On tensor invariants and entanglement

Luca Lionni

Universität Heidelberg

From perturbative to non-perturbative QFT
Muenster - 16/06/23

Partially based on results with Benoit Collins \& Razvan Gurau

1 - Tensors and multipartite quantum systems

2 - Local unitaries and tensor invariants

3 - Randomized measurements and tensor HCIZ

4 - An ensemble of density matrices to work with

5 - Results for randomized measurements for this ensemble

1 - Tensors and multipartite quantum sysytems

Tensors

Tensors

$$
A=\left\{A_{i_{1}, \ldots, i_{D} ; j_{1}, \ldots, j_{D}}\right\} \quad \begin{aligned}
& 1 \leq \mathrm{c} \leq \mathrm{D}: \text { "color" } \\
& 1 \leq \mathrm{i}_{\mathrm{c},} \mathrm{j}_{\mathrm{c}} \leq \mathrm{N}
\end{aligned}
$$

$$
D=3
$$

Matrix $\mathrm{D}=1$ \square

Index summation / contraction

$$
\sum_{j=1}^{N} A_{i_{1}, i_{2}, i_{3} ; j_{1}, j_{j}, j_{3}}^{1} A_{i_{1}^{\prime}, i_{2}^{\prime}}^{2} j_{j}^{j_{1}^{\prime}, j_{2}^{\prime}, j_{D}^{\prime}}
$$

Tensors

$$
A=\left\{A_{i_{1}, \ldots, i_{D} ; j_{1}, \ldots, j_{D}}\right\} \quad \begin{aligned}
& 1 \leq \mathrm{c} \leq \mathrm{D}: \text { "color" } \\
& 1 \leq \mathrm{i}_{\mathrm{c}}, \mathrm{j}_{\mathrm{c}} \leq \mathrm{N}
\end{aligned}
$$

\square
Matrix $\mathrm{D}=1 \quad \bullet \quad M$

Index summation / contraction

$$
\sum_{j=1}^{N} A_{i_{1}, i_{2}, i_{3} ; j_{1}\left\lceil_{j}, j_{3}\right.}^{1} A_{i_{1}^{\prime}, i_{2}^{\prime}}^{2} \mathfrak{j}_{j}^{j_{1}^{\prime}, j_{2}^{\prime}, j_{D}^{\prime}}
$$

Tensors

The kind of tensors that we have seen this week are pure...

Pure tensor $\quad B=|T\rangle\langle T|=T \otimes \bar{T}$

- For states: pure state (not mixed)
- For observables: projection

Mixed tensor \Leftrightarrow not pure

Mixed state...

Normalized identity is maximally mixed...

Tensors

$$
\mathcal{H}=\mathcal{H}_{1} \otimes \cdots \otimes \mathcal{H}_{D} \quad 1 \leq \mathrm{c} \leq \mathrm{D}: \text { "color" }
$$

Factorized tensor $\quad B=M_{1} \otimes \cdots \otimes M_{D}$

- For states: factorized state (may be pure or mixed but it has no entanglement)
- For observables: local observable (applied independently in each subsystem)

Tensors

$$
\mathcal{H}=\mathcal{H}_{1} \otimes \cdots \otimes \mathcal{H}_{D} \quad 1 \leq \mathrm{c} \leq \mathrm{D}: \text { "color" }
$$

Factorized tensor $\quad B=M_{1} \otimes \cdots \otimes M_{D}$

\rightarrow

- For states: factorized state (may be pure or mixed but it has no entanglement)
- For observables: local observable (applied independently in each subsystem)

Entanglement: how far is the density matrix (a tensor) from a convex combination of factorized states. Quantum correlations between subsystems (\Leftrightarrow colors).

$$
\rho_{\mathrm{sep}}=\sum_{k=1}^{K} p_{k} \rho_{1}^{(k)} \otimes \cdots \otimes \rho_{D}^{(k)} \quad \sum_{i=1}^{K} p_{i}=1 \quad \rho_{c}^{(i)} \in \mathcal{M}_{N_{c}}(\mathbb{C}) \quad \text { density matrices }
$$

\rightarrow The key resource exploited by quantum technologies (computers, communications, teleportation...)
\rightarrow Fundamental in the study of quantum black holes, holography, ...
$\mathrm{D}=2$: bipartite entanglement
D > 2 multipartite entanglement
Grouping subsystems / colors is equivalent to "multiplying" the index sets

Some important questions

Given an unknown quantum state (that is, an unknown tensor),

1. How efficiently can we reconstruct the full tensor using some measurements? $\langle\mathcal{O}\rangle_{\rho}=\operatorname{Tr}(\mathcal{O} \rho)$ (tomography... exponential in the size of the system...)
2. How can we recover (theoretically / experimentally) only the information needed to characterize the amount of entanglement between the different parts...?

