Tensor Field Theory with local and nonlocal degrees of freedom: Phase Transition from the FRG Approach

Joseph Ben Geloun

LIPN, Univ. Sorbonne Paris Nord

arXiv:2305.06136[hep-th]

a joint work with

Andreas G A Pithis (Arnold Sommerfeld Center for TP, München) and Johannes Thürigen (Mathematisches Institut der WW-Univ., Münster)

> June 15, 2023 From perturbative to non-perturbative QFT WWU Münster, Germany

Outline

Introduction

2 The TFT model

8 Review of the Functional Renormalization Group formalism

In FRG for the cyclic melonic TFT

5 Phase structure(s) and limiting cases

6 Conclusion

Outline

Introduction

2 The TFT model

3 Review of the Functional Renormalization Group formalism

I FRG for the cyclic melonic TFT

5 Phase structure(s) and limiting cases

6 Conclusion

Tensor Models/Tensor Field Theory

• Tensors (including matrices and vectors) are useful for theoretical/statistical physics, for information theory, and data sciences.

Tensor Models/Tensor Field Theory

• Tensors (including matrices and vectors) are useful for theoretical/statistical physics, for information theory, and data sciences.

• Quantum Gravity/Group Field Theory [Ambjorn etal '90, Oriti '06]

 \rightarrow T's represent geometric/topological/combinatorial degrees of freedom

 $M_{ab} \sim \text{Random 2D geom/maps}$; $T_{abc} \sim \text{Random 3D geom}$.

• Random tensor models [Gurau, Random Tensors, 2016] extend random matrix models. (Additional tool large size *N* limit, scaling limits, to achieve continuum limits of discrete random geometries of higher dimension.)

Tensor Models/Tensor Field Theory

• Tensors (including matrices and vectors) are useful for theoretical/statistical physics, for information theory, and data sciences.

• Quantum Gravity/Group Field Theory [Ambjorn etal '90, Oriti '06]

 \rightarrow T's represent geometric/topological/combinatorial degrees of freedom

 $M_{ab} \sim \text{Random 2D geom/maps}$; $T_{abc} \sim \text{Random 3D geom}$.

• Random tensor models [Gurau, Random Tensors, 2016] extend random matrix models. (Additional tool large size *N* limit, scaling limits, to achieve continuum limits of discrete random geometries of higher dimension.)

• The Tensor Track for QG and random geometry CRivasseau.

• Hope of a proper review the gunderlyin geometry of TFT

• Hope of a proper review the gunderlyin geometry of TFT

You are never better served than by yourself !

 \rightarrow Two hypothesis: Discreteness & Randomness

 \rightarrow Two hypothesis: Discreteness & Randomness

 \rightarrow Two hypothesis: Discreteness & Randomness

 \rightarrow Two hypothesis: Discreteness & Randomness

 \rightarrow Two hypothesis: Discreteness & Randomness

 \rightarrow Two hypothesis: Discreteness & Randomness

 \rightarrow Two hypothesis: Discreteness & Randomness

• Example of discrete geometry: 2D

• Then, random gluings

 \rightarrow Two hypothesis: Discreteness & Randomness

• Example of discrete geometry: 2D

- Then, random gluings
- Idea is to recover a smooth space/spacetime after a continuum limit.

 \rightarrow Works well in 2D: Convergence to the Brownian sphere/Liouville gravity (random geometry and random matrix models + Large N limit).

 \rightarrow Two hypothesis: Discreteness & Randomness

• Example of discrete geometry: 2D

- Then, random gluings
- Idea is to recover a smooth space/spacetime after a continuum limit.

 \rightarrow Works well in 2D: Convergence to the Brownian sphere/Liouville gravity (random geometry and random matrix models + Large N limit).

 \rightarrow In Higher D?

TFT/TGFT Renormalisation group (RG) analysis

- Nonlocal QFT with propagating tensor degrees of freedom: Tensor Field Theory
- \rightarrow Renormalization perturbative have been worked out since 2011 [BG & Rivasseau 2011]

 $T_{a_1a_2...a_r}$ the indices are propagating themselves.

TFT/TGFT Renormalisation group (RG) analysis

• Nonlocal QFT with propagating tensor degrees of freedom: Tensor Field Theory

 \rightarrow Renormalization perturbative have been worked out since 2011 [BG & Rivasseau 2011]

 $T_{a_1a_2...a_r}$ the indices are propagating themselves.

• Perturbative and nonperturbative RG flow understood as well: several contributors [Avohou, Benedetti, BG, Carrozza, Delporte, Eichhorn, Ferdinand, Gurau, Koslowski, Lahoche, Livine, Lumma, Oriti, Ousmane Samary, Pascalie, Pereira, Perez-Sanchez, Pithis, Rivasseau, Tamaazousti, Tanasa, Thuerigen, Toriumi, Vignes-Tourneret, Wulkenhaar ...]

TFT/TGFT Renormalisation group (RG) analysis

• Nonlocal QFT with propagating tensor degrees of freedom: Tensor Field Theory

 \rightarrow Renormalization perturbative have been worked out since 2011 [BG & Rivasseau 2011]

 $T_{a_1a_2...a_r}$ the indices are propagating themselves.

• Perturbative and nonperturbative RG flow understood as well: several contributors [Avohou, Benedetti, BG, Carrozza, Delporte, Eichhorn, Ferdinand, Gurau, Koslowski, Lahoche, Livine, Lumma, Oriti, Ousmane Samary, Pascalie, Pereira, Perez-Sanchez, Pithis, Rivasseau, Tamaazousti, Tanasa, Thuerigen, Toriumi, Vignes-Tourneret, Wulkenhaar ...]

Focus

• Nonperturbative study: FRG analysis was launched to understand the phase diagram of TFT [Benedetti, BG, Oriti, 2014].

Functional Renormalisation Group analysis of TFT/TGFT

• Consider G a compact group and $T : G^r \to \mathbb{K}$

• No possible phase transition as long as G is compact [Benedetti 2014]; (in the limit of infinite radius, yes).

Functional Renormalisation Group analysis of TFT/TGFT

• Consider G a compact group and $T : G^r \to \mathbb{K}$

• No possible phase transition as long as G is compact [Benedetti 2014]; (in the limit of infinite radius, yes).

- FRG analysis for TFT [Benedetti, BG, Oriti, 2014].
- $T: U(1)^3 \to \mathbb{R}$
- \rightarrow The system of β -functions was non-autonomous: explicit k in the eq.
- \rightarrow due to an external scale: the radius of the compact manifold

• Making the system autonomous and finding good notion of scaling dimension of coupling constants

- \rightarrow large *N* mode limit (UV) (decompactify the space);
- \rightarrow small mode limit (IR)
- \rightsquigarrow Phase diagram: strong evidence of fixed points

What is small k limit?

Functional Renormalisation Group analysis of TFT/TGFT

• Consider G a compact group and $T : G^r \to \mathbb{K}$

• No possible phase transition as long as G is compact [Benedetti 2014]; (in the limit of infinite radius, yes).

