
Global Invariants for Analyzing Multi-threaded Applications

Helmut Seidl∗

Universität Trier, Germany

Varmo Vene†

Tartu University, Estonia

Markus Müller-Olm‡

FernUniversität Hagen, Germany

Abstract

We exhibit an interprocedural framework for the analysis of multi-threaded programs

based on partial invariants of a new kind of constraint systems which we call side-effecting.

We explore the formal properties of these constraint systems and provide general techniques for

computing partial invariants. We demonstrate the practicality of this approach by designing

and implementing a reasonably efficient flow- and context-sensitive interprocedural data-race

analyzer of multi-threaded C.

1 Introduction

The DAEDALUS project is a joint European technology transfer project with industrial and
academic partners which aims at applying techniques from abstract interpretation in order to
improve avionics software. Our particular goal is to enhance reliability of multi-threaded C code
by using program analyzer technology for obtaining sanity checks or even certificates stating the
absence of certain programming errors. This type of application does not demand analyzers
which run in a few seconds — but flag thousands of unnecessary warnings which later-on must be
checked manually by highly paid software engineers. We are clearly willing to spend some minutes
analyzing larger programs, provided that the number of spurious errors is dramatically decreased.
Therefore, we aim at a good balance between precision and analysis time.

The analysis of multi-threaded programs has been considered as notoriously difficult and expen-
sive. In fact, precise analyses are known for some restricted classes of parallel programs [16, 15, 25]
but for very simple program properties only [17]. In order to arrive at the necessary precision for a
non-trivial fragment of C, however, we have, e.g., to resolve function pointers and integrate some
form of points-to analysis. Also, we have to take into account the possible interference between
the execution of different threads. In this paper, we present the background concepts which we
have used in our generator for interprocedural analyses of multi-threaded C in order to arrive at
sufficiently precise and efficient analyses. The key observation is that Posix threads communicate
through global variables. In order to separate the analysis of the different threads, we attempt to
infer for each global variable one value which safely approximates all possible states of the global
variable. This single invariant for the globals then is used for analyzing each thread individually.
Consider, e.g., the control-flow edge shown left in Fig. 1. There, the global int variable z is updated
to the sum of two local variables. The desired result of applying the edge’s transfer function is
shown right in Fig. 1. Traversing the edge conceptually has two effects: first, the local state of
the edge’s target node receives the local variable assignment from the edge’s source node, and

∗FB IV – Informatik, Universität Trier, D-54286 Trier, Germany; seidl@psi.uni-trier.de
†Inst. of Computer Science, Tartu University, Liivi 2, EE-50409 Tartu, Estonia; varmo@cs.ut.ee
‡Fachbereich Infomatik, Lehrgebiet Praktische Informatik 5, FernUniversität Hagen, D-58084 Hagen, Germany;

on leave from Universität Dortmund; mmo@ls5.cs.uni-dortmund.de

1

y
x 2

6

z = x + y;

z

y
x 2

6

z = x + y;

y
x 2

6

8
z

Figure 1: An example control-flow edge and the effect of traversing the edge.

second, the global z receives the value of the expression x + y. Given that some global invariant
for z safely approximates the second effect onto the global, the analysis may proceed by tracking
the local states only. In presence of multi-threading, this means that we can analyze each thread
individually. The separation is particularly successful in applications where the threads are only
loosely coupled, i.e., where the controlflow mainly depends on the values of locals. We are left
with the task of inferring an as tight invariant as possible. The basic idea for this approximation
is to refine a partial invariant during the fixpoint iteration by collecting side-effects of constraint
evaluation.

In earlier work, we have successfully applied general local constraint solvers for implementing
interprocedural analyses [7, 8, 10, 9, 24]. The architectural idea is to completely separate the
fixpoint engine from the program analysis framework such that each of these two software com-
ponents can be developed, optimized and exchanged independently of the other. We may, e.g.,
experiment with interprocedural analyses based on the functional approach or using call-strings of
various lengths [26] without changing the underlying fixpoint engine. This separation of concerns
and sub-division into small software components is even more desirable for a software checking
application where not a single programming error can be tolerated.

In this paper, we generalize this approach to an analysis framework for multi-threaded pro-
grams and partial invariants. This framework allows us to specify and implement conveniently,
e.g., data-race analyzers for multi-threaded C. It is based on partial invariants over a class of
generalized constraint systems which we call side-effecting. We give an application-independent
characterization of partial invariants by means of ordinary constraint systems and present a suf-
ficient condition guaranteeing the existence of a unique least partial invariant. Inferring a least
partial invariant means for the analysis that only those effects onto globals are recorded which
occurred during tracking of function calls. Finally, we show how local constraint solving can be
customized to infer partial invariants. We have implemented this approach and report about our
experimental results.

2 The Multi-threaded Interprocedural Framework

In this section, we present our framework for interprocedural analysis of multi-threaded programs.
We do so by using the following C program as our running example:

int z;
mutex A, B;

void inc(mutex* me) {
mutex lock(me);
z = z + 1;
mutex unlock(me);

}

void main() {
tid id;

z = 0;
create(&id,inc,&A);
inc(&A);

}

2

Here, create(), mutex lock(), and mutex unlock() are simplified versions of the corresponding
pthread library functions. The first argument of create() is the address of the variable where
the thread id of the newly created thread is placed, the second argument contains (a reference
to) the function to be executed by the new thread and the third argument contains the actual
parameter to the called function. The mutex handling functions have been simplified to receive
the address of a mutex only.

In general, we assume that every input program consists of a finite set F of functions, and
that each function p ∈ F is specified via a finite control-flow graph representing the body of the
function. The control-flow graphs corresponding to our example program are depicted in Fig. 2.

3

1

0

2

z = 0;

create(&id,inc,&A);

inc(&A);

main() :

7

6

5

4
inc(me) :

mutex_lock(me);

mutex_unlock(me);

z = z+1;

Figure 2: The example control-flow graph.

2.1 Specifying analyses

Assume that the abstract local state of a thread is described by elements from a lattice D1, whereas
the global state, i.e., the part of program execution state which is accessible to more than one
thread, is described by elements from another lattice D2. Typically, the latter is of the form
D2 = G→ D where G is the set of global variables and abstract heap locations and D is a lattice
of abstract values for the globals.

Now, the analysis can be specified by assigning a transfer function to every edge in the control-
flow graph which implements the (abstract) effect of traversing this edge during program execution.
In the simplest case, when the edge e = (u, v) performs a basic computation step (e.g., an as-
signment or calls of externally defined functions), the abstract effect is described by a function
transe:

transe : D1 × D2 → D1 × D2

The function transe takes the local and global state and returns the new local state. In principle,
it additionally returns the complete new global state. However, in the case that D2 = G→ D we
will later also consider a “differential” formulation where we return only values of those globals
which are potentially modified (the “side-effect”).

