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1	–	Tensors	and	mul4par4te	quantum	sysytems	



Tensors	
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Index	summa.on	/	contrac.on	

MMatrix	D=1		



Tensors	
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A = {Ai1,...,iD ; j1,...,jD}
1	≤	c	≤	D	:	“color”	
	

1	≤	ic	,	jc	≤	N			

Why	this	defini4on?	
	
Density	matrices	or	observables	on	a	D-par4te	quantum	system	
are	tensors	of	this	form	(	=	matrices	with	subdivided	index-set)	

MMatrix	D=1		
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Index	summa.on	/	contrac.on	

H = H1 ⌦ · · ·⌦HD

dim(Hc) = NcSize	of	the	index	set	=	Local	dimension	

-  For	states	:	seen	as	a	matrix	it	is	Hermi4an,	posi4ve	semi-definite,	and	of	trace	1	
-  For	operators	:	Hermi4an			



Pure	tensor	
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-  For	states:	pure	state	(not	mixed)		
-  For	observables:	projec4on	

B = |T ihT | = T ⌦ T̄

The	kind	of	tensors	that	we	have	seen	this	week	are	pure…	
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1	≤	c	≤	D	:	“color”	
	

H = H1 ⌦ · · ·⌦HD

Tensors	

Normalized	iden4ty	is	maximally	mixed…	



1	≤	c	≤	D	:	“color”	
	

Tensors	 H = H1 ⌦ · · ·⌦HD

Factorized	tensor	
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-  For	states:	factorized	state	(may	be	pure	or	mixed	but	it	has	no	entanglement)	
-  For	observables:	local	observable	(applied	independently	in	each	subsystem)	



1	≤	c	≤	D	:	“color”	
	

Entanglement:	how	far	is	the	density	matrix	(a	tensor)	from	a	convex	combina4on	of	factorized	
states.	Quantum	correla4ons	between	subsystems	(ó	colors).		
	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	density	matrices	
	
	
à  The	key	resource	exploited	by	quantum	technologies	(computers,	communica4ons,	

teleporta4on…)	

à  Fundamental	in	the	study	of	quantum	black	holes,	holography,	…	

D=2	:	bipar4te	entanglement	
D	>	2	mul4par4te	entanglement	
	
Grouping	subsystems	/	colors	is	equivalent	to	``mul4plying’’	the	index	sets	
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-  For	states:	factorized	state	(may	be	pure	or	mixed	but	it	has	no	entanglement)	
-  For	observables:	local	observable	(applied	independently	in	each	subsystem)	



	
Given	an	unknown	quantum	state	(that	is,	an	unknown	tensor),		
	
	
1.  How	efficiently	can	we	reconstruct	the	full	tensor	using	some	measurements?	
							(tomography… exponen4al	in	the	size	of	the	system…)	
	
	
	
2.  How	can	we	recover	(theore4cally	/	experimentally)	only	the	informa4on	needed	to	

characterize	the	amount	of	entanglement	between	the	different	parts…?		

…	

Some	important	ques.ons	

hOi⇢ = Tr(O⇢)



2	–	Local	unitaries	and	tensor	invariants	



Local	unitaries	



Local	unitaries	(LU)	

f(⇢) = f(U⇢U †)

dµ(⇢) = dµ(U⇢U †)
U = U1 ⌦ · · ·⌦ UD

LU	transforma.on	 B0 = (U†
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LU	equivalence	 B0 ⇠LU B , 9U = U1 ⌦ · · ·⌦ UD, B0 = U†BU

LU	invariance	 Func&on:	

Distribu&on:	



Local	unitaries	(LU)	

f(⇢) = f(U⇢U †)

dµ(⇢) = dµ(U⇢U †)
U = U1 ⌦ · · ·⌦ UD

LU	transforma.on	 B0 = (U†
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LU	equivalence	 B0 ⇠LU B , 9U = U1 ⌦ · · ·⌦ UD, B0 = U†BU

LU	invariance	 Func&on:	

Distribu&on:	

“LU	invariants”	:	LU-invariant	polynomial	encoded	by		
colorwise	summa4on	of	indices:	
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LU-invariants	ó	bubbles	
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Local	unitaries	(LU)	:	why	do	we	care?	

	
à  Two	density	matrices	share	the	same	theore&cal	entanglement	proper4es	IFF	they	are	LU-

equivalent	

	



Local	unitaries	(LU)	:	why	do	we	care?	

