
Lifting Partially Observable Stochastic Games

Nazlı Nur Karabulut , Tanya Braun

Computer Science Department, University of Münster, Münster, Germany
nnur.karabulut@uni-muenster.de, tanya.braun@uni-muenster.de

Abstract. Partially observable stochastic games (POSGs) are a Marko-
vian formalism used to model a set of agents acting in a stochastic envi-
ronment, in which each agent has its own reward function. As is common
with multi-agent decision making problems, the model and runtime com-
plexity is exponential in the number of agents, which can be prohibitively
large. Lifting is a technique that treats groups of indistinguishable in-
stances through representatives if possible, yielding tractable inference in
the number of objects in a model. This paper applies lifting to the agent
set in POSGs, yielding so-called isomorphic POSGs that have a model
complexity no longer dependent on the number of agents, and presents a
lifted solution approach that exploits this lifted agent set for space and
runtime gains.

1 Introduction

Multi-agent decision making lies at the heart of artificial intelligence (AI) and
is one of the most challenging problems in AI research. A common formalisa-
tion lies in partially observable stochastic games (POSGs). In POSGs, a set
of agents acts in an environment modelled as a stochastic Markovian process,
each with the goal to optimise its own reward function. POSGs are a gener-
alisation of other formalisms based on Markovian modelling, from single-agent
decision making in Markov decision processes (MDPs) and partially observable
MDPs (POMDPs) to multi-agent decision making in decentralised POMDPs
(DecPOMDPs), in which the agent set shares a single reward function. Both
POSGs and DecPOMDPs have in common that their space and runtime com-
plexity depends exponentially on the number of agents, making them all but
unsolvable except for small problem sizes.

Unfortunately, there are applications that have an agent set size in the thou-
sands and still require working with such a model-based approach to be able
to argue about its reasoning. One such example are nanoscale medical systems,
e.g., used for diagnosis or treatment [13]. Here, the idea is that a network of
nanoagents is used to detect markers for a specific disease or deliver medicine
to locations in the cardio-vascular system. Given its application in the medical
domain, one needs to find accurate solutions [24] that can be justified and allows
for arguing about agent set sizes as to not poison a patient. While the agent sets
are typically very large, an upside is that they rarely come without any structure.
Typically and true for nanoscale systems, there are a small number of different
types of agents to fulfil specific purposes within the system.

https://orcid.org/0000-0001-7958-5627
https://orcid.org/0000-0003-0282-4284

2 N. N. Karabulut and T. Braun

One promising direction that actually uses this structure has been explored
when lifting the agent set of DecPOMDPs [3]. Lifting is a technique from prob-
abilistic inference in probabilistic graphical models (PGMs), in which indis-
tinguishable random variables are encoded using logical variables and treated
through a representative [17], which leads to tractability in terms of domain
sizes of those logical variables [15]. Indistinguishability of random variables is
characterised by subgraph isomorphisms in the PGM between the variables and
identical factors describing the influences between a variable and its neighbours
in those subgraphs. In terms of the probabilistic behaviour, lifting assumes con-
ditional independences between these indistinguishable instances, which yields
the isomorphic structure in the graph. Lifting the agent set in DecPOMDPs
leads to conditions for the transition, sensor, and reward function, under which
representatives for groups of agents can be used during computations, yielding
tractability in terms of agent numbers [3], which partitions the agent set.

However, lifting DecPOMDPs stops one step short of fully applying the lift-
ing idea to multi-agent decision making, by still having a joint reward function.
In this paper, we go this next step in providing each agent partition with its own
reward function, which makes the formalisation a POSG. While lifting POSGs
as an extension of lifted DecPOMDPs can be thought of as a theoretical endeav-
our, doing so has practical value as lifting POSGs can be helpful in modelling,
e.g., nanoscale medical systems, where different types of agents may interact
with each other or external factors and may have competing or complementary
objectives. Additionally, we can further reduce the complexity of these mod-
els while appropriately modelling diverse goals of the agents, ensuring accurate
and efficient decision-making in dynamic medical environments. Specifically, the
contributions are twofold: (i) isomorphic POSGs based on a partitioning of the
agent set for an explicit encoding of structure in the agent set and (ii) a lifted
version of the multi-agent dynamic programming operator [7] to solve isomor-
phic POSGs. To the best of our knowledge, we are the first to apply the lifting
idea to POSGs and show its potential for solving problem instances of new scale.

The remainder of the paper is structured as follows: We start with a recap
of POSGs as well as dynamic programming for POSGs. Then, we define indis-
tinguishability between agents and present isomorphic POSGs. Afterwards, we
provide a lifted dynamic programming operator and end with a discussion.

2 Preliminaries

This section defines POSGs and recaps dynamic programming for POSGs. We
look through a PGM lens for definitions, which are based on [7] and [18], us-
ing random variables, S, which can take discrete values, referred to as range,
ran(S) = {s1, . . . , sn}. So-called decision random variables have actions as
ranges. Setting S to a value s ∈ ran(S) (an event) is denoted as S = s or
s for short if S is clear from its context. We denote sequences over a discrete
time interval [ts, te] with subscript ts:te, e.g., (Sts , . . . , Ste) = Sts:te . We use π to
denote projection and θ to denote permutation.

Lifting Partially Observable Stochastic Games 3

2.1 Partially Observable Stochastic Game

A POSG encodes a set of agents working towards their own goals, represented
through individual reward functions.

