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Tensor field theories
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o After Wick contraction, it generates (d + 1)-edge-colored Feynman graphs.

@ (d + 1)-edge-colored graphs are dual to simplicial triangulations of piecewise

linear (PL) d-dimensional pseudo-manifolds [Bandieri, Gagliardi 1982; Ferri,
Gagliardi, Grasselli 1986].

@ Relevant for quantum gravity in dimensions d > 3.



tensor models

Melons dominate and they are branched polymers.

[V. Bonzom, R. Gurau, A. Riello, V. Rivasseau "Critical behav-
ior of colored tensor models in the large N limit," Nucl. Phys.

N
B 853, 174 (2011)] _/

[R. Gurau, J Ryan "Melons are branched polymers," Annales
Henri Poincare 15, no. 11, 2085 (2014).]

Enhanced tensor models

[V.Bonzom, T. Delepouve, V. Rivasseau "Enhancing non-melonic triangulations: A
tensor model mixing melonic and planar maps," Nucl. Phys. B 895, 161 (2015)]

Introduced a non-melonic interaction (necklace) properly scaled in N along with a
melonic interaction, and recovered the string suceptibility exponent of pure 2D
gravity v = —1/2, v = 1/2 (trees/branched polymers), and v =1/3 (a
proliferation of baby universes).



Tensor field theory models

o Consider a field theory defined by a complex field ¢ : (U(1)P)*9 — C.

@ The Fourier transform of ¢ yields an order d complex tensor ¢p, with
P = (p1,p2,...,pd) a multi-index, where p1, po, ..., ps are also multi-indices
Ps = (p$,17 Ps,2y - 7PS,D) y Ps,i €Z.

@ ¢p denotes its complex conjugate.

The action _ S o
5[¢7 (b] — Sklllctlc[(b’ ¢] + Smt [¢7 ¢] ,
is given by convolutions of tensors
Sk, ¢] = Tra(¢ - K - ¢) + pTra(¢?)

with

Tra(¢-K-¢) = > ép K(P;P') ¢pr



where the kinetic term kernel can be simply given by
K(P;P') = 6p,p P?*,
' d D d D
with dp,pr = Hs:l Hi:l ‘Sps,/,p;,,‘v P2 = Zs:l Zi:l ‘PS,i|2b-

Then, denote Trg(q_5~ K- ¢) = Tra(p?0¢?).

Remark

In ordinary QFT, the restriction b < 1 ensures the Osterwalder-Schrader positivity
axiom, however, here a priori we have no such restriction but we still restrict b to
be a positive real number.




Our enhanced quartic models

(D,d,a,b) e Nx NxR; xR;. order-d tensor field ¢ : (U(1)P)*? — C
@ model +

SP13.0] = 5 Tra(¢) + 5 Tra(p?* 6°) + ZTea(p0?)

S0 (3, ¢ = ZoTra(p?¢%) + pTra(¢?),
@ model x

Si<nt [(E’ (b] — i TI"4(<[)4) 4 )\i T1"4([p23p/23] ¢4) + Z Z€Tr2(p2£¢2)

2 2
£=a,2a
S [0, ¢l = ZoTra(p*°¢7) + uTra(¢?)

where

Tra(9*) =D p prezo P12..d b123..d br23. . P12z @ +Sym(l =2 = - = d),
Tra(p* ¢*) == 32, pezo P17 012, .0 bv23.d Sr23 .0 12737 . +Sym(1 = 2 = -+ = d),
Tra([p*?p"*°) ¢*) = 2, prcae (\P1\23|P'1|2a)¢12md Gr23...d D123 D123

4+Sym (1 —=2—---—d).



