EXPLOITING STRUCTURE IN DECISION MAKING UNDER THE LENS OF RECENT ADVANCES IN STARAI

MARCEL GEHRKE¹, NAZLI NUR KARABULUT, FLORIAN MARWITZ, AND TANYA BRAUN²

AGENDA

- I. Introduction to Relational Models and Online Decision Making [Marcel]
 - Relational models under uncertainty
 - Lifted inference in decision-theoretic models (online decision making)
 - Markov Decision Process (Offline decision making)
- Lifting Offline Decision Making [Flo]
- 3. Lifting Multi-Agent Decision Making [Nazlı Nur]
- 4. Summary [Marcel]

GENERAL AGENT SETTING

RELATIONAL MODELS UNDER UNCERTAINTY

INTRODUCTION

WHY RELATIONAL MODELS?

LOGICAL VARIABLES IN RANDOM VARIABLES

- Atoms: Parameterised random variables = PRVs
 - With logical variables
 - E.g., *X*, *M*
 - Possible values (domain):

$$dom(X) = \{alice, eve, bob\}$$

 $dom(M) = \{injection, tablet\}$

 $Nat(D) = natural \ disaster \ D$ $Acc(A) = accident \ A$

- With range
 - E.g., Boolean, but any discrete, finite set possible
 - $ran(Travel(X)) = \{true, false\}$
- Represent sets of indistinguishable random variables

(Sick(X))

PARFACTORS

Factors with PRVs = parfactors

		<u> </u>	
Travel(X)	Epid	Sick(X)	g_2
false	false	false	5 🔨
false	false	true	0
false	true	false	4
false	true	true	6
true	false	false	4
true	false	true	6
true	true	false	2
true	true	true	9

Potentials

 In parfactors, just like in factors, no probability distribution as factors required

FACTORS

Grounding

Travel(X)	Epid	Sick(X)	g_2
false	false	false	5
false	false	true	0
false	true	false	4
false	true	true	6
true	false	false	4
true	false	true	6
true	true	false	2
true	true	true	9

Travel(eve)	Epid	Sick(eve)	g_2				
false	false	false	5				
false	false	true	0	Travel(bob)	Epid	Sick(bob)	g_2
false	true	false	4	false	false	false	5
false	true	true	6	false	false	true	0
true	false	false	4	false	true	false	4
true	fals T	ravel(alice)	$E \gamma$	oid Sick(alic	$e)$ g_2	true	6
true	tru	false	fa	lse false	5	false	4
true	tru	false	fa	lse true	0	true	6
		false	tr	ue false	4	false	2
		false	tr	ue true	6	true	9
		true	fa	lse false	4		
		true	fa	lse true	6	reat(X, M)	\supset
		true	tr	ue false	2		
		true	tr	ue true	9		

DECISION MAKING + STARAI Introduction

GROUNDED MODEL

INFERENCE PROBLEMS WITH AND WITHOUT EVIDENCE

- Query answering problem given a model:
 - Probability of events
 - E.g., P(Att(eve, ki) = true), P(Epid = true)
 - Conditional (marginal) probability distributions
 - E.g., P(Att(ev, ki)|FarAway(ki)), P(Epid|sick(alice), sick(eve))
 - Assignment queries:
 - Most probable states of random variables
 - Most-probable explanation (MPE), Maximum a posteriori (MAP)
- Lifted inference:
 Work with representatives for exchangeable random variables
 - Avoid grounding for as long as possible

QA IN PARFACTOR MODELS: LIFTED VARIABLE ELIMINATION (LVE)

- Eliminate all variables not appearing in query
 - [Poole 03, de Salvo Braz et al. 05, 06, Milch et al. 08, Taghipour et al. 13, 13a, B & Möller 18]
- Lifted summing out
 - Sum out representative instance as in propositional variable elimination
 - Exponentiate result for exchangeable instances
- Correctness: Equivalent ground operation
 - Each instance is summed out.
 - Result: factor *f* that is identical for all instance
 - Multiplying indistinguishable results
 → exponentiation of one representative f

QA: LVE IN DETAIL

- Eliminate Treat(X, M)
 - Appears in only one $g: g_3$
 - Contains all logical variables of $g_3: X, M$
 - For each *X* constant: the same number of *M* constants
 - Preconditions of lifted summing out fulfilled, lifted summing out possible

