

What Can Explainability Mean for Probabilistic Inference?

Human-aware PGMs and Probabilistic Inference via Lifted Model Reconciliation – A KI Starter Project Starting in 2024 Tanya Braun

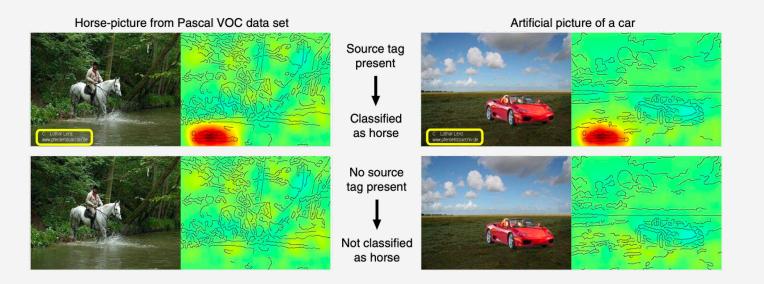
Data Science Group Computer Science Department

living.knowledge

T. Braun

Explainable AI (XAI)

- Explanations critical for trust, collaboration, ...
- Explain classifications
 - Debugging tool for inscrutable representations
 - "Pointing" explanations



Prediction:Difference between leftPrediction:School busand right magnified by 10Ostrich

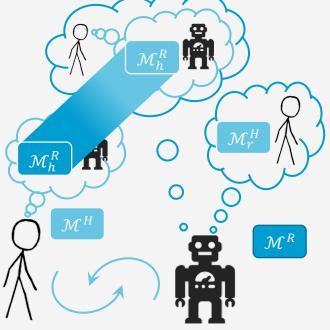
Please point to the "ostrich" part

Figure above: Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller: Unmasking Clever Hans Predictors and Assessing What Machines Really Learn. In Nature Communications, 2019.

Figure below: Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus: Intriguing properties of neural networks. In ICLR-14, 2014.

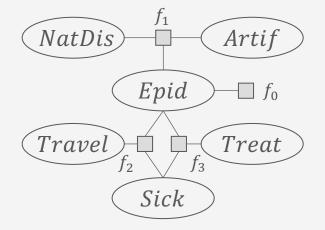
Explainable AI (XAI)

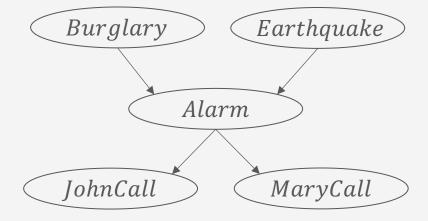
- Explain decisions / plans
 - Classical planning: Given a planning problem (Σ, s_0, S_g) (agent model \mathcal{M}^R)
 - Find a plan $\pi = \langle a_1, a_2, ..., a_n \rangle$ that transforms s_0 to a state $s_n \in S_g$
 - Human-aware planning: Team of human and agent (e.g, robot)
 - Agent's model \mathcal{M}_r^H of human's model \mathcal{M}^H
 - Allows the agent to **anticipate** human behaviour to assist, avoid, team
 - Agent's model \mathcal{M}_h^R that the agent expects the human to have of \mathcal{M}^R
 - Allows the agent to **anticipate** human expectations to conform to those expectations, explain its own behaviour in terms of those expectations
 - <u>Interpretability</u>: Set up explicable / legible / predictable / ... plans
 - <u>Explanations</u>: *Reconcile* model differences



What about Probabilistic Inference?

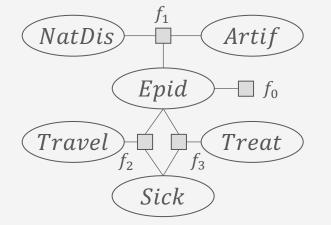
- Probabilistic graphical models (PGMs)
 - Set of random variables, set of conditional probability distributions / factors, connecting random variables
 - E.g., Bayesian network (above), factor graph (below)
 - Semantics: full joint probability distribution as (normalised) product of distributions / factors
- Probabilistic inference
 - Query for probability (distribution) of event / random variable
 - E.g.,
 - *P*(*Burglary* = *true*|*MaryCall* = *true*)
 - *P*(*Epid*|*Sick* = *true*)
 - Solve by eliminating all non-query terms (sum-out)

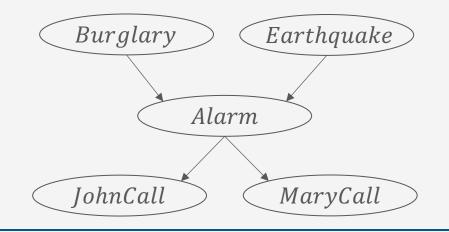




What Can We Find in the Direction of XAI?

- Most Probable Explanation (MPE)
 - Given a set of events, what is the most probable state of the remaining random variables?
 - Formally, given a PGM G and a set of events e: $MPE_G(e) = \underset{v \in Val(V)}{\operatorname{arg max}} P(v \mid e) = \underset{v \in Val(V)}{\operatorname{arg max}} P(v, e)$
 - $V = rv(G) \setminus rv(e)$ random variables of G without those in e
 - Max-out instead of sum-out to answer an MPE query instead of a probability query
- Is that really explaining?





Alexander Philip Dawid. Applications of a General Propagation Algorithm for Probabilistic Expert Systems. *Statistics and Computing*, 2(1):25–36, 1992. Rina Dechter. Bucket Elimination: A Unifying Framework for Probabilistic Inference. In *Learning and Inference in Graphical Models*, pages 75–104. MIT Press, 1999. Tanya Braun and Ralf Möller. Lifted Most Probable Explanation. In *ICCS-18*, 2018.