Enhanced model x
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Enhanced model +

3 N
&~ F 3
d i
1 1 1 1 d
d 1
A
S 15,61 = 5 Tra(%) + oF Tra(p? 6°) + ZiTral(p?67),
Shinetic[g ¢ = Z,Tra(p?*¢?) + puTra(¢?),
d d
3i i3
3 2




for illustration d = 3,

A melonic graph

£E3

A non-melonic Feynman graph



Power counting theorems

The amplitude of a Feynman graph G(V, £) with a set of vertices VV and a set of
propagator lines L, in perturbation theory:

Ag {pcxt} ZH Col vap H( \ (PV))
P, leL vev

where G, is a propagator with line index /, V,(P,) is a given vertex weight that
contains a coupling constant but also a momentum weight if the vertex v is
enhanced. Superficial degrees of divergence are given by,

@ model +
Wd;+(g) = _(d2D1 ( (gcolor) - w(ﬁg)) - D(Cag - 1)
—2[(D(d —1) = 2b)Neyy — 2D (d — 1))
+1[-2D(d - 1)+ (D(d —1) —2b)n] - V
+2ap; + 2ap2.. + 2bpap -
@ model x
Wd;x(g) - - (d2,D (gcolor) - w(ag)) - D(Cf)g - 1)

AA

$[(D(d — 1) — 2b)Nexy — 2D (d — 1)]
+3[-2D(d = 1)+ (D (d — 1) = 2b)n] - V + 2apx + D¢, 2, 5 26P2¢ -



Power counting theorem for model +

Proposition (List of primitively divergent graphs for the model +)

The p*¢*-model + with parameters a= 3D(d —2), b= £D(d — 3) for two
integers d > 2 and D > 0, has primitively divergent graphs

ool B

classg Nyt Va., wa:+(9)
(4pt\) 4 0 0 0 Via 0

/ (mass) 2 0 0 0 Via D/2

I (2ptZ,) 2 0 0 0 Via—1  D/2

1 (mass) 2 0 0 1 Vig D/2

v (mass) 2 0 1 0 Via 0

v (2ptZ,) 2 0 1 0 Vi) — il 0

Vi (mass) 2 0 1 1 Via 0

List of primitively divergent graphs of the p??¢*-model +.




Power counting theorem for model +

order-d tensor field ¢ : (U(1)P)*? — C
Theorem

The p**¢* model + with parameters a = 3D(d — 2),b = 1D(d — 3) for arbitrary
order d > 3 and dimension D > 0 is just-renormalisable at all orders of
perturbation theory.

d=3 d=4

a=% a=1
D=1 2

i

a—= a—=
D=2 3

a—== a—=
D=3 2

=2 a=4
D=4 2

b=3 b=5

Values of a and b for potentially just-renormalisable theories
(wd:+(G)|News >6 < 0 and wa.+(G) is independent of numbers of
vertices) with wa, (G 7™°")|yye=a = 0 with d < 4 and D < 4.



Power counting theorem for model x

Proposition (List of primitively divergent graphs for the model x)

The p?¢*-model x with parameters D =1,d =3,a= %,b =1, has the
following primitively divergent graphs which obey

N &

classg Next

V2;a wd;x(g)
I (2ptZ,) 2 0 0 0 2Veg -1 0
) (2-pt 22,) 2 0 0 0 2Vya —2 0
1 (mass) 2 0 0 1 2V 0

List of primitively divergent graphs of the p>?¢*-model x.

Theorem

The p*2¢* model x with parameters D =1,d = 3,a =

3.b =1 is renormalisable
at all orders of perturbation.




model -+

@ enhanced melonic move

An enhanced melonic insertion has Awg.+ = 0.

@ enhanced dipole move
—

An enhanced d-dipole insertion has Awg = —2.



Divergent graphs for 4-pt coupling A\ (model +)
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4-pt primitively divergent graphs with w,; = 0. Renormalise 4-pt coupling A Tra(¢*).
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their boundary graph



Divergent graphs for mass (model +)
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Renormalise mass /Tra(¢?). 2-pt primitively divergent graphs with wy . = %. Class I.
We can insert one d-dipole anywhere on a propagator; one d-dipole with either color 1
enhanced on a blue dotted propagator, or one d-dipole with any color 1, 2, or 3

enhanced on a red dotted propagator. Then w4 = 0 and they belong to the class IV

and renormalise mass.




Divergent graphs for mass (model +)
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Renormalise mass /Tra(¢?). 2-pt primitively divergent graphs with wy . = g. Class Il
We can insert one d-dipole anywhere on a propagator; one d-dipole with either colors 1
or 3 enhanced on a blue dotted propagator, or one d-dipole with any color 1, 2, or 3
enhanced on a red dotted propagator. Then, wy.. = 0 and they belong to the class VI
and renormalise mass.