LVE IN DETAIL: LIFTED SUMMING OUT

- Eliminate Treat(X, M) by lifted summing out
 - I. Sum out representative

$$\sum_{t \in r(Treat(X,M))} g_3(Epid = e, Sick(X) = s, Treat(X,M) = t)$$

$$Epid$$

$$g_0$$

$$Travel(X)$$

$$g_2$$

$$Treat(X,M)$$

$$X \in \{alice, bob\}$$

$$Sick(X)$$

DECISION MAKING + STARAI Introduction 13

LVE IN DETAIL: LIFTED SUMMING OUT

SYMMETRIES WITHIN

- Assume four epidemics with identical characteristics
 - \blacksquare $Epid_1$, $Epid_2$, $Epid_3$, $Epid_4$
 - Reasonable to model the epidemics such that it does not matter which Epid variables specifically are true or false, i.e., they are interchangeable
 - All false maps to 8
 - I true, 3 false maps to 6
 - 2 true, 2 false maps to 4
 - 3 true, I false maps to 2
 - All true maps to 0
 - → Five lines enough to describe

false false false true 6 false false true true 4 false false false true false false true true 4 false true true false false true true true false false false true false false true 4 false false true true false true true true false false true true true true false true false true true true 0 true true true true

 $Epid_1$ $Epid_2$ $Epid_3$ $Epid_4$ ϕ

true

6

false false false

false false false

COUNTING RANDOM VARIABLE

- New PRV type: (Parameterised) counting random variable ((P)CRV) $\#_X[A_{|C}]$
 - $A_{|C|}$ a PRV under constraint C
 - $X \in lv(A)$
 - Range values: Histogram $h = \{(v_i, n_i)\}_{i=1}^m$
 - m = |ran(A)| (number of buckets)
 - $n = \sum_{i=1}^{m} n_i = |gr(A_{|\pi_X(C)})|$ (number of instances to distribute into buckets)
 - $v_i \in ran(A)$ (buckets)
 - $n_i \in \mathbb{N}$ (number of instances in bucket v_i)
 - Shorthand: $[n_1, ..., n_m]$

- Range of a (P)CRV = space of histograms fulfilling the conditions on the histograms
 - (All possible ways of distributing n interchangeable instances into m buckets)
- Single histogram encodes several interchangeable assignments at once
 - Given by multinomial coefficient Mul(h)

$$Mul(h) = \frac{n!}{\prod_{i=1}^{m} n_i!}$$

• If m = 2, binomial coefficient:

$$\binom{n}{n_1} = \frac{n!}{(n-n_1)! \, n_1!} = \frac{n!}{n_2! \, n_1!}$$

CRV: EXAMPLE

- (P)CRV $\#_X[A_{|C}]$
 - Range values: Histogram $h = \{(v_i, n_i)\}_{i=1}^m$
 - m = |ran(A)| (number of buckets)
 - $n = \sum_{i=1}^{m} n_i = |gr(A_{|C})|$ (number of instances to distribute into buckets)
 - $v_i \in ran(A)$ (buckets)
 - $n_i \in \mathbb{N}$ (number of instances in bucket v_i)
 - Shorthand: $[n_1, \dots, n_m]$
 - Single histogram encodes several interchangeable assignments at once:

$$Mul(h) = \frac{n!}{\prod_{i=1}^{m} n_i!}$$

- E.g., CRV: $\#_E[Epid(E)]$
 - $ran(Epid(E)) = \{true, false\} \rightarrow m = 2$
 - $dom(E) = \{e_1, e_2, e_3, e_4\} \rightarrow n = 4$
 - Range values and multiplicities

$$\{(true, 0), (false, 4)\} = [0,4]$$
 $Mul([0,4]) = \frac{4!}{0! \cdot 4!} = 1$
 $\{(true, 1), (false, 3)\} = [1,3]$ $Mul([1,3]) = \frac{4!}{0! \cdot 4!} = 4$

$$\{(true, 1), (false, 3)\} = [1,3] \quad Mul([1,3]) = \frac{4!}{1! \cdot 3!} = 4$$

$$\{(true, 2), (false, 2)\} = [2,2] \quad Mul([2,2]) = \frac{4!}{2! \cdot 2!} = 6$$

$$\{(true, 3), (false, 1)\} = [3,1] \quad Mul([3,1]) = \frac{4!}{3! \cdot 1!} = 4$$

$$\{(true, 4), (false, 0)\} = [4,0] \quad Mul([4,0]) = \frac{4!}{4! \cdot 0!} = 1$$