- FRG analysis for TFT [Benedetti, BG, Oriti, 2014].
- $T: U(1)^3 \to \mathbb{R}$
- \rightarrow The system of β -functions was non-autonomous: explicit k in the eq.
- \rightarrow due to an external scale: the radius of the compact manifold

• Making the system autonomous and finding good notion of scaling dimension of coupling constants

- \rightarrow large *N* mode limit (UV) (decompactify the space);
- \rightarrow small mode limit (IR)
- \rightsquigarrow Phase diagram: strong evidence of fixed points

What is small k limit?

T_{000} ? T_{010} ?

• Computation at an intermediate/interpolated regime.

• 2020: Pithis and Thuerigen [2009.13588]

- 2020: Pithis and Thuerigen [2009.13588]
- \rightarrow Perform a computation of the FRG flow without resorting in any large/small k-limit
- \rightarrow Interaction: arbitrary valence of cyclic melonic interactions (nonlocal);

- \rightarrow In the IR, equivalence between rank r TFT with O(2)-model
- \rightarrow a 0-dimensional theory, no phase transition, symmetry restoration.
- \rightarrow Effective dimension $d_{\text{eff}}(k)$: flow from UV to the IR, $r-1 \rightarrow 0$

- 2020: Pithis and Thuerigen [2009.13588]
- \rightarrow Perform a computation of the FRG flow without resorting in any large/small k-limit
- \rightarrow Interaction: arbitrary valence of cyclic melonic interactions (nonlocal);

- \rightarrow In the IR, equivalence between rank r TFT with O(2)-model
- \rightarrow a 0-dimensional theory, no phase transition, symmetry restoration.
- \rightarrow Effective dimension $d_{\text{eff}}(k)$: flow from UV to the IR, $r-1 \rightarrow 0$

- 2020: Pithis and Thuerigen [2009.13588]
- \rightarrow Perform a computation of the FRG flow without resorting in any large/small k-limit
- \rightarrow Interaction: arbitrary valence of cyclic melonic interactions (nonlocal);

- \rightarrow In the IR, equivalence between rank r TFT with O(2)-model
- \rightarrow a 0-dimensional theory, no phase transition, symmetry restoration.
- \rightarrow Effective dimension $d_{\text{eff}}(k)$: flow from UV to the IR, $r-1 \rightarrow 0$

Outline

Introduction

2 The TFT model

3 Review of the Functional Renormalization Group formalism

I FRG for the cyclic melonic TFT

5 Phase structure(s) and limiting cases

6 Conclusion

• The fields: G a Lie group

$$\Phi: \mathbb{R}^d \times G^r \to \mathbb{K} = \mathbb{C}, \mathbb{R} \tag{1}$$

$$(\mathbf{x}, \mathbf{g}) \mapsto \Phi(\mathbf{x}, \mathbf{g})$$
 (2)

 \bullet G is chosen compact \rightarrow Peter-Weyl transform of the field

$$\Phi(\boldsymbol{x},\boldsymbol{g}) = \int_{\mathbb{R}^d} \frac{\mathrm{d}\boldsymbol{p}}{(2\pi)^{d/2}} \mathrm{e}^{i\boldsymbol{p}\cdot\boldsymbol{x}} \sum_{j_1,\dots,j_r} \left(\prod_{c=1}^r d_{j_c} \right) \mathrm{tr}_j \left[\Phi_{j_1 j_2 \dots j_r}(\boldsymbol{p}) \bigotimes_{c=1}^r D^{j_c}(g_c) \right]$$
(3)

• The tensor field:

$$\Phi_{j_1 j_2 \dots j_r}(\boldsymbol{p}) \tag{4}$$

• The fields: G a Lie group

$$\Phi: \mathbb{R}^d \times G^r \to \mathbb{K} = \mathbb{C}, \mathbb{R} \tag{1}$$

$$(\mathbf{x}, \mathbf{g}) \mapsto \Phi(\mathbf{x}, \mathbf{g})$$
 (2)

 \bullet G is chosen compact \rightarrow Peter-Weyl transform of the field

$$\Phi(\boldsymbol{x},\boldsymbol{g}) = \int_{\mathbb{R}^d} \frac{\mathrm{d}\boldsymbol{p}}{(2\pi)^{d/2}} \mathrm{e}^{i\boldsymbol{p}\cdot\boldsymbol{x}} \sum_{j_1,\dots,j_r} \left(\prod_{c=1}^r d_{j_c} \right) \mathrm{tr}_{\boldsymbol{j}} \left[\Phi_{j_1 j_2 \dots j_r}(\boldsymbol{p}) \bigotimes_{c=1}^r D^{j_c}(g_c) \right]$$
(3)

• The tensor field:

$$\Phi_{j_1 j_2 \dots j_r}(\boldsymbol{p}) \tag{4}$$

• Different motivations for that:

• The fields: G a Lie group

$$\Phi: \mathbb{R}^d \times G^r \to \mathbb{K} = \mathbb{C}, \mathbb{R} \tag{1}$$

$$(\mathbf{x}, \mathbf{g}) \mapsto \Phi(\mathbf{x}, \mathbf{g})$$
 (2)

 \bullet G is chosen compact \rightarrow Peter-Weyl transform of the field

$$\Phi(\boldsymbol{x},\boldsymbol{g}) = \int_{\mathbb{R}^d} \frac{\mathrm{d}\boldsymbol{p}}{(2\pi)^{d/2}} \mathrm{e}^{i\boldsymbol{p}\cdot\boldsymbol{x}} \sum_{j_1,\dots,j_r} \left(\prod_{c=1}^r d_{j_c} \right) \mathrm{tr}_j \left[\Phi_{j_1 j_2 \dots j_r}(\boldsymbol{p}) \bigotimes_{c=1}^r D^{j_c}(g_c) \right]$$
(3)

• The tensor field:

$$\Phi_{j_1 j_2 \dots j_r}(\boldsymbol{p}) \tag{4}$$

- Different motivations for that:
- Adding matter-like degrees of freedom [Oriti, Sindoni, Wilson-Ewing 2016]

6

- O(N)-models: understanding CFT's (Harribey, Benedetti)
- Tensor-like SYK models: computable toy models for AdS/CFT correspondence.

• The fields: G a Lie group

$$\Phi: \mathbb{R}^d \times G^r \to \mathbb{K} = \mathbb{C}, \mathbb{R} \tag{1}$$

$$(\mathbf{x}, \mathbf{g}) \mapsto \Phi(\mathbf{x}, \mathbf{g})$$
 (2)

 \bullet G is chosen compact \rightarrow Peter-Weyl transform of the field

$$\Phi(\boldsymbol{x},\boldsymbol{g}) = \int_{\mathbb{R}^d} \frac{\mathrm{d}\boldsymbol{p}}{(2\pi)^{d/2}} \mathrm{e}^{i\boldsymbol{p}\cdot\boldsymbol{x}} \sum_{j_1,\dots,j_r} \left(\prod_{c=1}^r d_{j_c} \right) \mathrm{tr}_j \left[\Phi_{j_1 j_2 \dots j_r}(\boldsymbol{p}) \bigotimes_{c=1}^r D^{j_c}(g_c) \right]$$
(3)

• The tensor field:

$$\Phi_{j_1 j_2 \dots j_r}(\boldsymbol{p}) \tag{4}$$

- Different motivations for that:
- Adding matter-like degrees of freedom [Oriti, Sindoni, Wilson-Ewing 2016]
- O(N)-models: understanding CFT's (Harribey, Benedetti)
- Tensor-like SYK models: computable toy models for $\mathsf{AdS}/\mathsf{CFT}$ correspondence.