Next, assume that the edge e = (u, v) represents a call of a locally defined function. Then, the
abstract effect is determined relative to two functions entrye and combinee:

entrye : D1 × D2 → D1 × 2F

combinee : D1 × D1 → D1

The function entrye again takes the local and global state as its arguments and returns the
starting local state for the body of the called function. This suffices if the function to be called
is statically known. In realistic C code, however, function calls may happen through pointers
implying that we do not necessarily know the functions to be called in advance. Instead, they may
depend onto the local or global state. Due to potential loss in precision, it may even happen that
the best we can tell is that the function is contained in a set of possibly called functions. In order
to take care for this, we let the function entrye additionally return a set of functions which are

3

potentially called at e. The function combinee merges the effect of the called functions with the
local state of the caller.

Finally, consider an edge e = (u, v) where new threads are created. Then the abstract effect is
determined relative to a function createe:

createe : D1 × D2 → D1 × D2 × D1 × 2F

The function createe takes the local and global state and returns a new local state together
with a new global state (e.g., storing the abstract id of the newly created thread). Additionally, it
provides the initial local state for the created threads. Similar to the case of call edges, the function
to be called by the newly created thread, may depend on the local or global state. Accordingly, the
function createe provides us with a (safe super-)set of functions potentially executed by threads
created at this edge.

2.2 A simple data-race analysis

As an example, consider a simple data-race analysis for detection of potentially unsafe accesses to
global resources. In multi-threaded C, accesses to global variables should be protected by mutexes.
In the simplest case, each use of a global variable should be protected be the same mutex. Thus,
the analysis has to determine which mutexes are definitely locked at a given point. However, at
the beginning of the execution of the program, when no threads are created yet, it is safe to modify
globals (e.g., for initialization purposes) without locking a corresponding mutex. Hence, in order
to minimize the number of false alarms, the analysis should keep track of whether any thread
has already been created or not. In addition, the analysis needs a base constant propagation,
at least for disambiguating the address arguments. Therefore, the local state maintained during
the analysis consists of three components: the first holds the set of definitely held mutex locks,
the second contains a flag whether any thread has been created or not, and the third records the
(abstract) values of the local variables.

The domain of abstract values should (at least) provide abstract descriptions of addresses
of variables (for resolving function calls as well as variable assignments) together with abstract
descriptions of potential values. For our example program, it suffices to consider a lattice of the
following structure:

OtherAddr

Addr and Other represent partial orderings for the description of addresses and other values,
respectively. We choose Addr as the lattice of all subsets of some set Base of base addresses. In
our minimalistic example, Base is given by:

Base = {null, &A, &B, &id, &x, &z, &main, &inc}

We allow sets of addresses in order to avoid as many unknown pointer dereferences as possible.
The ordering v on the sublattice Addr is subset inclusion ⊆.

For the globals, we record at each variable the set of definitely held mutexes when accessing the
variable together with an abstract value. For collecting locked mutexes, we use the same lattice
as for ordinary addresses – this time, however, with the ordering reversed (as we are interested
in definite locks). In particular, the least element of this lattice is given by the universal set of
mutexes and the greatest element equals ∅.

Having specified the involved domains, we can now define the abstract behaviour of our example
program, see Fig. 3. Functions trans(0,1) and trans(5,6) correspond to assignments to the global

4

trans(0,1)(d, τ) = let 〈M, f, 〉 = d

M ′ = if f then M else ⊥
in (d, τ [z 7→ 〈M ′, 0〉])

create(1,2)(d, τ) = let 〈M, f, ρ〉 = d

d′ = 〈M, true, [id 7→ >]〉
d′′ = 〈∅, true, [me 7→ {&A}]〉

in (d′, τ, d′′, {inc})

entry(2,3)(d, τ) = let 〈M, f, 〉 = d

d′ = 〈M, f, [me 7→ {&A}]〉
in (d′, {inc})

combine(2,3)(d, d′) = d

trans(4,5)(d, τ) = let 〈M, f, ρ〉 = d

M ′ = add(M, ρ(me))
d′ = 〈M ′, f, ρ〉

in (d′, τ)

trans(5,6)(d, τ) = let 〈M, f, 〉 = d

M ′ = if f then M else ⊥
〈 , v〉 = τ(z)

in (d, τ [z 7→ 〈M ′, v + 1〉])

trans(6,7)(d, τ) = let 〈M, f, ρ〉 = d

M ′ = rem(M, ρ(me))
d′ = 〈M ′, f, ρ〉

in (d′, τ)

Figure 3: Behavioral functions for the example program.

5

z. As z is the only (either local or global) variable affected by these transitions, the local state
is returned unchanged and the global state is updated for z. The new global state for z consists
of the set of definitely held mutexes at the current program point together with the new abstract
value (which “lives” in the Other sublattice of the domain of abstract values). However, if there
had been no thread creations before (i.e., the second component of the local state is false), then
we let the mutex set equal ⊥ as the access for z is guaranteed to be safe.

Functions trans(4,5) and trans(6,7) correspond to the calls of external functions mutex lock()
and mutex unlock(), respectively. Both transfer functions modify the current mutex set M and
leave the other components of the local state unchanged. As no global variable is affected by
these transitions, the global state is left unchanged. In the case of mutex lock(), the current
abstract value of the variable me is added to the set M using the auxiliary function add. As we
are interested in definitely held mutexes, the function add extends the set M only if the abstract
value ρ(me) consists of a singleton address set. If ρ(me) consists of more than one address, M is
left unchanged. In the case of mutex unlock(), the abstract value ρ(me) is subtracted from the set
M using the auxiliary function rem. In this case, all addresses contained in ρ(me) are removed
from M .

Functions entry(2,3) and combine(2,3) correspond to the call of the function inc. The function
entry(2,3) returns the initial local state of the call which binds the formal parameter me to the
abstract value {&A}. In addition it returns a set of possibly called functions which contains inc
as sole element. As the call to inc does not modify any locals, the function combine(2,3) ignores
these “modifications” and returns the current local state.

Finally, the function create(1,2) creates a new local state, where the mutex set remains un-
changed but the thread creation flag is set to true and local variable id receives the value >, since
we do not know which thread id is created by create(). It also creates an initial local state for
the newly created thread, where the mutex set is empty and the formal parameter me is bound
to {&A}. The global state remains unchanged and the set of possible start functions executed by
the created thread has inc as only element.

2.3 The overall approach

The specification of the analysis still allows us to model the exact (abstract) multi-threaded
program execution with interleaving semantics — given that globals are modified atomically at
control-flow edges. For large programs or high degrees of parallelism this, however, is not feasible.
What is needed here is a technique to decouple the analysis of the involved threads in order to avoid
state explosion. Therefore, we aim at replacing the inspection of the cartesian product of state
spaces with their sum. The basic idea to achieve this is to approximate all possibly occurring global
states by one safe global invariant. Given this invariant, it suffices for the analysis to maintain
information only about the local states of program points and procedure calls.

