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Renormalization group and conformal field theories

Renormalization group (RG) is crucial to modern understanding of QFT

It singles out special theories: fixed points (scale invariant theories)

However, mostly perturbative ⇒ interacting FPs are hard to study

Typically scale invariance is enhanced to conformal invariance

⇒ Bootstrap strategy:

Assume conformality and impose consistency relations to bound/isolate allowed CFT data
⇒ many exact results in d = 2, and very precise numerical bounds in d > 2

However, so far limited to unitary theories at zero temperature, and no direct link to path
integral origin
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Relating RG and CFT

⇒ It is useful to develop models and limits in which we can control both approaches

⇓

Large-N methods

⇒ computable toy models (strict large-N)
and hopefully more (approach to finite N via series expansion in 1/N)

They can allow us to show that (at least for some models):

RG admits interacting fixed point (FP)

FP is a CFT

Mix RG and CFT methods to understand properties of such a FP and flow to other FPs
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Large-N limits in QFT

Two types of large-N limits have been extensively studied in the literature:

Vector models: “O(N) model” [Stanley (1968); Wilson (1972); . . . ]

⇒ Large-N limit: cactus diagrams

Solvable Schwinger-Dyson equation (mass gap equation)
[Coleman, Jackiw, Politzer; Gross, Neveu (1974)]

Somewhat too simple (e.g. no wave function renormalization)

Matrix models: e.g. adjoint rep. of U(N) [’t Hooft (1974); ...]

⇒ Large-N limit: planar diagrams

It plays an important role in AdS/CFT, integrability of N = 4 SYM, Grosse-Wulkenhaar, etc ...

Many solvable models in zero dimension (2d QG), but increasingly hard in higher dimensions
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In this talk:

Two ways to go between too simple and too difficult:

Vector models at higher orders of the 1/N expansion

[many people, but in particular: Vasil’ev, Pis’mak, Khonkonen (1981), η at O(1/N3)]

Work in progress with Maria Kallimani

Large-N limit of tensor models: dominated by melonic diagrams

. . .

Work in collaboration with Razvan Gurau, Sabine Harribey, Davide Lettera, Kenta Suzuki
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CFT in a nutshell

Impose invariance of n-point functions in Rd under SO(d+ 1, 1) (Euclidean)
or SO(d, 2) (Lorentzian)

Two-point functions of primary operators Oi(x) are completely determined by their scaling
dimensions ∆i (eigenvalue of dilations) and spin (rotations irrep.). E.g. for scalars:

⟨Oi(xi)Oj(xj)⟩ =
δ∆i,∆j

|xij |2∆i
, xij = xi − xj

All local operators are either primaries or descendants (derivatives of primaries)

Three-point functions of primary operators are fixed up to a constant. E.g. for scalars:

⟨Oi(xi)Oj(xj)Ok(xk)⟩ =
cijk

|xij |∆i+∆j−∆k |xik|∆i+∆k−∆j |xjk|∆j+∆k−∆i

All higher n-point functions can in principle be reconstructed with these data, because with
the operator product expansion (OPE), which depends only on them and it is convergent,
we reduce to (n− 1)-point functions:

⟨Oi(xi)Oj(xj) . . .⟩ =
∑
k

cijk

|xij |∆i+∆j−∆k
⟨[Ok(xj) + descendants] . . .⟩
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2PI formalism in a nutshell [Cornwall, Jackiw, Tomboulis - 1974]

Generalization of usual generating functionals to include bilocal composite operators.