	
à  Two	density	matrices	share	the	same	theore&cal	entanglement	proper4es	IFF	they	are	LU-

equivalent	

“theore4cal”	because	there	are	some	``opera4onal’’	no4ons	of	entanglement	equivalence	classes	
that	are	more	adapted	to	the	use	of	entanglement	in	quantum	opera4ons	(LOCC…).		
	
Two	density	matrices	in	the	same	LU-entanglement	class	also	have	the	same	``opera4onal’’	entanglement	
proper4es,	but	density	matrices	in	different	LU-entanglement	classes	may	s4ll	have	the	same	``opera4onal’’	
entanglement…	
	
	



Local	unitaries	(LU)	:	why	do	we	care?	

	
à  Two	density	matrices	share	the	same	theore&cal	entanglement	proper4es	IFF	they	are	LU-

equivalent	

“theore4cal”	because	there	are	some	``opera4onal’’	no4ons	of	entanglement	equivalence	classes	
that	are	more	adapted	to	the	use	of	entanglement	in	quantum	opera4ons	(LOCC…).		
	
Two	density	matrices	in	the	same	LU-entanglement	class	also	have	the	same	``opera4onal’’	entanglement	
proper4es,	but	density	matrices	in	different	LU-entanglement	classes	may	s4ll	have	the	same	``opera4onal’’	
entanglement…	
	
	
	
Anyways:	
	
					-		All	entanglement	measures		 	 	 				are	LU-invariant	func&ons.		
	
					-		LU-invariant	distribu&ons	allow	studying	“typical	proper4es”	of	LU-entanglement	classes	
	
	
	

f : ⇢ ! f(⇢) 2 R

Random	quantum	states:	Page,	Hayden,	Leung,	Winter,	Collins,	Nechita,	Zyckowski,	Aubrun,	
	 	 	 					Majumdar…	



LU	invariant	distribu.ons:	two	examples	

q  EX	1:	The	perturbed	Gaussians	we	are	used	to	are	LU-invariant	distribu4ons	

	
	
	
	
	
								If	normalized,	they	provide	distribu4ons	over	pure	states	inside	an	LU-equivalence	class	
	
								The	Gaussian	distribu4on	is	ooen	used	for	random	pure	states		

	 	 	 	(ó	big	Haar	unitary	on	a	fixed	state 	 	 	… Page	curve	for	instance)	
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LU	invariant	distribu.ons:	two	examples	

q  EX	1:	The	perturbed	Gaussians	we	are	used	to	are	LU-invariant	distribu4ons	

	
	
	
	
	
								If	normalized,	they	provide	distribu4ons	over	pure	states	inside	an	LU-equivalence	class	
	
								The	Gaussian	distribu4on	is	ooen	used	for	random	pure	states		

	 	 	 	(ó	big	Haar	unitary	on	a	fixed	state 	 	 	… Page	curve	for	instance)	
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q  EX	2:	Fix	ρ	and	consider	
	
		à	Average	over	proper4es	that	don’t	maper	when	studying	entanglement.		
	
	

	For	instance:		recall	that 	 	 							is	the	average	of	observable	O	for	state	ρ.	
		
	Study		

Uc(U †
1 ⌦ . . .⌦ U†

D) ⇢ (U1 ⌦ . . .⌦ UD) Haar	distributed	with	

hOi⇢ = Tr(O⇢)

hOiU†⇢U = Tr
⇣
OU†⇢U

⌘
U = U1 ⌦ · · ·⌦ UD
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More	on	LU-invariant	polynomials	=	tensor	invariants	



Importance	of	LU-invariants	(the	polynomials)	

à  They	separate	the	LU-entanglement	classes	
					Contain	all	informa4on	on	LU-entanglement	
	

à  Basis	for	LU-invariant	func4ons	in	the	limit		
	
						Think	of	:			–	products	of	traces	of	power	of	a	matrix	for	unitary	invariance	

	 					–	products	of	power	sums	for	symmetric	func4ons		
	
à  Also	the	correla4on	func4ons	for	LU-invariant	random	tensors	
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Importance	of	LU-invariants	(the	polynomials)	

à  They	separate	the	LU-entanglement	classes	
					Contain	all	informa4on	on	LU-entanglement	
	

à  Basis	for	LU-invariant	func4ons	in	the	limit		
	
						Think	of	:			–	products	of	traces	of	power	of	a	matrix	for	unitary	invariance	

	 					–	products	of	power	sums	for	symmetric	func4ons		
	
à  Also	the	correla4on	func4ons	for	LU-invariant	random	tensors	
	
	
	
Ø  	 	So	we	study	these	polynomials	for	ensembles	of	density	matrices	or	random	tensors,		

	&	work	with	expansions	of	other	quan44es	on	this	family.	
	
