

Automated Planning and ActingIntroduction

Organisational Stuff: Lecture

Topic: Automated Planning and Acting

• Module: Formal Methods (small, 3 + 1)

Language: English

Schedule: Tuesdays, 16.15-17.45 pm

Thursdays, 16.15-17.45 am

- Overview on dates and progress in Learnweb
- Every two weeks: last 15 minutes on Thursdays explicitly for Q&A
- There are lecture recordings available from a previous incarnation of this lecture (@Uni Lübeck) that are available in the Learnweb
 - Mostly same content, different layout (some cross-references updated here)
 - Warning: May not correspond one to one regarding progress in presence
 - Warning: new topic situation calculus and relational MDPs

Organisational Stuff: Lecture

- Topic: Automated Planning and Acting
- Goal:
 - Get to know a set of deliberation methods for automated planning and acting
 - Bring you up to speed on the foundations of current research
 - Most research on planning and acting is in English → lecture in English
 - So, the goal is at the end of semester to be able to understand and explain
 - what inputs are necessary, what is the output, and how does a method proceed on a high level,
 - what advantages and shortcomings exist,
 - when which method works in contrast to other methods.

Organisational Stuff: Exercises → **Seminar**

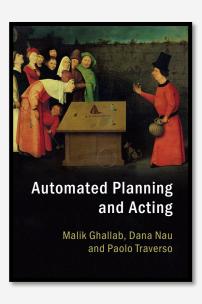
- Schedule: tba (towards end of semester)
- Task: Give a presentation on a selected topic
 - Ties to lecture expected
 - How to fill the time is up to you!
 - Theory
 - Exercises
 - Programming
- Goal: Practice to talk in English, carry a presentation for an extended period of time, the skill set necessary to understand and present an advanced topic
- Exact setup depends on the number of course participants
 - Duration: 45 minutes
 - On your own or in teams of two to three people

Show of hands who plans to participate as of now? (Not binding!)

Organisational Stuff: Exercises → **Seminar**

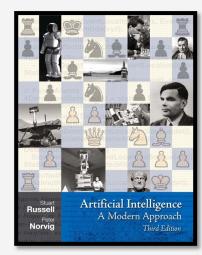
- Assignment of topics in Learnweb
- Topic areas
 - Topics 1-2 on deterministic planning
 - Topic 3 on refinement methods
 - Topic 4-6 on nondeterministic planning
 - Topics 7-8 on other deliberation methods
 - Topic 9-12 on probabilistic planning and decision making
- Find a starting point for each topic in the main books
 - Look at references in book for more info
 - * these topics do not appear in the book but get a paper/article as a starting point

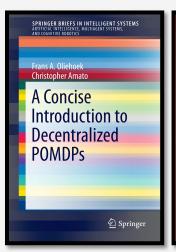
- Topics
 - 1. Hierarchical Task Network Planning
 - 2. Planning with Control Rules
 - 3. REAP
 - 4. Symbolic Model Checking Techniques
 - 5. Planning based on Search Automata
 - 6. Acting with Input/Output Automata
 - 7. Hybrid Models
 - 8. Ontologies for Planning and Acting
 - 9. Finite State Controllers for Dec POMDPs
 - 10. Shared Experience Actor-Critic for MARL*
 - 11. Continuous State and Observation POMDP*
 - 12. Expectation-Aware Planning*


Organisational Stuff: Exam

- ≤20 participants: Oral exam at the end of the semester
- >20 participants: Written exam
- Prerequisites to participate in exam
 - Seminar presentation
 - Exam registration

Literature

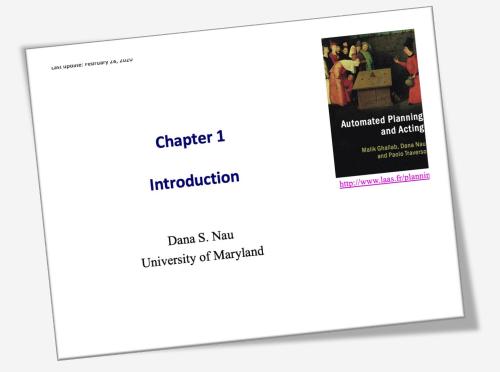

- Automated Planning and Acting
 - Malik Ghallab, Dana Nau, Paolo Traverso
 - Main source for the first half of the lecture