2 - Local unitaries and tensor invariants

Local unitaries

Local unitaries (LU)

LU transformation

$$
B^{\prime}=\left(U_{1}^{\dagger} \otimes \ldots \otimes U_{D}^{\dagger}\right) B\left(U_{1} \otimes \ldots \otimes U_{D}\right)
$$

LU equivalence $\quad B^{\prime} \sim_{\mathrm{LU}} B \quad \Leftrightarrow \quad \exists U=U_{1} \otimes \cdots \otimes U_{D}, \quad B^{\prime}=U^{\dagger} B U$

LU invariance
Function: $\quad f(\rho)=f\left(U \rho U^{\dagger}\right)$
Distribution: $\quad d \mu(\rho)=d \mu\left(U \rho U^{\dagger}\right)$

$$
U=U_{1} \otimes \cdots \otimes U_{D}
$$

Local unitaries (LU)

LU transformation

$$
B^{\prime}=\left(U_{1}^{\dagger} \otimes \ldots \otimes U_{D}^{\dagger}\right) B\left(U_{1} \otimes \ldots \otimes U_{D}\right)
$$

LU equivalence $\quad B^{\prime} \sim_{\mathrm{LU}} B \quad \Leftrightarrow \quad \exists U=U_{1} \otimes \cdots \otimes U_{D}, \quad B^{\prime}=U^{\dagger} B U$

LU invariance

$$
\text { Function: } \quad f(\rho)=f\left(U \rho U^{\dagger}\right)
$$

Distribution: $\quad d \mu(\rho)=d \mu\left(U \rho U^{\dagger}\right)$

$$
U=U_{1} \otimes \cdots \otimes U_{D}
$$

"LU invariants" : LU-invariant polynomial encoded by colorwise summation of indices:

$\operatorname{Tr} \mathrm{A}^{2}$

$$
\operatorname{Tr}_{12}\left[\left(\operatorname{Tr}_{3} \mathrm{~A}\right)^{2}\right]=\operatorname{Tr} \mathrm{A}_{12}^{2}
$$

$\operatorname{Tr}_{G}(A)$

LU-invariants \Leftrightarrow bubbles

Local unitaries (LU) : why do we care?

\rightarrow Two density matrices share the same theoretical entanglement properties IFF they are LUequivalent

Local unitaries (LU) : why do we care?

\rightarrow Two density matrices share the same theoretical entanglement properties IFF they are LUequivalent
"theoretical" because there are some "operational" notions of entanglement equivalence classes that are more adapted to the use of entanglement in quantum operations (LOCC...).

Two density matrices in the same LU-entanglement class also have the same "operational" entanglement properties, but density matrices in different LU-entanglement classes may still have the same "operational" entanglement...

Local unitaries (LU) : why do we care?

\rightarrow Two density matrices share the same theoretical entanglement properties IFF they are LUequivalent
"theoretical" because there are some "operational" notions of entanglement equivalence classes that are more adapted to the use of entanglement in quantum operations (LOCC...).

Two density matrices in the same LU-entanglement class also have the same "operational" entanglement properties, but density matrices in different LU-entanglement classes may still have the same "operational" entanglement...

Anyways:

- All entanglement measures $f: \rho \rightarrow f(\rho) \in \mathbb{R}$ are LU-invariant functions.
- LU-invariant distributions allow studying "typical properties" of LU-entanglement classes

Random quantum states: Page, Hayden, Leung, Winter, Collins, Nechita, Zyckowski, Aubrun, Majumdar...

LU invariant distributions: two examples

\square EX 1: The perturbed Gaussians we are used to are LU-invariant distributions

$$
\begin{aligned}
& \mathbb{E}[f(T, \bar{T})]=\int d T d \bar{T} e^{-N^{D-1}[T \cdot \bar{T}+V(T, \bar{T})]} f(T, \bar{T}), \\
& V(T, \bar{T})[\lambda]=\sum_{n \geq 2} \lambda^{n} \sum_{\substack{G \text { colored graph } \\
\text { with } n \text { vertices }}} N^{-\zeta(G)} z_{G} \operatorname{Tr}_{G}(T \otimes \bar{T})
\end{aligned}
$$

If normalized, they provide distributions over pure states inside an LU-equivalence class
The Gaussian distribution is often used for random pure states (\Leftrightarrow big Haar unitary on a fixed state $U^{\dagger}|0\rangle\langle 0| U \ldots$. Page curve for instance)

LU invariant distributions: two examples

\square EX 1: The perturbed Gaussians we are used to are LU-invariant distributions

$$
\begin{aligned}
& \mathbb{E}[f(T, \bar{T})]=\int d T d \bar{T} e^{-N^{D-1}[T \cdot \bar{T}+V(T, \bar{T})]} f(T, \bar{T}), \\
& V(T, \bar{T})[\lambda]=\sum_{n \geq 2} \lambda^{n} \sum_{\substack{G \text { colored graph } \\
\text { with } n \text { vertices }}} N^{-\zeta(G)} z_{G} \operatorname{Tr}_{G}(T \otimes \bar{T})
\end{aligned}
$$

If normalized, they provide distributions over pure states inside an LU-equivalence class
The Gaussian distribution is often used for random pure states (\Leftrightarrow big Haar unitary on a fixed state $U^{\dagger}|0\rangle\langle 0| U \ldots$... Page curve for instance)

- EX 2: Fix ρ and consider $\left(U_{1}^{\dagger} \otimes \ldots \otimes U_{D}^{\dagger}\right) \rho\left(U_{1} \otimes \ldots \otimes U_{D}\right)$ with $\quad U_{c} \quad$ Haar distributed
\rightarrow Average over properties that don't matter when studying entanglement.

