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AGENDA

|. Introduction to Relational Models and Online Decision Making [Marcel]

= Relational models under uncertainty
= Lifted inference in decision-theoretic models (online decision making)

= Markov Decision Process (Offline decision making)

2. Lifting Offline Decision Making [Flo]
3. Lifting Multi-Agent Decision Making [Nazh Nur]

4. Summary [Marcel]
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GENERAL AGENT SETTING

What the world
How the world evolves o
is like now

, What it will be like
What my actions do if | do action A

How happy | will be
4 in such a state
What action |
should do now
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RELATIONAL MODELS UNDER UNCERTAINTY

INTRODUCTION




WHY RELATIONAL MODELS?

Al: intelligent systems

The world has in the real world The world is
things in it! uncertain!

[ First-order logic Probabilistic ]

graphical models

The WOl’|.d is The world has
uncertain! : S
things in it!

Statistical Relational
Artificial Intelligence

—
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LOGICALVARIABLES IN RANDOM VARIABLES

®  Atoms: Parameterised random variables = PRVs

= With logical variables Nat(D) = natural disaster D
= Eg,X,M Acc(A) = accident A

= Possible values (domain):
dom(X) = {alice, eve, bob}
dom(M) = {injection, tablet}
= With range

= E.g,Boolean, but any discrete, finite set possible

= Represent sets of indistinguishable random variables
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PARFACTORS

®  Factors with PRVs = parfactors Potentials
* In parfactors, just like in factors,

M) St Swddd) gy no probability distribution as

false  false false 57 factors required

false  false true

false true false

false true  true

true false true

true true false

0
4
6
true false false 4
6
2
9

true true true
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Travel(eve) Epid Sick(eve) g,

EACTORS B Travel(bob) Epid Sick(bob) g,
4 false false
false true  true 6 false  false  true 0
=  Grounding true false  false 4 false true false 4
IR 1 cvel (clice) Epid_Sick(alice) g,
false  false false 5 true tru false false  false 5 | false 4
false  false true 0 true tru false false true 0 true 6
false  true false 4 false true  false 4 | false 2
false true  true 6 false true true 6 true 9
true  false false 4 true false  false 4
true false true 6 true false true 6 @
true true false 2 true true false 2
true true  true 9 true true true 9
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GROUNDED MODEL

Given domains
= dom(X) = {alice, eve, bob}
= dom(M) = {my,m,}

= dom(D) = {flood, fire}

= dom(W) = {virus,war} le

Travel.bob

' m

5 @
. |
||
Treat.bob.m
Travel eve
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INFERENCE PROBLEMS WITH AND WITHOUT EVIDENCE

= Query answering problem given a model:
"  Probability of events
= Eg,P(Att(eve, ki) = true), P(Epid = true)
= Conditional (marginal) probability distributions
= E.g, P(Att(ev, ki)|FarAway(ki)), P(Epid|sick(alice), sick(eve))

= Assighment queries:
= Most probable states of random variables

= Most-probable explanation (MPE), Maximum a posteriori (MAP)

= Lifted inference:
Work with representatives for
exchangeable random variables

®  Avoid grounding for as long as possible
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QA IN PARFACTOR MODELS: LIFTED VARIABLE ELIMINATION (LVE)

= Eliminate all variables not appearing in query
|
= Lifted summing out
= Sum out representative instance as in propositional variable elimination

= Exponentiate result for exchangeable instances

= Correctness: Equivalent ground operation
= Each instance is summed out
= Result: factor f that is identical for all instance

= Multiplying indistinguishable results
— exponentiation of one representative f
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QA: LVE IN DETAIL

®  Eliminate
= Appears in only one g: g3
= Contains all logical variables of g3: X, M
" For each X constant: the same number of M constants

v Preconditions of
lifted summing
out fulfilled,
lifted summing
out possible

Treat(eve, M)

X € {alice, bob)
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LVE IN DETAIL: LIFTED SUMMING OUT

= Eliminate by lifted summing out

|.  Sum out representative

g3 (Epid = e, Sick(X) = s,
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LVE IN DETAIL: LIFTED SUMMING OUT

Sick(X) Treat(X,M) g;
false false false 9 <
|false false true 1 I
| false true false 6 }
.f alse true true 3 l
| true false false 7 !
| true _ false true 5 I
| true  true false 4 !