	
					
Ø  	 	Growing	interest	of	LU-invariants	for	D	>	2	in	characterizing	the	mul4par4te	entanglement	

structure,	for	instance	in	holography.		
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Given	an	unknown	quantum	state	(that	is,	an	unknown	tensor),		
	
	
1.  How	efficiently	can	we	reconstruct	the	full	tensor	using	some	measurements?	
							(tomography… exponen4al	in	the	size	of	the	system…)	
	
	
	
2.  How	can	we	recover	(theore4cally	/	experimentally)	only	the	informa4on	needed	to	

characterize	the	amount	of	entanglement	between	the	different	parts…?		
	
	

3.  Iden4fy	the	LU-entanglement	class	of	the	tensor	
						ó	Reconstruct	only	the	informa4on	up	to	LU	transforma4ons.	
						ó	Compute	a	certain	number	f(N)	of	LU-invariants	(all	of	them	for	N	à	∞)…	
	

	It’s	``a	lot	less’’	than	the	first	point	but	``a	lot	more’’	than	what’s	needed	for	the	second	point		
	(s4ll	a	lot…)	

	

Some	important	ques.ons	(BIS)	

hOi⇢ = Tr(O⇢)



Given	an	unknown	quantum	state	(that	is,	an	unknown	tensor),		
	
	
1.  How	efficiently	can	we	reconstruct	the	full	tensor	using	some	measurements?	
							(tomography… exponen4al	in	the	size	of	the	system…)	
	
	
	
2.  How	can	we	recover	(theore4cally	/	experimentally)	only	the	informa4on	needed	to	

characterize	the	amount	of	entanglement	between	the	different	parts…?		
	
	

3.  Iden4fy	the	LU-entanglement	class	of	the	tensor	
						ó	Reconstruct	only	the	informa4on	up	to	LU	transforma4ons.	
						ó	Compute	a	certain	number	f(N)	of	LU-invariants	(all	of	them	for	N	à	∞)…	
	

	It’s	``a	lot	less’’	than	the	first	point	but	``a	lot	more’’	than	what’s	needed	for	the	second	point		
	(s4ll	a	lot…)	

	
4.  Compute	SOME	of	the	LU-invariants	of	your	tensor… e.g.	Rényi-n	entropies!			

	à	What	info	on	mul4par4te	entanglement	do	they	contain???	

Some	important	ques.ons	(BIS)	

hOi⇢ = Tr(O⇢)



-  Puri4es	/	Rényi	entropies	(bipar4te,	classical)	
	
	
	
	
	

SI
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(measures	how	mixed	ρI	is)	
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Cyclic	melonic	&	necklace	



-  Puri4es	/	Rényi	entropies	(bipar4te,	classical)	
	
	
	
	
	
	
	
-  Moments	of	the	par4al	transpose	
	
	
	

	…	
	Calabrese,	Cardy	12;	Tamaoka	18	;		
	Dong,	Qi,	Walter	21	;		
		Kudler-Flam,	Narovlansky,	Ryu	21	

	
	
-  Other	LU-invariants	

	…	
	Dupa,	Faulkner	19	
	Akers,	Faulkner,	Lin,	Rath	21	&	22	
	Akers,	Rath	20 					
	Pennington,	Walter,	Wi>eveen	22	
	Gadde,	Krishna,	Sharma	22	&	23	

SI
n(⇢) =

1

1� n
log Tr(⇢nI ) A A

I = {1, 2}

Î = {3}

(measures	how	mixed	ρI	is)	
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Tr12

⇣
Tr3(⇢

T2)n
⌘

Cyclic	melonic	&	necklace	

K33	if	pure…	

Cube	(octahedron)	if	pure…	



3	–	Randomized	measurements		
&		the	tensor	HCIZ	integral	



Randomized	measurements	

Study	of	the	real	random	variable		 Tr(U†AU⇢)
U = U1 ⌦ · · ·⌦ UD

Uc 2 U(N) Haar	distributed	



Randomized	measurements	

Study	of	the	real	random	variable		 Tr(U†AU⇢)
U = U1 ⌦ · · ·⌦ UD

Uc 2 U(N) Haar	distributed	

hAiU⇢U†

hU †AUi⇢

Tr(U†AU⇢)

Observa4on	of	A	on	a	random	state	in	the	LU-entanglement	
class	of	ρ	

Locally	randomly	rotated	observa4on	on	a	fixed	density	matrix.	
“Randomized	measurements”.		