Definition 1. A POSG M is a tuple (I, S,A,O, T,R), with

– I a set of N agents,
– S a random variable with a set of states as range,
– A = {Ai}i∈I a set of decision random variables Ai, one for each agent i ∈ I,

each with a set of local actions as range, with ran(A) = ×i∈Iran(Ai) the set
of joint actions,

– O = {Oi}i∈I a set of random variables Oi, each with a set of local observa-
tions as range, with ran(O) = ×i∈Iran(Oi) the set of joint observations,

– T (S′, S,A,O) = P (S′,O | S,A), called transition function to give it a
unique name, which is a probability distribution denoting the probability of
moving from state s with joint action a to state s′ and making the joint
observation o, with T (S0, ., ., .) = P (S0) referring to a state prior, and

– R = {Ri(S,A)}i∈I a set of reward functions, one for each agent i ∈ I.

Optional are a finite horizon τ , a discount factor γ ∈ [0, 1] (default 1), and an
error margin ϵ > 0. Each agent i ∈ I has a local policy πi : ran((Oi,0:t)) 7→
ran(Ai) mapping observation histories oi,0:t, t ≤ τ − 1, to actions a, with π =
(πi)i∈I a joint policy. A set of policies for agent i is denoted by Πi. A set or
sequence of elements over all agents except agent i is denoted by subscript −i.

Each agent has its own set of actions and observations and its own reward
function1 whereas the state is joint. An agent’s belief bi(s,π−i) is a probability
distribution over the state space ran(S) and the other agents’ policies Π−i. The
value Vi of a belief bi is defined by

Vi(bi) = max
πi∈Πi

∑
s∈ran(S)

∑
π−i∈Π−i

bi(s,π−i)V
′
i (s, πi,π−i)

where V ′
i (s, πi,π−i) refers to the value of acting according to joint policy πi,π−i

in state s and incorporates the reward functions in each step. Modelling-wise,
DecPOMDPs only differ from POSGs by having a single reward function for
all agents. However, having self-interested agents has consequences for potential
solution methods: Whereas a DecPOMDP allows for brute-force joint policy
evaluation, POSGs no longer enable such computation as it is no longer possible
to define what an optimal policy is, which is why some of the most common
DecPOMDP solution methods do not translate to the POSG setting [16]. In
POSGs, one usually aims for a Nash equilibrium and possibly a Pareto optimal
one, meaning that in an equilibrium, no agent has an incentive to change its
policy without any agent changing its policy. The one solution method that
both formalisms share is dynamic programming, which we recap next.
1 Ai = Aj , Oi = Oj , or Ri = Rj , i, j ∈ I, are possible but not mandatory.

4 N. N. Karabulut and T. Braun

Algorithm 1 Multi-agent Dynamic Programming Operator
function MA-DP(set of policies Πt−1

i for each agent i ∈ I with value vectors V t−1
i)

Πt
i ← Perform exhaustive backup using Πt−1

i for each agent i ∈ I
V t

i ← Calculate new value vectors for each agent i ∈ I
while ∃πt

i,j ∈ Πt
i : Eq. (1) holds do

Πt
i ← Πt

i \ {πt
i,j}, V t

i ← V t
i \ {vti,j}

return {(Πt
i ,V

t
i)}i∈I

2.2 Dynamic Programming for POSGs

Solving a POSG with horizon τ can be done through a combination of dynamic
programming and pruning [7]. Such a routine involves an iterative application
of a dynamic programming operator where in each iteration t ∈ {0, . . . , τ − 1},
the operator, first, does an exhaustive backup that generates all possible policies
of depth t for each agent given the existing policies of depth t− 1, and second,
prunes policies that are very weakly dominated until no more policies can be
pruned. In the following, we define the dynamic programming operator as well
as what constitutes weak domination between policies.

Algorithm 1 shows the dynamic programming operator. It takes a set of
policies Πt−1

i = {πt−1
i,j }mj=1 of depth t − 1 for each agent i. For each policy,

there exists a value vector vt−1
i,j that denotes the value of that policy in each

possible combination of state s ∈ ran(S) and policies of the other agents π−i ∈
Πt−1

−i . We denote the set of corresponding value vectors by V t−1
i . The first step

involves generating all possible policies of depth t given the policies of depth t−1,
expanding all existing policies with all possible combinations of observations
and actions. Pruning involves finding policies that are very weakly dominated
by other policies, meaning that over the complete space of S × Πt

−i there is
always another strategy with higher value. Formally, a policy πt

i,j is pruned if
the following holds, which can be solved using a linear programme:

∀s ∈ ran(S),πt
−i ∈ Πt

−i∃πt
i,j′ ∈ Πt

i : Vi(s, π
t
i,j ,π

t
−i) ≤ Vi(s, π

t
i,j′ ,π

t
−i), (1)

3 Lifting Partially Observable Stochastic Games

POSGs are characterised by a model and runtime complexity for exact solution
methods that is exponential in the number of agents. However, large multi-agent
systems such as nanoscale medical systems often exhibit some form of structure
among its agent set that we can exploit for efficiency gains. If assuming that there
are groups of agents that are essentially indistinguishable, i.e., one expects them
to behave identically if faced with the same situation, it is possible to reduce
model and runtime complexity by being able to work with representatives for
groups. A complexity reduction from exponential to logarithmic is possible for
so-called isomorphic DecPOMDPs [3] if assuming that the number of groups
K is much smaller than the overall number of agents N , i.e., K ≪ N . In the
following, we apply the idea to POSGs.