+ 2 new motivations: New features in towards the IR

 \rightarrow triggers phase transition !
TFT model: The fields

• The fields: G a Lie group

$$\Phi: \mathbb{R}^d \times G' \to \mathbb{K} = \mathbb{C}, \mathbb{R} \tag{1}$$

$$(\mathbf{x}, \mathbf{g}) \mapsto \Phi(\mathbf{x}, \mathbf{g})$$
 (2)

 \bullet G is chosen compact \rightarrow Peter-Weyl transform of the field

$$\Phi(\boldsymbol{x},\boldsymbol{g}) = \int_{\mathbb{R}^d} \frac{\mathrm{d}\boldsymbol{p}}{(2\pi)^{d/2}} \mathrm{e}^{i\boldsymbol{p}\cdot\boldsymbol{x}} \sum_{j_1,\dots,j_r} \left(\prod_{c=1}^r d_{j_c} \right) \mathrm{tr}_{\boldsymbol{j}} \left[\Phi_{j_1 j_2 \dots j_r}(\boldsymbol{p}) \bigotimes_{c=1}^r D^{j_c}(g_c) \right]$$
(3)

• The tensor field:

$$\Phi_{j_1 j_2 \dots j_r}(\boldsymbol{p}) \tag{4}$$

- Different motivations for that:
- Adding matter-like degrees of freedom [Oriti, Sindoni, Wilson-Ewing 2016]
- O(N)-models: understanding CFT's (Harribey, Benedetti)
- Tensor-like SYK models: computable toy models for AdS/CFT correspondence.

$+\ 2$ new motivations: New features in towards the IR

 \rightarrow triggers phase transition ! \bigcirc

 \rightarrow installs a nontrivial FLOW of a notion of "effective dimension" !

TFT model: The fields

• The fields: G a Lie group

$$\Phi: \mathbb{R}^d \times G' \to \mathbb{K} = \mathbb{C}, \mathbb{R} \tag{1}$$

$$(\boldsymbol{x}, \boldsymbol{g}) \mapsto \Phi(\boldsymbol{x}, \boldsymbol{g})$$
 (2)

 \bullet G is chosen compact \rightarrow Peter-Weyl transform of the field

$$\Phi(\boldsymbol{x},\boldsymbol{g}) = \int_{\mathbb{R}^d} \frac{\mathrm{d}\boldsymbol{p}}{(2\pi)^{d/2}} \mathrm{e}^{i\boldsymbol{p}\cdot\boldsymbol{x}} \sum_{j_1,\dots,j_r} \left(\prod_{c=1}^r d_{j_c} \right) \mathrm{tr}_j \left[\Phi_{j_1 j_2 \dots j_r}(\boldsymbol{p}) \bigotimes_{c=1}^r D^{j_c}(g_c) \right]$$
(3)

• The tensor field:

$$\Phi_{j_1 j_2 \dots j_r}(\boldsymbol{p}) \tag{4}$$

- Different motivations for that:
- Adding matter-like degrees of freedom [Oriti, Sindoni, Wilson-Ewing 2016]
- O(N)-models: understanding CFT's (Harribey, Benedetti)
- Tensor-like SYK models: computable toy models for $\mathsf{AdS}/\mathsf{CFT}$ correspondence.

+ 2 new motivations: New features in towards the IR

 \rightarrow triggers phase transition ! \bigcirc

 \rightarrow installs a nontrivial FLOW of a notion of "effective dimension" !

• TFT interactions/observables: contractions of tensors (wth trivial metric)

- TFT interactions/observables: contractions of tensors (wth trivial metric)
- Interest in particular contractions: cyclic melonic
- Illustration in rank 4: complex tensors $\Phi_{j_1j_2j_3j_4}$, $j_1, j_2, j_3, j_4 \in I$, with distinguished indices

- TFT interactions/observables: contractions of tensors (wth trivial metric)
- Interest in particular contractions: cyclic melonic
- Illustration in rank 4: complex tensors $\Phi_{j_1j_2j_3j_4}, j_1, j_2, j_3, j_4 \in I$, with distinguished indices

Figure: Rank d = 4 cyclic-melonic interactions diagrammatically described by colored graphs.

- TFT interactions/observables: contractions of tensors (wth trivial metric)
- Interest in particular contractions: cyclic melonic
- Illustration in rank 4: complex tensors $\Phi_{j_1j_2j_3j_4}$, $j_1, j_2, j_3, j_4 \in I$, with distinguished indices

Figure: Rank d = 4 cyclic-melonic interactions diagrammatically described by colored graphs.

• Nonlocal and a tractable combinatorics: computable at arbitrary valence.

- TFT interactions/observables: contractions of tensors (wth trivial metric)
- Interest in particular contractions: cyclic melonic
- Illustration in rank 4: complex tensors $\Phi_{j_1j_2j_3j_4}$, $j_1, j_2, j_3, j_4 \in I$, with distinguished indices

Figure: Rank d = 4 cyclic-melonic interactions diagrammatically described by colored graphs.

• Nonlocal and a tractable combinatorics: computable at arbitrary valence.

•
$$S_{int}(\phi, \bar{\phi}) = \int_{\mathbb{R}^d} \mathrm{d}\mathbf{x} \left[\sum_{n=2}^{n_{\max}} \sum_{c=1}^r \lambda_n^c \operatorname{Tr}_{n;c}(\phi, \bar{\phi})(\mathbf{x}) \right]$$

TFT model: action

• The action

$$S(\phi, \bar{\phi}) = S_{kin}(\phi, \bar{\phi}) + S_{int}(\phi, \bar{\phi})$$

$$S_{kin}(\phi, \bar{\phi}) = (\bar{\phi}, K\phi) = \int_{\mathbb{R}^d \times \mathbb{R}^d} d\mathbf{x} d\mathbf{x}' \int_{G^r \times G^r} d\mathbf{g} d\mathbf{g}' \quad \bar{\phi}(\mathbf{x}, \mathbf{g}) K(\mathbf{x}, \mathbf{g}; \mathbf{x}', \mathbf{g}')) \phi(\mathbf{x}', \mathbf{g}')$$

$$K(\mathbf{x}, \mathbf{g}; \mathbf{x}', \mathbf{g}') = \delta(\mathbf{x} - \mathbf{x}') \delta(\mathbf{g}\mathbf{g}'^{-1}) \Big[\Big(-\Delta_x - \kappa^2 \sum_{c=1}^r (\Delta_g^{(c)})^{\zeta} \Big) + \mu_k \Big]$$
(5)

where Δ_{x} is the Laplacian on \mathbb{R}^{d} , $\Delta_g^{(c)}$ the (colored) Laplacian on G, $\zeta \in]0,1]$

 κ restores the dimension balance.