Introduce a bilocal source in path integral:

W[J ] = lnZ[J ] = ln

∫
dµC [ϕ] exp

{
−Sint[ϕ] +

1

2

∫
x,y

ϕ(x)J (x, y)ϕ(y)

}

The 2PI effective action is defined by the Legendre transform:

Γ[G] =

(
−W[J ] +

1

2
Tr[JG]

) ∣∣∣
δW
δJ = 1

2
G

=
1

2
Tr[C−1G] +

1

2
Tr[lnG−1]︸ ︷︷ ︸

free theory part

+ Γ2[G]︸ ︷︷ ︸
interactions

Γ2[G]: − sum of two-particle irreducible (2PI) diagrams constructed from the vertices of S[ϕ],
but with G as propagator (instead of free propagator C)
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Two key geometric series

The field equations of Γ[G] are the Schwinger-Dyson equations for 2-point function:

δΓ

δG(x, y)
= 0 ⇔ G−1(x, y) = C−1(x, y)− Σ(x, y)

with the self energy given by Σ[G] = −2 δΓ2/δG

G = + + + ...

Bethe-Salpeter kernel is defined by(
δ2Γ

δGδG

)−1

= (1−K)−1 GG

=- - + + + . . .

K(x1, x2, x3, x4) = −2

∫
y1,y2

G(x1, y1)G(x2, y2)
δ2Γ2[G]

δG(y1, y2)δG(x3, x4)
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Combining CFT and 2PI formalism

Suppose that the Schwinger-Dyson equation has a conformal solution

G(x, y) ∼
1

|x− y|2∆

and higher n-point functions of the fundamental field are conformal as well

⇒ Bethe-Salpeter kernel is diagonalized by conformal 3-point functions

∫
x3,x4

K(x1, x2, x3, x4)⟨ϕ(x3)ϕ(x4)Oµ1···µJ
h (z)⟩c.s. = k(h, J)⟨ϕ(x1)ϕ(x2)Oµ1···µJ

h (z)⟩c.s.

(e.g. for J = 0: ⟨ϕ(x1)ϕ(x2)Oh(x0)⟩c.s. = 1
|x34|2∆−h|x30|h|x40|h

)

h = d
2
+ iα, with α ∈ R+ ⇒ complete basis [Dobrev et al. 1976]
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OPE spectrum

Conformal partial wave expansion:

(
δ2Γ

δGδG

)−1

(x1, x2, x3, x4) =
∑
J≥0

∫ d/2+i∞

d/2

dh

2πi

2 ρ(h, J)

1− k(h, J)

×
∫

ddz ⟨ϕ(x1)ϕ(x2)Oµ1···µJ
h (z)⟩⟨Oµ1···µJ

h̃
(z)ϕ(x3)ϕ(x4)⟩

=
∑
J≥0

∫ d/2+i∞

d/2−i∞

dh

2πi

2 ρ̂∆(h, J)

1− k(h, J)
G∆
h,J (x1 . . . x4)

Im(h)

Re(h)

Re(h) = d
2

h1 h2 . . .

poles at solutions of k(h, J) = 1,
or at poles of ρ̂∆(h, J) in free theory (k = 0)

⇒ =
∑
J

∑
n

c2hn(J),J︸ ︷︷ ︸
OPE coeff.

G∆
hn(J),J (x1 . . . x4)︸ ︷︷ ︸

Conformal blocks
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O(N) model

Generating functional:

Z[J ] =

∫
dµC [ϕ]e−Sint[ϕ]+J·ϕ

where

C(x, y) =
c(∆)

|x− y|2∆

Sint[ϕ] =

∫
ddx

(
λ2

2
ϕ2 +

λ

4N
(ϕ2)2

)

∆ = 2/d− ζ, with either ζ = 1 (short-range) or d/4 < ζ < 1 (long-range)

J-dependence useful for generating n-point functions of ϕ, and for studying spontaneous
symmetry breaking of the O(N) symmetry (i.e. limJ→0+ ⟨ϕa⟩J ̸= 0)

Introduce intermediate (Hubbard-Stratonovich) field:

e−Sint[ϕ] =

∫
dµ2λ1[σ] e

i
2
√

N
σ·

(
ϕ2+

λ2N
λ

)

Integrating out ϕ we arrive at formulation in which large-N limit is saddle-point approximation
for σ
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2PI effective action in mixed ϕ -σ representation