Lifting Partially Observable Stochastic Games 5

3.1 Indistinguishable Agents for Agent Tractability

Before considering agents that are indistinguishable within a group that is dis-
tinguishable from the next group, we consider indistinguishability between two
agents. Intuitively, two agents are indistinguishable if they act the same way
given the same situation and the possible effect is identical, which also means
that they have the same set of policies available. This translates into the follow-
ing aspects, which we explain below: (i) The available actions and observations
as well as the reward function are identical. (ii) The behaviour in functions T
and R is symmetric (what that means we see below). (iii) The two agents are
conditionally independent in T and R given the state and the other agents’ ac-
tions. The first item is essentially a precondition for the other two items as two
agents cannot be indistinguishable in any regard if they have a different set of
actions and observations and a different reward function, making them automat-
ically distinguishable. Also, if the available actions and observations differ, the
histories cannot be the same and the agents cannot perform the same action.
The second item describes that in T and R, those two agents could switch their
actions, while the resulting distribution over state and joint observation as well
as the resulting reward would be the same, making them indistinguishable. The
last item is a consequence of saying that the two agents have the same policies
available to them. The same set of policies implies that both agents would act
identically given the same situation, which requires conditional independence
between those two agents. Next, we formalise these conditions for two agents
before generalising the conditions for groups of agents.

The first item, which is rather straight-forward, can be formalised by stating
that for two indistinguishable agents i, j ∈ I,

ran(Ai) = ran(Aj) ∧ ran(Oi) = ran(Oj)

∧∀s ∈ ran(S),a ∈ ran(A) : Ri(s,a) = Rj(s,a).
(2)

The second item, symmetric behaviour, manifests itself in the functions T
and R by being able to exchange the actions and observations of two indistin-
guishable agents and still receiving the same probability and reward. Formally,
this behaviour between two indistinguishable agents i, j ∈ I can be characterised
as follows, with Rh = Ri = Rj due to Eq. (2):

∀a ∈ ran(A),a = (ai, aj ,a−i,−j) : ∀o ∈ ran(O),o = (oi, oj ,o−i,−j) :

T (s′, s, ai, aj ,a−i,−j ,o) = T (s′, s, aj , ai,a−i,−j ,o)

T (s′, s,a, oi, oj ,o−i,−j) = T (s′, s,a, oj , oi,o−i,−j)

Rh(s, ai, aj ,a−i,−j) = Rh(s, aj , ai,a−i,−j), h ∈ {i, j}
(3)

The third item, conditional independence means distributions factorise ac-
cording to P (A,B | C) = P (A | C) · P (B | C). Conditional independence
between two indistinguishable agents i, j ∈ I affects the observations oi, oj and
actions ai, aj , which are conditionally independent given the state and the other
agents’ actions. This independence yields a factorisation of T , where oi, oj as

6 N. N. Karabulut and T. Braun

well as oi (oj) and aj (ai) are conditionally independent, and a factorisation of
R regarding ai, aj , which looks as follows:

∀a ∈ ran(A),a = (ai, aj ,a−i,−j) : ∀o ∈ ran(O),o = (oi, oj ,o−i,−j) :

T (s′, s, ai, aj ,a−i,−j , oi, oj ,o−i,−j) = P (s′, oi, oj ,o−i,−j | s, ai, aj ,a−i,−j)

= Pi(s
′, oi,o−i,−j | s, ai,a−i,−j) · Pj(s

′, oj ,o−i,−j | s, aj ,a−i,−j)

Rh(s, ai, aj ,a−i,−j) = Ri
h(s, ai,a−i,−j) +Rj

h(s, aj ,a−i,−j), h ∈ {i, j}
(4)

Note the dimension reductions in the factorisations compared to T,R, which we
use for efficiency when applied to groups of agents. Equations (2) to (4) together
actually yield Pi = Pj and Ri

h = Rj
h, which we show next.

Lemma 1. If Eqs. (2) to (4) hold, then the factors Pi, Pj and summands Ri
h, R

j
h

in Eq. (4) are identical.

Proof. As mentioned above, Eq. (2) is a prerequisite for indistinguishability and,
specifically, for Eq. (3). If Eq. (3) holds, permutations of actions and observations
for indistinguishable agents map to the same probability p in T and reward r in
R. Let us first show that Pi = Pj for the first line of Eq. (3). Inserting Eq. (4)
leads to:

T (s′, s, ai, aj ,a−i,−j ,o) = T (s′, s, aj , ai,a−i,−j ,o) = p

⇔Pi(s
′,o | s, ai,a−i,−j) · Pj(s

′,o | s, aj ,a−i,−j) = pai · paj

= Pj(s
′,o | s, aj ,a−i,−j) · Pi(s

′,o | s, ai,a−i,−j) = paj · pai = p

There are two cases to consider, one where ai = aj = a (or a′) and one where
ai = a ̸= aj = a′, which leads to the following set of equations:

Pi(. | s, a,a−i,−j) · Pj(. | s, a,a−i,−j) = pai · paj = p ⇔ paj =
p

pai
⇔ pai =

p

paj

Pi(. | s, a,a−i,−j) · Pj(. | s, a′,a−i,−j) = pai · pa
′

j = p′

Pi(. | s, a′,a−i,−j) · Pj(. | s, a,a−i,−j) = pa
′

i · paj = p′

Pi(. | s, a′,a−i,−j) · Pj(. | s, a′,a−i,−j) = pa
′

i · pa
′

j = p′′ ⇔ pa
′

j =
p′′

pa
′

i

⇔ pa
′

i =
p′′

pa
′

j

The two lines in the middle say that pa
′

i · paj = pai · pa′

j = p′, which yields the
following if replacing pai and pa

′

i as well as paj and pa
′

j with the corresponding
fractions from above:

pa
′

i · p

pai
= pai ·

p′′

pa
′

i

= p′ ⇔ (pa
′

i)2 · p = (pai)
2 · p′′ = pa

′

i · pai · p′

p′′

pa
′

j

· paj =
p

paj
· paj = p′ ⇔ (paj)