Outline

Introduction

2 The TFT model

8 Review of the Functional Renormalization Group formalism

I FRG for the cyclic melonic TFT

5 Phase structure(s) and limiting cases

6 Conclusion

• [Wilson 71] Implementing a renormalization scheme is to regularize all ill-behaved (above) expressions in such a way to generate a flow of the theory coupling constants;

• [Wilson 71] Implementing a renormalization scheme is to regularize all ill-behaved (above) expressions in such a way to generate a flow of the theory coupling constants;

• Introduce a scale k and an IR (cut-off) regulator \mathcal{R}_k that projects only on field modes relevant to that scale

$$Z_{k}[J,\bar{J}] = e^{W_{k}[J,\bar{J}]} = \int \mathcal{D}\varphi \mathcal{D}\bar{\varphi} e^{-S[\varphi,\bar{\varphi}] - (\varphi,\mathcal{R}_{k}\varphi) + (J,\varphi) + (\varphi,J)}.$$
(6)

 \mathcal{R}_k should satisfy specific conditions;

• [Wilson 71] Implementing a renormalization scheme is to regularize all ill-behaved (above) expressions in such a way to generate a flow of the theory coupling constants;

• Introduce a scale k and an IR (cut-off) regulator \mathcal{R}_k that projects only on field modes relevant to that scale

$$Z_{k}[J,\bar{J}] = e^{W_{k}[J,\bar{J}]} = \int \mathcal{D}\varphi \mathcal{D}\bar{\varphi} e^{-S[\varphi,\bar{\varphi}] - (\varphi, \mathcal{R}_{k}\varphi) + (J,\varphi) + (\varphi,J)}.$$
(6)

 \mathcal{R}_k should satisfy specific conditions;

Scale dependent effective action

$$\Gamma_{k}[\varphi,\bar{\varphi}] = \sup_{J,\bar{J}} \left[(\varphi,J) + (J,\varphi) - W_{k}[J,\bar{J}] \right] - (\varphi,\mathcal{R}_{k}\varphi).$$
(7)

• Expansion for TFT:

$$\Gamma_{k}[\varphi,\bar{\varphi}] = (\varphi,\mathcal{K}_{k}\varphi) + \sum_{\gamma} \lambda_{\gamma;k} \operatorname{Tr}_{\gamma}[\varphi,\bar{\varphi}],$$
$$\mathcal{K}_{k} = Z_{k} \Big(-\Delta_{x} - \kappa^{2} \sum_{c=1}^{r} (\Delta_{g}^{(c)})^{\zeta} \Big) + \mu_{k}$$
(8)

• Flow equation for the effective average action: The Wetterich-Morris equation

$$(k\partial_k)\,\Gamma_k[\varphi,\bar{\varphi}] = \frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\mathbb{I}_2\right)^{-1}(k\partial_k)\,\mathcal{R}_k\right],\tag{9}$$

where STr is a supertrace (all configuration space variables integrated), $\Gamma_k^{(2)}$ is the Hessian matrix of Γ_k

$$\Gamma_{k}^{(2)}[\varphi,\bar{\varphi}](\mathbf{x},\mathbf{g};\mathbf{y},\mathbf{h}) := \frac{\delta^{2}\Gamma_{k}[\varphi,\bar{\varphi}]}{\delta\varphi(\mathbf{x},\mathbf{g})\delta\bar{\varphi}(\mathbf{y},\mathbf{h})}$$

$$\Gamma_{k}^{(2)}[\varphi,\varphi](\mathbf{x},\mathbf{g};\mathbf{y},\mathbf{h}) := \frac{\delta^{2}\Gamma_{k}[\varphi,\bar{\varphi}]}{\delta\varphi(\mathbf{x},\mathbf{g})\delta\varphi(\mathbf{y},\mathbf{h})}$$

$$\Gamma_{k}^{(2)}[\bar{\varphi},\bar{\varphi}](\mathbf{x},\mathbf{g};\mathbf{y},\mathbf{h}) := \dots$$
(10)

• Results are dependent on \mathcal{R}_k and the ansatz for Γ_k ;

 \Rightarrow Prove that the results holds for classes of regulators and an enlarged truncation helps in gaining confidence in the results.

Outline

Introduction

2 The TFT model

3 Review of the Functional Renormalization Group formalism

In FRG for the cyclic melonic TFT

5 Phase structure(s) and limiting cases

6 Conclusion

Figure: Rank d = 4 cyclic-melonic interaction with valence 2n = 8.

$$F_{2}[\varphi,\bar{\varphi}](\boldsymbol{x},\boldsymbol{g};\boldsymbol{y},\boldsymbol{h}) = \sum_{c=1}^{r} \sum_{n=2}^{n_{\max}} \frac{n}{n!} \lambda_{n,k}^{c} \Big[$$

Figure: Rank d = 4 cyclic-melonic interaction with valence 2n = 8.

$$F_{2}[\varphi,\bar{\varphi}](\boldsymbol{x},\boldsymbol{g};\boldsymbol{y},\boldsymbol{h}) = \sum_{c=1}^{r} \sum_{n=2}^{n_{\max}} \frac{n}{n!} \lambda_{n,k}^{c} \left[\prod_{b \neq c} \delta(g_{b},h_{b}) \right] (\bar{\varphi} \cdot_{\hat{c}} \varphi)^{n-1} (g_{c},h_{c})$$

Figure: Rank d = 4 cyclic-melonic interaction with valence 2n = 8.

$$\begin{aligned} F_{2}[\varphi,\bar{\varphi}](\boldsymbol{x},\boldsymbol{g};\boldsymbol{y},\boldsymbol{h}) &= \sum_{c=1}^{r} \sum_{n=2}^{n_{\max}} \frac{n}{n!} \lambda_{n,k}^{c} \bigg[\\ \bigg[\prod_{b \neq c} \delta(g_{b},h_{b}) \bigg] (\bar{\varphi} \cdot_{c} \varphi)^{n-1}(g_{c},h_{c}) + \delta(g_{c},h_{c}) (\bar{\varphi} \cdot_{c} \varphi)^{n-1} (\hat{\boldsymbol{g}}_{c},\hat{\boldsymbol{h}}_{c}) \end{aligned}$$

Figure: Rank d = 4 cyclic-melonic interaction with valence 2n = 8.

$$F_{2}[\varphi,\bar{\varphi}](\mathbf{x},\mathbf{g};\mathbf{y},\mathbf{h}) = \sum_{c=1}^{r} \sum_{n=2}^{n_{max}} \frac{n}{n!} \lambda_{n,k}^{c} \Big[\Big[\prod_{b \neq c} \delta(g_{b},h_{b}) \Big] (\bar{\varphi} \cdot_{\hat{c}} \varphi)^{n-1} (g_{c},h_{c}) + \delta(g_{c},h_{c}) (\bar{\varphi} \cdot_{c} \varphi)^{n-1} (\hat{g}_{c},\hat{h}_{c}) \\ + \sum_{p=1}^{n-2} (\bar{\varphi} \cdot_{\hat{c}} \varphi)^{p} (g_{c},h_{c}) (\bar{\varphi} \cdot_{c} \varphi)^{n-p-1} (\hat{g}_{c},\hat{h}_{c}) \Big].$$
(11)