Introduce only sources for O(N)-invariant (composite, bilocal) operators:

eW [J ,K,L] =

∫
dµC [ϕ]dµ2λ1[σ] e

i
2
√

N
σ·

(
ϕ2+

λ2N
λ

)
+J ·σ+ 1

2
σ·K·σ+ 1

2
ϕa·L·ϕa

After Legendre transform, we find

Γ[s,D,G] =

∫
ddx

(
1

4λ
s2 − i

λ2

√
N

2λ
s

)
+

N

2
Tr[(C−1 −

i
√
N

s1) ·G] +
N

2
Tr[ln(G−1)]

+
1

4λ
Tr[1 ·D] +

1

2
Tr[ln(D−1)] + Γ2[G,D] ,

where

Γ2[s,D,G] ≡ − ln

∫
2PI

dµG[ϕ]dµD[σ] e
i

2
√

N
σ·ϕ2

,

y&-3)

S
I
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The field equations

0 =
δΓ

δs
=

δΓ

δD
=

δΓ

δG

⇒ self-consistent Schwinger-Dyson equations (SDE):

s(x) = i
√
N
(
λ2 + λG(x, x)

)
, (λ2 = −λG(x, x) ⇒ s(x) = 0)

D−1(x, y) =
1

2λ
δ(x− y) + 2

δΓ2

δD
[s, G,D] ,

G−1(x, y) = C−1(x, y)−
i

√
N

s(x)δ(x− y) +
2

N

δΓ2

δG
[s, G,D] .

Notice:

δΓ2

δD
=- +O(1/N)

δΓ2

δG
= m

*

+O(1/N)

14 / 32



The field equations

0 =
δΓ

δs
=

δΓ

δD
=

δΓ

δG

⇒ self-consistent Schwinger-Dyson equations (SDE):

s(x) = i
√
N
(
λ2 + λG(x, x)

)
, (λ2 = −λG(x, x) ⇒ s(x) = 0)

D−1(x, y) =
1

2λ
δ(x− y) + 2

δΓ2

δD
[s, G,D] ,

G−1(x, y) = C−1(x, y)−
i

√
N

s(x)δ(x− y) +
2

N

δΓ2

δG
[s, G,D] .

Notice:

δΓ2

δD
=- +O(1/N)

δΓ2

δG
= m

*

+O(1/N)

14 / 32



Leading order

In the strict N → ∞ limit we have:

Consistent solution of SDE in the conformal limit λ → +∞ (or p → 0)

G(x, y) = C(x, y) ≡
c(d/2− ζ)

|x− y|d−2ζ
, D(x, y) =

b(d/2− ζ)

|x− y|4ζ

⇒ ∆ = d/2− ζ and ∆σ = 2ζ

Bethe-Salpeter kernel has vanishing eigenvalues at leading order

⇒ OPE spectrum of free theory

h[ϕa∂µ1
···∂µJ

ϕa] = 2∆+ J

except for J = 0, as 2∆ = d− 2ζ < d/2 ⇒ ϕ2 replaced by σ
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Next-to-leading order: self-consistent SDE

Keep order 1/N term in SDE of G

Plug in conformal ansatz for G and D with ∆ = d/2− ζ + η/2 and ∆σ = 2ζ − η:

G(x, y) =
A

|x− y|d−2ζ+η
, D(x, y) =

B

|x− y|4ζ−2η

Find η by solving SDE self-consistently

Two cases:

ζ = 1 (short-range model):
η1 > 0 requires discarding C−1 term in SDE, which is justified in IR limit (p2 ≪ p2−η)

G−1(x) =
p(∆)

A|x|2(d−∆) ⇒ SDE: p(∆) +A2B/N = 0, 2p(∆σ) +A2B = 0

⇒ the two equations fix η1 (from η =
∑

q>0 ηq/N
q) and A2B

d/4 < ζ < 1 (long-range model):
η = 0 ⇒ keep C−1 ⇒ only need to compute constant
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Next-to-leading order: Bethe-Salpeter diagonalization