Accordingly, the set V of variables maintained by the analysis consists of:

Nodes: 〈v, d〉, v a program point of a function, d ∈ D1 the abstract entry value of the currently
analyzed instance of the function;

Calls: 〈p, d〉, p a function, d ∈ D1 an abstract entry value.

The specification of an analysis induces a set of constraints on the values of these variables. Given
a correct invariant, these constraints should specialize to the classical constraints of the functional
approach for interprocedural analysis [26, 24]. Thus, we choose constraints of the form x ← f

where x ∈ V and f is of type:

f : (V → D1)× D2 → D1 × D2 × 2V

We call constraint systems of this form side-effecting. In our application, the right-hand side f

takes an assignment σ : V → D1 for program points and procedure calls together with a global
state τ : D2 and returns a triple (b, η, s) consisting of a local state b for the left-hand side together
with an updated global state η and a set s of calls which are executed by possibly spawned threads.

6

The constraints are determined relative to the behavioral functions for the edges of the control-
flow graph. Every edge e = (u, v) induces one constraint for every local state d ∈ D1, as follows:

– If e is a basic edge,
〈v, d〉 ← λ(σ, τ). let (b, η) = trans(u,v) (σ〈u, d〉, τ)

in (b, η, ∅)
– If e is a call edge,
〈v, d〉 ← λ(σ, τ). let (b1, F) = entry(u,v) (σ〈u, d〉, τ)

b =
⊔

{combine(u,v) (σ〈u, d〉, σ〈p, b1〉) | p ∈ F}
in (b, λz.⊥, ∅)

– If e is a create edge,
〈v, d〉 ← λ(σ, τ). let (b, η, b1, F) = create(u,v) (σ〈u, d〉, τ)

s = {〈p, b1〉 | p ∈ F}
in (b, η, s)

We also have a constraint to make the local state of a call available to the computation inside the
instance of the called function. This means for every entry point u of some function, we have:

〈u, d〉 ← λ(σ, τ). 〈d, τ, ∅〉

Finally, we have the following constraint for each call variable 〈p, d〉 where r is the return point of
function p:

〈p, d〉 ← λ(σ, τ). 〈σ〈r, d〉, τ, ∅〉

In the next section, we make precise what we mean by the notions “(partial) invariant” and
“solution” of such constraint systems.

3 Side-Effecting Constraint Systems

For the following, let V denote a set of constraint variables. Let x← f denote a constraint where
the right-hand side is a function of type:

f : (V → D1)× D2 → D1 × D2 × 2V

We say that the assignment σ : V → D1 satisfies the constraint x ← f relative to a global state
τ ∈ D2 iff for f (σ, τ) = (d, η, s), d v σ x, and also η v τ . Accordingly, a complete solution of a
set C of constraints relative to a global state τ is a mapping σ : V → D1 satisfying all constraints
in C relative to τ . A global state τ is called an invariant of C if there exists a complete solution
of C relative to τ . Using invariants and complete solutions is adequate if we use call-strings of
finite length to distinguish function calls. In this case, approximations to possibly occuring actual
parameters are propagated from the call sites to the entry points of functions.

If we use, however, the functional approach to interprocedural analysis (i.e., function bodies
are analyzed for every possible argument independently), such invariants and complete solutions
are no longer sufficient. The only invariant of our example system from Section 2, e.g., maps the
variable z to 〈∅,>〉 — since this value must be safe for all calls of the function inc. Note that
the variables from V represent the set of all formally possible local program configurations – even
those which are in fact unreachable (like calling inc with the mutex B). The invariant, though, is
only needed for configurations which are reachable. The smaller the set of program configurations
we must consider, the more precise we can choose the invariant of the system, i.e., the more precise
a result we return.

Reachability has been considered, e.g., in [8, 10] for “ordinary” constraint systems i.e., those
where right-hand sides return values. There it was observed that the set of reachable program
configurations closely corresponds to the set of fixpoint variables of the “natural” constraint system
of the program when locally explored through a demand-driven fixpoint algorithm which returns
a partial solution only. Here, we generalize this approach to side-effecting constraint systems with
global invariants.

7

Let D1 denote the complete lattice which we obtain from D1 by adding ⊥ as new least element
(“super-bottom”). The partial variable assignments from V to D1 are given as the set of assign-
ments V → D1. The domain, domσ, of a partial assignment is given by the set of all variables
x ∈ V with σ x 6= ⊥.

We extend the function f to operate also on partial variable assignments. In order to do so,
we need to determine the set variables accessed during the evaluation of f . In general, this set
itself may depend on the values of variables. Therefore, it is described by a function:

Df : (V → D1)× D2 → 2V

This function describes a property of the operational behavior when evaluating f and therefore
cannot (easily) be extracted from the denotational semantics of f . It is straightforward, however,
to extract Df if f is specified in some kind of expression language as in our framework or, even,
to determine its values “at runtime”, i.e., by instrumenting the evaluation of f — this is what we
will do when constructing a local constraint solver. The function Df has the following property:
if Df (σ, τ) = X ⊆ V , then f returns the same value on every pair (σ1, τ) where σ1 x = σ x for
x ∈ X (and σ1 x arbitrary otherwise).

When applying f to a partial variable assignment which is “under-specified”, i.e., does not
provide non-⊥-values for as many variables as necessary to evaluate f , we return ⊥. Thus,
f (σ, τ) = (⊥,⊥, ∅) whenever σ(x) = ⊥ for some x ∈ Df (σ, τ).

Let (τ, X) denote a pair consisting of a global state τ ∈ D2 and a subset X ⊆ V . A partial
variable assignment σ : V → D1 is called a partial solution of the constraint system C relative to
(τ, X) iff X is the domain of σ and for every constraint x← f with (d, η, s) = f (σ, τ) the following
holds:

• d v σ x, η v τ , and also

• s ∪Df (σ, τ) ⊆ X .

In particular, σ must be defined for all variables from s.
The pair (τ, X) is called a partial invariant of C if there exists a partial solution of C relative to

(τ, X). Every constraint system with V 6= ∅ has at least two partial invariants. The first one holds
for an empty set of reachable variables only and is given by: (⊥, ∅). The second extreme considers
all fixpoint variables as reachable and provides no information about the global state, i.e., is given
by: (>, V). Both invariants are not very interesting. In our applications, we are given a subset
I ⊆ V of initial configurations which are trivially reachable and therefore must be included into
the set of reachable configurations. In our framework, the set I is given by all possible initial
calls of the program main. Thus, the goal is to determine an as small partial invariant (τ, X) as
possible such that I ⊆ X . Note that, the smaller the invariant, the more precise an information
is provided for the globals.

In our example, the set I is given by {〈main,>〉}, and there is a partial invariant (τ, X) such
that τ maps the global z to 〈{&A},>〉. Note that the second component of this value still is not
very informative — quite in contrast to the extra property recorded in the first component which
assures that accesses to z are always protected by the mutex A.