For instance: recall that $\langle\mathcal{O}\rangle_{\rho}=\operatorname{Tr}(\mathcal{O} \rho)$ is the average of observable O for state ρ.
Study

$$
\langle\mathcal{O}\rangle_{U^{\dagger} \rho U}=\operatorname{Tr}\left(\mathcal{O} U^{\dagger} \rho U\right) \quad U=U_{1} \otimes \cdots \otimes U_{D}
$$

More on LU-invariant polynomials = tensor invariants

Importance of LU-invariants (the polynomials)

\rightarrow They separate the LU-entanglement classes
Contain all information on LU-entanglement

\rightarrow Basis for LU-invariant functions in the limit $N \rightarrow \infty$

Think of : - products of traces of power of a matrix for unitary invariance - products of power sums for symmetric functions
\rightarrow Also the correlation functions for LU-invariant random tensors

Importance of LU-invariants (the polynomials)

\rightarrow They separate the LU-entanglement classes
Contain all information on LU-entanglement
\rightarrow Basis for LU-invariant functions in the limit $N \rightarrow \infty$

Think of: - products of traces of power of a matrix for unitary invariance - products of power sums for symmetric functions
\rightarrow Also the correlation functions for LU-invariant random tensors

$>$ So we study these polynomials for ensembles of density matrices or random tensors, \& work with expansions of other quantities on this family.
$>\quad$ Growing interest of LU-invariants for $\mathrm{D}>2$ in characterizing the multipartite entanglement structure, for instance in holography.

Some important questions (BIS)

Given an unknown quantum state (that is, an unknown tensor),

1. How efficiently can we reconstruct the full tensor using some measurements? $\langle\mathcal{O}\rangle_{\rho}=\operatorname{Tr}(\mathcal{O} \rho)$ (tomography... exponential in the size of the system...)
2. How can we recover (theoretically / experimentally) only the information needed to characterize the amount of entanglement between the different parts...?
3. Identify the LU-entanglement class of the tensor \Leftrightarrow Reconstruct only the information up to LU transformations.
\Leftrightarrow Compute a certain number $f(N)$ of LU-invariants (all of them for $N \rightarrow \infty$)...

It's "a lot less" than the first point but "a lot more" than what's needed for the second point (still a lot...)

Some important questions (BIS)

Given an unknown quantum state (that is, an unknown tensor),

1. How efficiently can we reconstruct the full tensor using some measurements? $\langle\mathcal{O}\rangle_{\rho}=\operatorname{Tr}(\mathcal{O} \rho)$ (tomography... exponential in the size of the system...)
2. How can we recover (theoretically / experimentally) only the information needed to characterize the amount of entanglement between the different parts...?
3. Identify the LU-entanglement class of the tensor \Leftrightarrow Reconstruct only the information up to LU transformations. \Leftrightarrow Compute a certain number $f(N)$ of LU-invariants (all of them for $N \rightarrow \infty$)...

It's "a lot less" than the first point but "a lot more" than what's needed for the second point (still a lot...)
4. Compute SOME of the LU-invariants of your tensor... e.g. Rényi-n entropies!
\rightarrow What info on multipartite entanglement do they contain???

- Purities / Rényi entropies (bipartite, classical)

- Purities / Rényi entropies (bipartite, classical)

$$
\begin{gathered}
S_{n}^{I}(\rho)=\frac{1}{1-n} \log \operatorname{Tr}\left(\rho_{I}^{n}\right) \\
\text { (measures how mixed } \rho_{\mathrm{l}} \text { is) }
\end{gathered}
$$

- Moments of the partial transpose

$$
\operatorname{Tr}_{12}\left(\operatorname{Tr}_{3}\left(\rho^{T_{2}}\right)^{n}\right)
$$

Calabrese, Cardy 12; Tamaoka 18 ; Dong, Qi, Walter 21 ;
Kudler-Flam, Narovlansky, Ryu 21

K33 if pure..

Cube (octahedron) if pure..

