
Oracle8 

Administrator’s Guide

Release 8.0

December, 1997

Part No. A58397-01

 Oracle8 Administrator’s Guide

Part No. A58397-01

Release 8.0

Copyright © 1997, Oracle Corporation. All rights reserved.

Primary Author: Joyce Fee

Graphic Designer: Valarie Moore

Contributors: John Bellemore, Atif Chaudhry, Sandra Cheevers, Connie Dialeris, John Frazzini, Mike
Hartstein, Bhaskar Himatsingka, Alex Ho, Wei Huang, Ken Jacobs, Robert Jenkins, Val Kane, Andre Krug-
likov, Bill Lee, Nina Lewis, Phil Locke, Diana Lorentz, Ekrem Soylemez, Jags Srinivasan, Ashwini Surpur,
Alex Tsukerman

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inher-
ently dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe, back
up, redundancy and other measures to ensure the safe use of such applications if the Programs are
used for such purposes, and Oracle disclaims liability for any damages caused by such use of the Pro-
grams.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free.

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is deliv-
ered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are 'commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software' and use, duplication and disclo-
sure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate III (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, SQL*Loader, Secure Network Services, and SQL*Plus are registered trademarks of Oracle
Corporation, Redwood Shores, California. Oracle Call Interface, Oracle8, Oracle Parallel Server, Oracle
Forms, Oracle TRACE, Oracle Expert, Oracle Enterprise Manager, Oracle Server Manager, Net8, PL/SQL,
and Pro*C are trademarks of Oracle Corporation, Redwood Shores, California.

All other products or company names are used for identification purposes only, and may be trademarks
of their respective owners.

Contents

Send Us Your Comments ... xix

Preface .. xxi

Part I Basic Database Administration

1 The Oracle Database Administrator

Types of Oracle Users... 1-2
Database Administrators... 1-2
Security Officers.. 1-3
Application Developers ... 1-3
Application Administrators .. 1-3
Database Users.. 1-3
Network Administrators ... 1-4

Database Administrator Security and Privileges ... 1-4
The Database Administrator’s Operating System Account ... 1-4
Database Administrator Usernames.. 1-5
The DBA Role.. 1-6

Database Administrator Authentication .. 1-6
Selecting an Authentication Method ... 1-6
Using Operating System Authentication .. 1-7
OSOPER and OSDBA... 1-8
Using an Authentication Password File.. 1-9

Password File Administration.. 1-9
 iii

Using ORAPWD ... 1-10
Setting REMOTE_LOGIN_ PASSWORDFILE.. 1-11
Adding Users to a Password File ... 1-12
Connecting with Administrator Privileges... 1-14
Maintaining a Password File... 1-15

Database Administrator Utilities... 1-17
Enterprise Manager .. 1-17
SQL*Loader ... 1-17
Export and Import .. 1-17

Initial Priorities of a Database Administrator... 1-18
Step 1: Install the Oracle Software.. 1-18
Step 2: Evaluate the Database Server Hardware.. 1-19
Step 3: Plan the Database... 1-19
Step 4: Create and Open the Database... 1-20
Step 5: Implement the Database Design.. 1-20
Step 6: Back up the Database... 1-20
Step 7: Enroll System Users ... 1-21
Step 8: Tune Database Performance... 1-21

Identifying Oracle Software Releases .. 1-21
Release Number Format .. 1-21
Versions of Other Oracle Software... 1-23
Checking Your Current Release Number ... 1-23

2 Creating an Oracle Database

Considerations Before Creating a Database .. 2-2
Creation Prerequisites .. 2-3
Using an Initial Database... 2-3
Migrating an Older Version of the Database.. 2-3

Creating an Oracle Database .. 2-4
Steps for Creating an Oracle Database .. 2-4
Creating a Database: Example .. 2-7
Troubleshooting Database Creation .. 2-8
Dropping a Database.. 2-8

Parameters .. 2-9
DB_NAME and DB_DOMAIN... 2-9
iv Oracle8 Administrator’s Guide

CONTROL_FILES... 2-10
DB_BLOCK_SIZE ... 2-11
DB_BLOCK_BUFFERS... 2-11
PROCESSES... 2-12
ROLLBACK_SEGMENTS ... 2-12
License Parameters ... 2-12
LICENSE_MAX_SESSIONS_and LICENSE_SESSIONS WARNING................................. 2-13
LICENSE_MAX_USERS .. 2-13

Considerations After Creating a Database .. 2-14
Initial Tuning Guidelines ... 2-14

Allocating Rollback Segments .. 2-14
Choosing the Number of DB_BLOCK_LRU_LATCHES.. 2-15
Distributing I/O.. 2-16

3 Starting Up and Shutting Down

Startup Procedures.. 3-2
Preparing to Start an Instance... 3-2
Starting an Instance: Scenarios ... 3-3

Altering Database Availability .. 3-6
Mounting a Database to an Instance.. 3-7
Opening a Closed Database .. 3-7
Restricting Access to an Open Database ... 3-7

Shutdown Procedures .. 3-8
Shutting Down a Database Under Normal Conditions .. 3-10
Shutting Down a Database Immediately .. 3-11
Shutdown Transactional.. 3-11
Aborting an Instance .. 3-12

Using Parameter Files .. 3-12
The Sample Parameter File.. 3-13
The Number of Parameter Files.. 3-13
The Location of the Parameter File in Distributed Environments 3-13
v

Part II Oracle Server Configuration

4 Managing Oracle Processes

Configuring Oracle for Dedicated Server Processes .. 4-2
When to Connect to a Dedicated Server Process ... 4-3

Configuring Oracle for Multi-Threaded Server Processes.. 4-3
SHARED_POOL_ SIZE: Allocating Additional Space in the Shared Pool for
Shared Server 4-5
MTS_LISTENER_ ADDRESS: Setting the Listener Process Address.................................... 4-5
MTS_SERVICE: Specifying Service Names for Dispatchers .. 4-6
MTS_DISPATCHERS: Setting the Initial Number of Dispatchers .. 4-7
MTS_MAX_ DISPATCHERS: Setting the Maximum Number of Dispatchers.................... 4-8
MTS_SERVERS: Setting the Initial Number of Shared Server Processes 4-9
MTS_MAX_SERVERS: Setting the Maximum Number of Shared
Server Processes .. 4-9

Modifying Server Processes.. 4-10
Changing the Minimum Number of Shared Server Processes .. 4-10
Adding and Removing Dispatcher Processes .. 4-10

Tracking Oracle Processes ... 4-11
Monitoring the Processes of an Oracle Instance... 4-11
Trace Files, the ALERT File, and Background Processes .. 4-14
Starting the Checkpoint Process ... 4-16

Managing Processes for the Parallel Query Option... 4-17
Managing the Query Servers .. 4-17
Variations in the Number of Query Server Processes ... 4-17

Managing Processes for External Procedures .. 4-18
Terminating Sessions ... 4-20

Identifying Which Session to Terminate ... 4-20
Terminating an Active Session ... 4-21
Terminating an Inactive Session... 4-21

5 Managing the Online Redo Log

Planning the Online Redo Log... 5-2
Multiplex the Online Redo Log .. 5-2
Place Online Redo Log Members on Different Disks .. 5-3
vi Oracle8 Administrator’s Guide

Set the Size of Online Redo Log Members.. 5-3
Choose an Appropriate Number of Online Redo Log Files... 5-4

Creating Online Redo Log Groups and Members ... 5-5
Creating Online Redo Log Groups .. 5-5
Creating Online Redo Log Members ... 5-6

Renaming and Relocating Online Redo Log Members .. 5-6
Dropping Online Redo Log Groups ... 5-8
Dropping Online Redo Log Members.. 5-9
Controlling Checkpoints and Log Switches.. 5-10

Setting Database Checkpoint Intervals ... 5-11
Forcing a Log Switch.. 5-12
Forcing a Fast Database Checkpoint Without a Log Switch .. 5-13

Verifying Blocks in Redo Log Files ... 5-13
Clearing an Online Redo Log File ... 5-14

Restrictions .. 5-14
Listing Information about the Online Redo Log.. 5-15

6 Managing Control Files

Guidelines for Control Files ... 6-2
Name Control Files... 6-2
Multiplex Control Files on Different Disks... 6-2
Place Control Files Appropriately.. 6-3
Manage the Size of Control Files.. 6-3

Creating Control Files .. 6-3
Creating Initial Control Files... 6-4
Creating Additional Copies of the Control File, and Renaming and
 Relocating Control Files.. 6-4
New Control Files... 6-5
Creating New Control Files .. 6-6

Troubleshooting After Creating Control Files .. 6-8
Checking for Missing or Extra Files... 6-8
Handling Errors During CREATE CONTROLFILE.. 6-9

Dropping Control Files.. 6-9
vii

7 Managing Job Queues

SNP Background Processes... 7-2
Multiple SNP processes ... 7-3
Starting up SNP processes... 7-3

Managing Job Queues.. 7-4
DBMS_JOB Package ... 7-4
Submitting a Job to the Job Queue ... 7-6
How Jobs Execute ... 7-10
Removing a Job From the Job Queue... 7-12
Altering a Job... 7-12
Broken Jobs .. 7-14
Forcing a Job to Execute... 7-15
Terminating a Job.. 7-16

Viewing Job Queue Information ... 7-16

Part III Oracle Server Configuration

8 Managing Tablespaces

Guidelines for Managing Tablespaces ... 8-2
Using Multiple Tablespaces .. 8-2
Specifying Tablespace Storage Parameters... 8-3
Assigning Tablespace Quotas to Users.. 8-3

Creating Tablespaces .. 8-3
Creating a Temporary Tablespace.. 8-5

Managing Tablespace Allocation... 8-6
Altering Storage Settings for Tablespaces... 8-6
Coalescing Free Space .. 8-6

Altering Tablespace Availability ... 8-8
Bringing Tablespaces Online... 8-8
Taking Tablespaces Offline ... 8-9

Making a Tablespace Read-Only ... 8-11
Prerequisites .. 8-12
Making a Read-Only Tablespace Writeable.. 8-13
Creating a Read-Only Tablespace on a WORM Device .. 8-13
viii Oracle8 Administrator’s Guide

Dropping Tablespaces.. 8-14
Viewing Information About Tablespaces .. 8-15

9 Managing Datafiles

Guidelines for Managing Datafiles... 9-2
Number of Datafiles ... 9-2
Set the Size of Datafiles.. 9-4
Place Datafiles Appropriately... 9-4
Store Datafiles Separately From Redo Log Files .. 9-4

Creating and Adding Datafiles to a Tablespace .. 9-5
Changing a Datafile’s Size .. 9-5

Enabling and Disabling Automatic Extension for a Datafile ... 9-5
Manually Resizing a Datafile.. 9-6

Altering Datafile Availability ... 9-7
Bringing Datafiles Online in ARCHIVELOG Mode.. 9-8
Taking Datafiles Offline in NOARCHIVELOG Mode .. 9-8

Renaming and Relocating Datafiles.. 9-8
Renaming and Relocating Datafiles for a Single Tablespace ... 9-9
Renaming and Relocating Datafiles for Multiple Tablespaces .. 9-10

Verifying Data Blocks in Datafiles .. 9-12
Viewing Information About Datafiles.. 9-13

10 Guidelines for Managing Schema Objects

Managing Space in Data Blocks .. 10-2
The PCTFREE Parameter... 10-2
The PCTUSED Parameter.. 10-4
Selecting Associated PCTUSED and PCTFREE Values .. 10-6

Setting Storage Parameters ... 10-7
Storage Parameters You Can Specify... 10-7
Setting INITRANS and MAXTRANS .. 10-9
Setting Default Storage Parameters for Segments in a Tablespace 10-10
Setting Storage Parameters for Data Segments .. 10-10
Setting Storage Parameters for Index Segments .. 10-10
Setting Storage Parameters for LOB Segments .. 10-11
ix

Changing Values for Storage Parameters ... 10-11
Understanding Precedence in Storage Parameters.. 10-11

Deallocating Space.. 10-13
Viewing the High Water Mark ... 10-13
Issuing Space Deallocation Statements.. 10-13

Understanding Space Use of Datatypes ... 10-17
Summary of Oracle Datatypes.. 10-20

11 Managing Partitioned Tables and Indexes

What Are Partitioned Tables and Indexes? .. 11-2
Creating Partitions .. 11-2
Maintaining Partitions ... 11-3

Moving Partitions ... 11-4
Adding Partitions ... 11-5
Dropping Partitions.. 11-6
Truncating Partitions.. 11-8
Splitting Partitions .. 11-10
Merging Partitions .. 11-12
Exchanging Table Partitions.. 11-13
Rebuilding Index Partitions .. 11-16
Moving the Time Window in a Historical Table.. 11-16
Quiescing Applications During a Multi-Step Maintenance Operation 11-17

12 Managing Tables

Guidelines for Managing Tables ... 12-2
Design Tables Before Creating Them .. 12-2
Specify How Data Block Space Is to Be Used ... 12-3
Specify Transaction Entry Parameters... 12-3
Specify the Location of Each Table... 12-3
Parallelize Table Creation.. 12-4
Consider Creating UNRECOVERABLE Tables ... 12-4
Estimate Table Size and Set Storage Parameters.. 12-5
Plan for Large Tables.. 12-5
Table Restrictions.. 12-6

Creating Tables .. 12-6
x Oracle8 Administrator’s Guide

Altering Tables .. 12-7
Manually Allocating Storage for a Table ... 12-9
Dropping Tables.. 12-9
Index-Organized Tables .. 12-10

What Are Index-Organized Tables? .. 12-10
Creating Index-Organized Tables .. 12-13
Maintaining Index-Organized Tables.. 12-16
Scenario: Using the ORDER BY Clause with Index-Organized Tables 12-17
Scenario: Updating the Key Column ... 12-17
Converting Index-Organized Tables to Regular Tables ... 12-18

13 Managing Views, Sequences and Synonyms

Managing Views ... 13-2
Creating Views.. 13-2
Modifying a Join View... 13-4
Replacing Views ... 13-9
Dropping Views.. 13-10

Managing Sequences ... 13-10
Creating Sequences .. 13-10
Altering Sequences ... 13-11
Initialization Parameters Affecting Sequences... 13-11
Dropping Sequences .. 13-12

Managing Synonyms ... 13-12
Creating Synonyms .. 13-12
Dropping Synonyms .. 13-13

14 Managing Indexes

Guidelines for Managing Indexes... 14-2
Create Indexes After Inserting Table Data.. 14-3
Limit the Number of Indexes per Table .. 14-3
Specify Transaction Entry Parameters... 14-4
Specify Index Block Space Use ... 14-4
Specify the Tablespace for Each Index .. 14-4
Parallelize Index Creation ... 14-5
xi

Consider Creating UNRECOVERABLE Indexes ... 14-5
Estimate Index Size and Set Storage Parameters ... 14-5
Considerations Before Disabling or Dropping Constraints ... 14-6

Creating Indexes.. 14-7
Creating an Index Associated with a Constraint ... 14-7
Creating an Index Explicitly.. 14-8
Re-creating an Existing Index ... 14-8

Altering Indexes .. 14-9
Monitoring Space Use of Indexes .. 14-9
Dropping Indexes ... 14-10

15 Managing Clusters

Guidelines for Managing Clusters .. 15-2
Cluster Appropriate Tables... 15-4
Choose Appropriate Columns for the Cluster Key ... 15-4
Specify Data Block Space Use ... 15-5
Specify the Space Required by an Average Cluster Key and Its Associated Rows 15-5
Specify the Location of Each Cluster and Cluster Index Rows.. 15-5
Estimate Cluster Size and Set Storage Parameters... 15-6

Creating Clusters... 15-6
Creating Clustered Tables ... 15-7
Creating Cluster Indexes ... 15-8

Altering Clusters ... 15-8
Altering Cluster Tables and Cluster Indexes.. 15-9

Dropping Clusters .. 15-10
Dropping Clustered Tables ... 15-10
Dropping Cluster Indexes ... 15-11

16 Managing Hash Clusters

Guidelines for Managing Hash Clusters ... 16-2
Advantages of Hashing ... 16-2
Disadvantages of Hashing... 16-3
Estimate Size Required by Hash Clusters and Set Storage Parameters.............................. 16-4
Creating Hash Clusters .. 16-5
Controlling Space Use Within a Hash Cluster ... 16-5
xii Oracle8 Administrator’s Guide

Altering Hash Clusters .. 16-10
Dropping Hash Clusters.. 16-10

17 General Management of Schema Objects

Creating Multiple Tables and Views in A Single Operation ... 17-2
Renaming Schema Objects ... 17-2
Analyzing Tables, Indexes, and Clusters ... 17-3

Using Statistics for Tables, Indexes, and Clusters ... 17-4
Validating Tables, Indexes, and Clusters.. 17-9
Listing Chained Rows of Tables and Clusters.. 17-9

Truncating Tables and Clusters.. 17-10
Enabling and Disabling Triggers... 17-12

Enabling Triggers ... 17-13
Disabling Triggers .. 17-13

Managing Integrity Constraints... 17-14
Integrity Constraint States... 17-14
Deferring Constraint Checks .. 17-17
Managing Constraints That Have Associated Indexes ... 17-19
Disabling, Enable Novalidating and Enabling Integrity Constraints
Upon Definition .. 17-19
Enabling and Disabling Existing Integrity Constraints .. 17-21
Dropping Integrity Constraints .. 17-23
Reporting Constraint Exceptions ... 17-23

Managing Object Dependencies ... 17-25
Manually Recompiling Views .. 17-27
Manually Recompiling Procedures and Functions ... 17-27
Manually Recompiling Packages ... 17-27

Managing Object Name Resolution.. 17-28
Changing Storage Parameters for the Data Dictionary ... 17-29

Structures in the Data Dictionary... 17-29
Errors that Require Changing Data Dictionary Storage ... 17-31

Displaying Information About Schema Objects .. 17-32
Dictionary Storage Oracle Packages .. 17-33
Example 1: Displaying Schema Objects By Type... 17-34
Example 2: Displaying Column Information ... 17-34
xiii

Example 3: Displaying Dependencies of Views and Synonyms.. 17-35
Example 4: Displaying General Segment Information.. 17-35
Example 5: Displaying General Extent Information.. 17-35
Example 6: Displaying the Free Space (Extents) of a Database ... 17-36
Example 7: Displaying Segments that Cannot Allocate Additional Extents 17-36

Part IV Database Security

18 Managing Rollback Segments

Guidelines for Managing Rollback Segments .. 18-2
Use Multiple Rollback Segments.. 18-2
Choose Between Public and Private Rollback Segments .. 18-3
Specify Rollback Segments to Acquire Automatically .. 18-3
Set Rollback Segment Sizes Appropriately ... 18-4
Create Rollback Segments with Many Equally Sized Extents.. 18-5
Set an Optimal Number of Extents for Each Rollback Segment .. 18-6
Set the Storage Location for Rollback .. 18-7

Creating Rollback Segments... 18-8
Bringing New Rollback Segments Online... 18-8

Specifying Storage Parameters for Rollback Segments .. 18-8
Setting Storage Parameters When Creating a Rollback Segment .. 18-9
Changing Rollback Segment Storage Parameters .. 18-9
Altering Rollback Segment Format .. 18-10
Shrinking a Rollback Segment Manually .. 18-10

Taking Rollback Segments Online and Offline .. 18-11
Bringing Rollback Segments Online .. 18-11
Taking Rollback Segments Offline ... 18-12

Explicitly Assigning a Transaction to a Rollback Segment .. 18-13
Dropping Rollback Segments .. 18-14
Monitoring Rollback Segment Information.. 18-15

Displaying Rollback Segment Information... 18-15
xiv Oracle8 Administrator’s Guide

19 Establishing Security Policies

System Security Policy... 19-2
Database User Management ... 19-2
User Authentication ... 19-2
Operating System Security.. 19-3

Data Security Policy ... 19-3
User Security Policy ... 19-4

General User Security .. 19-4
End-User Security... 19-5
Administrator Security .. 19-7
Application Developer Security ... 19-9
Application Administrator Security .. 19-11

Password Management Policy ... 19-12
Account Locking... 19-12
Password Aging and Expiration .. 19-13
Password History ... 19-14
Password Complexity Verification .. 19-14

Auditing Policy ... 19-18

20 Managing Users and Resources

Session and User Licensing .. 20-2
Concurrent Usage Licensing... 20-2
Connecting Privileges .. 20-3
Setting the Maximum Number of Sessions .. 20-4
Setting the Session Warning Limit ... 20-4
Changing Concurrent Usage Limits While the Database is Running................................. 20-5
Named User Limits .. 20-5
Viewing Licensing Limits and Current Values .. 20-7

User Authentication ... 20-7
Database Authentication ... 20-8
External Authentication... 20-9
Enterprise Authentication ... 20-11

Oracle Users ... 20-12
xv

Creating Users ... 20-12
Altering Users.. 20-16
Dropping Users ... 20-17

Managing Resources with Profiles .. 20-18
Creating Profiles ... 20-19
Assigning Profiles ... 20-19
Altering Profiles .. 20-20
Using Composite Limits .. 20-20
Dropping Profiles ... 20-22
Enabling and Disabling Resource Limits .. 20-22

Listing Information About Database Users and Profiles .. 20-23
Listing Information about Users and Profiles: Examples ... 20-24

Examples ... 20-27

21 Managing User Privileges and Roles

Identifying User Privileges ... 21-2
System Privileges .. 21-2
Object Privileges.. 21-9

Managing User Roles ... 21-11
Creating a Role .. 21-11
Predefined Roles ... 21-12
Role Authorization ... 21-13
Dropping Roles ... 21-15

Granting User Privileges and Roles .. 21-16
Granting System Privileges and Roles... 21-16
Granting Object Privileges and Roles .. 21-17
Granting Privileges on Columns .. 21-18

Revoking User Privileges and Roles ... 21-19
Revoking System Privileges and Roles.. 21-19
Revoking Object Privileges and Roles ... 21-19
Effects of Revoking Privileges... 21-21
Granting to and Revoking from the User Group PUBLIC ... 21-22

Granting Roles Using the Operating System or Network .. 21-23
Using Operating System Role Identification .. 21-24
Using Operating System Role Management... 21-25
xvi Oracle8 Administrator’s Guide

Granting and Revoking Roles When OS_ROLES=TRUE ... 21-25
Enabling and Disabling Roles When OS_ROLES=TRUE ... 21-26
Using Network Connections with Operating System Role Management 21-26

Listing Privilege and Role Information ... 21-26
Listing Privilege and Role Information: Examples.. 21-27

22 Auditing Database Use

Guidelines for Auditing .. 22-2
Audit via the Database or Operating System... 22-2
Keep Audited Information Manageable ... 22-2

Creating and Deleting the Database Audit Trail Views.. 22-4
Creating the Audit Trail Views .. 22-4
Deleting the Audit Trail Views... 22-5

Managing Audit Trail Information ... 22-5
Events Audited by Default.. 22-7
Setting Auditing Options .. 22-7
Enabling and Disabling Database Auditing ... 22-13
Controlling the Growth and Size of the Audit Trail ... 22-14
Protecting the Audit Trail.. 22-17

Viewing Database Audit Trail Information... 22-17
Listing Active Statement Audit Options... 22-19
Listing Active Privilege Audit Options... 22-19
Listing Active Object Audit Options for Specific Objects... 22-19
Listing Default Object Audit Options.. 22-20
Listing Audit Records .. 22-20
Listing Audit Records for the AUDIT SESSION Option .. 22-20

Auditing Through Database Triggers ... 22-21

23 Archiving Redo Information

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode 23-2
Running a Database in NOARCHIVELOG Mode... 23-2
Running a Database in ARCHIVELOG Mode ... 23-2

Turning Archiving On and Off .. 23-4
Setting the Initial Database Archiving Mode ... 23-4
xvii

Changing the Database Archiving Mode.. 23-5
Enabling Automatic Archiving... 23-6
Disabling Automatic Archiving.. 23-7
Performing Manual Archiving ... 23-8

Tuning Archiving .. 23-9
Minimizing the Impact on System Performance.. 23-9
Improving Archiving Speed.. 23-10

Displaying Archiving Status Information ... 23-10
Specifying the Archived Redo Log Filename Format and Destination 23-12

A Space Estimations for Schema Objects

Estimating Space Required by Non-Clustered Tables .. A-2
Estimating Space for Indexes.. A-5
Estimating Space Required by Clusters .. A-10
Estimating Space Required by Hash Clusters.. A-16

Index
xviii Oracle8 Administrator’s Guide

Send Us Your Comments

Oracle8 Administrator’s Guide, 8.0

Part No. A58397-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

■ email: infodev@us.oracle.com
■ fax: (650) 506-7228 Attn: Server Technologies Documentation Manager
■ letter: Server Technologies Documentation Manager

 Oracle Corporation
 500 Oracle Parkway
 Redwood Shores, CA 94065

If you would like a reply, please give your name, address, and telephone number below.
 xix

xx

Preface

This guide is for people who administer the operation of an Oracle database sys-
tem. These people, referred to as “database administrators” (DBAs), are assumed to
be responsible for ensuring the smooth operation of an Oracle database system and
for monitoring its use. The responsibilities of database administrators are described
in Chapter 1.

Attention: The Oracle8 Administrator’s Guide contains information
that describes the features and functionality of the Oracle8 and the
Oracle8 Enterprise Edition products. Oracle8 and Oracle8 Enter-
prise Edition have the same basic features. However, several
advanced features are available only with the Enterprise Edition,
and some of these are optional. For example, to perform auto-
mated tablespace point-in-time recovery (using Recovery Man-
ager), you must have the Enterprise Edition.

For information about the differences between Oracle8 and the
Oracle8 Enterprise Edition and the features and options that are
available to you, please refer to Getting to Know Oracle8 and the
Oracle8 Enterprise Edition
 xxi

Audience
Readers of this guide are assumed to be familiar with relational database concepts.
They are also assumed to be familiar with the operating system environment under
which they are running Oracle.

As a prerequisite, all readers should read the first chapter of Oracle8 Concepts, “A
Technical Introduction to the Oracle Server.” This chapter is a comprehensive intro-
duction to the concepts and terminology used throughout this guide.

Readers Interested in Installation and Migration Information
Administrators frequently participate in installing the Oracle Server software and
migrating existing Oracle databases to newer formats (for example, Version 7 data-
bases to Oracle8 format). This guide is not an installation or migration manual.

If your primary interest is installation, see your operating system-specific Oracle
documentation.

If your primary interest is database or application migration, see the Oracle8 Migra-
tion manual.

Readers Interested in Application Design Information
In addition to administrators, experienced users of Oracle and advanced database
application designers might also find information in this guide useful.

However, database application developers should also see the Oracle8 Application
Developer’s Guide and the documentation for the tool or language product they are
using to develop Oracle database applications.

How to Use This Guide
Every reader of this guide should read Chapter 1 of the Oracle8 Concepts manual,
“Introduction to the Oracle Server.” This overview of the concepts and terminology
related to Oracle provides a foundation for the more detailed information in this
guide. The rest of the Oracle8 Concepts manual explains the Oracle architecture and
features, and how they operate in more detail.
xxii

Structure
This guide contains the following parts and chapters.

Part I: Basic Database Administration

Part II: Oracle Server Configuration

Chapter 1, “The Oracle Database
Administrator”

This chapter serves as a general introduction
to typical tasks performed by database
administrators, such as installing software
and planning a database.

Chapter 2, “Creating an Oracle
Database”

This chapter describes the most important
considerations when creating a database.
Consult this chapter when in the database
planning stage.

Chapter 3, “Starting Up and Shut-
ting Down”

Consult this chapter when you wish to start
up a database, alter its availability, or shut it
down. Parameter files related to starting up
and shutting down are also described here.

Chapter 4, “Managing Oracle Pro-
cesses”

This chapter helps you identify different Ora-
cle processes, such as dedicated server pro-
cesses and multi-threaded server processes.
Consult this chapter when configuring, modi-
fying, tracking and managing processes.

Chapter 5, “Managing the Online
Redo Log”

This chapter describes all aspects of manag-
ing the online redo log (such as planning, cre-
ating, renaming, dropping or clearing online
redo log files).

Chapter 6, “Managing Control
Files”

This chapter describes all aspects of manag-
ing control files (such as naming, creating,
troubleshooting and dropping control files).

Chapter 7, “Managing Job
Queues”

Consult this chapter before working with job
queues. All aspects of submitting, removing,
altering and fixing job queues are described.
xxiii

Part III: Database Storage

Chapter 8, “Managing Tablespaces” This chapter provides guidelines to fol-
low as you manage tablespaces, and
describes how to create, manage, alter
and drop tablespaces.

Chapter 9, “Managing Datafiles” This chapter provides guidelines to fol-
low as you manage datafiles, and
describes how to create, change, alter,
rename and view information about data-
files.

Chapter 10, “Guidelines for Managing
Schema Objects”

Consult this chapter for descriptions of
common tasks, such as setting storage
parameters, deallocating space and man-
aging space.

Chapter 11, “Managing Partitioned
Tables and Indexes”

This chapter describes what a partitioned
table (and index) is and how to create
and manage it.

Chapter 12, “Managing Tables” Consult this chapter for general table
management guidelines, as well as infor-
mation about creating, altering, maintain-
ing and dropping tables.

Chapter 13, “Managing Views,
Sequences and Synonyms”

This chapter describes all aspects of man-
aging views, sequences and synonyms.

Chapter 14, “Managing Indexes” Consult this chapter for general guide-
lines about indexes, including creating,
altering, monitoring and dropping
indexes.

Chapter 15, “Managing Clusters” Consult this chapter for general guide-
lines to follow when creating, altering
and dropping clusters.

Chapter 16, “Managing Hash Clusters” Consult this chapter for general guide-
lines to follow when altering or dropping
hash clusters.
xxiv

Part IV: Database Security

Chapter 17, “General Management of
Schema Objects”

This chapter covers more specific aspects
of schema management than those identi-
fied in Chapter 10. Consult this chapter
for information about table analysis, trun-
cation of tables and clusters, database
triggers, integrity constraints, object
dependencies. You will also find a num-
ber of specific examples.

Chapter 18, “Managing Rollback Seg-
ments”

Consult this chapter for guidelines to fol-
low when working with rollback seg-
ments.

Chapter 19, “Establishing Security Pol-
icies”

This chapter describes all aspects of data-
base security, including system, data and
user security policies, as well as specific
tasks associated with password manage-
ment.

Chapter 20, “Managing Users and
Resources”

This chapter describes session and user
licensing, user authentication, and pro-
vides specific examples of tasks associ-
ated with managing users and resources.

Chapter 21, “Managing User Privi-
leges and Roles”

This chapter contains information about
all aspects of managing user privileges
and roles. Consult this chapter to find
out how to grant and revoke privileges
and roles.

Chapter 22, “Auditing Database Use” This chapter describes how to create,
manage and view audit information.

Chapter 23, “Archiving Redo Informa-
tion”

Consult this chapter for information
about archive modes, tuning archiving,
and viewing
xxv

Appendix

Conventions
This section explains the conventions used in this manual including the following:

■ text

■ syntax diagrams and notation

■ code examples

Text
This section explains the conventions used within the text.

UPPERCASE Characters
Uppercase text is used to call attention to command keywords, object names,
parameters, filenames, and so on.

For example, “If you create a private rollback segment, the name must be included
in the ROLLBACK_SEGMENTS parameter of the parameter file.”

Italicized Characters
Italicized words within text are book titles or emphasized words.

Syntax Diagrams and Notation
The syntax diagrams and notation in this manual show the syntax for SQL com-
mands, functions, hints, and other elements. This section tells you how to read syn-
tax diagrams and examples and write SQL statements based on them.

Keywords
Keywords are words that have special meanings in the SQL language. In the syntax
diagrams in this manual, keywords appear in uppercase. You must use keywords
in your SQL statements exactly as they appear in the syntax diagram, except that
they can be either uppercase or lowercase. For example, you must use the CREATE
keyword to begin your CREATE TABLE statements just as it appears in the CRE-
ATE TABLE syntax diagram.

Appendix A, “Space Estimations for
Schema Objects”

This appendix contains several specific
formulas for estimating space required
by schema objects.
xxvi

Parameters
Parameters act as place holders in syntax diagrams. They appear in lowercase.
Parameters are usually names of database objects, Oracle datatype names, or
expressions. When you see a parameter in a syntax diagram, substitute an object or
expression of the appropriate type in your SQL statement. For example, to write a
CREATE TABLE statement, use the name of the table you want to create, such as
EMP, in place of the table parameter in the syntax diagram. (Note that parameter
names appear in italics in the text.)

This list shows parameters that appear in the syntax diagrams in this manual and
examples of the values you might substitute for them in your statements:

Parameter Description Examples

table The substitution value must be the
name of an object of the type speci-
fied by the parameter.

emp

’text’ The substitution value must be a
character literal in single quotes.

’Employee Records’

condition The substitution value must be a
condition that evaluates to TRUE or
FALSE.

ename > ’A’

date

d

The substitution value must be a
date constant or an expression of
DATE datatype.

TO_DATE (

’01-Jan-1996’,

DD-MON-YYYY’)

expr The substitution value can be an
expression of any datatype.

sal + 1000

integer The substitution value must be an
integer.

72

rowid The substitution value must be an
expression of datatype ROWID.

00000462.0001.0001

subquery The substitution value must be a
SELECT statement contained in
another SQL statement.

SELECT ename

 FROM emp

statement_name

block_name

The substitution value must be an
identifier for a SQL statement or
PL/SQL block.

s1

b1
xxvii

Code Examples
SQL and SQL*Plus commands and statements are separated from the text of para-
graphs in a monospaced font as follows:

INSERT INTO emp (empno, ename) VALUES (1000, ’JFEE);
ALTER TABLESPACE users ADD DATAFILE ’users2.ora’ SIZE 50K;

Example statements can include punctuation, such as commas or quotation marks.
All punctuation in example statements is required. All example statements termi-
nate with a semicolon (;). Depending on the application, a semicolon or other termi-
nator may or may not be required to end a statement.

Uppercase words in example statements indicate the keywords within Oracle SQL.
When you issue statements, however, keywords are not case sensitive.

Lowercase words in example statements indicate words supplied only for the con-
text of the example. For example, lowercase words may indicate the name of a
table, column, or file.

Examples of the Enterprise Manager Interface
This guide provides examples of the dialog boxes and menus of Enterprise Man-
ager, your primary utility for managing an Oracle database. Illustrations show the
character mode Server Manager screen. However, the actual appearance of your
screen may differ, depending on your system’s user interface.

For more information, see the Oracle Enterprise Manager Administrator’s Guide.
xxviii

Part I

Basic Database Administration

 The Oracle Database Adminis
1

The Oracle Database Administrator

This chapter describes the responsibilities of the person who administers the Oracle
Server, the database administrator.

The following topics are included:

■ Types of Oracle Users

■ Database Administrator Security and Privileges

■ Database Administrator Authentication

■ Password File Administration

■ Database Administrator Utilities

■ Initial Priorities of a Database Administrator

■ Identifying Oracle Software Releases
trator 1-1

Types of Oracle Users
Types of Oracle Users
At your site, the types of users and their responsibilities may vary. For example, at
a large site the duties of a database administrator might be divided among several
people.

This section includes the following topics:

■ Database Administrators

■ Security Officers

■ Application Developers

■ Application Administrators

■ Database Users

■ Network Administrators

Database Administrators
Because an Oracle database system can be quite large and have many users, some-
one or some group of people must manage this system. The database administrator
(DBA) is this manager. Every database requires at least one person to perform
administrative duties.

A database administrator’s responsibilities can include the following tasks:

■ installing and upgrading the Oracle Server and application tools

■ allocating system storage and planning future storage requirements for the
database system

■ creating primary database storage structures (tablespaces) after application
developers have designed an application

■ creating primary objects (tables, views, indexes) once application developers
have designed an application

■ modifying the database structure, as necessary, from information given by
application developers

■ enrolling users and maintaining system security

■ ensuring compliance with your Oracle license agreement

■ controlling and monitoring user access to the database

■ monitoring and optimizing the performance of the database
1-2 Oracle8 Administrator’s Guide

Types of Oracle Users
■ planning for backup and recovery of database information

■ maintaining archived data on tape

■ backing up and restoring the database

■ contacting Oracle Corporation for technical support

Security Officers
In some cases, a database might also have one or more security officers. A security
officer is primarily concerned with enrolling users, controlling and monitoring user
access to the database, and maintaining system security. You might not be responsi-
ble for these duties if your site has a separate security officer.

Application Developers
An application developer designs and implements database applications An applica-
tion developer’s responsibilities include the following tasks:

■ designing and developing the database application

■ designing the database structure for an application

■ estimating storage requirements for an application

■ specifying modifications of the database structure for an application

■ relaying the above information to a database administrator

■ tuning the application during development

■ establishing an application’s security measures during development

Application Administrators
An Oracle site might also have one or more application administrators. An applica-
tion administrator is responsible for the administration needs of a particular applica-
tion.

Database Users
Database users interact with the database via applications or utilities. A typical
user’s responsibilities include the following tasks:

■ entering, modifying, and deleting data, where permitted

■ generating reports of data
 The Oracle Database Administrator 1-3

Database Administrator Security and Privileges
Network Administrators
At some sites there may be one or more network administrators. Network adminis-
trators may be responsible for administering Oracle networking products, such as
Net8.

See Also: “Network Administration” in Oracle8 Distributed Database Systems

Database Administrator Security and Privileges
To accomplish administrative tasks in Oracle, you need extra privileges both within
the database and possibly in the operating system of the server on which the data-
base runs. Access to a database administrator’s account should be tightly con-
trolled.

This section includes the following topics:

■ The Database Administrator’s Operating System Account

■ Database Administrator Usernames

■ The DBA Role

The Database Administrator’s Operating System Account
To perform many of the administrative duties for a database, you must be able to
execute operating system commands. Depending on the operating system that exe-
cutes Oracle, you might need an operating system account or ID to gain access to
the operating system. If so, your operating system account might require more
operating system privileges or access rights than many database users require (for
example, to perform Oracle software installation). Although you do not need the
Oracle files to be stored in your account, you should have access to them.

In addition, Enterprise Manager requires that your operating system account or ID
be distinguished in some way to allow you to use operating system privileged Enter-
prise Manager commands.

See Also: The method of distinguishing a database administrator’s account is oper-
ating system specific. See your operating system-specific Oracle documentation for
information.
1-4 Oracle8 Administrator’s Guide

Database Administrator Security and Privileges
Database Administrator Usernames
Two user accounts are automatically created with the database and granted the
DBA role. These two user accounts are:

■ SYS (initial password: CHANGE_ON_INSTALL)

■ SYSTEM (initial password: MANAGER)

These two usernames are described in the following sections.

You will probably want to create at least one additional administrator username to
use when performing daily administrative tasks.

SYS
When any database is created, the user SYS, identified by the password
CHANGE_ON_INSTALL, is automatically created and granted the DBA role.

All of the base tables and views for the database’s data dictionary are stored in the
schema SYS. These base tables and views are critical for the operation of Oracle. To
maintain the integrity of the data dictionary, tables in the SYS schema are manipu-
lated only by Oracle; they should never be modified by any user or database admin-
istrator, and no one should create any tables in the schema of the user SYS.
(However, you can change the storage parameters of the data dictionary settings if
necessary.)

Most database users should never be able to connect using the SYS account. You
can connect to the database using this account but should do so only when
instructed by Oracle personnel or documentation.

SYSTEM
When a database is created, the user SYSTEM, identified by the password MAN-
AGER, is also automatically created and granted all system privileges for the data-
base.

The SYSTEM username creates additional tables and views that display administra-
tive information, and internal tables and views used by Oracle tools. Never create
tables of interest to individual users in the SYSTEM schema.

Note: To prevent inappropriate access to the data dictionary
tables, you must change the passwords for the SYS and SYSTEM
usernames immediately after creating an Oracle database.
 The Oracle Database Administrator 1-5

Database Administrator Authentication
The DBA Role
A predefined role, named “DBA”, is automatically created with every Oracle data-
base. This role contains all database system privileges. Therefore, it is very power-
ful and should only be granted to fully functional database administrators.

Database Administrator Authentication
Database administrators must often perform special operations such as shutting
down or starting up a database. Because these operations should not be performed
by normal database users, the database administrator usernames need a more
secure authentication scheme.

This section includes the following topics:

■ Selecting an Authentication Method

■ Using Operating System Authentication

■ OSOPER and OSDBA

■ Using an Authentication Password File

Selecting an Authentication Method
The following methods for authenticating database administrators replace the
CONNECT INTERNAL syntax provided with earlier versions of Oracle (CON-
NECT INTERNAL continues to be supported for backward compatibility only):

■ operating system authentication

■ password files

Depending on whether you wish to administer your database locally on the same
machine where the database resides or to administer many different databases
from a single remote client, you can choose between operating system authentica-
tion or password files to authenticate database administrators. Figure 1–1 illus-
trates the choices you have for database administrator authentication schemes.
1-6 Oracle8 Administrator’s Guide

Database Administrator Authentication
Figure 1–1 Database Administrator Authentication Methods

On most operating systems, OS authentication for database administrators involves
placing the OS username of the database administrator in a special group (on UNIX
systems, this is the DBA group) or giving that OS username a special process right.

The database uses password files to keep track of database usernames that have
been granted administrator privileges.

See Also: “User Authentication” in Oracle8 Concepts.

Using Operating System Authentication
If you choose, you can have your operating system authenticate users performing
database administration operations.

1. Set up the user to be authenticated by the operating system.

2. Make sure that the initialization parameter, REMOTE_LOGIN_PASSWORD, is
set to NONE, which is the default value for this parameter.

3. Authenticated users should now be able to connect to a local database, or to
connect to a remote database over a secure connection, by typing one of the fol-
lowing commands:

 CONNECT / AS SYSOPER
 CONNECT / AS SYSDBA

Remote Database
Administration

Local Database
Administration

Yes Yes

No No

Use OS
authentication

Use a
password file

Do you
have a secure

connection?

Do you
want to use OS
authentication?
 The Oracle Database Administrator 1-7

Database Administrator Authentication
If you successfully connect as INTERNAL using an earlier release of Oracle, you
should be able to continue to connect successfully using the new syntax shown in
Step 3.

OSOPER and OSDBA
Two special operating system roles control database administrator logins when
using operating system authentication: OSOPER and OSDBA.

OSOPER and OSDBA can have different names and functionality, depending on
your operating system.

The OSOPER and OSDBA roles can only be granted to a user through the operating
system. They cannot be granted through a GRANT statement, nor can they be
revoked or dropped. When a user logs on with administrator privileges and
REMOTE_LOGIN_PASSWORDFILE is set to NONE, Oracle communicates with
the operating system and attempts to enable first OSDBA and then, if unsuccessful,
OSOPER. If both attempts fail, the connection fails. How you grant these privileges
through the operating system is operating system specific.

If you are performing remote database administration, you should consult your
Net8 documentation to determine if you are using a secure connection. Most popu-
lar connection protocols, such as TCP/IP and DECnet, are not secure, regardless of
which version of Net8 you are using.

See Also: For information about OS authentication of database administrators, see
your operating system-specific Oracle documentation.

Note: To connect as SYSOPER or SYSDBA using OS authentica-
tion you do not need the SYSOPER or SYSDBA system privileges.
Instead, the server verifies that you have been granted the appro-
priate OSDBA or OSOPER roles at the operating system level.

OSOPER Permits the user to perform STARTUP, SHUTDOWN, ALTER
DATABASE OPEN/MOUNT, ALTER DATABASE BACKUP,
ARCHIVE LOG, and RECOVER, and includes the
RESTRICTED SESSION privilege.

OSDBA Contains all system privileges with ADMIN OPTION, and the
OSOPER role; permits CREATE DATABASE and time-based
recovery.
1-8 Oracle8 Administrator’s Guide

Password File Administration
Using an Authentication Password File
If you have determined that you need to use a password file to authenticate users
performing database administration, you must complete the steps outlined below.
Each of these steps is explained in more detail in the following sections of this chap-
ter.

1. Create the password file using the ORAPWD utility.

 ORAPWD FILE= filename PASSWORD=password ENTRIES=max_users

2. Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to EXCLU-
SIVE.

3. Add users to the password file by using SQL to grant the appropriate privi-
leges to each user who needs to perform database administration, as shown in
the following examples.

 GRANT SYSDBA TO scott
 GRANT SYSOPER TO scott

The privilege SYSDBA permits the user to perform the same operations as
OSDBA. Likewise, the privilege SYSOPER permits the user to perform the
same operations as OSOPER.

4. Privileged users should now be able to connect to the database by using a com-
mand similar to the one shown below.

 CONNECT scott/tiger@acct.hq.com AS SYSDBA

Password File Administration
You can create a password file using the password file creation utility, ORAPWD or,
for selected operating systems, you can create this file as part of your standard
installation.

This section includes the following topics:

■ Using ORAPWD

■ Setting REMOTE_LOGIN_ PASSWORDFILE

■ Adding Users to a Password File

■ Connecting with Administrator Privileges

■ Maintaining a Password File
 The Oracle Database Administrator 1-9

Password File Administration
See Also: See your operating system-specific Oracle documentation for informa-
tion on using the installer utility to install the password file.

Using ORAPWD
When you invoke the password file creation utility without supplying any parame-
ters, you receive a message indicating the proper use of the command as shown in
the following sample output:

 orapwd
Usage: orapwd file=<fname> password=<password> entries=<users>

where
file - name of password file (mand),
password - password for SYS and INTERNAL (mand),
entries - maximum number of distinct DBAs and OPERs (opt),
There are no spaces around the equal-to (=) character.

For example, the following command creates a password file named ACCT.PWD
that allows up to 30 privileged users with different passwords. The file is initially
created with the password SECRET for users connecting as INTERNAL or SYS:

ORAPWD FILE=acct.pwd PASSWORD=secret ENTRIES=30

Following are descriptions of the parameters in the ORAPWD utility.

FILE
This parameter sets the name of the password file being created. You must specify
the full pathname for the file. The contents of this file are encrypted, and the file is
not user-readable. This parameter is mandatory.

The types of file names allowed for the password file are operating system specific.
Some platforms require the password file to be a specific format (for example,
orapw <SID>) and located in a specific directory. Other platforms allow the use of
environment variables to specify the name and location of the password file. See
your operating system-specific Oracle documentation for the names and locations
allowed on your platform.

If you are running multiple instances of Oracle using the Oracle Parallel Server, the
environment variable for each instance should point to the same password file.