true  true true 8 I
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g3 (Epid = e, Sick(X) = s,

Epid Sick(X) X

|
false false 10,

|
false true 9

|
true false 12,

true true 12I
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Epid Sick(X) *

false false 1072

false true 92

true false 122

true  true 122
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SYMMETRIES WITHIN

8
6
6
4
6
4
4

= Assume four epidemics with identical characteristics false true false false
*  Epid,, Epidy, Epids, Epid, false true false true
= Reasonable to model the epidemics such that it does not matter which Epid false true true false
variables specifically are true or false,i.e., they are interchangeable
# #false
true ~ true false false false
= All false maps to 8 *[O 4‘j 8
’ true false false true
= | true,3 false maps to 6 [1 3] 6
= 2 true,2 false maps to 4 ’ true false true false
2,2] 4
= 3 true, | false maps to 2
= All true maps to 0 true true false false 4
— Five lines enough to describe [4;0] 0
DECISION MAKING + STARAI
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COUNTING RANDOM VARIABLE

=  New PRV type: = Range of a (P)CRV = space of histograms fulfilling the
(Parameterised) counting random variable ((P)CRV) conditions on the histograms
x [AIC] m (Al possible ways of distributing n interchangeable
= A a PRV under constraint C instances into m buckets)
= X € Ww) = Single histogram encodes several interchangeable

assignments at once
= Range values: Histogram h = {(v;, n;)}1%,

= Given by multinomial coefficient Mul(h)
|

= m = |ran(4)| (number of buckets)

= n=Xiin = |9T(A|HX(C))| (number of instances to distribute Mul(h) = T .
into buckets) i=1""
= v, € ran(A4) (buckets) = |f m = 2, binomial coefficient:
n n! n!
= 7n; € N (number of instances in bucket v;) ( ) = =
n, (n—ny)In! nyIng!

= Shorthand: [n4, ..., n,,]
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CRV: EXAMPLE

= (P)CRV #x|A ] = Eg,CRV:#;[Epid(E)]
= Range values: Histogram h = {(v;, n;)}1%, m ran(Epid(E)) = {true, false} > m = 2
= m = |ran(4)| (number of buckets) = dom(E) ={ej,e,,e3,e,} > n=4
n : =I %1"1‘ = |gr(A|C)| (number of instances to distribute into = Range values and multiplicities
uckets
D E ran(A) (buckets) {(truer O)r (falser 4)} = [0)4] Mul([o 4]) = ﬁ = 1
= 7; € N (number of instances in bucket v;) {(true, 1), (false, 3)}=1[1,3] Mul([1,3]) = ﬁ =4
= Shorthand: [n4, ..., n,,] L 3
= Single histogram encodes several interchangeable {(true,2), (false,2)} = [2,2]  Mul([2,2]) = 2'_'2' =6
assignments at once: {(true,3), (false,1)} = [3,1] Mul([3,1]) = L — 4
n! !
Mul(h) = m {(true, 4), (false,0)} = [4,0] Mul([4,0]) = 4|—0| =1
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CRV: EXAMPLE

= E.g., (continued)
= CRV: #5[Epid(E)]

= Range values
10,4],[1,3],12,2],[3,1], [4,0]
1 4 6 1
how many assignments encoded

= g = ¢(#g[Epid(E)])

DECISION MAKING + STARAI

#p|Epid(E)] ¢’
[0,4] 8
[1,3] 6
[2,2] 4
[4,0] 0
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6
4
6
4
4

false false true true
false true false false
false true false true
false true true false
true false false false 6
true false false true
true false true false 4
true true false false 4
true true true true 0




CRVS CONTINUED

= (P)CRV #y|A¢] with

= m = |ran(4)| (number of buckets)

= n=Yy"n = |.97”(A|nx(c))| (number of instances to distribute into
buckets)
" |nstead of mappings in the ground factor,
the counted factor has
(n +m — 1)
n—1
mappings
= Upper bound of range size of a CRV: Polynomial i‘;I number of
n+m-—1 i
( ) <n™ random variables n
n—1
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LIFTED INFERENCE IN DECISION-THEORETIC
MODELS (ONLINE DECISION MAKING)

INTRODUCTION




DECISION PRVS ¢ R(X) TIX) ¢

free false free false

1
free true O
= Decision PRV D ban false 0 ban false
1

= Range ran(D) = {a;}, set of possible actions

free true

(R S S

ban true ban true

= Actions a; mutually exclusive (consistent with range definition)
= Always have to get a value assigned

= Cannot not make a decision!