CRV: EXAMPLE

- E.g., (continued)
 - $CRV: \#_E[Epid(E)]$
 - Range values

 [0,4], [1,3], [2,2], [3,1], [4,0]
 1 4 6 4 1

 how many assignments encoded
 - $g' = \phi(\#_E[Epid(E)])$

$\#_{E}[Epid(E)]$	ϕ'
[0,4]	8
[1,3]	6
[2,2]	4
[3,1]	2
[4,0]	0

$Epid_1$	$Epid_2$	$Epid_3$	$Epid_4$	ϕ
false	false	false	false	8
false	false	false	true	6
false	false	true	false	6
false	false	true	true	4
false	true	false	false	6
false	true	false	true	4
false	true	true	false	4
false	true	true	true	2
true	false	false	false	6
true	false	false	true	4
true	false	true	false	4
true	false	true	true	2
true	true	false	false	4
true	true	false	true	2
true	true	true	false	2
true	true	true	true	0

CRVS CONTINUED

- (P)CRV $\#_X[A_{|C}]$ with
 - m = |ran(A)| (number of buckets)
 - $n = \sum_{i=1}^{m} n_i = |gr(A_{|\pi_X(C)})|$ (number of instances to distribute into buckets)
- Instead of m^n mappings in the ground factor, the counted factor has

$$\binom{n+m-1}{n-1}$$

mappings

Upper bound of range size of a CRV:

$$\binom{n+m-1}{n-1} \le n^m$$

Exponential in number of random variables n

Polynomial in number of random variables n

LIFTED INFERENCE IN DECISION-THEORETIC MODELS (ONLINE DECISION MAKING)

INTRODUCTION

DECISION MAKING + STARAI Introduction 2

DECISION PRVS

- Decision PRV D
 - Range $ran(D) = \{a_i\}_{i=1}^K$ set of possible actions
 - Actions a_i mutually exclusive (consistent with range definition)
 - Always have to get a value assigned
 - Cannot not make a decision!
 - Depicted by a rectangle in a graphical representation
 - E.g., travel restrictions for people *X*: *Restrict*(*X*)
 - Range values: ban, free
- Set of decision PRVs D in a model, i.e., $R = D \cup V$
 - D can occur as arguments to any parfactor
 - Example:
 - $\phi_1(Restrict(X), Travel(X)), \phi_4(Restrict(X), Interference)$

R(X)	I	ϕ_4
free	false	1
free	true	0
ban	false	0
ban	true	1

R(X)	Tl(X)	ϕ_1
free	false	1
free	true	1
ban	false	1
ban	true	0

EXPECTED UTILITY QUERIES

- Given a decision model $G = \{g_i\}_{i=1}^n \cup \{g_U\}$
 - One can ask queries for (conditional) marginal distributions or events as before given an action assignment d based on the semantics, $P_G[d]$
 - New query type: query for an expected utility (EU)
 - What is the expected utility of making decisions d in G?

$$eu(\mathbf{e}, \mathbf{d}) = \sum_{\mathbf{r} \in \text{ran} \left(\text{gr}(\text{rv}(g_U) \setminus \mathbf{E} \setminus \mathbf{D}) \right)} P(\mathbf{r} | \mathbf{e}, \mathbf{d}) \cdot \phi_U(\mathbf{r}, \mathbf{e}, \mathbf{d})$$

- P(r|e,d) means that the PRVs not occurring in this expression need to be eliminated accordingly
 - I.e., $V = \operatorname{rv}(G) \setminus D \setminus E \setminus \operatorname{rv}(g_U)$

MEU PROBLEM

- Given a decision model G and evidence e, maximum Expected Utility (MEU) problem:
 - Find the action assignment that yields the highest expected utility in G
 - Formally, $meu(G|e) = (d^*, eu(E, d^*))$

$$d^* = \arg\max_{d \in \operatorname{ran}(D)} eu(e, d)$$

Additive semantics with inner sum and outer max: Sum up utilities, then pick maximum → Max-sum algorithms

- For an exact solution, meu(G|e) requires an algorithm to go through all $d \in ran(D)$
 - Size of ran(D) exponential in |D|