Divergent graphs for 2-pt coupling Z, (model +)
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Renormalise Z,Tra(p??¢?). 2-pt primitively divergent graphs with wy . = %. Class II.
We can insert one d-dipole anywhere on a propagator; one d-dipole with either colors 1
or 3 enhanced on a blue dotted propagator, or one d-dipole with any color 1, 2, or 3
enhanced on a red dotted propagator. Then, wy.+ = 0 and they belong to the class V
and renormalise Z,Tr>(p**¢?).




Effective Action via multiscale analysis

We slice our covariance in a discrete sum of contributions, each corresponsing to
an energy sector (scale),

~ N 1 = -
P; P/ = P ’ P) = —— = i P
C(P:P) = C(PYopp  C(P) = ;C( ),
with M > 1 positive real number, in Schwinger parametrisation,
M —2bi—1)
~ 2b b
CI(P):/ do e P+ / dae ™
M—2bi

(UV: big i, small «)
— Integrate out the fields at high scales (UV) > i and include their effects in the
effective action W'.
Z= /ducg,(q'sg,-,gbg,-)e—W’“s"»%), where C<;(P;P') =6pp > C(P)
J<i
— Integrate out another layer down to scale / — 1. Decompose C<; = C; + C<i1
and the corresponding fields ¢<; = Vi + d<j—1 (d<i = i + d<i—1).

Z- /dVCSi—l(Q_SSiflv¢§i*1)€7wi_l(¢;9’1’¢§"*1)’



Effective Action

where the effective action at scale i — 1 is given by
—WH(f<i1, d<in) = |og/duc,-(ql_)h¢i)e_Wi(d_”'+‘Z’9*1"/"’*‘ﬁﬁ"*‘).

If the theory is renormalisable, one can assert the effective action at any scale /
takes the same form as the interaction action, therefore

W N peio1, p<io1) = Tra(p<io1 - X - p<io1) + %Tr4(¢%;_1 T4) + R(¢<i-1),

o Y ({p}) is the sum over all amputated 1PI 2-pt graphs,
@ 4({p}) is the sum of 1PI 4-pt graphs following the pattern of Trs(¢*), and

@ R(¢<i—1) is the rest of the terms containing 1PR graphs (they do not
contribute to the iteration process) and the finite terms.



Effective 2-pt function (model +)

Expand the 2-pt function contribution,

Z({p}) = TU{O}) + > 1pe|*Bpp, oo Xy o + D 1PelBjpaeX gy o+

@ mass renormalisation X({0}) is divergent with wg.; = D/2 (classes | and IlI)
and wg.+ = 0 (classes IV and VI).

(] a‘pc|2b2|{p}:0 =0.

® Jjp, 22X {p}=0 = F(zc)({O}) is divergent.
1pe|?T$({p}) is the sum of all amputated 1P| 2pt-functions following the
pattern of Tra(p2$?) on their boundary graphs as dictated by the classes of
Il (wg:+ = D/2) and V (wg.4+ = 0).

@ --- are finite.



Effective 4-pt function (model +)

Similarly, expand the 4-point function contribution,

r _ r(c) 0 Czaa zar(c)’ C2ba ) r(c)’
+({r}) Z{ 2 ({0}) +|pc|*0)p 2T 4 {p}ZOH/" [pe|26t 4 {p}:o}+ ’

@

° > Fff)({O}) = [4({0}) is the sum of all amputated 1P| 4pt-functions
following the pattern of Trq(¢*) on their boundary graphs, and is divergent

(wa;+ = 0).
° 8‘pc|zarff)’{p}:0 = Ff‘f)( ({0}) are all amputated 1Pl 4pt-functions following

the pattern of Trs..(p??¢*) having a boundary with external
|p|?2-enhancement. In fact, there is only the leading order O(\,)

contribution in I'Efi({O}) and there are no contributions from higher orders in
perturbation theory in A,.

(e)
(] ({‘)‘pc|zbr4 |{p}:0

@ --- are finite.

is finite.