3 - Randomized measurements \& the tensor HCIZ integral

Randomized measurements

Study of the real random variable

$$
\begin{array}{ll}
\operatorname{Tr}\left(U^{\dagger} A U \rho\right) & U=U_{1} \otimes \cdots \otimes U_{D} \\
& U_{c} \in U(N) \quad \text { Haar distributed }
\end{array}
$$

Randomized measurements

Study of the real random variable

$$
\begin{array}{ll}
\operatorname{Tr}\left(U^{\dagger} A U \rho\right) \quad & U=U_{1} \otimes \cdots \otimes U_{D} \\
& U_{c} \in U(N) \quad \text { Haar distributed }
\end{array}
$$

Seeing A as an observable

$\operatorname{Tr}\left(U^{\dagger} A U \rho\right) \begin{cases}\langle A\rangle_{U \rho U \dagger} & \begin{array}{l}\text { Observation of } A \text { on a random state in the LU-entanglement } \\ \text { class of } \rho\end{array} \\ \left\langle U^{\dagger} A U\right\rangle_{\rho} & \begin{array}{l}\text { Locally randomly rotated observation on a fixed density matrix. } \\ \text { "Randomized measurements". }\end{array}\end{cases}$

Access the properties of an unknown density matrix using a locally randomly rotated A as a probe
This is one example of LU invariant distribution

Some important questions (BIS-BIS)

Given an unknown quantum state (that is, an unknown tensor),

1. How efficiently can we reconstruct the full tensor using some measurements? $\langle\mathcal{O}\rangle_{\rho}=\operatorname{Tr}(\mathcal{O} \rho)$ (tomography... exponential in the size of the system...)
2. How can we recover (theoretically / experimentally) only the information needed to characterize the amount of entanglement between the different parts...?
3. Identify the LU-entanglement class of the tensor
\Leftrightarrow Reconstruct only the information up to LU transformations.
\Leftrightarrow Compute a certain number $f(N)$ of LU-invariants (all of them for $N \rightarrow \infty$)...
4. Compute SOME of the LU-invariants of your tensor... e.g. Rényi-n entropies!
5. Study the distribution of local randomized measurements performed on your unknown system for the your favorite observable...

$$
\langle\mathcal{O}\rangle_{U^{\dagger} \rho U}=\operatorname{Tr}\left(\mathcal{O} U^{\dagger} \rho U\right) \quad U=U_{1} \otimes \cdots \otimes U_{D}
$$

Recover some of the LU-invariant information (related to dominant LU-invariants)

Some important questions (BIS-BIS)

Given an unknown quantum state (that is, an unknown tensor),

1. How efficiently can we reconstruct the full tensor using some measurements? $\langle\mathcal{O}\rangle_{\rho}=\operatorname{Tr}(\mathcal{O} \rho)$ (tomography... exponential in the size of the system...)
2. How can we recover (theoretically / experimentally) only the information needed to characterize the amount of entanglement between the different parts...?
3. Identify the LU-entanglement class of the tensor
\Leftrightarrow Reconstruct only the information up to LU transformations.
\Leftrightarrow Compute a certain number $f(N)$ of LU-invariants (all of them for $N \rightarrow \infty$)...
4. Compute SOME of the LU-invariants of your tensor... e.g. Rényi-n entropies!
5. Study the distribution of local randomized measurements performed on your unknown system for the your favorite observable...

$$
\langle\mathcal{O}\rangle_{U^{\dagger} \rho U}=\operatorname{Tr}\left(\mathcal{O} U^{\dagger} \rho U\right) \quad U=U_{1} \otimes \cdots \otimes U_{D}
$$

Recover some of the LU-invariant information (related to dominant LU-invariants)
...What about the choice of observables... Are they all as good in the role of "probe"?

Randomized measurements

\rightarrow For small values of N, D : good detection of entanglement.
\rightarrow Also: - testing outcomes of distant experiments,

- computing measures of chaos and thermalization,
- identification of topological phases
\rightarrow Solves some experimental issues, Allows for post-treatment of information on classical computers ("classical shadows"), tools from AI
\rightarrow All of this also tested experimentally on quantum plateforms...
See e.g. 2203.11374 for a review

With Collins, Gurau, Hu, we work on computing the distribution of the random variable $\operatorname{Tr}\left(U^{\dagger} A U \rho\right)$ for D-partite quantum states, for finite D and in the limit $N \rightarrow \infty$.