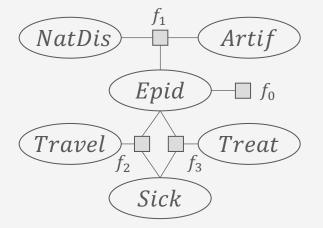
What If We Go Broader?

Factors. In AAAI-24, 2024.

- Interpretable PGMs
 - All variables are observable (unrealistic!)
 - Assumption: Knowing the state of the system makes system explainable
 - Problem: Large nets are not readable even if state known
- Abstraction
 - *Lifted* versions for relational / symmetric domains:
 - Logical variables compactly encode repeated structures
 - Semantics: ground, multiply, normalise
 - Inference task defined as before, e.g., $P(Epid|Sick(X) = true_{|X \in \{alice, eve, bob\}})$
 - Assumption: Large nets become smaller and thus more easily readable

Nat(D)

Travel(X)



 g_0

 g_1

 g_3

Epid

Sick(X)

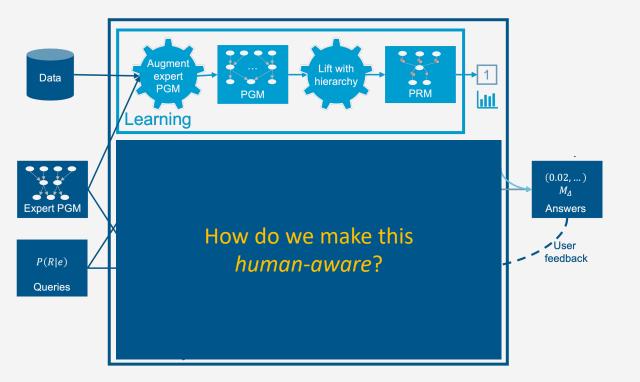
 g_2

Acc(I

Treat(X, M)

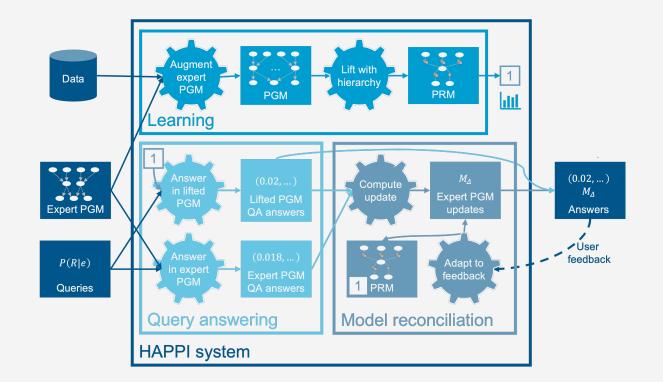
Human-aware Setting of Probabilistic Inference

- Models
 - Domain expert has domain knowledge
 - Implicit human's model
 - Domain expert builds a (small) PGM
 - Agent's model of human's model
 - Learning algorithm expands the PGM using additional training data
 - Can be much larger than the input PGM
 - Agent's model
- Inference
 - Human asks queries
 - Agent answers query



Model Reconciliation for Probabilistic Inference

- Reconciling model differences between expert model and trained model
 - Use lifting to increasingly abstract large PGMs to get closer to smaller human's models
 - Hierarchy of models to be able to explain different parts in different detail
 - Reconcile human's and agent's model by exposing differences to human
 - Expose only those parts relevant to a query to update human's model



Lifting as Abstraction

Find (almost) repeated structures and abstract them

Travel.alice

 f_2

 f_3

Sick.alice

Treat.*alice*.*m*₂

 f_3

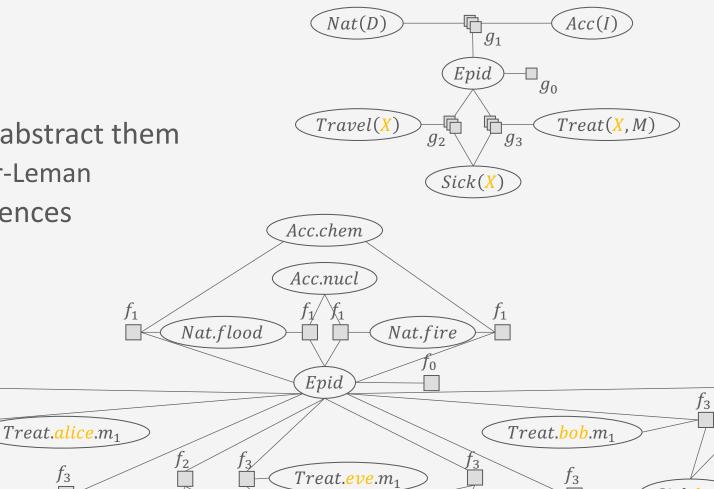
Travel.eve

- Colour passing as a variant of Weisfeiler-Leman
- Use as basis for detecting model differences
 - Calculate model updates

Artif

 $\Box f_0$

Treat



 $Treat.eve.m_2$

Sick.eve

 f_2

Epid

Sick

*t*₃

NatDis

Travel

Treat.bob.m₂

Sick.<mark>bo</mark>

Ĵ3

KI Starter: HAPPI Reconciliation

<u>Human-aware P</u>GMs and <u>P</u>robabilistic <u>I</u>nference via Lifted Model <u>Reconciliation</u>

- Goal: Provide explanations for probabilistic inference based on model reconciliation between trained and expert models
 - Novel research direction that combines techniques that have exhibited great success in their respective areas
 - Helps push fundamental task of inference into human-oriented AI

