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Tensor Models/Tensor Field Theory

• Tensors (including matrices and vectors) are useful for theoretical/statistical physics,
for information theory, and data sciences.

• Quantum Gravity/Group Field Theory [Ambjorn etal ‘90, Oriti ‘06]
→ T ’s represent geometric/topological/combinatorial degrees of freedom

Mab ; Random 2D geom/maps ; Tabc ; Random 3D geom.

• Random tensor models [Gurau, Random Tensors, 2016] extend random matrix models.
(Additional tool large size N limit, scaling limits, to achieve continuum limits of discrete
random geometries of higher dimension.)

• The Tensor Track for QG and random geometry ©Rivasseau.
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Tensor fields and random discrete geometry

• Hope of a proper review the gunderlyin geometry of TFT

You are never better served than by yourself !
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Tensor fields and random discrete geometry

→Two hypothesis: Discreteness & Randomness

• Example of discrete geometry: 2D

Tr(M2) Tr(M3) .

• Then, random gluings
• Idea is to recover a smooth space/spacetime after a continuum limit.

→ Works well in 2D: Convergence to the Brownian sphere/Liouville gravity (random
geometry and random matrix models + Large N limit).

→ In Higher D?
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Tensor fields and random discrete geometry

Matrix Models Tensor Models

Mab 

a

b

=

M M

Tr (M²)

M

M M

Tr (M³)

map ≡ triangulated surface

stranded graphs ≡ d simplicial complex
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Tensor fields and random discrete geometry

Matrix Models Tensor Models

Mab 
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TFT/TGFT Renormalisation group (RG) analysis

• Nonlocal QFT with propagating tensor degrees of freedom: Tensor Field Theory

→Renormalization perturbative have been worked out since 2011 [BG & Rivasseau 2011]

Ta1a2...ar the indices are propagating themselves.

• Perturbative and nonperturbative RG flow understood as well: several contributors
[Avohou, Benedetti, BG, Carrozza, Delporte, Eichhorn, Ferdinand, Gurau, Koslowski,
Lahoche, Livine, Lumma, Oriti, Ousmane Samary, Pascalie, Pereira, Perez-Sanchez,
Pithis, Rivasseau, Tamaazousti, Tanasa, Thuerigen, Toriumi, Vignes-Tourneret,
Wulkenhaar ...]

Focus
• Nonperturbative study: FRG analysis was launched to understand the phase diagram of
TFT [Benedetti, BG, Oriti, 2014].
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Functional Renormalisation Group analysis of TFT/TGFT

• Consider G a compact group and T : G r → K

• No possible phase transition as long as G is compact [Benedetti 2014]; (in the limit of
infinite radius, yes).

• FRG analysis for TFT [Benedetti, BG, Oriti, 2014].
• T : U(1)3 → R
→ The system of β-functions was non-autonomous: explicit k in the eq.
→ due to an external scale: the radius of the compact manifold

• Making the system autonomous and finding good notion of scaling dimension of
coupling constants
→ large N mode limit (UV) (decompactify the space);
→ small mode limit (IR)
; Phase diagram: strong evidence of fixed points

What is small k limit?

T000?T010?

• Computation at an intermediate/interpolated regime.
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TFT/TGFT: FRG analysis

• 2020: Pithis and Thuerigen [2009.13588]

→ Perform a computation of the FRG flow without resorting in any large/small k-limit
→ Interaction: arbitrary valence of cyclic melonic interactions (nonlocal);

c

λc
n

→ In the IR, equivalence between rank r TFT with O(2)-model
→ a 0-dimensional theory, no phase transition, symmetry restoration.
→ Effective dimension deff(k): flow from UV to the IR, r − 1→ 0
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TFT model: The fields

• The fields: G a Lie group

Φ : Rd × G r → K = C,R (1)

(xxx ,ggg) 7→ Φ(xxx ,ggg) (2)