2 · p′′ = (pa
′

j)2 · p = pa
′

j · paj · p′

Lifting Partially Observable Stochastic Games 7

Since the first halves before the equivalence sign both equal p′, we have that the
parts with p in them are equal, which we can further reformulate:

pa
′

i

pai
· p =

pa
′

j

paj
· p ⇔ pa

′

i

pai
=

pa
′

j

paj
⇔ paj =

pai
pa

′
i

· pa
′

i

The second halves after the equivalence sign are also equal, which yields:

pa
′

i · pai · p′ = pa
′

j · paj · p′ ⇔ paj =
pa

′

i · pai
pa

′
j

Taking both expressions for paj , we get

pai
pa

′
i

· pa
′

j =
pa

′

i · pai
pa

′
j

⇔ pai · (pa
′

j)2 = pai · (pa
′

i)2 ⇔ pa
′

j = pa
′

i

which leads to Pi = Pj . The same reformulations can be done for the other two
lines of Eq. (3), showing that Pi = Pj as well as Ri = Rj given Eq. (4). ⊓⊔

3.2 Partitions of Indistinguishable Agents

The previous section groups two agents together. The idea is of course to have
a small number of groups with many indistinguishable agents in each group. As
such, Eqs. (2) to (4) have to hold for all agents within a group, which leads to
a partitioning of the agent set.

The set of agents I partitions into K sets Ik, i.e., I =
⋃K

k=1 Ik, Ik ̸= ∅,
and ∀k, l ∈ {1, . . . ,K}, k ̸= l : Ik ∩ Il = ∅, and it holds for each partition Ik of
indistinguishable agents that:

∀i, j ∈ Ik : ran(Ai) = ran(Aj) ∧ ran(Oi) = ran(Oj)

∧ ∀s ∈ ran(S),a ∈ ran(A) : Ri(s,a) = Rj(s,a),
(5)

which is a straightforward generalisation of Eq. (2). The equation denotes that
each agent in a partition needs to have the same actions and observations avail-
able as well as the same reward function. As such, it is sufficient to keep K
decision and observation random variables Ak, Ok and reward functions Rk in-
stead of N variables Ai and Oi and reward functions Ri.

Generalising Eq. (3) for partitions means that all permutations θ of those
actions a−k that belong to a partition Ik in a joint action a, i.e., ak = πIk

(a),
map to the same numbers. The same holds for permutations of observations
ok = πIk

(o). Formally, with a−k (o−k) referring to the remaining actions (ob-
servations), i.e., a−k = a \ ak (o−k = o \ ok), the condition changes to:

∀a ∈ ran(A),a = (ak,a−k) : ∀θ(ak) : ∀o ∈ ran(O),o = (ok,o−k) : ∀θ(ok) :

T (s′, s,ak,a−k,o) = T (s′, s, θ(ak),a−k,o)

T (s′, s,a,ok,o−k) = T (s′, s,a, θ(ok),o−k)

Rk(s,ak,a−k) = Rk(s, θ(ak),a−k)

(6)

8 N. N. Karabulut and T. Braun

Generalising Eq. (4) to the partition case means that all agents within a par-
tition are conditionally independent from each other, leading to factorising the
functions T and R as follows, with with ai = πAi(ak) and oi = πOi(ok):

∀a−k ∈ ran(A−k) : ∀ak ∈ ran(Ak) : ∀o−k ∈ ran(O−k) : ∀ok ∈ ran(Ok) :

T (s′, s,ak,a−k,ok,o−k) =
∏
i∈Ik

Pi(s
′, oi,o−k | s, ai,a−k)

Rk(s,ak,a−k) =
∑
i∈Ik

Ri
k(s, ai,a−k).

(7)

Given the generalisations in Eqs. (5) to (7), Lemma 1 applies to the group setting
with the same argument as above.

Corollary 1. If Eqs. (5) to (7) hold, then the factors Pi and summands Ri
k in

Eq. (7) are identical.

Corollary 1 allows for a more compact representation of T and R as both func-
tions factorise into a set of functions, one for each partition. Additionally, the
factorised functions have lower dimensionality, because they no longer require
the joint action (and observation) as input. With πk(a) denoting the projection
of a onto the agents in k (the same for o), the functions boil down to:

T (s′, s,a,o) =
∏

k∈×K
k=1Ik

∏
k∈k

Pk(s
′, πk(o) | s, πk(a))

R(s,a) =
∑

k∈×K
k=1Ik

Rk(s, πk(a))
(8)

Corollary 2. The complexity of Eq. (8) is no longer exponential in the number
of agents N in a POSG M , in which Eqs. (5) to (7) hold.

Proof. While there are nK · K,n = maxk∈{1,...,K} |Ik| many factors in T (nK

summands in R), the complexity of each Tk (Rk) is down to s · oK · aK (s · aK),
which is no longer exponential in the overall number of agents N .

With indistinguishability defined on a partition level, we next define isomor-
phic POSGs that compactly encode this indistinguishability.