The tensor HCIZ integral

$$
\begin{array}{ll}
\operatorname{Tr}\left(U^{\dagger} A U \rho\right) \quad & U=U_{1} \otimes \cdots \otimes U_{D} \\
& U_{c} \in U(N) \quad \text { Haar distributed }
\end{array}
$$

Characterize the random variable by computing its moments (correlations)

$$
\left\langle\left(\operatorname{Tr}\left(U^{\dagger} A U \rho\right)\right)^{n}\right\rangle=\int_{U(N)^{D}} \mathrm{~d} U_{1} \cdots \mathrm{~d} U_{D}\left(\operatorname{Tr}\left(U^{\dagger} A U \rho\right)\right)^{n}
$$

Generating function of moments : tensor HCIZ integral

$$
I_{D}(A, \rho ; z)=\int_{U(N)^{D}} \mathrm{~d} U_{1} \cdots \mathrm{~d} U_{D} e^{z \operatorname{Tr}\left(U^{\dagger} A U \rho\right)}
$$

If $\mathrm{D}=1$ (matrix case), usual HCIZ integral. Analyticity properties [Goulden, Guay-Paquet, Novak 11,12 ; Novak 20, 22]

Equivalently, characterize the random variable by its cumulants (connected correlations):

$$
\log I_{D}(A, \rho ; z)=\sum_{n \geq 1} \frac{z^{n}}{n!}\left\langle\left(\operatorname{Tr}\left(U^{\dagger} A U \rho\right)\right)^{n}\right\rangle_{c}
$$

More meaningful in limit of infinite N

The tensor HCIZ integral

$$
\begin{array}{ll}
\operatorname{Tr}\left(U^{\dagger} A U \rho\right) \quad & U=U_{1} \otimes \cdots \otimes U_{D} \\
& U_{c} \in U(N) \quad \text { Haar distributed }
\end{array}
$$

Expansion of cumulants (connected correlations) of randomized measurements, on the family of LU-invariants [Collins, Gurau, L. 20]:

4 - An ensemble of density matrices to work with

Remember that we have shown the following in full generality:

$$
\left\langle\left(\operatorname{Tr}\left(U^{\dagger} A U \rho\right)\right)^{n}\right\rangle_{c}=\frac{1}{N^{n D}} \sum_{G_{1}, G_{2} \in \mathbb{G}_{n}} \sum_{l \geq l_{\min }\left(G_{1}, G_{2}\right)}\left(-\frac{1}{N}\right)^{l} \operatorname{Tr}_{G_{1}}(A) \operatorname{Tr}_{G_{2}}(\rho) f\left[G_{1}, G_{2} ; l\right]
$$

\rightarrow To take a large N limit, we need to know how the LU-invariants scale with N .
Only assumption needed.

Scaling ansatz for LU-invariants

We are going to derive some results for ensembles of density matrices satisfying that scale in the same following way:

$$
\begin{array}{ll}
& \operatorname{Tr}_{G}(\rho)=N^{-s_{G}(\rho)} \operatorname{tr}_{G}(\rho)(1+O(1 / N)) \\
\text { With: } & s_{G}(\rho)=\beta(\rho) s_{G}\left(\mathbb{1} / N^{D}\right)+\epsilon(\rho) s_{G}(|\mathrm{GHZ}\rangle\langle\mathrm{GHZ}|)
\end{array}
$$

Where: $\quad|\mathrm{GHZ}\rangle=\frac{1}{\sqrt{N}} \sum_{i=1}^{N}|i\rangle \cdots|i\rangle \quad \begin{gathered}\text { Multipartite generalization of Bell state } \\ \text { (very entangled..."maximally") }\end{gathered}$
In tensor notation: $\quad|\mathrm{GHZ}\rangle_{i_{1}, \ldots, i_{D}}=\frac{1}{\sqrt{N}} \sum_{j=1}^{N} \delta_{i_{1}, j} \cdots \delta_{i_{D}, j}$
The scalings are given by: $\quad s_{G}\left(\mathbb{1} / N^{D}\right)=\sum_{c=1}^{D}\left(n-F_{A c}(G)\right)$

$$
s_{G}(|\mathrm{GHZ}\rangle\langle\mathrm{GHZ}|)=n-C_{\text {pure }}(G)
$$

Scaling ansatz for LU-invariants

We are going to derive some results for ensembles of density matrices satisfying that scale in the same following way:

$$
\begin{array}{ll}
& \operatorname{Tr}_{G}(\rho)=N^{-s_{G}(\rho)} \operatorname{tr}_{G}(\rho)(1+O(1 / N)) \\
\text { With: } & s_{G}(\rho)=\beta(\rho) s_{G}\left(\mathbb{1} / N^{D}\right)+\epsilon(\rho) s_{G}(|\mathrm{GHZ}\rangle\langle\mathrm{GHZ}|)
\end{array}
$$

Where: $\quad|\mathrm{GHZ}\rangle=\frac{1}{\sqrt{N}} \sum_{i=1}^{N}|i\rangle \cdots|i\rangle \quad \begin{gathered}\text { Multipartite generalization of Bell state } \\ \text { (very entangled "maximally") }\end{gathered}$ In tensor notation: $\quad|\mathrm{GHZ}\rangle_{i_{1}, \ldots, i_{D}}=\frac{1}{\sqrt{N}} \sum_{j=1}^{N} \delta_{i_{1}, j} \cdots \delta_{i_{D}, j}$