The cyclic melonic potential approximation: Projection on local fields

• G = U(1)

• Projection on local fields after derivation: $\varphi(\mathbf{x}, \mathbf{g}) = \chi$ and $\rho = a_G \chi^2$

$$F_{2}[\bar{\chi}, \chi](\mathbf{x}, \mathbf{g}; \mathbf{y}, \mathbf{h})$$

$$= a_{\mathbb{R}}^{d} a_{G}^{-r} \sum_{c=1}^{r} \left[\left(a_{G} \prod_{b \neq c} \delta(g_{b}, h_{b}) + a_{G} \delta(g_{c}, h_{c}) - 1 \right) V_{k}^{c'}(\rho) + \rho V^{\prime\prime}(\rho) \right]$$

$$V_{k}^{c}(z) = \sum_{n=2}^{n_{\max}} \frac{1}{n!} \lambda_{n,k}^{c} z^{n}$$

(12)

The cyclic melonic potential approximation: Projection on local fields

• G = U(1)

• Projection on local fields after derivation: $\varphi(\mathbf{x}, \mathbf{g}) = \chi$ and $\rho = a_G \chi^2$

$$F_{2}[\bar{\chi}, \chi](\mathbf{x}, \mathbf{g}; \mathbf{y}, \mathbf{h})$$

$$= a_{\mathbb{R}}^{d} a_{G}^{-r} \sum_{c=1}^{r} \left[\left(a_{G} \prod_{b \neq c} \delta(g_{b}, h_{b}) + a_{G} \delta(g_{c}, h_{c}) - 1 \right) V_{k}^{c'}(\rho) + \rho V^{\prime\prime}(\rho) \right]$$

$$V_{k}^{c}(z) = \sum_{n=2}^{n_{\max}} \frac{1}{n!} \lambda_{n,k}^{c} z^{n} \qquad (12)$$

• Regulator in momentum space

$$\mathcal{R}_{k}(\boldsymbol{p},\boldsymbol{j}) = Z_{k}\left(k^{2} - p^{2} - \kappa^{2} \frac{j^{2\zeta}}{a_{G}^{2\zeta}}\right) \theta\left(k^{2} - p^{2} - \kappa^{2} \frac{j^{2\zeta}}{a_{G}^{2\zeta}}\right)$$
(13)

where $j^{2\zeta} = \sum_c j_c^2$ spectrum of the Laplacian on $U(1)^r$.

The cyclic melonic potential approximation: isotropic sector

- We consider the isotropic sector: $\lambda_{n,k}^c = \lambda_{n,k}/r$, $\forall c = 1, ..., r$.
- Scale $t = \log k$ then $\partial_t = k \partial_k$

$$U_k(\rho) = \mu_k \rho + \sum_{n=2}^{\infty} \frac{1}{n!} \lambda_{n,k} \rho^n$$
(14)

• The FRG equation becomes:

$$\frac{\partial_t U_k(\rho)}{k^2 Z_k} = \frac{F^{(0)}(k)}{k^2 Z_k + U'_k(\rho) + 2\rho U''_k(\rho)} + \frac{F^{(0)}(k) + 2r F^{(1)}(k)}{k^2 Z_k + U'_k(\rho)} + 2\sum_{s=2}^r \binom{r}{s} \frac{F^{(s)}(k)}{k^2 Z_k + \mu_k + \frac{r-s}{r} V'_k(\rho)}$$
(15)

Beta-functions

$$\frac{\partial_t U_k(\rho)}{k^2 Z_k} = \frac{F^{(0)}(k)}{k^2 Z_k + U'_k(\rho) + 2\rho U''_k(\rho)} + \frac{F^{(0)}(k) + 2r F^{(1)}(k)}{k^2 Z_k + U'_k(\rho)} + 2\sum_{s=2}^r \binom{r}{s} \frac{F^{(s)}(k)}{k^2 Z_k + \mu_k + \frac{r-s}{r} V'_k(\rho)}$$
(16)

Two technical aspects:

Beta-functions

$$\frac{\partial_t U_k(\rho)}{k^2 Z_k} = \frac{F^{(0)}(k)}{k^2 Z_k + U'_k(\rho) + 2\rho U''_k(\rho)} + \frac{F^{(0)}(k) + 2r F^{(1)}(k)}{k^2 Z_k + U'_k(\rho)} + 2\sum_{s=2}^r \binom{r}{s} \frac{F^{(s)}(k)}{k^2 Z_k + \mu_k + \frac{r-s}{r} V'_k(\rho)}$$
(16)

Two technical aspects:

 \rightarrow How do you deal with a generic inverse potentials (and their derivatives) with arbitrary valence ? Ans: expansion in Bell-polynomials (that I cannot discuss !)

$$\frac{1}{f(\rho)} = \frac{1}{f(0)} + \sum_{n=1}^{\infty} \frac{\rho^n}{n!} \sum_{l=1}^n (-1)^l \frac{l!}{f(0)^{l+1}} B_{n,l}\left((f'(0), f''(0), ..., f^{(n-l+1)}(0)\right) ,$$

which is given in terms of partial (exponential) Bell polynomials

$$B_{n,l}(x_1, x_2, ..., x_{n-l+1}) = \sum_{\substack{\sigma \vdash n \\ |\sigma| = l}} \binom{n}{s_1, ..., s_n} \prod_{j=1}^{n-l+1} \binom{x_j}{j!}^{s_j}$$

Beta-functions

$$\frac{\partial_t U_k(\rho)}{k^2 Z_k} = \frac{F^{(0)}(k)}{k^2 Z_k + U'_k(\rho) + 2\rho U''_k(\rho)} + \frac{F^{(0)}(k) + 2r F^{(1)}(k)}{k^2 Z_k + U'_k(\rho)} + 2\sum_{s=2}^r \binom{r}{s} \frac{F^{(s)}(k)}{k^2 Z_k + \mu_k + \frac{r-s}{r} V'_k(\rho)}$$
(16)

Two technical aspects:

 \rightarrow How do you deal with a generic inverse potentials (and their derivatives) with arbitrary valence ? Ans: expansion in Bell-polynomials (that I cannot discuss !)

$$\frac{1}{f(\rho)} = \frac{1}{f(0)} + \sum_{n=1}^{\infty} \frac{\rho^n}{n!} \sum_{l=1}^n (-1)^l \frac{l!}{f(0)^{l+1}} B_{n,l}\left((f'(0), f''(0), ..., f^{(n-l+1)}(0)\right) ,$$

which is given in terms of partial (exponential) Bell polynomials

$$B_{n,l}(x_1, x_2, ..., x_{n-l+1}) = \sum_{\substack{\sigma \vdash n \\ |\sigma| = l}} {n \choose s_1, ..., s_n} \prod_{j=1}^{n-l+1} {x_j \choose j!}^{s_j} .$$

 \to How do you deal with the spectral sums on subvolumes of $\mathbb{R}^d\times\mathbb{Z}'?$ Ans: Approximation ...