• G is chosen compact →Peter-Weyl transform of the field

Φ(xxx ,ggg) =

∫
Rd

dppp

(2π)d/2
eippp·xxx

∑
j1,...,jr

(
r∏

c=1

djc

)
trjjj

[
Φj1j2...jr (ppp)

r⊗
c=1

D jc (gc)

]
(3)

• The tensor field:

Φj1j2...jr (ppp) (4)

• Different motivations for that:
- Adding matter-like degrees of freedom [Oriti, Sindoni, Wilson-Ewing 2016]
- O(N)-models: understanding CFT’s (Harribey, Benedetti)
- Tensor-like SYK models: computable toy models for AdS/CFT correspondence.

+ 2 new motivations: New features in towards the IR

→ triggers phase transition ! ©
→ installs a nontrivial FLOW of a notion of “effective dimension” !
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TFT model: cyclic melonic interaction, finite but arbitrary valence

• TFT interactions/observables: contractions of tensors (wth trivial metric)

• Interest in particular contractions: cyclic melonic
• Illustration in rank 4: complex tensors Φj1j2j3j4 , j1, j2, j3, j4 ∈ I , with distinguished indices

cλc
2

c

, λc
3

c

, λc
4

c

, . . . , λc
n

Figure: Rank d = 4 cyclic-melonic interactions diagrammatically described by colored graphs.

• Nonlocal and a tractable combinatorics: computable at arbitrary valence.

• Sint(φ, φ̄) =
∫
Rd dxxx

[∑nmax
n=2

∑r
c=1 λ

c
n Trn;c(φ, φ̄)(xxx)

]
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• Interest in particular contractions: cyclic melonic
• Illustration in rank 4: complex tensors Φj1j2j3j4 , j1, j2, j3, j4 ∈ I , with distinguished indices

cλc
2

c

, λc
3

c

, λc
4

c

, . . . , λc
n

Figure: Rank d = 4 cyclic-melonic interactions diagrammatically described by colored graphs.
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TFT model: action

• The action

S(φ, φ̄) = Skin(φ, φ̄) + Sint(φ, φ̄)

Skin(φ, φ̄) = (φ̄,Kφ) =

∫
Rd×Rd

dxxxdxxx ′
∫
G r×G r

dgggdggg ′ φ̄(xxx ,ggg)K(xxx ,ggg ; xxx ′,ggg ′))φ(xxx ′,ggg ′)

K(xxx ,ggg ; xxx ′,ggg ′) = δ(xxx − xxx ′)δ(gggggg ′−1)
[(
−∆x − κ2

r∑
c=1

(∆(c)
g )ζ

)
+ µk

]
(5)

where
∆x is the Laplacian on Rd ,
∆

(c)
g the (colored) Laplacian on G ,

ζ ∈]0, 1]
κ restores the dimension balance.
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FRG formalism for TFT: Wetterich-Morris equation

• [Wilson 71] Implementing a renormalization scheme is to regularize all ill-behaved
(above) expressions in such a way to generate a flow of the theory coupling constants;

• Introduce a scale k and an IR (cut-off) regulator Rk that projects only on field modes
relevant to that scale

Zk [J, J̄] = eWk [J,J̄] =

∫
DϕDϕ̄e−S[ϕ,ϕ̄]−(ϕ,Rkϕ)+(J,ϕ)+(ϕ,J). (6)

Rk should satisfy specific conditions;
• Scale dependent effective action

Γk [ϕ, ϕ̄] = sup
J,J̄

[
(ϕ, J) + (J, ϕ)−Wk [J, J̄]

]
− (ϕ,Rkϕ). (7)

• Expansion for TFT:

Γk [ϕ, ϕ̄] = (ϕ,Kkϕ) +
∑
γ

λγ;kTrγ [ϕ, ϕ̄],

Kk = Zk

(
−∆x − κ2

r∑
c=1

(∆(c)
g )ζ

)
+ µk (8)
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FRG formalism for TFT: Wetterich-Morris equation