The scalings are given by: $\quad s_{G}\left(\mathbb{1} / N^{D}\right)=\sum_{c=1}^{D}\left(n-F_{A c}(G)\right)$

$$
s_{G}(|\mathrm{GHZ}\rangle\langle\mathrm{GHZ}|)=n-C_{\mathrm{pure}}(G)
$$

Could also replace GHZ by Psi with :

$$
s_{G}(|\mathrm{Psi}\rangle\langle\mathrm{Psi}|)=\frac{1}{D-1} \sum_{1 \leq c_{1}<c_{2} \leq D}\left(n-F_{c_{1} c_{2}(G)}\right)
$$

Scaling ansatz for LU-invariants

We are going to derive some results for ensembles of density matrices satisfying that scale in the same following way:

$$
\begin{aligned}
& \qquad \begin{array}{c}
\operatorname{Tr}_{G}(\rho)=N^{-s_{G}(\rho)} \operatorname{tr}_{G}(\rho)(1+O(1 / N)) \\
\text { With: } \quad s_{G}(\rho)=\beta(\rho) s_{G}\left(\mathbb{1} / N^{D}\right)+\epsilon(\rho) s_{G}(|\mathrm{GHZ}\rangle\langle\mathrm{GHZ}|) \\
\text { Where: } \quad|\mathrm{GHZ}\rangle=\frac{1}{\sqrt{N}} \sum_{i=1}^{N}|i\rangle \cdots|i\rangle \quad \begin{array}{l}
\text { Multipartite generalization of Bell state } \\
\text { (very entangled) }
\end{array}
\end{array}
\end{aligned}
$$

We will compute the expansions on LU-invariants of the cumulants of the distribution of randomized measurements $\operatorname{Tr}\left(U^{\dagger} A U \rho\right)$, in the limit of infinite local dimension N ,
for ρ satisfying the assumption above,
For A a local observable: $\quad A=A_{1} \otimes \ldots \otimes A_{D}$

$$
A_{i_{1}, \ldots, i_{D} ; j_{1}, \ldots, j_{D}}=\prod_{c=1}^{D}\left(A_{c}\right)_{i_{c}, j_{c}}
$$

Scaling ansatz for LU-invariants

We are going to derive some results for ensembles of density matrices satisfying that scale in the same following way:

$$
\begin{array}{ll}
& \operatorname{Tr}_{G}(\rho)=N^{-s_{G}(\rho)} \operatorname{tr}_{G}(\rho)(1+O(1 / N)) \\
\text { With: } & s_{G}(\rho)=\beta(\rho) s_{G}\left(\mathbb{1} / N^{D}\right)+\epsilon(\rho) s_{G}(|\mathrm{GHZ}\rangle\langle\mathrm{GHZ}|) \\
\text { Where: } & |\mathrm{GHZ}\rangle=\frac{1}{\sqrt{N}} \sum_{i=1}^{N}|i\rangle \cdots|i\rangle \quad \begin{array}{l}
\text { Multipartite generalization of Bell state } \\
\text { (very entangled) }
\end{array}
\end{array}
$$

Interpretation: "entropies"

$$
\begin{aligned}
S_{G}(\rho) & =-\frac{1}{c_{G}} \log \operatorname{Tr}_{G}(\rho) \\
& =\frac{s_{G}(\rho)}{c_{G}} \log (N)-\frac{1}{c_{G}} \log \left(\operatorname{tr}_{G}(\rho)(1+o(1))\right)
\end{aligned}
$$

Scaling ansatz for LU-invariants

We are going to derive some results for ensembles of density matrices satisfying that scale in the same following way:

$$
\begin{array}{cc}
\operatorname{Tr}_{G}(\rho)=N^{-s_{G}(\rho)} \operatorname{tr}_{G}(\rho)(1+O(1 / N)) \\
\text { With: } & s_{G}(\rho)=\beta(\rho) s_{G}\left(\mathbb{1} / N^{D}\right)+\epsilon(\rho) s_{G}(|\mathrm{GHZ}\rangle\langle\mathrm{GHZ}|) \\
\text { Where: } & |\mathrm{GHZ}\rangle=\frac{1}{\sqrt{N}} \sum_{i=1}^{N}|i\rangle \cdots|i\rangle \quad \begin{array}{l}
\text { Multipartite generalization of Bell state } \\
\text { (very entangled) }
\end{array}
\end{array}
$$

Interpretation: "entropies"

$$
\begin{aligned}
S_{G}(\rho) & =-\frac{1}{c_{G}} \log \operatorname{Tr}_{G}(\rho) \\
& =\frac{s_{G}(\rho)}{c_{G}} \log (N)-\frac{1}{c_{G}} \log \left(\operatorname{tr}_{G}(\rho)(1+o(1))\right)
\end{aligned}
$$

$\rightarrow \mathrm{s}_{\mathrm{G}}(\rho)$ is the dominant part of the "entropies" associated to the LU-invariants