Effective Gaussian measure (model +)
The effective Gaussian measure is given by

ch”f—l((;sS,.,l)eXP[ i-1({0N)Tra(6%;_1) + 2 c(O)pej2o El(py=0)i-1Tra(p2°¢%; 1)]

with actually (‘)‘pc‘zbﬂ{p}io = 0. The new covariance for the above Gaussian
measure,

—2p(i—2)

1 /M da e_a(|p|2b+uren,i_1) _ 1 éi_l(p)
Zb, i—1 JM—2b(i—1) Zb’ o

@ the wave function renormalisation Z, j_1 =1+ (8|pc‘2bz|{p}:0),‘_1

@ the renormalised mass fiyen,i—1 = ﬁ(u;,l —X,-1({0})).

Then, the effective theory for ¢<;_; can be written as

dv (¢><, 1)

Zb 71

eXP[Z M (N Tra(p226%, 1) + 3, =58P g0, y)

0
43, SO gy ot ) 4 Rlgr)].



Effective action (model +)

With a field rescaling ¢<j—1 — \/Zs, i—1¢<i—1 (which in our specific case, there is
no actual rescaling because Z, ;_1 = 1 and trivial), the effective theory for ¢<;_1
can be recast:

L (0<iz1)

r(C) O (C) 0
[Z Bt oo+ o (ot )
i ,i—1

0 ~
+Z 45’221 4 }) Tra.c(p??9%,_1) + R(m(bg"*l)}’
b,i—1

Now we can identify the effective couplings at scale i — 1,

—~
-

EN
+

7 B0 o ML) o Tl
a,i IZ_T, )\, SR > = A

=il 2 ) +iim1 T 2
Zb: 1 Zb,ifl



Renormalisation of model +

Note that in our case, (8‘pc|2b2‘{p}zo);_1 = 0 therefore, throughout, we actually
had

Zpi—1 = 1,

Hren,i—1 = -1 1({0}) )
Lofgl = r(zcl) 1({0})
N9 = r&f? L({0),

)‘(+C;)i—1 = rEt 7,'71({0})-

For the model +, the S-functions can be computed for generic parameters
a=(d—2)/2,and b= (d —3/2)/2 and d > 2 but with fixed group dimension
D=1.



p-function of 4-pt coupling A (model +)

{P} ZK © S o ({r}),

99
where K ot is a combinatorial factor and 5 ({p}) is a formal amplitude sum.

The sum over g4 | runs over a list of 4pt—graphs obeying the multiscale power
counting analysis. Up to one-loop, we have the following two graphs:

_ ),
P %2\

One-loop divergent graph, n,(f) at d = 3 contributing to the
flow of . K () =2,
4

NGRS 2 .
Snﬁo({P,P'}):%( 2*) Yo Toe lac

dc (Ipe2P+[qc|2b+4) (IPLI2P+[qc|2P+1)

Zero-loop divergent
graph at d = 3.




S-functions of 4-pt couplings A and A, (model +)
EiA Eih

The S-functions of the 4-pt couplings up to one-loop are

1 |q‘4a

MG =20 — Z(P)2s, 9= m 3
47 — (Iq*® + )?

N =22,

Set all couplings to A9 = X, and A(?) = X, to simplify,
+

1
Aren = A — Z(A+)250, So>0
)\+,ren = )Ur .

Observations
@ )\, does not run ! and defines a fixed point at all orders of perturbation.
@ A and A, never coincide and could not be set at equal value.
@ Aren < A, i.e., Aincreases in the UV. But it is not an ordinary Landau ghost.