WARNING: It is critically important to the security of your sys-
tem that you protect your password file and environment vari-
ables that identify the location of the password file. Any user
with access to these could potentially compromise the security of
the connection.
1-10 Oracle8 Administrator’s Guide

Password File Administration
PASSWORD
This parameter sets the password for INTERNAL and SYS. If you issue the ALTER
USER command to change the password after connecting to the database, both the
password stored in the data dictionary and the password stored in the password
file are updated. The INTERNAL user is supported for backwards compatibility
only. This parameter is mandatory.

ENTRIES
This parameter sets the maximum number of entries allowed in the password file.
This corresponds to the maximum number of distinct users allowed to connect to
the database as SYSDBA or SYSOPER. Entries can be reused as users are added to
and removed from the password file. This parameter is required if you ever want
this password file to be EXCLUSIVE.

See Also: Consult your operating system-specific Oracle documentation for the
exact name of the password file or for the name of the environment variable used
to specify this name for your operating system.

Setting REMOTE_LOGIN_ PASSWORDFILE
In addition to creating the password file, you must also set the initialization param-
eter REMOTE_LOGIN_PASSWORDFILE to the appropriate value. The values rec-
ognized are described below.

NONE
Setting this parameter to NONE causes Oracle to behave as if the password file
does not exist. That is, no privileged connections are allowed over non-secure con-
nections. NONE is the default value for this parameter.

WARNING: If you ever need to exceed this limit, you must cre-
ate a new password file. It is safest to select a number larger than
you think you will ever need.

Note: To start up an instance or database, you must use Enter-
prise Manager. You must specify a database name and a parameter
file to initialize the instance settings. You may specify a fully-quali-
fied remote database name using Net8. However, the initialization
parameter file and any associated files, such as a configuration file,
must exist on the client machine. That is, the parameter file must
be on the machine where you are running Enterprise Manager.
 The Oracle Database Administrator 1-11

Password File Administration
EXCLUSIVE
An EXCLUSIVE password file can be used with only one database. Only an
EXCLUSIVE file can contain the names of users other than SYS and INTERNAL.
Using an EXCLUSIVE password file allows you to grant SYSDBA and SYSOPER
system privileges to individual users and have them connect as themselves.

SHARED
A SHARED password file can be used by multiple databases. However, the only
users recognized by a SHARED password file are SYS and INTERNAL; you cannot
add users to a SHARED password file. All users needing SYSDBA or SYSOPER sys-
tem privileges must connect using the same name, SYS, and password. This option
is useful if you have a single DBA administering multiple databases.

Adding Users to a Password File
When you grant SYSDBA or SYSOPER privileges to a user, that user’s name and
privilege information is added to the password file. If the server does not have an
EXCLUSIVE password file, that is, if the initialization parameter
REMOTE_LOGIN_PASSWORDFILE is NONE or SHARED, you receive an error
message if you attempt to grant these privileges.

A user’s name only remains in the password file while that user has at least one of
these two privileges. When you revoke the last of these privileges from a user, that
user is removed from the password file.

To Create a Password File and Add New Users to It

1. Follow the instructions for creating a password file.

2. Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to EXCLU-
SIVE.

3. Connect with SYSDBA privileges as shown in the following example:

 CONNECT SYS/change_on_install AS SYSDBA

4. Start up the instance and create the database if necessary, or mount and open
an existing database.

Suggestion: To achieve the greatest level of security, you should
set the REMOTE_LOGIN_PASSWORDFILE file initialization
parameter to EXCLUSIVE immediately after creating the password
file.
1-12 Oracle8 Administrator’s Guide

Password File Administration
5. Create users as necessary. Grant SYSOPER or SYSDBA privileges to yourself
and other users as appropriate.

6. These users are now added to the password file and can connect to the data-
base as SYSOPER or SYSDBA with a username and password (instead of using
SYS). The use of a password file does not prevent OS authenticated users from
connecting if they meet the criteria for OS authentication.

Granting and Revoking SYSOPER and SYSDBA Privileges
If your server is using an EXCLUSIVE password file, use the GRANT command to
grant the SYSDBA or SYSOPER system privilege to a user, as shown in the follow-
ing example:

GRANT SYSDBA TO scott

Use the REVOKE command to revoke the SYSDBA or SYSOPER system privilege
from a user, as shown in the following example:

REVOKE SYSDBA FROM scott

Because SYSDBA and SYSOPER are the most powerful database privileges, the
ADMIN OPTION is not used. Only users currently connected as SYSDBA (or
INTERNAL) can grant SYSDBA or SYSOPER system privileges to another user.
This is also true of REVOKE. These privileges cannot be granted to roles, since roles
are only available after database startup. Do not confuse the SYSDBA and
SYSOPER database privileges with operating system roles, which are a completely
independent feature.

See Also: For more information about system privileges, see Chapter 21, Managing
User Privileges and Roles.

Listing Password File Members
Use the V$PWFILE_USERS view to determine which users have been granted SYS-
DBA and SYSOPER system privileges for a database. The columns displayed by
this view are as follows:

USERNAME
The name of the user that is recognized by the password file.

SYSDBA
If the value of this column is TRUE, the user can log on with SYSDBA system privi-
leges.
 The Oracle Database Administrator 1-13

Password File Administration
SYSOPER
If the value of this column is TRUE, the user can log on with SYSOPER system priv-
ileges.

Connecting with Administrator Privileges
When you connect with SYSOPER or SYSDBA privileges using a username and
password, you are connecting with a default schema of SYS, not the schema that is
generally associated with your username.

Use the AS SYSDBA or AS SYSOPER clauses of the Enterprise Manager CONNECT
command to connect with administrator privileges.

Connecting with Administrator Privileges: Example
For example, assume user SCOTT has issued the following commands:

CONNECT scott/tiger
CREATE TABLE scott_test(name VARCHAR2(20));

Later, when SCOTT issues these commands:

CONNECT scott/tiger AS SYSDBA
SELECT * FROM scott_test;

He receives an error that SCOTT_TEST does not exist. That is because SCOTT now
references the SYS schema by default, whereas the table was created in the SCOTT
schema.

Non-Secure Remote Connections
To connect to Oracle as a privileged user over a non-secure connection, you must
meet the following conditions:

■ The server to which you are connecting must have a password file.

■ You must be granted the SYSOPER or SYSDBA system privilege.

■ You must connect using a username and password.

Local and Secure Remote Connections
To connect to Oracle as a privileged user over a local or a secure remote connection,
you must meet either of the following sets of conditions:

■ You can connect using a password file, provided that you meet the criteria out-
lined for non-secure connections in the previous bulleted list.
1-14 Oracle8 Administrator’s Guide

Password File Administration
■ If the server is not using a password file, or you have not been granted
SYSOPER or SYSDBA privileges and are therefore not in the password file,
your operating system name must be authenticated for a privileged connection
by the operating system. This form of authentication is operating system spe-
cific.

Consult your operating system-specific Oracle documentation for details on operat-
ing system authentication.

See Also: “Password File Administration” on page 1-9.

Maintaining a Password File
This section describes how to expand, relocate, and remove the password file, as
well as how to avoid changing the state of the password file.

Expanding the Number of Password File Users
If you receive the file full error (ORA-1996) when you try to grant SYSDBA or
SYSOPER system privileges to a user, you must create a larger password file and re-
grant the privileges to the users.

To Replace a Password File

1. Note which users have SYSDBA or SYSOPER privileges by querying the
V$PWFILE_USERS view.

2. Shut down the database.

3. Delete the existing password file.

4. Follow the instructions for creating a new password file using the ORAPWD
utility in “Using ORAPWD” on page 1-10. Be sure to set the ENTRIES parame-
ter to a sufficiently large number.

5. Follow the instructions in “Adding Users to a Password File” on page 1-12.

Relocating the Password File
After you have created the password file, you can relocate it as you choose. After
relocating the password file, you must reset the appropriate environment variables
to the new pathname. If your operating system uses a predefined pathname, you
cannot change the password file location.
 The Oracle Database Administrator 1-15

Password File Administration
Removing a Password File
If you determine that you no longer need to use a password file to authenticate
users, you can delete the password file and reset the
REMOTE_LOGIN_PASSWORDFILE initialization parameter to NONE. After
removing this file, only users who can be authenticated by the operating system
can perform database administration operations.

Changing the Password File State
The password file state is stored in the password file. When you first create a pass-
word file, its default state is SHARED. You can change the state of the password file
by setting the parameter REMOTE_LOGIN_PASSWORDFILE. When you STAR-
TUP an instance, Oracle retrieves the value of this parameter from the initialization
parameter file stored on your client machine. When you mount the database, Ora-
cle compares the value of this parameter to the value stored in the password file. If
these values do not match, the value stored in the file is overwritten.

WARNING: Do not remove or modify the password file if you
have a database or instance mounted using
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE (or
SHARED). If you do, you will be unable to reconnect remotely
using the password file. Even if you replace it, you cannot use
the new password file, because the timestamp and checksums
will be wrong.

WARNING: You should use caution to ensure that an EXCLU-
SIVE password file is not accidentally changed to SHARED. If
you plan to allow instance STARTUP from multiple clients, each
of those clients must have an initialization parameter file, and
the value of the parameter REMOTE_LOGIN_PASSWORDFILE
must be the same in each of these files. Otherwise, the state of
the password file could change depending upon where the
instance was started.
1-16 Oracle8 Administrator’s Guide

Database Administrator Utilities
Database Administrator Utilities
Several utilities are available to help you maintain and control the Oracle Server.

The following topics are included in this section:

■ Enterprise Manager

■ SQL*Loader

■ Export and Import

Enterprise Manager
Enterprise Manager allows you to monitor and control an Oracle database. All
administrative operations discussed in this book are executed using Enterprise
Manager. Enterprise Manager has both GUI (Graphical User Interface) and line
mode interfaces.

Enterprise Manager uses a superset of ANSI/ISO standard SQL commands. The
most common administrative commands are available in the menus of Enterprise
Manager/GUI. Commands used less frequently can be typed into a Enterprise
Manager SQL Worksheet and executed.

See Also: Oracle Enterprise Manager Administrator’s Guide.

SQL*Loader
SQL*Loader is used by both database administrators and users of Oracle. It loads
data from standard operating system files (files in text or C data format) into Oracle
database tables.

See Also: Oracle8 Utilities.

Export and Import
The Export and Import utilities allow you to move existing data in Oracle format to
and from Oracle databases. For example, export files can archive database data, or
move data among different Oracle databases that run on the same or different oper-
ating systems.

See Also: Oracle8 Utilities.
 The Oracle Database Administrator 1-17

Initial Priorities of a Database Administrator
Initial Priorities of a Database Administrator
In general, you must perform a series of steps to get the database system up and
running, and then maintain it.

The following steps are required to configure an Oracle Server and database on any
type of computer system. The following sections include details about each step.

To Configure an Oracle Server

■ Step 1: Install the Oracle Software

■ Step 2: Evaluate the Database Server Hardware

■ Step 3: Plan the Database

■ Step 4: Create and Open the Database

■ Step 5: Implement the Database Design

■ Step 6: Back up the Database

■ Step 7: Enroll System Users

■ Step 8: Tune Database Performance

Step 1: Install the Oracle Software
As the database administrator, you must install the Oracle Server software and any
front-end tools and database applications that access the database. In some distrib-
uted processing installations, the database is controlled by a central computer and
the database tools and applications are executed on remote machines; in this case,
you must also install the Oracle Net8 drivers necessary to connect the remote
machines to the computer that executes Oracle.

See Also: For more information, see "Identifying Oracle Software Releases" on
page 1-21.

For specific requirements and instructions for installation, see your operating sys-
tem-specific Oracle documentation and your installation guides for your front-end
tools and Net8 drivers.

Note: If migrating to a new release, back up your existing produc-
tion database before installation. For more information on preserv-
ing your existing production database, see Oracle8 Migration.
1-18 Oracle8 Administrator’s Guide

Initial Priorities of a Database Administrator
Step 2: Evaluate the Database Server Hardware
After installation, evaluate how Oracle and its applications can best use the avail-
able computer resources. This evaluation should reveal the following information:

■ how many disk drives are available to Oracle and its databases

■ how many, if any, dedicated tape drives are available to Oracle and its data-
bases

■ how much memory is available to the instances of Oracle you will run (See
your system’s configuration documentation)

Step 3: Plan the Database
As the database administrator, you must plan:

■ the database’s logical storage structure

■ the overall database design

■ a backup strategy for the database

It is important to plan how the logical storage structure of the database will affect
system performance and various database management operations. For example,
before creating any tablespaces for your database, you should know how many
data files will make up the tablespace, where the data files will be physically stored
(on which disk drives), and what type of information will be stored in each
tablespace. When planning the database’s overall logical storage structure, take
into account the effects that this structure will have when the database is actually
created and running. Such considerations include how the database’s logical stor-
age structure will affect the following items:

■ the performance of the computer executing Oracle

■ the performance of the database during data access operations

■ the efficiency of backup and recovery procedures for the database

Plan the relational design of the database’s objects and the storage characteristics
for each of these objects. By planning relationships between objects and the physi-
cal storage of each object before creating it, you can directly impact the perfor-
mance of the database as a unit. Be sure to plan for the growth of the database.

In distributed database environments, this planning stage is extremely important.
The physical location of highly accessed data can dramatically affect application
performance.
 The Oracle Database Administrator 1-19

Initial Priorities of a Database Administrator
During the above planning phases, also plan a backup strategy for the database.
After developing this strategy, you might find that you want to alter the database’s
planned logical storage structure or database design to improve backup efficiency.

It is beyond the scope of this book to discuss relational and distributed database
design; if you are not familiar with such design issues, refer to accepted industry-
standard books that explain these studies.

See Also: See Chapters 9 through 17 for specific information on creating logical
storage structures, objects, and integrity constraints for your database.

Step 4: Create and Open the Database
Once you have finalized the database design, you can create the database and open
it for normal use. Depending on your operating system, a database may already
have been created during the installation procedure for Oracle. If so, all you need to
do is start an instance and mount and open the initial database.

To determine if your operating system creates an initial database during the instal-
lation of Oracle, check your installation or user’s guide. If no database is created
during installation or you want to create an additional database, see Chapter 2 of
this book for this procedure.

See Also: See Chapter 3 for database and instance startup and shutdown proce-
dures.

Step 5: Implement the Database Design
Once you have created and started the database, you can create the database’s
planned logical structure by creating all necessary rollback segments and
tablespaces. Once this is built, you can create the objects for your database.

See Also: See Chapters 8 through 17 for instructions on creating logical storage
structures and objects for your database.

Step 6: Back up the Database
After you have created the database structure, carry out the planned backup strat-
egy for your database by creating any additional redo log files, taking the first full
database backup (online or offline), and scheduling future database backups at reg-
ular intervals.

See Also: See the Oracle8 Backup and Recovery Guide for instructions on customizing
your backup operations and performing recovery procedures.
1-20 Oracle8 Administrator’s Guide

Identifying Oracle Software Releases
Step 7: Enroll System Users
Once you have backed up the database structure, you can begin to enroll the users
of the database in accordance with your Oracle license agreement, create roles for
these users, and grant appropriate roles to them.

See Also: See Chapters 18 through 20 for the procedures to create user accounts
and roles, and information on complying with your license agreement.

Step 8: Tune Database Performance
Optimizing the database system’s performance is one of your ongoing responsibili-
ties.

See Also: Oracle8 Tuning, for information about tuning your database and applica-
tions.

Identifying Oracle Software Releases
Because Oracle products are always undergoing development and change, several
releases of the products can be in use at any one time. To identify a software prod-
uct fully, as many as five numbers may be required.

This section includes the following topics:

■ Release Number Format

■ Versions of Other Oracle Software

■ Checking Your Current Release Number

Release Number Format
An Oracle Server distribution tape might be labeled “Release 8.0.4.1.” The follow-
ing sections translate this number.
 The Oracle Database Administrator 1-21

Identifying Oracle Software Releases
Figure 1–2 Example of an Oracle Release Number

Version Number
The version number, such as 8, is the most general identifier. A version is a major
new edition of the software, which usually contains significant new functionality.

Maintenance Release Number
The maintenance release number signifies different releases of the general version,
starting with 0, as in version 8.0. The maintenance release number increases when
bug fixes or new features to existing programs become available.

Patch Release Number
The patch release number identifies a specific level of the object code, such as 8.0.4.
A patch release contains fixes for serious bugs that cannot wait until the next main-
tenance release. The first distribution of a maintenance release always has a patch
number of 0.

Port-Specific Patch Release Number
A fourth number (and sometimes a fifth number) can be used to identify a particu-
lar emergency patch release of a software product on that operating system, such as
8.0.4.1. or 8.0.4.1.3. An emergency patch is not usually intended for wide distribu-
tion; it usually fixes or works around a particular, critical problem.

Examples of Release Numbers
The following examples show possible release numbers for Oracle8:

8.0.0 the first distribution of Oracle8

8.1.0 the first maintenance release of Oracle8

8.2.0 the second maintenance release (the third release in all) of Oracle8

8.2.2 the second patch release after the second maintenance release

8.0.4.1
Version Number

Maintenance Release
Number

Patch Release
Number

Port–Specific Patch
Release Number
1-22 Oracle8 Administrator’s Guide

Identifying Oracle Software Releases
Versions of Other Oracle Software
As Oracle Corporation introduces new products and enhances existing ones, the
version numbers of the individual products increment independently. Thus, you
might have an Oracle Server Release 8.0.12.2 system working with Oracle Forms
Version 4.0.3, SQL*Plus Version 3.1.9, and Pro*FORTRAN Version 1.5.2. (These
numbers are used only for illustration.)

Checking Your Current Release Number
To see which release of Oracle and its components you are using, query the data
dictionary view PRODUCT_COMPONENT_VERSION, as shown below (This infor-
mation is useful if you need to call Oracle Support.):

SVRMGR> SELECT * FROM product_component_version;

PRODUCT VERSION STATUS
------------------- ----------------- ----------
CORE 3.4.1.0.0 Production
NLSRTL 3.1.3.0.0 Production
Oracle8 Server 3.2.1.0.0 Beta Release
PL/SQL 2.2.1.0.0 Beta
TNS for SunOS: 2.1.4.0.0 Production
5 rows selected
 The Oracle Database Administrator 1-23

Identifying Oracle Software Releases
1-24 Oracle8 Administrator’s Guide

 Creating an Oracle Data
2

Creating an Oracle Database

This chapter lists the steps necessary to create an Oracle database, and includes the
following topics:

■ Considerations Before Creating a Database

■ Creating an Oracle Database

■ Parameters

■ Considerations After Creating a Database

■ Initial Tuning Guidelines
base 2-1

Considerations Before Creating a Database
Considerations Before Creating a Database
This section includes the following topics:

■ Creation Prerequisites

■ Using an Initial Database

■ Migrating an Older Version of the Database

Database creation prepares several operating system files so they can work together
as an Oracle database. You need only create a database once, regardless of how
many datafiles it has or how many instances access it. Creating a database can also
erase information in an existing database and create a new database with the same
name and physical structure.

Creating a database includes the following operations:

■ creating new datafiles or erasing data that existed in previous datafiles

■ information creating structures that Oracle requires to access and use the data-
base (the data dictionary)

■ creating and initializing the control files and redo log files for the database

Consider the following issues before you create a database:

■ Plan your database tables and indexes, and estimate how much space they will
require.

■ Plan how to protect your new database, including the configuration of its
online and archived redo log (and how much space it will require), and a
backup strategy.

■ Select the database character set. You must specify the database character set
when you create the database. After the database is created, you cannot change
the character set choices without re-creating the database. Hence, it is impor-
tant that you carefully consider which character set(s) to use. All character
data, including data in the data dictionary, is stored in the database character
set. If users access the database using a different character set, the database
character set should be the same as, or a superset of, all character sets they use.

Also become familiar with the principles and options of starting up and shutting
down an instance, mounting and opening a database, and using parameter files.

See Also: “National Language Support” in the Oracle8 Reference.

For information about tables, indexes, and space management, see Chapters 9
through 17.
2-2 Oracle8 Administrator’s Guide

Considerations Before Creating a Database
For information about the online and archive redo logs, see Chapters 5 and 23
respectively.

For information about database backup and recovery, see the Oracle8 Backup and
Recovery Guide.

Creation Prerequisites
To create a new database, you must have the following:

■ the operating system privileges associated with a fully operational database
administrator

■ sufficient memory to start the Oracle instance

■ sufficient disk storage space for the planned database on the computer that exe-
cutes Oracle

Using an Initial Database
Depending on your operating system, a database might have been created automat-
ically as part of the installation procedure for Oracle. You can use this initial data-
base and customize it to meet your information management requirements, or
discard it and create one or more new databases to replace it.

Migrating an Older Version of the Database
If you are using a previous release of Oracle, database creation is required only if
you want an entirely new database. Otherwise, you can migrate your existing Ora-
cle databases managed by a previous version of Oracle and use them with the new
version of the Oracle software.

See Also: Oracle8 Migration manual for information about migrating an existing
database.

For more information about migrating an existing database, see your operating sys-
tem-specific Oracle documentation.
 Creating an Oracle Database 2-3

Creating an Oracle Database
Creating an Oracle Database
This section includes the following topics:

■ Steps for Creating an Oracle Database

■ Creating a Database: Example

■ Troubleshooting Database Creation

■ Dropping a Database

Steps for Creating an Oracle Database
These steps, which describe how to create an Oracle database, should be followed
in the order presented.

To Create a New Database and Make It Available for System Use

1. Back up any existing databases.

2. Create parameter files.

3. Edit new parameter files.

4. Check the instance identifier for your system.

5. Start Enterprise Manager and connect to Oracle as an administrator.

6. Start an instance.

7. Create the database.

8. Back up the database.

See Also: These steps provide general information about database creation on all
operating systems. See your operating system-specific Oracle documentation for
information about creating databases on your platform.

Step 1: Back up any existing databases. Oracle Corporation strongly recommends that
you make complete backups of all existing databases before creating a new data-
base, in case database creation accidentally affects some existing files. Backup
should include parameter files, datafiles, redo log files, and control files.

Step 2: Create parameter files. The instance (System Global Area and background pro-
cesses) for any Oracle database is started using a parameter file.
2-4 Oracle8 Administrator’s Guide

Creating an Oracle Database
Each database on your system should have at least one customized parameter file
that corresponds only to that database. Do not use the same file for several data-
bases.

To create a parameter file for the database you are about to make, use your operat-
ing system to make a copy of the parameter file that Oracle provided on the distri-
bution media. Give this copy a new filename. You can then edit and customize this
new file for the new database.

See Also: For more information about copying the parameter file, see your operat-
ing system-specific Oracle documentation.

Step 3: Edit new parameter files. To create a new database, inspect and edit the follow-
ing parameters of the new parameter file:

Note: In distributed processing environments, Enterprise Man-
ager is often executed from a client machine of the network. If a cli-
ent machine is being used to execute Enterprise Manager and
create a new database, you need to copy the new parameter file
(currently located on the computer executing Oracle) to your client
workstation. This procedure is operating system dependent. For
more information about copying files among the computers of
your network, see your operating system-specific Oracle documen-
tation.

Parameter Described

DB_NAME on page 2-9

DB_DOMAIN on page 2-9

CONTROL_FILES on page 2-10

DB_BLOCK_SIZE on page 2-11

DB_BLOCK_BUFFERS on page 2-11

PROCESSES on page 2-12

ROLLBACK_SEGMENTS on page 2-12
 Creating an Oracle Database 2-5

Creating an Oracle Database
You should also edit the appropriate license parameter(s):

Step 4: Check the instance identifier for your system. If you have other databases, check
the Oracle instances identifier. The Oracle instance identifier should match the
name of the database (the value of DB_NAME) to avoid confusion with other Ora-
cle instances that are running concurrently on your system.

See your operating system-specific Oracle documentation for more information.

Step 5: Start Enterprise Manager and connect to Oracle as an administrator. Once Enter-
prise Manager is running, connect to the database as an administrator.

See Also: Starting Enterprise Manager is operating system specific; see your operat-
ing system-specific Oracle documentation for details.

Step 6: Start an instance. To start an instance (System Global Area and background
processes) to be used with the new database, use the Startup Database dialog box
of Enterprise Manager. In the Startup Database dialog box, make sure that you
have selected the Startup Nomount radio button.

After selecting the Startup Nomount, the instance starts. At this point, there is no
database. Only an SGA and background processes are started in preparation for the
creation of a new database.

Step 7: Create the database. To create the new database, use the SQL command CRE-
ATE DATABASE, optionally setting parameters within the statement to name the
database, establish maximum numbers of files, name the files and set their sizes,
and so on.

When you execute a CREATE DATABASE statement, Oracle performs the follow-
ing operations:

■ creates the datafiles for the database

■ creates the control files for the database

■ creates the redo log files for the database

■ creates the SYSTEM tablespace and the SYSTEM rollback segment

Parameter Described

LICENSE_MAX_SESSIONS on page 2-13

LICENSE_SESSION_WARNING on page 2-13

LICENSE_MAX_USERS on page 2-13
2-6 Oracle8 Administrator’s Guide

Creating an Oracle Database
■ creates the data dictionary

■ creates the users SYS and SYSTEM

■ specifies the character set that stores data in the database

■ mounts and opens the database for use

Step 8: Back up the database. You should make a full backup of the database to
ensure that you have a complete set of files from which to recover if a media failure
occurs.

See Also: Oracle8 Backup and Recovery Guide.

For more information about parameter files see “Using Parameter Files” on
page 3-12.

For information about the CREATE DATABASE command, character sets, and data-
base creation see Oracle8 SQL Reference.

Creating a Database: Example
The following statement is an example of a CREATE DATABASE statement:

CREATE DATABASE test
 DATAFILE ’test_system’ SIZE 10M
 LOGFILE GROUP 1 (’test_log1a’, ’test_log1b’) SIZE 500K,
 GROUP 2 (’test_log2a’, ’test_log2b’) SIZE 500K;

The values of the MAXLOGFILES, MAXLOGMEMBERS, MAXDATAFILES, MAX-
LOGHISTORY, and MAXINSTANCES options in this example assume the default
values, which are operating system-dependent. The database is mounted in the
default modes NOARCHIVELOG and EXCLUSIVE and then opened.

The items and information in the example statement above result in creating a data-
base with the following characteristics:

■ The new database is named TEST.

■ The SYSTEM tablespace of the new database is comprised of one 10 MB data-
file named TEST_SYSTEM.

■ The new database has two online redo log groups, each containing two 500 KB
members.

WARNING: Make sure that the datafiles and redo log files that
you specify do not conflict with files of another database.
 Creating an Oracle Database 2-7

Creating an Oracle Database
■ The new database does not overwrite any existing control files specified in the
parameter file.

See Also: For more information about setting limits during database creation, see
the Oracle8 SQL Reference.

See your operating system-specific Oracle documentation for information about
operating system limits.

Troubleshooting Database Creation
If for any reason database creation fails, shut down the instance and delete any files
created by the CREATE DATABASE statement before you attempt to create it once
again.

After correcting the error that caused the failure of the database creation, return to
Step 6 of “Creating an Oracle Database”.

Dropping a Database
To drop a database, remove its datafiles, redo log files, and all other associated files
(control files, parameter files, archived log files).

To view the names of the database’s datafiles and redo log files, query the data dic-
tionary views V$DATAFILE and V$LOGFILE.

See Also: For more information about these views, see the Oracle8 Reference.

Note: You can set several limits during database creation. Some
of these limits are also subject to superseding limits of the operat-
ing system and can affect each other. For example, if you set MAX-
DATAFILES, Oracle allocates enough space in the control file to
store MAXDATAFILES filenames, even if the database has only
one datafile initially; because the maximum control file size is lim-
ited and operating system-dependent, you might not be able to set
all CREATE DATABASE parameters at their theoretical maximums.
2-8 Oracle8 Administrator’s Guide

Parameters
Parameters
As described in Step 3 of the section “Creating an Oracle Database”, Oracle sug-
gests you alter a minimum set of parameters. These parameters are described in the
following sections:

■ DB_NAME and DB_DOMAIN

■ CONTROL_FILES

■ DB_BLOCK_SIZE

■ PROCESSES

■ ROLLBACK_SEGMENTS

■ License Parameters

■ DB_BLOCK_BUFFERS

■ LICENSE_MAX_SESSIONS_and LICENSE_SESSIONS WARNING

■ LICENSE_MAX_USERS

DB_NAME and DB_DOMAIN
A database’s global database name (name and location within a network structure) is cre-
ated by setting both the DB_NAME and DB_DOMAIN parameters before database cre-
ation. After creation, the database’s name cannot be easily changed. The DB_NAME
parameter determines the local name component of the database’s name, while the
DB_DOMAIN parameter indicates the domain (logical location) within a network struc-
ture. The combination of the settings for these two parameters should form a database
name that is unique within a network. For example, to create a database with a global
database name of TEST.US.ACME.COM, edit the parameters of the new parameter file
as follows:

DB_NAME = TEST
DB_DOMAIN = US.ACME.COM

DB_NAME must be set to a text string of no more than eight characters. During
database creation, the name provided for DB_NAME is recorded in the datafiles,
redo log files, and control file of the database. If during database instance startup
the value of the DB_NAME parameter (of the parameter file) and the database
name in the control file are not the same, the database does not start.

DB_DOMAIN is a text string that specifies the network domain where the database
is created; this is typically the name of the organization that owns the database. If
 Creating an Oracle Database 2-9

Parameters
the database you are about to create will ever be part of a distributed database sys-
tem, pay special attention to this initialization parameter before database creation.

See Also: For more information about distributed databases, see Oracle8 Distributed
Database Systems.

CONTROL_FILES
Include the CONTROL_FILES parameter in your new parameter file and set its
value to a list of control filenames to use for the new database. If you want Oracle
to create new operating system files when creating your database’s control files,
make sure that the filenames listed in the CONTROL_FILES parameter do not
match any filenames that currently exist on your system. If you want Oracle to
reuse or overwrite existing files when creating your database’s control files, make
sure that the filenames listed in the CONTROL_FILES parameter match the filena-
mes that currently exist.

If no filenames are listed for the CONTROL_FILES parameter, Oracle uses a default
filename.

Oracle Corporation strongly recommends you use at least two control files stored
on separate physical disk drives for each database. Therefore, when specifying the
CONTROL_FILES parameter of the new parameter file, follow these guidelines:

■ List at least two filenames for the CONTROL_FILES parameter.

■ Place each control file on a separate physical disk drives by fully specifying file-
names that refer to different disk drives for each filename.

When you execute the CREATE DATABASE statement (in Step 7), the control files
listed in the CONTROL_FILES parameter of the parameter file will be created.

WARNING: Use extreme caution when setting this option. If you
inadvertently specify a file that you did not intend and execute
the CREATE DATABASE statement, the previous contents of that
file will be overwritten.

Note: The file specification for control files is operating system-
dependent. Regardless of your operating system, always fully spec-
ify filenames for your control files.
2-10 Oracle8 Administrator’s Guide

Parameters
See Also: The default filename for the CONTROL_FILES parameter is operating
system-dependent. See your operating system-specific Oracle documentation for
details.

DB_BLOCK_SIZE
The default data block size for every Oracle server is operating system-specific. The
Oracle data block size is typically either 2K or 4K. Generally, the default data block
size is adequate. In some cases, however, a larger data block size provides greater
efficiency in disk and memory I/O (access and storage of data). Such cases include:

■ Oracle is on a large computer system with a large amount of memory and fast
disk drives. For example, databases controlled by mainframe computers with
vast hardware resources typically use a data block size of 4K or greater.

■ The operating system that runs Oracle uses a small operating system block
size. For example, if the operating system block size is 1K and the data block
size matches this, Oracle may be performing an excessive amount of disk I/O
during normal operation. For best performance in this case, a database block
should consist of multiple operating system blocks.

Each database’s block size is set during database creation by the initialization
parameter DB_BLOCK_SIZE. The block size cannot be changed after database cre-
ation except by re-creating the database. If a database’s block size is different from the
operating system block size, make the data block size a multiple of the operating sys-
tem’s block size.

For example, if your operating system’s block size is 2K (2048 bytes), the following
setting for the DB_BLOCK_SIZE initialization parameter would be valid:

DB_BLOCK_SIZE=4096

DB_BLOCK_SIZE also determines the size of the database buffers in the buffer
cache of the System Global Area (SGA).

See Also: For details about your default block size, see your operating system-spe-
cific Oracle documentation.

DB_BLOCK_BUFFERS
This parameter determines the number of buffers in the buffer cache in the System
Global Area (SGA). The number of buffers affects the performance of the cache.
Larger cache sizes reduce the number of disk writes of modified data. However, a
large cache may take up too much memory and induce memory paging or swap-
ping.
 Creating an Oracle Database 2-11

Parameters
Estimate the number of data blocks that your application accesses most frequently,
including tables, indexes, and rollback segments. This estimate is a rough approxi-
mation of the minimum number of buffers the cache should have. Typically, 1000 to
2000 is a practical minimum for the number of buffers.

See Also: For more information about tuning the buffer cache, see the Oracle8 Tun-
ing manual.

PROCESSES
This parameter determines the maximum number of operating system processes
that can be connected to Oracle concurrently. The value of this parameter must
include 5 for the background processes and 1 for each user process. For example, if
you plan to have 50 concurrent users, set this parameter to at least 55.

ROLLBACK_SEGMENTS
This parameter is a list of the rollback segments an Oracle instance acquires at data-
base startup. List your rollback segments as the value of this parameter.

See Also: For more information about how many rollback segments you need, see
Oracle8 Tuning.

License Parameters
Oracle helps you ensure that your site complies with its Oracle license agreement.
If your site is licensed by concurrent usage, you can track and limit the number of
sessions concurrently connected to an instance. If your site is licensed by named
users, you can limit the number of named users created in a database. To use this
facility, you need to know which type of licensing agreement your site has and
what the maximum number of sessions or named users is. Your site might use
either type of licensing (session licensing or named user licensing), but not both.

See Also: For more information about managing licensing, see “Session and User
Licensing” on page 20-2.

Attention: After installation, you must create at least one rollback
segment in the SYSTEM tablespace in addition to the SYSTEM roll-
back segment before you can create any schema objects.
2-12 Oracle8 Administrator’s Guide

Parameters
LICENSE_MAX_SESSIONS_and LICENSE_SESSIONS WARNING
You can set a limit on the number of concurrent sessions that can connect to a data-
base on the specified computer. To set the maximum number of concurrent sessions
for an instance, set the parameter LICENSE_MAX_SESSIONS in the parameter file
that starts the instance, as shown in the following example:

LICENSE_MAX_SESSIONS = 80

In addition to setting a maximum number of sessions, you can set a warning limit
on the number of concurrent sessions. Once this limit is reached, additional users
can continue to connect (up to the maximum limit), but Oracle sends a warning for
each connecting user. To set the warning limit for an instance, set the parameter
LICENSE_SESSIONS_WARNING. Set the warning limit to a value lower than
LICENSE_MAX_SESSIONS.

For instances running with the Parallel Server, each instance can have its own con-
current usage limit and warning limit. However, the sum of the instances’ limits
must not exceed the site’s session license.

See Also: For more information about setting these limits when using the Parallel
Server, see Oracle8 Parallel Server Concepts and Administration.

LICENSE_MAX_USERS
You can set a limit on the number of users created in the database. Once this limit is
reached, you cannot create more users.

To limit the number of users created in a database, set the LICENSE_MAX_USERS
parameter in the database’s parameter file, as shown in the following example:

LICENSE_MAX_USERS = 200

For instances running with the Parallel Server, all instances connected to the same
database should have the same named user limit.

See Also: For more information about setting this limit when using the Parallel
Server see Oracle8 Parallel Server Concepts and Administration.

Note: This mechanism assumes that each person accessing the
database has a unique user name and that no people share a user
name. Therefore, so that named user licensing can help you ensure
compliance with your Oracle license agreement, do not allow mul-
tiple users to log in using the same user name.
 Creating an Oracle Database 2-13

Considerations After Creating a Database
Considerations After Creating a Database
After you create a database, the instance is left running, and the database is open
and available for normal database use. Use Enterprise Manager to subsequently
start and stop the database. If more than one database exists in your database sys-
tem, specify the parameter file to use with any subsequent database startup.

If you plan to install other Oracle products to work with this database, see the
installation instructions for those products; some products require you to create
additional data dictionary tables. See your operating system-specific Oracle docu-
mentation for the additional products. Usually, command files are provided to cre-
ate and load these tables into the database’s data dictionary.

The Oracle Server distribution media can include various SQL files that let you
experiment with the system, learn SQL, or create additional tables, views, or syn-
onyms.

A newly created database has only two users, SYS and SYSTEM. The passwords for
these two usernames should be changed soon after the database is created.

See Also: For more information about the users SYS and SYSTEM see “Database
Administrator Usernames” on page 1-5.

For information about changing a user’s password see “Altering Users” on
page 20-16.

Initial Tuning Guidelines
You can make a few significant tuning alterations to Oracle immediately following
installation. By following these instructions, you can reduce the need to tune Oracle
when it is running. This section gives recommendations for the following installa-
tion issues:

■ Allocating Rollback Segments

■ Choosing the Number of DB_BLOCK_LRU_LATCHES

■ Distributing I/O

Allocating Rollback Segments
Proper allocation of rollback segments makes for optimal database performance.
The size and number of rollback segments required for optimal performance
depends on your application. The Oracle8 Tuning manual contains some general guide-
lines for choosing how many rollback segments to allocate based on the number of concur-
2-14 Oracle8 Administrator’s Guide

Initial Tuning Guidelines
rent transactions on your Oracle Server. These guidelines are appropriate for most
application mixes.

To create rollback segments, use the CREATE ROLLBACK SEGMENT command.

See Also: For information about the CREATE ROLLBACK SEGMENT command,
see the Oracle8 SQL Reference.

Choosing Sizes for Rollback Segments
The size of your rollback segment can also affect performance. Rollback segment
size is determined by the storage parameters in the CREATE ROLLBACK SEG-
MENT statement. Your rollback segments must be large enough to hold the roll-
back entries for your transactions.

See Also: For information about choosing sizes for your rollback segments, see
Oracle8 Tuning.

Choosing the Number of DB_BLOCK_LRU_LATCHES
Contention for the LRU latch can impede performance on symmetric multiproces-
sor (SMP) machines with a large number of CPUs. The LRU latch controls the
replacement of buffers in the buffer cache. For SMP systems, Oracle automatically
sets the number of LRU latches to be one half the number of CPUs on the system.
For non-SMP systems, one LRU latch is sufficient.

 You can specify the number of LRU latches on your system with the initialization
parameter DB_BLOCK_LRU_LATCHES. This parameter sets the maximum value
for the desired number of LRU latches. Each LRU latch will control a set of buffers and
Oracle balances allocation of replacement buffers among the sets.

See Also: For more information on LRU latches, see Oracle8 Tuning.
 Creating an Oracle Database 2-15

Initial Tuning Guidelines
Distributing I/O
Proper distribution of I/O can improve database performance dramatically. I/O
can be distributed during installation of Oracle. Distributing I/O during installa-
tion can reduce the need to distribute I/O later when Oracle is running.

There are several ways to distribute I/O when you install Oracle:

■ redo log file placement

■ datafile placement

■ separation of tables and indexes

■ density of data (rows per data block)

See Also: For information about ways to distribute I/O, see Oracle8 Tuning.
2-16 Oracle8 Administrator’s Guide

 Starting Up and Shutting
3

Starting Up and Shutting Down

This chapter describes the procedures for starting and stopping an Oracle database,
and includes the following topics:

■ Startup Procedures

■ Altering Database Availability

■ Shutdown Procedures

■ Using Parameter Files

See Also: Oracle Enterprise Manager Administrator’s Guide and Oracle Server Manager
User’s Guide, for more information about performing specific tasks using Enterprise
Manager/GUI or Server Manager/LineMode.
Down 3-1

Startup Procedures
Startup Procedures
This section includes the following topics:

■ Preparing to Start an Instance

■ Starting an Instance: Scenarios

To start up a database or instance, use either the Enterprise Manager Startup Data-
base dialog box or the STARTUP command (after you connect to Oracle with
administrator privileges). You can start an instance and database in a variety of
ways:

■ start the instance without mounting a database

■ start the instance and mount the database, but leave it closed

■ start the instance, and mount and open the database in:

– unrestricted mode (accessible to all users)

– restricted mode (accessible to DBAs only)

In addition, you can force the instance to start, or start the instance and have com-
plete media recovery begin immediately. If your operating system supports the Ora-
cle Parallel Server, you may start an instance and mount the database in either
exclusive or shared mode.

Preparing to Start an Instance
There are several tasks you need to perform before you attempt to start an instance.

1. Start Enterprise Manager and connect with administrator privileges.

To start up a database or instance, you must start Enterprise Manager. You
must also be connected with administrator privileges.

2. Specify a database name.

When starting a database instance, specify the name of the database that will
be mounted to the instance by either:

■ using the STARTUP command and specifying the database name

■ specifying DB_NAME in the parameter file that starts the instance

Attention: You cannot start a database instance if you are con-
nected to the database via a multi-threaded server process.
3-2 Oracle8 Administrator’s Guide

Startup Procedures
3. Specify the parameter filename.

When starting a database instance, choose a parameter file to initialize the
instance’s settings:

■ using the Startup Database dialog box and entering a filename in the
Parameter File text entry field

■ using the STARTUP command with the PFILE option and a fully specified
filename

See Also: The specification of filenames is operating system specific. See your oper-
ating system-specific Oracle documentation. If no filename is entered, Oracle uses
the default filename.

Starting an Instance: Scenarios
The following scenarios describe the many ways in which you can start up an
instance.

Starting an Instance Without Mounting a Database
You might want to start an instance without mounting a database; this is usually
the case only during database creation. To do this, use one of the following options
of Enterprise Manager:

■ the Startup Database dialog box, selecting the Startup Nomount radio button

■ the STARTUP command with the NOMOUNT option

Starting an Instance and Mounting a Database
You might want to start an instance and mount a database, but not open the data-
base because you want to perform specific maintenance operations. For example,
the database must be mounted but not open during the following tasks:

Note: You may encounter problems starting up an instance if con-
trol files, database files, or redo log files are not available. If one or
more of the files specified by the CONTROL_FILES parameter do
not exist or cannot be opened when you attempt to mount a data-
base, Oracle returns a warning message and does not mount the
database. If one or more of the datafiles or redo log files are not
available or cannot be opened when attempting to open a data-
base, Oracle returns a warning message and does not open the
database.
 Starting Up and Shutting Down 3-3

Startup Procedures
■ renaming datafiles

■ adding, dropping, or renaming redo log files

■ enabling and disabling redo log archiving options

■ performing full database recovery

Start an instance and mount the database, but leave it closed using one of the fol-
lowing options of Enterprise Manager:

■ the Startup database dialog box, selecting the Startup Mount radio button

■ the STARTUP command with the MOUNT option

Starting an Instance, and Mounting and Opening a Database
Normal database operation means that an instance is started and the database is
mounted and open; this allows any valid user to connect to the database and per-
form typical data access operations.

Start an instance, and mount and open the database, using one of the following
options of Enterprise Manager:

■ the Startup Database dialog box, selecting the Startup Open radio button

■ the STARTUP command with the OPEN option

Restricting Access to a Database at Startup
You might want to start an instance and mount and open a database in restricted
mode so that the database is available only to administrative personnel (not general
database users). Use this mode of database startup when you need to accomplish
one of the following tasks:

■ perform structure maintenance, such as rebuilding indexes

■ perform an export or import of database data

■ perform a data load (with SQL*Loader)

■ temporarily prevent typical users from using data

Typically, all users with the CREATE SESSION system privilege can connect to an
open database. Opening a database in restricted mode allows database access only
to users with both the CREATE SESSION and RESTRICTED SESSION system privi-
lege; only database administrators should have the RESTRICTED SESSION system
privilege.
3-4 Oracle8 Administrator’s Guide

Startup Procedures
Start an instance (and, optionally, mount and open the database) in restricted mode
using one of the following options of Enterprise Manager:

■ the Startup Database dialog box, selecting the Restrict button

■ the STARTUP command with the RESTRICT option

Later, you can make the database accessible to users who do not have the
RESTRICTED SESSION system privilege.

Forcing an Instance to Start
In unusual circumstances, you might experience problems when attempting to start
a database instance. A database instance should not be forced to start unless you
are faced with the following:

■ The current instance cannot be successfully shut down using either the Normal
or Immediate radio buttons of the Shutdown Database dialog box (or an equiv-
alent SHUTDOWN statement).

■ You experience problems when starting an instance.

If one of these situations arises, you can usually solve the problem by starting a
new instance (and optionally mounting and opening the database) using either of
the following options of Enterprise Manager:

■ the Startup Database dialog box with the Force button selected

■ the STARTUP command with the FORCE option

Starting an Instance, Mounting a Database, and Starting Complete Media Recovery
If you know that media recovery is required, you can start an instance, mount a
database to the instance, and have the recovery process automatically start by
using the STARTUP command with the RECOVER option.

Starting in Exclusive or Parallel Mode
If your Oracle Server allows multiple instances to access a single database concur-
rently, you must choose whether to mount the database exclusively or in parallel.

Starting Up an Instance and Database: Example
The following statement starts an instance using the parameter file INIT-
SALE.ORA, mounts and opens the database named SALES in exclusive mode, and
restricts access to administrative personnel. The DBA is already connected with
administrator privileges.
 Starting Up and Shutting Down 3-5

Altering Database Availability
STARTUP OPEN sales PFILE=INITSALE.ORA EXCLUSIVE RESTRICT;

Automatic Database Startup at Operating System Start
Many sites use procedures to enable automatic startup of one or more Oracle
instances and databases immediately following a system start. The procedures for
doing this are specific to each operating system.

Starting Remote Instances
If your local Oracle Server is part of a distributed database, you might need to start
a remote instance and database. Procedures for starting and stopping remote
instances vary widely depending on communication protocol and operating sys-
tem.

See Also: For more information about making a database available to non-privi-
leged users, see “Restricting Access to an Open Database” on page 3-7.

For more information about recovering control files, database files and redo logs,
see Oracle8 Backup and Recovery Guide.

For more information about the side effects of aborting the current instance, see
“Aborting an Instance” on page 3-12.

For more information about starting up in exclusive or parallel mode, see the
Oracle8 Parallel Server Concepts and Administration manual.

For more information about the restrictions that apply when combining options of
the STARTUP command, see the Oracle8 SQL Reference.

For more information about automatic startup procedure topics, see your operating
system-specific Oracle documentation.