3.3 Isomorphic POSGs

POSGs that have a partitioned agent set and additionally exhibit symmetric
behaviour in the functions T and R as well as conditional independence among
the members of the same partition allow for a more compact representation that
no longer depends on the number of agents, but only the number of partitions
as seen in Eq. (8). We call such a POSG isomorphic and define it as follows:

Definition 2. An isomorphic POSG M̄ is a tuple (Ī, S, Ā, Ō, T̄ , R̄), with

Lifting Partially Observable Stochastic Games 9

– Ī a partitioning {Ik}Kk=1 of agents, nk = |Ik| and |Ī| =
∑

k nk = N ,
– S a random variable with a set of states as range as in Def. 1,
– Ā = {Āk}Kk=1 a set of decision random variables Āk, each with possible

actions as range, ran(Ai) = ran(Āk)∀i ∈ Ik, and ran(Ak) = ×i∈Ik
ran(Ak),

– Ō = {Ōk}Kk=1 a set of random variables Ōk, each with a set of observations
as range, ran(Oi) = ran(Ōk)∀i ∈ Ik, and ran(Ok) = ×i∈Ik

ran(Ok),
– T̄ = {T̄k(S, S

′, Ā, Ō)}Kk=1 a set of probability distributions T̄k(S, S
′, Ā, Ō) =

P (S′, Ō | S, Ā), and
– R̄ = {R̄k(S, Ā)}Kk=1 a set of reward functions.

Before presenting model complexity results, we show that an isomorphic
POSG is equivalent to a standard (ground) POSG that fulfils Eqs. (5) to (7).

Theorem 1. An isomorphic POSG M̄ has an equivalent POSG M , in which
Eqs. (5) to (7) hold.

Proof. We transform the isomorphic POSG M̄ into a first-order representation
by adding logical variables for each partition to represent the agents of each par-
tition, leading to parameterised random variables Āk = Ak(Xk), Ōk = Ok(Xk)
as decision and observation random variables, with the domains of the logical
variables Xk being the partitions of agents, i.e., dom(Xk) = Ik. Ranges are
not affected. The probability distributions Tk(S, S

′, Ā, Ō) and reward functions
Rk(S, S

′, Ā) then can be written as

Tk(S, S
′, Ā, Ō) = Tk(S, S

′, A1(X1), . . . , AK(XK), O1(X1), . . . , OK(XK))

Rk(S, S
′, Ā) = Rk(S, S

′, A1(X1), . . . , AK(XK))

which is only a syntactic transformation with no consequence for the semantics
of the functions. We now turn M̄ into M by essentially grounding M̄ , which
means we expand the compact representations of M̄ into the joint representa-
tions of M : Grounding a parameterised random variable replaces each logical
variable with a constant, here an agent, leading to a set of random variables
Ak(xk,i), Ok(xk,i), i ∈ Ik, which is equivalent to the random variables Ai, Oi of
M with Eq. (5). Grounding a function that contains parameterised random vari-
ables yields a set of functions with identical mappings and the logical variables
replaced with all possible combinations of constants (agents) over the partitions,
i.e., ×K

k=1dom(Xk), which follow multiplicative semantics in T as T is a probabil-
ity distribution and additive semantics in R as R is an additive reward function.
As such, Eq. (7) holds, with Pi = Pj = Pk and Ri = Rj = Rk within each
partition Ik. When multiplying identical functions per partition, symmetric be-
haviour as formalised in Eq. (6) emerges, since the same probabilities from Pk

(rewards from Rk) are multiplied (added) when different permutations of a par-
tition action (observation) are handled. ⊓⊔

Model Complexity Given the more compact representation of the functions in a
POSG, we get a drastic model space reduction:

10 N. N. Karabulut and T. Braun

Corollary 3. The model complexity of an isomorphic POSG M̄ is no longer
dependent on the number of agents N .

Proof. The sizes of the transition function T and reward functions R, which
follow from their input arguments, dominate the model complexity. Formally,
the sizes T and R of the functions T (S′, S,A,O) and {Ri(S,A)}i∈I , respec-
tively, of a POSG M of Def. 1 equivalent to an isomorphic POSG M̄ of Def. 2
lie in T ∈ O(s2aNoN) and R ∈ O(NsaN), with a = maxi |ran(Ai)| and o =
maxi |ran(Oi)|, i ∈ I, which has N as an exponent. The sizes T̄ and R̄ of the
functions T and R of an isomorphic POSG M̄ of Def. 2 lie in T̄ ∈ O(Ks2aKoK)
and R̄ ∈ O(KsaK), which does not reference N anymore. ⊓⊔

This indistinguishability only translates into smaller functions than in a
ground POSG of Def. 1 if K ≪ N . Given a particular ground POSG, one
could check for Eqs. (5) to (7) to hold and then compactly encode the POSG
as an isomorphic one, which yields K and the respective factorisations of T and
R. However, in such a scenario, one still has to store the ground POSG, which
requires exponential space. Then, one has to check Eqs. (5) and (7), which can
be especially cumbersome for Eq. (7), and compute the factors referenced in
Eq. (6). Thus, the modelling scenario would be to directly formulate an isomor-
phic POSG for the cases where one assumes Eqs. (5) to (7) to hold to bypass the
effort. In such a case, one could even consider tasks such as how many agents
are necessary per partition to fulfil certain conditions, where the overall number
of agents might no longer be known.