• Flow equation for the effective average action: The Wetterich-Morris equation

(k∂k) Γk [ϕ, ϕ̄] =
1

2
STr

[(
Γ

(2)
k +RkI2

)−1

(k∂k)Rk

]
, (9)

where STr is a supertrace (all configuration space variables integrated), Γ
(2)
k is the

Hessian matrix of Γk

Γ
(2)
k [ϕ, ϕ̄](xxx ,ggg ; yyy ,hhh) :=

δ2Γk [ϕ, ϕ̄]

δϕ(xxx ,ggg)δϕ̄(yyy ,hhh)

Γ
(2)
k [ϕ,ϕ](xxx ,ggg ; yyy ,hhh) :=

δ2Γk [ϕ, ϕ̄]

δϕ(xxx ,ggg)δϕ(yyy ,hhh)

Γ
(2)
k [ϕ̄, ϕ̄](xxx ,ggg ; yyy ,hhh) := ... (10)

• Results are dependent on Rk and the ansatz for Γk ;
⇒ Prove that the results holds for classes of regulators and an enlarged truncation helps
in gaining confidence in the results.
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The cyclic melonic potential approximation

c

λc
4

Figure: Rank d = 4 cyclic-melonic interaction with valence 2n = 8.

• Second field derivative of the interacting part:

F2[ϕ, ϕ̄](xxx ,ggg ; yyy ,hhh) =
r∑

c=1

nmax∑
n=2

n

n!
λc
n,k

[

[∏
b 6=c

δ(gb, hb)
]

(ϕ̄ ·ĉ ϕ)n−1(gc , hc) + δ(gc , hc)(ϕ̄ ·c ϕ)n−1(ĝgg c , ĥhhc)

+
n−2∑
p=1

(ϕ̄ ·ĉ ϕ)p(gc , hc)(ϕ̄ ·c ϕ)n−p−1(ĝgg c , ĥhhc)

]
. (11)
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The cyclic melonic potential approximation: Projection on local fields

• G = U(1)
• Projection on local fields after derivation: ϕ(xxx ,ggg) = χ and ρ = aGχ

2

F2[χ̄, χ](xxx ,ggg ; yyy ,hhh)

= ad
Ra−r

g

r∑
c=1

aG

∏
b 6=c

δ(gb, hb) + aGδ(gc , hc)− 1

V c
k
′(ρ) + ρV ′′(ρ)


V c

k (z) =

nmax∑
n=2

1

n!
λc
n,kzn (12)

• Regulator in momentum space

Rk(ppp, jjj) = Zk

(
k2 − p2 − κ2 j2ζ

a2ζ
g

)
θ

(
k2 − p2 − κ2 j2ζ

a2ζ
g

)
(13)

where j2ζ =
∑

c j2
c spectrum of the Laplacian on U(1)r .
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The cyclic melonic potential approximation: isotropic sector

• We consider the isotropic sector: λc
n,k = λn,k/r , ∀c = 1, . . . , r .

• Scale t = log k then ∂t = k∂k

Uk(ρ) = µkρ+
∞∑
n=2

1

n!
λn,kρ

n (14)

• The FRG equation becomes:

∂tUk(ρ)

k2Zk
=

F (0)(k)

k2Zk + U ′k(ρ) + 2ρU ′′k (ρ)
+

F (0)(k) + 2r F (1)(k)

k2Zk + U ′k(ρ)

+2
r∑

s=2

(
r

s

)
F (s)(k)

k2Zk + µk + r−s
r

V ′k(ρ)
(15)
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Beta-functions

∂tUk(ρ)

k2Zk
=

F (0)(k)

k2Zk + U ′k(ρ) + 2ρU ′′k (ρ)
+

F (0)(k) + 2r F (1)(k)

k2Zk + U ′k(ρ)

+2
r∑

s=2

(
r

s

)
F (s)(k)

k2Zk + µk + r−s
r

V ′k(ρ)
(16)

Two technical aspects:

→How do you deal with a generic inverse potentials (and their derivatives) with arbitrary
valence ? Ans: expansion in Bell-polynomials (that I cannot discuss !)