Altering Database Availability
You can make a database partially available by opening a previously mounted but
closed database so that users can connect to and use the database.

The following sections explain how to alter a database’s availability:

■ Mounting a Database to an Instance

■ Opening a Closed Database

■ Restricting Access to an Open Database
3-6 Oracle8 Administrator’s Guide

Altering Database Availability
Mounting a Database to an Instance
When you need to perform specific administrative operations, the database must
be started and mounted to an instance, but closed. This can be accomplished by
starting the instance and mounting the database.

When mounting the database, you can indicate whether to mount the database
exclusively to this instance or concurrently to other instances.

To mount a database to a previously started instance, use either of the following
options:

■ the Mount menu item of Enterprise Manager

■ the SQL command ALTER DATABASE with the MOUNT option

Use the following statement when you want to mount a database in exclusive
mode:

ALTER DATABASE MOUNT;

See Also: For a list of operations that require the database to be mounted and
closed, (and procedures to start an instance and mount a database in one step) see
“Starting an Instance and Mounting a Database” on page 3-3.

Opening a Closed Database
You can make a mounted but closed database available for general use by opening
the database. To open a mounted database, use either of the following options:

■ the Open menu item of Enterprise Manager

■ the SQL command ALTER DATABASE with the OPEN option

Use the following statement to open a mounted database:

ALTER DATABASE OPEN;

After executing this statement, any valid Oracle user with the CREATE SESSION
system privilege can connect to the database.

Restricting Access to an Open Database
Under normal conditions, all users with the CREATE SESSION system privilege
can connect to an instance. However, you can take an instance in and out of
restricted mode. When an instance is in restricted mode, only users who have both
the CREATE SESSION and RESTRICTED SESSION system privileges can connect
 Starting Up and Shutting Down 3-7

Shutdown Procedures
to it. Typically, only administrators have the RESTRICTED SESSION system privi-
lege.

Restricted mode is useful when you need to perform the following tasks:

■ perform structure maintenance, such as rebuilding indexes

■ perform an export or import of database data

■ perform a data load (with SQL*Loader)

■ temporarily prevent non-administrator users from using data

To place an instance in restricted mode, use the Restrict menu item of Enterprise
Manager or the SQL command ALTER SYSTEM with the ENABLE RESTRICTED
SESSION option. After placing an instance in restricted mode, you might want to
kill all current user sessions before performing any administrative tasks.

To lift an instance from restricted mode, use the Allow All menu item of Enterprise
Manager or the SQL command ALTER SYSTEM with the DISABLE RESTRICTED
SESSION option.

For more information about starting a database instance, and mounting and open-
ing the database in restricted mode, see “Restricting Access to a Database at Star-
tup” on page 3-4.

Shutdown Procedures
The following sections describe shutdown procedures:

■ Shutting Down a Database Under Normal Conditions

■ Shutting Down a Database Immediately

■ Shutdown Transactional

To initiate database shutdown, use either the Shutdown Database dialog box of
Enterprise Manager or the SQL command SHUTDOWN. Control is not returned to
the session that initiates a database shutdown until shutdown is complete. Users

Note: The SHUTDOWN IMMEDIATE statement disconnects all
existing idle connections and shuts down the database. If, how-
ever, you’ve submitted processes (for example, inserts, selects or
updates) that are awaiting results, the SHUTDOWN IMMEDIATE
statement allows the process to complete before disconnecting you.
3-8 Oracle8 Administrator’s Guide

Shutdown Procedures
who attempt connections while a shutdown is in progress receive a message like
the following:

ORA-01090: shutdown in progress - connection is not permitted

To shut down a database and instance, you must first be connected with administra-
tor privileges. This condition applies whether you are using Enterprise Manager/
GUI or SQL commands.

Figure 3–1 shows the sequence of events when the different SHUTDOWN com-
mands are entered during a transfer of funds from one bank account to another.

Attention: You cannot shut down a database if you are connected
to the database via a multi-threaded server process.
 Starting Up and Shutting Down 3-9

Shutdown Procedures
Figure 3–1 Sequence of Events During Different Types of SHUTDOWN.

Shutting Down a Database Under Normal Conditions
Normal database shutdown proceeds with the following conditions:

■ No new connections are allowed after the statement is issued.

■ Before the database is shut down, Oracle waits for all currently connected users
to disconnect from the database.

■ The next startup of the database will not require any instance recovery proce-
dures.

To shut down a database in normal situations, use either of the following options of
Enterprise Manager:

■ the Normal radio button of the Shutdown Database dialog box

Transfer
of funds

Check account
balances

Insert new
funds

Remove funds
from old
account

Commit

Logout

Shutdown
Normal

Database
down

Shutdown
Immediate

Database
down

Shutdown
Transactional

Database
down
3-10 Oracle8 Administrator’s Guide

Shutdown Procedures
■ the SHUTDOWN command with the NORMAL option (SHUTDOWN NORMAL;)

Shutting Down a Database Immediately
Use immediate database shutdown only in the following situations:

■ A power shutdown is going to occur soon.

■ The database or one of its applications is functioning irregularly.

Immediate database shutdown proceeds with the following conditions:

■ Current client SQL statements being processed by Oracle are terminated imme-
diately.

■ Any uncommitted transactions are rolled back. (If long uncommitted transac-
tions exist, this method of shutdown might not complete quickly, despite its
name.)

■ Oracle does not wait for users currently connected to the database to discon-
nect; Oracle implicitly rolls back active transactions and disconnects all con-
nected users.

To shut down a database immediately, use either of the following options of Enter-
prise Manager:

■ the Immediate radio button of the Shutdown database dialog box

■ the SHUTDOWN command with the IMMEDIATE option

Shutdown Transactional
When you wish to perform a planned shutdown of an instance while minimizing
interruption to clients, you can use the SHUTDOWN command with the TRANS-
ACTIONAL option:

SHUTDOWN TRANSACTIONAL;

After submitting this statement, no client can start a new transaction on this particu-
lar instance. If a client attempts to start a new transaction, they are disconnected.

Note: The SHUTDOWN IMMEDIATE statement disconnects all
existing idleconnections and shuts down the database. If, however,
you’ve submitted processes (for example, inserts, selects or
updates) that are awaiting results, the SHUTDOWN IMMEDIATE
statement allows the process to complete before disconnecting you.
 Starting Up and Shutting Down 3-11

Using Parameter Files
After all transactions have either committed or aborted, any client still connected to
the instance is disconnected. At this point, the instance shuts down just as it would
when a SHUTDOWN IMMEDIATE statement is submitted.

A transactional shutdown prevents clients from losing work, and at the same time,
does not require all users to log off.

Aborting an Instance
You can shut down a database instantaneously by aborting the database’s instance.
If possible, perform this type of shutdown only when in the following situations:

■ The database or one of its applications is functioning irregularly and neither of
the other types of shutdown work.

■ You need to shut down the database instantaneously (for example, if you know
a power shutdown is going to occur in one minute).

■ You experience problems when starting a database instance.

Aborting an instance shuts down a database and yields the following results:

■ Current client SQL statements being processed by Oracle are immediately ter-
minated.

■ Uncommitted transactions are not rolled back.

■ Oracle does not wait for users currently connected to the database to discon-
nect; Oracle implicitly disconnects all connected users.

If both the normal and immediate shutdown options do not work, abort the current data-
base instance immediately by using either of the following options of Enterprise Manager:

■ the Abort radio button of the Shutdown Database dialog box

■ the SHUTDOWN command with the ABORT option

Using Parameter Files
The following sections include information about how to use parameter files:

■ The Sample Parameter File

■ The Number of Parameter Files

■ The Location of the Parameter File in Distributed Environments
3-12 Oracle8 Administrator’s Guide

Using Parameter Files
To start an instance, Oracle must read a parameter file, which is a text file containing a
list of instance configuration parameters. Often, although not always, this file is named
INIT.ORA or INITsid.ORA, where sid is operating system specific.

You can edit parameter values in a parameter file with a basic text editor; however,
editing methods are operating system-specific.

Oracle treats string literals defined for National Language Support (NLS) parame-
ters in the file as if they are in the database character set.

See Also: For more information about INITsid.ORA, see your operating system-spe-
cific Oracle documentation.

The Sample Parameter File
A sample parameter file (INIT.ORA or INITsid.ORA) is included in the Oracle distribu-
tion set. This sample file’s parameters are adequate for initial installations of an Oracle
database. After your system is operating and you have some experience with Oracle, you
will probably want to change some parameter values.

See Also: For more information about optimizing a database’s performance using
the parameter file, see the Oracle8 Tuning manual.

The Number of Parameter Files
Each Oracle database has at least one parameter file that corresponds only to that
database. This way, database-specific parameters (such as DB_NAME and
CONTROL_FILES) in a given file always pertain to a particular database. It is also
possible to have several different parameter files for a single database. For example,
you can have several different parameter files for a single database so you can opti-
mize the database’s performance in different situations.

The Location of the Parameter File in Distributed Environments
Enterprise Manager must be able to read a database’s parameter file to start a data-
base’s instance. Therefore, always store a database’s parameter file on the computer
executing Enterprise Manager.

For example, in non-distributed processing installations, the same computer exe-
cutes Oracle and Enterprise Manager. This computer already has the parameter file
stored on one of its disk drives.

However, in distributed processing installations, local client workstations can exe-
cute Enterprise Manager to administer a database stored on a remote machine. In
 Starting Up and Shutting Down 3-13

Using Parameter Files
this type of configuration, the local client machines must each store a copy of the
parameter file for the corresponding databases.

See Also: For more information about using administering Oracle in a distributed
environment, see Oracle8 Distributed Database Systems.

For information concerning the setup and implementation of Enterprise Manager,
see your operating system-specific Oracle documentation.
3-14 Oracle8 Administrator’s Guide

Part II

Oracle Server Configuration

 Managing Oracle Proc
4

Managing Oracle Processes

This chapter describes how to manage the processes of an Oracle instance, and
includes the following topics:

■ Configuring Oracle for Dedicated Server Processes

■ Configuring Oracle for Multi-Threaded Server Processes

■ Modifying Server Processes

■ Tracking Oracle Processes

■ Managing Processes for the Parallel Query Option

■ Managing Processes for External Procedures

■ Terminating Sessions

See Also: For more information about performing specific tasks using Enterprise
Manager/GUI or Server Manager/LineMode, see the Oracle Enterprise Manager
Administrator’s Guide and Oracle Server Manager User’s Guide.
esses 4-1

Configuring Oracle for Dedicated Server Processes
Configuring Oracle for Dedicated Server Processes
When a user process executes the database application on one machine, and a
server process executes the associated Oracle server on another machine, you have
separate, distinct processes. The separate server process created on behalf of each
user is a dedicated server process (see Figure 4–1). Oracle is automatically installed for
this configuration. If your operating system can support Oracle in this configura-
tion, it may also support multi-threaded server processes.

Figure 4–1 Oracle Dedicated Server Processes

User
Process

Application
Code

System Global Area

User
Process

Application
Code

Oracle
Server Code

Program
Interface

Database Server

Client Workstation

Dedicated
Server

Process

Oracle
Server Code
4-2 Oracle8 Administrator’s Guide

Configuring Oracle for Multi-Threaded Server Processes
To start an instance in a dedicated server configuration, set the following initializa-
tion parameters (in the parameter file) to “null”, or omit them from the file alto-
gether:

■ MTS_SERVICE

■ MTS_DISPATCHERS

■ MTS_SERVERS

■ MTS_LISTENER_ADDRESS

When to Connect to a Dedicated Server Process
If possible, users should connect to an instance via a dispatcher. This keeps the
number of processes required for the running instance low. In the following situa-
tions, however, users and administrators should explicitly connect to an instance
using a dedicated server process:

■ to submit a batch job (for example, when a job can allow little or no idle time
for the server process)

■ to use Enterprise Manager to start up, shut down, or perform media recovery
on a database

To request a dedicated server connection, users must include the SRVR=DEDI-
CATED clause in their Net8 TNS connect string.

See Also: For a complete description of Net8 connect string syntax, see your oper-
ating system-specific Oracle documentation and your Net8 documentation.

For more information about initialization parameters and parameter files, see the
Oracle8 Reference.

Configuring Oracle for Multi-Threaded Server Processes
Consider an order entry system with dedicated server processes. A customer places
an order as a clerk enters the order into the database. For most of the transaction,
the clerk is on the telephone talking to the customer and the server process dedi-
cated to the clerk’s user process remains idle. The server process is not needed dur-
ing most of the transaction, and the system is slower for other clerks entering
orders.

The multi-threaded server configuration eliminates the need for a dedicated server
process for each connection (see Figure 4–2). A small number of shared server pro-
cesses can perform the same amount of processing as many dedicated server pro-
 Managing Oracle Processes 4-3

Configuring Oracle for Multi-Threaded Server Processes
cesses. Also, the amount of memory required for each user is relatively small.
Because less memory and process management are required, more users can be sup-
ported.

Figure 4–2 Oracle Multi-Threaded Sever Processes

System Global Area

CodeCodeCodeCodeCodeCode

User
Process

Database Server

Client Workstation

CodeCodeApplication
Code

Dispatcher Processes

Shared

1

2

3
4

5

6

7

Server
Processes

Response

Oracle
Server CodeOracle

Server Code
Oracle

Server CodeOracle
Server Code

Request
Queue

Queues
4-4 Oracle8 Administrator’s Guide

Configuring Oracle for Multi-Threaded Server Processes
To set up your system in a multi-threaded server configuration, start a network lis-
tener process and set the following initialization parameters:

■ SHARED_POOL_SIZE

■ MTS_LISTENER_ADDRESS

■ MTS_SERVICE

■ MTS_DISPATCHERS

■ MTS_MAX_DISPATCHERS

■ MTS_SERVERS

■ MTS_MAX_SERVERS

After setting these initialization parameters, restart the instance, which at this point
will use the multi-threaded server configuration. The multi-threaded server archi-
tecture requires Net8. User processes targeting the multi-threaded server must con-
nect through Net8, even if they are on the same machine as the Oracle instance.

See Also: For more information about starting and managing the network listener
process, see Oracle8 Distributed Database Systems and the Oracle Net8 Administrator’s
Guide.

SHARED_POOL_ SIZE: Allocating Additional Space in the Shared Pool for Shared Server
When users connect through the multi-threaded server, Oracle needs to allocate
additional space in the shared pool for storing information about the connections
between the user processes, dispatchers, and servers. For each user who will con-
nect using the multi-threaded server, add 1K to the setting of the parameter
SHARED_POOL_SIZE.

See Also: For more information about this parameter, see the Oracle8 Reference.

For more information about tuning, see the Oracle8 Tuning manual.

MTS_LISTENER_ ADDRESS: Setting the Listener Process Address
Within the database’s parameter file, set the initialization parameter
MTS_LISTENER_ADDRESS for each port to which the database will connect. The
parameter supports the following syntax:

MTS_LISTENER_ADDRESS = ”(addr)”
 Managing Oracle Processes 4-5

Configuring Oracle for Multi-Threaded Server Processes
In the syntax above, addr is an address at which the listener will listen for connec-
tion requests for a specific protocol. The parameter file may contain multiple
addresses.

The following examples specify listener addresses:

MTS_LISTENER_ADDRESS = ”(ADDRESS=(PROTOCOL=tcp)(PORT=5000)\
 (HOST=ZEUS)”
MTS_LISTENER_ADDRESS = ”(ADDRESS=(PROTOCOL=decnet)\
 (OBJECT=OUTA)(NODE=ZEUS)”

Each address specified in the database’s parameter file must also be specified in the
corresponding listener’s configuration file. You specify addresses differently for
various network protocols.

See Also: For more information about specifying addresses for the network lis-
tener process, see your operating system-specific Oracle documentation and your
Net8 documentation.

MTS_SERVICE: Specifying Service Names for Dispatchers
Specify the name of the service associated with dispatchers using the parameter
MTS_SERVICE. A user requests the multi-threaded server by specifying this ser-
vice name in the connect string. A service name must be unique; if possible, use the
instance’s SID (system identifier).

If you do not set the MTS_SERVICE parameter, its value defaults to the DB_NAME
parameter. (If DB_NAME is also not set, Oracle returns the error ORA-00114, “miss-
ing value for system parameter mts_service,” when you start the database.)

If the dispatcher’s service name is TEST_DB, the parameter would be set as follows:

MTS_SERVICE = ”test_db”

A connect string for connecting to this dispatcher looks like the following:

SQLPLUS scott/tiger@\
 (DESCRIPTION=(ADDRESS=(PROTOCOL=decnet)(NODE=hq)\
 (OBJECT=mts7))(CONNECT_DATA=(SID=test_db)))

See Also: For more information about connect strings used with the multi-
threaded server configuration, see your operating system-specific Oracle or Net8
documentation.
4-6 Oracle8 Administrator’s Guide

Configuring Oracle for Multi-Threaded Server Processes
MTS_DISPATCHERS: Setting the Initial Number of Dispatchers
The number of dispatcher processes started at instance startup is controlled by the
parameter MTS_DISPATCHERS. Estimate the number of dispatchers to start for
each network protocol before instance startup.

When setting the MTS_DISPATCHERS parameter, you can include any valid proto-
col.

The appropriate number of dispatcher processes for each instance depends upon
the performance you want from your database, the host operating system’s limit on
the number of connections per process, (which is operating system dependent) and
the number of connections required per network protocol.

The instance must be able to provide as many connections as there are concurrent
users on the database system; the more dispatchers you have, the better potential
database performance users will see, since they will not have to wait as long for dis-
patcher service.

After instance startup, you can start more dispatcher processes if needed; however,
you can only start dispatchers that use protocols mentioned in the database’s
parameter file. For example, if the parameter file starts dispatchers for protocol_A
and protocol_B, you cannot later start dispatchers for protocol_C without changing
the parameter file and restarting the instance.

See Also: For more information about dispatcher processes, see “Adding and
Removing Dispatcher Processes” on page 4-10.

Calculating the Initial Number of Dispatcher Processes
Once you know the number of possible connections per process for your operating
system, calculate the initial number of dispatcher processes to create during
instance startup, per network protocol, using the following formula.

number maximum number of concurrent sessions
of = CEIL (—————————————————————————————————————)
dispatchers connections per dispatcher

Note: Here, connections per dispatcher is operating system dependent.
 Managing Oracle Processes 4-7

Configuring Oracle for Multi-Threaded Server Processes
For example, assume that your system typically has 80 users concurrently con-
nected via TCP/IP and 40 users connected via DECNet. In this case, the
MTS_DISPATCHERS parameter should be set as follows:

MTS_DISPATCHERS = ”(PROTOCOL=TCP) (DISPATCHERS=3)”
MTS_DISPATCHERS = ”(PROTOCOL=DECNET) (DISPATCHERS=3)”

Examples

Example 1 To force the IP address used for the dispatchers, enter the following:

MTS_DISPATCHERS=”(ADDRESS=(PARTIAL=TRUE)(PROTOCOL=TCP)\
 (HOST=144.25.16.201))(DISPATCHERS=2)”

This will start 2 dispatchers that will listen in on HOST=144.25.16.201, which must
be a card that is accessible to the dispatchers.

Example 2 To force the exact location of dispatchers, add the PORT as follows:

MTS_DISPATCHERS=”(ADDRESS=(PARTIAL=TRUE)(PROTOCOL=TCP)\
 (HOST=144.25.16.201)(PORT=5000))(DISPATCHERS=1)”
MTS_DISPATCHERS=”(ADDRESS=(PARTIAL=TRUE)(PROTOCOL=TCP)\
 (HOST=144.25.16.201)(PORT=5001))(DISPATCHERS=1)”

MTS_MAX_ DISPATCHERS: Setting the Maximum Number of Dispatchers
The parameter MTS_MAX_DISPATCHERS sets the maximum number of dis-
patcher processes (of all network protocols combined) that can be started for the
duration of an instance.

You can create as many dispatcher processes as you need, but the total number of
processes, including dispatchers, cannot exceed the host operating system’s limit
on the number of running processes.

Note: You can specify multiple MTS_DISPATCHERS in the
INIT.ORA file, but they must be adjacent to each other.
4-8 Oracle8 Administrator’s Guide

Configuring Oracle for Multi-Threaded Server Processes
Estimating the Maximum Number of Dispatches
To estimate the maximum number of dispatcher processes an instance will require,
use the following formula:

 maximum number of concurrent sessions
MTS_MAX_DISPATCHERS = _____________________________________

 connections per dispatcher

MTS_SERVERS: Setting the Initial Number of Shared Server Processes
A number of shared server processes start at instance startup, as determined by the
parameter MTS_SERVERS. The appropriate number of initial shared server pro-
cesses for a database system depends on how many users typically connect to it,
and how much processing each user requires. If each user makes relatively few
requests over a period of time, then each associated user process is idle for a large
percentage of time. In that case, one shared server process can serve 10 to 20 users.
If each user requires a significant amount of processing, a higher ratio of server pro-
cesses to user processes is needed to handle requests.

If you want Oracle to use shared servers, you must set MTS_SERVERS to at least 1.
If you omit the parameter or set it to 0, Oracle does not start any shared servers at
all. However, you can subsequently set MTS_SERVERS to a number greater than 0
while the instance is running.

It is best to estimate fewer initial shared server processes. Additional shared serv-
ers start automatically when needed and are deallocated automatically if they
remain idle for too long. However, the initial servers always remain allocated, even
if they are idle. If you set the initial number of servers high, your system might
incur unnecessary overhead. Experiment with the number of initial shared server
processes and monitor shared servers until you find the ideal system performance
for typical database activity.

See Also: For more information about changing the number of shared servers, see
“Changing the Minimum Number of Shared Server Processes” on page 4-10.

MTS_MAX_SERVERS: Setting the Maximum Number of Shared Server Processes
The maximum number of shared server processes that can be started for the dura-
tion of an instance is established during instance startup by the parameter
MTS_MAX_SERVERS. In general, set this parameter to allow an appropriate num-
ber of shared server processes at times of highest activity. Experiment with this
limit and monitor shared servers to determine an ideal setting for this parameter.
 Managing Oracle Processes 4-9

Modifying Server Processes
Modifying Server Processes
This section describes changes you can make after starting an instance, and
includes the following topics:

■ Changing the Minimum Number of Shared Server Processes

■ Adding and Removing Dispatcher Processes

Changing the Minimum Number of Shared Server Processes
After starting an instance, you can change the minimum number of shared server
processes by using the SQL command ALTER SYSTEM.

Oracle eventually terminates dispatchers and servers that are idle longer than the
minimum limit you specify.

If you set MTS_SERVERS to 0, Oracle will terminate all current servers when they
become idle and will not start any new servers until you increase MTS_SERVERS.
Thus, setting MTS_SERVERS to 0 effectively disables the multi-threaded server tem-
porarily.

To control the minimum number of shared server processes, you must have the
ALTER SYSTEM privilege.

The following statement sets the number of shared server processes to two:

ALTER SYSTEM SET MTS_SERVERS = 2

Adding and Removing Dispatcher Processes
You can control the number of dispatcher processes in the instance. If the
V$QUEUE and V$DISPATCHER views indicate that the load on the dispatcher pro-
cesses is consistently high, start additional dispatcher processes to route user
requests without waiting; you may start new dispatchers until the number of dis-
patchers equals MTS_MAX_DISPATCHER. In contrast, if the load on dispatchers is
consistently low, reduce the number of dispatchers.

To change the number of dispatcher processes, use the SQL command ALTER SYS-
TEM. Changing the number of dispatchers for a specific protocol has no effect on
dispatchers for other protocols.

You can start new dispatcher processes for protocols specified in the
MTS_LISTENER_ADDRESS parameter and in the MTS_DISPATCHERS parameter.
Therefore, you can add dispatchers only for protocols for which there are dispatch-
ers; to start dispatchers for protocols for which there are currently no dispatchers,
shutdown the database, change the parameter file, and restart the database.
4-10 Oracle8 Administrator’s Guide

Tracking Oracle Processes
If you reduce the number of dispatchers for a particular protocol, the dispatchers
are not immediately removed. Rather, Oracle eventually terminates dispatchers
that are idle for too long, down to the limit you specify in MTS_DISPATCHERS.

To control the number of dispatcher processes, you must have the ALTER SYSTEM
privilege.

The following example adds a dispatcher process where the number of dispatchers
was previously three:

ALTER SYSTEM
 SET MTS_DISPATCHERS = ’(PROTOCOL=TCP) (DISPATCHER=4)’;

See Also: For more information about tuning the multi-threaded server, see the
Oracle8 Tuning manual.

Tracking Oracle Processes
An Oracle instance can have many background processes, which you should track
if possible. This section describes how to track these processes, and includes the fol-
lowing topics:

■ Monitoring the Processes of an Oracle Instance

■ Trace Files, the ALERT File, and Background Processes

■ Starting the Checkpoint Process

See Also: For more information about tuning Oracle processes, see the Oracle8 Tun-
ing manual.

Monitoring the Processes of an Oracle Instance
Monitors provide a means of tracking database activity and resource usage. Select-
ing the Monitor feature of Enterprise Manager/GUI displays current information
about the processes of your Oracle database. You can operate several monitors
 Managing Oracle Processes 4-11

Tracking Oracle Processes
simultaneously. Table 4–1 lists the Enterprise Manager monitors that can help you
track Oracle processes:

Monitoring Locks
Table 4–2 describes two methods of monitoring locking information for ongoing
transactions within an instance:

Table 4–1 Enterprise Manager Monitors

Monitor Name Description

Process The Process monitor summarizes information
about all Oracle processes, including client-
server, user, server, and background processes,
currently accessing the database via the current
database instance.

Session The Session monitor shows the session ID and
status of each connected Oracle session.

Table 4–2 Oracle Monitoring Facilities

Monitor Name Description

Enterprise Manager
Monitors

The Monitor feature of Enterprise Manager/
GUI provides two monitors for displaying lock
information for an instance: Lock and Latch
Monitors.

UTLLOCKT.SQL The UTLLOCKT.SQL script displays a simple
character lock wait-for graph in tree-structured
fashion. Using an ad hoc query tool (such as
Enterprise Manager or SQL*Plus), the script
prints the sessions in the system that is waiting
for locks and the corresponding blocking locks.
The location of this script file is operating sys-
tem dependent; see your operating system-spe-
cific Oracle documentation. (A second script,
CATBLOCK.SQL, creates the lock views that
UTLLOCKT.SQL needs, so you must run it
before running UTLLOCKT.SQL.)
4-12 Oracle8 Administrator’s Guide

Tracking Oracle Processes
Monitoring Dynamic Performance Tables
The following views, created on the dynamic performance tables, are useful for
monitoring Oracle instance processes:

Following is a typical query of one of the dynamic performance tables, V$DIS-
PATCHER. The output displays the processing load on each dispatcher process in
the system:

SELECT (busy/(busy + idle)) * 100 ”% OF TIME BUSY”
 FROM v$dispatcher;

Distinguishing Oracle Background Processes from Operating System Background
Processes
When you run many Oracle databases concurrently on one computer, Oracle pro-
vides a mechanism for naming the processes of an instance. The background pro-
cess names are prefixed by an instance identifier to distinguish the set of processes
for each instance.

View (Monitor) Name Description

V$CIRCUIT Contains information about virtual circuits, which
are user connections through dispatchers and serv-
ers.

V$QUEUE Contains information about the multi-threaded
message queues.

V$DISPATCHER Contains information about dispatcher processes.

V$SHARED_SERVER Contains information about shared server pro-
cesses.

V$SQLAREA Contains statistics about shared SQL area and con-
tains one row per SQL string. Also provides statis-
tics about SQL statements that are in memory,
parsed, and ready for execution.

V$SESS_IO Contains I/O statistics for each user session.

V$LATCH Contains statistics for non-parent latches and sum-
mary statistics for parent latches.

V$SYSSTAT Contains system statistics.
 Managing Oracle Processes 4-13

Tracking Oracle Processes
For example, an instance named TEST might have background processes with the
following names:

■ ORA_TEST_DBWR

■ ORA_TEST_LGWR

■ ORA_TEST_SMON

■ ORA_TEST_PMON

■ ORA_TEST_RECO

■ ORA_TEST_LCK0

■ ORA_TEST_ARCH

■ ORA_TEST_D000

■ ORA_TEST_S000

■ ORA_TEST_S001

See Also: For more information about views and dynamic performance tables see
the Oracle8 Reference.

For more information about the instance identifier and the format of the Oracle pro-
cess names, see your operating system-specific Oracle documentation.

Trace Files, the ALERT File, and Background Processes
Each server and background process can write to an associated trace file. When an
internal error is detected by a process, it dumps information about the error to its
trace file. Some of the information written to a trace file is intended for the database
administrator, while other information is for Oracle WorldWide Support. Trace file
information is also used to tune applications and instances.

The ALERT file is a special trace file. The ALERT file of a database is a chronological
log of messages and errors, which includes the following:

■ all internal errors (ORA-600), block corruption errors (ORA-1578), and dead-
lock errors (ORA-60) that occur

■ administrative operations, such as CREATE/ALTER/DROP DATABASE/
TABLESPACE/ROLLBACK SEGMENT SQL statements and STARTUP, SHUT-
DOWN, ARCHIVE LOG, and RECOVER Enterprise Manager statements

■ several messages and errors relating to the functions of shared server and dis-
patcher processes
4-14 Oracle8 Administrator’s Guide

Tracking Oracle Processes
■ errors occurring during the automatic refresh of a snapshot

■ the values of all initialization parameters at the time the database and instance
start

Oracle uses the ALERT file to keep a log of these special operations as an alterna-
tive to displaying such information on an operator’s console (although many sys-
tems display information on the console). If an operation is successful, a
“completed” message is written in the ALERT file, along with a timestamp.

Using the Trace Files
You can periodically check the ALERT file and other trace files of an instance to see
if the background processes have encountered errors. For example, when the Log
Writer process (LGWR) cannot write to a member of a group, an error message indi-
cating the nature of the problem is written to the LGWR trace file and the data-
base’s ALERT file. If you see such error messages, a media or I/O problem has
occurred, and should be corrected immediately.

Oracle also writes values of initialization parameters to the ALERT file, in addition
to other important statistics. For example, when you shutdown an instance nor-
mally or immediately (but do not abort), Oracle writes the highest number of ses-
sions concurrently connected to the instance, since the instance started, to the
ALERT file. You can use this number to see if you need to upgrade your Oracle ses-
sion license.

Specifying the Location of Trace Files
All trace files for background processes and the ALERT file are written to the desti-
nation specified by the initialization parameter BACKGROUND_DUMP_DEST. All
trace files for server processes are written to the destination specified by the initial-
ization parameter USER_DUMP_DEST. The names of trace files are operating sys-
tem specific, but usually include the name of the process writing the file (such as
LGWR and RECO).

Controlling the Size of Trace Files
You can control the maximum size of all trace files (excluding the ALERT file) using
the initialization parameter MAX_DUMP_FILE_SIZE. This limit is set as a number
of operating system blocks. To control the size of an ALERT file, you must manu-
ally delete the file when you no longer need it; otherwise Oracle continues to
append to the file. You can safely delete the ALERT file while the instance is run-
ning, although you might want to make an archived copy of it first.
 Managing Oracle Processes 4-15

Tracking Oracle Processes
Controlling When Oracle Writes to Trace Files
Background processes always write to a trace file when appropriate. However,
trace files are written on behalf of server processes (in addition to being written to
during internal errors) only if the initialization parameter SQL_TRACE is set to
TRUE.

Regardless of the current value of SQL_TRACE, each session can enable or disable
trace logging on behalf of the associated server process by using the SQL command
ALTER SESSION with the SET SQL_TRACE parameter.

ALTER SESSION SET SQL_TRACE TRUE;

For the multi-threaded server, each session using a dispatcher is routed to a shared
server process, and trace information is written to the server’s trace file only if the
session has enabled tracing (or if an error is encountered). Therefore, to track trac-
ing for a specific session that connects using a dispatcher, you might have to
explore several shared server’s trace files. Because the SQL trace facility for server
processes can cause significant system overhead, enable this feature only when col-
lecting statistics.

See Also: See “Session and User Licensing” on page 20-2 for details about upgrad-
ing your Oracle license.

For more information about messages, see the Oracle8 Error Messages manual.

For information about the names of trace files, see your operating system-specific
Oracle documentation.

For complete information about the ALTER SESSION command, see the Oracle8
SQL Reference.

Starting the Checkpoint Process
If the Checkpoint process (CKPT) is not enabled, the Log Writer process (LGWR) is
responsible for updating the headers of all control files and data files to reflect the
latest checkpoint. To reduce the time necessary to complete a checkpoint, especially
when a database is comprised of many data files, enable the CKPT background pro-
cess by setting the CHECKPOINT_PROCESS parameter in the database’s parame-
ter file to TRUE. (The default is FALSE.)
4-16 Oracle8 Administrator’s Guide

Managing Processes for the Parallel Query Option
Managing Processes for the Parallel Query Option
This section describes how, with the parallel query option, Oracle can perform par-
allel processing. In this configuration Oracle can divide the work of processing cer-
tain types of SQL statements among multiple query server processes. The following
topics are included:

■ Managing the Query Servers

■ Variations in the Number of Query Server Processes

See Also: For more information about the parallel query option, see the Oracle8 Tun-
ing manual.

Managing the Query Servers
When you start your instance, the Oracle Server creates a pool of query server pro-
cesses available for any query coordinator. Specify the number of query server pro-
cesses that the Oracle Server creates at instance startup via the initialization
parameter PARALLEL_MIN_SERVERS.

Query server processes remain associated with a statement throughout its execu-
tion phase. When the statement is completely processed, its query server processes
become available to process other statements. The query coordinator process
returns any resulting data to the user process issuing the statement.

Variations in the Number of Query Server Processes
If the volume of SQL statements processed concurrently by your instance changes
drastically, the Oracle Server automatically changes the number of query server
processes in the pool to accommodate this volume.

If this volume increases, the Oracle Server automatically creates additional query
server processes to handle incoming statements. The maximum number of query
server processes for your instance is specified by the initialization parameter
PARALLEL_MAX_SERVERS.

If this volume subsequently decreases, the Oracle Server terminates a query server
process if it has been idle for the period of time specified by the initialization
parameter PARALLEL_SERVER_IDLE_TIME. The Oracle Server does not reduce
the size of the pool below the value of PARALLEL_MIN_SERVERS, no matter how
long the query server processes have been idle.

If all query servers in the pool are occupied and the maximum number of query
servers has been started, a query coordinator processes the statement sequentially.
 Managing Oracle Processes 4-17

Managing Processes for External Procedures
See Also: For more information about monitoring an instance’s pool of query serv-
ers and determining the appropriate values of the initialization parameters, see the
Oracle8 Tuning manual.

Managing Processes for External Procedures
You may have shared libraries of C functions that you wish to call from an Oracle
database. This section describes how to set up an environment for calling those
external procedures.

The database administrator grants execute privileges for appropriate libraries to
application developers, who in turn create external procedures and grant execute
privilege on the specific external procedures to other users.

To Set Up an Environment for Calling External Procedures

1. Edit the tnsnames.ora file by adding an entry that enables you to connect to the
listener process (and subsequently, the EXTPROC process).

2. Edit the listener.ora file by adding an entry for the “external procedure listener.”

3. Start a separate listener process to exclusively handle external procedures.

4. The EXTPROC process spawned by the listener inherits the operating system
privileges of the listener, so Oracle strongly recommends that you make sure
that the privileges for the separate listener process are restrictive. The process
should not have permission to read or write to database files, or the Oracle
server address space.

Also, the owner of this separate listener process should not be “oracle” (which
is the default owner of the server executable and database files).

5. If not already installed, place the extproc executable in $ORACLE_HOME/bin.

Note: Although not required, it is recommended that you per-
form these tasks during installation.
4-18 Oracle8 Administrator’s Guide

Managing Processes for External Procedures
Sample Entry in tnsnames.ora
The following is a sample entry for the external procedure listener in tnsnames.ora.

extproc_connection_data = (DESCRIPTION =
 (ADDRESS = (PROTOCOL=IPC)
 (KEY=extproc_key)
)
 (CONNECT_DATA = (SID = extproc_agent)
)

In this example, and all callouts for external procedures, the entry name
extproc_connection_data cannot be changed; it must be entered exactly as it
appears here. The key you specify—in this case extproc_key—must match the
KEY you specify in the listener.ora file. Additionally, the SID name you specify—in
this case extproc_agent—must match the SID_NAME entry in the listener.ora file.

Sample Entry in listener.ora
The following is a sample entry for the external procedure in listener.ora.

EXTERNAL_PROCEDURE_LISTENER =

(ADDRESS_LIST =
 (ADDRESS = (PROTOCOL=ipc)
 (KEY=extproc_key)
)
)
...
SID_LIST_EXTERNAL_PROCEDURE_LISTENER =

(SID_LIST =
 (SID_DESC = (SID_NAME=extproc_agent)
 (ORACLE_HOME=/oracle)
 (PROGRAM=extproc)
)
)

In this example, the PROGRAM must be extproc, and cannot be changed; it must
be entered exactly as it appears in this example. The SID_NAME must match the
SID name in the tnsnames.ora file. The ORACLE_HOME must be set to the directory
where your Oracle software is installed. The extproc executable must reside in
$ORACLE_HOME/bin.

See Also: For more information about external procedures, see the PL/SQL User’s
Guide and Reference.
 Managing Oracle Processes 4-19

Terminating Sessions
Terminating Sessions
In some situations, you might want to terminate current user sessions. For exam-
ple, you might want to perform an administrative operation and need to terminate
all non-administrative sessions.

This section describes the various aspects of terminating sessions, and includes the
following topics:

■ Identifying Which Session to Terminate

■ Terminating an Active Session

■ Terminating an Inactive Session

When a session is terminated, the session’s transaction is rolled back and resources
(such as locks and memory areas) held by the session are immediately released and
available to other sessions.

Terminate a current session using either the Disconnect Session menu item of Enter-
prise Manager, or the SQL command ALTER SYSTEM...KILL SESSION.

The following statement terminates the session whose SID is 7 and serial number is
15:

ALTER SYSTEM KILL SESSION ’7,15’;

Identifying Which Session to Terminate
To identify which session to terminate, specify the session’s index number and
serial number. To identify the index (SID) and serial numbers of a session, query
the V$SESSION dynamic performance table.

The following query identifies all sessions for the user JWARD:

SELECT sid, serial#
 FROM v$session
 WHERE username = ’JWARD’;
SID SERIAL# STATUS
--------- --------- --------
 7 15 ACTIVE
 12 63 INACTIVE

A session is ACTIVE when it is making an SQL call to Oracle. A session is INAC-
TIVE if it is not making an SQL call to Oracle.

See Also: For a complete description of the status values for a session, see Oracle8
Tuning.
4-20 Oracle8 Administrator’s Guide

Terminating Sessions
Terminating an Active Session
If a user session is making an SQL call to Oracle (is ACTIVE) when it is terminated,
the transaction is rolled back and the user immediately receives the following mes-
sage:

ORA-00028: your session has been killed

If, after receiving the ORA-00028 message, a user submits additional statements
before reconnecting to the database, Oracle returns the following message:

ORA-01012: not logged on

If an active session cannot be interrupted (for example, it is performing network I/
O or rolling back a transaction), the session cannot be terminated until the opera-
tion completes. In this case, the session holds all resources until it is terminated.
Additionally, the session that issues the ALTER SYSTEM statement to terminate a
session waits up to 60 seconds for the session to be terminated; if the operation that
cannot be interrupted continues past one minute, the issuer of the ALTER SYSTEM
statement receives a message indicating that the session has been “marked” to be
terminated. A session marked to be terminated is indicated in V$SESSION with a
status of “KILLED” and a server that is something other than “PSEUDO.”

Terminating an Inactive Session
If the session is not making an SQL call to Oracle (is INACTIVE) when it is termi-
nated, the ORA-00028 message is not returned immediately. The message is not
returned until the user subsequently attempts to use the terminated session.

When an inactive session has been terminated, STATUS in the view V$SESSION is
“KILLED.” The row for the terminated session is removed from V$SESSION after
the user attempts to use the session again and receives the ORA-00028 message.

In the following example, the DBA terminates an inactive session:

SVRMGR> SELECT sid,serial#,status,server
 2> FROM v$session
 3> WHERE username = ’JWARD’;

SID SERIAL# STATUS SERVER
---------- -------- --------- ---------
 7 15 INACTIVE DEDICATED
 12 63 INACTIVE DEDICATED
2 rows selected.

SVRMGR> ALTER SYSTEM KILL SESSION ’7,15’;
Statement processed.
 Managing Oracle Processes 4-21

Terminating Sessions
SVRMGR> SELECT sid, serial#, status, server
 2> FROM v$session
 3> WHERE username = ’JWARD’;

SID SERIAL# STATUS SERVER
--------- -------- --------- ---------
 7 15 KILLED PSEUDO
 12 63 INACTIVE DEDICATED
2 rows selected.
4-22 Oracle8 Administrator’s Guide

 Managing the Online Red
5

Managing the Online Redo Log

This chapter explains how to manage the online redo log, and includes the follow-
ing topics:

■ Planning the Online Redo Log

■ Creating Online Redo Log Groups and Members

■ Renaming and Relocating Online Redo Log Members

■ Dropping Online Redo Log Groups

■ Dropping Online Redo Log Members

■ Controlling Checkpoints and Log Switches

■ Verifying Blocks in Redo Log Files

■ Clearing an Online Redo Log File

■ Listing Information about the Online Redo Log

See Also: For more information about managing the online redo logs of the
instances when using Oracle Parallel Server, see the Oracle8 Parallel Server Concepts
and Administration.

For more information archiving the redo log, see Chapter 23, Archiving Redo Infor-
mation.

This chapter contains several references to Oracle Enterprise Manager. For more
information about performing specific tasks using Enterprise Manager/GUI or
Server Manager/LineMode, see the Oracle Enterprise Manager Administrator’s Guide
and Oracle Server Manager User’s Guide.
o Log 5-1

Planning the Online Redo Log
Planning the Online Redo Log
Every instance of an Oracle database has an associated online redo log, which is a set
of two or more online log files that record all committed changes made to the data-
base. Online redo logs serve to protect the database in the event of an instance fail-
ure. Whenever a transaction is committed, the corresponding redo entries
temporarily stored in redo log buffers of the system global area are written to an
online redo log file by the background process LGWR.

Online redo log files are used in a cyclical fashion; for example, if two files consti-
tute the online redo log, the first file is filled, the second file is filled, the first file is
reused and filled, the second file is reused and filled, and so on. Each time a file is
filled, it is assigned a log sequence number to identify the set of redo entries.

This section describes guidelines you should consider when configuring a database
instance’s online redo log, and includes the following topics:

■ Multiplex the Online Redo Log

■ Place Online Redo Log Members on Different Disks

■ Set the Size of Online Redo Log Members

■ Choose an Appropriate Number of Online Redo Log Files

Multiplex the Online Redo Log
The online redo log of a database instance should consist of multiplexed groups of
online redo log files. Furthermore, members in the same group should be stored on
separate disks so that no single disk failure can cause LGWR and the database
instance to fail.

To avoid losing a database due to a single point of failure, Oracle can maintain mul-
tiple sets of on-line redo log files. A multiplex online redo log consists of copies of
online redo log files physically located on separate disks; changes made to one
member of the group are made to all members. If a disk that contains an online
redo log file fails, other copies are still intact and available to Oracle. System opera-
tion is not interrupted and the lost online redo log files can be easily recovered.

WARNING: Although the Oracle Server allows multiplexed
groups to contain different numbers of members, this state
should only be the temporary result of an abnormal situation
such as a disk failure damaging a member of a group. If any
group contains only one member, the failure of the disk contain-
ing that member could cause Oracle to halt.
5-2 Oracle8 Administrator’s Guide

Planning the Online Redo Log
While multiplexed groups require extra storage space, the cost of this space is usu-
ally insignificant compared to the potential cost of lost data (if a disk failure
destroys a non-multiplexed online redo log).

Place Online Redo Log Members on Different Disks
When setting up a multiplex online redo log, place members of a group on different
disks. This way, if a single disk fails, only one member of a group becomes unavail-
able to LGWR and other members remain accessible to LGWR, so the instance can
continue to function.

If you archive the redo log, spread online redo log members across disks to elimi-
nate contention between the LGWR and ARCH background processes. For exam-
ple, if you have two groups of duplexed online redo log members, place each
member on a different disk and set your archiving destination to a fifth disk. This
way, there is never contention between LGWR (writing to the members) and ARCH
(reading the members).

Datafiles and online redo log files should also be on different disks to reduce con-
tention in writing data blocks and redo entries.

Set the Size of Online Redo Log Members
When setting the size of online redo log files, consider whether you will be
archiving the redo log. Online redo log files should be sized so that a filled group
can be archived to a single unit of offline storage media (such as a tape or disk),
with the least amount of space on the medium left unused. For example, suppose
only one filled online redo log group can fit on a tape and 49% of the tape’s storage
capacity remains unused. In this case, it would be better to decrease the size of the
online redo log files slightly, so that two log groups could be archived per tape.

With multiplex groups of online redo logs, all members of the same group must be
the same size. Members of different groups can have different sizes; however, there
is no advantage in varying file size between groups. If checkpoints are not set to
occur between log switches, make all groups the same size to guarantee that check-
points occur at regular intervals.

See Also: The default size of online redo log files is operating system -dependent;
for more details see your operating system-specific Oracle documentation.
 Managing the Online Redo Log 5-3

Planning the Online Redo Log
Choose an Appropriate Number of Online Redo Log Files
The best way to determine the appropriate number of online redo log files for a
database instance is to test different configurations. The optimum configuration has
the fewest groups possible without hampering LGWR’s writing redo log informa-
tion.

In some cases, a database instance may require only two groups. In other situa-
tions, a database instance may require additional groups to guarantee that a recy-
cled group is always available to LGWR. During testing, the easiest way to
determine if the current online redo log configuration is satisfactory is to examine
the contents of the LGWR trace file and the database’s ALERT file. If messages indi-
cate that LGWR frequently has to wait for a group because a checkpoint has not
completed or a group has not been archived, add groups.

Consider the parameters that can limit the number of online redo log files before
setting up or altering the configuration of an instance’s online redo log. The follow-
ing three parameters limit the number of online redo log files that you can add to a
database:

■ The MAXLOGFILES parameter used in the CREATE DATABASE statement
determines the maximum number of groups of online redo log files per data-
base; group values can range from 1 to MAXLOGFILES. The only way to over-
ride this upper limit is to re-create the database or its control file; thus, it is
important to consider this limit before creating a database. If MAXLOGFILES is not
specified for the CREATE DATABASE statement, Oracle uses an operating system
default value.