Of course, a compact representation does not help much if a solution algo-
rithm has to revert to the grounded representation. Thus, next, we present a
lifted version of the multi-agent dynamic programming operator [7] that works
with isomorphic POSGs.

4 Lifting Dynamic Programming for Isomorphic POSGs

Multi-agent dynamic programming solves a finite-horizon POSG by iteratively
eliminating weakly-dominated strategies [7] using a dynamic programming op-
erator. For a lifted version that works with isomorphic POSGs, we have to adapt
the operator to work with partitions. Given the results of the previous section,
we prove in this section that all agents of the same partition use the same set of
policies. Thus, it is sufficient to consider a representative agent for each parti-
tion and let the operator perform an exhaustive backup, compute corresponding
value vectors, and then prune policies once per partition.

4.1 Weakly Dominated Policies among Indistinguishable Agents

Before setting up the lifted dynamic programming operator, we argue why we
can work with representatives for each partition of indistinguishable agents.

Lemma 2. Indistinguishable agents share the same set of available policies as
well as the same belief and state values.

Lifting Partially Observable Stochastic Games 11

Algorithm 2 Lifted Multi-Agent Dynamic Programming Operator
function Lift-MA-DP(Set of sets of policies with corresponding value vectors
{(Πt−1

k ,V t−1
k)}Kk=1)

Πt
k ← Perform exhaustive backup using Πt−1

k for each partition Ik ∈ Ī
V t

k ← Calculate new value vectors for each partition Ik ∈ Ī
while ∃πt

k,l ∈ Πt
k : Eq. (9) holds do

Πt
k ← Πt

k \ {πt
k,l}, V t

k ← V t
k \ {vtk,l}

return {(Πt
k,V

t
k)}Kk=1

Proof. With agents i, j of a partition Ik sharing the same actions and observa-
tions, the same reward function Rk, and the same transition function Tk due to
conditional independences among them, the same possible policies are available
to agents of the same partition by construction. Additionally, the values Vi, Vj of
a belief bi = bj are identical, i.e., Vi = Vj = Vk given a policy πi = πj , a state s,
and the other agents’ policies π−i = πj , which are identical due to πi = πj . The
same holds for the values V ′

i , V
′
j of s, πi = πj ,πi = πj , which can be computed

with the factorised versions of T and R, meaning V ′
i = V ′

j = V ′
k. ⊓⊔

Theorem 2. Policies that are weakly dominated for agent i are also weakly
dominated for an indistinguishable agent j.

Proof. As a direct consequence of Lemma 2, the same policies can be pruned if
Eq. (1) holds. ⊓⊔

The effect of Theorem 2 is that we only need to back up policies once for each
partition using a representative agent and then perform a pruning on those
policies. Formally, the condition for pruning a partition policy πt

k,l becomes:

∀s ∈ ran(S),πt
−k ∈ Πt

−k∃πt
k,l ∈ Πt

k : Vk(s, π
t
k,l,π

t
−k) ≤ Vk(s, π

t
k,m,πt

−k), (9)

The linear programme can be adapted accordingly (and is left out due to space
restrictions). Next, we present the dynamic programming operator.

4.2 Lifted Dynamic Programming Operator

Given the results of the previous sections, we set up the lifted dynamic pro-
gramming operator that operates on representatives for the partitions in an
isomorphic POSG.

Algorithm 2 shows the lifted version of the operator, which works exactly as
before, just on a partition level. So, it takes a set of policies Πt−1

k = {πt−1
k,l }ml=1 of

depth t−1 for partition Ik. For each policy, there exists a value vector vt−1
k,l that

denotes the value of that policy in each possible combination of state s ∈ ran(S)
and policies of the other partitions π−k ∈ Πt−1

−k . The operator then proceeds as
before with first performing an exhaustive backup and second pruning weakly
dominated policies per partition.

We briefly argue for correctness of Alg. 2 based on the correctness of Alg. 1:

12 N. N. Karabulut and T. Braun

Algorithm 3 Solving isomorphic POSGs
function lifted-solve(POSG M̄ , horizon τ)

Π0
k ← ∅ for each partition Ik ∈ Ī

V 0
k ← ∅ for each partition Ik ∈ Ī

while t ∈ {1, . . . , τ} do
{(Πt

k,V
t
k)}Kk=1 ← Lift-MA-DP({(Πt−1

k ,V t−1
k)}Kk=1)

return {(Πτ
k ,V

τ
k)}Kk=1

Theorem 3. Using Alg. 2 on an isomorphic POSG is equivalent to using Alg. 1
on a POSG, in which Eqs. (5) to (7) hold.

Proof. Given the equivalence between an isomorphic POSG and a POSG, in
which Eqs. (5) to (7) hold, and Theorem 2, we conclude that Alg. 2 only prunes
policies that Alg. 1 would prune.

Algorithm 3 shows how to solve an isomorphic POSG using Alg. 2, which
repeatedly calls Alg. 2 for increasingly deeper policy trees until the horizon is
reached. The resulting set of policies can then be used to select the best policies
given an initial state distribution.

5 Discussion

Before we consider related work, we briefly consider the nanoscale medical system
as an isomorphic POSG and discuss the expressivity of isomorphic POSGs, which
touches upon the assumptions made and limitations imposed.