[-functions of A and A, in multiscale analysis (model +)

2 B

In the multiscale analysis with discrete scale i, the system can be written as

1
Aim1 = Aj — Z)\i,; So,i 5

Agi—1 = Agis
where
M—2bi—1) M —2bi—1)
So.i = E |q|* dae=oal+u) da' e~ (1al**+u2)
’ » M —2bi M —2bi
M —2bi—1) M—2b(i—1)

- da da’ e (et i 43 o—(ata’)|q*"
/,\/,—zbi /[\/,—zbi Z |C]|

q



Consider

—2b(i—1) M—2b(—1)

S = Slg* / daees ) [ do e U+
qu M 2bi M—Zbi

M—2b(—1) M—2b(—1) N

= / da/ do’ e~ a+a)u,Z|q|4a (ata’)lq] ,
M—Zbi M—Zbi qu

@ Taylor expand e (@t =14 O(a+ '), (UV: big i, small a)
@ Euler-Maclaurin formula
|2b

|2b |2b

Y ez lqlte(atellal = g 5700 gag—(ota)la® = 3 [ gq ghae=(otalla® 4 R
M —(4a+1
= G "B [ (45 a4 o)) + R =31 (452) (a + )75 + O(1) + O + o) ,
to obtain
S 1, (M +1)? o b
50,; = BlogWJrO(M ’|og(/\/l ’)),

where log (MTL,I > 0 (Recall M > 1).



Revisiting the expression of the propagator in Schwinger parameterisation,

A ~ oo & =) M—2bi=1) —a(P?
C(P:P)=C(P)opp, C(P) =gy =25 G(MP), G(P)=[yaw dae ®H),
we notice that « should have a dimension of —2b in units of momentum scale k,

i.e., a = k2P &, where & is dimensionless.
Perform the change of variables to let the dimensions be explicit in terms of a
momentum scale k:

We obtain in terms of dimensionless Sy ;,

SO,/' _ k4a+1k_4b§0,,' —_ §0,i

1 (M +1) —2bi —2bi
= BlogWJrO(M log(M—="")),

where log %7;,1)2 > 0 (Recall M > 1).



B function of A (model +)

In the multiscale formulation,

O\

—(Aic1 =) = B

1 2
Z)\+’i 50’,' .

We write the S-function for a given coupling g as Sg(k) = kOkg(k) = O:g(t),
where k is a momentum scale, and t = log(k/ko). The momentum scale must be
compared to the slice range as k/ko ~ M. Then, t = log(k/ko) ~ ilog M.

A+ = A4 does not run.

O\

— L =9 \t) = BN
a((log MYi) ~ " (1) A5
(M2b+1)2
ﬂk = im > 0
4b  log(M) '

Integrate both sides,
A(t) = B A% (t — to) + A(to) ,

where ty is some IR reference scale.



Running of A and its discussion

BeA(t) = BaA] By = 1 log Ty (M“z’f;"l)z >0
t A AT 4b log(M) '

A(t) = Ba A (t — to) + A(to) -

@ There is no pole in the solution at first order (no Landau ghost).

o At large t > ty (UV), and for nonvanishing A\, # 0, since A(t) > A(to), the
bare coupling is supposedly not vanishing. Therefore, the model is not
asymptotically free. This hints at an asymptotically safe model that only
nonperturbative calculation can make rigorous.

o If Ay =0, then A(t) = A(tp) and we have a fixed point. However, the
enhancement disappears, both couplings A and A, do not flow. Note that
the resulting model is not the usual quartic-tensor field theory model with
only A coupling and a different class of dominant graphs (melonic ones).



Renormalisation of 2-pt coupling Z, (model +)

PP TEPY) = D Koo Sg (16)),

gZ:a;L

where the sum is over all amputated 1Pl 2-pt graphs at 1-loop whose boundaries
are in the form of Tr2 y(p*#?). Up to the first order in perturbation theory, we

have g§ {zé(,c), mes }

! \‘
! /
: c B
/Q\ P N
. N

Z§c) mgc)
1
ZGw = TN =242
{ae} ( B i ’u)

Furthermore, set the couplings to be independent of colors.