Alternative specification
$$meu(G|e) = \begin{pmatrix} arg \max_{d \in ran(D)} eu(e, d), \max_{d \in ran(D)} eu(e, d) \end{pmatrix}$$

DECISION MAKING OVER TIME

- Basis: a sequential model (G^0, G^{\rightarrow})
 - Describe behaviour over time using interslice parfactors
 - Within a slice, describe intra-slice (episodic) behaviour
- → Extend intra-slice parts with decision + utility PRVs
 - Intra-slice behaviour described using a decision model
 - Inter-slice behaviour allows for predicting effect of decision on next step

MARKOV DECISION PROCESS (OFFLINE DECISION MAKING)

INTRODUCTION

DECISION MAKING + STARAI Introduction 2!

MARKOV DECISION PROCESS / PROBLEM (MDP)

- Sequential decision problem for a fully observable, stochastic environment with a Markovian transition model and additive rewards (next slide)
- MDP is a four-tuple (S, A, T, R) with
 - S a random variable whose domain is a set of states (with an initial state s^0)
 - For each $s \in \text{dom}(S)$
 - \blacksquare a set A(s) of actions
 - a transition model T(s', s, a) = P(s'|s, a)
 - a reward function R(s) (also with a possible)
- Robot navigation example to the right

ADDITIVE UTILITY

- History $h = (s^{(0)}, s^{(1)}, ..., s^{(T)})$
- In each state s, agent receives reward R(s)
- Utility of h is additive iff

$$U(s^{(0)}, s^{(1)}, \dots, s^{(T)}) = R(s^{(0)}) + U(s^{(1)}, \dots, s^{(T)})$$
$$= \sum_{t=0}^{T} R(s^{(t)})$$

• Discount factor $\gamma \in]0,1]$:

$$U(s^{(0)}, s^{(1)}, \dots, s^{(T)}) = \sum_{t=0}^{T} \gamma^{t} R(s^{(t)})$$

- Close to 0: future rewards insignificant
- Corresponds to interest rate $^{1-\gamma}/_{\gamma}$

Introduction

3

27

1

PRINCIPLE OF MEU

Bellman equation:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s' \in \text{dom}(s)} P(s'|a, s)U(s')$$

Optimal policy:

$$\pi^*(s) = \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s' \in \operatorname{dom}(S)} P(s'|a, s) U(s')$$

Bellman equation for [1,1] with $\gamma = 1$ as discount factor

•
$$U(1,1) = -0.04 + \gamma \max_{U,L,D,R}$$
 { $0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1)$, (U) $0.8U(1,1) + 0.1U(1,1) + 0.1U(1,2)$, (L) $0.8U(1,1) + 0.1U(2,1) + 0.1U(1,1)$, (D) $0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)$ } (R)

U, D, L, R each move costs 0.04

VALUE ITERATION

- Initialise the utility of each non-terminal state s to $U^{(0)}(s)=0$
- For t = 0, 1, 2, ..., do

$$U^{(t+1)}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s' \in \text{dom}(s)} P(s'|a, s) U^{(t)}(s')$$

Note the importance of terminal states and connectivity of the state-transition graph

Introduction

29

VALUE ITERATION: ALGORITHM

- Returns a policy π that is optimal
- Inputs
 - MDP *mpd*
 - Set of states S
 - For each $s \in S$
 - Set A(s) of applicable actions
 - Transition model P(s'|s,a)
 - Reward function R(s)
 - Maximum error allowed ϵ

```
function value-iteration (mdp, \epsilon)
U' \leftarrow 0, \quad \pi \leftarrow \langle \rangle
repeat
U \leftarrow U'
\delta \leftarrow 0
for each state s \in S do
U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \Sigma_{s'} P(s' \mid a.s) U[s']
if |U'[s] - U[s]| > \delta then
\delta \leftarrow |U'[s] - U[s]|
until \delta < \epsilon(1-\gamma)/\gamma
for each state s \in S do
\pi(s) \leftarrow \operatorname{argmax}_{a \in A(s)} \Sigma_{s'} P(s' \mid a.s) U[s']
return \pi
```

- Local variables
 - U, U' vectors of utilities for states in S
 - $oldsymbol{\delta}$ maximum change in utility of any state in an iteration