■ The LOG_FILES parameter (in the parameter file) can temporarily decrease the
maximum number of groups of online redo log files for the duration of the cur-
rent instance. However, LOG_FILES cannot override MAXLOGFILES to
increase the limit. If LOG_FILES is not set in the database’s parameter file, Ora-
cle uses an operating system-specific default value.

■ The MAXLOGMEMBERS parameter used in the CREATE DATABASE state-
ment determines the maximum number of members per group. As with MAX-
LOGFILES, the only way to override this upper limit is to re-create the
database or control file; thus, it is important to consider this limit before creating
a database. If no MAXLOGMEMBERS parameter is specified for the CREATE
DATABASE statement, Oracle uses an operating system default value.

See Also: For the default and legal values of the MAXLOGFILES and MAXLOG-
MEMBERS parameters, and the LOG_FILES initialization parameter, see your oper-
ating system-specific Oracle documentation.
5-4 Oracle8 Administrator’s Guide

Creating Online Redo Log Groups and Members
Creating Online Redo Log Groups and Members
You can create groups and members of online redo log files during or after data-
base creation. If you can, plan the online redo log of a database and create all
required groups and members of online redo log files during database creation. To
create new online redo log groups and members, you must have the ALTER DATA-
BASE system privilege.

In some cases, you might need to create additional groups or members of online
redo log files. For example, adding groups to an online redo log can correct redo
log group availability problems. A database can have up to MAXLOGFILES groups.

Creating Online Redo Log Groups
To create a new group of online redo log files, use either the Add Logfile Group
property sheet of Enterprise Manager, or the SQL command ALTER DATABASE
with the ADD LOGFILE parameter.

The following statement adds a new group of redo logs to the database:

ALTER DATABASE
 ADD LOGFILE (’log1c’, ’log2c’) SIZE 500K;

Using the ALTER DATABASE statement with the ADD LOGFILE option, you can
specify the number that identifies the group with the GROUP option:

ALTER DATABASE
 ADD LOGFILE GROUP 10 (’log1c’, ’log2c’) SIZE 500K;

Using group numbers can make administering redo log groups easier. However,
the group number must be between 1 and MAXLOGFILES; do not skip redo log
file group numbers (that is, do not number your groups 10, 20, 30, and so on), or
you will consume unnecessary space in the control files of the database.

Note: Fully specify filenames of new log members to indicate
where the operating system file should be created; otherwise, the
file is created in the default directory of the database server, which
is operating system-dependent. If you want to reuse an existing
operating system file, you do not have to indicate the file size.
 Managing the Online Redo Log 5-5

Renaming and Relocating Online Redo Log Members
Creating Online Redo Log Members
In some cases, you might not need to create a complete group of online redo log
files; the group may already exist, but not be complete because one or more mem-
bers of the group were dropped (for example, because of a disk failure). In this
case, you can add new members to an existing group.

To create new online redo log members for an existing group, use the Add Logfile
Member property sheet of Enterprise Manager, or the SQL command ALTER
DATABASE with the ADD LOG MEMBER parameter.

The following statement adds a new redo log member to redo log group number 2:

ALTER DATABASE
 ADD LOGFILE MEMBER ’log2b’ TO GROUP 2;

Notice that filenames must be specified, but sizes need not be; the size of the new
members is determined from the size of the existing members of the group.

When using the ALTER DATABASE command, you can alternatively identify the
target group by specifying all of the other members of the group in the TO parame-
ter, as shown in the following example:

ALTER DATABASE
 ADD LOGFILE MEMBER ’log2c’ TO (’log2a’, ’log2b’);

Renaming and Relocating Online Redo Log Members
You can rename online redo log members to change their locations. This procedure
is necessary, for example, if the disk currently used for some online redo log files is
going to be removed, or if datafiles and a number of online redo log files are stored
on the same disk and should be separated to reduce contention.

To rename online redo log members, you must have the ALTER DATABASE sys-
tem privilege. Additionally, you might also need operating system privileges to
copy files to the desired location and privileges to open and back up the database.

Note: Fully specify the filenames of new log members to indicate
where the operating system files should be created; otherwise, the
files will be created in the default directory of the database server.
5-6 Oracle8 Administrator’s Guide

Renaming and Relocating Online Redo Log Members
Before renaming any online redo log members, ensure that the new online redo log
files already exist.

To Rename Online Redo Log Members

1. Back up the database.

Before making any structural changes to a database, such as renaming or relo-
cating online redo log members, completely back up the database (including
the control file) in case you experience any problems while performing this
operation.

2. Copy the online redo log files to the new location.

Operating system files, such as online redo log members, must be copied using
the appropriate operating system commands. See your operating system man-
ual for more information about copying files.

3. Rename the online redo log members.

Use the Rename Online Redo Log Member dialog box, or the ALTER DATA-
BASE command with the RENAME FILE clause to rename the database’s
online redo log files.

4. Open the database for normal operation.

The online redo log alterations take effect the next time that the database is
opened. Opening the database may require shutting down the current instance
(if the database was previously opened by the current instance) or just opening
the database using the current instance.

5. Back up the control file.

WARNING: The following steps only modify the internal file
pointers in a database’s control files; they do not physically
rename or create any operating system files. Use your computer’s
operating system to copy the existing online redo log files to the
new location.

Suggestion: You can execute an operating system command to
copy a file without exiting Enterprise Manager by using the Enter-
prise Manager HOST command.
 Managing the Online Redo Log 5-7

Dropping Online Redo Log Groups
As a precaution, after renaming or relocating a set of online redo log files,
immediately back up the database’s control file.

The following example renames the online redo log members. However, first
assume that:

■ The database is currently mounted by, but closed to, the instance.

■ The online redo log is duplexed: one group consists of the members LOG1A
and LOG1B, and the second group consists of the members LOG2A and
LOG2B. The files LOG1A and LOG2A are stored on Disk A, while LOG1B and
LOG2B are stored on Disk B.

■ The online redo log files located on Disk A must be relocated to Disk C. The
new filenames will reflect the new location: LOG1C and LOG2C.

The files LOG1A and LOG2A on Disk A must be copied to the new files LOG1C
and LOG2C on Disk C.

ALTER DATABASE
 RENAME FILE ’log1a’, ’log2a’
 TO ’log1c’, ’log2c’;

Dropping Online Redo Log Groups
In some cases, you might want to drop an entire group of online redo log members.
For example, you might want to reduce the number of groups in an instance’s
online redo log.

To drop an online redo log group, you must have the ALTER DATABASE system
privilege.

Before dropping an online redo log group, consider the following restrictions and
precautions:

■ An instance requires at least two groups of online redo log files, regardless of
the number of members in the groups. (A group is one or more members.)

■ You can drop an online redo log group only if it is not the active group. If you
need to drop the active group, first force a log switch to occur; see “Forcing a
Log Switch” on page 5-12.

■ Make sure an online redo log group is archived (if archiving is enabled) before
dropping it. To see whether this has happened, use the Enterprise Manager
ARCHIVE LOG command with the LIST parameter.
5-8 Oracle8 Administrator’s Guide

Dropping Online Redo Log Members
Drop an online redo log group with either the Drop Logfile Group menu item of
Enterprise Manager, or the SQL command ALTER DATABASE with the DROP
LOGFILE clause.

The following statement drops redo log group number 3:

ALTER DATABASE DROP LOGFILE GROUP 3;

When an online redo log group is dropped from the database, the operating system
files are not deleted from disk. Rather, the control files of the associated database
are updated to drop the members of the group from the database structure. After
dropping an online redo log group, make sure that the drop completed success-
fully, and then use the appropriate operating system command to delete the
dropped online redo log files.

Dropping Online Redo Log Members
In some cases, you might want to drop one or more specific online redo log mem-
bers. For example, if a disk failure occurs, you might need to drop all the online
redo log files on the failed disk so that Oracle does not try to write to the inaccessi-
ble files. In other situations, particular online redo log files become unnecessary; for
example, a file might be stored in an inappropriate location.

To drop an online redo log member, you must have the ALTER DATABASE system
privilege.

Consider the following restrictions and precautions before dropping individual
online redo log members:

■ It is all right to drop online redo log files so that a multiplexed online redo log
becomes temporarily asymmetric. For example, if you use duplexed groups of
online redo log files, you can drop one member of one group, even though all
other groups have two members each. However, you should rectify this situa-
tion immediately so that all groups have at least two members, and thereby
eliminate the single point of failure possible for the online redo log.

■ An instance always requires at least two valid groups of online redo log files,
regardless of the number of members in the groups. (A group is one or more
members.) If the member you want to drop is the last valid member of the
group, you cannot drop the member until the other members become valid; to
see a redo log file’s status, use the V$LOGFILE view. A redo log file becomes
INVALID if Oracle cannot access it. It becomes STALE if Oracle suspects that it
is not complete or correct; a stale log file becomes valid again the next time its
group is made the active group.
 Managing the Online Redo Log 5-9

Controlling Checkpoints and Log Switches
■ You can drop an online redo log member only if it is not part of an active
group. If you want to drop a member of an active group, first force a log switch
to occur.

■ Make sure the group to which an online redo log member belongs is archived
(if archiving is enabled) before dropping the member. To see whether this has
happened, use the Enterprise Manager ARCHIVE LOG command with the
LIST parameter.

To drop specific inactive online redo log members, use either the Drop Logfile
Member menu item of Enterprise Manager, or the SQL command ALTER DATA-
BASE command with the DROP LOGFILE MEMBER clause.

The following statement drops the redo log LOG3C:

ALTER DATABASE DROP LOGFILE MEMBER ’log3c’;

When an online redo log member is dropped from the database, the operating sys-
tem file is not deleted from disk. Rather, the control files of the associated database
are updated to drop the member from the database structure. After dropping an
online redo log file, make sure that the drop completed successfully, and then use
the appropriate operating system command to delete the dropped online redo log
file.

See Also: For information on dropping a member of an active group, see “Forcing a
Log Switch” on page 5-12.

Controlling Checkpoints and Log Switches
A checkpoint is the event during which the Database Writer process (DBWR)
writes all modified database buffers in the SGA to the appropriate datafiles. A log
switch is the event during which LGWR stops writing to one online redo log group
and starts writing to another. The two events are often connected: an instance takes
a checkpoint at each log switch by default. A log switch, by default, takes place
automatically when the current online redo log file group fills.

However, you can designate that checkpoints are taken more often than when you
have log switches, or you can have a checkpoint take place ahead of schedule, with-
out a log switch. You can also have a log switch and checkpoint occur ahead of
schedule, or without an accompanying checkpoint.
5-10 Oracle8 Administrator’s Guide

Controlling Checkpoints and Log Switches
This section includes the following checkpoint and log switch topics:

■ Setting Database Checkpoint Intervals

■ Forcing a Log Switch

■ Forcing a Fast Database Checkpoint Without a Log Switch

Setting Database Checkpoint Intervals
When your database uses large online redo log files, you can set additional data-
base checkpoints to take place automatically at predetermined intervals, between
the checkpoints that automatically occur at log switches. The time necessary to
recover from an instance failure decreases when more database checkpoints are set.
However, there may be a performance impact on the Oracle Server due to the extra
I/O necessary for the checkpoint to complete.

Generally, unless your database consistently requires instance recovery on startup,
set database checkpoint intervals so that checkpoints occur only at log switches. If
you use small online redo log files, checkpoints already occur at frequent intervals
(at each log switch).

You can control the frequency of automatic database checkpoints via the values set
in the LOG_CHECKPOINT_INTERVAL and LOG_CHECKPOINT_TIMEOUT
parameters.

Setting LOG_CHECK-POINT_INTERVAL
To have database checkpoints only occur at log switches (the default), set the value
for the LOG_CHECKPOINT_INTERVAL parameter higher than the size of the
online redo log files in use. Alternatively, to force additional checkpoints to occur at
intervals between two log switches, set the value for the
LOG_CHECKPOINT_INTERVAL parameter lower than the size of the online redo
log files in use.

The value of the LOG_CHECKPOINT_INTERVAL is a number of operating system
blocks, not Oracle data blocks. Therefore, you must know the size, in bytes, of your
operating system’s blocks. Once you know this, calculate the number of operating
system blocks per online redo log file.

As an example, assume the following conditions:

■ All online redo log files of the database instance are 512K.

■ The operating system block size is 512 bytes.

■ Checkpoints should occur when an online redo log file is half full.
 Managing the Online Redo Log 5-11

Controlling Checkpoints and Log Switches
Using this information, you can compute the number of blocks per redo log file as
follows:

Now that the approximate number of blocks per online redo log file (1000) is
known, the LOG_CHECKPOINT_INTERVAL parameter can be set accordingly in
the instance’s parameter file:

LOG_CHECKPOINT_INTERVAL=500

Setting LOG_CHECKPOINT_TIMEOUT
To have database checkpoints only occur at log switches (the default), set the value
for the LOG_CHECKPOINT_TIMEOUT parameter to zero. Alternatively, to force
additional checkpoints to occur at intervals between two log switches, set the value
for the LOG_CHECKPOINT_TIMEOUT parameter to a time interval (in seconds)
less than the average time it takes to fill an online redo log file. To determine the
average time it takes to fill online redo log files, examine the LGWR trace file for
messages that indicate the times of log switches.

See Also: For information on how to determine operating system block size, see
your operating system-specific Oracle documentation.

For more information about tuning Oracle regarding checkpoints, see the Oracle8
Tuning manual.

For more information about the LOG_CHECKPOINT_TIMEOUT parameter when
using the Oracle Parallel Server, see the Oracle8 Parallel Server Concepts and Administra-
tion.

Forcing a Log Switch
You can force a log switch to make the currently active group inactive and available
for online redo log maintenance operations. For example, you want to drop the cur-
rently active group, but are not able to do so until the group is inactive. You may
also wish to force a log switch if the currently active group needs to be archived at
a specific time before the members of the group are completely filled; this option is
often useful in configurations with large online redo log files that take a long time
to fill.

512K/redo log file
512 bytes/OS block
----------------------------------- approximately 1000 blocks/redo log file=
5-12 Oracle8 Administrator’s Guide

Verifying Blocks in Redo Log Files
To force a log switch, you must have the Alter System privilege.To force a log switch, use
either the Switch Logfile menu item of Enterprise Manager or the SQL command ALTER
SYSTEM with the SWITCH LOGFILE option.

The following statement forces a log switch:

ALTER SYSTEM SWITCH LOGFILE;

Forcing a Fast Database Checkpoint Without a Log Switch
In some cases, you might want to force a fast database checkpoint. A fast check-
point is one which does not involve a log switch; LGWR continues to write to the
current online redo log file. A fast checkpoint allows DBWR to write more modified
database buffers to disk per I/O on behalf of a checkpoint. Therefore, you need
fewer I/Os (thus less time) to complete a fast checkpoint.

To force a database checkpoint, you must have the ALTER SYSTEM system privi-
lege. Force a fast database checkpoint with either the Force Checkpoint menu item
of Enterprise Manager, or the SQL command ALTER SYSTEM with the CHECK-
POINT option.

The following statement forces a checkpoint:

ALTER SYSTEM CHECKPOINT;

Omitting the GLOBAL option allows you to force a checkpoint for only the con-
nected instance, while including it forces a checkpoint for all instances of the data-
base. Forcing a checkpoint for only the local instance is useful only with the Oracle
Parallel Server. In a non-parallel server configuration, global and local checkpoints
are identical.

See Also: For more information on forcing checkpoints with the Oracle Parallel
Server, see the Oracle8 Parallel Server Concepts and Administration manual.

Verifying Blocks in Redo Log Files
You can configure Oracle to use checksums to verify blocks in the redo log files. Set
the initialization parameter LOG_BLOCK_CHECKSUM to TRUE to enable redo log
block checking. The default value of LOG_BLOCK_CHECKSUM is FALSE.

If you enable redo log block checking, Oracle computes a checksum for each redo
log block written to the current log. The checksums are written in the header of the
block.
 Managing the Online Redo Log 5-13

Clearing an Online Redo Log File
Oracle uses the checksum to detect corruption in a redo log block. Oracle tries to
verify the redo log block when it writes the block to an archive log file and when
the block is read from an archived log during recovery.

If Oracle detects a corruption in a redo log block while trying to archive it, Oracle
tries to read the block from another member in the group. If the block is corrupted
in all members the redo log group, then archiving cannot proceed.

See Also: For information about archiving redo log files, see Chapter 23,
“Archiving Redo Information”.

Clearing an Online Redo Log File
If you have enabled redo log block checking, Oracle verifies each block before
archiving it. If a particular redo log block is corrupted in all members of a group,
archiving stops. Eventually all the redo logs become filled and database activity is
halted, until archiving can resume.

In this situation, you can use the SQL command ALTER DATABASE... CLEAR
LOGFILE to clear the corrupted redo logs and avoid archiving them. The cleared
redo logs are available for use even though they were not archived.

The following statement clears the log files in redo log group number 3:

ALTER DATABASE CLEAR UNARCHIVED LOGFILE GROUP 3;

Restrictions
You can clear a redo log file whether it is archived or not. However, when it is not
archived, you must include the keyword UNARCHIVED.

If you clear a log file that is needed for recovery of a backup, then you can no
longer recover from that backup. Oracle writes a message in the alert log describing
the backups from which you cannot recover.

If you want to clear an unarchived redo log that is needed to bring an offline
tablespace online, you must use the clause UNRECOVERABLE DATAFILE in the
ALTER DATABASE command.

Attention: If you clear an unarchived redo log file, you should
take another backup of the database.
5-14 Oracle8 Administrator’s Guide

Listing Information about the Online Redo Log
If you clear a redo log needed to bring an offline tablespace online, you will not be
able to bring the tablespace online again. You will have to drop the tablespace or
perform an incomplete recovery.

See Also: For a complete description of the ALTER DATABASE command, see the
Oracle8 SQL Reference.

Listing Information about the Online Redo Log
Use the VLOG, VLOGFILE, and V$THREAD views to see information about the
online redo log of a database; the V$THREAD view is of particular interest for Par-
allel Server administrators.

The following query returns information about the online redo log of a database
used without the Parallel Server:

SELECT group#, bytes, members
 FROM sys.v$log;

GROUP# BYTES MEMBERS
---------- ---------- ----------
 1 81920 2
 2 81920 2

To see the names of all of the member of a group, use a query similar to the following:
SELECT *
 FROM sys.v$logfile
 WHERE group# = 2;

GROUP# BYTES MEMBERS
---------- ---------- ---------
 2 LOG2A
 2 STALE LOG2B
 2 LOG2C

If STATUS is blank for a member, the file is in use.
 Managing the Online Redo Log 5-15

Listing Information about the Online Redo Log
5-16 Oracle8 Administrator’s Guide

 Managing Contro
6

Managing Control Files

This chapter explains how to create and maintain the control files for your data-
base, and includes the following topics:

■ Guidelines for Control Files

■ Creating Control Files

■ Troubleshooting After Creating Control Files

■ Dropping Control Files

See Also: This chapter contains several references to Oracle Enterprise Manager.
For more information about performing specific tasks using Enterprise Manager/
GUI or Server Manager/LineMode, see the Oracle Enterprise Manager Administra-
tor’s Guide and Oracle Server Manager User’s Guide.
l Files 6-1

Guidelines for Control Files
Guidelines for Control Files
This section describes guidelines you can use to manage the control files for a data-
base, and includes the following topics:

■ Name Control Files

■ Multiplex Control Files on Different Disks

■ Place Control Files Appropriately

■ Manage the Size of Control Files

Name Control Files
Assign control file names via the CONTROL_FILES initialization parameter in the
database’s parameter file. CONTROL_FILES indicates one or more names of con-
trol files separated by commas. The instance startup procedure recognizes and
opens all the listed files. The instance maintains all listed control files during data-
base operation.

During database operation, Oracle Server writes to all necessary files listed for the
CONTROL_FILES parameter.

Multiplex Control Files on Different Disks
Every Oracle database should have at least two control files, each stored on a differ-
ent disk. If a control file is damaged due to a disk failure, the associated instance
must be shut down. Once the disk drive is repaired, the damaged control file can be
restored using an intact copy of the control file and the instance can be restarted; no
media recovery is required.

Behavior of Multiplexed Control Files
The following list describes the behavior of multiplexed control files:

■ Two or more filenames are listed for the initialization parameter
CONTROL_FILES in the database’s parameter file.

■ The first file listed in the CONTROL_FILES parameter is the only file read by
the Oracle Server during database operation.

■ If any of the control files become unavailable during database operation, the
instance becomes inoperable and should be aborted.

The only disadvantage of having multiple control files is that all operations that
update the control files (such as adding a datafile or checkpointing the database)
6-2 Oracle8 Administrator’s Guide

Creating Control Files
can take slightly longer. However, this difference is usually insignificant (especially
for operating systems that can perform multiple, concurrent writes) and does not
justify using only a single control file.

Place Control Files Appropriately
Each copy of a control file should be stored on a different disk drive. Furthermore,
a control file copy should be stored on every disk drive that stores members of
online redo log groups, if the online redo log is multiplexed. By storing control files
in these locations, you minimize the risk that all control files and all groups of the
online redo log will be lost in a single disk failure.

Manage the Size of Control Files
The main determinants of a control file’s size are the values set for the MAXDATA-
FILES, MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY, and MAXIN-
STANCES parameters in the CREATE DATABASE statement that created the
associated database. Increasing the values of these parameters increases the size of
a control file of the associated database.

See Also: The maximum control file size is operating system specific. See your oper-
ating system-specific Oracle documentation for more information.

Creating Control Files
Every Oracle database has a control file. A control files records the physical structure
of the database and contains:

■ the database name

■ names and locations of associated databases and online redo log files

■ the timestamp of the database creation

■ the current log sequence number

■ checkpoint information

The control file of an Oracle database is created at the same time as the database. By
default, at least one copy of the control file must be created during database cre-
ation. On some operating systems, Oracle creates multiple copies. You should cre-
ate two or more copies of the control file during database creation. You might also

Attention: Oracle strongly recommends that your database has a
minimum of two control files on different disks.
 Managing Control Files 6-3

Creating Control Files
need to create control files later, if you lose control files or want to change particu-
lar settings in the control files.

This section describes ways to create control files, and includes the following topics:

■ Creating Initial Control Files

■ Creating Additional Copies of the Control File, and Renaming and Relocating
Control Files

■ New Control Files

■ Creating New Control Files

Creating Initial Control Files
You create the initial control files of an Oracle database by specifying one or more
control filenames in the CONTROL_FILES parameter in the parameter file used
during database creation. The filenames specified in CONTROL_FILES should be
fully specified. Filename specification is operating system-specific.

If files with the specified names currently exist at the time of database creation, you
must specify the CONTROLFILE REUSE parameter in the CREATE DATABASE
command, or else an error occurs. Also, if the size of the old control file differs from
that of the new one, you cannot use the REUSE option. The size of the control file
changes between some release of new version of Oracle, as well as when the num-
ber of files specified in the control file changes; configuration parameters such as
MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY, MAXDATAFILES,
and MAXINSTANCES affect control file size.

If you do not specify files for CONTROL_FILES before database creation, Oracle
uses a default filename. The default name is also operating system-specific.

You can subsequently change the value of the CONTROL_FILES parameter to add
more control files or to change the names or locations of existing control files.

See Also: For more information about specifying control files, see your operating
system-specific Oracle documentation.

Creating Additional Copies of the Control File, and Renaming and Relocating Control
Files

You add a new control file by copying an existing file to a new location and adding
the file’s name to the list of control files.

Similarly, you rename an existing control file by copying the file to its new name or
location, and changing the file’s name in the control file list.
6-4 Oracle8 Administrator’s Guide

Creating Control Files
In both cases, to guarantee that control files do not change during the procedure,
shut down the instance before copying the control file.

To Multiplex or Move Additional Copies of the Current Control Files

1. Shut down the database.

2. Exit Enterprise Manager.

3. Copy an existing control file to a different location, using operating system
commands.

4. Edit the CONTROL_FILES parameter in the database’s parameter file to add
the new control file’s name, or to change the existing control filename.

5. Restart Enterprise Manager.

6. Restart the database.

New Control Files
You can create a new control file for a database using the CREATE CONTROLFILE
command. This is recommended in the following situations:

■ All control files for the database have been permanently damaged and you do
not have a control file backup.

■ You want to change one of the permanent database settings originally specified
in the CREATE DATABASE statement, including the database’s name, MAX-
LOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY, MAXDATAFILES, and
MAXINSTANCES.

For example, you might need to change a database’s name if it conflicts with
another database’s name in a distributed environment. As another example,
you might need to change one of the previously mentioned parameters if the
original setting is too low.

The following statement creates a new control file for the PROD database (formerly
a database that used a different database name):

CREATE CONTROLFILE
 SET DATABASE prod
 LOGFILE GROUP 1 (’logfile1A’, ’logfile1B’) SIZE 50K,
 GROUP 2 (’logfile2A’, ’logfile2B’) SIZE 50K
 NORESETLOGS
 DATAFILE ’datafile1’ SIZE 3M, ’datafile2’ SIZE 5M
 MAXLOGFILES 50
 MAXLOGMEMBERS 3
 MAXDATAFILES 200
 Managing Control Files 6-5

Creating Control Files
 MAXINSTANCES 6
 ARCHIVELOG;

See Also: For more information about the CREATE CONTROLFILE command, see
the Oracle8 SQL Reference.

Creating New Control Files
This section provides step-by-step instructions for creating new control files.

To Create New Control Files

1. Make a list of all datafiles and online redo log files of the database.

If you followed the recommendations for database backups, you should
already have a list of datafiles and online redo log files that reflect the current
structure of the database.

If you have no such lists and your control file has been damaged so that the
database cannot be opened, try to locate all of the datafiles and online redo log
files that constitute the database. Any files not specified in Step 5 are not recov-
erable once a new control file has been created. Moreover, if you omit any of
the files that make up the SYSTEM tablespace, you might not be able to recover
the database.

2. Shut down the database.

If the database is open, shut down the database with normal priority, if possi-
ble. Use the IMMEDIATE or ABORT options only as a last resort.

3. Back up all datafiles and online redo log files of the database.

4. Start up an new instance, but do not mount or open the database.

5. Create a new control file for the database using the CREATE CONTROLFILE
command.

When creating the new control file, select the RESETLOGS option if you have
lost any online redo log groups in addition to the control files. In this case, you

WARNING: The CREATE CONTROLFILE command can poten-
tially damage specified datafiles and online redo log files; omit-
ting a filename can cause loss of the data in that file, or loss of
access to the entire database. Employ caution when using this
command and be sure to follow the steps in the next section.
6-6 Oracle8 Administrator’s Guide

Creating Control Files
will need to recover from the loss of the redo logs (Step 8). You must also spec-
ify the RESETLOGS option if you have renamed the database. Otherwise, select
the NORESETLOGS option.

6. Store a backup of the new control file on an offline storage device.

7. Edit the parameter files of the database.

Edit the parameter files of the database to indicate all of the control files created
in Step 5 and Step 6 (not including the backup control file) in the
CONTROL_FILES parameter.

8. Recover the database if necessary.

If you are creating the control file as part of recovery, recover the database. If
the new control file was created using the NORESETLOGS option (Step 5), you
can recover the database with complete, closed database recovery.

If the new control file was created using the RESETLOGS option, you must
specify USING BACKUP CONTROL FILE. If you have lost online or archived
redo logs or datafiles, use the procedures for recovering those files.

9. Open the database.

Open the database using one of the following methods:

■ If you did not perform recovery, open the database normally.

■ If you performed complete, closed database recovery in Step 8, use the Startup
Open radio button of the Startup Database dialog box of Enterprise Manager.

■ If you specified RESETLOGS when creating the control file, use the ALTER
DATABASE command, indicating RESETLOGS.

The database is now open and available for use.

See Also: For more information about listing database files, see the Oracle8 Backup
and Recovery Guide.

For more information on backing up all datafiles and online redo log files of the
database, see the Oracle8 Backup and Recovery Guide.

For more information on recovering online or archived redo log files, see the
Oracle8 Backup and Recovery Guide.

For more information on closed database recovery, see the Oracle8 Backup and Recov-
ery Guide.
 Managing Control Files 6-7

Troubleshooting After Creating Control Files
Troubleshooting After Creating Control Files
After issuing the CREATE CONTROLFILE statement, you may encounter some
common errors. This section describes the most common control file usage errors,
and includes the following topics:

■ Checking for Missing or Extra Files

■ Handling Errors During CREATE CONTROLFILE

Checking for Missing or Extra Files
After creating a new control file and using it to open the database, check the
ALERT log to see if Oracle has detected inconsistencies between the data dictionary
and the control file, such as a datafile that the data dictionary includes but the con-
trol file does not list.

If a datafile exists in the data dictionary but not in the new control file, Oracle cre-
ates a placeholder entry in the control file under the name MISSINGnnnn (where
nnnn is the file number in decimal). MISSINGnnnn is flagged in the control file as
being offline and requiring media recovery.

In the following two cases only, the actual datafile corresponding to MISSINGnnnn
can be made accessible by renaming MISSINGnnnn to point to it.

Case 1: The new control file was created using the CREATE CONTROLFILE com-
mand with the NORESETLOGS option, thus allowing the database to be opened
without using the RESETLOGS option. This would be possible only if all online
redo logs are available.

Case 2: It was necessary to use the RESETLOGS option on the CREATE CONTROL-
FILE command, thus forcing the database to be opened using the RESETLOGS
option, but the actual datafile corresponding to MISSINGnnnn was read-only or
offline normal.

If, on the other hand, it was necessary to open the database using the RESETLOGS
option, and MISSINGnnnn corresponds to a datafile that was not read-only or
offline normal, then the rename operation cannot be used to make the datafile acces-
sible (since the datafile requires media recovery that is precluded by the results of
RESETLOGS). In this case, the tablespace containing the datafile must be dropped.

In contrast, if a datafile indicated in the control file is not present in the data dictio-
nary, Oracle removes references to it from the new control file. In both cases, Oracle
includes an explanatory message in the ALERT file to let you know what it found.
6-8 Oracle8 Administrator’s Guide

Dropping Control Files
Handling Errors During CREATE CONTROLFILE
If Oracle sends you an error (usually error ORA-01173, ORA-01176, ORA-01177,
ORA-01215, or ORA-01216) when you attempt to mount and open the database
after creating a new control file, the most likely cause is that you omitted a file from
the CREATE CONTROLFILE statement or included one that should not have been
listed. In this case, you should restore the files you backed up in Step 3 and repeat
the procedure from Step 4, using the correct filenames.

Dropping Control Files
You can drop control files from the database. For example, you might want to do so
if the location of a control file is inappropriate. Remember that the database must
have at least two control files at all times.

1. Shut down the database.

2. Exit Enterprise Manager.

3. Edit the CONTROL_FILES parameter in the database’s parameter file to delete
the old control file’s name.

4. Restart Enterprise Manager.

5. Restart the database.

WARNING: This operation does not physically delete the
unwanted control file from the disk. Use operating system com-
mands to delete the unnecessary file after you have dropped the
control file from the database.
 Managing Control Files 6-9

Dropping Control Files
6-10 Oracle8 Administrator’s Guide

 Managing Job Qu
7

Managing Job Queues

This chapter describes how to use job queues to schedule periodic execution of
PL/SQL code, and includes the following topics:

■ SNP Background Processes

■ Managing Job Queues

■ Viewing Job Queue Information

See Also: This chapter contains several references to Oracle Enterprise Manager.
For more information about performing specific tasks using Enterprise Manager/
GUI or Server Manager/LineMode, see the Oracle Enterprise Manager Administra-
tor’s Guide and Oracle Enterprise Manager User’s Guide.
eues 7-1

SNP Background Processes
SNP Background Processes
This section describes SNP background processes and their role in managing job
queues, and includes the following topics:

■ Multiple SNP processes

■ Starting up SNP processes

You can schedule routines to be performed periodically using the job queue. A rou-
tine is any PL/SQL code. To schedule a job, you submit it to the job queue and spec-
ify the frequency at which the job is to be run. You can also alter, disable, or delete
jobs you have submitted.

To maximize performance and accommodate many users, a multi-process Oracle
system uses some additional processes called background processes. Background pro-
cesses consolidate functions that would otherwise be handled by multiple Oracle
programs running for each user process. Background processes asynchronously
perform I/O and monitor other Oracle processes to provide increased parallelism
for better performance and reliability.

SNP background processes execute job queues. SNP processes periodically wake up
and execute any queued jobs that are due to be run. You must have at least one
SNP process running to execute your queued jobs in the background.

SNP background processes differ from other Oracle background processes, in that
the failure of an SNP process does not cause the instance to fail. If an SNP process
fails, Oracle restarts it.

SNP background processes will not execute jobs if the system has been started in
restricted mode. However, you can use the ALTER SYSTEM command to turn this
behavior on and off as follows:

ALTER SYSTEM ENABLE RESTRICTED SESSION;
ALTER SYSTEM DISABLE RESTRICTED SESSION;

When you ENABLE a restricted session, SNP background processes do not execute
jobs; when you DISABLE a restricted session, SNP background processes execute
jobs.

See Also: For more information on SNP background processes, see Oracle8 Concepts.
7-2 Oracle8 Administrator’s Guide

SNP Background Processes
Multiple SNP processes
An instance can have up to thirty-six SNP processes, named SNP0 to SNP9, and
SNPA to SNPZ. If an instance has multiple SNP processes, the task of executing
queued jobs can be shared across these processes, thus improving performance.
Note, however, that each job is run at any point in time by only one process. A sin-
gle job cannot be shared simultaneously by multiple SNP processes.

Starting up SNP processes
Job queue initialization parameters enable you to control the operation of the SNP
background processes. When you set these parameters in the initialization parame-
ter file for an instance, they take effect the next time you start the instance.

Table 7–1 describes the job queue initialization parameters.

Table 7–1 Job Queue Initialization Parameters

Parameter Name Description

JOB_QUEUE_PROCESSES Default: 0
Range of values: 0...36
Multiple instances: can have differ-

ent values
Sets the number of SNP background pro-
cesses per instance.

JOB_QUEUE_INTERVAL Default: 60 (seconds)
Range of values: 1...3600 (seconds)
Multiple instances: can have differ-

ent values
Sets the interval between wake-ups for
the SNP background processes of the
instance.
 Managing Job Queues 7-3

Managing Job Queues
Managing Job Queues
This section describes the various aspects of managing job queues, and includes the
following topics:

■ DBMS_JOB Package

■ Submitting a Job to the Job Queue

■ How Jobs Execute

■ Removing a Job From the Job Queue

■ Altering a Job

■ Broken Jobs

■ Forcing a Job to Execute

■ Terminating a Job

DBMS_JOB Package
To schedule and manage jobs in the job queue, use the procedures in the
DBMS_JOB package. There are no database privileges associated with using job
queues. Any user who can execute the job queue procedures can use the job queue.
7-4 Oracle8 Administrator’s Guide

Managing Job Queues
Table 7–2 lists the job queue procedures in the DBMS_JOB package.

Table 7–2 Procedures in the DBMS_JOB Package

Procedure Description Described on

SUBMIT Submits a job to the job queue. on page 7-6
REMOVE Removes specified job from the

job queue.
 on page 7-12

CHANGE Alters a specified job. You can
alter the job description, the
time at which the job will be
run, or the interval between
executions of the job.

 on page 7-12

WHAT Alters the job description for a
specified job.

 on page 7-12

NEXT_DATE Alters the next execution time
for a specified job.

 on page 7-13

INTERVAL Alters the interval between exe-
cutions for a specified job.

 on page 7-14

BROKEN Disables job execution. If a job
is marked as broken, Oracle
does not attempt to execute it.

 on page 7-14

RUN Forces a specified job to run. on page 7-15
 Managing Job Queues 7-5

Managing Job Queues
Submitting a Job to the Job Queue
To submit a new job to the job queue, use the SUBMIT procedure in the DBMS_JOB
package:

DBMS_JOB.SUBMIT(job OUT BINARY_INTEGER,
 what IN ARCHAR2,
 next_date IN DATE DEFAULT SYSDATE,

 interval IN VARCHAR2 DEFAULT ’null’,
 no_parse IN BOOLEAN DEFAULT FALSE)

The SUBMIT procedure returns the number of the job you submitted. Table 7–3
describes the procedure’s parameters.

Table 7–3 Parameters for DBMS_JOB.SUBMIT

Parameter Description

job This is the identifier assigned to the job you created. You
must use the job number whenever you want to alter or
remove the job.
For more information about job numbers, see “Job Num-
bers” on page 7-8.

what This is the PL/SQL code you want to have executed.
For more information about defining a job, see “Job Defi-
nitions” on page 7-8.

next_date This is the next date when the job will be run. The default
value is SYSDATE.

interval This is the date function that calculates the next time to
execute the job. The default value is NULL. INTERVAL
must evaluate to a future point in time or NULL.
For more information on how to specify an execution
interval, see “Job Execution Interval” on page 7-9.

no_parse This is a flag. The default value is FALSE.
If NO_PARSE is set to FALSE (the default), Oracle parses
the procedure associated with the job. If NO_PARSE is set
to TRUE, Oracle parses the procedure associated with the
job the first time that the job is executed. If, for example,
you want to submit a job before you have created the
tables associated with the job, set NO_PARSE to TRUE.
7-6 Oracle8 Administrator’s Guide

Managing Job Queues
As an example, let’s submit a new job to the job queue. The job calls the procedure
DBMS_DDL.ANALYZE_OBJECT to generate optimizer statistics for the table
DQUON.ACCOUNTS. The statistics are based on a sample of half the rows of the
ACCOUNTS table. The job is run every 24 hours:

SVRMGR> VARIABLE jobno number;
SVRMGR> begin
 2> DBMS_JOB.SUBMIT(:jobno,
 3> ’dbms_ddl.analyze_object(’’TABLE’’,
 4> ’’DQUON’’, ’’ACCOUNTS’’,
 5> ’’ESTIMATE’’, NULL, 50);’
 6> SYSDATE, ’SYSDATE + 1’);
 7> commit;
 8> end;
 9> /
Statement processed.
SVRMGR> print jobno
JOBNO

 14144

Job Environment
When you submit a job to the job queue or alter a job’s definition, Oracle records
the following environment characteristics:

■ the current user

■ the user submitting or altering a job

■ the current schema

■ MAC privileges (if appropriate)

Oracle also records the following NLS parameters:

■ NLS_LANGUAGE

■ NLS_TERRITORY

■ NLS_CURRENCY

■ NLS_ISO_CURRENCY

■ NLS_NUMERIC_CHARACTERS

■ NLS_DATE_FORMAT

■ NLS_DATE_LANGUAGE
 Managing Job Queues 7-7

Managing Job Queues
■ NLS_SORT

Oracle restores these environment characteristics every time a job is executed.
NLS_LANGUAGE and NLS_TERRITORY parameters are defaults for unspecified
NLS parameters.

You can change a job’s environment by using the DBMS_SQL package and the
ALTER SESSION command.

Jobs and Import/Export
Jobs can be exported and imported. Thus, if you define a job in one database, you
can transfer it to another database. When exporting and importing jobs, the job’s
number, environment, and definition remain unchanged.

Job Owners
When you submit a job to the job queue, Oracle identifies you as the owner of the
job. Only a job’s owner can alter the job, force the job to run, or remove the job from
the queue.

Job Numbers
A queued job is identified by its job number. When you submit a job, its job num-
ber is automatically generated from the sequence SYS.JOBSEQ.

Once a job is assigned a job number, that number does not change. Even if the job is
exported and imported, its job number remains the same.

Job Definitions
The job definition is the PL/SQL code specified in the WHAT parameter of the SUBMIT
procedure.

Note: If the job number of a job you want to import matches the
number of a job already existing in the database, you will not be
allowed to import that job. Submit the job as a new job in the data-
base.
7-8 Oracle8 Administrator’s Guide

Managing Job Queues
Normally the job definition is a single call to a procedure. The procedure call can
have any number of parameters.

There are special parameter values that Oracle recognizes in a job definition.
Table 7–4 lists these parameters.

The following are examples of valid job definitions:

’myproc(’’10-JAN-82’’, next_date, broken);’
’scott.emppackage.give_raise(’’JFEE’’, 3000.00);’
’dbms_job.remove(job);’

Job Execution Interval
The INTERVAL date function is evaluated immediately before a job is executed. If
the job completes successfully, the date calculated from INTERVAL becomes the
new NEXT_DATE. If the INTERVAL date function evaluates to NULL and the job
completes successfully, the job is deleted from the queue.

If a job should be executed periodically at a set interval, use a date expression simi-
lar to ’SYSDATE + 7’ in the INTERVAL parameter. For example, if you set the execu-
tion interval to ‘SYSDATE + 7’ on Monday, but for some reason (such as a network
failure) the job is not executed until Thursday, ’SYSDATE + 7’ then executes every
Thursday, not Monday.

If you always want to automatically execute a job at a specific time, regardless of
the last execution (for example, every Monday), the INTERVAL and NEXT_DATE
parameters should specify a date expression similar to ’NEXT_DAY(TRUNC(SYS-
DATE), “MONDAY”)’.

Note: In the job definition, use two single quotation marks
around strings. Always include a semicolon at the end of the job
definition.

Table 7–4 Special Parameter Values for Job Definitions

Parameter Mode Description

job IN The number of the current job.
next_date IN/OUT The date of the next execution of the

job. The default value is SYSDATE.
broken IN/OUT Status of job, broken or not broken.

The IN value is FALSE.
 Managing Job Queues 7-9

Managing Job Queues
Table Table 7–5 lists some common date expressions used for job execution inter-
vals.

Database Links and Jobs
If you submit a job that uses a database link, the link must include a username and
password. Anonymous database links will not succeed.

See Also: For more information about the ALTER SESSION command, see Oracle8
SQL Reference.

For more information on the DBMS_SQL package, see the Oracle8 Application Devel-
oper’s Guide.

How Jobs Execute
SNP background processes execute jobs. To execute a job, the process creates a ses-
sion to run the job.

When an SNP process runs a job, the job is run in the same environment in which it
was submitted and with the owner’s default privileges.

Table 7–5 Common Job Execution Intervals

Date Expression Evaluation

’SYSDATE + 7’ exactly seven days
from the last execu-
tion

’SYSDATE + 1/48’ every half hour
’NEXT_DAY(TRUNC(SYSDATE),
’’MONDAY’’) + 15/24’

every Monday at
3PM

’NEXT_DAY(ADD_MONTHS
(TRUNC(SYSDATE, ’’Q’’),
3), ’’THURSDAY’’)’

first Thursday of
each quarter

Note: When specifying NEXT_DATE or INTERVAL, remember
that date literals and strings must be enclosed in single quotation
marks. Also, the value of INTERVAL must be enclosed in single
quotation marks.
7-10 Oracle8 Administrator’s Guide

Managing Job Queues
When you force a job to run using the procedure DBMS_JOB.RUN, the job is run by
your user process. When your user process runs a job, it is run with your default
privileges only. Privileges granted to you through roles are unavailable.

Job Queue Locks
Oracle uses job queue locks to ensure that a job is executed one session at a time.
When a job is being run, its session acquires a job queue (JQ) lock for that job.

Interpreting Information about JQ Locks You can use the Enterprise Manager Lock Moni-
tor or the locking views in the data dictionary to examine information about locks cur-
rently held by sessions.

The following query lists the session identifier, lock type, and lock identifiers for all
sessions holding JQ locks:

SVRMGR> SELECT sid, type, id1, id2
 2> FROM v$lock
 3> WHERE type = ’JQ’;

SID TY ID1 ID2
---------- -- ---------- ----------
 12 JQ 0 14144
1 row selected.

In the query above, the identifier for the session holding the lock is 12. The ID1 lock
identifier is always 0 for JQ locks. The ID2 lock identifier is the job number of the
job the session is running.

Job Execution Errors
When a job fails, information about the failure is recorded in a trace file and the
alert log. Oracle writes message number ORA-12012 and includes the job number
of the failed job.

The following can prevent the successful execution of queued jobs:

■ not having any SNP background processes to run the job

■ a network or instance failure

■ an exception when executing the job

Job Failure and Execution Times If a job returns an error while Oracle is attempting to exe-
cute it, Oracle tries to execute it again. The first attempt is made after one minute, the sec-
ond attempt after two minutes, the third after four minutes, and so on, with the interval
doubling between each attempt. When the retry interval exceeds the execution interval,
 Managing Job Queues 7-11

Managing Job Queues
Oracle continues to retry the job at the normal execution interval. However, if the job fails
sixteen times, Oracle automatically marks the job as broken and no longer tries to execute
it.

Thus, if you can correct the problem that is preventing a job from running before
the job has failed sixteen times, Oracle will eventually run that job again.

See Also: For more information about the locking views, see the Oracle8 Reference.

For more information about locking, see Oracle8 Concepts.

Removing a Job From the Job Queue
To remove a job from the job queue, use the REMOVE procedure in the DBMS_JOB
package:

DBMS_JOB.REMOVE(job IN BINARY_INTEGER)

The following statement removes job number 14144 from the job queue:

DBMS_JOB.REMOVE(14144);

Restrictions
You can remove currently executing jobs from the job queue. However, the job will
not be interrupted, and the current execution will be completed.

You can only remove jobs you own. If you try to remove a job that you do not own,
you receive a message that states the job is not in the job queue.

Altering a Job
To alter a job that has been submitted to the job queue, use the procedures
CHANGE, WHAT, NEXT_DATE, or INTERVAL in the DBMS_JOB package.

Here’s an example where the job identified as 14144 is now executed every three
days:

DBMS_JOB.CHANGE(14144, null, null, ’SYSDATE + 3’);

Restrictions
You can only alter jobs that you own. If you try to alter a job that you do not own,
you receive a message that states the job is not in the job queue.
7-12 Oracle8 Administrator’s Guide

Managing Job Queues
Syntax for CHANGE
You can alter any of the user-definable parameters associated with a job by calling
the DBMS_JOB.CHANGE procedure. Table 7–3 describes the procedure’s parame-
ters.

DBMS_JOB.CHANGE(job IN BINARY_INTEGER,
 what IN VARCHAR2,
 next_date IN DATE,
 interval IN VARCHAR2)

If you specify NULL for WHAT, NEXT_DATE, or INTERVAL when you call the
procedure CHANGE, the current value remains unchanged.

Syntax for WHAT
You can alter the definition of a job by calling the DBMS_JOB.WHAT procedure.
Table 7–3 describes the procedure’s parameters.