In order to reason about the possible existence and uniqueness of partial invariants, we define for
a given side-effecting constraint system C and a subset I ⊆ V of initial variables the corresponding
combined constraint EC,I :

(σ, τ) w F (σ, τ) t (σI ,⊥)

Here, σI x = ⊥ if x ∈ I and ⊥ otherwise, and the function:

F : (V → D1)× D2 → (V → D1)× D2

is given by F (σ, τ) = (σ1, τ1) where

σ1 x =
⊔

{d | σ x 6= ⊥ ∧ ∃x← f ∈ C : (d, ,) = f (σ, τ)}
t

⊔

{⊥ | ∃ y ← f ∈ C : σ y 6= ⊥
∧ (, , s) = f (σ, τ) ∧ (x ∈ s ∪Df (σ, τ))}

τ1 =
⊔

{η | ∃ y ← f ∈ C : σ y 6= ⊥ ∧ (, η,) = f (σ, τ)}

8

Only those constraints have a non-trivial contribution onto the output (σ1, τ1) whose left-hand
sides have already a value 6= ⊥. Accordingly, whenever a constraint f contributes to the result,
then all variables accessed during this evaluation receive a non-⊥ value. These two features will
allow us to design a local solver which explores fixpoint variables backward through variable
dependences.

The right-hand side of the constraint EC,I returns non-⊥ values for all x ∈ I . Hence, the
(trivial) least solution (λ x.⊥,⊥) is ruled out whenever I 6= ∅.

Proposition 1 For a global state τ ∈ D2 and a partial variable assignment σ with a domain X

subsuming I, the following are equivalent:

1. σ is a partial solution of C relative to (τ, X);

2. (σ, τ) is a partial solution of EC,I . �

For later use, let us observe that the set of partial invariants as well as the set of relative partial
solutions of a side-effecting constraint system C remains the same if we replace the treatment of
the global state by a “differential” one. In particular, when a constraint does not affect the global
state, then we simply can return ⊥ in the second component. More generally, assume we are given
another constraint system C ′ whose constraints are in one-to-one correspondence with those of C
such that the constraint x′ ← f ′ ∈ C′ corresponding to x ← f ∈ C has the following properties:
x′ = x, and

f(σ, τ) = let (d, η, s) = f ′(σ, τ)
in (d, η t τ, s)

Then the following holds:

Proposition 2 For any partial variable assignment σ : V → D1 with domain X ⊇ I and global
state τ ∈ D2, the pair (σ, τ) is a partial solution of EC,I iff it is a partial solution of EC′,I . �

While Proposition 2 will help us to construct efficient algorithms, Proposition 1 is the justification
for applying fixpoint methods and provides sufficient conditions for the existence of unique least
partial invariants.

Obviously, if F is monotonic, then F has a least solution by the fixpoint theorem of Knaster/Tarski.
In particular, this is the case when all functions f and Df are monotonic (w.r.t. the obvious order-
ings). As observed in [8, 10], however, interprocedural analyses usually do not introduce monotonic
constraints. The abstract effect of a function p conceptually can be thought of as described by a
(monotonic) function. Only in very simple cases, though, this function can be treated as a whole.
Following, e.g., [26] we have replaced this function in our framework by the set of variables 〈p, a〉,
a ∈ D1, each of which describes the results of the abstract function call of p on the abstract value
a. The hope here is that only few of these (potentially many) calls are actually queried during
fixpoint iteration. The constraint system for these variables is no longer monotonic — even if all
behavioral functions transe, entrye, combinee and createe are. Instead, it is just weakly monotonic.

Weak monotonicity is defined relative to a partial ordering on the set of variables V . In case of
the variable set used by our framework, this ordering is given by: 〈r1, a1〉 ≤ 〈r2, a2〉 iff r1 = r2

and a1 v a2. A system C of constraints (over V , D1 and D2) is called weakly monotonic w.r.t.
the partial ordering “≤” iff the following properties hold:

1. For every constraint x ← f in C and every two variable assignments σ1, σ2 where at least
one of the σi is monotonic, and global states τi ∈ D2, then σ1 v σ2 and τ1 v τ2 implies

f (σ1, τ1) v f (σ2, τ2) and Df (σ1, τ1) v Df (σ2, τ2)

2. For every constraint x1 ← f1 in C and x2 ∈ X with x1 ≤ x2, there is some constraint
x2 ← f2 in C such that f1 v f2, i.e., for every pair of variable assignments (σ, τ),

f1 (σ, τ) v f2 (σ, τ) and Df1
(σ, τ) v Df2

(σ, τ)

whenever σ is monotonic.

9

These two properties enforce the natural conditions on monotonic assignments. Moreover, they
allow us to relate the results on non-monotonic assignments to comparable monotonic ones. Some
remarks are appropriate here.

• A partial variable assignment σ, i.e., a mapping σ : V → D1, is considered as monotonic iff
for all x1 ≤ x2, σ x2 6= ⊥ implies σ x1 ≤ σ x2 (i.e., we demand nothing if σ x2 = ⊥).

• The pre-ordering on subsets X1, X2 ⊆ V of variables is given by: X1 v X2 iff for all x1 ∈ X1,
x1 ≤ x2 for some x2 ∈ X2.

This is the pre-ordering induced by the subset ordering on the corresponding downward
closed subsets of variables. In particular:

• We view two monotonic assignments σ1, σ2 : V → D1 as equivalent if:

1. for any x1 ∈ V , there is some x2 ∈ V with x1 ≤ x2 s.t. σ1 x1 v σ2 x2, and also

2. for any x1 ∈ V , there is some x2 ∈ V with x1 ≤ x2 s.t. σ2 x1 v σ1 x2.

If V has finite height, then monotonic assignments are equivalent iff they agree on variables
which are maximal w.r.t. “≤” in the union of their domains.

For a subset c of variables, let c↓ denote its downward closure, i.e., the set of variables x′ such that
x′ ≤ x for some x ∈ c. Let D

′ denote the set of monotonic variable assignments in V → D1 whose
domain is downward closed. For later use, we make the following observation which essentially
allows us to restrict attention to assignments from D

′ and downward closed sets:

Proposition 3 Assume C is weakly monotonic, and σ is a partial solution of C relative to (τ, X).
Then we can construct some partial solution σ ∈ D

′ of C relative (τ, X ↓) with σ v σ. �

The variable assignment σ is given by

σ x =u{σ x′ | x′ ∈ X, x ≤ x′}

Since we are only interested in as small invariants and solutions as possible, this means that we
may restrict ourselves to monotonic variable assignments with downward closed domains. Let
C ↓ denote the constraint system obtained from C by replacing every constraint x ← f with with
x ← f ′ where for (d, η, c) = f(σ, τ), f ′(σ, τ) = (d, η, c ↓) and Df ′(σ, τ) = (Df (σ, τ)) ↓. Thus, the
new constraint system differs from the original one in that all sets of spawned variables as well as
all occurring sets of variables onto which a constraint may depend are downward closed. Let then
ĒC,I denote the constraint system:

(σ, τ) w F̄ (σ, τ)

over D
′×D2 where the new right-hand side F̄ is the function which first applies the right-hand side

F ′ of EC↓,I↓ and returns (σ′′, τ ′) where, given that F ′ returns (σ′, τ ′), the new variable assignment
σ′′ is defined by:

σ′′ x =

{

⊥ if σ′ x′ = ⊥

t{σ′ x′ | x′ ≤ x} otherwise

Note that by definition, σ′′ is monotonic and has a downward closed domain. We observe:

Proposition 4 Assume C is weakly monotonic. Then the following holds:

1. C ↓ is weakly monotonic.

2. The following three statements are equivalent for σ ∈ D
′ with domain X:

(a) σ is a partial solution of C relative to (τ, X);

(b) σ is a partial solution of C ↓ relative to (τ, X);

(c) (σ, τ) is a solution of ĒC,I .