Seeing	A	as	an	observable	

Access	the	proper4es	of	an	unknown	density	matrix	using	a	locally	randomly	rotated	A	as	a	probe	
	

This	is	one	example	of	LU	invariant	distribu.on	



Given	an	unknown	quantum	state	(that	is,	an	unknown	tensor),		
	
1.  How	efficiently	can	we	reconstruct	the	full	tensor	using	some	measurements?	
							(tomography… exponen4al	in	the	size	of	the	system…)	
	
2.  How	can	we	recover	(theore4cally	/	experimentally)	only	the	informa4on	needed	to	

characterize	the	amount	of	entanglement	between	the	different	parts…?		

3.  Iden4fy	the	LU-entanglement	class	of	the	tensor	
						ó	Reconstruct	only	the	informa4on	up	to	LU	transforma4ons.	
						ó	Compute	a	certain	number	f(N)	of	LU-invariants	(all	of	them	for	N	à	∞)…	
	
4.  Compute	SOME	of	the	LU-invariants	of	your	tensor… e.g.	Rényi-n	entropies!			

	
5.  Study	the	distribu4on	of	local	randomized	measurements	performed	on	your	unknown	system	

for	the	your	favorite	observable…		

	
	Recover	some	of	the	LU-invariant	informa4on	(related	to	dominant	LU-invariants)	

	
	

Some	important	ques.ons	(BIS-BIS)	

hOi⇢ = Tr(O⇢)

hOiU†⇢U = Tr
⇣
OU†⇢U

⌘
U = U1 ⌦ · · ·⌦ UD



Given	an	unknown	quantum	state	(that	is,	an	unknown	tensor),		
	
1.  How	efficiently	can	we	reconstruct	the	full	tensor	using	some	measurements?	
							(tomography… exponen4al	in	the	size	of	the	system…)	
	
2.  How	can	we	recover	(theore4cally	/	experimentally)	only	the	informa4on	needed	to	

characterize	the	amount	of	entanglement	between	the	different	parts…?		

3.  Iden4fy	the	LU-entanglement	class	of	the	tensor	
						ó	Reconstruct	only	the	informa4on	up	to	LU	transforma4ons.	
						ó	Compute	a	certain	number	f(N)	of	LU-invariants	(all	of	them	for	N	à	∞)…	
	
4.  Compute	SOME	of	the	LU-invariants	of	your	tensor… e.g.	Rényi-n	entropies!			

	
5.  Study	the	distribu4on	of	local	randomized	measurements	performed	on	your	unknown	system	

for	the	your	favorite	observable…		

	
	Recover	some	of	the	LU-invariant	informa4on	(related	to	dominant	LU-invariants)	

	
	

	…What	about	the	choice	of	observables… Are	they	all	as	good	in	the	role	of	``probe’’?	

Some	important	ques.ons	(BIS-BIS)	

hOi⇢ = Tr(O⇢)

hOiU†⇢U = Tr
⇣
OU†⇢U

⌘
U = U1 ⌦ · · ·⌦ UD



Randomized	measurements	

à  For	small	values	of	N,D:	good	detec4on	of	entanglement.		
	
à  Also:	-	tes4ng	outcomes	of	distant	experiments,	

							-	compu4ng	measures	of	chaos	and	thermaliza4on,		
							-	iden4fica4on	of	topological	phases	
							-	…	

à  Solves	some	experimental	issues,		
Allows	for	post-treatment	of	informa4on	on	classical	computers	(``classical	shadows’’),		

						tools	from	AI	
	
	
à  All	of	this	also	tested	experimentally	on	quantum	plateforms…	

	

	
	
With	Collins,	Gurau,	Hu,	we	work	on	compu4ng	the	distribu4on	of	the	random	variable 	 		
for	D-par4te	quantum	states,	for	finite	D	and	in	the	limit																	.	 		
	