Renormalisation of Z, in multiscale analysis (model +)

Making explicit the dimensions (g = k§, § € Z, a = k=22 & ), we obtain the
renormalisation group equation for Z, in multiscale analysis as

- o7 _
1/2 a,i 1/2
Zoi1=Zai+ K20 ;S ot —(Zeii1—Zai) = 5 = —kY2X\, ;514
where the dimensionless coefficient
M—2b(i—1) —2b(i—1) E=il
~ 2b . _ i _ 2b
Si=Y / doy e—llal4m) _ / dae= | 3 el
aezi 1 M —2bi M—2bi vez

= (ir (21b> >d—1(2d —3)M/? (1 _ M—1/2) L oMy,

and A\, = A\, ; does not run. So, with t = log(k/ko) and k/ko ~ M,
0Z,
3{(log M)

Bz,

= 8,Z,(t) = —kY?Bz, Ay,

S1i

s~




S-function of 2-pt coupling Z, (model +)

Introducing dimensionless quantities, Z,(t) = k/2Z,(t), the dimensionless RG
equation can be written

~ 1

0:Z,(t) = _EZ’(t) + kY28,7Z,(t)
1~
= 7§Za(t)7&323 A+,

and )\, does not run. Integrate and

Z(t)=cre /2 =287\, Bz, > 0.
Observation

e Z,(t) decreases exponentially in the UV (t — c0) and suppressed up until it
reaches a constant —20z, A;.

o In the IR (t — —00), Zu(t) blows up.



Renormalisation of self energy and mass (model +)
Compute the self energy,
u({p}) ZZ Kgge <c> ({r}),
c=1 gz,L

where g§°2 € {m(c), n(c)}c:m,_._,d up to one loop.

Y,({p}) corresponds to the part ¥({0}) + > |pc\2b3|pc‘zb):|{p}:0 of total
self-energy function ({p}). However, 8|pc‘zb2’{P}:0 = 0, we only focus on the
contribution X({0}), namely the contribution to the mass renormalisation.

= Q 00 =

The graph m'® in the case d = 3. The  The Feynman graph n(® for d = 3.
degree of divergence wg. i (m(©)) = g. wa.4 () = g.



Renormalisation of mass (model +)
Impose color indepence, A(€) = A, )\+(C) = A;,
1
HPren = M+ d()\51 + 5)\+ 52) 5
|2a

= 1 R
S5 = Z ) S = zq: CEEk

2b
{g1,-.-,.9d—1} (‘q| +/’[’)

In the multiscale analysis,
M—2bi—1)

S = E / do e—e(lal+m) — 1/23
7 qekzd—1 M=2bi ’
M—2b(—1)
2, -
S = § / do |q|2ae7a(‘q‘ +ui) — k1/252”_.
quZ M—Zbi

= d—1 ‘ ‘
St ((ir (25) ) (2d - 3)(1 = M71/2> Mi/2 4 O(M'/2)>
§2,f = (4 F(%)(l — MY2)Mir2 4 O(M—i(d—2))) ]

(D=1atanyorderd, a=1D(d—2)and b=1(d - %))



We obtain the S-function for the mass

Sl = % B _k1/2d(§1’i>" * %52,,' >\+,i> :
a((Ia:M)) = Q= —K2(Buad+ Bu2 M),
Pur = Iogil\/l §1,i >0,
Buz = ﬁ §2,,- >0

Following [Benedetti, Ben Geloun, Oriti, JHEP 1503, 084 (2015) [arXiv:1411.3180
[hep-th]]], the mass scaling dimension is determined by the maximal degree of
divergence of the 2pt amplitudes. So, 1 = k*/2Ji, where [ is dimensionless in
scale, therefore, ey = kdkp = kY2(30 + 0epi), i.e.,

~ 1_ _
Ocp(t) = —5 () + k Y20,u(t).
Given that the coupling A} = A, ; does not run and that X runs,
~ 1_
Oepi(t) = _Eﬂ(t) = Bua A(t) = Bu2 At
1_
= *E/L(t) —Bua BNyt — (ﬂuQ Ar = Bui B A} to+ By )\(fo)) 3

where we recall 5, > 0.



p-function of mass renormalisation (model +)

We can solve this differential equation and obtain

a(t) = ce 2 — 4Bt +48+ 2y,
B = BuiBrAl >0,
vy = - (5#,2 At = Bu1 B AT to + But /\(to)) .

where ¢; is an integration constant.

@ In the UV (t — o), the exponential term vanishes and the second linear
term dominates. i(t) ~ —45t. S > 0 so the mass becomes negative and
grows linearly. This is not the ordinary behavior of scalar field theory nor of
tensor field theories.

o In the IR (t — —o0), the exponential term dominates fi(t) ~ c;e~t/2.