K =

i

I inI I
Eigenfunctions: linear combinations of ⟨ϕϕOh,J ⟩ and ⟨σσOh,J ⟩
Eigenvalues: ratios of gamma functions with poles at

h[ϕa∂µ1
···∂µJ

(∂2)nϕa]
= 2∆+ J + 2n

h[σ∂µ1
···∂µJ

(∂2)nσ] = 2∆σ + J + 2n
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N
γ
[σσ][n,J]

1

Anomalous dimensions γ1 again given by ratios of gamma functions
(previously known for [ϕϕ][n,J] at ζ = 1, the rest is new)

NNLO: old partial results for ζ = 1, future work for ζ < 1 and other operators
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Tensor models, basics

Characteristics of tensor models:

Fields (e.g. Lorentz scalars) that transform as tensors of rank ≥ 3 under a global symmetry
group, e.g. in the tri-fundamental representation of O(N)3:

ϕabc →
1...N∑

a′,b′,c′
R

(1)
aa′R

(2)
bb′R

(3)
cc′ϕa′b′c′ , R(i) ∈ O(N)

An invariant action, containing at least one term having no larger (continuous) symmetry
than the one above:

ϕabcϕabc has in fact O(N3) invariance

ϕabcϕab′c′ϕa′bc′ϕa′b′c is only invariant under O(N)3

It is useful to represent invariants as colored graphs. E.g. for the two above we have:
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A case study: the quartic O(N)3 model

[d = 0: Carrozza, Tanasa (2015); d = 1: Klebanov, Tarnopolsky (2016);

d > 1: Giombi, Klebanov, Tarnopolsky (2017, short-range), DB, Gurau, Harribey (2019, long-range)]

Interacting part of the action (or full action if d = 0)
⇔ all O(N)3 invariants with up to 4 fields:

Sint[ϕ] =

∫
x

1

2
m2ζ +

λt

4N3/2

+
λp

12N2

∑
col.perm.

+
λd

4N3


t = tetrahedron; p = pillow; d = double-trace.

Large-N expansion governed by a non-negative half-integer, the degree ω:
[Carrozza, Tanasa (2015)]

lnZ =
∑

ω∈N/2
N3−ωFω

Note: ω is not a topological invariant

Complete classification of diagrams up to ω = 3/2 [Bonzom, Nador, Tanasa (2019)]
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Edge-colored graphs and Feynman diagrams

Perturbative expansion:

Represent Wick contraction of two tensors by black line, obtaining 4-colored graphs , e.g.:

2 1

1 2

3

1 2

2 1

3
` `

⇒ useful for keeping track of powers of N ⇒ determine dominant graphs at large-N

Ordinary Feynman diagrams are obtained by shrinking interaction bubbles to a point:

⇒ useful for Feynman integrals ⇒ crucial in d > 0 QFT

This model has melon-tadpole Feynman diagrams at leading order (ω = 0):

. . .
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Benefits of melonic dominance in QFT

Some important features provided by the melonic limit:

Closed Schwinger-Dyson equation for two-point function

Bethe-Salpeter kernel obtained from few (2PI) diagrams

No radiative corrections for tetrahedron(-like) coupling

Best seen through lens of 2PI formalism
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2PI formalism and melonic limit [DB, Gurau - 2018]

2PI formalism is well suited for melonic limit, because melons are built via 2-point insertions

It effectively replaces the bilocal formalism used in O(N) model and SYK model

Leading order in 1/N of quartic O(N)3 model:
there are only two melon-tadpole diagrams that are also 2PI

⇒ At leading order in 1/N we can write its full 2PI effective action in closed form:

Γ[G] = N3

(
1

2

∫
x,y

C−1(x, y)G(y, x) +
1

2

∫
x,y

ln(G−1)(x, y)

+
λp + λd

4

∫
x
G(x, x)2 −

λ2
t

8

∫
x,y

G(x, y)4
)
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Our case study (again): long-range O(N)3 model
[DB, Gurau, Harribey, Suzuki, Lettera (2019 - 2021)]

Free part of the action (short-range: ζ = 1; long-range: 0 < ζ < 1):

Sfree[ϕ] =

∫
x
ϕabc(x)(−∂2)ζϕabc(x)

Fractional Laplacian defined trivially in Fourier space (p2ζ).