DBMS_JOB.WHAT(job IN BINARY_INTEGER,
 what IN VARCHAR2)

Syntax for NEXT_DATE
You can alter the next date that Oracle executes a job by calling the
DBMS_JOB.NEXT_DATE procedure. Table 7–3 describes the procedure’s parame-
ters.

DBMS_JOB.NEXT_DATE(job IN BINARY_INTEGER,
next_date IN DATE)

Note: When you change a job’s definition using the WHAT
parameter in the procedure CHANGE, Oracle records your current
environment. This becomes the new environment for the job.

Note: When you execute procedure WHAT, Oracle records your
current environment. This becomes the new environment for the
job.
 Managing Job Queues 7-13

Managing Job Queues
Syntax for INTERVAL
You can alter the execution interval of a job by calling the DBMS_JOB.INTERVAL
procedure. Table 7–3 describes the procedure’s parameters.

DBMS_JOB.INTERVAL(job IN BINARY_INTEGER,
 interval IN VARCHAR2)

Broken Jobs
A job is labeled as either broken or not broken. Oracle does not attempt to run bro-
ken jobs. However, you can force a broken job to run by calling the procedure
DBMS_JOB.RUN.

When you submit a job it is considered not broken.

There are two ways a job can break:

■ Oracle has failed to successfully execute the job after sixteen attempts.

■ You have marked the job as broken, using the procedure DBMS_JOB.BROKEN.

To mark a job as broken or not broken, use the procedure BROKEN in the
DBMS_JOB package. Table 7–4 describes the procedure’s parameters:

DBMS_JOB.BROKEN(job IN BINARY_INTEGER,
 broken IN BOOLEAN,
 next_date IN DATE DEFAULT SYSDATE)

The following example marks job 14144 as not broken and sets its next execution
date to the following Monday:

DBMS_JOB.BROKEN(14144, FALSE, NEXT_DAY(SYSDATE, ’MONDAY’));

Once a job has been marked as broken, Oracle will not attempt to execute the job
until you either mark the job as not broken, or force the job to be executed by call-
ing the procedure DBMS_JOB.RUN.

Restrictions
You can only mark jobs you own as broken. If you try to mark a job you do not
own, you receive a message that states the job is not in the job queue.
7-14 Oracle8 Administrator’s Guide

Managing Job Queues
Running Broken Jobs
If a problem has caused a job to fail sixteen times, Oracle marks the job as broken.
Once you have fixed this problem, you can run the job by either:

■ forcing the job to run by calling DBMS_JOB.RUN

■ marking the job as not broken by calling DBMS_JOB.BROKEN and waiting for
Oracle to execute the job

If you force the job to run by calling the procedure DBMS_JOB.RUN, Oracle runs
the job immediately. If the job succeeds, then Oracle labels the job as not broken
and resets its count of the number of failed executions for the job.

Once you reset a job’s broken flag (by calling either RUN or BROKEN), job execu-
tion resumes according to the scheduled execution intervals set for the job.

Forcing a Job to Execute
There may be times when you would like to manually execute a job. For example, if
you have fixed a broken job, you may want to test the job immediately by forcing it
to execute.

To force a job to be executed immediately, use the procedure RUN in the
DBMS_JOB package. Oracle attempts to run the job, even if the job is marked as
broken:

DBMS_JOB.RUN(job IN BINARY_INTEGER)

When you run a job using DBMS_JOB.RUN, Oracle recomputes the next execution
date. For example, if you create a job on a Monday with a NEXT_DATE value of
’SYSDATE’ and an INTERVAL value of ’SYSDATE + 7’, the job is run every 7 days
starting on Monday. However, if you execute RUN on Wednesday, the next execu-
tion date will be the next Wednesday.

Restrictions
You can only run jobs that you own. If you try to run a job that you do not own,
you receive a message that states the job is not in the job queue.

Note: When you force a job to run, the job is executed in your cur-
rent session. Running the job reinitializes your session’s packages.
 Managing Job Queues 7-15

Viewing Job Queue Information
The following statement runs job 14144 in your session and recomputes the next
execution date:

DBMS_JOB.RUN(14144);

The procedure RUN contains an implicit commit. Once you execute a job using
RUN, you cannot rollback.

Terminating a Job
You can terminate a running job by marking the job as broken, identifying the ses-
sion running the job, and disconnecting that session. You should mark the job as
broken, so that Oracle does not attempt to run the job again.

After you have identified the session running the job (via V$SESSION), you can dis-
connect the session using the Enterprise Manager Disconnect Session menu item,
or the SQL command ALTER SYSTEM.

See Also: For examples of viewing information about jobs and sessions, see the fol-
lowing section, “Viewing Job Queue Information”.

For more information on V$SESSION, see the Oracle8 Reference.

Viewing Job Queue Information
You can view information about jobs in the job queue via the data dictionary views
in Table 7–6:

Table 7–6 Views for Job Queue Information

View Description

DBA_JOBS Lists all the jobs in the database.
USER_JOBS Lists all jobs owned by the user.
DBA_JOBS_RUNNING Lists all jobs in the database that are cur-

rently running. This view joins V$LOCK and
JOB$.
7-16 Oracle8 Administrator’s Guide

Viewing Job Queue Information
For example, you can display information about a job’s status and failed execu-
tions. The following sample query creates a listing of the job number, next execu-
tion time, failures, and broken status for each job you have submitted:

SVRMGR> SELECT job, next_date, next_sec, failures, broken
 2> FROM user_jobs;

JOB NEXT_DATE NEXT_SEC FAILURES B
---------- --------- -------- ---------- -
 9125 01-NOV-94 00:00:00 4 N
 14144 24-OCT-94 16:35:35 0 N
 41762 01-JAN-00 00:00:00 16 Y
3 rows selected.

You can also display information about jobs currently running. The following sam-
ple query lists the session identifier, job number, user who submitted the job, and
the start times for all currently running jobs:

SVRMGR> SELECT sid, r.job, log_user, r.this_date, r.this_sec
 2> FROM dba_jobs_running r, dba_jobs j
 3> WHERE r.job = j.job;

SID JOB LOG_USER THIS_DATE THIS_SEC
---------- ---------- -------------------- --------- --------
 12 14144 JFEE 24-OCT-94 17:21:24
 25 8536 SCOTT 24-OCT-94 16:45:12
2 rows selected.

See Also: For more information on data dictionary views, see the Oracle8 Reference.
 Managing Job Queues 7-17

Viewing Job Queue Information
7-18 Oracle8 Administrator’s Guide

Part III

Oracle Server Configuration

 Managing Tablesp
8

Managing Tablespaces

This chapter describes the various aspects of tablespace management, and includes
the following topics:

■ Guidelines for Managing Tablespaces

■ Creating Tablespaces

■ Managing Tablespace Allocation

■ Altering Tablespace Availability

■ Making a Tablespace Read-Only

■ Dropping Tablespaces

■ Viewing Information About Tablespaces

This chapter contains several references to Oracle Enterprise Manager. For more
information about performing specific tasks using Enterprise Manager/GUI or
Server Manager/LineMode, see the Oracle Enterprise Manager Administrator’s Guide
and Oracle Enterprise Manager User’s Guide.
aces 8-1

Guidelines for Managing Tablespaces
Guidelines for Managing Tablespaces
Before working with tablespaces of an Oracle database, consider the guidelines in
the following sections:

■ Using Multiple Tablespaces

■ Specifying Tablespace Storage Parameters

■ Assigning Tablespace Quotas to Users

Using Multiple Tablespaces
Using multiple tablespaces allows you more flexibility in performing database oper-
ations. For example, when a database has multiple tablespaces, you can perform
the following tasks:

■ Separate user data from data dictionary data.

■ Separate one application’s data from another’s.

■ Store different tablespaces’ datafiles on separate disk drives to reduce I/O con-
tention.

■ Separate rollback segment data from user data, preventing a single disk failure
from causing permanent loss of data.

■ Take individual tablespaces offline while others remain online.

■ Reserve a tablespace for a particular type of database use, such as high update
activity, read-only activity, or temporary segment storage.

■ Back up individual tablespaces.

Some operating systems set a limit on the number of files that can be simulta-
neously open; these limits can affect the number of tablespaces that can be simulta-
neously online. To avoid exceeding your operating system’s limit, plan your
tablespaces efficiently. Create only enough tablespaces to fill your needs, and create
these tablespaces with as few files as possible. If you need to increase the size of a
tablespace, add one or two large datafiles, or create datafiles with the autoextend
option set on, rather than many small datafiles.

Review your data in light of these advantages and decide how many tablespaces
you will need for your database design.
8-2 Oracle8 Administrator’s Guide

Creating Tablespaces
Specifying Tablespace Storage Parameters
When you create a new tablespace, you can specify default storage parameters for
objects that will be created in the tablespace. Storage parameters specified when an
object is created override the default storage parameters of the tablespace contain-
ing the object. However, if you do not specify storage parameters when creating an
object, the object’s segment automatically uses the default storage parameters for
the tablespace.

Set the default storage parameters for a tablespace to account for the size of a typi-
cal object that the tablespace will contain (you estimate this size). You can specify
different storage parameters for an unusual or exceptional object when creating
that object.

See Also: For information about estimating the sizes of objects, see Chapters 9
through 16.

Assigning Tablespace Quotas to Users
Grant users who will be creating tables, clusters, snapshots, indexes, and other
objects the privilege to create the object and a quota (space allowance or limit) in the
tablespace intended to hold the object’s segment. The security administrator is
responsible for granting the required privileges to create objects to database users
and for assigning tablespace quotas, as necessary, to database users.

See Also: To learn more about assigning tablespace quotas to database users, see
“Assigning Tablespace Quotas” on page 20-14.

Creating Tablespaces
The steps for creating tablespaces vary by operating system. On most operating sys-
tems you indicate the size and fully specified filenames when creating a new
tablespace or altering a tablespace by adding datafiles. In each situation Oracle
automatically allocates and formats the datafiles as specified. However, on some
operating systems, you must create the datafiles before installation.

The first tablespace in any database is always the SYSTEM tablespace. Therefore,
the first datafiles of any database are automatically allocated for the SYSTEM
tablespace during database creation.

Note: If you do not specify the default storage parameters for a
new tablespace, the default storage parameters of Oracle become
the tablespace’s default storage parameters.
 Managing Tablespaces 8-3

Creating Tablespaces
You might create a new tablespace for any of the following reasons:

■ You want to allocate more disk storage space for the associated database,
thereby enlarging the database.

■ You need to create a logical storage structure in which to store a specific type of
data separate from other database data.

To increase the total size of the database you can alternatively add a datafile to an
existing tablespace, rather than adding a new tablespace.

To create a new tablespace, use either the Create Tablespace property sheet of Enter-
prise Manager/GUI, or the SQL command CREATE TABLESPACE. You must have
the CREATE TABLESPACE system privilege to create a tablespace.

As an example, let’s create the tablespace RB_SEGS (to hold rollback segments for
the database), with the following characteristics:

■ The data of the new tablespace is contained in a single datafile, 50M in size.

■ The default storage parameters for any segments created in this tablespace are
explicitly set.

■ After the tablespace is created, it is left offline.

The following statement creates the tablespace RB_SEGS:

 CREATE TABLESPACE rb_segs
 DATAFILE ’datafilers_1’ SIZE 50M
 DEFAULT STORAGE (
 INITIAL 50K
 NEXT 50K
 MINEXTENTS 2
 MAXEXTENTS 50
 PCTINCREASE 0)
 OFFLINE;

If you do not fully specify filenames when creating tablespaces, the corresponding
datafiles are created in the current directory of the database server.

See Also: See your operating system-specific Oracle documentation for informa-
tion about initially creating a tablespace.

Note: No data can be inserted into any tablespace until the cur-
rent instance has acquired at least two rollback segments (includ-
ing the SYSTEM rollback segment).
8-4 Oracle8 Administrator’s Guide

Creating Tablespaces
For more information about adding a datafile, see “Creating and Adding Datafiles
to a Tablespace” on page 9-5.

For more information about the CREATE TABLESPACE statement, see the Oracle8
Reference.

Creating a Temporary Tablespace
If you wish to improve the concurrency of multiple sort operations, reduce their
overhead, or avoid Oracle space management operations altogether, you can create
temporary tablespaces.

Within a temporary tablespace, all sort operations for a given instance and
tablespace share a single sort segment. Sort segments exist in every instance that per-
forms sort operations within a given tablespace. You cannot store permanent
objects in a temporary tablespace. You can view the allocation and deallocation of
space in a temporary tablespace sort segment via the V$SORT_SEGMENT table.

To identify a tablespace as temporary during tablespace creation, issue the follow-
ing statement:

CREATE TABLESPACE tablespace TEMPORARY;

To identify a tablespace as temporary in an existing tablespace, issue the following
statement:

ALTER TABLESPACE tablespace TEMPORARY;

See Also: For more information about the CREATE TABLESPACE and ALTER
TABLESPACE commands, see the Oracle8 SQL Reference.

For more information about V$SORT_SEGMENT, see the Oracle8 Reference.

For more information about Oracle space management, see Oracle8 Concepts.

Note: You can take temporary tablespaces offline. Returning tem-
porary tablespaces online does not affect their temporary status.
 Managing Tablespaces 8-5

Managing Tablespace Allocation
Managing Tablespace Allocation
This section describes aspects of managing tablespace allocation, and includes the
following topics:

■ Altering Storage Settings for Tablespaces

■ Coalescing Free Space

Altering Storage Settings for Tablespaces
You can change the default storage parameters of a tablespace to change the default
specifications for future objects created in the tablespace. To change the default stor-
age parameters for objects subsequently created in the tablespace, use either the
Alter Tablespace property sheet of Enterprise Manager/GUI, or the SQL command
ALTER TABLESPACE. Also, to alter the default storage parameters of a tablespace,
you must have the ALTER TABLESPACE system privilege.

 ALTER TABLESPACE users
 DEFAULT STORAGE (
 INITIAL 50K
 NEXT 50K
 MINEXTENTS 2
 MAXEXTENTS 20
 PCTINCREASE 50);

New values for the default storage parameters of a tablespace affect only future
extents allocated for the segments within the tablespace.

Coalescing Free Space
Space for tablespace segments is managed using extents, which are comprised of a
specific number of contiguous data blocks. The free extent closest in size to the
required extent is used when allocating new extents to a tablespace segment. Thus,
a larger free extent can be fragmented, or smaller contiguous free extents can be
coalesced into one larger free extent (see Figure 8–1). However, continuous alloca-
tion and deallocation of free space fragments your tablespace and makes allocation
of larger extents more difficult. By default, SMON (system monitor) processes incre-
mentally coalesce the free extents of tablespaces in the background. If desired, you
can disable SMON coalescing.
8-6 Oracle8 Administrator’s Guide

Managing Tablespace Allocation
Figure 8–1 Coalescing Free Space

If you find that fragmentation of space is high (contiguous space on your disk
appears as non-contiguous), you can coalesce your free space in a single space
transaction. After every eight coalesces the space transaction commits and other
transactions can allocate or deallocate space. You must have ALTER TABLESPACE
privileges to coalesce tablespaces. You can coalesce all available free space extents
in a tablespace into larger contiguous extents on a per tablespace basis by using the
following command:

ALTER TABLESPACE tablespace COALESCE;

You can also use this command to supplement SMON and extent allocation coalesc-
ing, thereby improving space allocation performance in severely fragmented
tablespaces. Issuing this command does not effect the performance of other users
accessing the same tablespace. Like other options of the ALTER TABLESPACE com-
mand, the COALESCE option is exclusive; when specified, it should be the only
option.

Viewing Information about Tablespaces
To display statistics about coalesceable extents for tablespaces, you can view the
DBA_FREE_SPACE_COALESCED view. You can query this view to determine if
you need to coalesce space in a particular tablespace.

See Also: For information about the contents of DBA_FREE_SPACE_COALESCED,
see the Oracle8 Reference.

U

U

U

U

U

U

U

U

F

F

FFF FF F

F

F

F F U F F F FF U

F U U FJFEE1.ORA

Input

Output
EXTENT 2

F = free data block
U = used data block

Input

Output
EXTENT 1
 Managing Tablespaces 8-7

Altering Tablespace Availability
Altering Tablespace Availability
You can bring an offline tablespace online to make the schema objects within the
tablespace available to database users. Alternatively, you can take an online
tablespace offline while the database is open, so that this portion of the database is
temporarily unavailable for general use but the rest is open and available. This sec-
tion includes the following topics:

■ Bringing Tablespaces Online

■ Taking Tablespaces Offline

Bringing Tablespaces Online
You can bring any tablespace in an Oracle database online whenever the database
is open. The only exception is that the SYSTEM tablespace must always be online
because the data dictionary must always be available to Oracle. A tablespace is nor-
mally online so that the data contained within it is available to database users.

To bring an offline tablespace online while the database is open, use either the Place
Online menu item of Enterprise Manager/GUI, or the SQL command ALTER
TABLESPACE. You must have the MANAGE TABLESPACE system privilege to
bring a tablespace online.

The following statement brings the USERS tablespace online:

ALTER TABLESPACE users ONLINE;

Note: If a tablespace to be brought online was not taken offline
“cleanly” (that is, using the NORMAL option of the ALTER
TABLESPACE OFFLINE command), you must first perform media
recovery on the tablespace before bringing it online. Otherwise,
Oracle returns an error and the tablespace remains offline.
8-8 Oracle8 Administrator’s Guide

Altering Tablespace Availability
Taking Tablespaces Offline
You may wish to take a tablespace offline for any of the following reasons:

■ To make a portion of the database unavailable while allowing normal access to
the remainder of the database.

■ To perform an offline tablespace backup (even though a tablespace can be
backed up while online and in use).

■ To make an application and its group of tables temporarily unavailable while
updating or maintaining the application.

To take an online tablespace offline while the database is open, use either the Take
Offline menu item of Enterprise Manager/GUI, or the SQL command ALTER
TABLESPACE. You must have the MANAGE TABLESPACE system privilege to
take a tablespace offline.

You can specify any of the following priorities when taking a tablespace offline:

normal offline A tablespace can be taken offline nor-
mally if no error conditions exist for any
of the datafiles of the tablespace. No data-
file in the tablespace can be currently
offline as the result of a write error. With
normal offline priority, Oracle takes a
checkpoint for all datafiles of the
tablespace as it takes them offline.

temporary offline A tablespace can be taken offline tempo-
rarily, even if there are error conditions
for one or more files of the tablespace.
With temporary offline priority, Oracle
takes offline the datafiles that are not
already offline, checkpointing them as it
does so.
 Managing Tablespaces 8-9

Altering Tablespace Availability
Take a tablespace offline temporarily only when you cannot take it offline nor-
mally; in this case, only the files taken offline because of errors need to be recovered
before the tablespace can be brought online. Take a tablespace offline immediately
only after trying both the normal and temporary options.

If no files are offline, but you use the tem-
porary option, media recovery is not
required to bring the tablespace back
online. However, if one or more files of
the tablespace are offline because of write
errors, and you take the tablespace
offline temporarily, the tablespace will
require recovery before you can bring it
back online.

immediate offline A tablespace can be taken offline immedi-
ately, without Oracle’s taking a check-
point on any of the datafiles. With
immediate offline priority, media recov-
ery for the tablespace is required before
the tablespace can be brought online. You
cannot take a tablespace offline immedi-
ately if the database is running in NOAR-
CHIVELOG mode.

WARNING: If you must take a tablespace offline, use the normal
option (the default) if possible; this guarantees that the
tablespace will not require recovery to come back online, even if
you reset the redo log sequence (using an ALTER DATABASE
OPEN RESETLOGS statement after incomplete media recovery)
before bringing the tablespace back online.

normal offline A tablespace can be taken offline nor-
mally if no error conditions exist for any
of the datafiles of the tablespace. No data-
file in the tablespace can be currently
offline as the result of a write error. With
normal offline priority, Oracle takes a
checkpoint for all datafiles of the
tablespace as it takes them offline.
8-10 Oracle8 Administrator’s Guide

Making a Tablespace Read-Only
The following example takes the USERS tablespace offline normally:

ALTER TABLESPACE users OFFLINE NORMAL;

See Also: Before taking an online tablespace offline, verify that the tablespace con-
tains no active rollback segments. For more information see “Taking Rollback Seg-
ments Offline” on page 18-12.

Making a Tablespace Read-Only
This section describes issues related to making tablespaces read-only, and includes
the following topics:

■ Prerequisites

■ Making a Read-Only Tablespace Writeable

■ Creating a Read-Only Tablespace on a WORM Device

Making a tablespace read-only prevents further write operations on the datafiles in
the tablespace. After making the tablespace read-only, you should back it up.

Use the SQL command ALTER TABLESPACE to change a tablespace to read-only.
You must have the ALTER TABLESPACE system privilege to make a tablespace
read-only. The following statement makes the FLIGHTS tablespace read-only:

ALTER TABLESPACE flights READ ONLY

After a tablespace is read-only, you can copy its files to read-only media. You must
then rename the datafiles in the control file to point to the new location by using
the SQL command ALTER DATABASE RENAME.

A read-only tablespace is neither online nor offline. Issuing the ALTER
TABLESPACE command with the ONLINE or OFFLINE option does not change
the read-only state of the tablespace; rather, it causes all of the datafiles in the
tablespace to be brought online or offline.
 Managing Tablespaces 8-11

Making a Tablespace Read-Only
Prerequisites
Before you can make a tablespace read-only, the following conditions must be met.
It may be easiest to meet these restrictions by performing this function in restricted
mode, so that only users with the RESTRICTED SESSION system privilege can be
logged on.

■ The tablespace must be online.

■ There must not be any active transactions in the entire database.

This is necessary to ensure that there is no undo information that needs to be
applied to the tablespace.

■ The tablespace must not contain any active rollback segments.

For this reason, the SYSTEM tablespace can never be made read-only, since it
contains the SYSTEM rollback segment. Additionally, because the rollback seg-
ments of a read-only tablespace are not accessible, it is recommended that you
drop the rollback segments before you make a tablespace read-only.

■ The tablespace must not currently be involved in an online backup, since the
end of a backup updates the header file of all datafiles in the tablespace.

■ The COMPATIBLE initialization parameter must be set to 7.1.0 or greater.

For better performance while accessing data in a read-only tablespace, you might
want to issue a query that accesses all of the blocks of the tables in the tablespace
just before making it read-only. A simple query, such as SELECT COUNT (*), exe-
cuted against each table will ensure that the data blocks in the tablespace can be
subsequently accessed most efficiently. This eliminates the need for Oracle to check
the status of the transactions that most recently modified the blocks.

See Also: For more information about read-only tablespaces, see Oracle8 Concepts.

WARNING: You cannot rename or resize datafiles belonging to a
read-only tablespace.
8-12 Oracle8 Administrator’s Guide

Making a Tablespace Read-Only
Making a Read-Only Tablespace Writeable
Whenever you create a tablespace, it is both readable and writeable. To change a
read-only tablespace back to a read-write tablespace, use the SQL command
ALTER TABLESPACE. You must have the ALTER TABLESPACE system privilege
to change a read-only tablespace to a read-write tablespace. The following com-
mand makes the FLIGHTS tablespace writeable:

ALTER TABLESPACE flights READ WRITE;

Making a read-only tablespace writeable updates the control file for the datafiles,
so that you can use the read-only version of the datafiles as a starting point for
recovery.

Prerequisites
To issue this command, all of the datafiles in the tablespace must be online. Use the
DATAFILE ONLINE option of the ALTER DATABASE command to bring a datafile
online. The V$DATAFILE view lists the current status of a datafile.

Creating a Read-Only Tablespace on a WORM Device
To create a read-only tablespace on a WORM (Write Once Read Many) device when
you have read-only files that do not require updating:

1. Create a writeable tablespace on another device. Create the objects that belong
in the tablespace and insert your data.

2. Issue the ALTER TABLESPACE command with the READ ONLY option to
change the tablespace to read-only.

3. Copy the datafiles of the tablespace onto the WORM device. Use operating sys-
tem commands to copy the files.

4. Take the tablespace offline.

5. Rename the datafiles to coincide with the names of the datafiles you copied
onto your WORM device. Renaming the datafiles changes their names in the
control file.

6. Bring the tablespace online.
 Managing Tablespaces 8-13

Dropping Tablespaces
Dropping Tablespaces
You can drop a tablespace and its contents (the segments contained in the
tablespace) from the database if the tablespace and its contents are no longer
required. Any tablespace in an Oracle database, except the SYSTEM tablespace, can
be dropped. You must have the DROP TABLESPACE system privilege to drop a
tablespace.

When you drop a tablespace, only the file pointers in the control files of the associ-
ated database are dropped. The datafiles that constituted the dropped tablespace
continue to exist. To free previously used disk space, delete the datafiles of the
dropped tablespace using the appropriate commands of your operating system
after completing this procedure.

You cannot drop a tablespace that contains any active segments. For example, if a
table in the tablespace is currently being used or the tablespace contains an active
rollback segment, you cannot drop the tablespace. For simplicity, take the
tablespace offline before dropping it.

After a tablespace is dropped, the tablespace’s entry remains in the data dictionary
(see the DBA_TABLESPACES view), but the tablespace’s status is changed to
INVALID.

To drop a tablespace, use either the Drop tablespace menu item of Enterprise Man-
ager/GUI, or the SQL command DROP TABLESPACE. The following statement
drops the USERS tablespace, including the segments in the tablespace:

DROP TABLESPACE users INCLUDING CONTENTS;

If the tablespace is empty (does not contain any tables, views, or other structures),
you do not need to check the Including Contained Objects checkbox. If the
tablespace contains any tables with primary or unique keys referenced by foreign
keys of tables in other tablespaces and you want to cascade the drop of the FOR-

WARNING: Once a tablespace has been dropped, the
tablespace’s data is not recoverable. Therefore, make sure that all
data contained in a tablespace to be dropped will not be required
in the future. Also, immediately before and after dropping a
tablespace from a database, back up the database completely.
This is strongly recommended so that you can recover the database if
you mistakenly drop a tablespace, or if the database experiences a
problem in the future after the tablespace has been dropped.
8-14 Oracle8 Administrator’s Guide

Viewing Information About Tablespaces
EIGN KEY constraints of the child tables, select the Cascade Drop of Integrity Con-
straints checkbox to drop the tablespace.

Use the CASCADE CONSTRAINTS option to cascade the drop of the FOREIGN
KEY constraints in the child tables.

See Also: For more information about taking tablespaces offline, see “Taking
Tablespaces Offline” on page 8-9.

For more information about the DROP TABLESPACE statement, see the Oracle8 SQL
Reference.

Viewing Information About Tablespaces
The following data dictionary views provide useful information about tablespaces
of a database:

■ USER_EXTENTS, DBA_EXTENTS

■ USER_SEGMENTS, DBA_SEGMENTS

■ USER_FREE_SPACE, DBA_FREE_SPACE

■ DBA_USERS

■ DBA_TS_QUOTAS

■ USER_TABLESPACES, DBA_TABLESPACES

■ DBA_DATA_FILES

■ V$DATAFILE

The following examples illustrate how to use the views not already illustrated in
other chapters of this manual. They assume you are using a database that contains
two tablespaces, SYSTEM and USERS. USERS is made up of two files, FILE1
(100MB) and FILE2 (200MB); the tablespace has been taken offline normally.
 Managing Tablespaces 8-15

Viewing Information About Tablespaces
Listing Tablespaces and Default Storage Parameters: Example
To list the names and default storage parameters of all tablespaces in a database,
use the following query on the DBA_TABLESPACES view:

SELECT tablespace_name ”TABLESPACE”,
 initial_extent ”INITIAL_EXT”,
 next_extent ”NEXT_EXT”,
 min_extents ”MIN_EXT”,
 max_extents ”MAX_EXT”,
 pct_increase
 FROM sys.dba_tablespaces;

TABLESPACE INITIAL_EXT NEXT_EXT MIN_EXT MAX_EXT PCT_INCREASE
---------- ----------- -------- ------- ------- ------------
SYSTEM 10240000 10240000 1 99 50
USERS 10240000 10240000 1 99 50

Listing the Datafiles and Associated Tablespaces of a Database: Example
To list the names, sizes, and associated tablespaces of a database, enter the follow-
ing query on the DBA_DATA_FILES view:

SELECT file_name, bytes, tablespace_name
 FROM sys.dba_data_files;

FILE_NAME BYTES TABLESPACE_NAME
------------ ---------- -------------------
filename1 10240000 SYSTEM
filename2 10240000 USERS
filename3 20480000 USERS
8-16 Oracle8 Administrator’s Guide

Viewing Information About Tablespaces
Listing the Free Space (Extents) of Each Tablespace: Example
To see the amount of space available in the free extents of each tablespace in the
database, enter the following query:

SELECT tablespace_name, file_id,
 COUNT(*) ”PIECES”,
 MAX(blocks) ”MAXIMUM”,
 MIN(blocks) ”MINIMUM”,
 AVG(blocks) ”AVERAGE”,
 SUM(blocks) ”TOTAL”
 FROM sys.dba_free_space
WHERE tablespace_name = ’SYSTEM’
GROUP BY tablespace_name, file_id;

TABLESPACE FILE_ID PIECES MAXIMUM MINIMUM AVERAGE SUM
---------- ------- ------ ------- ------- ------- ------
SYSTEM 1 2 2928 115 1521.5 3043

SUM shows the amount of free space in each tablespace, PIECES shows the amount
of fragmentation in the datafiles of the tablespace, and MAXIMUM shows the larg-
est contiguous area of space. This query is useful when you are going to create a
new object or you know that a segment is about to extend, and you want to make
sure that there is enough space in the containing tablespace.
 Managing Tablespaces 8-17

Viewing Information About Tablespaces
8-18 Oracle8 Administrator’s Guide

 Managing Da
9

Managing Datafiles

This chapter describes the various aspects of datafile management, and includes
the following topics:

■ Guidelines for Managing Datafiles

■ Creating and Adding Datafiles to a Tablespace

■ Changing a Datafile’s Size

■ Altering Datafile Availability

■ Renaming and Relocating Datafiles

■ Verifying Data Blocks in Datafiles

■ Viewing Information About Datafiles

See Also: This chapter contains several references to Oracle Enterprise Manager.
For more information about performing specific tasks using Enterprise Manager/
GUI or Server Manager/LineMode, see the Oracle Enterprise Manager Administra-
tor’s Guide and Oracle Server Manager User’s Guide.

Datafiles can also be created as part of database recovery from a media failure. For
more information, see the Oracle8 Backup and Recovery Guide.
tafiles 9-1

Guidelines for Managing Datafiles
Guidelines for Managing Datafiles
This section describes aspects of managing datafiles, and includes the following
topics:

■ Number of Datafiles

■ Set the Size of Datafiles

■ Place Datafiles Appropriately

■ Store Datafiles Separately From Redo Log Files

Every datafile has two associated file numbers: an absolute file number and a relative
file number.

An absolute file number uniquely identifies a datafile in the database. Prior to
Oracle8, the absolute file number was referred to as simply the “file number.”

A relative file number uniquely identifies a datafile within a tablespace. For small
and medium size databases, relative file numbers usually have the same value as
the absolute file number. However, when the number of datafiles in a database
exceeds a threshold (typically 1023), the relative file number will differ from the
absolute file number. You can locate relative file numbers in many of the data dictio-
nary views.

Number of Datafiles
At least one datafile is required for the SYSTEM tablespace of a database; a small
system might have a single datafile. In general, keeping a few large datafiles is pref-
erable to many small datafiles, because you can keep fewer files open at the same
time.

You can add datafiles to tablespaces, subject to the following operating system-spe-
cific datafile limits:

operating system limit Each operating system sets a limit on the
maximum number of open files per process.
Regardless of all other limits, more datafiles
cannot be created when the operating sys-
tem limit of open files is reached.

Oracle system limit Oracle imposes a maximum limit on the
number of datafiles for any Oracle database
opened by any instance. This limit is port-
specific.
9-2 Oracle8 Administrator’s Guide

Guidelines for Managing Datafiles
When determining a value for DB_FILES, take the following into consideration:

■ If the value of DB_FILES is too low, you will be unable to add datafiles beyond
the DB_FILES limit without first shutting down the database.

■ IF the value of DB_FILES is too high, memory is unnecessarily consumed.

Theoretically, an Oracle database can have an unlimited number of datafiles. Never-
theless, you should consider the following when determining the number of data-
files:

■ Performance is better with a small number of datafiles rather than a large num-
ber of small datafiles. Large files also increase the granularity of a recoverable
unit.

■ Operating systems often impose a limit on the number of files a process can
open simultaneously. Oracle’s DBW0 process can open all online datafiles. Ora-
cle is also capable of treating open file descriptors as a cache, automatically clos-
ing files when the number of open file descriptors reaches the operating system-
defined limit.

control file upper bound When you issue CREATE DATABASE or
CREATE CONTROLFILE statements, the
MAXDATAFILES parameter specifies an ini-
tial size of the datafile portion of the control
file. Later, if you add a file whose number
exceeds MAXDATAFILES but is less than or
equal to DB_FILES, the control file automati-
cally expands to allow the datafile portion to
accommodate more files.

instance or SGA upper bound When starting an Oracle8 instance, the data-
base’s parameter file indicates the amount of
SGA space to reserve for datafile informa-
tion; the maximum number of datafiles is
controlled by the DB_FILES parameter. This
limit applies only for the life of the instance.

Note: The default value of DB_FILES is oper-
ating system specific.

With the Oracle Parallel Server, all instances
must set the instance datafile upper bound
to the same value.
 Managing Datafiles 9-3

Guidelines for Managing Datafiles
Oracle allows more datafiles in the database than the operating system-defined
limit; this can have a negative performance impact. When possible, adjust the oper-
ating system limit on open file descriptors so that it is larger than the number of
online datafiles in the database.

The operating system specific limit on the maximum number of datafiles allowed
in a tablespace is typically 1023 files.

See Also: For more information on operating system limits, see your operating sys-
tem-specific Oracle documentation.

For information about Parallel Server operating system limits, see Oracle8 Parallel
Server Concepts and Administration.

For more information about MAXDATAFILES, see the Oracle8 SQL Reference.

Set the Size of Datafiles
The first datafile (in the original SYSTEM tablespace) must be at least 7M to contain
the initial data dictionary and rollback segment. If you install other Oracle prod-
ucts, they may require additional space in the SYSTEM tablespace (for online help,
for example); see the installation instructions for these products.

Place Datafiles Appropriately
Tablespace location is determined by the physical location of the datafiles that con-
stitute that tablespace. Use the hardware resources of your computer appropriately.

For example, if several disk drives are available to store the database, it might be
helpful to store table data in a tablespace on one disk drive, and index data in a
tablespace on another disk drive. This way, when users query table information,
both disk drives can work simultaneously, retrieving table and index data at the
same time.

Store Datafiles Separately From Redo Log Files
Datafiles should not be stored on the same disk drive that stores the database’s
redo log files. If the datafiles and redo log files are stored on the same disk drive
and that disk drive fails, the files cannot be used in your database recovery proce-
dures.

If you multiplex your redo log files, then the likelihood of your losing all of your
redo log files is low, so you can store datafiles on the same drive as some redo log
files.
9-4 Oracle8 Administrator’s Guide

Changing a Datafile’s Size
Creating and Adding Datafiles to a Tablespace
You can create and add datafiles to a tablespace to increase the total amount of disk
space allocated for the tablespace, and consequently the database.

Ideally, when creating a tablespace DBAs should estimate the potential size of the
database objects and add sufficient files or devices. Doing so ensures that data is
spread evenly across all devices.

To add datafiles to a tablespace, use either the Add Datafile dialog box of Enter-
prise Manager/GUI, or the SQL command ALTER TABLESPACE. You must have
the ALTER TABLESPACE system privilege to add datafiles to a tablespace.

The following statement creates a new datafile for the RB_SEGS tablespace:

ALTER TABLESPACE rb_segs
 ADD DATAFILE ’filename1’ SIZE 1M;

If you add new datafiles to a tablespace and do not fully specify the filenames, Ora-
cle creates the datafiles in the default directory of the database server. Unless you
want to reuse existing files, make sure the new filenames do not conflict with other
files; the old files that have been previously dropped will be overwritten.

Changing a Datafile’s Size
This section describes the various ways to alter the size of a datafile, and includes
the following topics:

■ Enabling and Disabling Automatic Extension for a Datafile

■ Manually Resizing a Datafile

Enabling and Disabling Automatic Extension for a Datafile
You can create datafiles or alter existing datafiles so that they automatically
increase in size when more space is needed in the database. The files increase in
specified increments up to a specified maximum.

Setting your datafiles to extend automatically results in the following:

■ reduces the need for immediate intervention when a tablespace runs out of
space

■ ensures applications will not halt because of failures to allocate extents

To find out if a datafile is auto-extensible, query the DBA_DATA_FILES view and
examine the AUTOEXTENSIBLE column.
 Managing Datafiles 9-5

Changing a Datafile’s Size
You can specify automatic file extension when you create datafiles via the following
SQL commands:

■ CREATE DATABASE

■ CREATE TABLESPACE

■ ALTER TABLESPACE

You can enable or disable automatic file extension for existing datafiles, or manu-
ally resize a datafile using the SQL command ALTER DATABASE.

The following example enables automatic extension for a datafile, FILENAME2,
added to the USERS tablespace:

ALTER TABLESPACE users
 ADD DATAFILE ’filename2’ SIZE 10M
 AUTOEXTEND ON
 NEXT 512K
 MAXSIZE 250M

The value of NEXT is the minimum size of the increments added to the file when it
extends. The value of MAXSIZE is the maximum size to which the file can automat-
ically extend.

The next example disables automatic extension for the datafile FILENAME2:

ALTER DATABASE DATAFILE ’filename2’
 AUTOEXTEND OFF

See Also: For more information about the SQL commands for creating or altering
datafiles, see the Oracle8 SQL Reference.

Manually Resizing a Datafile
You can manually increase or decrease the size of a datafile using the ALTER
DATABASE command.

Because you can change the sizes of datafiles, you can add more space to your data-
base without adding more datafiles. This is beneficial if you are concerned about
reaching the maximum number of datafiles allowed in your database.

Manually reducing the sizes of datafiles allows you to reclaim unused space in the
database. This is useful for correcting errors in estimates of space requirements.

In this example, assume that the datafile FILENAME2 has extended up to 250M.
However, because its tablespace now stores smaller objects, the datafile can be
reduced in size.
9-6 Oracle8 Administrator’s Guide

Altering Datafile Availability
The following command decreases the size of datafile FILENAME2:

ALTER DATABASE DATAFILE ’filename2’
 RESIZE 100M

See Also: For more information about the implications resizing files has for down-
grading, see Oracle8 Migration.

For more information about the ALTER DATABASE command, see the Oracle8 Ref-
erence.

Altering Datafile Availability
This section describes ways to alter datafile availability, and includes the following
topics:

■ Bringing Datafiles Online in ARCHIVELOG Mode

■ Taking Datafiles Offline in NOARCHIVELOG Mode

In very rare situations, you might need to bring specific datafiles online (make
them available) or take specific files offline (make them unavailable). For example,
when Oracle has problems writing to a datafile, it can automatically take the data-
file offline. You might need to take the damaged datafile offline or bring it online
manually.

Offline datafiles cannot be accessed. Bringing a datafile in a read-only tablespace
online makes the file readable. No one can write to the file unless its associated
tablespace is returned to the read-write state. The files of a read-only tablespace can
independently be taken online or offline using the DATAFILE option of the ALTER
DATABASE command.

Note: It is not always possible to decrease the size of a file to a
specific value.

Note: You can make all datafiles in a tablespace, other than the
files in the SYSTEM tablespace, temporarily unavailable by taking
the tablespace offline. You must leave these files in the tablespace to
bring the tablespace back online.
 Managing Datafiles 9-7

Renaming and Relocating Datafiles
To bring a datafile online or take it offline, in either archiving mode, you must have
the ALTER DATABASE system privilege. You can perform these operations only
when the database is open in exclusive mode.

Bringing Datafiles Online in ARCHIVELOG Mode
To bring an individual datafile online, issue the SQL command ALTER DATABASE
and include the DATAFILE parameter.

The following statement brings the specified datafile online:

ALTER DATABASE DATAFILE ’filename’ ONLINE;

See Also: For more information about bringing datafiles online during media recov-
ery, see Oracle8 Backup and Recovery Guide.

Taking Datafiles Offline in NOARCHIVELOG Mode
To take a datafile offline when the database is in NOARCHIVELOG mode, use the
ALTER DATABASE command with the DATAFILE parameter and the OFFLINE
DROP option. This allows you to take the datafile offline and drop it immediately.
It is useful, for example, if the datafile contains only data from temporary segments
and has not been backed up and the database is in NOARCHIVELOG mode.

The following statement brings the specified datafile offline:

ALTER DATABASE DATAFILE ’filename’ OFFLINE DROP;

Renaming and Relocating Datafiles
This section describes the various aspects of renaming and relocating datafiles, and
includes the following topics:

■ Renaming and Relocating Datafiles for a Single Tablespace

■ Renaming and Relocating Datafiles for Multiple Tablespaces

You can rename datafiles to change either their names or locations. Oracle provides
options to make the following changes:

Note: To use this option of the ALTER DATABASE command, the
database must be in ARCHIVELOG mode. This requirement pre-
vents you from accidentally losing the datafile, since taking the
datafile offline while in NOARCHIVELOG mode is likely to result
in losing the file.
9-8 Oracle8 Administrator’s Guide

Renaming and Relocating Datafiles
■ Rename and relocate datafiles in a single offline tablespace (for example,
FILENAME1 and FILENAME2 in TBSPACE1) while the rest of the database is
open.

■ Rename and relocate datafiles in several tablespaces simultaneously (for exam-
ple, FILE1 in TBSP1 and FILE2 in TBSP2) while the database is mounted but
closed.

Renaming and relocating datafiles with these procedures only change the pointers
to the datafiles, as recorded in the database’s control file; it does not physically
rename any operating system files, nor does it copy files at the operating system
level. Therefore, renaming and relocating datafiles involve several steps. Read the
steps and examples carefully before performing these procedures.

You must have the ALTER TABLESPACE system privilege to rename datafiles of a
single tablespace.

Renaming and Relocating Datafiles for a Single Tablespace

To Rename or Relocate Datafiles from a Single Tablespace 1.

1. Take the non-SYSTEM tablespace that contains the datafiles offline.

2. Copy the datafiles to the new location or new names using the operating sys-
tem.

3. Make sure that the new, fully specified filenames are different from the old file-
names.

4. Use the SQL command ALTER TABLESPACE with the RENAME DATAFILE
option to change the filenames within the database.

For example, the following statement renames the datafiles FILENAME1 and
FILENAME2 to FILENAME3 and FILENAME4, respectively:

 ALTER TABLESPACE users
 RENAME DATAFILE ’filename1’, ’filename2’
 TO ’filename3’, ’filename4’;

Note: To rename or relocate datafiles of the SYSTEM tablespace,
you must use the second option, because you cannot take the SYS-
TEM tablespace offline.
 Managing Datafiles 9-9

Renaming and Relocating Datafiles
The new file must already exist; this command does not create a file. Also, always
provide complete filenames (including their paths) to properly identify the old and
new datafiles. In particular, specify the old filename exactly as it appears in the
DBA_DATA_FILES view of the data dictionary.

Renaming and Relocating Datafiles for Multiple Tablespaces
You can rename and relocate datafiles of one or more tablespaces using the SQL
command ALTER DATABASE with the RENAME FILE option. This option is the
only choice if you want to rename or relocate datafiles of several tablespaces in one
operation, or rename or relocate datafiles of the SYSTEM tablespace. If the database
must remain open, consider instead the procedure outlined in the previous section.

To rename datafiles of several tablespaces in one operation or to rename datafiles of
the SYSTEM tablespace, you must have the ALTER DATABASE system privilege.

1. Ensure that the database is mounted but closed.

2. Copy the datafiles to be renamed to their new locations and new names, using
operating system commands.

3. Make sure the new copies of the datafiles have different fully specified filena-
mes from the datafiles currently in use.

4. Use the SQL command ALTER DATABASE to rename the file pointers in the
database’s control file.

For example, the following statement renames the datafiles FILENAME 1 and
FILENAME2 to FILENAME3 and FILENAME4, respectively:

 ALTER DATABASE
 RENAME FILE ’filename1’, ’filename2’
 TO ’filename3’, ’filename4’;

The new file must already exist; this command does not create a file. Also, always
provide complete filenames (including their paths) to properly identify the old and
new datafiles. In particular, specify the old filename exactly as it appears in the
DBA_DATA_FILES view of the data dictionary.

Relocating Datafiles: Example
For this example, assume the following conditions:

■ An open database has a tablespace named USERS that is comprised of datafiles
located on the same disk of a computer.
9-10 Oracle8 Administrator’s Guide

Renaming and Relocating Datafiles
■ The datafiles of the USERS tablespace are to be relocated to a different disk
drive.

■ You are currently connected with administrator privileges to the open database
while using Enterprise Manager.

To Relocate Datafiles

1. Identify the datafile names of interest.

The following query of the data dictionary view DBA_DATA_FILES lists the
datafile names and respective sizes (in bytes) of the USERS tablespace:

 SELECT file_name, bytes FROM sys.dba_data_files
 WHERE tablespace_name = ’USERS’;
 FILE_NAME BYTES

 FILENAME1 102400000
 FILENAME2 102400000

Here, FILENAME1 and FILENAME2 are two fully specified filenames, each
1MB in size.

2. Back up the database.

Before making any structural changes to a database, such as renaming and relo-
cating the datafiles of one or more tablespaces, always completely back up the
database.

3. Take the tablespace containing the datafile offline, or shut down the database
and restart and mount it, leaving it closed. Either option closes the datafiles of
the tablespace.

4. Copy the datafiles to their new locations using operating system commands.
For this example, the existing files FILENAME1 and FILENAME2 are copied to
FILENAME3 and FILENAME4.

5. Rename the datafiles within Oracle.

The datafile pointers for the files that comprise the USERS tablespace, recorded
in the control file of the associated database, must now be changed from
FILENAME1 and FILENAME2 to FILENAME3 and FILENAME4, respectively.

Note: You can execute an operating system command to copy a
file without exiting Server Manager/LineMode by using the HOST
command.
 Managing Datafiles 9-11

Verifying Data Blocks in Datafiles
If the tablespace is offline but the database is open, use the Enterprise Manager
Rename Datafiles dialog box or ALTER TABLESPACE...RENAME DATAFILE
command. If the database is mounted but closed, use the ALTER DATA-
BASE...RENAME FILE command.