	

N ! 1

See	e.g.	2203.11374	for	a	review	

Tr(U†AU⇢)



The	tensor	HCIZ	integral	

Characterize	the	random	variable	by	compu4ng	its	moments	(correla4ons)	
	
	
	

		
	Genera4ng	func4on	of	moments	:	tensor	HCIZ	integral	

	
	
	

		
	If	D=1	(matrix	case),	usual	HCIZ	integral.	Analy4city	proper4es	[Goulden,	Guay-Paquet,	

Novak	11,12	;	Novak	20,	22]	
	
	
Equivalently,	characterize	the	random	variable	by	its	cumulants	(connected	correla4ons):			

			
	

Tr(U†AU⇢)
U = U1 ⌦ · · ·⌦ UD

Uc 2 U(N) Haar	distributed	
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More	meaningful	in	limit	of	infinite	N	



The	tensor	HCIZ	integral	

Tr(U†AU⇢)
U = U1 ⌦ · · ·⌦ UD

Uc 2 U(N) Haar	distributed	

D�
Tr(U †AU⇢)

�nE

c
=

1

NnD

X

G1,G22Gn

X

l� lmin(G1,G2)

⇣
� 1

N

⌘l
TrG1(A) TrG2(⇢) f [G1, G2; l]

Expansion	of	cumulants	(connected	correla4ons)	of	randomized	measurements,	on	the	family	of		
LU-invariants	[Collins,	Gurau,	L.	20]:	
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Combinatorial:	a	generaliza4on	of	
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(not	necessarily	connected	colored	graphs)	

AA

11

1

3

3 2

A

2
2



4	–	An	ensemble	of	density	matrices	to	work	with	



(not	necessarily	connected	colored	graphs)	

Remember	that	we	have	shown	the	following	in	full	generality:	

à To	take	a	large	N	limit,	we	need	to	know	how	the	LU-invariants	scale	with	N.		
	
					Only	assump4on	needed.	
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Scaling	ansatz	for	LU-invariants	

We	are	going	to	derive	some	results	for	ensembles	of	density	matrices	sa4sfying	that	scale	in	the	
same	following	way:	
	

TrG(⇢) = N�sG(⇢) trG(⇢) (1 +O(1/N))

sG(⇢) = �(⇢)sG
⇣
1l/ND

⌘
+ ✏(⇢) sG

⇣
|GHZihGHZ|

⌘
With:		

|GHZi = 1p
N

NX

i=1

|ii · · · |iiWhere:		 Mul4par4te	generaliza4on	of	Bell	state	
(very	entangled…``maximally’’)	

In	tensor	nota4on:	
	
	
	
The	scalings	are	given	by:	
	

|GHZii1,...,iD =
1p
N

NX

j=1

�i1,j · · · �iD,j
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= n� Cpure(G)
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Scaling	ansatz	for	LU-invariants	

We	are	going	to	derive	some	results	for	ensembles	of	density	matrices	sa4sfying	that	scale	in	the	
same	following	way:	
	

TrG(⇢) = N�sG(⇢) trG(⇢) (1 +O(1/N))

sG(⇢) = �(⇢)sG
⇣
1l/ND

⌘
+ ✏(⇢) sG

⇣
|GHZihGHZ|

⌘
With:		

|GHZi = 1p
N

NX

i=1

|ii · · · |iiWhere:		 Mul4par4te	generaliza4on	of	Bell	state	
(very	entangled)	

We	will	compute	the	expansions	on	LU-invariants	of	the	cumulants	of	the	distribu4on	of	
randomized	measurements	 	 						,		in	the	limit	of	infinite	local	dimension	N,		
	
for	ρ	sa4sfying	the	assump4on	above,		
	
For	A	a	local	observable:		 A = A1 ⌦ . . .⌦AD

Tr(U†AU⇢)

Ai1,...,iD ; j1,...,jD =
DY

c=1

(Ac)ic,jc



Scaling	ansatz	for	LU-invariants	
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same	following	way:	
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Interpreta.on:	“entropies”	

|GHZi = 1p
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|ii · · · |iiWhere:		 Mul4par4te	generaliza4on	of	Bell	state	
(very	entangled)	
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à  sG(ρ)	is	the	dominant	part	of	the	“entropies”	associated	to	the	LU-invariants	



Scaling	ansatz	for	LU-invariants	

We	are	going	to	derive	some	results	for	ensembles	of	density	matrices	sa4sfying	that	scale	in	the	
same	following	way:	
	