In x-space it is an integral operator: Sfree[ϕ] =
∫
x,y ϕabc(x)C

−1(x, y)ϕabc(y)

with
C−1(x, y) ∝ 1/|x− y|d+2ζ

Long-range model: 0 < ζ < 1 ⇒ well-defined and reflection positive

canonical dimension ∆ϕ = d−2ζ
2

C(x, y) ∝ 1/|x− y|d−2ζ

⇒ ζ = d/4 ⇒ ∆ϕ = d/4 ⇒ the quartic interactions are canonically marginal
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Melonic Schwinger-Dyson equation

The standard Schwinger-Dyson equation (SDE) for the 2-point function,

G−1 = C−1 − Σ

is obtained from δΓ
δG(x,y)

= 0

⇒ it simplifies in large-N limit, as Γ has only two diagrams ⇒ the self-energy becomes:

G

G

2

t p d

G

G

i.e. Σ(x, y) = λ2
t G(x, y)3 − (λp + λd)G(x, x)δ(x− y)

⇒ SDE = closed equation for G(x, y)
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Solution of the Schwinger-Dyson equation

ζ = d/4:

Long range kinetic term ⇒ no wave function renormalization (locality of counterterms)

Setting renormalized mass to zero, melonic SDE is solved exactly by

G(p) =
Z

pd/2
= ZC(p) , 1 = Z + Z4λ2

t

1

(4π)d

Γ
(
1− d

4

)
d
4
Γ
(
3 d
4

)
Z resums all the melonic insertions in the propagator
(it is the generating function of 4-Catalan numbers)

⇒ convergent series, up to a critical value of λt
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Four-point function and Bethe-Salpeter kernel

General result (from 2PI formalism):
4-point function connected in the s-channel (12 → 34) is obtained as geometric series in
Bethe-Salpeter kernel K:

=- - + + + . . .

For O(N)3 model at large-N :

K = = 3λ2
tK = −λp −λd +3λ2 − (λp + λd)K = −λp −λd +3λ2

⇒ chain/ladder decorated by melons (not drawn, they are resummed in propagator)
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Four-point function and beta functions [DB, Gurau, Harribey (2019)]

Introduce renormalized couplings gd, gp, and gt (finite renormalization),
and define g1 = gp/3, g2 = gp + gd

No vertex correction to the tetrahedron ⇒ βt = 0

⇒ gt is an exactly marginal coupling, it can be used as small parameter

Other beta functions: β1 = B0(−g2t )− 2B1(−g2t )g1 +B2(−g2t )g
2
1 , and similar for g2.

B0 : . . .

B1 : . . .

B2 : . . .

⇒ Other couplings have a gt-dependent fixed point, which is real
and with real critical exponents for imaginary tetrahedron coupling: g2t < 0:

g1± =
B1 ±

√
(B1)2 −B0B2

B2
= ±

√
−g2t +O(g2t )

β′
1(gp±) = ±2

√
(B1)2 −B0B2 = ±

√
−g2t

(
4
Γ( d

4
)2

Γ( d
2
)

)(
1 +O(g2t )

)
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Imaginary tetrahedron coupling

The O(N)3 model’s action is unbounded from below, due to the tetrahedron interaction

⇒ trouble for Euclidean path integral (at nonperturbative level)

In principle it still makes sense to study the model in the large-N limit,
but in fact complex operator dimensions are found for ζ = 1 in d = 4− ϵ
[Klebanov et al. (2017-2019)] or for ζ < 1 if λt ∈ R [DB, Gurau, Harribey (2019)]

⇒ thermodynamic instability of the conformal solution [DB (2021)]

(dual of Breitenlohner-Freedman instability in AdS)

⇓

We choose a purely imaginary tetrahedron coupling: λt = i|λt|

(similarly to Lee-Yang model with iλϕ3 interaction)

Note: in long-range model we can choose it at will, because it is a marginal coupling

⇓

FPs with real critical exponents
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Melonic CFTs

We expect the scaling symmetry of the fixed points to be enhanced to conformal symmetry, at
least for local unitary theories

Not obvious for a long-range model with imaginary coupling!