Scaling ansatz for LU-invariants

We are going to derive some results for ensembles of density matrices satisfying that scale in the same following way:

$$
\begin{array}{ll}
& \operatorname{Tr}_{G}(\rho)=N^{-s_{G}(\rho)} \operatorname{tr}_{G}(\rho)(1+O(1 / N)) \\
\text { With: } & s_{G}(\rho)=\beta(\rho) s_{G}\left(\mathbb{1} / N^{D}\right)+\epsilon(\rho) s_{G}(|\mathrm{GHZ}\rangle\langle\mathrm{GHZ}|) \\
\text { Where: } & |\mathrm{GHZ}\rangle=\frac{1}{\sqrt{N}} \sum_{i=1}^{N}|i\rangle \cdots|i\rangle \quad \begin{array}{l}
\text { Multipartite generalization of Bell state } \\
\text { (very entangled) }
\end{array}
\end{array}
$$

Interpretation: "entropies"

$$
\begin{aligned}
S_{G}(\rho) & =-\frac{1}{c_{G}} \log \operatorname{Tr}_{G}(\rho) \\
& =\frac{s_{G}(\rho)}{c_{G}} \log (N)-\frac{1}{c_{G}} \log \left(\operatorname{tr}_{G}(\rho)(1+o(1))\right)
\end{aligned}
$$

$\rightarrow \mathrm{s}_{\mathrm{G}}(\rho)$ is the dominant part of the "entropies" associated to the LU-invariants
\rightarrow We are assuming that the dominant parts of the entropies all interpolate between those of the maximally mixed, separable state and a maximally entangled, pure state

Meaning of the parameters ε and β

Meaning of the parameters ε and β

To relate these parameters to known properties of the state ρ, look at the Rényi entropies

$$
\begin{gathered}
S_{n}\left(\rho_{I}\right)=\frac{1}{1-n} \log \operatorname{Tr}\left(\rho_{I}^{n}\right) \\
\text { (measures how mixed } \rho_{\mathrm{I}} \text { is) }
\end{gathered}
$$

- $S_{n}(\rho)=\beta(\rho) D \log N+O(1) \rightarrow \beta(\rho)>0$ informs on how mixed the state ρ is
- $S_{n}\left(\rho_{I}\right)=(\epsilon(\rho)+\beta(\rho)|I|) \ln N+O(1)$

Meaning of the parameters ε and β

To relate these parameters to known properties of the state ρ, look at the Rényi entropies

$$
\begin{gathered}
S_{n}\left(\rho_{I}\right)=\frac{1}{1-n} \log \operatorname{Tr}\left(\rho_{I}^{n}\right) \\
\text { (measures how mixed } \rho_{\mathrm{l}} \text { is) }
\end{gathered}
$$

- $S_{n}(\rho)=\beta(\rho) D \log N+O(1) \rightarrow \beta(\rho)>0$ informs on how mixed the state ρ is
- $S_{n}\left(\rho_{I}\right)=(\epsilon(\rho)+\beta(\rho)|I|) \ln N+O(1)$
- Can see that $\epsilon(\rho)+\beta(\rho) \leq 1+O(1 / \ln (N))$
- Mutual information (Rényi)

$$
\mathcal{I}_{n}[I](\rho)=S_{n}\left(\rho_{I}\right)+S_{n}\left(\rho_{\hat{I}}\right)-S_{n}(\rho)=2 \epsilon(\rho) \log N+O(1)
$$

$\rightarrow \varepsilon(\rho)>0$ informs on how entangled the state ρ is

Meaning of the parameters ε and β

We can make precise statements by looking at the conditional n-inequalities:

$$
\text { If }|I|>D / 2 \quad \max \left\{S_{n}^{I}(\rho), S_{n}^{\hat{I}}(\rho)\right\}>S_{n}(\rho) \quad \Leftrightarrow \quad \epsilon>\beta(D-|I|)
$$

\rightarrow If this inequality is satisfied, all bipartitions of the D-parts in two groups of size |I| and $D-|I|$ are entangled (...) [Horodeckies 96]

In particular:

$$
\text { if } \epsilon(\rho)>\beta(\rho)(D-1)
$$

\rightarrow all bipartitions of the subsystems are entangled!
\rightarrow The state ρ is said to be "genuinely entangled"

5 - Results on randomized measurements

(part of which with Collins and Gurau)

Moments

Moments of the distribution of randomized measurements

For tensors in the ensemble (and more) :

$$
\lim _{N \rightarrow \infty}\left\langle\operatorname{Tr}\left(U^{\dagger} A U \rho\right)^{n}\right\rangle=\left(\operatorname{Tr}(A) N^{-D}\right)^{n}(1+o(1))
$$

The moments of the distribution of randomized measurements contain no information on ρ in this limit (at first order)..
\rightarrow Look at connected correlations instead (cumulants)