POMDP

- POMDP = Partially Observable MDP
 - Sensing operation returns multiple states, with a probability distribution
 - Sensor model Ω that encodes P(o|s) (or P(o|s,a))
 - Probability of observing o given state s (and action a)
 - Example:
 - Sensing number of adjacent walls (1 or 2)
 - Return correct value with probability 0.9
 - Formally, POMDP is a six-tuple (S, A, T, R, O, Ω)
 - MDP (S, A, T, R) extended with a set of observations O and a sensor model Ω
 - Choosing action that maximizes expected utility of state distribution assuming "state utilities" computed as before not good enough
 → Does not make sense (not rational)
- POMDP agent: Constructing a new MDP in which the current probability distribution over states plays the role of the state variable

BELIEF STATE & UPDATE

- Belief state b(s) is the probability assigned to the actual state s by belief state b
- Initial belief state
 - Probability of 0 for terminal states
 - Uniform distribution for rest
 - Robot navigation example:

$$b = \left(\frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, 0, 0\right)$$

BELIEF STATE & UPDATE

• Update b' = SE(b, a, o)

$$b'(s') = P(s'|o, a, b) = \frac{P(o|s', a) \sum_{s \in dom(S)} P(s'|s, a)b(s)}{\sum_{s'' \in dom(S)} P(o|s'', a) \sum_{s \in dom(S)} P(s''|s, a)b(s)}$$

Consider as two stage-update: (1) Update for the action (2) Update for the observation

Move L once

AGENDA

- I. Introduction to Relational Models and Online Decision Making [Marcel]
 - Relational models under uncertainty
 - Lifted inference in decision-theoretic models (online decision making)
 - Markov Decision Process (Offline decision making)
- Lifting Offline Decision Making [Flo]
- 3. Lifting Multi-Agent Decision Making [Nazlı Nur]
- 4. Summary [Marcel]

AGENDA

- I. Introduction to Relational Models and Online Decision Making [Marcel]
- 2. Lifting Offline Decision Making [Flo]
 - Factored Markov Decision Processes
 - First-order Markov Decision Processes
 - Lifted Factored Markov Decision Processes
- 3. Lifting Multi-Agent Decision Making [Nazlı Nur]
- 4. Summary [Marcel]

ORDERED ALPHABETICALLY

DECISION MAKING + STARAI Introduction 36

- AMAI, Russel/Norvig
 Russell & Norvig: Artificial Intelligence: A Modern Approach. 2020
- Braun & Möller 18
 Tanya Braun and Ralf Möller: Parameterised Queries and Lifted Query Answering. In IJCAI-18 Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018.
- De Salvo Braz et al. 05
 Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth: Lifted First-order Probabilistic Inference. In IJCAI-05 Proceedings of the 19th International Joint Conference on Artificial Intelligence, 2005.
- De Salvo Braz et al. 06
 Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth: MPE and Partial Inversion in Lifted Probabilistic Variable Elimination. In AAAI-06 Proceedings of the 21st Conference on Artificial Intelligence, 2006.

- G. et al. 19
 - Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph Strumann, and Jost Steinhäuser. Lifted Maximum Expected Utility. In Proceedings of Artificial Intelligence in Health, 2019.
- G., Braun & Möller 19
 Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Temporal Maximum Expected Utility. In Canadian Al-19 Proceedings of the 32nd Canadian Conference on Artificial Intelligence, 2019.
- Milch et al. 08
 - Brian Milch, Luke S. Zettelmoyer, Kristian Kersting, Michael Haimes, and Leslie Pack Kaelbling: Lifted Probabilistic Inference with Counting Formulas. In AAAI-08 Proceedings of the 23rd AAAI Conference on Artificial Intelligence, 2008.

Poole 03

David Poole: First-order Probabilistic Inference. In IJCAI-03 Proceedings of the 18th International Joint Conference on Artificial Intelligence, 2003.

Taghipour et al. 13

Nima Taghipour, Daan Fierens, Guy Van den Broeck, Jesse Davis, and Hendrik Blockeel. Completeness Results for Lifted Variable Elimination. In AISTATS-13 Proceedings of the 16th International Conference on Artificial Intelligence and Statistics, 2013.

Taghipour et al. I 3a

Nima Taghipour, Daan Fierens, Jesse Davis, and Hendrik Blockeel. Lifted Variable Elimination: Decoupling the Operators from the Constraint Language. Journal of Artificial Intelligence Research, 47(1):393–439, 2013.