Threshold spectral sums in rank $s \leq r$

• The master: $\eta_k = -\partial_t \log Z_k$

$$F^{(s)}(k) = \left(1 - \frac{\eta_k}{2}\right) I_1^{(d,s)} + \frac{\eta_k}{2k^2} \left(I_{p^2}^{(d,s)}(k) + \bar{\kappa} I_{j^{2\zeta}}^{(d,s)}(k)\right)$$
(17)

where the threshold functions are defined by, for all $f:\mathbb{R}^d\times\mathbb{Z}^s\to\mathbb{R}$

$$I_{f}^{(d,s)}(k) = \int_{\mathbb{R}^{d}} \mathrm{d}\boldsymbol{p} \sum_{\boldsymbol{j} \in (\mathbb{Z} \setminus \{0\})^{s}} \theta\left(k^{2} - p^{2} - \bar{\kappa} j^{2\zeta}\right) f(\boldsymbol{p}, \boldsymbol{j}),$$
(18)

for all s > 0, and $I_f^{(d,0)}(k) = 0$.

 \rightarrow The sums over discrete volumes have a long history [trace back to polytope volumes, combinatorics and asymptotics Birkhoff].

 \rightarrow Difficult to handle in full generality.

ightarrow Hopefully: no need of an explicit expression, but just their asymptotic behavior !

Threshold spectral sums in rank $s \leq r$

• The master: $\eta_k = -\partial_t \log Z_k$

$$F^{(s)}(k) = \left(1 - \frac{\eta_k}{2}\right) I_1^{(d,s)} + \frac{\eta_k}{2k^2} \left(I_{p^2}^{(d,s)}(k) + \bar{\kappa} I_{j^{2\zeta}}^{(d,s)}(k)\right)$$
(17)

where the threshold functions are defined by, for all $f:\mathbb{R}^d\times\mathbb{Z}^s\to\mathbb{R}$

$$I_{f}^{(d,s)}(k) = \int_{\mathbb{R}^{d}} \mathrm{d}\boldsymbol{p} \sum_{\boldsymbol{j} \in (\mathbb{Z} \setminus \{0\})^{s}} \theta\left(k^{2} - p^{2} - \bar{\kappa} j^{2\zeta}\right) f(\boldsymbol{p}, \boldsymbol{j}),$$
(18)

for all s > 0, and $I_f^{(d,0)}(k) = 0$.

 \rightarrow The sums over discrete volumes have a long history [trace back to polytope volumes, combinatorics and asymptotics Birkhoff].

 \rightarrow Difficult to handle in full generality.

 \rightarrow Hopefully: no need of an explicit expression, but just their asymptotic behavior !

 \rightarrow Approximation at large k: Lejeune-Dirichlet sums (1839's paper)

$$I_{1}^{(d,s)} \sim k^{d+s/\zeta}$$

$$I_{p^{2}}^{(d,s)}(k) \sim I_{j^{2\zeta}}^{(d,s)}(k) \sim k^{2+d+s/\zeta}$$
(19)

The full β -functions

• Look like this

$$\beta_{n,k}(\mu,\lambda_i) = Coeff(\mu,\lambda_i)F^{(0)}(k) + \sum_{l=1}^{n} Coeff_{n,l}(\mu,\lambda_i)F_l(k)$$
(20)

$$Coeff(\mu, \lambda_{i}) = \frac{(-1)^{l} l!}{(Z_{k}k^{2} + \mu_{k})^{l+1}} B_{n,l} (3\lambda_{2}, 5\lambda_{3}, ..., (2n - 2l + 3)\lambda_{n-l+2})$$

$$Coeff_{n,l}(\mu, \lambda_{i}) = \frac{(-1)^{l} l!}{(Z_{k}k^{2} + \mu_{k})^{l+1}} B_{n,l} (\lambda_{2}, \lambda_{3}, ..., \lambda_{n-l+2})$$

$$F_{l}(k) = F^{(0)}(k) + 2rF^{(1)}(k) + 2\sum_{s=2}^{r} {r \choose s} \left(\frac{r-s}{r}\right)^{l} F^{(s)}(k)$$
(21)

The full β -functions

Look like this

$$\beta_{n,k}(\mu,\lambda_i) = Coeff(\mu,\lambda_i)F^{(0)}(k) + \sum_{l=1}^{n} Coeff_{n,l}(\mu,\lambda_i)F_l(k)$$
(20)

$$Coeff(\mu, \lambda_{i}) = \frac{(-1)^{l} l!}{(Z_{k}k^{2} + \mu_{k})^{l+1}} B_{n,l} (3\lambda_{2}, 5\lambda_{3}, ..., (2n - 2l + 3)\lambda_{n-l+2})$$

$$Coeff_{n,l}(\mu, \lambda_{i}) = \frac{(-1)^{l} l!}{(Z_{k}k^{2} + \mu_{k})^{l+1}} B_{n,l} (\lambda_{2}, \lambda_{3}, ..., \lambda_{n-l+2})$$

$$F_{l}(k) = F^{(0)}(k) + 2rF^{(1)}(k) + 2\sum_{s=2}^{r} {r \choose s} \left(\frac{r-s}{r}\right)^{l} F^{(s)}(k)$$
(21)

• Example: the flow equation at the first three orders (n = 1, 2, 3) are

$$\frac{\partial_t \mu_k}{Z_k k^2} = \frac{-\lambda_2}{(Z_k k^2 + \mu_k)^2} \left(3F^{(0)} + F_1 \right) (k), \tag{22}$$

$$\frac{\partial_t \lambda_2}{\partial_t \lambda_2} = -\lambda_3 \left(5F^{(0)} + F_1 \right) (k) + 2\lambda_2^2 \left(2F^{(0)} + F_1 \right) (k) \tag{22}$$

$$\frac{\partial_t \lambda_2}{Z_k k^2} = \frac{-\lambda_3}{(Z_k k^2 + \mu_k)^2} \left(5F^{(0)} + F_1 \right)(k) + \frac{2\lambda_2}{(Z_k k^2 + \mu_k)^3} \left(9F^{(0)} + F_2 \right)(k), \quad (23)$$

$$\frac{\partial_{L} \lambda_{3}}{Z_{k} k^{2}} = \frac{-\lambda_{4}}{(Z_{k} k^{2} + \mu_{k})^{2}} \left(7F^{(0)} + F_{1}\right)(k) + \frac{0\lambda_{2}\lambda_{3}}{(Z_{k} k^{2} + \mu_{k})^{3}} \left(15F^{(0)} + F_{2}\right)(k) + \frac{-6\lambda_{2}^{3}}{(Z_{k} k^{2} + \mu_{k})^{4}} \left(27F^{(0)} + F_{3}\right)(k).$$

$$(24)$$

Joseph Ben Geloun (LIPN, USPN)