5.1 Nanoscale Medocal Systems as Isomorphic POSGs

When simulating a nanoscale medical system based on [2], its components are
divided into two categories of agents, nanosensors and nanobots, based on how
they respond to particular markers and so-called messages in a blood stream.
Together, these agents build the set I of agents, which are divided into K par-
titions, one partition for each marker / message that should be detected in the
blood stream. According to early research in such a nanoscale medical system [2],
each partition may contain about 64,000 agents, which means that the agent set
must be at least K ·64, 000, with K being single-digit. Each agent has the ability
to observe its marker / message (or not) and to output a marker of its own (or
not), yielding two possible observations and actions for each agent. If describing
the environment through the presence and absence of such markers and mes-
sages, there are 2K possible states. Considering concrete numbers, e.g., with four
markers and one message type, the agent set is of size N = 5 · 64, 000 = 320, 000
partitioned into K = 5 partitions and the state space is of size s = 25 = 32,
which leads to model sizes of the following in the ground case:

T ∈ O(322 · 2320,000 · 2320,000), (10)

R ∈ O(320, 000 · 32 · 2320,000) (11)

Lifting Partially Observable Stochastic Games 13

as well as model sizes of the following in the isomorphic case:

T̄ ∈ O(5 · 322 · 25 · 25), (12)

R̄ ∈ O(5 · 32 · 25). (13)

Expressivity Isomorphic POSG use the fact that we have some form of structure
in the agent set for efficiency gains. Having a small number of different types of
agents with a set of predetermined actions and observations available to them is a
common occurrence and encoded in Eq. (5). However, the prerequisites regarding
symmetric behaviour in Eq. (6) and conditional independence in Eq. (7) do pose
some strong assumptions on the transition and reward function T and R in a
trade-off with a drastic model complexity reduction and a much more efficient
solution approach that is no longer exponentially dependent on N but only K,
with K ≪ N . However, isomorphic POSGs can encode more complex settings
than a set of K independent POMDPs as the interaction between the different
partitions is still a part of T and R.

Regarding the logical variables used in the proof for Theorem 1, this work
introduces constructs of first-order logic into the agent set of a POSG, which al-
lows for using this information explicitly for efficiency gains, which is not possible
if using a standard POSG, which has this information only implicitly available.

Related Work We look at related work for POSGs as well as lifting in the context
of MDP-based formalisms.

Next to dynamic programming for POSGs [7], there exist approximate prun-
ing methods as an extension [11]. To work on scalability, research has focused
on approximations for specific variants of POSGs, such as zero-sum games (e.g.,
[25,8,22]) and one-sided POSGs (e.g., [10,9,4]), and POSGs with common payoffs
[5]. On a more practical level, partially observable game-theoretic Golog extends
Golog with game-theoretic multi-agent planning in POSGs [6].

In offline decision making using MDP-based frameworks, lifting has been used
in calculations to exploit relational structures in the state space of (PO)MDPs: In
first-order MDPs (FOMPDs) [1], the situation calculus [14] is used to describe the
state space. Factorised FOMDPs additionally assume a factorised representation
of the state space [19]. Although not lifting-adjacent, object-oriented POMDPs
similarly factorise the state space based on objects in the state space [23]. In FO-
POMDPs, lifting is applied to policies, pruning policies that are indistinguishable
[20]. In open-universe FO-POMDPs [21], the open-universe assumption that of-
ten comes with first-order representations is added using Bayesian logic as a
basis. Most recently, lifting has been applied to the agent set in DecPOMDPs
[3]. On a propositional level, probabilistic inference techniques have been used for
multi-agent decision making in DecPOMDPs, factorising the state space using
dynamic Bayesian networks, a temporal PGM [12].

To the best of our knowledge, we are the first to apply techniques from lifted
probabilistic inference to the general formalism of POSGs, providing groundwork
for new solution methods and avenues for approximations.

14 N. N. Karabulut and T. Braun

6 Conclusion

This paper presents a new compact encoding of POSGs, called isomorphic POSGs,
which uses a partitioning of the agent set based on indistinguishable agents and
conditional independences among indistinguishable agents, which allows for a
model complexity that is no longer dependent (exponential or otherwise) on the
number of agents, but only dependent on the number of partitions. A lifted
multi-agent dynamic programming operator works on isomorphic POSGs, using
the compact encoding for efficiency gains, computing and evaluating policies for
representatives of each partition, avoiding doing repetitive work for each agent
in a partition. As such, isomorphic POSGs have great potential for applications
that have a huge number of agents such as nanoscale medical systems.

The next step in future work lies in a case study on nanoscale medical sys-
tems, combining the research and work of nanotechnology, medicine, and artifi-
cial intelligence through simulation runs. Future work also includes working on
loosening the assumptions made for isomorphic POSGs, thereby increasing the
expressivity of such POSGs, inspired by the lifting tool of counting (in contrast
to isomorphism), as well as additionally using lifting for the state space.

References

1. Boutilier, C., Reiter, R., Price, B.: Symbolic Dynamic Programming for First-order
MDPs. In: IJCAI-01 Proc. of the 17th International Joint Conference on Artificial
Intelligence. pp. 690–697. IJCAI Organization (2001)

2. Braun, T., Fischer, S., Lau, F., Möller, R.: Lifting DecPOMDPs for Nanoscale
Systems — A Work in Progress. In: 10th International Workshop on Statistical
Relational AI at the 1st International Joint Conference on Learning and Reasoning
(2021), https://arxiv.org/abs/2001.02021

3. Braun, T., Gehrke, M., Lau, F., Möller, R.: Lifting in Multi-agent Systems under
Uncertainty. In: UAI-22 Proc. of the 38th Conference on Uncertainty in Artificial
Intelligence. pp. 1–8. AUAI Press (2022)