Nevertheless, formal proof of conformal invariance of n-point functions is obtained by
embedding in higher dimensions such that theory becomes local [DB, Gurau, Suzuki (2020)]

(as in long-range Ising model [Paulos, Rychkov, van Rees, Zan (2015)])

We thus have an interacting CFT in d > 2 constructed and controlled thanks to the
melonic limit: a melonic CFT

⇒ we can obtain CFT data and more by combining melonic limit and conformal methods
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OPE spectrum, results

For the long-range model we find: k(h, J) = 3g2

(4π)d
Γ(− d

4
+h+J

2
)Γ( d

4
−h−J

2
)

Γ( 3d
4

−h−J
2

)Γ( d
4
+h+J

2
)

and solutions of k(h, J) = 1 can be found analytically at small g, or numerically at finite

coupling:

2 4 6 8 10
h

-1.0

-0.5

0.5

1.0

1.5

2.0
k(h)

We find

hn,J = d/2 + J + 2n+ zn,J (−g2t ) n ∈ N0

(conformal dimension of Oh,J ∼ ϕabc∂µ1 . . . ∂µJ (∂
2)nϕabc )

z0,0 ∼
√

−g2t
(
1 +O(g2t )

)
, zn,J ̸=0,0 ∼ g2t +O(g4t )

real for −g2c (d) < g2t < 0, consistent with unitarity bounds, and with real OPE coefficients
CϕϕOn,J

[DB, Gurau, Harribey, Suzuki (2019)]

⇒ With imaginary coupling, the large-N model appears to be a unitarity CFT
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Recap and further results

A real and unitary CFT is found at large N in the long-range O(N)3 model with imaginary
tetrahedron coupling [DB, Gurau, Harribey, Suzuki (2019-2020)]

Similar results found for long-range U(N)3 model with (marginal) sextic interaction, but
with real exactly-marginal coupling [DB, Delporte, Harribey, Sinha (2019)]

And similarly for Amit-Roginsky model (multi-scalar vector model with cubic interaction
mediated by Wigner 3jm symbol) [DB, Delporte (2020)]

Non-unitarity is suppressed in 1/N , e.g. conformal dimensions acquire imaginary part at
subleading orders [DB, Gurau, Harribey (2020); Harribey (2021)]

Alternative: sextic (“prismatic”) model [Giombi et al. (2018)],
or supersymmetric models [Popov (2019); Lettera, Vichi (2020)]

Conformal partial wave basis very useful to study CFT data, but also
free energy on the sphere (application: F-theorem) [DB, Gurau, Harribey, Lettera (2021)]

⇔ resum infinite series of vacuum diagrams!

n
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Conclusions and outlook

The large-N limit is a powerful method for studying interacting CFTs (fixed points of RG)
and combine conformal and RG methods

The large-N limit of the O(N) model is very simple, but a richer structure arises at next
orders in the 1/N expansion

The melonic large-N limit has a rich structure already at leading order

For the scalar O(N)3 long-range model (our case study) we find interacting IR fixed points
in d < 4, for which CFT data and sphere free energy can be computed from first principles
(no bootstrap). Similar results are found in other models with melonic limits.

More work to be done, especially for 1/N corrections, both for vector and tensor models, e.g.:

Higher orders in 1/N for O(N) model: can it become numerically competitive with respect
to other methods? (by Padé-Borel summation)

Unitarity at higher orders of 1/N expansion in prismatic or supersymmetric tensor models?
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