TrG(⇢) = N�sG(⇢) trG(⇢) (1 +O(1/N))

sG(⇢) = �(⇢)sG
⇣
1l/ND

⌘
+ ✏(⇢) sG

⇣
|GHZihGHZ|

⌘
With:		

Interpreta.on:	“entropies”	

|GHZi = 1p
N

NX

i=1

|ii · · · |iiWhere:		 Mul4par4te	generaliza4on	of	Bell	state	
(very	entangled)	

SG(⇢) = � 1
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=

sG(⇢)

cG
log
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� 1

cG
log

⇣
trG(⇢) (1 + o(1))
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à  sG(ρ)	is	the	dominant	part	of	the	“entropies”	associated	to	the	LU-invariants	

à  We	are	assuming	that	the	dominant	parts	of	the	entropies	all	interpolate	between	those	of	
the	maximally	mixed,	separable	state	and	a	maximally	entangled,	pure	state			



Meaning	of	the	parameters	ε	and	β	
		



Meaning	of	the	parameters	ε	and	β	

To	relate	these	parameters	to	known	proper4es	of	the	state	ρ,	look	at	the	Rényi	entropies	

Sn(⇢I) =
1

1� n
log Tr(⇢nI )

(measures	how	mixed	ρI	is)	

à		β(ρ)	>	0	informs	on	how	mixed	the	state	ρ	is	
		

•  		Sn(⇢) = �(⇢)D logN +O(1)

•  		Sn(⇢I ) =
�
✏(⇢) + �(⇢)|I|

�
lnN +O(1)

A A

I = {1, 2}

Î = {3}



Meaning	of	the	parameters	ε	and	β	

To	relate	these	parameters	to	known	proper4es	of	the	state	ρ,	look	at	the	Rényi	entropies	

Sn(⇢I) =
1

1� n
log Tr(⇢nI )

(measures	how	mixed	ρI	is)	

à		β(ρ)	>	0	informs	on	how	mixed	the	state	ρ	is	
		

•  		

•  	Mutual	informa4on	(Rényi)	

Sn(⇢) = �(⇢)D logN +O(1)

In[I](⇢) = Sn(⇢I) + Sn(⇢Î)� Sn(⇢) = 2✏(⇢) logN +O(1)

à		ε(ρ)	>	0	informs	on	how	entangled	the	state	ρ	is	
		

•  		Sn(⇢I ) =
�
✏(⇢) + �(⇢)|I|

�
lnN +O(1)

•  Can	see	that		 ✏(⇢) + �(⇢)  1 +O(1/ ln(N))

1
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✏

�(0,0)

GHZ

maximally
mixed

✏ = �

A A

I = {1, 2}

Î = {3}



Meaning	of	the	parameters	ε	and	β	

We	can	make	precise	statements	by	looking	at	the	condi.onal	n-inequali.es:	

In	par4cular:			
	
	if 	 	 	 	 					

	 		
✏(⇢) > �(⇢)(D � 1)

	
à  all	bipar44ons	of	the	subsystems	are	entangled!	
	
à  The	state	ρ	is	said	to	be	``genuinely	entangled‘’	

max{SI
n(⇢), S

Î
n(⇢)} > Sn(⇢) , ✏ > �(D � |I|)If	|I|	>	D/2	

à	If	this	inequality	is	sa4sfied,	all	bipar44ons	of	the	D-parts	in	two	groups	of	
size	|I|		and		D	-|I|	are	entangled	(… )	[Horodeckies	96]	



5	–	Results	on	randomized	measurements	
(part	of	which	with	Collins	and	Gurau)		



Moments	



2	

Moments	of	the	distribu.on	of	randomized	measurements	

…The	moments	of	the	distribu4on	of	randomized	measurements	contain	no	
informa4on	on	ρ	in	this	limit	(at	first	order)…	
	
	
à	Look	at	connected	correla.ons	instead	(cumulants)	

For	tensors	in	the	ensemble	(and	more)	:	

lim
N!1

D
Tr(U †

AU⇢)n
E
=

⇣
Tr(A)N�D

⌘n
(1 + o(1))



Results	for	observables	of	small	rank	



Results	for	an	observable	of	small	rank	

Tr(U†AU⇢) A =
DO
c=1

|0ih0|
U = U1 ⌦ · · ·⌦ UD

Uc 2 U(N) Haar	distributed	

Ai1,...,iD ; j1,...,jD =
DY

c=1

�ic,1�jc,1

D�
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�nE

c
=

1

NnD
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G1,G22Gn
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l� lmin(G1,G2)