= Depicted by a rectangle in a graphical representation

= E.g,travel restrictions for people X: Restrict(X)

= Range values: ban, free

= Set of decision PRVs D in a model,i,e, R=D UV

® D can occur as arguments to any parfactor

=  Example:

= P, (Restrict(X), Travel (X)), ¢4 (Restrict(X), Interference)
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EXPECTED UTILITY QUERIES

= Given a decision model G = {g;}-, U {gy}

= One can ask queries for (conditional) marginal distributions or events as before given an action assignment d based on the
semantics, P [d]

= New query type: query for an expected utility (EU)

= What is the expected utility of making decisions d in G?

eu(e, d) = 2 P(rle,d) - ¢y (r e, d)
reran(gr(rv(gy)\E\D))

= P(r|e,d) means that the PRVs not occurring in this expression need to be eliminated accordingly

= le,V=rv(G)\D\E\rv(gy)
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MEU PROBLEM

= Given a decision model G and evidence e, maximum Expected Utility (MEU) problem:

= Find the action assignment that yields the highest expected utility in G

= Formally, meu(Gle) = (d*,eu(E, d*))

d* = arg maxeu(e,d)
deran(D)

Additive semantics with inner
sum and outer max: Sum up

utilities, then pick maximum
— Max-sum algorithms

=  For an exact solution, meu(G|e) requires an algorithm to go through

d € ran(D)
= Size of ran(D) in |D|

Alternative specification
DECISION MAKING + STARAI
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| (de%an(D) deran(D) )
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DECISION MAKING OVER TIME

=  Basis: a sequential model (G° G™)

= Describe behaviour over time using interslice parfactors

= Within a slice, describe intra-slice (episodic) behaviour

—  Extend intra-slice parts with decision + utility PRVs

= Intra-slice behaviour described using a decision model

= Inter-slice behaviour allows for predicting effect of decision on next step

- @ [ 4@
Restrict(X)*=V ] @ u Restrict(X)™® ] @ _

t
I

iC
I [
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MARKOV DECISION PROCESS (OFFLINE DECISION
MAKING)

INTRODUCTION




MARKQOV DECISION PROCESS / PROBLEM (MDP)

= Sequential decision problem
for a fully observable, stochastic environment

— —
. . . 0.1 0.1
with a Markovian transition model T
and additive rewards (next slide)
= MDP is a four-tuple (S, A, T, R) with } |
® S arandom variable whose domain is a set of states
(with an initial state s°)
+1
=  For each s € dom(S) 3
= aset A(s) of actions 7
= 3 transition model T(s',s,a) = P(s'|s,a) 2 A
= areward function R(s) (also with a possible) 1 A
= Robot navigation example to the right

1 2 3 4

Introduction 26

DECISION MAKING + STARAI

AIMA, Russell/Norvig



ADDITIVE UTILITY

= History h = (s(®,sW, ., s(D)
= In each state s, agent receives reward R(s) . T

= Utility of h is additive iff

U(S(O),S(l), ...,S(T)) — R(S(o)) + U(S(1)’___,S(T)) } |
T

=), RG©) 3 .
t=0

= Discount factor y €]0,1]:

N
&\

U(s©, s, .., sM) = ZT VER(s©)
t=0

! A
®  Close to 0: future rewards insignificant

= Corresponds to interest rate =7/, 1 2 3 4
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PRINCIPLE OF MEU

= Bellman equation:

U(s) = R(s) +¥ max Z P(s'|a, $)U(s")

Lt
s’edom(S)

= Optimal policy: | |

m*(s) = argmax z P(s'|a,s)U(s")
acA(s) s’edom(S) 3 +1
= Bellman equation for [1,1] with y = 1 as discount factor , 7
= U(L1) =-004+y max {08U(1,2)+0.1U(2,1) + 0.1U(1,1), (V) A
0.8U(1,1) + 0.1U(1,1) + 0.1U(1,2), (L) 1 A
0.8U(1,1) + 0.1U(2,1) + 0.1U(1,1), (D)
0.8U(2,1) +0.1U(1,2) + 0.1U(1,1) } (R) 1 ) 3 4
DECISION MAKING + STARAI 28