1

f (ρ)
=

1

f (0)
+
∞∑
n=1

ρn

n!

n∑
l=1

(−1)l
l!

f (0)l+1
Bn,l

(
(f ′(0), f ′′(0), ..., f (n−l+1)(0)

)
,

which is given in terms of partial (exponential) Bell polynomials

Bn,l (x1, x2, ..., xn−l+1) =
∑
σ`n
|σ|=l

( n

s1, ..., sn

) n−l+1∏
j=1

(
xj

j!

)sj
.

→How do you deal with the spectral sums on subvolumes of Rd × Zr? Ans:
Approximation ...
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Threshold spectral sums in rank s ≤ r

• The master: ηk = −∂t log Zk

F (s)(k) =
(

1− ηk
2

)
I

(d,s)
1 +

ηk
2k2

(
I

(d,s)

p2 (k) + κ̄I
(d,s)

j2ζ
(k)
)

(17)

where the threshold functions are defined by, for all f : Rd × Zs → R

I
(d,s)
f (k) =

∫
Rd

dppp
∑

jjj∈(Z\{0})s

θ
(

k2 − p2 − κ̄j2ζ
)

f (ppp, jjj) , (18)

for all s > 0, and I
(d,0)
f (k) = 0.

→ The sums over discrete volumes have a long history [trace back to polytope volumes,
combinatorics and asymptotics Birkhoff].
→ Difficult to handle in full generality.
→ Hopefully: no need of an explicit expression, but just their asymptotic behavior !

→Approximation at large k: Lejeune-Dirichlet sums (1839’s paper)

I
(d,s)
1 ∼ kd+s/ζ

I
(d,s)

p2 (k) ∼ I
(d,s)

j2ζ
(k) ∼ k2+d+s/ζ (19)
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The full β-functions

• Look like this

βn,k(µ, λi ) = Coeff (µ, λi )F (0)(k) +
n∑

l=1

Coeff n,l(µ, λi )Fl(k) (20)

Coeff (µ, λi )=
(−1)l l!

(Zkk2 + µk)l+1
Bn,l (3λ2, 5λ3, ..., (2n − 2l + 3)λn−l+2)

Coeff n,l(µ, λi )=
(−1)l l!

(Zkk2 + µk)l+1
Bn,l (λ2, λ3, ..., λn−l+2)

Fl(k)=F (0)(k) + 2rF (1)(k) + 2
r∑

s=2

(
r

s

)( r − s

r

)l
F (s)(k) (21)

• Example: the flow equation at the first three orders (n = 1, 2, 3) are

∂tµk

Zkk2
=

−λ2

(Zkk2 + µk)2

(
3F (0) + F1

)
(k), (22)

∂tλ2

Zkk2
=

−λ3

(Zkk2 + µk)2

(
5F (0) + F1

)
(k) +

2λ2
2

(Zkk2 + µk)3

(
9F (0) + F2

)
(k), (23)

∂tλ3

Zkk2
=

−λ4

(Zkk2 + µk)2

(
7F (0) + F1

)
(k) +

6λ2λ3

(Zkk2 + µk)3

(
15F (0) + F2

)
(k)

+
−6λ3

2

(Zkk2 + µk)4

(
27F (0) + F3

)
(k). (24)
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O(N)r -invariant TFT

→No dynamics on the j ’s: κ = 0 (same types of models Benedetti, Gurau, Harribey...)
→ Spectral sums, |jc | < Nc