10

3. The right-hand side of ĒC,I is monotonic on D
′ × D2. �

The main result of this section is:

Theorem 1 Let C denote a constraint system over complete lattices D1, D2 with fixpoint variables
from V , and assume that C is weakly monotonic. Then for every I ⊆ V the following holds:

1. Given any partial invariant (τ, X), I ⊆ X, there exists a partial solution σ of C relative to
(τ, X) which is least up to equivalence.

2. There exists a least partial invariant (τ, X) for C with I ⊆ X and X downward closed.

3. If V is finite and D1, D2 are of finite height, then the triple (τ, X, σ) consisting of the least
partial invariant (τ, X) of C with I ⊆ X = X ↓ and a (up to equivalence) least partial solution
σ of C w.r.t. (τ, X) can be computed through joint fixpoint iteration for EC,I .

Proof. We only prove Assertions 1 and 2. By Propositions 3 and 4, we can prove our main
theorem by applying ordinary least fixpoint theory to the constraint system E = ĒC↓,I . E can be
considered as a system of in-equations of the form:

σ w F1(σ, τ)

τ w F2(σ, τ)

Consider a partial invariant (τ, X) where X is downward closed. Since D
′ is a complete lattice

and F1 is monotonic, standard fixpoint theory guarantees that there is a least σ′ in D
′ satisfying

σ′ w F1(σ
′, τ) t σX

where σX returns ⊥ for every x ∈ X and ⊥ otherwise. Since (τ, X) is a partial invariant, we have
τ w F2(σ

′, τ). Hence σ′ is a partial solution relative to (τ, X). On the other hand, every other
partial solution σ ∈ D

′ of C is also a solution of the above in-equation. Therefore, σ′ v σ —
implying statement (1) of the theorem.

Now consider the second assertion. Since the set D
′ × D2 forms a complete lattice (w.r.t. the

componentwise ordering) and the right-hand side of E is monotonic on D
′ × D2, E has a unique

least solution (σ0, τ0). We claim that (τ0, X) is the least partial invariant for C ↓ (and hence also
for C) where X is given by the domain of σ. Note that, by construction, X is downward closed.
Consider any other partial invariant (τ1, X1) where X1 is downward closed. It follows that there
is some σ1 ∈ D

′ which is a partial solution of C relative to (τ1, X1). By construction, (σ1, τ1) is
also a solution of E. By minimality of (σ0, τ0), we conclude that τ0 v τ1 and also X ⊆ X1 —
proving minimality of (τ0, X). This completes the proof. �

In order to apply the results of this section to our analysis framework, we observe that every
partial invariant (τ, X) of the constraint system constructed for a given program (relative to an
initial set I consisting of all initial calls to main) consists of a safe approximation τ to all possibly
occurring global states and a safe super-set X of all reachable program configurations. Since the
constraint system is weakly monotonic (given that all behavioral functions are monotonic), there
is a least partial invariant which under some finiteness assumptions can be computed effectively.

4 Solving Side-Effecting Constraint Systems

Instead of presenting a new algorithm for computing partial invariants, we prefer here to explain
how off-the-shelf local solvers for ordinary constraint systems can be customized to serve our needs.
Assume we are given a local solver for an ordinary constraint system. Such a constraint system is
given as a set C0 of constraints x← f where the right-hand sides are of type:

f : (V → D1)→ D1

Following [10], we call an algorithm a (local) solver for (ordinary) constraint systems if it realizes a
function Φ which, given a constraint system C0 together with a set I of initially reachable variables,
returns an I-stable partial solution of C0, i.e., a partial variable assignment σ such that

11

fun wrap(f, σ)
begin

let 〈d, η, s〉 = f(σ, τ) in

if η 6v τ then

stable := false;
fi;
τ := τ t η;
foreach v ∈ s do σ(v) od;
return d;

end;

begin

τ := ⊥;
repeat

stable := true;
C0 := {x← λσ.wrap(f, σ) | x← f ∈ C};
σ := Φ(C0, I);

until stable
end

Figure 4: The solving scheme.

• σ x is defined for every x ∈ I ;

• If σ is defined for x and x ← f is a constraint in C0, then σ is defined for all variables
accessed during the evaluation of f on σ, and σ x w f σ.

Such solvers are, e.g., studied in [4, 10, 9]. For computing a partial invariant for a side-effecting
constraint system C and a given set I of initially reachable variables, we proceed as follows, see
Fig. 4. We compute an increasing sequence of approximations to a partial invariant. We start this
sequence with the global state ⊥ ∈ D2. From an approximation τ to the partial invariant and the
side-effecting system C, we construct an ordinary constraint system (without side effects). This
constraint system is obtained from C by partial application to the given τ . Additionally, every
constraint is instrumented in such a way that:

1. the set of spawned variables is added to the set of variables accessed by this constraint (in
order to trigger their evaluation);

2. the impacts onto the global state are monitored. If these impacts are not covered by the
current τ , we increase τ .

This instrumented constraint system then is solved by Φ. If no change to the global state has
occurred during evaluation of Φ, the iteration terminates. Otherwise, another round with the
modified global state is triggered. In this algorithm, whenever the global state is modified, the
complete constraint system is scheduled for reevaluation. Often, however, the global state is of the
form D2 = G→ D where G is a finite set of global variables (and abstract heap locations). Thus,
the global state does not (explicitly) track relations between globals but captures the abstract
properties of different globals independently. If the evaluation of a right-hand side leads to a
global state which differs from the original one on the values of just few globals, then reevaluation
of all right-hand sides is overly pessimistic. Instead, it is safe to initiate reevaluation just of those
right-hand sides which depend onto the affected globals.

As a corollary of Proposition 2, it is safe for the behavioral functions and, accordingly, also
for the constraints to return only that part of the global state which has been modified. This
“difference” can be represented by a set of pairs 〈z, a〉 where z ∈ G is a modified global and a is its
new abstract value. Furthermore, we record for every global z, the set of all constraints accessing
z in order to trigger their reevaluation whenever the value of z changes. For completeness, a
corresponding extension of the fixpoint solver from [10] together with an example run are presented
in the Appendices A and B.