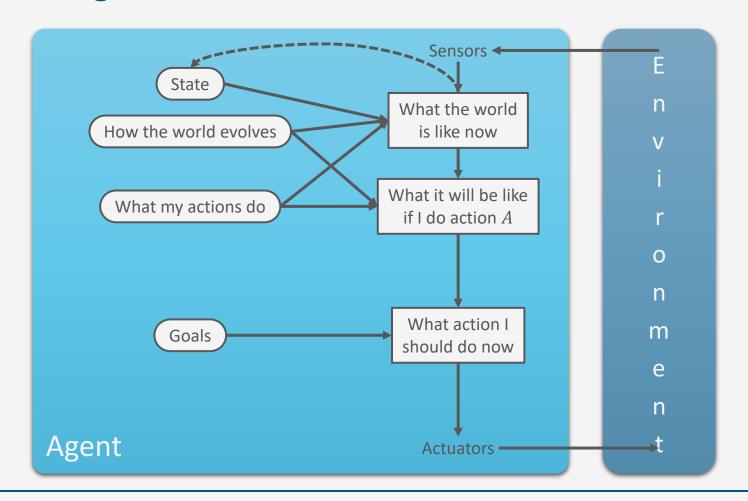
Literature

- Second half presents different directions research has taken
- Content based on
 - Artificial Intelligence: A Modern Approach (3rd ed.; abbreviation: *AIMA*)
 - Stuart Russell, Peter Norvig
 - Decision making (Chs. 16 + 17), reinforcement learning (Ch. 21)
 - A Concise Introduction to Decentralized POMDPs (*DecPOMDP*)
 - Frans A. Oliehoek, Christopher Amato
 - Explainable Human-Al Interaction: A Planning Perspective (HA-AI)
 - Sarath Sreedharan, Anagha Kulkarni, Subbarao Kambhampati
 - Further research papers announced in lectures
- I do not expect you to read all the books!



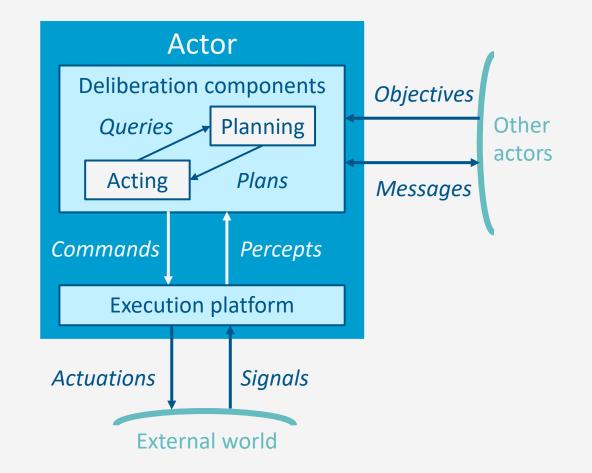
Acknowledgements

- For the first half, slides are adapted from material provided by Dana Nau
 - After that, it is a mix of different sources and own material



T. Braun - APA

http://www.laas.fr/planning


General Agent Setting

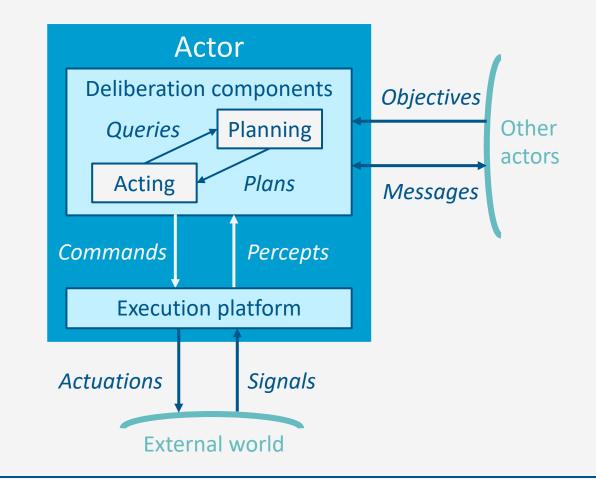
Setting Specific to Planning and Acting

- Actor: agent that performs actions
- Deliberation functions
 - PlanningWhat actions to perform
 - Acting
 How to perform them

Planning

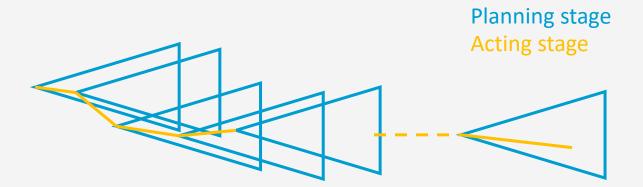
- Relies on prediction + search
- Uses descriptive models of the actions
 - Predict what the actions will do, but do not tell how to do them
- Search over predicted states and possible organisations of feasible actions

 $s \xrightarrow{a} s' = \gamma(s, a) \qquad \cdots$


- Different types of actions
 - → Different predictive models
 - → Different planning problems and techniques
 - Motion and manipulation pl.
 - Perception planning
 - Navigation planning
 - Communication planning
 - Task planning