⇣
� 1

N

⌘l
TrG1(A) TrG2(⇢) f [G1, G2; l]

Plug-in	the	assump4ons	for	A	and	ρ		



Results	for	an	observable	of	small	rank	

Tr(U†AU⇢) A =
DO
c=1

|0ih0|
U = U1 ⌦ · · ·⌦ UD

Uc 2 U(N) Haar	distributed	
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1� 1
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D�
Tr(U†AU⇢)

�nE

c
⇠ (n� 1)!Tr(⇢n)N�D

à  Extract	the	Rényi	entropies	(so	also	β(ρ))		

à  Extract	info	on	other	LU-invariants		(extract	β(ρ)	+	ε(ρ))		

A A
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c
/ “

X

G SYK-melonic

TrG(⇢) ”



Results	for	an	observable	of	small	rank	

Tr(U†AU⇢) A =
DO
c=1

|0ih0|
U = U1 ⌦ · · ·⌦ UD

Uc 2 U(N) Haar	distributed	

1

1

✏

�(0,0)
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1� 1
D

1
D

Ø  	Very	different	results	for	these	two	zones	

Ø  Detects	states	sa4sfying:	

		
which	are	genuinely	entangled!	

✏(⇢) > �(⇢)(D � 1)



Varying	the	rank	of	the	observables	

``…What	about	the	choice	of	observables… 	
Are	they	all	as	good	in	the	role	of	``probe’’?	’’	
	
à	In	our	ensemble,	let’s	try	to	see	if	the	same	result	is	obtained	no	
maper	the	common	rank	of	the	observables.			



Varying	the	ranks	of	the	observables	

Tr(U†AU⇢)
U = U1 ⌦ · · ·⌦ UD

Uc 2 U(N) Haar	distributed	
A =

DO
c=1

Ac, Tr(An
c ) = N↵

à  The	zone	of	detectability	shrinks,	and	eventually	disappears!	

à  For	the	genuinely	entangled	states	sa4sfying	 	 	 	 	 	we	can	extract	
both	β(ρ)	and	ε(ρ)	by	performing	two	measurements	with	observables	of	different	ranks:	
Get	dominant	contribu4on	of	Rényi	entropies,	mutual	informa4on,	condi4onal	entropies…		
	
à	Other	interes4ng	results	when	observables	of	different	ranks	on	different	subsystems. 	

	 		

✏(⇢) > �(⇢)(D � 1)

1
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5	–	Conclusions	



Conclusions	
Ther	tensor	invariants	that	are	the	correla4ons	and	interac4ons	of	random	tensor	models	
appear	very	naturally	in	the	study	of	entanglement	(where	they	are	called	local	unitary	
invariants),	and	in	fact	there	is	a	growing	literature	on	this,	in	the	context	of	(black	hole	
evapora4on	and)	holography	(including	random	tensor	networks,	see	Sylvain’s	talk).		
N.B:	the	topology/geometry	of	the	dual	triangula4on	seems	to	play	a	role	there	too.	
	
	
In	the	limit	where	N	is	very	large,	the	dominant	exponent	of	N	of	the	tensor	invariants	
already	contain	some	informa4on	on	entanglement	(because	it	is	the	leading	term	of	the	
associated	``entropies’’).		
I’ve	illustrated	this	for	the	Rényi	entropies	(a.k.a.	cyclic	melonic	and	necklaces)	using	an	
``ensemble’’	of	density	matrices	with	a	dominant	exponent	that	depends	on	two	parameters.	

	
The	quan44es	that	appear	from	the	correla4ons	of	randomized	measurements	(tensor	HCIZ	
integral)	for	density	matrices	in	this	ensembles	are	sums	over	SYK-melonic	graphs.		
This	leads	to	the	Renyi	mutual	informa4on	for	two	tensors	but	not	for	more.		
	
>>>	What	is	the	informa4on	contained	in	these	quan44es?	More	generally,	do	melonic	
graphs	contain	more	informa4on	than	Renyi	entropies?		
	
Many	things	computed	in	random	tensor	models	have	an	interpreta4on	in	this	context… 
Including	anly4city	proper4es	of	genera4ng	func4ons	/	par44on	func4ons	etc.	
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