6. Bring the tablespace online, or shut down and restart the database.

If the USERS tablespace is offline and the database is open, bring the tablespace
back online. If the database is mounted but closed, open the database.

7. Back up the database. After making any structural changes to a database,
always perform an immediate and complete backup.

See Also: For more information about the DBA_DATA_FILES data dictionary view,
see the Oracle8 Reference.

For more information about taking a tablespace offline, see “Taking Tablespaces
Offline” on page 8-9.

Verifying Data Blocks in Datafiles
If you want to configure Oracle to use checksums to verify data blocks, set the ini-
tialization parameter DB_BLOCK_CHECKSUM to TRUE. The value of this parame-
ter can be changed dynamically, or set in the init.ora parameter file. The default
value of DB_BLOCK_CHECKSUM is FALSE.

When you enable block checking, Oracle computes a checksum for each block writ-
ten to disk. Checksums are computed for all data blocks, including temporary
blocks.

The DBW0 process calculates the checksum for each block and stores it in the
block’s header. Checksums are also computed by the direct loader.

The next time Oracle reads a data block, it uses the checksum to detect corruption
in the block. If a corruption is detected, Oracle returns message ORA-01578 and
writes information about the corruption to a trace file.

WARNING: Setting DB_BLOCK_CHECKSUM to TRUE can
cause performance overhead. Set this parameter to TRUE only
under the advice of Oracle Support personnel to diagnose data
corruption problems.
9-12 Oracle8 Administrator’s Guide

Viewing Information About Datafiles
Viewing Information About Datafiles
The following data dictionary views provide useful information about the datafiles
of a database:

■ USER_EXTENTS, DBA_EXTENTS

■ USER_SEGMENTS, DBA_SEGMENTS

■ USER_FREE_SPACE, DBA_FREE_SPACE

■ DBA_USERS

■ DBA_TS_QUOTAS

■ USER_TABLESPACES, DBA_TABLESPACES

■ DBA_DATA_FILES

■ V$DATAFILE

The following example illustrates how to use a view not already illustrated in other
chapters of this manual. Assume you are using a database that contains two
tablespaces, SYSTEM and USERS. USERS is made up of two files, FILE1 (100MB)
and FILE2 (200MB); the tablespace has been taken offline normally. Here, you
query V$DATAFILE to view status information about datafiles of a database:

SELECT name,
 file#,
 status,
 checkpoint_change# ”CHECKPOINT” FROM $datafile;

NAME FILE# STATUS CHECKPOINT
-------------------------------- ----- ------- ----------
filename1 1 SYSTEM 3839
filename2 2 OFFLINE 3782
filename3 3 OFFLINE 3782

FILE# lists the file number of each datafile; the first datafile in the SYSTEM
tablespace created with the database is always file 1. STATUS lists other informa-
tion about a datafile. If a datafile is part of the SYSTEM tablespace, its status is SYS-
TEM (unless it requires recovery). If a datafile in a non-SYSTEM tablespace is
online, its status is ONLINE. If a datafile in a non-SYSTEM tablespace is offline, its
status can be either OFFLINE or RECOVER. CHECKPOINT lists the final SCN writ-
ten for a datafile’s most recent checkpoint.
 Managing Datafiles 9-13

Viewing Information About Datafiles
9-14 Oracle8 Administrator’s Guide

 Guidelines for Managing Schema O
10

 Guidelines for Managing Schema Objects

This chapter describes guidelines for managing schema objects, and includes the
following topics:

■ Managing Space in Data Blocks

■ Setting Storage Parameters

■ Deallocating Space

■ Understanding Space Use of Datatypes

You should familiarize yourself with the concepts in this chapter before attempting
to manage specific schema objects as described in Chapters 11–16.
bjects 10-1

Managing Space in Data Blocks
Managing Space in Data Blocks
This section describes the various aspects of managing space in data blocks, and
includes the following topics:

■ The PCTFREE Parameter

■ The PCTUSED Parameter

■ Selecting Associated PCTUSED and PCTFREE Values

You can use the PCTFREE and PCTUSED parameters to make the following
changes:

■ increase the performance of writing and retrieving data

■ decrease the amount of unused space in data blocks

■ decrease the amount of row chaining between data blocks

The PCTFREE Parameter
The PCTFREE parameter is used to set the percentage of a block to be reserved for
possible updates to rows that already are contained in that block. For example,
assume that you specify the following parameter within a CREATE TABLE state-
ment:

PCTFREE 20

This indicates that 20% of each data block used for this table’s data segment will be
kept free and available for possible updates to the existing rows already within
each block. Figure 10–1 illustrates PCTFREE.
10-2 Oracle8 Administrator’s Guide

Managing Space in Data Blocks
Figure 10–1 PCTFREE

Notice that before the block reaches PCTFREE, the free space of the data block is
filled by both the insertion of new rows and by the growth of the data block header.

Specifying PCTFREE
The default for PCTFREE is 10 percent. You can use any integer between 0 and 99,
inclusive, as long as the sum of PCTFREE and PCTUSED does not exceed 100.

A smaller PCTFREE has the following effects:

■ reserves less room for updates to expand existing table rows

■ allows inserts to fill the block more completely

■ may save space, because the total data for a table or index is stored in fewer
blocks (more rows or entries per block)

A small PCTFREE might be suitable, for example, for a segment that is rarely
changed.

A larger PCTFREE has the following effects:

■ reserves more room for future updates to existing table rows

PCTFREE = 20

20% Free Space

Block allows row inserts
until 80% is occupied,
leaving 20% free for updates
to existing rows in the block

Database Block
 Guidelines for Managing Schema Objects 10-3

Managing Space in Data Blocks
■ may require more blocks for the same amount of inserted data (inserting fewer
rows per block)

■ may improve update performance, because Oracle does not need to chain row
pieces as frequently, if ever

A large PCTFREE is suitable, for example, for segments that are frequently updated.

Ensure that you understand the nature of the table or index data before setting PCT-
FREE. Updates can cause rows to grow. New values might not be the same size as
values they replace. If there are many updates in which data values get larger, PCT-
FREE should be increased. If updates to rows do not affect the total row width,
PCTFREE can be low. Your goal is to find a satisfactory trade-off between densely
packed data and good update performance.

PCTFREE for Non-Clustered Tables If the data in the rows of a non-clustered table
is likely to increase in size over time, reserve some space for these updates. Other-
wise, updated rows are likely to be chained among blocks.

PCTFREE for Clustered Tables The discussion for non-clustered tables also applies
to clustered tables. However, if PCTFREE is reached, new rows from any table con-
tained in the same cluster key go into a new data block that is chained to the exist-
ing cluster key.

PCTFREE for Indexes You can specify PCTFREE only when initially creating an
index.

The PCTUSED Parameter
After a data block becomes full as determined by PCTFREE, Oracle does not con-
sider the block for the insertion of new rows until the percentage of the block being
used falls below the parameter PCTUSED. Before this value is achieved, Oracle
uses the free space of the data block only for updates to rows already contained in
the data block. For example, assume that you specify the following parameter
within a CREATE TABLE statement:

PCTUSED 40

In this case, a data block used for this table’s data segment is not considered for the
insertion of any new rows until the amount of used space in the block falls to 39%
or less (assuming that the block’s used space has previously reached PCTFREE).
Figure 10–2 illustrates this.
10-4 Oracle8 Administrator’s Guide

Managing Space in Data Blocks
Figure 10–2 PCTUSED

Specifying PCTUSED
The default value for PCTUSED is 40 percent. After the free space in a data block
reaches PCTFREE, no new rows are inserted in that block until the percentage of
space used falls below PCTUSED. The percent value is for the block space available
for data after overhead is subtracted from total space.

You can specify any integer between 0 and 99 (inclusive) for PCTUSED, as long as
the sum of PCTUSED and PCTFREE does not exceed 100.

A smaller PCTUSED has the following effects:

■ reduces processing costs incurred during UPDATE and DELETE statements for
moving a block to the free list when it has fallen below that percentage of usage

■ increases the unused space in a database

A larger PCTUSED has the following effects:

■ improves space efficiency

■ increases processing cost during INSERTs and UPDATEs

No new rows are
inserted until amount
of used space falls
below 40%

PCTFREE = 40
Database Block

61%
Space
 Guidelines for Managing Schema Objects 10-5

Managing Space in Data Blocks
Selecting Associated PCTUSED and PCTFREE Values
If you decide not to use the default values for PCTFREE or PCTUSED, keep the fol-
lowing guidelines in mind:

■ The sum of PCTFREE and PCTUSED must be equal to or less than 100.

■ If the sum equals 100, then Oracle attempts to keep no more than PCTFREE
free space, and processing costs are highest.

■ Block overhead is not included in the computation of PCTUSED or PCTFREE.

■ The smaller the difference between 100 and the sum of PCTFREE and
PCTUSED (as in PCTUSED of 75, PCTFREE of 20), the more efficient space
usage is, at some performance cost.

Examples of Choosing PCTFREE and PCTUSED Values
The following examples show how and why specific values for PCTFREE and
PCTUSED are specified for tables.

Example 1 Scenario: Common activity includes UPDATE state-
ments that increase the size of the rows.

Settings: PCTFREE = 20

PCTUSED = 40

Example 2 Scenario: Most activity includes INSERT and DELETE
statements, and UPDATE statements that do
not increase the size of affected rows.

Settings: PCTFREE = 5

PCTUSED = 60

Explanation: PCTFREE is set to 5 because most
UPDATE statements do not increase row
sizes. PCTUSED is set to 60 so that space
freed by DELETE statements is used soon,
yet processing is minimized.

Example 3 Scenario: The table is very large; therefore,
storage is a primary concern. Most activity
includes read-only transactions.

Settings: PCTFREE = 5

PCTUSED = 40
10-6 Oracle8 Administrator’s Guide

Setting Storage Parameters
Setting Storage Parameters
This section describes the storage parameters you can set for various data struc-
tures, and includes the following topics:

■ Storage Parameters You Can Specify

■ Setting INITRANS and MAXTRANS

■ Setting Default Storage Parameters for Segments in a Tablespace

■ Setting Storage Parameters for Data Segments

■ Setting Storage Parameters for Index Segments

■ Setting Storage Parameters for LOB Segments

■ Changing Values for Storage Parameters

■ Understanding Precedence in Storage Parameters

You can set storage parameters for the following types of logical storage structures:

■ tablespaces (most defaults for any segment in the tablespace)

■ tables, clusters, snapshots, and snapshot logs (data segments)

■ indexes (index segments)

■ rollback segments

Storage Parameters You Can Specify
Every database has default values for storage parameters. You can specify defaults
for a tablespace, which override the system defaults to become the defaults for
objects created in that tablespace only. Furthermore, you can specify storage set-
tings for each individual object. The storage parameters you can set are:

INITIAL
The size, in bytes, of the first extent allocated when a segment is created.

Default: 5 data blocks
Minimum: 2 data blocks (rounded up)
Maximum: operating system specific

Explanation: PCTFREE is set to 5 because this is a large
table and you want to completely fill each
block.
 Guidelines for Managing Schema Objects 10-7

Setting Storage Parameters
NEXT
The size, in bytes, of the next incremental extent to be allocated for a segment. The
second extent is equal to the original setting for NEXT. From there forward, NEXT
is set to the previous size of NEXT multiplied by (1 + PCTINCREASE/100).

Default: 5 data blocks
Minimum: 1 data block
Maximum: operating system specific

MAXEXTENTS
The total number of extents, including the first, that can ever be allocated for the
segment.

Default: dependent on the data block size and operating system
Minimum: 1 (extent)
Maximum: unlimited

MINEXTENTS
The total number of extents to be allocated when the segment is created. This
allows for a large allocation of space at creation time, even if contiguous space is
not available.

Default: 1 (extent)
Minimum: 1 (extent)
Maximum: unlimited

PCTINCREASE
The percent by which each incremental extent grows over the last incremental
extent allocated for a segment. If PCTINCREASE is 0, then all incremental extents
are the same size. If PCTINCREASE is greater than zero, then each time NEXT is
calculated, it grows by PCTINCREASE. PCTINCREASE cannot be negative.

The new NEXT equals 1 + PCTINCREASE/100, multiplied by the size of the last
incremental extent (the old NEXT) and rounded up to the next multiple of a block
size.

Default: 50 (%)
Minimum: 0 (%)
Maximum: operating system specific
10-8 Oracle8 Administrator’s Guide

Setting Storage Parameters
INITRANS
Reserves a pre-allocated amount of space for an initial number of DML transaction
entries to access rows in the data block concurrently. Space is reserved in the head-
ers of all data blocks in the associated data or index segment.

The default value is 1 for tables and 2 for clusters and indexes.

MAXTRANS
As multiple transactions concurrently access the rows of the same data block, space
is allocated for each DML transaction’s entry in the block. Once the space reserved
by INITRANS is depleted, space for additional transaction entries is allocated out
of the free space in a block, if available. Once allocated, this space effectively
becomes a permanent part of the block header. The MAXTRANS parameter limits
the number of transaction entries that can concurrently use data in a data block.
Therefore, you can limit the amount of free space that can be allocated for transac-
tion entries in a data block using MAXTRANS.

The default value is an operating system-specific function of block size, not exceed-
ing 255.

See Also: For specific details about storage parameters, see the Oracle8 SQL Refer-
ence.

Some defaults are operating system specific; see your operating system-specific
Oracle documentation.

Setting INITRANS and MAXTRANS
Transaction entry settings for the data blocks allocated for a table, cluster, or index
should be set individually for each object based on the following criteria:

■ the space you would like to reserve for transaction entries compared to the
space you would reserve for database data

■ the number of concurrent transactions that are likely to touch the same data
blocks at any given time

For example, if a table is very large and only a small number of users simulta-
neously access the table, the chances of multiple concurrent transactions requiring
access to the same data block is low. Therefore, INITRANS can be set low, espe-
cially if space is at a premium in the database.

Alternatively, assume that a table is usually accessed by many users at the same
time. In this case, you might consider pre-allocating transaction entry space by
using a high INITRANS (to eliminate the overhead of having to allocate transaction
 Guidelines for Managing Schema Objects 10-9

Setting Storage Parameters
entry space, as required when the object is in use) and allowing a higher MAX-
TRANS so that no user has to wait to access any necessary data blocks.

Setting Default Storage Parameters for Segments in a Tablespace
You can set default storage parameters for each tablespace of a database. Any stor-
age parameter that you do not explicitly set when creating or subsequently altering
a segment in a tablespace automatically is set to the corresponding default storage
parameter for the tablespace in which the segment resides.

With partitioned tables, you can set default storage parameters at the table level.
When creating a new partition of the table, the default storage parameters are inher-
ited from the partitioned table; if there is no partitioned table, then they are inher-
ited from the tablespace.

When specifying MINEXTENTS at the tablespace level, any extent allocated in the
tablespace is rounded to a multiple of the number of minimum extents. Basically,
the number of extents is a multiple of the number of blocks.

Setting Storage Parameters for Data Segments
You can set the storage parameters for the data segment of a non-clustered table,
snapshot, or snapshot log using the STORAGE clause of the CREATE or ALTER
statement for tables, snapshots, or snapshot logs.

In contrast, you set the storage parameters for the data segments of a cluster using
the STORAGE clause of the CREATE CLUSTER or ALTER CLUSTER command,
rather than the individual CREATE or ALTER commands that put tables and snap-
shots into the cluster. Storage parameters specified when creating or altering a clus-
tered table or snapshot are ignored. The storage parameters set for the cluster
override the table’s storage parameters.

Setting Storage Parameters for Index Segments
Storage parameters for an index segment created for a table index can be set using
the STORAGE clause of the CREATE INDEX or ALTER INDEX command. Storage
parameters of an index segment created for the index used to enforce a primary key
or unique key constraint can be set in the ENABLE clause of the CREATE TABLE or
ALTER TABLE commands or the STORAGE clause of the ALTER INDEX command.

A PCTFREE setting for an index only has an effect when the index is created. You
cannot specify PCTUSED for an index segment.
10-10 Oracle8 Administrator’s Guide

Setting Storage Parameters
Setting Storage Parameters for LOB Segments
You can set storage parameters for LOB segments using the NOCACHE, NOLOG-
GING and PCTVERSION LOB storage parameters of the CREATE TABLE com-
mand.

Changing Values for Storage Parameters
You can alter default storage parameters for tablespaces and specific storage param-
eters for individual segments if the current settings are incorrect. All default stor-
age parameters can be reset for a tablespace. However, changes affect only new
objects created in the tablespace, or new extents allocated for a segment.

The INITIAL and MINEXTENTS storage parameters cannot be altered for an exist-
ing table, cluster, index, or rollback segment. If only NEXT is altered for a segment,
the next incremental extent is the size of the new NEXT, and subsequent extents
can grow by PCTINCREASE as usual.

If both NEXT and PCTINCREASE are altered for a segment, the next extent is the
new value of NEXT, and from that point forward, NEXT is calculated using PCTIN-
CREASE as usual.

Understanding Precedence in Storage Parameters
The storage parameters in effect at a given time are determined by the following
types of SQL statements, listed in order of precedence:

1. ALTER TABLE/CLUSTER/SNAPSHOT/SNAPSHOT LOG/INDEX/ROLL-
BACK SEGMENT statement

2. CREATE TABLE/CLUSTER/SNAPSHOT/SNAPSHOT LOG/CREATE
INDEX/ROLLBACK SEGMENT statement

3. ALTER TABLESPACE statement

4. CREATE TABLESPACE statement

5. Oracle default statement

Any storage parameter specified at the object level overrides the corresponding
option set at the tablespace level. When storage parameters are not explicitly set at
the object level, they default to those at the tablespace level. When storage parame-
 Guidelines for Managing Schema Objects 10-11

Setting Storage Parameters
ters are not set at the tablespace level, Oracle system defaults apply. If storage
parameters are altered, the new options apply only to the extents not yet allocated.

Storage Parameter Example
Assume the following statement has been executed:

CREATE TABLE test_storage
 (. . .)
 STORAGE (INITIAL 100K NEXT 100K
 MINEXTENTS 2 MAXEXTENTS 5
 PCTINCREASE 50);

Also assume that the initialization parameter DB_BLOCK_SIZE is set to 2K. The fol-
lowing table shows how extents are allocated for the TEST_STORAGE table. Also
shown is the value for the incremental extent, as can be seen in the NEXT column
of the USER_SEGMENTS or DBA_SEGMENTS data dictionary views:

If you change the NEXT or PCTINCREASE storage parameters with an ALTER
statement (such as ALTER TABLE), the specified value replaces the current value
stored in the data dictionary. For example, the following statement modifies the
NEXT storage parameter of the TEST_STORAGE table before the third extent is
allocated for the table:

ALTER TABLE test_storage STORAGE (NEXT 500K);

As a result, the third extent is 500K when allocated, the fourth is (500K*1.5)=750K,
and so on.

Note: The storage parameters for temporary segments always use
the default storage parameters set for the associated tablespace.

Table 10–1 Extent Allocations

Extent# Extent Size Value for NEXT

1 50 blocks or 102400 bytes 50 blocks or 102400 bytes

2 50 blocks or 102400 bytes 75 blocks or153600 bytes

3 75 blocks or 153600 bytes 113 blocks or 231424 bytes

4 115 blocks or 235520 bytes 170 blocks or 348160 bytes

5 170 blocks or 348160 bytes 255 blocks or 522240 bytes
10-12 Oracle8 Administrator’s Guide

Deallocating Space
Deallocating Space
This section describes aspects of deallocating unused space, and includes the fol-
lowing topics:

■ Viewing the High Water Mark

■ Issuing Space Deallocation Statements

It is not uncommon to allocate space to a segment, only to find out later that it is
not being used. For example, you may set PCTINCREASE to a high value, which
could create a large extent that is only partially used. Or you could explicitly overal-
locate space by issuing the ALTER TABLE ALLOCATE EXTENT statement. If you
find that you have unused or overallocated space, you can release it so that the
unused space can be used by other segments.

Viewing the High Water Mark
Prior to deallocation, you can use the DBMS_SPACE package, which contains a pro-
cedure (UNUSED_SPACE) that returns information about the position of the high
water mark and the amount of unused space in a segment.

Within a segment, the high water mark indicates the amount of used space. You
cannot release space below the high water mark (even if there is no data in the
space you wish to deallocate). However, if the segment is completely empty, you
can release space using the TRUNCATE DROP STORAGE statement.

Issuing Space Deallocation Statements
The following statements deallocate unused space in a segment (table, index or
cluster). The KEEP clause is optional.

ALTER TABLE table DEALLOCATE UNUSED KEEP integer;
ALTER INDEX index DEALLOCATE UNUSED KEEP integer;
ALTER CLUSTER cluster DEALLOCATE UNUSED KEEP integer;

When you explicitly identify an amount of unused space to KEEP, this space is
retained while the remaining unused space is deallocated. If the remaining number
of extents becomes smaller than MINEXTENTS, the MINEXTENTS value changes
to reflect the new number. If the initial extent becomes smaller, the INITIAL value
changes to reflect the new size of the initial extent.

If you do not specify the KEEP clause, all unused space (everything above the high
water mark) is deallocated, as long as the size of the initial extent and MINEX-
TENTS are preserved. Thus, even if the high water mark occurs within the MINEX-
TENTS boundary, MINEXTENTS remains and the initial extent size is not reduced.
 Guidelines for Managing Schema Objects 10-13

Deallocating Space
See Also: For details on the syntax and options associated with deallocating
unused space, see the Oracle8 SQL Reference.

You can verify that deallocated space is freed by looking at the DBA_FREE_SPACE
view. For more information on this view, see the Oracle8 Reference.

Deallocating Space: Examples
This section includes various space deallocation scenarios. Prior to reading it, you
should familiarize yourself with the ALTER...DEALLOCATE UNUSED statements
in the Oracle8 Reference.

Example 1

Table DQUON consists of three extents (see figure Figure 10–3). The first extent is
10K, the second is 20K, and the third is 30K. The high water mark is in the middle
of the second extent, and there is 40K of unused space. The following statement
deallocates all unused space, leaving table DQUON with two remaining extents.
The third extent disappears, and the second extent size is 10K.

ALTER TABLE dquon DEALLOCATE UNUSED;
10-14 Oracle8 Administrator’s Guide

Deallocating Space
Figure 10–3 Deallocating All Unused Space

If you deallocate all unused space from DQUON and KEEP 10K (see Figure 10–4),
the third extent is deallocated and the second extent remains in tact.

Table dquon

Before

10K

Extent 1

After

30K

UNUSED SPACE = 40K

Extent 3

20K

Extent 2

ALTER TABLE dquon DEALLOCATE UNUSED;

High Water Mark

Table dquon

10K

Extent 1

10K

Extent 2
 Guidelines for Managing Schema Objects 10-15

Deallocating Space
Figure 10–4 Deallocating Unused Space, KEEP 10K

If you deallocate all unused space from DQUON and KEEP 20K, the third extent is
cut to 10K, and the size of the second extent remains the same.

ALTER TABLE dquon DEALLOCATE UNUSED KEEP 20K;

Example 2

When you issue the ALTER TABLE DQUON DEALLOCATE UNUSED statement,
you completely deallocate the third extent, and the second extent is left with 10K.
Note that the size of the next allocated extent defaults to the size of the last com-
pletely deallocated extent, which in this example, is 30K. However, if you can
explicitly set the size of the next extent using the ALTER ... STORAGE [NEXT] state-
ment.

Example 3

To preserve the MINEXTENTS number of extents, DEALLOCATE can retain
extents that were originally allocated to an instance (added below the high water
mark), while deallocating extents that were originally allocated to the segment.

Table dquon

Before

10K

Extent 1

After

30K

UNUSED SPACE = 40K

Extent 3

20K

Extent 2

ALTER TABLE dquon DEALLOCATE UNUSED KEEP 10K;

High Water Mark

Table dquon

10K

Extent 1

20K

Extent 2

High Water Mark
10-16 Oracle8 Administrator’s Guide

Understanding Space Use of Datatypes
For example, table DQUON has a MINEXTENTS value of 2. Examples 1 and 2 still
yield the same results. However, if the MINEXTENTS value is 3, then the ALTER
TABLE DQUON DEALLOCATE UNUSED statement has no effect, while the
ALTER TABLE DQUON DEALLOCATE UNUSED KEEP 10K statement removes
the third extent and changes the value of MINEXTENTS to 2.

Understanding Space Use of Datatypes
When creating tables and other data structures, you need to know how much space
they will require. Each datatype has different space requirements, as described
below.

Character
Datatypes

The CHAR and VARCHAR2 datatypes store alphanumeric
data in strings of ASCII (American Standard Code for Infor-
mation Interchange) or EBCDIC (Extended Binary Coded
Decimal Interchange Code) values, depending on the charac-
ter set used by the hardware that runs Oracle. Character
datatypes can also store data using character sets supported
by the National Language Support (NLS) feature of Oracle.

The CHAR datatype stores fixed length character strings.
When a table is created with a CHAR column, a column
length (in bytes, not characters) between 1 and 255 can be
specified for the CHAR column; the default is 1 byte. Extra
blanks are used to fill remaining space in the column for val-
ues less than the column length.

The VARCHAR2 datatype stores variable length character
strings. When a table is created with a VARCHAR2 column, a
maximum column length (in bytes, not characters) between 1
and 4000 is specified for the VARCHAR2 column. For each
row, each value in the column is stored as a variable length
field. Extra blanks are not used to fill remaining space in the
column.

Number
Datatype

The NUMBER datatype stores fixed and floating point num-
bers. Positive numbers in the range 1 x 10-130 to 9.99...9 x
10125 (with up to 38 significant digits), negative numbers in
the range
 Guidelines for Managing Schema Objects 10-17

Understanding Space Use of Datatypes
Oracle guarantees portability of numbers with a precision
equal to or less than 38 digits. You can specify a scale and no
precision:

-1 x 10-130 to -9.99..9x 10125 (with up to 38 significant digits),
and zero. You can optionally specify a precision (total number
of digits) and scale (number of digits to the right of the deci-
mal point) when defining a NUMBER column. If precision is
not specified, the column stores values as given. If noscale
and no precision:

column_name NUMBER (*, scale)

In this case, the precision is 38 and the specified scale is main-
tained.

DATE
Datatype

The DATE datatype stores point-in-time values such as dates
and times. Date data is stored in fixed length fields of seven
bytes each.

LONG
Datatype

Columns defined as LONG store variable length character
data containing up to two gigabytes of information. LONG
data is text data and is appropriately converted when moved
between different character sets. LONG data cannot be
indexed.

RAW and
LONG
RAW
Datatypes

RAW is a variable length datatype like the VARCHAR2 char-
acter datatype, except that Net8 (which connects user ses-
sions to the instance) and the Import and Export utilities do
not perform character conversion when transmitting RAW
or LONG RAW data. In contrast, Net8 and Export/Import
automatically convert CHAR, VARCHAR2, and LONG data
between the database character set and the user session char-
acter set if the two character sets are different.

RAW data can be indexed; LONG RAW data cannot be
indexed.
10-18 Oracle8 Administrator’s Guide

Understanding Space Use of Datatypes
See Also: For more information about NLS and support for different character sets,
see the Oracle8 Reference.

ROWIDs
and the
ROWID
Datatype

Every row in a non-clustered table of an Oracle database is
assigned a unique ROWID that corresponds to the physical
address of a row’s row piece (or the initial row piece if the
row is chained among multiple row pieces).

Each table in an Oracle database has an internal pseudo-col-
umn named ROWID. This pseudocolumn is not evident
when listing the structure of a table by executing a SELECT
statement, or a DESCRIBE statement using SQL*Plus, but
can be retrieved with a SQL query using there served word
ROWID as a column name.

ROWIDs use a binary representation of the physical address
for each row selected. A ROWID’s VARCHAR2 hexadecimal
representation is divided into three pieces: block.slot.file.
Here, block is the data block within a file that contains the
row, relative to its datafile; row is the row in the block; and
file is the datafile that contains the row. A row’s assigned
ROWID remains unchanged usually. Exceptions occur when
the row is exported and imported (using the Import and
Export utilities). When a row is deleted from a table (and the
encompassing transaction is committed), the deleted row’s
associated ROWID can be assigned to a row inserted in a
subsequent transaction.
 Guidelines for Managing Schema Objects 10-19

Understanding Space Use of Datatypes
Summary of Oracle Datatypes
Table 10–2 summarizes important information about each Oracle datatype.

Table 10–2 Summary of Oracle Datatype Information

Datatype Description Column Length (bytes)

CHAR (size)

NCHAR (size)

Fixed-length charac-
ter data of length
size.

Fixed-length charac-
ter data of length
size characters or
bytes, depending
on the choice of
national character
set.

Fixed for every row in the table
(with trailing spaces); maximum
size is 2000 bytes per row,
default size is one byte per row.
Consider the character set that is
used before setting size. (Are you
using a one or two byte character
set?)

Maximum size is determined by
the number of bytes required to
store each character, with an
upper limit of 2000 bytes.
Default and minimum size is one
character or one byte, depending
on the character set.

VARCHAR2
(size)

NVARCHAR

Variable-length
character data. A
maximum size
must be specified.

Variable-length
character string
having maximum
length size charac-
ters or bytes,
depending on the
choice of national
character set.

Variable for each row, up to 4000
bytes per row. Consider the char-
acter set that is used before set-
ting size.

Maximum size is determined by
the number of bytes required to
store each character, with an
upper limit of 4000 bytes. You
must specify size for
NVARCHAR2.
10-20 Oracle8 Administrator’s Guide

Understanding Space Use of Datatypes
NUMBER (p, s) Variable-length
numeric data. Maxi-
mum precision p
and/or scale s is 38.
The scale scan
range is -84 to 127.

Variable for each row. The maxi-
mum space required for a given
column is 21 bytes per row.

DATE Fixed-length date
and time data, rang-
ing from January 1,
4712 B.C. to Decem-
ber 31, 4712 A.D.
Default format: DD-
MON-YY.

Fixed at seven bytes for each row
in the table.

LONG Variable-length
character data.

Variable for each row in the table
up to 231 bytes, or two gigabytes,
per row.

RAW (size) Variable-length raw
binary data. A max-
imum size must be
specified.

Variable for each row in the
table, up to 2000 bytes per row.

LONG RAW Variable-length raw
binary data.

Variable for each row in the
table, up to two gigabytes per
row.

ROWID Binary data repre-
senting row
addresses.

Fixed at six bytes for each row in
the table.

MLSLABEL Trusted Oracle
datatype that stores
representations of
labels.

See your Trusted Oracle docu-
mentation.

Table 10–2 Summary of Oracle Datatype Information (Cont.)

Datatype Description Column Length (bytes)
 Guidelines for Managing Schema Objects 10-21

Understanding Space Use of Datatypes
10-22 Oracle8 Administrator’s Guide

 Managing Partitioned Tables and In
11

Managing Partitioned Tables and Indexes

This chapter describes various aspects of managing partitioned tables and indexes,
and includes the following sections:

■ What Are Partitioned Tables and Indexes?

■ Creating Partitions

■ Maintaining Partitions
dexes 11-1

What Are Partitioned Tables and Indexes?
What Are Partitioned Tables and Indexes?

Today’s enterprises frequently run mission-critical databases containing upwards
of several hundred gigabytes and, in many cases, several terabytes of data. These
enterprises are challenged by the support and maintenance requirements of very
large databases (VLDB), and must devise methods to meet those challenges.

One way to meet VLDB demands is to create and use partitioned tables and indexes.
A partitioned table or index has been divided into a number of pieces, or partitions,
which have the same logical attributes. For example, all partitions in a table share
the same column and constraint definitions, and all partitions in an index share the
same index options. Each partition is stored in a separate segment and can have dif-
ferent physical attributes (such as PCTFREE, PCTUSED, INITRANS, MAXTRANS,
TABLESPACE, and STORAGE).

Although you are not required to keep each table or index partition in a separate
tablespace, it is to your advantage to do so. Storing partitions in separate
tablespaces can:

■ reduce the possibility of data corruption in multiple partitions

■ make it possible to back up and recover each partition independently

■ make it possible to control the mapping of partitions to disk drives (important
for balancing I/O load)

See Also: For more detailed information on partitioning concepts and benefits, see
Oracle8 Concepts.

Creating Partitions
This section describes how to create table and index partitions.

Creating partitions is very similar to creating a table or index: you must use the
CREATE TABLE statement with the PARTITION CLAUSE. Also, you must specify
the tablespace name for each partition when you have partitions in different
tablespaces.

The following example shows a CREATE TABLE statement that contains 4 parti-
tions, one for each quarter’s worth of sales. A row with SALE_YEAR=1994,

Note: Before attempting to create a partitioned table or index or
perform maintenance operations on any partition, review the infor-
mation about partitioning in Oracle8 Concepts.
11-2 Oracle8 Administrator’s Guide

Maintaining Partitions
SALE_MONTH=7, and SALE_DAY=18 has the partitioning key (1994, 7, 18), and is
in the third partition, in the tablespace TSC. A row with SALE_YEAR=1994,
SALE_MONTH=7, and SALE_DAY=1 has the partitioning key (1994, 7, 1), and also
is in the third partition.

CREATE TABLE sales
Splitting PartitionsSplitting Partitions (invoice_no NUMBER,
 sale_year INT NOT NULL,
 sale_month INT NOT NULL,
 sale_day INT NOT NULL)
PARTITION BY RANGE (sale_year, sale_month, sale_day)
 (PARTITION sales_q1 VALUES LESS THAN (1994, 04, 01)
 TABLESPACE tsa,
 PARTITION sales_q2 VALUES LESS THAN (1994, 07, 01)
 TABLESPACE tsb,
 PARTITION sales_q3 VALUES LESS THAN (1994, 10, 01)
 TABLESPACE tsc,
 PARTITION sales q4 VALUES LESS THAN (1995, 01, 01)
 TABLESPACE tsd);

See Also: For more information about the CREATE TABLE statement and PARTI-
TION clause, see Oracle8 SQL Reference.

For information about partition keys, partition names, bounds, and equi-parti-
tioned tables and indexes, see Oracle8 Concepts.

Maintaining Partitions
This section describes how to accomplish specific partition maintenance operations,
including:

■ Moving Partitions

■ Adding Partitions

■ Dropping Partitions

■ Truncating Partitions

■ Splitting Partitions

■ Merging Partitions

■ Exchanging Table Partitions

■ Moving the Time Window in a Historical Table

■ Rebuilding Index Partitions

■ Quiescing Applications During a Multi-Step Maintenance Operation
 Managing Partitioned Tables and Indexes 11-3

Maintaining Partitions
See Also: For information about the SQL syntax for DDL statements, see Oracle8
SQL Reference.

For information about the catalog views that describe partitioned tables and
indexes, and the partitions of a partitioned table or index, see Oracle8 Reference.

For information about Import, Export and partitions, see Oracle8 Utilities.

For general information about partitioning, see Oracle8 Concepts.

Moving Partitions
You can use the MOVE PARTITION clause of the ALTER TABLE statement to:

■ re-cluster data and reduce fragmentation

■ move a partition to another tablespace

■ modify create-time attributes

Typically, you can change the physical storage attributes of a partition in a single
step via a ALTER TABLE/INDEX MODIFY PARTITION statement. However, there
are some physical attributes, such as TABLESPACE, that you cannot modify via
MODIFY PARTITION. In these cases you can use the MOVE PARTITION clause.

Moving Table Partitions
You can use the MOVE PARTITION clause to move a partition. For example, a
DBA wishes to move the most active partition to a tablespace that resides on its
own disk (in order to balance I/O). The DBA can issue the following statement:

ALTER TABLE parts MOVE PARTITION depot2
 TABLESPACE ts094 NOLOGGING;

This statement always drops the partition’s old segment and creates a new seg-
ment, even if you don’t specify a new tablespace.

When the partition you are moving contains data, MOVE PARTITION marks the
matching partition in each local index, and all global index partitions as unusable.
You must rebuild these index partitions after issuing MOVE PARTITION.
11-4 Oracle8 Administrator’s Guide

Maintaining Partitions
Moving Index Partitions
Some operations, such as MOVE PARTITION and DROP TABLE PARTITION,
mark all partitions of a global index unusable. You can rebuild the entire index by
rebuilding each partition individually using the ALTER INDEX REBUILD PARTI-
TION statement. You can perform these rebuilds concurrently.

You can also simply drop the index and re-create it.

Adding Partitions
This section describes how to add new partitions to a partitioned table and how
partitions are added to local indexes.

Adding Table Partitions
You can use the ALTER TABLE ADD PARTITION statement to add a new partition
to the “high” end (the point after the last existing partition). If you wish to add a
partition at the beginning or in the middle of a table, or if the partition bound on
the highest partition is MAXVALUE, you should instead use the SPLIT PARTI-
TION statement.

When the partition bound on the highest partition is anything other than MAX-
VALUE, you can add a partition using the ALTER TABLE ADD PARTITION state-
ment.

For example, a DBA has a table, SALES, which contains data for the current month
in addition to the previous 12 months. On January 1, 1996, the DBA adds a parti-
tion for January:

ALTER TABLE sales
 ADD PARTITION jan96 VALUES LESS THAN (’960201’)
 TABLESPACE tsx;

When there are local indexes defined on the table and you issue the ALTER TABLE
... ADD PARTITION statement, a matching partition is also added to each local
index. Since Oracle assigns names and default physical storage attributes to the
new index partitions, you may wish to rename or alter them after the ADD opera-
tion is complete.

Adding Index Partitions
You cannot explicitly add a partition to a local index. Instead, new partitions are
added to local indexes only when you add a partition to the underlying table.
 Managing Partitioned Tables and Indexes 11-5

Maintaining Partitions
You cannot add a partition to a global index because the highest partition always
has a partition bound of MAXVALUE. If you wish to add a new highest partition,
use the ALTER INDEX SPLIT PARTITION statement.

Dropping Partitions
This section describes how to use the ALTER TABLE DROP PARTITION statement
to drop table and index partitions and their data.

Dropping Table Partitions
You can use the ALTER TABLE DROP PARTITION statement to drop table parti-
tions.

If there are local indexes defined for the table, ALTER TABLE DROP PARTITION
also drops the matching partition from each local index.

Dropping Table Partitions Containing Data and Global Indexes If, however, the partition
contains data and global indexes, use either of the following methods to drop the
table partition:

1. Leave the global indexes in place during the ALTER TABLE DROP PARTITION
statement. In this situation DROP PARTITION marks all global index partitions
unusable, so you must rebuild them afterwards.

 ALTER TABLE sales DROP PARTITION dec94;
 ALTER INDEX sales_area_ix REBUILD sal1;

This method is most appropriate for large tables where the partition being
dropped contains a significant percentage of the total data in the table.

2. Issue the DELETE command to delete all rows from the partition before you
issue the ALTER TABLE DROP PARTITION statement. The DELETE command

Note: The ALTER TABLE DROP PARTITION statement not only
marks all global index partitions as unusable, it also renders all
non-partitioned indexes unusable. Because the entire partitioned
index cannot be rebuilt using one statement, sal1 in the following
statement is a non-partitioned index.
11-6 Oracle8 Administrator’s Guide

Maintaining Partitions
updates the global indexes, and also fires triggers and generates redo and undo
log.

For example, a DBA wishes to drop the first partition, which has a partition
bound of 10000. The DBA issues the following statements:

 DELETE FROM sales WHERE TRANSID < 10000;
 ALTER TABLE sales DROP PARTITION dec94;

This method is most appropriate for small tables, or for large tables when the
partition being dropped contains a small percentage of the total data in the
table.

Dropping Table Partitions Containing Data and Referential Integrity Constraints If a parti-
tion contains data and has referential integrity constraints, choose either of the fol-
lowing methods to drop the table partition:

1. Disable the integrity constraints, issue the ALTER TABLE DROP PARTITION
statement, then enable the integrity constraints:

 ALTER TABLE sales
 DISABLE CONSTRAINT dname_sales1;
 ALTER TABLE sales DROP PARTITTION dec94;
 ALTER TABLE sales
 ENABLE CONSTRAINT dname_sales1;

This method is most appropriate for large tables where the partition being
dropped contains a significant percentage of the total data in the table.

2. Issue the DELETE command to delete all rows from the partition before you
issue the ALTER TABLE DROP PARTITION statement. The DELETE command
enforces referential integrity constraints, and also fires triggers and generates
redo and undo log.

 DELETE FROM sales WHERE TRANSID < 10000;
 ALTER TABLE sales DROP PARTITION dec94;

This method is most appropriate for small tables or for large tables when the
partition being dropped contains a small percentage of the total data in the
table.

Note: You can substantially reduce the amount of logging by set-
ting the NOLOGGING attribute (using ALTER TABLE...MODIFY
PARTITION...NOLOGGING) for the partition before deleting all of
its rows.
 Managing Partitioned Tables and Indexes 11-7

Maintaining Partitions
Dropping Index Partitions
You cannot explicitly drop a partition from a local index. Instead, local index parti-
tions are dropped only when you drop a partition from the underlying table.

If a global index partition is empty, you can explicitly drop it by issuing the ALTER
INDEX DROP PARTITION statement.

If a global index partition contains data, dropping the partition causes the next
highest partition to be marked unusable. For example, a DBA wishes to drop the
index partition P1 and P2 is the next highest partition. The DBA must issue the fol-
lowing statements:

ALTER INDEX npr DROP PARTITION P1;
ALTER INDEX npr REBUILD PARTITION P2;

Truncating Partitions
Use the ALTER TABLE TRUNCATE PARTITION statement when you wish to
remove all rows from a table partition. You cannot truncate an index partition; how-
ever, the ALTER TABLE TRUNCATE PARTITION statement truncates the match-
ing partition in each local index.

Truncating Partitioned Tables
You can use the ALTER TABLE TRUNCATE PARTITION statement to remove all
rows from a table partition with or without reclaiming space. If there are local
indexes defined for this table, ALTER TABLE TRUNCATE PARTITION also trun-
cates the matching partition from each local index.

Note: You cannot drop the highest partition in a global index.
11-8 Oracle8 Administrator’s Guide

Maintaining Partitions
Truncating Table Partitions Containing Data and Global Indexes If, however, the partition
contains data and global indexes, use either of the following methods to truncate
the table partition:

1. Leave the global indexes in place during the ALTER TABLE TRUNCATE PAR-
TITION statement.

 ALTER TABLE sales TRUNCATE PARTITION dec94;
 ALTER INDEX sales_area_ix REBUILD sal1;

This method is most appropriate for large tables where the partition being trun-
cated contains a significant percentage of the total data in the table.

2. Issue the DELETE command to delete all rows from the partition before you
issue the ALTER TABLE TRUNCATE PARTITION statement. The DELETE
command updates the global indexes, and also fires triggers and generates
redo and undo log.

This method is most appropriate for small tables, or for large tables when the
partition being truncated contains a small percentage of the total data in the
table.

Truncating Table Partitions Containing Data and Referential Integrity Constraints If a parti-
tion contains data and has referential integrity constraints, choose either of the fol-
lowing methods to truncate the table partition:

1. Disable the integrity constraints, issue the ALTER TABLE TRUNCATE PARTI-
TION statement, then re-enable the integrity constraints:

 ALTER TABLE sales
 DISABLE CONSTRAINT dname_sales1;
 ALTER TABLE sales TRUNCATE PARTITTION dec94;
 ALTER TABLE sales
 ENABLE CONSTRAINT dname_sales1;

This method is most appropriate for large tables where the partition being trun-
cated contains a significant percentage of the total data in the table.

Note: The ALTER TABLE TRUNCATE PARTITION statement not
only marks all global index partitions as unusable, it also renders
all non-partitioned indexes unusable. Because the entire parti-
tioned index cannot be rebuilt using one statement, sal1 in the fol-
lowing statement is a non-partitioned index.
 Managing Partitioned Tables and Indexes 11-9

Maintaining Partitions
2. Issue the DELETE command to delete all rows from the partition before you
issue the ALTER TABLE TRUNCATE PARTITION statement. The DELETE
command enforces referential integrity constraints, and also fires triggers and
generates redo and undo log.

 DELETE FROM sales WHERE TRANSID < 10000;
 ALTER TABLE sales TRUNCATE PARTITION dec94;

This method is most appropriate for small tables, or for large tables when the
partition being truncated contains a small percentage of the total data in the
table.

Splitting Partitions
This form of ALTER TABLE/INDEX divides a partition into two partitions. You
can use the SPLIT PARTITION clause when a partition becomes too large and
causes backup, recovery or maintenance operations to take a long time. You can
also use the SPLIT PARTITION clause to redistribute the I/O load.

Splitting Table Partitions
You can split a table partition by issuing the ALTER TABLE SPLIT PARTITION
statement. If there are local indexes defined on the table, this statement also splits
the matching partition in each local index. Because Oracle assigns system-gener-
ated names and default storage attributes to the new index partitions, you may
wish to rename or alter these index partitions after splitting them.

If the partition you are splitting contains data, the ALTER TABLE SPLIT PARTI-
TION statement marks the matching partitions (there are two) in each local index,
as well as all global index partitions, as unusable. You must rebuild these index par-
titions after issuing the ALTER TABLE SPLIT PARTITION statement.

Note: You can substantially reduce the amount of logging by set-
ting the NOLOGGING attribute (using ALTER TABLE...MODIFY
PARTITION...NOLOGGING) for the partition before deleting all of
its rows.
11-10 Oracle8 Administrator’s Guide

Maintaining Partitions
Splitting a Table Partition: Scenario In this scenario “fee_katy” is a partition in the
table “VET_cats,” which has a local index, JAF1. There is also a global index, VET
on the table. VET contains two partitions, VET_parta, and VET_partb.

To split the partition “fee_katy”, and rebuild the index partitions, the DBA issues
the following statements:

ALTER TABLE vet_cats SPLIT PARTITION
 fee_katy at (100) INTO (PARTITION
 fee_katy1 ..., PARTITION fee_katy2 ...);
ALTER INDEX JAF1 REBUILD PARTITION SYS_P00067;
ALTER INDEX JAF1 REBUILD PARTITION SYS_P00068;
ALTER INDEX VET REBUILD PARTITION VET_parta;
ALTER INDEX VET REBUILD PARTITION VET_partb;

Also, unless JAF1 already contained partitions fee_katy1 and fee_katy2, names
assigned to local index partitions produced by this split will match those of corre-
sponding base table partitions.

Splitting Index Partitions
You cannot explicitly split a partition in a local index. A local index partition is split
only when you split a partition in the underlying table.