5 Experimental Evaluation

Based on the interprocedural framework from Section 2 and an instance of the solver from Sec-
tion 4, we have implemented a program analyzer generator for C programs with pthreads. The

12

bench Base DR1 DR2
LOC th mtx time constr time constr wrn time constr wrn

1 23704 4 14 37s 85190 37s 86313 8 41s 91022 9
2 31658 5 7 1m 00s 134821 59s 151052 28 1m 22s 186966 36
3 37047 1 7 1m 17s 205148 20s 82679 0 25s 93053 0
4 31870 4 8 16s 55078 20s 63677 7 21s 64136 7
5 29554 4 10 1m 37s 174743 2m 56s 291278 31 15m 49s 716220 38
6 45660 8 13 17m 07s 260644 1m 43s 223032 6 5m 39s 509274 20
7 79474 26 ? 4m 20s 463437 ? ?

Figure 5: Experimental results.

implementation was done in Standard ML using the ckit [13] as our C frontend. We used the
framework to implement various analyses for the detection of data-races. For efficiency reasons we
organized the analysis as a multi-stage procedure. In the first stage, we determine approximate
data values for all globals. This first invariant then is used in the following stages that also track
acquired mutex locks.

The implemented analyses handle most of the Posix threads library interface. It must be em-
phasized that our example analysis from Section 2 is only correct under the assumption that mutex
locking and unlocking never fails — which is not necessarily true for the corresponding pthread
functions [3]. Locking of mutexes, e.g., may fail due to external interrupts or because the lock
already is held by the current thread. Therefore, only in an environment which guarantees absence
of interrupts, the non-failure assumption is justified — given that potential repetitions of locks are
flagged as errors. For the case where interrupts cannot be excluded, we have generated another
variant of the analysis which does not rely on the non-failure assumption for locks but extracts
certainty about locking only from checks on the return values of the calls to pthread mutex lock().
We then leave it to the user which analysis better serves her needs.

In the practical experiments reported below, the analysis DR1 assumes that mutex locks always
succeed, while the analysis DR2 does not make this assumption.

In collaboration with AIRBUS FRANCE, the implemented analyzers were tested on prelim-
inary versions of a large (non-safety critical) on-board program. The whole system consists of
seven components ranging in size from 23,000 to 80,000 LOC (before pre-processing and excluding
header files). The analysis was performed on a 1 GigaHertz Athlon with 1 GB memory using
SUSE Linux and the SML compiler smlnj-110.0.7. Some characteristics of our experiments are
reported in Fig. 5. The first column of Table 5 enumerates the analyzed software components,
the next three columns provide code statistics (lines of C code, number of threads and mutexes,
respectively). Then we report the numbers for the three stages of our analysis. In all three cases,
we report the time (in minutes and seconds) and the number of evaluated constraints. In addition,
we list for the last two stages the number of reported warnings of potential data-races.

The analysis times for these components varied from a few minutes to less than half an hour.
The numbers of flagged potential data-race errors (at most 38 for bench 5) is small enough to
be manually inspected by humans. The analysis could not be performed for the component
bench 7 as this benchmark uses arrays of threads and mutexes — which is not yet supported by
our analyzer. Since our analyses compute safe supersets of data-race errors, these experiments
clearly indicate the high quality of the analyzed software. They also demonstrate that the global
invariant approach is sufficiently efficient to deal with real-world software components and still
precise enough to flag relatively few alarms.

6 Related Work and Future Directions of Research

A good overview on the state of the art in the analysis of multi-threaded programs can be found
in [20]. Quite a few analyses have been recently developed for optimizing synchronizations in

13

Java [6, 2, 1, 21]. In [27], Whaley and Rinard present a combined analysis of pointers and multi-
threading for Java. The latter analysis, though, considers every access to a global as potentially
harmful. In [14], Jagannathan and Weeks analyze parallel higher-order functional languages but
merge all calling contexts to the same function into one.

Cousot considers systems consisting of a finite number of threads each having a finite number of
program points and concentrates on exhaustive search through all (possibly exponentially many)
parallel program configurations [5]. His framework is not (easily) applicable to systems with
dynamic creation of threads and recursive procedures. Another approach is to take classical
dataflow analysis and extend it to multi-threaded programs by enriching the original controlflow
graph with further edges corresponding to interactions of threads which possibly might run in
parallel. This approach is proposed by Rugina and Rinard for the construction of a context-
sensitive pointer analysis for Cilk [22]. It is also advocated by Naumovich et al. in [18]. Based
on a possibly runs in parallel analysis [19], they construct an enriched control-flow graph for Java
on top of which they model the dynamic thread behavior via property automata. The practicality
of such an approach relies on the “density” of the enriched control-flow graph. Recently, Yahav
has presented a framework for analyzing properties of multi-threaded Java programs based on
three-valued logic [28]. His analyses are both extremely precise and extremely inefficient. At least
currently, it is open whether it can be scaled up to medium-sized programs as well.

The idea of using global invariants for the analysis of multi-threaded systems has also been
advocated by Flanagan et al. in [11, 12]. Their approach is based on an assume-guarantee
decomposition where the invariant is provided by user annotations. They rely on automatic
theorem proving and do not provide means to infer such an invariant.

Presently in our implementation, we assume that all global data potentially can be accessed and
modified by all threads which have already been created. Sometimes, this is overly conservative.
Salcianu and Rinard introduce the concept of parallel interaction graphs (for Java) in order to
determine which threads and which functions may have access to certain shared data and thus,
potentially, obtain more precise information about globals [23]. It remains for future work to
integrate a corresponding analysis into our approach.

7 Acknowledgements

This work was supported by the RTD project IST-1999-20527 “DAEDALUS” of the European FP5
programme. The second author was also partially supported by the Estonian Science Foundation
grant No. 5279.

References

[1] J. Aldrich, C. Chambers, E. Sirer, and S. Eggers. Static Analysis for Eliminating Unnecessary
Synchronization from Java Programs. In 5th Int. Static Analysis Symposium (SAS), pages
19–38. LNCS 1694, Springer Verlag, 1999.

[2] J. Bogda and U. Hoelzle. Removing Unnecessary Synchronization in Java. In 14th ACM SIG-
PLAN Conf. on Object-Oriented Programming Systems, Languages and Applications (OOP-
SLA), pages 35–46. SIGPLAN Notices 34(10), 1999.

[3] D. Butenhof. Programming with POSIX Threads. Addison-Wesley, 1997.

[4] B. L. Charlier and P. V. Hentenryck. A Universal Top-Down Fixpoint Algorithm. Technical
Report CS-92-25, Brown University, Providence, RI 02912, 1992.

[5] P. Cousot. Invariance Proof Methods and Analysis Techniques for Parallel Programs. In
A. Biermann, G. Guiho, and Y. Kodratroff, editors, Automatic Program Construction Tech-
niques, chapter 12, pages 243–271. Collier Macmillan Publishers, London, 1984.