AIMA, Russell/Norvig



VALUE ITERATION

, 0.762 0.660
= Initialise the utility of each non-terminal state s to U(®(s) = 0 ’
= Fort=012 ..do 1 0.’705 ‘0.655 ‘0.611 ‘0.388
Ut (s) « R(s) +y max Z P(s'|a, s)U® (s") 1 2 3 4
s’edom(S)
= So called Bellman update 0 0 0
Ut([3,1D1 3 +1
0611l Note the importance 0 7 0
0.5 of terminal states and 2 /
connectivity of the 5 5 Z 5 5
0 state-transition graph 1
' ' L5 1 2 3 4
0 10 20 30 ¢
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VALUE ITERATION:ALGORITHM

= Returns a policy 7 that is optimal

= |nputs
= MDP mpd
= Set of states S until 6§ < €(1-y)/y

for each state s € S do
= Foreachs €S

m(s) « argmax,es(syos P(s’ la.s)Uls"]
= Set A(s) of applicable actions return I

= Transition model P(s'|s, a)

®  [ocal variables
= Reward function R(s)

: m [, U’ vectors of utilities for states in S
= Maximum error allowed €

= § maximum change in utility of any state in an iteration
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POMDP

= POMDP = Partially Observable MDP |
3 +
= Sensing operation returns multiple states, with a probability distribution
= Sensor model 2 that encodes P(o|s) (or P(ols, a)) 7
= Probability of observing o given state s (and action a) 2 /
7.
= Example:
= Sensing number of adjacent walls (I or 2) I A
= Return correct value with probability 0.9
= Formally, POMDP is a six-tuple (S, 4, T, R, 0, 2) | 2 3 4

= MDP (5,4, T, R) extended with a set of observations O and a sensor model 2

®  Choosing action that maximizes expected utility of state distribution assuming “state utilities” computed as before not good enough
— Does not make sense (not rational)

= POMDP agent: Constructing a new MDP in which the current probability distribution over states plays the role of the
state variable
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BELIEF STATE & UPDATE

= Belief state b(s) is the probability assigned to the actual state s by belief state b

= |nitial belief state

" Probability of 0 for terminal states

= Uniform distribution for rest

= Robot navigation example: _ — —

111111111

= b=(5555505555000) 7 1
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BELIEF STATE & UPDATE

= Update b’ = SE(b,a,0)

b'(s") = P(s'|o, a, b) Plolssa)
S )= S |0,Q, = T 77
ZS”EdOm(S)P(Ol'S ) a) Zsedom(S)P(S |Sl a)b(S)
= Consider as two stage-update: (l) Update for the (2) Update for the observation
b b(l) b(Z) —_
3/101/01]0.1]0.0 31021011 0.02]/0.0 3 | 0.06569 0.03650| 0.06569| 0.0
_ W _ 7 _ : 7
5 | 0.1 /// 0.1 Move | once 5 | 0.1 / 01 Perceive | wall , 0_03650// 03064
Y = Y —) 7

| 0.1/01]0.1]0.1 | 102 0.1 ]0.1/0.01 || 0.06569 0.03650| 0.32847|0.00365

| 2 3 4 | 2 3 4 | 2 3 4
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AGENDA

|. Introduction to Relational Models and Online Decision Making [Marcel]

= Relational models under uncertainty
= Lifted inference in decision-theoretic models (online decision making)

= Markov Decision Process (Offline decision making)

2. Lifting Offline Decision Making [Flo]
3. Lifting Multi-Agent Decision Making [Nazh Nur]

4. Summary [Marcel]
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AGENDA

|. Introduction to Relational Models and Online Decision Making [Marcel]

2. Lifting Offline Decision Making [Flo]

®  Factored Markov Decision Processes
®  First-order Markov Decision Processes

= Lifted Factored Markov Decision Processes
3. Lifting Multi-Agent Decision Making [Nazh Nur]

4. Summary [Marcel]
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