4

Outline

Introduction

2 The TFT model

3 Review of the Functional Renormalization Group formalism

I FRG for the cyclic melonic TFT

5 Phase structure(s) and limiting cases

6 Conclusion

$O(N)^r$ -invariant TFT

→ No dynamics on the j's: $\kappa = 0$ (same types of models Benedetti, Gurau, Harribey...) → Spectral sums, $|j_c| < N_c$

$$F^{(s)}(k) = v_d Z_k k^d \left(1 - \frac{\eta_k}{d+2} \right) (N-1)^s \qquad N = 2N_c + 1$$
(25)

 v_d = volume of the *d*-dimensional unit ball \rightarrow Dimensionless couplings (ordinary for local field theory)

$$\mu_{k} = Z_{k} k^{2} \tilde{\mu}_{k} \quad , \quad \lambda_{n;k} = Z_{k}^{n} k^{2n} (v_{d} k^{d})^{1-n} \tilde{\lambda}_{n;k} \quad \text{for } n \geq 2 \,.$$
(26)

 \rightarrow FRG equation for the potential at the large N limit

$$\partial_t u_k(\tilde{\rho}) + du_k(\tilde{\rho}) - (d - 2 + \eta_k)\tilde{\rho} \, u'_k(\tilde{\rho}) = \frac{1 - \frac{\eta_k}{d + 2}}{1 + \frac{r - 1}{r}\tilde{\mu}_k + u'_k(\tilde{\rho})} \,.$$
(27)

 \rightarrow r = 1, O(N)-vector model: ($\eta_k = 0$ (LPA), $\tilde{\mu}_* < 0$) \Rightarrow Wilson-Fisher fixed point for 2 < d < 4 (a single relevant direction); \rightarrow r > 1, $\eta_k = 0$, $\tilde{\mu}_* < 0$: minor modifications by r factors.

n	$10\tilde{\mu}$	$10^2 \tilde{\lambda}_2$	$10^3 \tilde{\lambda}_3$	$10^4 \tilde{\lambda}_4$	$10^5 \tilde{\lambda}_5$	$10^6 \tilde{\lambda}_6$	$10^7 \tilde{\lambda}_7$	$10^8 ilde{\lambda}_8$	$10^9 \tilde{\lambda}_9$	$10^{10} \tilde{\lambda}_{10}$
6	-6.5649	5.1643	9.4342	15.067	7.9684	-54.935				
7	-6.5541	5.1883	9.4629	14.916	6.0346	-73.574	-229.55			
8	-6.5563	5.1834	9.4570	14.947	6.4366	-69.694	-181.66	797.55		
9	-6.5576	5.1806	9.4538	14.964	6.6554	-67.584	-155.63	1230.5	8760.4	
10	-6.5575	5.1808	9.4540	14.963	6.6390	-67.743	-157.59	1198.0	8102.3	-15350.
11	-6.5573	5.1811	9.4544	14.961	6.6164	-67.961	-160.28	1153.3	7198.1	-36441.
12	-6.5573	5.1811	9.4544	14.961	6.6157	-67.967	-160.35	1152.0	7172.4	-37040.

n	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6	θ_7	θ_8	θ_9	θ_{10}
6	0.50915	-1.7691	-5.5429	-9.9919	-16.288	-28.526				
7	0.51807	-1.7196	-4.4455	-8.5409	-12.944	-21.296	-34.652			
8	0.51817	-1.7601	-3.9621	-7.3798	-11.061	-17.086	-26.710	-41.022		
9	0.51716	-1.7723	-3.8661	-6.5101	-9.8464	-14.329	-21.803	-32.301	-47.464	
10	0.51704	-1.7673	-3.9116	-6.0278	-8.9458	-12.485	-18.399	-26.781	-38.014	-53.954
11	0.51714	-1.7650	-3.9374	-5.9025	-8.2795	-11.246	-15.945	-22.858	-31.940	-43.840
12	0.51716	-1.7654	-3.9317	-5.9493	-7.8900	-10.401	-14.165	-19.931	-27.550	-37.247

Table: Values of the coupling constants and scaling exponents (eigenvalues of the stability matrix) at the Wilson-Fisher type fixed point for the d = 3 dimensional $O(N)^{r=3}$ -invariant local field theory in $(\bar{\varphi}\varphi)^n$ truncation. Convergence with higher orders *n* justifies to draw conclusions from results at finite *n*.

The large k and autonomous limit

- Case $\kappa > 0$ (presence of j^{ζ}): Non autonomous system difficult to handle.
- Large momentum makes autonomous the system

$$\tilde{k} = a_G \left(\frac{k}{\sqrt{\tilde{\kappa}}}\right)^{\frac{1}{\zeta}}$$
(28)

- We consider the large \tilde{k} -limit and its interpretations:
- → large momentum limit: UV

 \rightarrow large volume a_G limit (kind of thermodynamic limit)

• Spectral sum approximation

$$F_{k}^{(s)} \sim_{\tilde{k} \to \infty} \frac{1}{2} v_{d,r,\zeta} k^{d} \tilde{k}^{s} \left(2 - \eta_{k} \left(1 - \frac{d + \frac{s}{\zeta}}{d + \frac{s}{\zeta} + 2} \right) \right)$$
(29)

The matter of dimension and (re-)scaling

• Dimensionless couplings

$$\mu_k = Z_k k^2 \tilde{\mu}_k \qquad \lambda_{n;k} = r Z_k^n k^{2n} \left(V_{d,r,\zeta} k^{d+\frac{r-1}{\zeta}} \right)^{1-n} \tilde{\lambda}_{n;k} \quad \text{for } n \ge 2$$
(30)

• Effective dimension

$$d_{
m eff} := d + rac{r-1}{\zeta}, \quad r > 1$$

 $d_{
m eff} := d + rac{1}{\zeta}, \quad r = 1$ (31)

• Flow equation $n \ge 2, r > 0$,

$$\partial_t u_k(\tilde{\rho}) + d_{\text{eff}} u_k(\tilde{\rho}) - (d_{\text{eff}} - 2 + \eta_k) \tilde{\rho} \, u'_k(\tilde{\rho}) = \frac{1 - \frac{\eta_k}{d_{\text{eff}} + 2}}{1 + \frac{r - 1}{r} \tilde{\mu}_k + u'_k(\tilde{\rho})} \tag{32}$$

→ Same as for the $O(N)^r$ model but exchange $d \leftrightarrow d_{\text{eff}}$. → Noticed in [Marchetti et al, 2021] in the Gaussian approx.

• The analysis is similar: solutions are linked, critical dimensions shifted around: $d_{\text{eff}} = d + \frac{r-1}{\zeta} < d_{crit} = 4$ and valid only for restricted couples (d, r).

Existence of WF-fixed points with minor quantitative modifications.

Non autonomous limit: Explicit k integration

• Even more complicated: v_G kept finite not possible to obtain a dimensionless flow equation using only natural coupling rescaling;

• Use $F_1(k)$ to define the scaling of the couplings

$$u_k = Z_k k^2 \tilde{\mu}_k \qquad \lambda_{n;k} = Z_k^n k^{2n} \left(F_1(k) \right)^{1-n} \tilde{\lambda}_{n;k} \quad \text{for } n \ge 2$$
(33)

• The effective dimension is then defined

1

 $d_{\mathrm{eff}}(k) := k \partial_k \log F_1(k)$.