14

[6] P. Diniz and M. Rinard. Lock Coarsening: Eliminating Lock Overhead in Automatically Par-
allelized Object-Based Programs. Journal of Parallel and Distributed Computing, 49(2):218–
244, 1998.

[7] C. Fecht. GENA - A Tool for Generating Prolog Analyzers from Specifications. In 2nd Static
Analysis Symposium (SAS), pages 418–419. LNCS 983, 1995.

[8] C. Fecht. Abstrakte Interpretation logischer Programme: Theorie, Implementierung, Gener-
ierung. PhD thesis, Universität des Saarlandes, Saarbrücken, 1997.

[9] C. Fecht and H. Seidl. Propagating Differences: An Efficient New Fixpoint Algorithm for
Distributive Constraint Systems. Nordic Journal of Computing (NJC), 5(4):304–329, 1998.

[10] C. Fecht and H. Seidl. A Faster Solver for General Systems of Equations. Science of Computer
Programming (SCP), 35(2):137–161, 1999.

[11] C. Flanagan, S. Freund, and S. Qadeer. Thread-Modular Verification for Shared-Memory
Programs. In 11th European Symposiym on Programming (ESOP), pages 262–277. LNCS
2305, Springer Verlag, 2002.

[12] C. Flanagan, S. Qadeer, and S. Seshia. A Modular Checker for Multithreaded Programs. In
Computer-Aided Verification (CAV). LNCS, Springer Verlag, July 2002. to appear.

[13] N. Heintze, D. Oliva, and D. MacQueen. ckit 1.0, March 2000. Available from:
http://plan9.bell-labs-com/cm/what/smlnj/doc/ckit.

[14] S. Jagannathan and S. Weeks. Analyzing Stores and References in a Parallel Symbolic Lan-
guage. In ACM Conf. on LISP and Functional Programming, pages 294–305, 1994.

[15] J. Knoop. Parallel Constant Propagation. In 4th European Conference on Parallel Processing
(Euro-Par), volume 1470 of Lecture Notes in Computer Science (LNCS), pages 445–455.
Springer-Verlag, 1998.

[16] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for Free: Efficient and Optimal Bitvector
Analyses for Parallel Programs. ACM Transactions on Programming Languages and Systems,
18(3):268–299, 1996.

[17] M. Müller-Olm and H. Seidl. On Optimal Slicing of Parallel Programs. In ACM Symposium
on Theory of Computing (STOC), pages 647–656, 2001.

[18] G. Naumovich, G. Avrunin, and L. Clarke. An Efficient Algorithm for Computing MHP
Information of Concurrent Java Programs. In 7th ACM SIGSOFT Symp. on the Foundations
of Software Engineering (FSE), pages 338–354, 1999.

[19] G. Naumovich, G. Avrunin, and L. Clarke. DataFlow Analysis for Checking Properties of
Concurrent Java Programs. In 21th Int. Conf. on Software Engineering (ICSE), pages 399–
410, 1999.

[20] M. Rinard. Analysis of Multithreaded Programs. In 7th Int. Static Analysis Symposium
(SAS), pages 1–19. LNCS 2126, Springer Verlag, 2001.

[21] E. Ruf. Effective Synchronization Removal for Java. In ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation (PLDI), pages 208–218. SIGPLAN Notices 35(5),
2000.

[22] R. Rugina and M. Rinard. Pointer Analysis for Multithreaded Programs. In ACM SIG-
PLAN Conf. on Programming Language Design and Implementation (PLDI), pages 77–90.
SIGPLAN Notices 34(5), 1999.

15

[23] A. Salcianu and M. Rinard. Pointer and Escape Analysis for Multithreaded Programs. In
ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming (PPOPP), pages
12–23, 2001.

[24] H. Seidl and C. Fecht. Interprocedural Analyses: A Comparison. Journal of Logic Program-
ming (JLP), 43(2):123–156, 2000.

[25] H. Seidl and B. Steffen. Constraint-Based Inter-Procedural Analysis of Parallel Programs.
Nordic Journal of Computing (NJC), 7(4):375–400, 2000.

[26] M. Sharir and A. Pnueli. Two Approaches to Interprocedural Data Flow Analysis. In S. S.
Muchnick and N. D. Jones, editors, Program Flow Analysis: Theory and Applications, chap-
ter 7, pages 189–234. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

[27] J. Whaley and M. Rinard. Compositional Pointer and Escape Analysis for Java. In 14th
ACM SIGPLAN Conf. on Object-Oriented Programming Systems, Languages and Applica-
tions (OOPSLA), pages 187–206. SIGPLAN Notices 34(10), 1999.

[28] E. Yahav. Verifying Safety Properties of Concurrent Java Programs Using 3-valued Logic.
In 28th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL),
pages 27–40, 2001.

A The fixpoint algorithm

We present the abstract version of the solving algorithm we have implemented in Fig. 6. The
algorithm is an extension of (a constraint version of) the worklist solver from [10]. It explores
the variable space in a demand-driven fashion: Whenever during evaluation of a constraint (x, f),
the value of a variable y is accessed, we beforehand try to compute as good a value for y as
possible. Furthermore, we dynamically record that the value of y may influence the constraint
(x, f). If such constraint evaluation has modified the current value for the left-hand side x, we
trigger re-evaluation of all constraints we have recorded as possibly influenced by x.

The algorithm proceeds as follows. The set of variables yet to be evaluated is kept in data
structure X : 2V . It is initialized with the set I of fixpoint variables in which we are interested.
The mappings σ : V → D1 and τ : G → D return the current values of fixpoint variables and
globals respectively. Initially, we assume that σ is undefined everywhere, and τ(z) equals the least
element of D for every global z : D. The mappings infl1 : V → 2V×R and infl2 : G → 2V×R

(where R = ((V → D1) × (G → D) → D1 × 2V × (G → D)) is the type of right-hand sides)
represent the (dynamically tracked) variable dependences. More precisely, infl1 (x) returns the list
of all constraints during whose evaluation the value of x has been accessed (analogously for infl2).
Initially, both mappings are empty. The mapping todo : V → R returns for every variable x,
the list of right-hand sides which still are to be (re-) evaluated for this variable. Initially, todo(x)
collects all right-hand sides of constraints in C for x. During fixpoint computation, these lists may
be removed or re-installed. Finally, the data structure unsafe : 2V×R collects constraints whose
evaluation has been postponed. Initially, it is empty.

After initialization of global data structures, the algorithm iteratively evaluates all variables
in X using the procedure solve . As a result, the data-structure unsafe may contain constraints
whose evaluation has been postponed. The right-hand sides of these constraints are merged into
the mapping todo while at the same time the corresponding variables occurring as left-hand sides
are collected to X. If X is empty (i.e. no constraints had been postponed), the fixpoint iteration
is completed. Otherwise, the algorithm proceeds with a next iteration.

