over T time steps, the agent has a total
 Each machine i has a random reward Xi(t) reward of
. E [Xi(t)] = 11; independent of the past * Ifall ;s known, it would have selected
(Markov property again) argrinax u; at each time ¢t
* Pick a machine I; and get reward Xl(tt) * Expected total reward T - max fi;

* Other machines’ rewards hidden * Agent’sregret: T - max y; —
l

best machine’s \

reward
(in expectation)
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Exploitation vs. Exploration Reprise

e Exploration: to find the best
* Overhead: big loss when trying bad arms
e Exploitation: to exploit what the agent has discovered
* Weakness: there may be better arms that it has not explored and identified

With a fixed budget, how to balance exploration
and exploitation such that the total loss (or regret)
is small?

Decision Foundations
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Where Does the Loss Come from?

* If u; is small, trying this arm too many times makes a big loss
e So, the agent should try it less if it finds the previous samples from it are bad

* But how to know whether an arm is good?
 The more the agent tries an arm i, the more information it gets about its distribution
* In particular, the better estimate to its mean y;

Miinster Decision Foundations
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Where Does the Loss Come from?

* So, the agent wants to estimate each u; precisely, and at the same time, it does not want
to try bad arms too often
 Two competing tasks
* Exploration vs. exploitation dilemma
 Rough idea: the agent tries an arm if

* Either
it has not tried it often enough

* Or
its estimate of u; so far is high

Miinster Decision Foundations
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UCB (Upper Confidence Bound) Algorithm

* Input: Set of actions A UCB (A)
Try each action a; once
 Assume rewards between 0 and 1 loop
. choose an action a; that has
* |f they are not, normalise them the highest value of r, + 21n(8)/t,

For each action a;, let perform a;
update r; , t; , t

* 1; = average reward from a;
* t; = number of times a; tried

t = Ziti
Confidence interval around r;
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UCB: Performance

* Uses principle of optimism in face of uncertainty

* Agent does not have a good estimate fi; of u; before trying it many times

* Thus, give a big confidence
interval [—c;j, ¢;] for such i

* And select an i with maximum

e |f an action has not been tried many times, then the big confidence
interval makes it still possible to be tried

* |l.e., in face of uncertainty (of u;), the agent acts optimistically by
giving chances to those that have not been tried enough
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UCB: Performance

* Theorem: If each distribution of reward has support in [0,1], i.e., rewards are normalised,
then the regret of the UCB algorithm is at most

0 Py
(252
i <pt

JjE{1,...n}

* U = max y;
1

* A=
* Expected loss of choosing a; once
e [without proof]

* Loss grows very slowly with
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Miinster UCT (X, s, h)
. . if s € S then
UCT Algorithm for Cost-based Planning L et Y
return V, (s)

 Recursive UCB computation to compute Q (s, a) for if s ¢ Envelope then

add s to Envelope
cost n(s) < 0
° M|n Ops |nstead Of max for all a € Applicable(s) do
Q(s,a) <« O
* Planning domain X, state s n(s,a) « 0
. . Untried —« {a € Applicable(s)| n(s,a)=0}
* Horizon h (steps into the future) S it e () et
° Constant C: d « Choose (Untried)
) ) ) ) else
* Relative weight of exploration of less sampled actions (C & « argmin,eamp:icapies)
high) to exploitation of promising actions (C low) - {Q(lsr(? ‘C'[)log“? (s))/n(s,a) 1%}
- : . e s’ « Sample (2, s, a
e Empirical tuning significantly affects performance of UCT s el lew « oSt (8, d) - Wew (s B
: : L&) ,3)-0(s,a t-rollout
e Anytime algorithm: BEAUR A Lo U
e Call repeatedly until time runs out n(s) — nls) + 1
_ n(s,a) « n(s,a) + 1
* Then choose action argmin Q(s, a) return cost-rollout

a
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UCT (X, s, h)
if s € S then
UCT as an Acting Procedure _ return 0
if h = 0 then
ere . return V| (s)
e Suppose probabilities and costs unknown if s ¢ Envelope then
add s to Envelope
* Suppose you can restart your actor as n(s) < 0
many times as yOU want for all a € Applicable(s) do
O(s,a) « O
* Can modify UCT to be an acting procedure n(s,a) « 0
. . Untried « {a € Applicable(s)| n(s,a)=0}
 Use it to explore the environment if Untried # @ then

d « Choose (Untried)
else

a « argminaEApplicable (s)
O(s,a)-C-[log(n(s))/n(s,a)]l*}

»| Sample (X, s, &)
cost—rollout « cost(s,d) + UCT(s’",h-1)

Q(s,d) « [n(s,a)Q(s,d)+cost-rollout]
/(l+n(s,a))

n(s) « n(s) + 1
perform @; observe s’ n(s,a) < n(s,a) + 1
return cost-rollout
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UCT (X, s, h)
if s € S then
UCT as a Learning Procedure _ return 0
if h = 0 then
ere . return V| (s)
e Suppose probabilities and costs unknown if s ¢ Envelope then
. add s to Envelope
e But you have an accurate simulator for the n(s) — 0
environment for all a € Applicable(s) do
. . . . Q(s,a) « O
 Run UCT multiple times in the simulated n(s,a) « 0
environment Untried —« {a € Applicable(s)| n(s,a)=0}
if Untried # @ then
* Learn what actions work best & — Choose (Untried)

else

a « argminaEApplicable (s)
O(s,a)-C-[log(n(s))/n(s,a)]l*}

»| Sample (X, s, &)

cost—rollout « cost(s,d) + UCT(s’",h-1)

Q(s,d) « [n(s,a)Q(s,d)+cost-rollout]
/(l+n(s,a))

n(s) « n(s) + 1
simulate d; observe s’ n(s,d) < n(s,a) + 1
return cost-rollout
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Intermediate Summary

* Passive learning
* DUE
* ADP
 TD
e Active learning
* Active ADP
* Q-learning
* Multi-armed bandit problem
« UCB, UCT

Decision Foundations
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Outline: Decision Making — Foundations

Utility Theory
* Preferences
e Utilities
* Preference structure
Markov Decision Process / Problem (MDP)
* Sequence of actions, history, policy
e Value iteration, policy iteration
Reinforcement Learning (RL)
e Passive and active, model-free and model-based RL
 Multi-armed bandit

— Next: Decision Making — Extensions
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