Summary of perturbative renormalisation S-functions for

model +

Ot )‘(t) = 5))\?..

(9t/\+:0

A(t) = Ba A% (t — to) + A(to)

Ay = const.

O fit) = —3(t) — But Mt) — Buz A+ | i(t) = cre™/2 — 48t + 48+ 2y

O Za(t) = _%Za(t) - ﬁZa >\+

Za(t) = C e~t/2 _ 2ﬂza >\+

B0
Bu,1
Bu,2
Bz,

B

v

o O O o

BuiBr Al > 0
= (ﬁu,z At — Bui1Br AL to + Bua A(fo))



Higher order corrections for model +
B I\
XF ) JO*
w = 0. 4-pt A renorm.

@c’ @ e A

(@)
&

©) ol
LS | S

w = D/2, class Il, 2-pt Z, renorm. w =0, class V, 2-pt Z, renorm.

§ e Q R=c@c L
g Q = 52 0% R ‘g A

w = D/2, class |, w=D/2, class lll, w=0,class IV, w =0, class VI,
mass renorm. mass renorm. mass renorm. mass renorm.

D\O)



to all orders in perturbation (model +)

@ A\.. No diverging amplitudes contributing to the renormalisation of A, at all
orders in perturbation. )\, is constant at all orders.

@ )\ at an arbitrary n' order.

OeA(t) = Py(A4),
A(t) = P

where P,(A\y) = BaA2 +....

th

@ mass at arbitrary n* order.

D) = —i(t) + RunAe) A(E) + Ran(s)
+R3;n()‘+) tza(t) + R4;n()‘+) tza(t) )‘(t) :

Ri.n, with i =1,2,3,4 are polynomials in A\, and some constants.



to all orders in perturbation (model +)

e Z, at an arbitrary n'? order.
0:Zs(t) = Kk"?Qua(Ay) + log(k/ko) Za(t) Qun(A+)

where Q;.n(A+), 7 = 1,2 are polynomials in A;. Or in dimensionless quantities

0+ Z,(t)

8, =
(£ Qanlr4) = 5)Zelt) + Qun(As)
= Qnt® ¢ Ql;n ﬁ , 2Q2;nt— 1

Za(t) e [Cl—l—\@\/@e @ Erf <2\/§\/@>}

where Erf' is the unnormalised incomplete error function
Qnt? ¢

Erf'(z) =[5 es"ds ~ Erf'e==" /22, Z,(t) ~ e 3 —3. Thus, Z,(t) behaves
the same in the UV (t — o0) and the IR (t — —o0), either can be
suppressed or blows up depending on the sign of Qo.,.




Enhanced model x

3@ =
1> Q, 1) (/
— 1= g
L — 3
d d o
1

8 8 <

S 15, 6] = 5 Tra(6*) + 2 Tra([p9%1 %)+ 3 ZeTra(e%6?)
£=a,2a

SilIletIC [¢a (b] — ZbrI\r2(p2b¢2) + H’I‘r2(¢2) y

d

3i
5 3
1 T




Power counting theorem for model x

Proposition (List of primitively divergent graphs for the model x)

The p?¢*-model x with parameters D =1,d =3,a= %,b =1, has the
following primitively divergent graphs which obey

N &

classg Next

V2;a wd;x(g)
I (2ptZ,) 2 0 0 0 2Veg -1 0
) (2-pt 22,) 2 0 0 0 2Vya —2 0
1 (mass) 2 0 0 1 2V 0

List of primitively divergent graphs of the p>?¢*-model x.

Theorem

The p*2¢* model x with parameters D =1,d = 3,a =

3.b =1 is renormalisable
at all orders of perturbation.




model X

We find the effective couplings at scale i — 1 to be related to scale i,

Zpi-1 = 1,

Preni—1 = pi—1 — Xi—1({0}),
Za o= -T9, ({0},

Zoaimn = T8}, .({0]),

d=3,D=1,a= % and b =1 so that the model is just-renormalisable.

Note that the mass does not have a scaling dimension, and that A does not run.