You can issue the ALTER INDEX SPLIT PARTITION statement to split a partition
in a global index if the partition is empty.

The following statement splits the index partition containing data, QUON1:

ALTER INDEX quon1 SPLIT
 PARTITION canada AT VALUES LESS THAN (100) INTO
 PARTITION canada1 ..., PARTITION canada2 ...);
ALTER INDEX quon1 REBUILD PARTITION canada1;
ALTER INDEX quon1 REBUILD PARTITION canada2;

Note: You must examine the data dictionary to locate the names
assigned to the new local index partitions. In this particular sce-
nario, they are SYS_P00067 and SYS_P00068. If you wish, you can
rename them.
 Managing Partitioned Tables and Indexes 11-11

Maintaining Partitions
Merging Partitions
While there is no explicit MERGE statement, you can merge a partition using either
the DROP PARTITION or EXCHANGE PARTITION clauses.

Merging Table Partitions
You can use either of the following strategies to merge table partitions.

If you have data in partition OSU1 and no global indexes or referential integrity
constraints on the table, OH, you can merge table partition OSU1 into the next high-
est partition, OSU2.

To merge partition OSU1 into partition OSU2:

1. Export the data from OSU1.

2. Issue the following statement:

 ALTER TABLE OH DROP PARTITION OSU1;

3. Import the data from Step 1 into partition OSU2.

Another way to merge partition OSU1 into partition OSU2:

1. Exchange partition OSU1 of table OH with “dummy” table COLS.

2. Issue the following statement:

 ALTER TABLE OH DROP PARTITION OSU1;

3. Insert as SELECT from the “dummy” table to move the data from OSU1 back
into OSU2.

Merging Partitioned Indexes
The only way to merge partitions in a local index is to merge partitions in the
underlying table.

If the index partition BUCKS is empty, you can merge global index partition
BUCKS into the next highest partition, GOOSU, by issuing the following statement:

ALTER INDEX BUCKEYES DROP PARTITION BUCKS;

Note: The corresponding local index partitions are also merged.
11-12 Oracle8 Administrator’s Guide

Maintaining Partitions
If the index partition BUCKS contains data, issue the following statements:

ALTER INDEX BUCKEYES DROP PARTITION BUCKS;
ALTER INDEX BUCKEYES REBUILD PARTITION GOOSU;

While the first statement marks partition GOOSU unusable, the second makes it
valid again.

Exchanging Table Partitions
You can convert a partition into a non-partitioned table, and a table into a partition
of a partitioned table by exchanging their data (and index) segments. Exchanging
table partitions is most useful when you have an application using non-partitioned
tables which you want to convert to partitions of a partitioned table. For example,
you may already have partition views that you wish to migrate into partitioned
tables.

Merging Adjacent Table Partitions: Scenario
This scenario describes how merge two adjacent table partitions. Suppose you have
to merge two partitions, FEB95 and MAR95, of the SALES table by moving the data
from the FEB95 partition into the MAR95 partition.

To Merge the 2 Table Partitions:

1. Create a temporary table to hold the FEB95 partition data.

 CREATE TABLE sales_feb95 (...)
 TABLESPACE ts_temp STORAGE (INITIAL 2);

2. Exchange the FEB95 partition segment into the table SALES_FEB95.

 ALTER TABLE sales
 EXCHANGE PARTITION feb95 WITH TABLE
 sales_feb95 WITHOUT VALIDATION;

Now the SALES_FEB95 table placeholder segment is attached to the FEB95 par-
tition.

3. Drop the FEB95 partition; this frees the segment originally owned by the
SALES_FEB95 table.

 ALTER TABLE sales DROP PARTITION feb95;
 Managing Partitioned Tables and Indexes 11-13

Maintaining Partitions
4. Move the data from the SALES_FEB95 table into the MAR95 partition via an
INSERT statement.

 INSERT INTO sales PARTITION (mar95)
 SELECT * FROM sales_feb95;

Using the extended table name here is more efficient. Instead of attempting to
compute the partition to which a row belongs, Oracle verifies that it belongs to
the specified partition.

5. Drop the SALES_FEB95 table to free the segment originally associated with the
FEB95 partition.

 DROP TABLE sales_feb95;

6. (Optional) Rename the MAR95 partition

 ALTER TABLE sales RENAME PARTITION mar95 TO
 feb_mar95;

See Also: For more information about deferring index maintenance, see the ALTER
SESSION SET SKIP_UNUSABLE_INDEXES statement in Oracle8 SQL Reference.

Converting a Partition View into a Partitioned Table: Scenario
This scenario describes how to convert a partition view (also called “manual parti-
tion”) into a partitioned table. The partition view is defined as follows:

CREATE VIEW accounts
 SELECT * FROM accounts_jan95
 UNION ALL
 SELECT * FROM accounts_feb95
 UNION ALL
 ...
SELECT * FROM accounts_dec95;
11-14 Oracle8 Administrator’s Guide

Maintaining Partitions
To Incrementally Migrate the Partition View to a Partitioned Table

1. Initially, only the two most recent partitions, ACCOUNTS_NOV95 and
ACCOUNTS_DEC95, will be migrated from the view to the table by creating
the partition table. Each partition gets a temporary segment of 2 blocks (as a
placeholder).

 CREATE TABLE accounts_new (...)
 TABLESPACE ts_temp STORAGE (INITIAL 2)
 PARTITION BY RANGE (opening_date)
 (PARTITION jan95 VALUES LESS THAN (’950201’),
 ...
 PARTITION dec95 VALUES LESS THAN (’960101’));

2. Use the EXCHANGE command to migrate the tables to the corresponding par-
titions.

 ALTER TABLE accounts_new
 EXCHANGE PARTITION nov95 WITH TABLE
 accounts_95 WITH VALIDATION;

 ALTER TABLE accounts_new
 EXCHANGE PARTITION dec95 WITH TABLE
 accounts_dec95 WITH VALIDATION;

So now the placeholder data segments associated with the NOV95 and DEC95
partitions have been exchanged with the data segments associated with the
ACCOUNTS_NOV95 and ACCOUNTS_DEC95 tables.

3. Redefine the ACCOUNTS view.

 CREATE OR REPLACE VIEW accounts
 SELECT * FROM accounts_jan95
 UNION ALL
 SELECT * FROM accounts_feb_95
 UNION ALL
 ...
 UNION ALL
 SELECT * FROM accounts_new PARTITION (nov95)
 UNION ALL
 SELECT * FROM accounts_new PARTITION (dec95);

4. Drop the ACCOUNTS_NOV95 and ACCOUNTS_DEC95 tables, which own
the placeholder segments that were originally attached to the NOV95 and
DEC95 partitions.
 Managing Partitioned Tables and Indexes 11-15

Maintaining Partitions
5. After all the tables in the UNIONALL view are converted into partitions, drop
the view and the partitioned table that was renamed as the view.

 DROP VIEW accounts;
 RENAME accounts_new TO accounts;

See Also: For more information about the syntax and usage of the statements in
this section, see Oracle8 SQL Reference.

Rebuilding Index Partitions
Some operations, such as ALTER TABLE DROP PARTITION, mark all partitions of
a global index unusable. You can rebuild global index partitions in two ways:

1. Rebuild each partition by issuing the ALTER INDEX REBUILD PARTITION
statement (you can run the rebuilds concurrently).

2. Drop the index and re-create it.

Moving the Time Window in a Historical Table
An historical table describes the business transactions of an enterprise over intervals
of time. Historical tables can be base tables, which contain base information; for
example, sales, checks, orders. Historical tables can also be rollup tables, which con-
tain summary information derived from the base information via operations such
as GROUP BY, AVERAGE, or COUNT.

The time interval in an historical table is a rolling window; DBAs periodically
delete sets of rows that describe the oldest transaction, and in turn allocate space
for sets of rows that describe the most recent transaction. For example, at the close
of business on April 30, 1995 the DBA deletes the rows (and supporting index
entries) that describe transactions from April, 1994, and allocates space for the
April, 1995 transactions.

To Move the Time Window in an Historical Table Now consider a specific example. You
have a table, ORDER, which contains 13 months of transactions: a year of historical
data in addition to orders for the current month. There is one partition for each
month; the partitions are named ORDER_yymm.

The ORDER table contains two local indexes, ORDER_IX_ONUM, which is a local,
prefixed, unique index on the order number, and ORDER_IX_SUPP, which is a

Note: This method is more efficient because the table is scanned
only once.
11-16 Oracle8 Administrator’s Guide

Maintaining Partitions
local, non-prefixed index on the supplier number. The local index partitions are
named with suffixes that match the underlying table. There is also a global unique
index, ORDER_IX_CUST, for the customer name; ORDER_IX_CUST contains three
partitions, one for each third of the alphabet. So on October 31, 1994, change the
time window on ORDER as follows:

1. Backup the data for the oldest time interval.

 ALTER TABLESPACE ORDER_9310 BEGIN BACKUP;
 ALTER TABLESPACE ORDER_9310 END BACKUP;

2. Drop the partition for the oldest time interval.

 ALTER TABLE ORDER DROP PARTITION ORDER_9310;

3. Add the partition to the most recent time interval.

 ALTER TABLE ORDER ADD PARTITION ORDER_9411;

4. Drop and re-create the global indexes.

 ALTER INDEX ORDER DROP PARTITION ORDER_IX_CUST;
 ALTER INDEX REBUILD PARTITION ORDER_IX_CUST;

Quiescing Applications During a Multi-Step Maintenance Operation
Ordinarily, Oracle acquires sufficient locks to ensure that no operation (DML, DDL,
utility) interferes with an individual DDL statement, such as ALTER TABLE DROP
PARTITION. However, if the partition maintenance operation requires several
steps, it is the DBA’s responsibility to ensure that applications (or other mainte-
nance operations) do not interfere with the multi-step operation in progress.

For example, there are referential integrity constraints on the table ORDER, and
you do not wish to disable them to drop the partition. Instead, you can replace Step
2 from the previous section with the following:

DELETE FROM ORDER WHERE ODATE < TO_DATE(01-NOV-93);
ALTER TABLE ORDER DROP PARTITION ORDER_9310;

You can ensure that no one inserts new rows into ORDER between the DELETE
step and the DROP PARTITION steps by revoking access privileges from an APPLI-
CATION role, which is used in all applications. You can also bring down all user-
level applications during a well-defined batch window each night or weekend.
 Managing Partitioned Tables and Indexes 11-17

Maintaining Partitions
11-18 Oracle8 Administrator’s Guide

 Managing T
12

 Managing Tables

This chapter describes the various aspects of managing tables, and includes the fol-
lowing topics:

■ Guidelines for Managing Tables

■ Creating Tables

■ Altering Tables

■ Manually Allocating Storage for a Table

■ Dropping Tables

■ Index-Organized Tables

Before attempting tasks described in this chapter, familiarize yourself with the con-
cepts in Chapter 10, Guidelines for Managing Schema Objects.
ables 12-1

Guidelines for Managing Tables
Guidelines for Managing Tables
This section describes guidelines to follow when managing tables, and includes the
following topics:

■ Design Tables Before Creating Them

■ Specify How Data Block Space Is to Be Used

■ Specify Transaction Entry Parameters

■ Specify the Location of Each Table

■ Parallelize Table Creation

■ Consider Creating UNRECOVERABLE Tables

■ Estimate Table Size and Set Storage Parameters

■ Plan for Large Tables

■ Table Restrictions

Use these guidelines to make managing tables as easy as possible.

Design Tables Before Creating Them
Usually, the application developer is responsible for designing the elements of an
application, including the tables. Database administrators are responsible for set-
ting storage parameters and defining clusters for tables, based on information from
the application developer about how the application works and the types of data
expected.

Working with your application developer, carefully plan each table so that the fol-
lowing occurs:

■ Tables are normalized.

■ Each column is of the proper datatype.

■ Columns that allow nulls are defined last, to conserve storage space.

■ Tables are clustered whenever appropriate, to conserve storage space and opti-
mize performance of SQL statements.
12-2 Oracle8 Administrator’s Guide

Guidelines for Managing Tables
Specify How Data Block Space Is to Be Used
By specifying the PCTFREE and PCTUSED parameters during the creation of each
table, you can affect the efficiency of space utilization and amount of space
reserved for updates to the current data in the data blocks of a table’s data segment.

See Also: For information about specifying PCTFREE and PCTUSED, see “Manag-
ing Space in Data Blocks” on page 10-2.

Specify Transaction Entry Parameters
By specifying the INITRANS and MAXTRANS parameters during the creation of
each table, you can affect how much space is initially and can ever be allocated for
transaction entries in the data blocks of a table’s data segment.

See Also: For information about specifying INITRANS and MAXTRANS, see “Set-
ting Storage Parameters” on page 10-7.

Specify the Location of Each Table
If you have the proper privileges and tablespace quota, you can create a new table
in any tablespace that is currently online. Therefore, you should specify the
TABLESPACE option in a CREATE TABLE statement to identify the tablespace that
will store the new table.

If you do not specify a tablespace in a CREATE TABLE statement, the table is cre-
ated in your default tablespace.

When specifying the tablespace to contain a new table, make sure that you under-
stand implications of your selection. By properly specifying a tablespace during the
creation of each table, you can:

■ increase the performance of the database system

■ decrease the time needed for database administration

The following examples show how incorrect storage locations of schema objects
can affect a database:

■ If users’ objects are created in the SYSTEM tablespace, the performance of Ora-
cle can be reduced, since both data dictionary objects and user objects must con-
tend for the same datafiles.

■ If an application’s associated tables are arbitrarily stored in various tablespaces,
the time necessary to complete administrative operations (such as backup and
recovery) for that application’s data can be increased.
 Managing Tables 12-3

Guidelines for Managing Tables
See Also: For information about specifying tablespaces, see “Assigning Tablespace
Quotas to Users” on page 8-3.

Parallelize Table Creation
If you have the parallel query option installed, you can parallelize the creation of
tables created with a subquery in the CREATE TABLE command. Because multiple
processes work together to create the table, performance of the table creation can
improve.

See Also: For more information about the parallel query option and parallel table
creation, see the Oracle8 Tuning guide.

For information about the CREATE TABLE command, see the Oracle8 SQL Reference.

Consider Creating UNRECOVERABLE Tables
When you create an unrecoverable table, the table cannot be recovered from
archived logs (because the needed redo log records are not generated for the unre-
coverable table creation). Thus, if you cannot afford to lose the table, you should
take a backup after the table is created. In some situations, such as for tables that
are created for temporary use, this precaution may not be necessary.

You can create an unrecoverable table by specifying UNRECOVERABLE when you
create a table with a subquery in the CREATE TABLE AS SELECT statement. How-
ever, rows inserted afterwards are recoverable. In fact, after the statement is com-
pleted, all future statements are fully recoverable.

Creating an unrecoverable table has the following benefits:

■ Space is saved in the redo log files.

■ The time it takes to create the table is decreased.

■ Performance improves for parallel creation of large tables.

In general, the relative performance improvement is greater for larger unrecover-
able tables than for smaller tables. Creating small unrecoverable tables has little
affect on the time it takes to create a table. However, for larger tables the perfor-
mance improvement can be significant, especially when you are also parallelizing
the table creation.
12-4 Oracle8 Administrator’s Guide

Guidelines for Managing Tables
Estimate Table Size and Set Storage Parameters
Estimating the sizes of tables before creating them is useful for the following rea-
sons:

■ You can use the combined estimated size of tables, along with estimates for
indexes, rollback segments, and redo log files, to determine the amount of disk
space that is required to hold an intended database. From these estimates, you
can make correct hardware purchases and other decisions.

■ You can use the estimated size of an individual table to better manage the disk
space that the table will use. When a table is created, you can set appropriate
storage parameters and improve I/O performance of applications that use the
table.

For example, assume that you estimate the maximum size of a table before cre-
ating it. If you then set the storage parameters when you create the table, fewer
extents will be allocated for the table’s data segment, and all of the table’s data
will be stored in a relatively contiguous section of disk space. This decreases
the time necessary for disk I/O operations involving this table.

Appendix A contains equations that help estimate the size of tables. Whether or not
you estimate table size before creation, you can explicitly set storage parameters
when creating each non-clustered table. (Clustered tables automatically use the stor-
age parameters of the cluster.) Any storage parameter that you do not explicitly set
when creating or subsequently altering a table automatically uses the correspond-
ing default storage parameter set for the tablespace in which the table resides.

If you explicitly set the storage parameters for the extents of a table’s data segment,
try to store the table’s data in a small number of large extents rather than a large
number of small extents.

Plan for Large Tables
There are no limits on the physical size of tables and extents. You can specify the
keyword UNLIMITED for MAXEXTENTS, thereby simplifying your planning for
large objects, reducing wasted space and fragmentation, and improving space
reuse. However, keep in mind that while Oracle allows an unlimited number of
extents, when the number of extents in a table grows very large, you may see an
impact on performance when performing any operation requiring that table.

Note: You cannot alter data dictionary tables to have MAXEX-
TENTS greater than the allowed block maximum.
 Managing Tables 12-5

Creating Tables
If you have such tables in your database, consider the following recommendations:

Separate the Table from Its Indexes Place indexes in separate tablespaces from
other objects, and on separate disks if possible. If you ever need to drop and re-cre-
ate an index on a very large table (such as when disabling and enabling a con-
straint, or re-creating the table), indexes isolated into separate tablespaces can often
find contiguous space more easily than those in tablespaces that contain other
objects.

Allocate Sufficient Temporary Space If applications that access the data in a very
large table perform large sorts, ensure that enough space is available for large tem-
porary segments and that users have access to this space (temporary segments
always use the default STORAGE settings for their tablespaces).

Table Restrictions
Before creating tables, make sure you are aware of the following restrictions:

■ Tables containing new object types cannot be imported into a pre-Oracle8 data-
base

■ You cannot move types and extent tables to a different schema when the origi-
nal data still exists in the database.

■ You cannot merge an exported table into a pre-existing table having the same
name in a different schema.

Creating Tables
To create a new table in your schema, you must have the CREATE TABLE system
privilege. To create a table in another user’s schema, you must have the CREATE
ANY TABLE system privilege. Additionally, the owner of the table must have a
quota for the tablespace that contains the table, or the UNLIMITED TABLESPACE
system privilege.
12-6 Oracle8 Administrator’s Guide

Altering Tables
Create tables using the SQL command CREATE TABLE. When user SCOTT issues
the following statement, he creates a non-clustered table named EMP in his schema
and stores it in the USERS tablespace:

CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 job VARCHAR2(10),
 mgr NUMBER(5),
 hiredate DATE DEFAULT (sysdate),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(3) NOT NULL
 CONSTRAINT dept_fkey REFERENCES dept)
PCTFREE 10
PCTUSED 40
TABLESPACE users
STORAGE (INITIAL 50K
 NEXT 50K
 MAXEXTENTS 10
 PCTINCREASE 25);

Notice that integrity constraints are defined on several columns of the table and
that several storage settings are explicitly specified for the table.

See Also: For more information about system privileges, see Chapter 21, Managing
User Privileges and Roles. For more information about tablespace quotas, see
Chapter 20, Managing Users and Resources.

Altering Tables
To alter a table, the table must be contained in your schema, or you must have
either the ALTER object privilege for the table or the ALTER ANY TABLE system
privilege.

A table in an Oracle database can be altered for the following reasons:

■ to add one or more new columns to the table

■ to add one or more integrity constraints to a table

■ to modify an existing column’s definition (datatype, length, default value, and
NOT NULL integrity constraint)

■ to modify data block space usage parameters (PCTFREE, PCTUSED)

■ to modify transaction entry settings (INITRANS, MAXTRANS)

■ to modify storage parameters (NEXT, PCTINCREASE)
 Managing Tables 12-7

Altering Tables
■ to enable or disable integrity constraints or triggers associated with the table

■ to drop integrity constraints associated with the table

You can increase the length of an existing column. However, you cannot decrease it
unless there are no rows in the table. Furthermore, if you are modifying a table to
increase the length of a column of datatype CHAR, realize that this may be a time
consuming operation and may require substantial additional storage, especially if
the table contains many rows. This is because the CHAR value in each row must be
blank-padded to satisfy the new column length.

When altering the data block space usage parameters (PCTFREE and PCTUSED) of
a table, note that new settings apply to all data blocks used by the table, including
blocks already allocated and subsequently allocated for the table. However, the
blocks already allocated for the table are not immediately reorganized when space
usage parameters are altered, but as necessary after the change.

When altering the transaction entry settings (INITRANS, MAXTRANS) of a table,
note that a new setting for INITRANS only applies to data blocks subsequently allo-
cated for the table, while a new setting for MAXTRANS applies to all blocks
(already and subsequently allocated blocks) of a table.

The storage parameters INITIAL and MINEXTENTS cannot be altered. All new set-
tings for the other storage parameters (for example, NEXT, PCTINCREASE) affect
only extents subsequently allocated for the table. The size of the next extent allo-
cated is determined by the current values of NEXT and PCTINCREASE, and is not
based on previous values of these parameters.

You can alter a table using the SQL command ALTER TABLE. The following state-
ment alters the EMP table:

ALTER TABLE emp
 PCTFREE 30
 PCTUSED 60;

WARNING: Before altering a table, familiarize yourself with the
consequences of doing so.

If a new column is added to a table, the column is initially null.
You can add a column with a NOT NULL constraint to a table
only if the table does not contain any rows.

If a view or PL/SQL program unit depends on a base table, the
alteration of the base table may affect the dependent object.
12-8 Oracle8 Administrator’s Guide

Dropping Tables
See Also: See “Managing Object Dependencies” on page 17-25 for information
about how Oracle manages dependencies.

Manually Allocating Storage for a Table
Oracle dynamically allocates additional extents for the data segment of a table, as
required. However, you might want to allocate an additional extent for a table
explicitly. For example, when using the Oracle Parallel Server, an extent of a table
can be allocated explicitly for a specific instance.

A new extent can be allocated for a table using the SQL command ALTER TABLE
with the ALLOCATE EXTENT option.

See Also: For information about the ALLOCATE EXTENT option, see Oracle8 Paral-
lel Server Concepts and Administration.

Dropping Tables
To drop a table, the table must be contained in your schema or you must have the
DROP ANY TABLE system privilege.

To drop a table that is no longer needed, use the SQL command DROP TABLE. The
following statement drops the EMP table:

DROP TABLE emp;

If the table to be dropped contains any primary or unique keys referenced by for-
eign keys of other tables and you intend to drop the FOREIGN KEY constraints of
the child tables, include the CASCADE option in the DROP TABLE command, as
shown below:

DROP TABLE emp CASCADE CONSTRAINTS;
 Managing Tables 12-9

Index-Organized Tables
Index-Organized Tables
This section describes aspects of managing index-organized tables, and includes
the following topics:

■ What Are Index-Organized Tables?

■ Creating Index-Organized Tables

■ Maintaining Index-Organized Tables

■ Converting Index-Organized Tables to Regular Tables

What Are Index-Organized Tables?
Index-organized tables are tables with data rows grouped according to the primary
key. This clustering is achieved using a B*tree index. B*tree indexes are special types
of index trees that differ from regular table B-tree indexes in that they store both the
primary key and non-key columns. The attributes of index-organized tables are
stored entirely within the physical data structures for the index. Put another way,
index-organized tables are logical constructs for defining and accessing index con-
tent using SQL statements.

WARNING: Before dropping a table, familiarize yourself with
the consequences of doing so:

■ Dropping a table removes the table definition from the data
dictionary. All rows of the table are no longer accessible.

■ All indexes and triggers associated with a table are dropped.

■ All views and PL/SQL program units dependent on a
dropped table remain, yet become invalid (not usable). See
“Managing Object Dependencies” on page 17-25 for informa-
tion about how Oracle manages such dependencies.

■ All synonyms for a dropped table remain, but return an error
when used.

■ All extents allocated for a non-clustered table that is dropped
are returned to the free space of the tablespace and can be
used by any other object requiring new extents or new
objects. All rows corresponding to a clustered table are
deleted from the blocks of the cluster.
12-10 Oracle8 Administrator’s Guide

Index-Organized Tables
Why Use Index-Organized Tables?
Index-organized tables provide faster key-based access to table data for queries
involving exact match and range searches. Changes to the table data (such as add-
ing new rows, updating rows, or deleting rows) result only in updating the index
structure (because there is no separate table storage area).

Also, storage requirements are reduced because key columns are not duplicated in
the table and index. The remaining non-key columns are stored in the index struc-
ture.

Index-organized tables are particularly useful when you are using applications that
must retrieve data based on a primary key. Also, index-organized tables are suit-
able for modeling application-specific index structures. For example, content-based
information retrieval applications containing text, image and audio data require
inverted indexes that can be effectively modeled using index-organized tables.

See Also: For more details about index-organized tables, see Oracle8 Concepts.

Differences Between Index-Organized and Regular Tables
Index-organized tables are like regular tables with an index on one or more of its
columns. However, instead of maintaining two separate storage spaces for the table
and B*tree index, an index-organized table only maintains a single B*tree index con-
taining the primary key of the table and other column values.
 Managing Tables 12-11

Index-Organized Tables
Figure 12–1 Structure of Regular Table versus Index-Organized Table

Index-organized tables are suitable for accessing data by way of primary key or
any key that is a valid prefix of the primary key. Also, there is no duplication of key
values because a separate index structure containing the key values and ROWID is
not created. Table 12–1 summarizes the difference between an index-organized
table and a regular table.

Table 12–1 Comparison of Index-Organized table with a Regular Table

Regular Table Index-Organized Table

ROWID uniquely identifies a row;
primary key can be optionally spec-
ified

Primary key uniquely identifies a row;
primary key must be specified

Implicit ROWID Column; allows
building physical secondary
indexes

No implicit ROWID Column; can not
have physical secondary indexes

ROWID-based access, key or scan Primary key-based access or scan
Sequential scan returns all rows Full-table scan returns all rows in pri-

mary key order

FINANCE
STOCK

FINANCE ROWID
INVEST ROWID

Index

STOCK ROWID
TRADE ROWID

Index

Finance
Invest
Stock
Trade

5543
6879
4254
3345

Table

STOCK 6874
TRADE 5543

Index
FINANCE 3345
INVEST 4254

Index

Regular Table and Index Index-Organized Table

Finance
Stock

Table

Indexed data is
stored in index.
12-12 Oracle8 Administrator’s Guide

Index-Organized Tables
Creating Index-Organized Tables
You can use the CREATE TABLE statement to create index-organized tables; when
doing so, you need to provide the following additional information:

■ An ORGANIZATION INDEX qualifier, which indicates that this is an index-
organized table.

■ A primary key, specified through a column constraint clause (for a single col-
umn primary key) or a table constraint clause (for a multiple- column primary
key). A primary key must be specified for index-organized tables.

■ An optional row overflow specification clause, which preserves dense cluster-
ing of the B*tree index by storing the row column values exceeding the speci-
fied threshold in a separate overflow data segment.

The row overflow tablespace is defined as a percentage of the block size. If a row
size is greater than the specified threshold value (PCTTHRESHOLD), the non-
key column values are stored in the overflow tablespace. In other words, the
row is broken at a column boundary into 2 pieces, for example, a head piece
and tail piece. The head piece fits in the specified threshold and is stored along
with the key in the index leaf block. The tail piece is stored in the overflow area
as one or more row pieces. Thus, the index entry contains the key value, the
non-key column values that fit the specified threshold, and a pointer to the rest
of the row.

UNIQUE constraints allowed on
other columns

UNIQUE constraints on other columns
are not allowed

Triggers allowed on other columns Triggers allowed on other columns
Table can be stored in a cluster con-
taining other tables

An index-organized table can not be
stored in a cluster

Distributed SQL, Replication, and
Partitioning supported

Distributed SQL and Replication sup-
ported. Partitioning not supported

Table 12–1 Comparison of Index-Organized table with a Regular Table (Cont.)

Regular Table Index-Organized Table
 Managing Tables 12-13

Index-Organized Tables
The following example shows information to provide when creating index-orga-
nized tables:

 SVRMGR> CREATE TABLE docindex
 (token char(20),
 doc_oid NUMBER,
 token_frequency NUMBER,
 token_occurrence_data varchar2(512),
 CONSTRAINT pk_docindex
 PRIMARY KEY (token, doc_oid))
 ORGANIZATION INDEX TABLESPACE text_col
 PCTTHRESHOLD 20
 OVERFLOW TABLESPACE text_col_overflow;

This example shows that the ORGANIZATION INDEX qualifier specifies an index-
organized table, where the key columns and non-key columns reside in an index
defined on columns that designate the primary key (TOKEN,DOC_ID) for the table.

Index-organized tables can store object types. For example, you can create an index-
organized table containing a column of object type mytype (for the purpose of this
example) as follows:

CREATE TABLE iot (c1 NUMBER primary key, c2 mytype)
 ORGANIZATION INDEX;

However, you cannot create an index-organized table of object types. For example,
the following statement would not be valid:

CREATE TABLE iot of mytype ORGANIZATION INDEX;

See Also: For more details about the CREATE INDEX statement, see the Oracle SQL
Reference.

Using the Overflow Clause
The overflow clause specified in the preceding example indicates that any non-key
columns of rows exceeding 20% of the block size are placed in a data segment
stored in the TEXT_COLLECTION_OVERFLOW tablespace. The key columns
should fit the specified threshold.

If an update of a non-key column causes the row to decrease in size, Oracle identi-
fies the row piece (head or tail) to which the update is applicable and rewrites that
piece.

If an update of a non-key column causes the row to increase in size, Oracle identi-
fies the piece (head or tail) to which the update is applicable and rewrites that row
12-14 Oracle8 Administrator’s Guide

Index-Organized Tables
piece. If the update’s target turns out to be the head piece, note that this piece may
again be broken into 2 to keep the row size below the specified threshold.

The non-key columns that fit in the index leaf block are stored as a row head-piece
that contains a ROWID field linking it to the next row piece stored in the overflow
data segment. The only columns that are stored in the overflow area are those that
do not fit.

Choosing and Monitoring a Threshold Value You should choose a threshold value that
can accommodate your key columns, as well as the first few non-key columns (if
they are frequently accessed).

After choosing a threshold value, you can monitor tables to verify that the value
you specified is appropriate. You can use the ANALYZE TABLE LIST CHAINED
ROWS statement to determine the number and identity of rows exceeding the
threshold value.

To analyze index-organized tables, you must create a separate CHAINED ROWS
table for each and every index-organized table (to accommodate the primary key
storage of index-organized tables). You can use the SQL scripts DBMSIOTC.SQL
and PRVTIOTC.PLB to define the BUILD_CHAIN_ROWS_TABLE package defini-
tion, and then execute this procedure to create an IOT_CHAINED_ROWS table for
an index-organized table.

You must execute both DBMSIOTC.SQL and PRVTIOTC.PLB in the ’SYS’ schema
to create the package definition. PUBLIC users have EXECUTE privileges for the
procedures defined in the packages, so users in any schema can use them to create
the LIST_CHAIN_ROW table.

See Also: For more information about the ANALYZE command and SQL scripts,
see the Oracle8 SQL Reference.

Using the INCLUDING clause In addition to specifying PCTTHRESHOLD, you can use
the INCLUDING <COLUMN_NAME> clause to control which non-key columns
are stored with the key columns. Oracle accommodates all non-key columns up to
the column specified in the INCLUDING clause in the index leaf block, provided it
does not exceed the specified threshold. All non-key columns beyond the column
specified in the INCLUDING clause are stored in the overflow area.
 Managing Tables 12-15

Index-Organized Tables
For example, you can modify the previous example where an index-organized
table was created so that it always has the TOKEN_OCCURRENCE_DATA column
value stored in the overflow area:

 SVRMGR> CREATE TABLE docindex
 (token char(20),
 doc_oid NUMBER,
 token_frequency NUMBER,
 token_occurrence_data varchar2(512),
 CONSTRAINT pk_docindex
 PRIMARY KEY (token, doc_oid))
 ORGANIZATION INDEX TABLESPACE text_col
 PCTTHRESHOLD 20
 INCLUDING token_frequency
 OVERFLOW TABLESPACE text_col_overflow;

Here, only non-key columns up to TOKEN_FREQUENCY (in this case a single col-
umn only) are stored with the key column values in the index leaf block.

Maintaining Index-Organized Tables
You can use an index-organized table in place of a regular table in INSERT,
SELECT, DELETE, and UPDATE statements. Note that the rows for index-orga-
nized tables are stored in the B*tree, and do not have a row identity (ROWID).
Thus, you cannot perform ROWID based-retrieval on index-organized tables.

Altering Index-Organized Tables
Index-organized tables differ only in physical organization; logically, they are
manipulated the same as regular tables. Hence, you manipulate index-organized
tables as you would regular tables. However, there is one difference when using the
ALTER TABLE statement. In addition to other defined clauses, you can use the fol-
lowing:

■ PCTTHRESHOLD

An integer value that specifies the threshold as percentage of the block size.

■ ADD OVERFLOW

Specifies the physical attributes of the overflow data segment (area where the
data rows exceeding the threshold are placed).

Note: You cannot partition index-organized tables.
12-16 Oracle8 Administrator’s Guide

Index-Organized Tables
You can alter the threshold value for index-organized tables only when the table is
empty or the specified threshold is larger than the current threshold value.

See Also: For details about the ALTER TABLE statement, see the Oracle8 SQL Refer-
ence.

Scenario: Using the ORDER BY Clause with Index-Organized Tables
If an ORDER BY clause only references the primary key column or a prefix of it,
then the optimizer avoids the sorting overhead as the rows are returned sorted on
the primary key columns.

For example, you create the following table:

CREATE TABLE EMPLOYEES (DEPT_ID INTEGER, E_ID INTEGER, E_NAME
 VARCHAR2, PRIMARY KEY (DEPT_ID, E_ID)) ORGANIZATION INDEX;

The following 2 queries avoid sorting overhead because the data is already sorted
on the primary key:

SELECT * FROM EMPLOYEES ORDER BY (DEPT_ID, E_ID);
SELECT * FROM EMPLOYEES ORDER BY (DEPT_ID);

If, however, you have an ORDER BY clause on a suffix of the primary key column,
additional sorting is required.

SELECT * FROM EMPLOYEES ORDER BY (E_ID);
SELECT * FROM EMPLOYEES ORDER BY (E_NAME);

Scenario: Updating the Key Column
A key column update is logically equivalent to deleting the row with the old key
value and inserting the row with the new key value at the appropriate place to
maintain the primary key order.

In the following example, the employee row for DEPT_ID 20 and E_ID 10 are
deleted and the employee row for DEPT_ID 23 and E_ID 10 are inserted:

UPDATE EMPLOYEES
 SET DEPT_ID=23
 WHERE DEPT_ID=20 and E_ID=10;
 Managing Tables 12-17

Index-Organized Tables
Converting Index-Organized Tables to Regular Tables
You can convert index-organized tables to regular tables using the Oracle IMPORT/
EXPORT utilities, or the CREATE TABLE AS SELECT statement.

To convert an index-organized table to a regular table:

■ Export the index-organized table data using conventional path

■ Create a regular table definition with the same definition

■ Import the index-organized table data, making sure IGNORE=y (ensures that
object exists error is ignored)

See Also: For more details about using IMPORT/EXPORT, see Oracle8 Utilities.

Note: Before converting an index-organized table to a regular
table, be aware that index-organized tables cannot be exported
using pre-Oracle8 versions of the Export utility.
12-18 Oracle8 Administrator’s Guide

 Managing Views, Sequences and Syno
13

Managing Views, Sequences and

Synonyms

This chapter describes aspects of view management, and includes the following
topics:

■ Managing Views

■ Managing Sequences

■ Managing Synonyms

Before attempting tasks described in this chapter, familiarize yourself with the con-
cepts in Chapter 10, Guidelines for Managing Schema Objects.
nyms 13-1

Managing Views
Managing Views
A view is a tailored presentation of the data contained in one or more tables (or
other views), and takes the output of a query and treats it as a table. You can think
of a view as a “stored query” or a “virtual table.” You can use views in most places
where a table can be used.

This section describes aspects of managing views, and includes the following topics:

■ Creating Views

■ Modifying a Join View

■ Replacing Views

■ Dropping Views

Creating Views
To create a view, you must fulfill the requirements listed below:

■ To create a view in your schema, you must have the CREATE VIEW privilege;
to create a view in another user’s schema, you must have the CREATE ANY
VIEW system privilege. You may acquire these privileges explicitly or via a role.

■ The owner of the view (whether it is you or another user) must have been
explicitly granted privileges to access all objects referenced in the view defini-
tion; the owner cannot have obtained these privileges through roles. Also, the
functionality of the view is dependent on the privileges of the view’s owner.
For example, if the owner of the view has only the INSERT privilege for Scott’s
EMP table, the view can only be used to insert new rows into the EMP table,
not to SELECT, UPDATE, or DELETE rows from it.

■ If the owner of the view intends to grant access to the view to other users, the
owner must have received the object privileges to the base objects with the
GRANT OPTION or the system privileges with the ADMIN OPTION.

You can create views using the SQL command CREATE VIEW. Each view is
defined by a query that references tables, snapshots, or other views. The query that
defines a view cannot contain the ORDER BY or FOR UPDATE clauses. For exam-
ple, the following statement creates a view on a subset of data in the EMP table:

CREATE VIEW sales_staff AS
 SELECT empno, ename, deptno
 FROM emp
 WHERE deptno = 10
 WITH CHECK OPTION CONSTRAINT sales_staff_cnst;
13-2 Oracle8 Administrator’s Guide

Managing Views
The query that defines the SALES_STAFF view references only rows in department
10. Furthermore, the CHECK OPTION creates the view with the constraint that
INSERT and UPDATE statements issued against the view cannot result in rows that
the view cannot select. For example, the following INSERT statement successfully
inserts a row into the EMP table by means of the SALES_STAFF view, which con-
tains all rows with department number 10:

INSERT INTO sales_staff VALUES (7584, ’OSTER’, 10);

However, the following INSERT statement is rolled back and returns an error
because it attempts to insert a row for department number 30, which could not be
selected using the SALES_STAFF view:

INSERT INTO sales_staff VALUES (7591, ’WILLIAMS’, 30);

The following statement creates a view that joins data from the EMP and DEPT
tables:

CREATE VIEW division1_staff AS
 SELECT ename, empno, job, dname
 FROM emp, dept
 WHERE emp.deptno IN (10, 30)
 AND emp.deptno = dept.deptno;

The DIVISION1_STAFF view joins information from the EMP and DEPT tables.
The CHECK OPTION is not specified in the CREATE VIEW statement for this view.

Expansion of Defining Queries at View Creation Time
In accordance with the ANSI/ISO standard, Oracle expands any wildcard in a top-
level view query into a column list when a view is created and stores the resulting
query in the data dictionary; any subqueries are left intact. The column names in an
expanded column list are enclosed in quote marks to account for the possibility
that the columns of the base object were originally entered with quotes and require
them for the query to be syntactically correct.

As an example, assume that the DEPT view is created as follows:

CREATE VIEW dept AS SELECT * FROM scott.dept;

Oracle stores the defining query of the DEPT view as:

SELECT ”DEPTNO”, ”DNAME”, ”LOC” FROM scott.dept

Views created with errors do not have wildcards expanded. However, if the view is
eventually compiled without errors, wildcards in the defining query are expanded.
 Managing Views, Sequences and Synonyms 13-3

Managing Views
Creating Views with Errors
If there are no syntax errors in a CREATE VIEW statement, Oracle can create the
view even if the defining query of the view cannot be executed; the view is consid-
ered “created with errors.” For example, when a view is created that refers to a non-
existent table or an invalid column of an existing table, or when the view owner
does not have the required privileges, the view can be created anyway and entered
into the data dictionary. However, the view is not yet usable.

To create a view with errors, you must include the FORCE option of the CREATE
VIEW command:

CREATE FORCE VIEW AS;

By default, views are not created with errors. When a view is created with errors,
Oracle returns a message indicating the view was created with errors. The status of
a view created with errors is INVALID. If conditions later change so that the query
of an invalid view can be executed, the view can be recompiled and become valid
(usable).

See Also: For information changing conditions and their impact on views, see
“Managing Object Dependencies” on page 17-25.

Modifying a Join View
A modifiable join view is a view that contains more than one table in the top-level
FROM clause of the SELECT statement, and that does not contain any of the follow-
ing:

■ DISTINCT operator

■ aggregate functions: AVG, COUNT, GLB, MAX, MIN, STDDEV, SUM, or VARI-
ANCE

■ set operations: UNION, UNION ALL, INTERSECT, MINUS

■ GROUP BY or HAVING clauses

■ START WITH or CONNECT BY clauses

■ ROWNUM pseudocolumn

With some restrictions, you can modify views that involve joins. If a view is a join
on other nested views, then the other nested views must be mergeable into the top
level view.

The examples in following sections use the EMP and DEPT tables. These examples
work only if you explicitly define the primary and foreign keys in these tables, or
13-4 Oracle8 Administrator’s Guide

Managing Views
define unique indexes. Following are the appropriately constrained table defini-
tions for EMP and DEPT:

CREATE TABLE dept (
 deptno NUMBER(4) PRIMARY KEY,
 dname VARCHAR2(14),
 loc VARCHAR2(13));

CREATE TABLE emp (
 empno NUMBER(4) PRIMARY KEY,
 ename VARCHAR2(10),
 job varchar2(9),
 mgr NUMBER(4),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2),
 FOREIGN KEY(DEPTNO) REFERENCES DEPT(DEPTNO));

You could also omit the primary and foreign key constraints listed above, and cre-
ate a UNIQUE INDEX on DEPT (DEPTNO) to make the following examples work.

See Also: For more information about mergeable views see the Oracle8 Tuning man-
ual.

Key-Preserved Tables
The concept of a key-preserved table is fundamental to understanding the restrictions
on modifying join views. A table is key preserved if every key of the table can also
be a key of the result of the join. So, a key-preserved table has its keys preserved
through a join.

The key-preserving property of a table does not depend on the actual data in the
table. It is, rather, a property of its schema and not of the data in the table. For
example, if in the EMP table there was at most one employee in each department,
then DEPT.DEPTNO would be unique in the result of a join of EMP and DEPT, but
DEPT would still not be a key-preserved table.

Note: It is not necessary that the key or keys of a table be selected
for it to be key preserved. It is sufficient that if the key or keys were
selected, then they would also be key(s) of the result of the join.
 Managing Views, Sequences and Synonyms 13-5

Managing Views
If you SELECT all rows from EMP_DEPT_VIEW, the results are:

EMPNO ENAME DEPTNO DNAME LOC
---------- ---------- ---------- -------------- -----
 7782 CLARK 10 ACCOUNTING NEW YORK
 7839 KING 10 ACCOUNTING NEW YORK
 7934 MILLER 10 ACCOUNTING NEW YORK
 7369 SMITH 20 RESEARCH DALLAS
 7876 ADAMS 20 RESEARCH DALLAS
 7902 FORD 20 RESEARCH DALLAS
 7788 SCOTT 20 RESEARCH DALLAS
 7566 JONES 20 RESEARCH DALLAS
8 rows selected.

In this view, EMP is a key-preserved table, because EMPNO is a key of the EMP
table, and also a key of the result of the join. DEPT is not a key-preserved table,
because although DEPTNO is a key of the DEPT table, it is not a key of the join.

DML Statements and Join Views
Any UPDATE, INSERT, or DELETE statement on a join view can modify only one
underlying base table.

UPDATE Statements The following example shows an UPDATE statement that suc-
cessfully modifies the EMP_DEPT view:

UPDATE emp_dept
 SET sal = sal * 1.10
 WHERE deptno = 10;

The following UPDATE statement would be disallowed on the EMP_DEPT view:

UPDATE emp_dept
 SET loc = ’BOSTON’
 WHERE ename = ’SMITH’;

This statement fails with an ORA-01779 error (‘‘cannot modify a column which
maps to a non key-preserved table’’), because it attempts to modify the underlying
DEPT table, and the DEPT table is not key preserved in the EMP_DEPT view.

In general, all modifiable columns of a join view must map to columns of a key-pre-
served table. If the view is defined using the WITH CHECK OPTION clause, then
all join columns and all columns of repeated tables are not modifiable.
13-6 Oracle8 Administrator’s Guide

Managing Views
So, for example, if the EMP_DEPT view were defined using WITH CHECK
OPTION, the following UPDATE statement would fail:

UPDATE emp_dept
 SET deptno = 10
 WHERE ename = ’SMITH’;

The statement fails because it is trying to update a join column.

DELETE Statements You can delete from a join view provided there is one and only
one key-preserved table in the join.

The following DELETE statement works on the EMP_DEPT view:

DELETE FROM emp_dept
 WHERE ename = ’SMITH’;

This DELETE statement on the EMP_DEPT view is legal because it can be trans-
lated to a DELETE operation on the base EMP table, and because the EMP table is
the only key-preserved table in the join.

In the following view, a DELETE operation cannot be performed on the view
because both E1 and E2 are key-preserved tables:

CREATE VIEW emp_emp AS
 SELECT e1.ename, e2.empno, deptno
 FROM emp e1, emp e2
 WHERE e1.empno = e2.empno;

If a view is defined using the WITH CHECK OPTION clause and the key-pre-
served table is repeated, then rows cannot be deleted from such a view:

CREATE VIEW emp_mgr AS
 SELECT e1.ename, e2.ename mname
 FROM emp e1, emp e2
 WHERE e1.mgr = e2.empno
 WITH CHECK OPTION;

No deletion can be performed on this view because the view involves a self-join of
the table that is key preserved.

INSERT Statements The following INSERT statement on the EMP_DEPT view suc-
ceeds:

INSERT INTO emp_dept (ename, empno, deptno)
 VALUES (’KURODA’, 9010, 40);
 Managing Views, Sequences and Synonyms 13-7

Managing Views
This statement works because only one key-preserved base table is being modified
(EMP), and 40 is a valid DEPTNO in the DEPT table (thus satisfying the FOREIGN
KEY integrity constraint on the EMP table).

An INSERT statement like the following would fail for the same reason that such
an UPDATE on the base EMP table would fail: the FOREIGN KEY integrity con-
straint on the EMP table is violated.

INSERT INTO emp_dept (ename, empno, deptno)
 VALUES (’KURODA’, 9010, 77);

The following INSERT statement would fail with an ORA-01776 error (‘‘cannot
modify more than one base table through a view’’).

INSERT INTO emp_dept (empno, ename, loc)
 VALUES (9010, ’KURODA’, ’BOSTON’);

An INSERT cannot implicitly or explicitly refer to columns of a non-key-preserved
table. If the join view is defined using the WITH CHECK OPTION clause, then you
cannot perform an INSERT to it.