F (s)(k) = vdZkkd

(
1− ηk

d + 2

)
(N − 1)s N = 2Nc + 1 (25)

vd = volume of the d-dimensional unit ball
→Dimensionless couplings (ordinary for local field theory)

µk = Zkk2µ̃k , λn;k = Z n
k k2n(vd kd)1−nλ̃n;k for n ≥ 2 . (26)

→FRG equation for the potential at the large N limit

∂tuk(ρ̃) + duk(ρ̃)− (d − 2 + ηk)ρ̃ u′k(ρ̃) =
1− ηk

d+2

1 + r−1
r
µ̃k + u′k(ρ̃)

. (27)

→ r = 1, O(N)-vector model: (ηk = 0 (LPA), µ̃∗ < 0)⇒ Wilson-Fisher fixed point for
2 < d < 4 (a single relevant direction);
→ r > 1, ηk = 0, µ̃∗ < 0: minor modifications by r factors.
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n 10µ̃ 102λ̃2 103λ̃3 104λ̃4 105λ̃5 106λ̃6 107λ̃7 108λ̃8 109λ̃9 1010λ̃10

6 -6.5649 5.1643 9.4342 15.067 7.9684 -54.935
7 -6.5541 5.1883 9.4629 14.916 6.0346 -73.574 -229.55
8 -6.5563 5.1834 9.4570 14.947 6.4366 -69.694 -181.66 797.55
9 -6.5576 5.1806 9.4538 14.964 6.6554 -67.584 -155.63 1230.5 8760.4

10 -6.5575 5.1808 9.4540 14.963 6.6390 -67.743 -157.59 1198.0 8102.3 -15350.
11 -6.5573 5.1811 9.4544 14.961 6.6164 -67.961 -160.28 1153.3 7198.1 -36441.
12 -6.5573 5.1811 9.4544 14.961 6.6157 -67.967 -160.35 1152.0 7172.4 -37040.

n θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

6 0.50915 -1.7691 -5.5429 -9.9919 -16.288 -28.526
7 0.51807 -1.7196 -4.4455 -8.5409 -12.944 -21.296 -34.652
8 0.51817 -1.7601 -3.9621 -7.3798 -11.061 -17.086 -26.710 -41.022
9 0.51716 -1.7723 -3.8661 -6.5101 -9.8464 -14.329 -21.803 -32.301 -47.464

10 0.51704 -1.7673 -3.9116 -6.0278 -8.9458 -12.485 -18.399 -26.781 -38.014 -53.954
11 0.51714 -1.7650 -3.9374 -5.9025 -8.2795 -11.246 -15.945 -22.858 -31.940 -43.840
12 0.51716 -1.7654 -3.9317 -5.9493 -7.8900 -10.401 -14.165 -19.931 -27.550 -37.247

Table: Values of the coupling constants and scaling exponents (eigenvalues of the stability
matrix) at the Wilson-Fisher type fixed point for the d = 3 dimensional O(N)r=3-invariant local
field theory in (ϕ̄ϕ)n truncation. Convergence with higher orders n justifies to draw conclusions
from results at finite n.
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The large k and autonomous limit

• Case κ > 0 (presence of jζ): Non autonomous system difficult to handle.

• Large momentum makes autonomous the system

k̃ = aG

(
k√
κ̄

) 1
ζ

(28)

• We consider the large k̃-limit and its interpretations:
→ large momentum limit: UV
→ large volume aG limit (kind of thermodynamic limit)

• Spectral sum approximation

F
(s)
k ∼k̃→∞

1

2
vd,r,ζkd k̃ s

(
2− ηk

(
1−

d + s
ζ

d + s
ζ

+ 2

))
(29)

Joseph Ben Geloun (LIPN, USPN) TFT with local and nonlocal degrees of freedom 28 / 35



The matter of dimension and (re-)scaling

• Dimensionless couplings

µk = Zkk2µ̃k λn;k = rZ n
k k2n

(
Vd,r,ζkd+ r−1

ζ

)1−n

λ̃n;k for n ≥ 2 (30)