Results for observables of small rank

Results for an observable of small rank

$$
\begin{array}{cc}
\operatorname{Tr}\left(U^{\dagger} A U \rho\right) & A=\bigotimes_{c=1}^{D}|0\rangle\langle 0| \\
A_{i_{1}, \ldots, i_{D} ; j_{1}, \ldots, j_{D}}=\prod_{c=1}^{D} \delta_{i_{c}, 1} \delta_{j_{c}, 1}
\end{array} \quad \begin{aligned}
& U=U_{1} \otimes \cdots \otimes U_{D} \\
& U_{c} \in U(N) \quad \text { Haar distributed }
\end{aligned}
$$

$$
\left\langle\left(\operatorname{Tr}\left(U^{\dagger} A U \rho\right)\right)^{n}\right\rangle_{c}=\frac{1}{N^{n D}} \sum_{G_{1}, G_{2} \in \mathbb{G}_{n}} \sum_{l \geq l_{\min }\left(G_{1}, G_{2}\right)}\left(-\frac{1}{N}\right)^{l} \operatorname{Tr}_{G_{1}}(A) \operatorname{Tr}_{G_{2}}(\rho) f\left[G_{1}, G_{2} ; l\right]
$$

Plug-in the assumptions for A and ρ

Results for an observable of small rank

$$
\operatorname{Tr}\left(U^{\dagger} A U \rho\right) \quad A=\bigotimes_{c=1}^{D}|0\rangle\langle 0|
$$

$$
U=U_{1} \otimes \cdots \otimes U_{D}
$$

$$
U_{c} \in U(N) \quad \text { Haar distributed }
$$

$$
\begin{aligned}
& \left\langle\left(\operatorname{Tr}\left(U^{\dagger} A U \rho\right)\right)^{n}\right\rangle_{c} \sim(n-1)!\operatorname{Tr}\left(\rho^{n}\right) N^{-D} \\
& \rightarrow \text { Extract the Rényi entropies (so also } \beta(\rho)) \\
& \left\langle\left(\operatorname{Tr}\left(U^{\dagger} A U \rho\right)\right)^{n}\right\rangle_{c} \propto " \sum_{G \text { SYK-melonic }} \operatorname{Tr}_{G}(\rho) "
\end{aligned}
$$

Results for an observable of small rank

$$
\operatorname{Tr}\left(U^{\dagger} A U \rho\right) \quad A=\bigotimes_{c=1}^{D}|0\rangle\langle 0|
$$

$$
U=U_{1} \otimes \cdots \otimes U_{D}
$$

$$
U_{c} \in U(N) \quad \text { Haar distributed }
$$

> Very different results for these two zones
$>$ Detects states satisfying:

$$
\epsilon(\rho)>\beta(\rho)(D-1)
$$

which are genuinely entangled!

Varying the rank of the observables

"...What about the choice of observables.. Are they all as good in the role of "probe"?"
\rightarrow In our ensemble, let's try to see if the same result is obtained no matter the common rank of the observables.

Varying the ranks of the observables

$$
\operatorname{Tr}\left(U^{\dagger} A U \rho\right) \quad A=\bigotimes_{c=1}^{D} A_{c}, \quad \operatorname{Tr}\left(A_{c}^{n}\right)=N^{\alpha} \left\lvert\, \begin{aligned}
& U=U_{1} \otimes \cdots \otimes U_{D} \\
& U_{c} \in U(N) \quad \text { Haar distributed }
\end{aligned}\right.
$$

\rightarrow The zone of detectability shrinks, and eventually disappears!
\rightarrow For the genuinely entangled states satisfying $\epsilon(\rho)>\beta(\rho)(D-1)$ we can extract both $\beta(\rho)$ and $\varepsilon(\rho)$ by performing two measurements with observables of different ranks: Get dominant contribution of Rényi entropies, mutual information, conditional entropies..
\rightarrow Other interesting results when observables of different ranks on different subsystems.

5 - Conclusions

Conclusions

Ther tensor invariants that are the correlations and interactions of random tensor models appear very naturally in the study of entanglement (where they are called local unitary invariants), and in fact there is a growing literature on this, in the context of (black hole evaporation and) holography (including random tensor networks, see Sylvain's talk).
N.B: the topology/geometry of the dual triangulation seems to play a role there too.

In the limit where N is very large, the dominant exponent of N of the tensor invariants already contain some information on entanglement (because it is the leading term of the associated "entropies").
I've illustrated this for the Rényi entropies (a.k.a. cyclic melonic and necklaces) using an "ensemble" of density matrices with a dominant exponent that depends on two parameters.

The quantities that appear from the correlations of randomized measurements (tensor HCIZ integral) for density matrices in this ensembles are sums over SYK-melonic graphs. This leads to the Renyi mutual information for two tensors but not for more.
>>> What is the information contained in these quantities? More generally, do melonic graphs contain more information than Renyi entropies?

Many things computed in random tensor models have an interpretation in this context... Including anlyticity properties of generating functions / partition functions etc.

Thank you!