4. Carr, S., Jansen, N., Bharadwaj1, S., Spaan, M.T.J., Topcu, U.: Safe policies for
factored partially observable stochastic games. In: RSS-21 Proc. of Robotics: Sci-
ence and Systems XVII. pp. 1–11. RSS Foundation (2021)

5. Emery-Montemerlo, R., Gordon, G., Schneider, J., Thrun, S.: Approximate solu-
tions for partially observable stochastic games with common payoffs. In: AAAMAS-
04 Proc. of the 3rd International Joint Conference on Autonomous Agents and
Multiagent Systems. pp. 136–143. IEEE (2004)

6. Finzi, A., Lukasiewicz, T.: Partially Observable Game-Theoretic Agent Program-
ming in Golog. International Journal of Approximate Reasoning 119, 220–241
(2020)

7. Hansen, E.A., Bernstein, D.S., Zilberstein, S.: Dynamic programming for partially
observable stochastic games. In: AAAI-04 Proc. of the 19th National Conference
on Artificial Intelligence. vol. 4, pp. 709–715 (2004)

8. Horák, K., Bošanskỳ, B.: Solving partially observable stochastic games with public
observations. In: Proc. of the AAAI conference on Artificial Intelligence. pp. 547–
552. AAAI Press (2019)

https://arxiv.org/abs/2001.02021

Lifting Partially Observable Stochastic Games 15

9. Horák, K., Bošanskỳ, B., Kiekintveld, C., Kamhoua, C.: Compact representation
of value function in partially observable stochastic games. In: IJCAI-19 Proc. of the
28th International Joint Conference on Artificial Intelligence. pp. 350–356. IJCAI
Organisation (2019)

10. Horák, K., Bošanskỳ, B., Pěchouček, M.: Heuristic search value iteration for one-
sided partially observable stochastic games. In: AAAI-17 Proc. of the 31st AAAI
Conference on Artificial Intelligence. pp. 558–564 (2017)

11. Kumar, A., Zilberstein, S.: Dynamic programming approximations for partially
observable stochastic games. In: FLAIRS-09 Proc. of the 22nd International Florida
Artificial Intelligence Research Society Conference. AAAI Press (2009)

12. Kumar, A., Zilberstein, S., Toussaint, M.: Probabilistic Inference Techniques for
Scalable Multiagent Decision Making. Journal of Artificial Intelligence Research
53, 223–270 (2015)

13. Lau, F., Wendt, R., Fischer, S.: Dna-based molecular communication as a paradigm
for multi-parameter detection of diseases. In: ACM NanoCom-17 Proc. of the
4th ACM International Conference on Nanoscale Computing and Communication
2017. ACM (2021)

14. McCarthy, J.: Situations, Actions, and Causal Laws. Tech. rep., Standford Univer-
sity (1963)

15. Niepert, M., Van den Broeck, G.: Tractability through Exchangeability: A New
Perspective on Efficient Probabilistic Inference. In: AAAI-14 Proc. of the 28th
AAAI Conference on Artificial Intelligence. pp. 2467–2475. AAAI Press (2014)

16. Oliehoek, F.A., Amato, C.: A Concise Introduction to Decentralised POMDPs.
Springer (2016)

17. Poole, D.: First-order Probabilistic Inference. In: IJCAI-03 Proc. of the 18th In-
ternational Joint Conference on Artificial Intelligence. pp. 985–991. IJCAI Orga-
nization (2003)

18. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson (2021)
19. Sanner, S., Boutilier, C.: Approximate Solution Techniques for Factored First-order

MDPs. In: ICAPS-07 Proc. of the 17th International Conference on Automated
Planning and Scheduling. pp. 288–295. AAAI Press (2007)

20. Sanner, S., Kersting, K.: Symbolic Dynamic Programming for First-order
POMDPs. In: AAAI-10 Proc. of the 24th AAAI Conference on Artificial Intel-
ligence. pp. 1140–1146. AAAI Press (2010)

21. Srivastava, S., Russell, S., Ruan, P., Cheng, X.: First-order Open-universe
POMDPs. In: UAI-14 Proc. of the 30th Conference on Uncertainty in Artificial
Intelligence. pp. 742–751. AUAI Press (2014)

22. Tomášek, P., Horák, K., Aradhye, A., Bošanskỳ, B., Chatterjee, K.: Solving par-
tially observable stochastic shortest-path games. In: IJCAI-21 Proc. of the 30th
International Joint Conference on Artificial Intelligence. pp. 4182–4189. IJCAI Or-
ganisation (2021)

23. Wandzel, A., Oh, Y., Fishman, M., Kumar, N., Wong, L.L., Tellex, S.: Multi-Object
Search using Object-Oriented POMDPs. In: ICRA-19 Proc. of the 2019 Interna-
tional Conference on Robotics and Automation. pp. 7194–7200. IEEE (2019)

24. Wemmenhove, B., Mooij, J.M., Wiegerinck, W., Leisink, M., Kappen, H.J., Neijt,
J.P.: Inference in the Promedas Medical Expert System. In: Conference on Artificial
Intelligence in Medicine in Europe. pp. 456–460. Springer (2007)

25. Wiggers, A.J., Oliehoek, F.A., Roijers, D.M.: Structure in the value function of
two-player zero-sum games of incomplete information. In: ECAI-16 Proc. of the
22nd European Conference on Artificial Intelligence. pp. 1628–1629. IOS Press
(2016)

	Lifting Partially Observable Stochastic Games