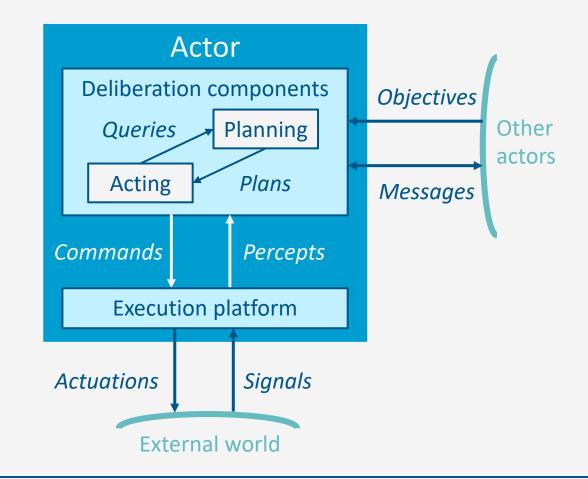
Acting

- Traditional "Al planning" view does not consider acting specially:
 - Carrying out an action is just execution
 - Does not require the actor to think about how
- Sometimes that is true
 - If the environment has been engineered to make it true
- Usually acting is more complicated

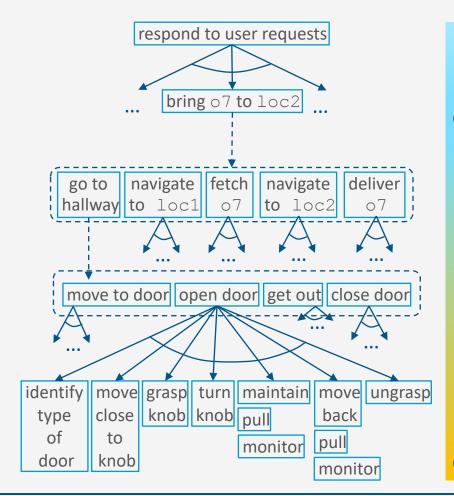

Acting as Execution

Deliberative Acting

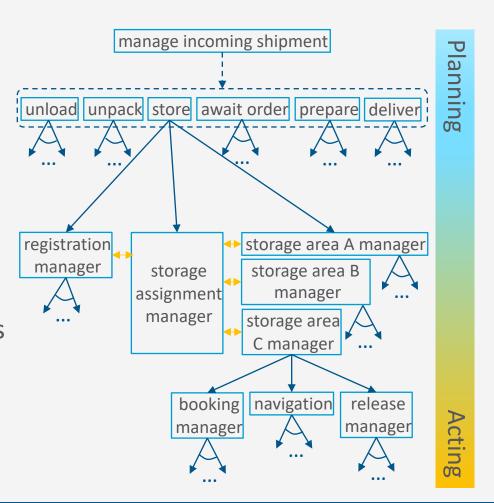
- Actor is situated in a dynamic unpredictable environment
 - Adapt actions to current context
 - React to events
- Relies on
 - Operational models telling how to perform the actions
 - Observations of current state


Deliberative Acting

General Characteristics


- Multiple levels of abstraction
 - Actors are organised into physical subsystems
- Heterogeneous reasoning
 - Different techniques
 - At different levels
 - In different subsystems at same level
- Continual online planning
 - Cannot plan everything in advance
 - Plans are abstract and partial until more detail is needed

Example: Service Robot


- Multiple levels of abstraction
 - Higher levels: more planning
 - Lower levels: more acting
- Heterogeneous reasoning
 - bring o7 to room2: abstract steps
 - navigate to room1: path planning
 - open door: reactive
- Continual online planning
 - Is o7 really in room1?
 - What kind of door?
 - Close enough to the doorknob?

Example: Harbour Management

- Importing / exporting cars
 - Based on Bremen Harbour
- Multiple levels of abstraction
 - Reflect physical organization of harbour
- Heterogeneous reasoning
 - Different components work in different ways
 - Online synthesis of automata to control their interactions
- Continual online planning
 - Top level can be planned offline
 - The rest is online, based on current conditions

Content: Planning and Acting

- 1. With **Deterministic** Models
 - Conventional AI planning
- 2. With **Refinement** Methods
 - Abstract activities → collections of lessabstract activities
- 3. With **Temporal** Models
 - Reasoning about time constraints
- 4. With **Nondeterministic** Models
 - Actions with multiple possible outcomes
- 5. With **Probabilistic** Models
 - Actions with multiple possible outcomes, with probabilities

6. By Decision Making

- A. Foundations
 - Utility theory, Markov decision process (MDP)
 - Reinforcement learning
- B. Extensions
 - Partially observable MDP (POMDP)
 - Decentralised POMDP (decPOMDP)
- C. Structure
 - Lifted decPOMDP
 - Factored MDP, relational MDP
 - Situation calculus, first-order MDP
- 7. With **Human-awareness**
 - Planning with a human in the loop