Mass renormalisation (model x)

Feynman graph that contributes to the mass renormalisation
at one loop in perturbation theory. wq.x = 0. Class IlI.

Ou; ~
—(pic1 —pi) = 5; =—d51,i\i,
Ou; .
O = gu(t) = -8
3((log M)7) Oepi(t) = =Bu A,
d ~
Bu,l = 7|Og M 517,‘ =2dm > 0.

Fixing an initial condition at tg, this integrates to give

p(t) = —(t —to)Bua A+ u(to) -

The mass in the model x grows linearly in t in its magnitude.



S-function of 2-pt coupling Z, (model x)

) (9
~,
The graph contributes to the flow of Z,, satisfies wg.x = 0

and belongs to the class I.

aZa i

*(Za,i—;; Z,;) = 5 = —S2iAxis
a,i _ Za — ¢
3((log M)7) ai (£) = =Bz, A
Sy
p— 2 = 2
Pz, log M >

which integrates to
Z,(t) = —(t — to) Bz, Ax + Za(to) .

Therefore, in exactly the same manner as the mass in this theory, the 2-pt
coupling Z, in the model x, grows linearly in t in its magnitude.



B-function of 2-pt coupling Z5, (model x)

1
S IA

The graph that will contribute at 1-loop with wg;x = 0 in the class Il.

025, ~
—(Z2ai—1 — Z2aj) = 782? =—51,i A\x.i

025, ‘ ,
_ %00 9.7, (t) = —fz, Ax s
d((log M)i) o (t) = =Bz, Ax

S1i
= 2 =2
Pz, g~ 27> 0

Then, at this order of perturbation, Z, yields also a linear function in the time
scale t.

Zy,(t) = —(t—t) Bz, Ax + Za(to) -

The argument goes the same as the mass and the other 2-point coupling Z,, i.e.,
the 2-pt coupling Z>, in the model x grows linearly in ¢t in its magnitude.



Summary of perturbative renormalisation S-functions for

model X

We give a summary of the 1-loop RG flow equations for the model x and their

solutions.
( Y= O A(t) = const.
Ax(t) = Ax (t) = const.
8tu( ) = 5M,M pu(t) = =2dwA(t — to) + p(to)
(t) BZ; Ax Za(t) = —2Xx (t - tO) + Za(tO)
8t Zga(t) ﬁZZa Ax Zza(t) = 2w« (1.' = to) + Zga(to)

B/t,l =2dm > 07

,84:2 > 07

6223227'( > 0.

The mass and the 2-point couplings Z, and Z5, in the model x all grow linearly

in t in its magnitude.



to all orders in perturbation (model x)

4-pt couplings )\ and Ay RG equation

The power counting theorem of the model x determines that at all orders in
pertubation theory, there are no amplitudes which are divergent contributing to
the renormalisation of 4-pt couplings A and A«. Hence, A and A\« of the model x
are constant and do not flow with scale.

oA = 0, therefore A(t)= const.
OtAx = 0, therefore A (t)= const.



to all orders in perturbation (model x)

Mass, 2-pt couplings Z, and Z,, RG equations
Observation of Proposition tells us that

@ Mass renormalisation is decided by the class Ill, where only exactly one A and
a number of Ay contribute.

@ The Z, renormalisation is decided by the class |, where only Ay contributes.
@ Only Ay contributes to the renormalisation of Z5,, as class Il dictates.

Then, one can generalise the RG euqations for the first order to arbitrary n-th
order,

Oepu(t) = APa(Ax),  0:Za(t) = Qu(Ax), 0:Z2a(t) = Ra(Ax),

where P,(Ax), Qn(Ax), and R,(Ax) are polynomials in .
Solving the above system of equations,

wrt) = (t—1to)APn(Ax) + u(to),
Z5(t) = (t—10)Qn(Ax) + Za(to),
Z2a(t) = (t_tO)Rn()‘+)+ZZa(t0)'

All couplings above grow linearly in t in their respective magnitudes.



Conclusions

@ These models may not give rise to quantum gravity, but possibly a new kind
of ¢* models.

@ Solve for higher orders. The models seem to be resummable.