• Flow equation

$$\partial_{t}\tilde{\lambda}_{n;k} + d_{\text{eff}}(k)\tilde{\lambda}_{n;k} - n(d_{\text{eff}}(k) - 2 + \eta_{k})\tilde{\lambda}_{n;k} = \frac{F^{(0)}}{F_{1}}(k)\beta_{n;k}^{\vee 1}(\tilde{\mu}_{k}, \tilde{\lambda}_{i;k}) + \sum_{l=1}^{n}\frac{F_{l}}{F_{1}}(k)\beta_{n,l;k}^{\vee 2}(\tilde{\mu}_{k}, \tilde{\lambda}_{i;k})$$
(34)

Flow of dimension

Limits

$$d_{\text{eff}}(k \gg 1) = d + \frac{r-1}{\zeta} \qquad \qquad d_{\text{eff}}(k \ll 1) = d \tag{35}$$

• At finite k: $F_1^{(d,r)}(k)$ is a polynomial in k;

Left: Comparing the flow of effective dimension for different values of ζ in the case d = r = 3 (with $\bar{\kappa} = 1, \eta_k = 0$).
Fixed points, phase transition and symmetry broken

- Fixed points: hints that we recover the structure of fixed of a ϕ^4 in the IR;
- Numerics: symmetry may be restored in the IR, for a choice of $\mu_k < 0$

Figure: Symmetry restoration in the IR for d = r = 3 for φ^6 -model.

Fixed points, phase transition and symmetry broken

• Numerics: we see symmetry is still broken in the IR (thus phase transition): for another choice $\mu_k < 0$ (15% off the previous choice)

Figure: Symmetry remains broken in the IR for d = r = 3 for φ^6 -model.

Outline

Introduction

2 The TFT model

3 Review of the Functional Renormalization Group formalism

I FRG for the cyclic melonic TFT

5 Phase structure(s) and limiting cases

6 Conclusion

- *TFT*(x) with local dimension $x \in \mathbb{R}^d$ and nonlocal dimensions $g \in G^r$, \rightarrow in the cyclic melonic approx and LPA: strong phase transition \rightarrow allows to identify a flow of an effective dimension;
- Effective dimension $d_{\text{eff}}(k)$ flows from $d (r-1)/\zeta \rightarrow d$

• *TFT*(x) with local dimension $x \in \mathbb{R}^d$ and nonlocal dimensions $g \in G^r$, \rightarrow in the cyclic melonic approx and LPA: strong phase transition \rightarrow allows to identify a flow of an effective dimension;

- Effective dimension $d_{\text{eff}}(k)$ flows from $d (r-1)/\zeta \rightarrow d$
- Flow mechanism is a robust RG-based flow;

• *TFT*(x) with local dimension $x \in \mathbb{R}^d$ and nonlocal dimensions $g \in G^r$, \rightarrow in the cyclic melonic approx and LPA: strong phase transition \rightarrow allows to identify a flow of an effective dimension;

- Effective dimension $d_{\text{eff}}(k)$ flows from $d (r-1)/\zeta \rightarrow d$
- Flow mechanism is a robust RG-based flow;
- Rest of the program: Improving the scheme \rightarrow Dramatic approximation: LPA making $\eta_k = 0$ \rightarrow Regulator:

$$\mathcal{R}_{k}(\boldsymbol{p},\boldsymbol{j}) = Z_{k}^{1} \left(k^{2} - \boldsymbol{p}^{2} - \left(\kappa_{k}^{2} = \frac{Z_{k}^{2}}{Z_{k}^{1}} \right) \frac{j^{2\zeta}}{a_{G}^{2\zeta}} \right) \theta \left(k^{2} - \boldsymbol{p}^{2} - \kappa_{k}^{2} \frac{j^{2\zeta}}{a_{G}^{2\zeta}} \right)$$
(36)

→ Alternative regulator: Buccio and Percacci '22 [arXiv:2207.10596[hep-th]] $Z_1 (k^2 - p^2) \theta (k^2 - p^2) + Z_2 (k^{2\zeta} - j^{2\zeta}) \theta (k^{2\zeta} - j^{2\zeta})$ → Talk of Robero: fields with scaling dimension interpolating between 0 to 1.

• *TFT*(x) with local dimension $x \in \mathbb{R}^d$ and nonlocal dimensions $g \in G^r$, \rightarrow in the cyclic melonic approx and LPA: strong phase transition \rightarrow allows to identify a flow of an effective dimension;

- Effective dimension $d_{ ext{eff}}(k)$ flows from $d-(r-1)/\zeta o d$
- Flow mechanism is a robust RG-based flow;
- Rest of the program: Improving the scheme \rightarrow Dramatic approximation: LPA making $\eta_k = 0$ \rightarrow Regulator:

$$\mathcal{R}_{k}(\boldsymbol{p},\boldsymbol{j}) = Z_{k}^{1} \left(k^{2} - \boldsymbol{p}^{2} - \left(\kappa_{k}^{2} = \frac{Z_{k}^{2}}{Z_{k}^{1}} \right) \frac{j^{2\zeta}}{a_{G}^{2\zeta}} \right) \theta \left(k^{2} - \boldsymbol{p}^{2} - \kappa_{k}^{2} \frac{j^{2\zeta}}{a_{G}^{2\zeta}} \right)$$
(36)

→ Alternative regulator: Buccio and Percacci '22 [arXiv:2207.10596[hep-th]] $Z_1 (k^2 - p^2) \theta (k^2 - p^2) + Z_2 (k^{2\zeta} - j^{2\zeta}) \theta (k^{2\zeta} - j^{2\zeta})$ → Talk of Robero: fields with scaling dimension interpolating between 0 to 1. → Understand the phase transition: condensate geometry conjectured in GFT [Oriti, '06]).

• *TFT*(x) with local dimension $x \in \mathbb{R}^d$ and nonlocal dimensions $g \in G^r$, \rightarrow in the cyclic melonic approx and LPA: strong phase transition \rightarrow allows to identify a flow of an effective dimension;

- Effective dimension $d_{ ext{eff}}(k)$ flows from $d-(r-1)/\zeta o d$
- Flow mechanism is a robust RG-based flow;
- Rest of the program: Improving the scheme \rightarrow Dramatic approximation: LPA making $\eta_k = 0$ \rightarrow Regulator:

$$\mathcal{R}_{k}(\boldsymbol{p},\boldsymbol{j}) = Z_{k}^{1} \left(k^{2} - \boldsymbol{p}^{2} - \left(\kappa_{k}^{2} = \frac{Z_{k}^{2}}{Z_{k}^{1}} \right) \frac{j^{2\zeta}}{a_{G}^{2\zeta}} \right) \theta \left(k^{2} - \boldsymbol{p}^{2} - \kappa_{k}^{2} \frac{j^{2\zeta}}{a_{G}^{2\zeta}} \right)$$
(36)

→ Alternative regulator: Buccio and Percacci '22 [arXiv:2207.10596[hep-th]] $Z_1 (k^2 - p^2) \theta (k^2 - p^2) + Z_2 (k^{2\zeta} - j^{2\zeta}) \theta (k^{2\zeta} - j^{2\zeta})$ → Talk of Robero: fields with scaling dimension interpolating between 0 to 1. → Understand the phase transition: condensate geometry conjectured in GFT [Oriti, '06]).

Thank you !