The main work of the algorithm is done by the procedure solve . When called with a variable
x, it first checks whether x has been already considered, and if not, then σ(x) and infl1 (x)
are initialized. Then all constraints for x which are currently scheduled for (re-)evaluation, are
extracted from the data-structure todo and are evaluated. Note, that if the constraint (x, f)
depends on some fixpoint variable y, then this dependency is stored by the function eval1 into

16

proc solve(x : V)
begin

if x 6∈ dom(σ) then σ(x) := ⊥; infl1 (x) := ∅ fi;
W := todo(x); todo(x) := ∅; new := σ(x);
foreach f ∈W do

let (d, η, s) = f (λy. eval1 ((x, f), y) ,

λz. eval2 ((x, f), z)) in

foreach z ∈ G where η(z) 6= ⊥ do

if τ(z) 6= τ(z) t η(z) then

τ(z) := τ(z) t η(z);
unsafe := unsafe ∪ infl2 (z);
infl2 (z) := ∅;

fi;
od;
foreach y ∈ s do solve(y) od;
new := new t d;

end;
od;
if σ(x) 6= new then

σ(x) := new ; U := ∅;
foreach (y, f) ∈ infl1 (x) do

todo(y) := todo(y) ∪ {f};
U := U ∪ {y}

od;
infl1 (x) := ∅;
foreach y ∈ U do solve(y) od;

fi;
end;

fun eval1 (c : V ×R, y : V) : D1

begin

solve(y); infl1 (y) := infl1 (y) ∪ {c};
return σ(y)

end;

fun eval2 (c : V ×R, z : G) : D

begin

infl2 (z) := infl2 (z) ∪ {c};
return τ(z)

end;

begin

X := I ; σ := ∅; τ := ⊥;
infl1 := ∅; infl2 := ∅;
todo := C; unsafe := ∅;
while X 6= ∅ do

foreach x ∈ X do solve(x) od;
X := ∅;
foreach (y, f) ∈ unsafe do

todo(y) := todo(y) ∪ {f};
X := X ∪ {y}
od;

unsafe := ∅;
end;

end

Figure 6: The solving algorithm.

17

infl1 (y). In addition, the variable y is recursively evaluated by solve . Similarly, if the constraint
depends on some global z, then the dependency is stored by the function eval2 into infl2 (z).

Evaluating each of these constraints result in a contribution d : D1 to a value of x together
with a set s : 2V of new variables to be considered (i.e. spawned threads) as well a side-effect to
globals η : G→ D. For every global z whose value τ(z) is modified by the side-effect, we move all
constraints which depend on z from infl2 (z) into unsafe for later re-evaluation. Then, all variables
in s are evaluated recursively by solve and the contribution d is accumulated to the new value
new : D1 of x.

If the accumulated value new for x is the same as the old one, then we are done and procedure
solve exits. Otherwise, the value σ(x) is updated. Moreover, we must re-evaluate all other
constraints whose evaluation has accessed x. These constraints have been accumulated in the
entry infl1 (x). We remove these constraints from infl1 (x) and merge their right-hand sides with
the mapping todo. Then the variables corresponding to left-hand sides of these constraints are
recursively evaluated by solve .

B Example Run of the Solver

As an illustration, consider the C program from Section 2. The corresponding control-flow graphs
are depicted in Fig. 2.

Initially, all fixpoint variables in V and all globals have the value ⊥. Then fixpoint iteration
starts with variable 〈main, a〉 where a = 〈∅, false, [id 7→ >]〉 meaning that initially, the set of held
mutex locks is empty, no threads have been created yet and the local id of main has an unknown
value.

In order to determine the result value of the call, the solver tries to evaluate the variable 〈3, a〉
which in turn successively demands the evaluations of 〈2, a〉, 〈1, a〉 and 〈0, a〉. Eventually, the
constraint for 〈0, a〉 is evaluated without further descent into solving of other variables. The single
constraint for 〈0, a〉 returns (a, ∅, ∅). Given this value, the solver proceeds to the evaluation of the
constraint for 〈1, a〉 which returns the triple (a, [z 7→ 〈⊥, 0〉], ∅). Thus, the variables 〈1, a〉 and z
receive the values a and 〈⊥, 0〉, respectively. Here, ⊥ represents the bottom element in the lattice
of definitely held mutex locks, i.e., the universal set of mutex locks.

The solver proceeds with the evaluation of the constraint for 〈2, a〉. Here, we have to take the ef-
fect of the create edge into account. The corresponding constraint returns the triple (a1, ∅, {〈inc, b〉})
where a1 = 〈⊥, true, [id 7→ >]〉 represents the new local state of main, i.e., the value for 〈2, a〉, and
b = 〈∅, true, [me 7→ {&A}]〉 is the new local state of the newly created thread.

Before ascending to the variable 〈3, a〉, the solver triggers the evaluation of the variable 〈inc, b〉.
Thus, it descends into solving the variables 〈7, b〉 down to 〈4, b〉, respectively. As 4 is the entry
point of the procedure inc, the variable 〈4, b〉 receives the value b. Proceeding to the variable
〈5, b〉, the solver executes the locking of the mutex at address &A. This results in the new local
state b1 = 〈{&A}, true, [me 7→ {&A}]〉. Now, the solver executes the constraint corresponding to
the edge (5, 6). This edge modifies the global z through the side effect [z 7→ 〈{&A}, 1〉]. The new
abstract value for z is

〈⊥, 0〉 t 〈{&A}, 1〉 = 〈{&A},>〉

Since the value of z has been changed, all constraints which depend on it (i.e. the edge (5, 6))
have to be marked as “unsafe” and collected for re-evaluation during next iteration. The local
state for 〈6, b〉 remains b1. Finally, the solver ascends to the variable 〈7, b〉 where the unlock is
performed yielding the local state b2 = 〈∅, true, [me 7→ {&A}]〉 = b. Finally, the solver ascends to
the variable 〈inc, b〉 for which it returns b.

Having finished this detour, the solver continues with the analysis of main by evaluating the
constraint for 〈3, a〉 which is another call of function inc with the same abstract actual parameter
b. Looking up the value of 〈inc, b〉, returns the value b. Combining this value with the local state a1

before the call, results in the same value a1. This value is then also returned for the call 〈main, a〉
– which completes the first round of iteration.

18

In the next round, all collected “unsafe” constraints are scheduled for re-evaluation. In our
case, this is just the constraint corresponding to the edge (5, 6). Calling the solver for 〈6, b〉 re-
evaluates this constraint resulting in no new value for 〈6, b〉 but in the side-effect [z 7→ 〈{&A},>〉].
As this is already the current value of z, the fixpoint computation terminates.

In our example, we find that all accesses to the global z which happen after thread creation
are protected by the same mutex A – although the function inc in principle also could have been
called with the address of B as actual parameter. So, only a small finite portion of the potentially
quite large constraint system actually has been explored. Only this partial exploration allowed us
to ensure that it is always the mutex A which is locked when the variable z is incremented. In fact,
this also makes our fixpoint engine reasonably efficient and enables us often to have termination —
even in presence of infinite value domains and recursion where the functional approach in general
is no longer guaranteed to terminate.

19