• Effective dimension

deff := d +
r − 1

ζ
, r > 1

deff := d +
1

ζ
, r = 1 (31)

• Flow equation n ≥ 2, r > 0,

∂tuk(ρ̃) + deffuk(ρ̃)− (deff − 2 + ηk)ρ̃ u′k(ρ̃) =
1− ηk

deff+2

1 + r−1
r
µ̃k + u′k(ρ̃)

(32)

→ Same as for the O(N)r model but exchange d ↔ deff.
→Noticed in [Marchetti et al, 2021] in the Gaussian approx.

• The analysis is similar: solutions are linked, critical dimensions shifted around:
deff = d + r−1

ζ
< dcrit = 4 and valid only for restricted couples (d , r).

• Existence of WF-fixed points with minor quantitative modifications.
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Non autonomous limit: Explicit k integration

• Even more complicated: vG kept finite not possible to obtain a dimensionless flow
equation using only natural coupling rescaling;
• Use F1(k) to define the scaling of the couplings

µk = Zkk2µ̃k λn;k = Z n
k k2n (F1(k))1−n λ̃n;k for n ≥ 2 (33)

• The effective dimension is then defined

deff(k) := k∂k log F1(k) .

• Flow equation

∂t λ̃n;k + deff(k)λ̃n;k − n(deff(k)− 2 + ηk)λ̃n;k =

F (0)

F1
(k)βv1

n;k(µ̃k , λ̃i ;k) +
n∑

l=1

Fl

F1
(k)βv2

n,l ;k(µ̃k , λ̃i ;k) (34)
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Flow of dimension

• Limits

deff(k � 1) = d +
r − 1

ζ
deff(k � 1) = d (35)

• At finite k: F
(d,r)
1 (k) is a polynomial in k;

ζ=1/2

ζ=2/3

ζ=1

0.01 0.10 1 10 100

3

4

5

6

7

k

d e
ff

Left: Comparing the flow of effective dimension for different values of ζ in the case
d = r = 3 (with κ̄ = 1, ηk = 0).
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Fixed points, phase transition and symmetry broken

• Fixed points: hints that we recover the structure of fixed of a φ4 in the IR;
• Numerics: symmetry may be restored in the IR, for a choice of µk < 0
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Figure: Symmetry restoration in the IR for d = r = 3 for ϕ6-model.
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Fixed points, phase transition and symmetry broken

• Numerics: we see symmetry is still broken in the IR (thus phase transition): for another
choice µk < 0 (15% off the previous choice)
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Figure: Symmetry remains broken in the IR for d = r = 3 for ϕ6-model.
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Conclusion

• TFT (x) with local dimension x ∈ Rd and nonlocal dimensions g ∈ G r ,
→ in the cyclic melonic approx and LPA: strong phase transition
→ allows to identify a flow of an effective dimension;

• Effective dimension deff(k) flows from d − (r − 1)/ζ → d

• Flow mechanism is a robust RG-based flow;

• Rest of the program: Improving the scheme
→Dramatic approximation: LPA making ηk = 0
→Regulator:

Rk(ppp, jjj) = Z 1
k

(
k2 − p2 −

(
κ2
k =

Z 2
k

Z 1
k

)
j2ζ

a2ζ
g

)
θ

(
k2 − p2 − κ2

k
j2ζ

a2ζ
g

)
(36)

→Alternative regulator: Buccio and Percacci ‘22 [arXiv:2207.10596[hep-th]]
Z1

(
k2 − p2

)
θ
(
k2 − p2

)
+ Z2

(
k2ζ − j2ζ

)
θ
(
k2ζ − j2ζ

)
→Talk of Robero: fields with scaling dimension interpolating between 0 to 1.
→Understand the phase transition: condensate geometry conjectured in GFT [Oriti,
‘06]).

Thank you !
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