Using the UPDATABLE_ COLUMNS Views
The views described in Table 13–1 can assist you when modifying join views.

Table 13–1 UPDATABLE_COLUMNS Views

View Name Description

USER_UPDATABLE_COLUMNS Shows all columns in all tables and
views in the user’s schema that are
modifiable.

DBA_UPDATABLE_COLUMNS Shows all columns in all tables and
views in the DBA schema that are
modifiable.

ALL_UPDATABLE_VIEWS Shows all columns in all tables and
views that are modifiable.
13-8 Oracle8 Administrator’s Guide

Managing Views
Replacing Views
To replace a view, you must have all the privileges required to drop and create a
view. If the definition of a view must change, the view must be replaced; you can-
not alter the definition of a view. You can replace views in the following ways:

■ You can drop and re-create the view.

■ You can redefine the view with a CREATE VIEW statement that contains the
OR REPLACE option. The OR REPLACE option replaces the current definition
of a view and preserves the current security authorizations. For example,
assume that you create the SALES_STAFF view as given in the previous exam-
ple, and grant several object privileges to roles and other users. However, now
you need to redefine the SALES_STAFF view to change the department num-
ber specified in the WHERE clause. You can replace the current version of the
SALES_STAFF view with the following statement:

 CREATE OR REPLACE VIEW sales_staff AS
 SELECT empno, ename, deptno
 FROM emp
 WHERE deptno = 30
 WITH CHECK OPTION CONSTRAINT sales_staff_cnst;

Before replacing a view, consider the following effects:

■ Replacing a view replaces the view’s definition in the data dictionary. All
underlying objects referenced by the view are not affected.

■ If a constraint in the CHECK OPTION was previously defined but not included
in the new view definition, the constraint is dropped.

■ All views and PL/SQL program units dependent on a replaced view become
invalid (not usable). See “Managing Object Dependencies” on page 17-25 for
more information on how Oracle manages such dependencies.

WARNING: When a view is dropped, all grants of corresponding
object privileges are revoked from roles and users. After the view
is re-created, privileges must be re-granted.
 Managing Views, Sequences and Synonyms 13-9

Managing Sequences
Dropping Views
You can drop any view contained in your schema. To drop a view in another user’s
schema, you must have the DROP ANY VIEW system privilege. Drop a view using
the SQL command DROP VIEW. For example, the following statement drops a
view named SALES_STAFF:

DROP VIEW sales_staff;

Managing Sequences
This section describes various aspects of managing sequences, and includes the fol-
lowing topics:

■ Creating Sequences

■ Altering Sequences

■ Initialization Parameters Affecting Sequences

■ Dropping Sequences

Creating Sequences
To create a sequence in your schema, you must have the CREATE SEQUENCE sys-
tem privilege; to create a sequence in another user’s schema, you must have the
CREATE ANY SEQUENCE privilege. Create a sequence using the SQL command
CREATE SEQUENCE. For example, the following statement creates a sequence
used to generate employee numbers for the EMPNO column of the EMP table:

CREATE SEQUENCE emp_sequence
 INCREMENT BY 1
 START WITH 1
 NOMAXVALUE
 NOCYCLE
 CACHE 10;

The CACHE option pre-allocates a set of sequence numbers and keeps them in
memory so that sequence numbers can be accessed faster. When the last of the
sequence numbers in the cache has been used, Oracle reads another set of numbers
into the cache.

Oracle might skip sequence numbers if you choose to cache a set of sequence num-
bers. For example, when an instance abnormally shuts down (for example, when
an instance failure occurs or a SHUTDOWN ABORT statement is issued), sequence
numbers that have been cached but not used are lost. Also, sequence numbers that
13-10 Oracle8 Administrator’s Guide

Managing Sequences
have been used but not saved are lost as well. Oracle might also skip cached
sequence numbers after an export and import; see Oracle8 Utilities for details.

See Also: For information about how the Oracle Parallel Server affects cached
sequence numbers, see Oracle8 Parallel Server Concepts and Administration.

For performance information on caching sequence numbers, see Oracle8 Tuning.

Altering Sequences
To alter a sequence, your schema must contain the sequence, or you must have the
ALTER ANY SEQUENCE system privilege. You can alter a sequence to change any
of the parameters that define how it generates sequence numbers except the
sequence’s starting number. To change the starting point of a sequence, drop the
sequence and then re-create it. When you perform DDL on sequence numbers you
will lose the cache values.

Alter a sequence using the SQL command ALTER SEQUENCE. For example, the
following statement alters the EMP_SEQUENCE:

ALTER SEQUENCE emp_sequence
 INCREMENT BY 10
 MAXVALUE 10000
 CYCLE
 CACHE 20;

Initialization Parameters Affecting Sequences
The initialization parameter SEQUENCE_CACHE_ENTRIES sets the number of
sequences that may be cached at any time. If auditing is enabled for your system,
allow one additional sequence for the sequence to identify audit session numbers.

If the value for SEQUENCE_CACHE_ENTRIES is too low, Oracle might skip
sequence values, as in the following scenario: assume you are using five cached
sequences, the cache is full, and SEQUENCE_CACHE_ENTRIES = 4. If four
sequences are currently cached, then a fifth sequence replaces the least recently
used sequence in the cache and all remaining values (up to the last sequence num-
ber cached) in the displaced sequence are lost.
 Managing Views, Sequences and Synonyms 13-11

Managing Synonyms
Dropping Sequences
You can drop any sequence in your schema. To drop a sequence in another schema,
you must have the DROP ANY SEQUENCE system privilege. If a sequence is no
longer required, you can drop the sequence using the SQL command DROP
SEQUENCE. For example, the following statement drops the ORDER_SEQ
sequence:

DROP SEQUENCE order_seq;

When a sequence is dropped, its definition is removed from the data dictionary.
Any synonyms for the sequence remain, but return an error when referenced.

Managing Synonyms
You can create both public and private synonyms. A public synonym is owned by
the special user group named PUBLIC and is accessible to every user in a database.
A private synonym is contained in the schema of a specific user and available only
to the user and the user’s grantees.

This section includes the following synonym management information:

■ Creating Synonyms

■ Dropping Synonyms

Creating Synonyms
To create a private synonym in your own schema, you must have the CREATE SYN-
ONYM privilege; to create a private synonym in another user’s schema, you must
have the CREATE ANY SYNONYM privilege. To create a public synonym, you
must have the CREATE PUBLIC SYNONYM system privilege.

Create a synonym using the SQL command CREATE SYNONYM. For example, the
following statement creates a public synonym named PUBLIC_EMP on the EMP
table contained in the schema of JWARD:

CREATE PUBLIC SYNONYM public_emp FOR jward.emp;
13-12 Oracle8 Administrator’s Guide

Managing Synonyms
Dropping Synonyms
You can drop any private synonym in your own schema. To drop a private syn-
onym in another user’s schema, you must have the DROP ANY SYNONYM sys-
tem privilege. To drop a public synonym, you must have the DROP PUBLIC
SYNONYM system privilege.

Drop a synonym that is no longer required using the SQL command DROP SYN-
ONYM. To drop a private synonym, omit the PUBLIC keyword; to drop a public
synonym, include the PUBLIC keyword.

For example, the following statement drops the private synonym named EMP:

DROP SYNONYM emp;

The following statement drops the public synonym named PUBLIC_EMP:

DROP PUBLIC SYNONYM public_emp;

When you drop a synonym, its definition is removed from the data dictionary. All
objects that reference a dropped synonym remain; however, they become invalid
(not usable).

See Also: For more information about how dropping synonyms can affect other
schema objects, see “Managing Object Dependencies” on page 17-25.
 Managing Views, Sequences and Synonyms 13-13

Managing Synonyms
13-14 Oracle8 Administrator’s Guide

 Managing In
14

 Managing Indexes

This chapter describes various aspects of index management, and includes the fol-
lowing topics:

■ Guidelines for Managing Indexes

■ Creating Indexes

■ Altering Indexes

■ Monitoring Space Use of Indexes

■ Dropping Indexes

Before attempting tasks described in this chapter, familiarize yourself with the con-
cepts in Chapter 10, Guidelines for Managing Schema Objects.
dexes 14-1

Guidelines for Managing Indexes
Guidelines for Managing Indexes
This section describes guidelines to follow when managing indexes, and includes
the following topics:

■ Create Indexes After Inserting Table Data

■ Limit the Number of Indexes per Table

■ Specify the Tablespace for Each Index

■ Specify Transaction Entry Parameters

■ Specify Index Block Space Use

■ Parallelize Index Creation

■ Consider Creating UNRECOVERABLE Indexes

■ Estimate Index Size and Set Storage Parameters

An index is an optional structure associated with tables and clusters, which you can
create explicitly to speed SQL statement execution on a table. Just as the index in
this manual helps you locate information faster than if there were no index, an Ora-
cle index provides a faster access path to table data.

The absence or presence of an index does not require a change in the wording of
any SQL statement. An index merely offers a fast access path to the data; it affects
only the speed of execution. Given a data value that has been indexed, the index
points directly to the location of the rows containing that value.

Indexes are logically and physically independent of the data in the associated table.
You can create or drop an index at anytime without effecting the base tables or
other indexes. If you drop an index, all applications continue to work; however,
access to previously indexed data might be slower. Indexes, being independent
structures, require storage space.

Oracle automatically maintains and uses indexes after they are created. Oracle auto-
matically reflects changes to data, such as adding new rows, updating rows, or
deleting rows, in all relevant indexes with no additional action by users.

See Also: For information about performance implications of index creation, see
Oracle8 Tuning.

For more information about indexes, see Oracle8 Concepts.
14-2 Oracle8 Administrator’s Guide

Guidelines for Managing Indexes
Create Indexes After Inserting Table Data
You should create an index for a table after inserting or loading data (via
SQL*Loader or Import) into the table. It is more efficient to insert rows of data into
a table that has no indexes and then create the indexes for subsequent access. If you
create indexes before table data is loaded, every index must be updated every time
a row is inserted into the table. You should also create the index for a cluster before
inserting any data into the cluster.

When an index is created on a table that already has data, Oracle must use sort
space. Oracle uses the sort space in memory allocated for the creator of the index
(the amount per user is determined by the initialization parameter
SORT_AREA_SIZE), but must also swap sort information to and from temporary
segments allocated on behalf of the index creation.

If the index is extremely large, you may want to perform the following tasks.

To Manage a Large Index

1. Create a new temporary segment tablespace.

2. Alter the index creator’s temporary segment tablespace.

3. Create the index.

4. Remove the temporary segment tablespace and re-specify the creator’s tempo-
rary segment tablespace, if desired.

See Also: Under certain conditions, data can be loaded into a table with
SQL*Loader’s “direct path load” and an index can be created as data is loaded; see
Oracle8 Utilities for more information.

Limit the Number of Indexes per Table
A table can have any number of indexes. However, the more indexes there are, the
more overhead is incurred as the table is modified. Specifically, when rows are
inserted or deleted, all indexes on the table must be updated as well. Also, when a
column is updated, all indexes that contain the column must be updated.

Thus, there is a trade-off between the speed of retrieving data from a table and the
speed of updating the table. For example, if a table is primarily read-only, having
more indexes can be useful; but if a table is heavily updated, having fewer indexes
may be preferable.
 Managing Indexes 14-3

Guidelines for Managing Indexes
Specify Transaction Entry Parameters
By specifying the INITRANS and MAXTRANS parameters during the creation of
each index, you can affect how much space is initially and can ever be allocated for
transaction entries in the data blocks of an index’s segment.

See Also: For more information about setting these parameters, see “Setting Stor-
age Parameters” on page 10-7.

Specify Index Block Space Use
When an index is created for a table, data blocks of the index are filled with the
existing values in the table up to PCTFREE. The space reserved by PCTFREE for an
index block is only used when a new row is inserted into the table and the corre-
sponding index entry must be placed in the correct index block (that is, between
preceding and following index entries). If no more space is available in the appro-
priate index block, the indexed value is placed in another index block. Therefore, if
you plan on inserting many rows into an indexed table, PCTFREE should be high
to accommodate the new index values. If the table is relatively static without many
inserts, PCTFREE for an associated index can be low so that fewer blocks are
required to hold the index data.

See Also: PCTUSED cannot be specified for indexes. See “Managing Space in Data
Blocks” on page 10-2 for information about the PCTFREE parameter.

Specify the Tablespace for Each Index
Indexes can be created in any tablespace. An index can be created in the same or
different tablespace as the table it indexes.

If you use the same tablespace for a table and its index, then database maintenance
may be more convenient (such as tablespace or file backup and application avail-
ability or update) and all the related data will always be online together.

Using different tablespaces (on different disks) for a table and its index produces
better performance than storing the table and index in the same tablespace, due to
reduced disk contention.

If you use different tablespaces for a table and its index and one tablespace is
offline (containing either data or index), then the statements referencing that table
are not guaranteed to work.
14-4 Oracle8 Administrator’s Guide

Guidelines for Managing Indexes
Parallelize Index Creation
If you have the parallel query option installed, you can parallelize index creation.
Because multiple processes work together to create the index, Oracle can create the
index more quickly than if a single server process created the index sequentially.

When creating an index in parallel, storage parameters are used separately by each
query server process. Therefore, an index created with an INITIAL of 5M and a
PARALLEL DEGREE of 12 consumes at least 60M of storage during index creation.

See Also: For more information on the parallel query option and parallel index cre-
ation, see Oracle8 Tuning.

Consider Creating UNRECOVERABLE Indexes
You can create an index without generating any redo log records by specifying
UNRECOVERABLE in the CREATE INDEX statement.

Creating an unrecoverable index has the following benefits:

■ Space is saved in the redo log files.

■ The time it takes to create the index is decreased.

■ Performance improves for parallel creation of large indexes.

In general, the relative performance improvement is greater for larger unrecover-
able indexes than for smaller ones. Creating small unrecoverable indexes has little
affect on the time it takes to create an index. However, for larger indexes the perfor-
mance improvement can be significant, especially when you are also parallelizing
the index creation.

Estimate Index Size and Set Storage Parameters
Appendix A, “Space Estimations for Schema Objects”, contains equations that help
estimate the size of indexes.

Estimating the size of an index before creating one is useful for the following rea-
sons:

■ You can use the combined estimated size of indexes, along with estimates for
tables, rollback segments, and redo log files, to determine the amount of disk

Note: Because indexes created using UNRECOVERABLE are not
archived, you should perform a backup after you create the index.
 Managing Indexes 14-5

Guidelines for Managing Indexes
space that is required to hold an intended database. From these estimates, you
can make correct hardware purchases and other decisions.

■ You can use the estimated size of an individual index to better manage the disk
space that the index will use. When an index is created, you can set appropriate
storage parameters and improve I/O performance of applications that use the
index.

For example, assume that you estimate the maximum size of a table before cre-
ating it. If you then set the storage parameters when you create the table, fewer
extents will be allocated for the table’s data segment, and all of the table’s data
will be stored in a relatively contiguous section of disk space. This decreases
the time necessary for disk I/O operations involving this table.

The maximum size of a single index entry is roughly one-half the data block size
minus some overhead.

As with tables, you can explicitly set storage parameters when creating an index. If
you explicitly set the storage parameters for an index, try to store the index’s data
in a small number of large extents rather than a large number of small extents.

See Also: For specific information about storage parameters, see “Setting Storage
Parameters” on page 10-7.

For specific information about estimating index size, see Appendix A, “Space Esti-
mations for Schema Objects”.

Considerations Before Disabling or Dropping Constraints
Because unique and primary keys have associated indexes, you should factor in the
cost of dropping and creating indexes when considering whether to disable or drop
a UNIQUE or PRIMARY KEY constraint. If the associated index for a UNIQUE key
or PRIMARY KEY constraint is extremely large, you may save time by leaving the
constraint enabled rather than dropping and re-creating the large index.
14-6 Oracle8 Administrator’s Guide

Creating Indexes
Creating Indexes
This section describes how to create an index, and includes the following topics:

■ Creating an Index Associated with a Constraint

■ Creating an Index Explicitly

■ Re-creating an Existing Index

To enable a UNIQUE key or PRIMARY KEY (which creates an associated index),
the owner of the table needs a quota for the tablespace intended to contain the
index, or the UNLIMITED TABLESPACE system privilege.

LONG and LONG RAW columns cannot be indexed.

Oracle enforces a UNIQUE key or PRIMARY KEY integrity constraint by creating a
unique index on the unique key or primary key. This index is automatically created
by Oracle when the constraint is enabled; no action is required by the issuer of the
CREATE TABLE or ALTER TABLE statement to create the index. This includes both
when a constraint is defined and enabled, and when a defined but disabled con-
straint is enabled.

In general, it is better to create constraints to enforce uniqueness than it is to use the
CREATE UNIQUE INDEX syntax. A constraint’s associated index always assumes
the name of the constraint; you cannot specify a specific name for a constraint
index.

If you do not specify storage options (such as INITIAL and NEXT) for an index, the
default storage options of the host tablespace are automatically used.

Creating an Index Associated with a Constraint
You can set the storage options for the indexes associated with UNIQUE key and
PRIMARY KEY constraints using the ENABLE clause with the USING INDEX
option. The following statement defines a PRIMARY KEY constraint and specifies
the associated index’s storage option:

CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY, . . .)
 ENABLE PRIMARY KEY USING INDEX
 TABLESPACE users
 PCTFREE 0;
 Managing Indexes 14-7

Creating Indexes
Creating an Index Explicitly
You can create indexes explicitly (outside of integrity constraints) using the SQL
command CREATE INDEX. The following statement creates an index named
EMP_ENAME for the ENAME column of the EMP table:

CREATE INDEX emp_ename ON emp(ename)
 TABLESPACE users
 STORAGE (INITIAL 20K
 NEXT 20k
 PCTINCREASE 75)
 PCTFREE 0;

Notice that several storage settings are explicitly specified for the index.

Re-creating an Existing Index
You can create an index using an existing index as the data source. Creating an
index in this manner allows you to change storage characteristics or move to a new
tablespace. Re-creating an index based on an existing data source also removes
intra-block fragmentation. In fact, compared to dropping the index and using the
CREATE INDEX command, re-creating an existing index offers better performance.

Issue the following statement to re-create an existing index:

ALTER INDEX index name REBUILD;

The REBUILD clause must immediately follow the index name, and precede any
other options. Also, the REBUILD clause cannot be used in conjunction with the
DEALLOCATE STORAGE clause.

See Also: For more information on the ALTER INDEX command and optional
clauses, see the Oracle8 SQL Reference.
14-8 Oracle8 Administrator’s Guide

Monitoring Space Use of Indexes
Altering Indexes
To alter an index, your schema must contain the index or you must have the
ALTER ANY INDEX system privilege. You can alter an index only to change the
transaction entry parameters or to change the storage parameters; you cannot
change its column structure.

Alter the storage parameters of any index, including those created by Oracle to
enforce primary and unique key integrity constraints, using the SQL command
ALTER INDEX. For example, the following statement alters the EMP_ENAME
index:

ALTER INDEX emp_ename
 INITRANS 5
 MAXTRANS 10
 STORAGE (PCTINCREASE 50);

When you alter the transaction entry settings (INITRANS, MAXTRANS) of an
index, a new setting for INITRANS only applies to data blocks subsequently allo-
cated, while a new setting for MAXTRANS applies to all blocks (currently and sub-
sequently allocated blocks) of an index.

The storage parameters INITIAL and MINEXTENTS cannot be altered. All new set-
tings for the other storage parameters affect only extents subsequently allocated for
the index.

For indexes that implement integrity constraints, you can also adjust storage param-
eters by issuing an ALTER TABLE statement that includes the ENABLE clause with
the USING INDEX option. For example, the following statement changes the stor-
age options of the index defined in the previous section:

ALTER TABLE emp
 ENABLE PRIMARY KEY USING INDEX
 PCTFREE 5;

Monitoring Space Use of Indexes
If key values in an index are inserted, updated, and deleted frequently, the index
may or may not use its acquired space efficiently over time. Monitor an index’s effi-
ciency of space usage at regular intervals by first analyzing the index’s structure
and then querying the INDEX_STATS view:

SELECT pct_used FROM sys.index_stats WHERE name = ’ indexname ’;
 Managing Indexes 14-9

Dropping Indexes
The percentage of an index’s space usage will vary according to how often index
keys are inserted, updated, or deleted. Develop a history of an index’s average effi-
ciency of space usage by performing the following sequence of operations several
times: validating the index, checking PCT_USED, and dropping and re-creating the
index. When you find that an index’s space usage drops below its average, you can
condense the index’s space by dropping the index and re-creating or rebuilding it.

See Also: For information about analyzing an index’s structure, see “Analyzing
Tables, Indexes, and Clusters” on page 17-3.

Dropping Indexes
To drop an index, the index must be contained in your schema, or you must have
the DROP ANY INDEX system privilege.

You might want to drop an index for any of the following reasons:

■ The index is no longer required.

■ The index is not providing anticipated performance improvements for queries
issued against the associated table. (For example, the table might be very small,
or there might be many rows in the table but very few index entries.)

■ Applications do not use the index to query the data.

■ The index has become invalid and must be dropped before being rebuilt.

■ The index has become too fragmented and must be dropped before being
rebuilt.

When you drop an index, all extents of the index’s segment are returned to the con-
taining tablespace and become available for other objects in the tablespace.

How you drop an index depends on whether you created the index explicitly with
a CREATE INDEX statement, or implicitly by defining a key constraint on a table.

You cannot drop only the index associated with an enabled UNIQUE key or PRI-
MARY KEY constraint. To drop a constraint’s associated index, you must disable or
drop the constraint itself.

DROP INDEX emp_ename;

Note: If a table is dropped, all associated indexes are dropped
automatically.
14-10 Oracle8 Administrator’s Guide

Dropping Indexes
See Also: For information about analyzing indexes, see “Analyzing Tables,
Indexes, and Clusters” on page 17-3.

For more information about dropping a constraint’s associated index, see “Manag-
ing Integrity Constraints” on page 17-14.
 Managing Indexes 14-11

Dropping Indexes
14-12 Oracle8 Administrator’s Guide

 Managing Clu
15

Managing Clusters

This chapter describes aspects of managing clusters (including clustered tables and
indexes), and includes the following topics:

■ Guidelines for Managing Clusters

■ Creating Clusters

■ Altering Clusters

■ Dropping Clusters

Before attempting tasks described in this chapter, familiarize yourself with the con-
cepts in Chapter 10, “Guidelines for Managing Schema Objects”.
sters 15-1

Guidelines for Managing Clusters
Guidelines for Managing Clusters
A cluster provides an optional method of storing table data. A cluster is comprised
of a group of tables that share the same data blocks, which are grouped together
because they share common columns and are often used together. For example, the
EMP and DEPT table share the DEPTNO column. When you cluster the EMP and
DEPT tables (see Figure 15–1), Oracle physically stores all rows for each depart-
ment from both the EMP and DEPT tables in the same data blocks. You should not
use clusters for tables that are frequently accessed individually.

Because clusters store related rows of different tables together in the same data
blocks, properly used clusters offer two primary benefits:

■ Disk I/O is reduced and access time improves for joins of clustered tables.

■ The cluster key is the column, or group of columns, that the clustered tables
have in common. You specify the columns of the cluster key when creating the
cluster. You subsequently specify the same columns when creating every table
added to the cluster. Each cluster key value is stored only once each in the clus-
ter and the cluster index, no matter how many rows of different tables contain
the value.

Therefore, less storage might be required to store related table and index data
in a cluster than is necessary in non-clustered table format. For example, notice
how each cluster key (each DEPTNO) is stored just once for many rows that
contain the same value in both the EMP and DEPT tables.

After creating a cluster, you can create tables in the cluster. However, before any
rows can be inserted into the clustered tables, a cluster index must be created.
Using clusters does not affect the creation of additional indexes on the clustered
tables; they can be created and dropped as usual.
15-2 Oracle8 Administrator’s Guide

Guidelines for Managing Clusters
Figure 15–1 Clustered Table Data

Related data stored
together, more

efficiently

related data stored
apart, taking up

more space

Clustered Tables Unclustered Tables

DNAME10 LOC

SALES BOSTON

EMPNO ENAME

1000
1321
1841

SMITH
JONES
WARD

. . .

. . .

. . .

. . .

DNAME20 LOC

ADMIN NEW YORK

EMPNO ENAME

932
1139
1277

KEHR
WILSON
NORMAN

. . .

. . .

. . .

. . .

Clustered Key
(DEPTO)

ENAMEEMPNO

932
100
1139
1277
1321
1841

DEPTNO

KEHR
SMITH
WILSON
NORMAN
JONES
WARD

20
10
20
20
10
10

. . .

. . .

. . .

. . .

. . .

. . .

. . .

EMP TABLE

DNAMEDEPTNO

10
20

LOC

SALES
ADMIN

BOSTON
NEW YORK

DEPT Table
 Managing Clusters 15-3

Guidelines for Managing Clusters
The following sections describe guidelines to consider when managing clusters,
and includes the following topics:

■ Cluster Appropriate Tables

■ Choose Appropriate Columns for the Cluster Key

■ Specify Data Block Space Use

■ Specify the Space Required by an Average Cluster Key and Its Associated Rows

■ Specify the Location of Each Cluster and Cluster Index Rows

■ Estimate Cluster Size and Set Storage Parameters

See Also: For more information about clusters, see Oracle8 Concepts.

Cluster Appropriate Tables
Use clusters to store one or more tables that are primarily queried (not predomi-
nantly inserted into or updated) and for which the queries often join data of multi-
ple tables in the cluster or retrieve related data from a single table.

Choose Appropriate Columns for the Cluster Key
Choose cluster key columns carefully. If multiple columns are used in queries that
join the tables, make the cluster key a composite key. In general, the characteristics
that indicate a good cluster index are the same as those for any index.

A good cluster key has enough unique values so that the group of rows correspond-
ing to each key value fills approximately one data block. Having too few rows per
cluster key value can waste space and result in negligible performance gains. Clus-
ter keys that are so specific that only a few rows share a common value can cause
wasted space in blocks, unless a small SIZE was specified at cluster creation time
(see below).

Too many rows per cluster key value can cause extra searching to find rows for that
key. Cluster keys on values that are too general (for example, MALE and FEMALE)
result in excessive searching and can result in worse performance than with no clus-
tering.

A cluster index cannot be unique or include a column defined as LONG.

See Also: For information about characteristics of a good index, see “Guidelines for
Managing Indexes” on page 14-2.
15-4 Oracle8 Administrator’s Guide

Guidelines for Managing Clusters
Specify Data Block Space Use
By specifying the PCTFREE and PCTUSED parameters during the creation of a
cluster, you can affect the space utilization and amount of space reserved for
updates to the current rows in the data blocks of a cluster’s data segment. Note that
PCTFREE and PCTUSED parameters set for tables created in a cluster are ignored;
clustered tables automatically use the settings set for the cluster.

See Also: For more information about setting PCTFREE and PCTUSED, see “Man-
aging Space in Data Blocks” on page 10-2.

Specify the Space Required by an Average Cluster Key and Its Associated Rows
The CREATE CLUSTER command has an optional argument, SIZE, which is the
estimated number of bytes required by an average cluster key and its associated
rows. Oracle uses the SIZE parameter when performing the following tasks:

■ estimating the number of cluster keys (and associated rows) that can fit in a
clustered data block

■ limiting the number of cluster keys placed in a clustered data block; this maxi-
mizes the storage efficiency of keys within a cluster

SIZE does not limit the space that can be used by a given cluster key. For example,
if SIZE is set such that two cluster keys can fit in one data block, any amount of the
available data block space can still be used by either of the cluster keys.

By default, Oracle stores only one cluster key and its associated rows in each data
block of the cluster’s data segment. Although block size can vary from one operat-
ing system to the next, the rule of one key per block is maintained as clustered
tables are imported to other databases on other machines.

If all the rows for a given cluster key value cannot fit in one block, the blocks are
chained together to speed access to all the values with the given key. The cluster
index points to the beginning of the chain of blocks, each of which contains the clus-
ter key value and associated rows. If the cluster SIZE is such that more than one
key fits in a block, blocks can belong to more than one chain.

Specify the Location of Each Cluster and Cluster Index Rows
If you have the proper privileges and tablespace quota, you can create a new clus-
ter and the associated cluster index in any tablespace that is currently online.
Always specify the TABLESPACE option in a CREATE CLUSTER/INDEX state-
ment to identify the tablespace to store the new cluster or index.
 Managing Clusters 15-5

Creating Clusters
The cluster and its cluster index can be created in different tablespaces. In fact, cre-
ating a cluster and its index in different tablespaces that are stored on different stor-
age devices allows table data and index data to be retrieved simultaneously with
minimal disk contention.

Estimate Cluster Size and Set Storage Parameters
Following are benefits of estimating a cluster’s size before creating it:

■ You can use the combined estimated size of clusters, along with estimates for
indexes, rollback segments, and redo log files, to determine the amount of disk
space that is required to hold an intended database. From these estimates, you
can make correct hardware purchases and other decisions.

■ You can use the estimated size of an individual cluster to better manage the
disk space that the cluster will use. When a cluster is created, you can set appro-
priate storage parameters and improve I/O performance of applications that
use the cluster.

Whether or not you estimate table size before creation, you can explicitly set stor-
age parameters when creating each non-clustered table. Any storage parameter
that you do not explicitly set when creating or subsequently altering a table auto-
matically uses the corresponding default storage parameter set for the tablespace in
which the table resides. Clustered tables also automatically use the storage parame-
ters of the cluster.

See Also: For information about estimating the size of schema objects, including
clusters, see Appendix A, “Space Estimations for Schema Objects”.

Creating Clusters
This section describes how to create clusters, and includes the following topics:

■ Creating Clustered Tables

■ Creating Cluster Indexes

To create a cluster in your schema, you must have the CREATE CLUSTER system
privilege and a quota for the tablespace intended to contain the cluster or the
UNLIMITED TABLESPACE system privilege.

To create a cluster in another user’s schema, you must have the CREATE ANY
CLUSTER system privilege and the owner must have a quota for the tablespace
intended to contain the cluster or the UNLIMITED TABLESPACE system privilege.
15-6 Oracle8 Administrator’s Guide

Creating Clusters
You can create a cluster using the SQL command CREATE CLUSTER. The follow-
ing statement creates a cluster named EMP_DEPT, which stores the EMP and DEPT
tables, clustered by the DEPTNO column:

CREATE CLUSTER emp_dept (deptno NUMBER(3))
 PCTUSED 80
 PCTFREE 5
 SIZE 600
 TABLESPACE users
 STORAGE (INITIAL 200k
 NEXT 300K
 MINEXTENTS 2
 MAXEXTENTS 20
 PCTINCREASE 33);

Creating Clustered Tables
To create a table in a cluster, you must have either the CREATE TABLE or CREATE
ANY TABLE system privilege. You do not need a tablespace quota or the UNLIM-
ITED TABLESPACE system privilege to create a table in a cluster.

You can create a table in a cluster using the SQL command CREATE TABLE with
the CLUSTER option. The EMP and DEPT tables can be created in the EMP_DEPT
cluster using the following statements:

CREATE TABLE dept (
 deptno NUMBER(3) PRIMARY KEY, . . .)
 CLUSTER emp_dept (deptno);

CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 . . .
 deptno NUMBER(3) REFERENCES dept)
 CLUSTER emp_dept (deptno);

Note: You can specify the schema for a clustered table in the CRE-
ATE TABLE statement; a clustered table can be in a different
schema than the schema containing the cluster.
 Managing Clusters 15-7

Altering Clusters
Creating Cluster Indexes
To create a cluster index, one of the following conditions must be true:

■ Your schema contains the cluster and you have the CREATE INDEX system
privilege.

■ You have the CREATE ANY INDEX system privilege.

In either case, you must also have either a quota for the tablespace intended to con-
tain the cluster index, or the UNLIMITED TABLESPACE system privilege.

A cluster index must be created before any rows can be inserted into any clustered
table. The following statement creates a cluster index for the EMP_DEPT cluster:

CREATE INDEX emp_dept_index
 ON CLUSTER emp_dept
 INITRANS 2
 MAXTRANS 5
 TABLESPACE users
 STORAGE (INITIAL 50K
 NEXT 50K
 MINEXTENTS 2
 MAXEXTENTS 10
 PCTINCREASE 33)
 PCTFREE 5;

The cluster key establishes the relationship of the tables in the cluster. Several stor-
age settings are explicitly specified for the cluster and cluster index.

See Also: See Chapter 21, Managing User Privileges and Roles for more informa-
tion about system privileges, and Chapter 20, Managing Users and Resources for
information about tablespace quotas.

Altering Clusters
You can alter an existing cluster to change the following settings:

■ data block space usage parameters (PCTFREE, PCTUSED)

■ the average cluster key size (SIZE)

■ transaction entry settings (INITRANS, MAXTRANS)

■ storage parameters (NEXT, PCTINCREASE)

To alter a cluster, your schema must contain the cluster or you must have the
ALTER ANY CLUSTER system privilege.
15-8 Oracle8 Administrator’s Guide

Altering Clusters
When you alter data block space usage parameters (PCTFREE and PCTUSED) or
the cluster size parameter (SIZE) of a cluster, the new settings apply to all data
blocks used by the cluster, including blocks already allocated and blocks subse-
quently allocated for the cluster. Blocks already allocated for the table are reorga-
nized when necessary (not immediately).

When you alter the transaction entry settings (INITRANS, MAXTRANS) of a clus-
ter, a new setting for INITRANS applies only to data blocks subsequently allocated
for the cluster, while a new setting for MAXTRANS applies to all blocks (already
and subsequently allocated blocks) of a cluster.

The storage parameters INITIAL and MINEXTENTS cannot be altered. All new set-
tings for the other storage parameters affect only extents subsequently allocated for
the cluster.

To alter a cluster, use the SQL command ALTER CLUSTER. The following state-
ment alters the EMP_DEPT cluster:

ALTER CLUSTER emp_dept
 PCTFREE 30
 PCTUSED 60;

Altering Cluster Tables and Cluster Indexes
You can alter clustered tables using the SQL command ALTER TABLE. However,
any data block space parameters, transaction entry parameters, or storage parame-
ters you set in an ALTER TABLE statement for a clustered table generate an error
message (ORA-01771, “illegal option for a clustered table”). Oracle uses the parame-
ters of the cluster for all clustered tables. Therefore, you can use the ALTER TABLE
command only to add or modify columns, or add, drop, enable, or disable integrity
constraints or triggers for a clustered table.

Manually Allocating Storage for a Cluster
Oracle dynamically allocates additional extents for the data segment of a cluster as
required. In some circumstances, however, you might want to allocate an addi-
tional extent for a cluster explicitly. For example, when using the Oracle Parallel
Server, you can allocate an extent of a cluster explicitly for a specific instance.

Note: When estimating the size of cluster indexes, remember that
the index is on each cluster key, not the actual rows; therefore, each
key will only appear once in the index.
 Managing Clusters 15-9

Dropping Clusters
You allocate a new extent for a cluster using the SQL command ALTER CLUSTER
with the ALLOCATE EXTENT option.

See Also: For information about altering tables, see “Altering Tables” on page 12-7.

You alter cluster indexes exactly as you do other indexes. For more information, see
“Altering Indexes” on page 14-9.

For more information about the CLUSTER parameter in the ALTER CLUSTER com-
mand, see Oracle8 Parallel Server Concepts and Administration.

Dropping Clusters
This section describes aspects of dropping clusters, and includes the following top-
ics:

■ Dropping Clustered Tables

■ Dropping Cluster Indexes

A cluster can be dropped if the tables within the cluster are no longer necessary.
When a cluster is dropped, so are the tables within the cluster and the correspond-
ing cluster index; all extents belonging to both the cluster’s data segment and the
index segment of the cluster index are returned to the containing tablespace and
become available for other segments within the tablespace.

Dropping Clustered Tables
To drop a cluster, your schema must contain the cluster or you must have the
DROP ANY CLUSTER system privilege. You do not have to have additional privi-
leges to drop a cluster that contains tables, even if the clustered tables are not
owned by the owner of the cluster.

Clustered tables can be dropped individually without affecting the table’s cluster,
other clustered tables, or the cluster index. A clustered table is dropped just as a
non-clustered table is dropped—with the SQL command DROP TABLE.

Note: When you drop a single table from a cluster, Oracle deletes
each row of the table individually. To maximize efficiency when
you intend to drop an entire cluster, drop the cluster including all
tables by using the DROP CLUSTER command with the INCLUD-
ING TABLES option. Drop an individual table from a cluster
(using the DROP TABLE command) only if you want the rest of the
cluster to remain.
15-10 Oracle8 Administrator’s Guide

Dropping Clusters
See Also: For information about dropping a table, see “Dropping Tables” on
page 12-9.

Dropping Cluster Indexes
A cluster index can be dropped without affecting the cluster or its clustered tables.
However, clustered tables cannot be used if there is no cluster index; you must re-
create the cluster index to allow access to the cluster. Cluster indexes are sometimes
dropped as part of the procedure to rebuild a fragmented cluster index.

To drop a cluster that contains no tables, and its cluster index, use the SQL com-
mand DROP CLUSTER. For example, the following statement drops the empty
cluster named EMP_DEPT:

DROP CLUSTER emp_dept;

If the cluster contains one or more clustered tables and you intend to drop the
tables as well, add the INCLUDING TABLES option of the DROP CLUSTER com-
mand, as follows:

DROP CLUSTER emp_dept INCLUDING TABLES;

If the INCLUDING TABLES option is not included and the cluster contains tables,
an error is returned.

If one or more tables in a cluster contain primary or unique keys that are referenced
by FOREIGN KEY constraints of tables outside the cluster, the cluster cannot be
dropped unless the dependent FOREIGN KEY constraints are also dropped. This
can be easily done using the CASCADE CONSTRAINTS option of the DROP
CLUSTER command, as shown in the following example:

DROP CLUSTER emp_dept INCLUDING TABLES CASCADE CONSTRAINTS;

Oracle returns an error if you do not use the CASCADE CONSTRAINTS option
and constraints exist.

See Also: For information about dropping an index, see “Dropping Indexes” on
page 14-10.
 Managing Clusters 15-11

Dropping Clusters
15-12 Oracle8 Administrator’s Guide

 Managing Hash Clu
16

Managing Hash Clusters

This chapter describes how to manage hash clusters, and includes the following
topics:

■ Guidelines for Managing Hash Clusters

■ Altering Hash Clusters

■ Dropping Hash Clusters

See Also: Before attempting tasks described in this chapter, familiarize yourself
with the concepts in Chapter 10, Guidelines for Managing Schema Objects.
sters 16-1

Guidelines for Managing Hash Clusters
Guidelines for Managing Hash Clusters
This section describes guidelines to consider before attempting to manage hash
clusters, and includes the following topics:

■ Advantages of Hashing

■ Disadvantages of Hashing

■ Estimate Size Required by Hash Clusters and Set Storage Parameters

Storing a table in a hash cluster is an optional way to improve the performance of
data retrieval. A hash cluster provides an alternative to a non-clustered table with
an index or an index cluster. With an indexed table or index cluster, Oracle locates
the rows in a table using key values that Oracle stores in a separate index. To use
hashing, you create a hash cluster and load tables into it. Oracle physically stores
the rows of a table in a hash cluster and retrieves them according to the results of a
hash function.

Oracle uses a hash function to generate a distribution of numeric values, called hash
values, which are based on specific cluster key values. The key of a hash cluster, like
the key of an index cluster, can be a single column or composite key (multiple col-
umn key). To find or store a row in a hash cluster, Oracle applies the hash function
to the row’s cluster key value; the resulting hash value corresponds to a data block
in the cluster, which Oracle then reads or writes on behalf of the issued statement.

To find or store a row in an indexed table or cluster, a minimum of two (there are
usually more) I/Os must be performed:

■ one or more I/Os to find or store the key value in the index

■ another I/O to read or write the row in the table or cluster

In contrast, Oracle uses a hash function to locate a row in a hash cluster; no I/O is
required. As a result, a minimum of one I/O operation is necessary to read or write
a row in a hash cluster.

Advantages of Hashing
If you opt to use indexing rather than hashing, consider whether to store a table
individually or as part of a cluster.

Hashing is most advantageous when you have the following conditions:

■ Most queries are equality queries on the cluster key:

 SELECT . . . WHERE cluster_key = . . . ;
16-2 Oracle8 Administrator’s Guide

Guidelines for Managing Hash Clusters
In such cases, the cluster key in the equality condition is hashed, and the corre-
sponding hash key is usually found with a single read. In comparison, for an
indexed table the key value must first be found in the index (usually several
reads), and then the row is read from the table (another read).

■ The tables in the hash cluster are primarily static in size so that you can deter-
mine the number of rows and amount of space required for the tables in the
cluster. If tables in a hash cluster require more space than the initial allocation
for the cluster, performance degradation can be substantial because overflow
blocks are required.

Disadvantages of Hashing
Hashing is not advantageous in the following situations:

■ Most queries on the table retrieve rows over a range of cluster key values. For
example, in full table scans or queries like the following, a hash function cannot
be used to determine the location of specific hash keys; instead, the equivalent
of a full table scan must be done to fetch the rows for the query:

 SELECT . . . WHERE cluster_key < . . . ;

With an index, key values are ordered in the index, so cluster key values that
satisfy the WHERE clause of a query can be found with relatively few I/Os.

■ The table is not static and continually growing. If a table grows without limit,
the space required over the life of the table (its cluster) cannot be pre-deter-
mined.

■ Applications frequently perform full-table scans on the table and the table is
sparsely populated. A full-table scan in this situation takes longer under hash-
ing.

■ You cannot afford to pre-allocate the space that the hash cluster will eventually
need.

See Also: For more information about creating hash clusters and specifying hash
functions see the Oracle8 SQL Reference.

For information about hash functions and specifying user-defined hash functions,
see Oracle8 Concepts.

Even if you decide to use hashing, a table can still have separate indexes on any col-
umns, including the cluster key. See the Oracle8 Application Developer’s Guide for
additional recommendations.
 Managing Hash Clusters 16-3

Guidelines for Managing Hash Clusters
Estimate Size Required by Hash Clusters and Set Storage Parameters
As with index clusters, it is important to estimate the storage required for the data
in a hash cluster.

Oracle guarantees that the initial allocation of space is sufficient to store the hash
table according to the settings SIZE and HASHKEYS. If settings for the storage
parameters INITIAL, NEXT, and MINEXTENTS do not account for the hash table
size, incremental (additional) extents are allocated until at least SIZE*HASHKEYS
is reached. For example, assume that the data block size is 2K, the available data
space per block is approximately 1900 bytes (data block size minus overhead), and
that the STORAGE and HASH parameters are specified in the CREATE CLUSTER
command as follows:

STORAGE (INITIAL 100K
 NEXT 150K
 MINEXTENTS 1
 PCTINCREASE 0)
SIZE 1500
HASHKEYS 100

In this example, only one hash key can be assigned per data block. Therefore, the
initial space required for the hash cluster is at least 100*2K or 200K. The settings for
the storage parameters do not account for this requirement. Therefore, an initial
extent of 100K and a second extent of 150K are allocated to the hash cluster.

Alternatively, assume the HASH parameters are specified as follows:

SIZE 500 HASHKEYS 100

In this case, three hash keys are assigned to each data block. Therefore, the initial
space required for the hash cluster is at least 34*2K or 68K. The initial settings for
the storage parameters are sufficient for this requirement (an initial extent of 100K
is allocated to the hash cluster).

See Also: To estimate the size of a hash cluster, use the procedure given in “Estimat-
ing Space Required by Clusters” on page A-10.
16-4 Oracle8 Administrator’s Guide

Guidelines for Managing Hash Clusters
Creating Hash Clusters
After a hash cluster is created, tables can be created in the cluster. A hash cluster is
created using the SQL command CREATE CLUSTER. For example, the following
statement creates a cluster named TRIAL_CLUSTER that stores the TRIAL table,
clustered by the TRIALNO column:

CREATE CLUSTER trial_cluster (trialno NUMBER(5,0))
 PCTUSED 80
 PCTFREE 5
 TABLESPACE users
 STORAGE (INITIAL 250K NEXT 50K
 MINEXTENTS 1 MAXEXTENTS 3
 PCTINCREASE 0)
 HASH IS trialno HASHKEYS 150;

CREATE TABLE trial (
 trialno NUMBER(5,0) PRIMARY KEY,
 ...)
 CLUSTER trial_cluster (trialno);

The following sections explain setting the parameters of the CREATE CLUSTER
command specific to hash clusters.

See Also: For additional information about creating tables in a cluster, guidelines
for setting other parameters of the CREATE CLUSTER command, and the privi-
leges required to create a hash cluster, see “Creating Clusters” on page 15-6.

Controlling Space Use Within a Hash Cluster
When creating a hash cluster, it is important to choose the cluster key correctly and
set the HASH IS, SIZE, and HASHKEYS parameters so that performance and space
use are optimal. The following guidelines describe how to set these parameters.

Choosing the Key
Choosing the correct cluster key is dependent on the most common types of que-
ries issued against the clustered tables. For example, consider the EMP table in a
hash cluster. If queries often select rows by employee number, the EMPNO column
should be the cluster key; if queries often select rows by department number, the
DEPTNO column should be the cluster key. For hash clusters that contain a single
table, the cluster key is typically the entire primary key of the contained table.

The key of a hash cluster, like that of an index cluster, can be a single column or a
composite key (multiple column key). A hash cluster with a composite key must
use Oracle’s internal hash function.
 Managing Hash Clusters 16-5

Guidelines for Managing Hash Clusters
Setting HASH IS
Only specify the HASH IS parameter if the cluster key is a single column of the
NUMBER datatype, and contains uniformly distributed integers. If the above condi-
tions apply, you can distribute rows in the cluster so that each unique cluster key
value hashes, with no collisions, to a unique hash value. If these conditions do not
apply, omit this option so that you use the internal hash function.

Setting SIZE
SIZE should be set to the average amount of space required to hold all rows for any
given hash key. Therefore, to properly determine SIZE, you must be aware of the
characteristics of your data:

■ If the hash cluster is to contain only a single table and the hash key values of
the rows in that table are unique (one row per value), SIZE can be set to the
average row size in the cluster.

■ If the hash cluster is to contain multiple tables, SIZE can be set to the average
amount of space required to hold all rows associated with a representative
hash value.

See Also: To estimate a preliminary value for SIZE, follow the procedures given in
Appendix A, “Space Estimations for Schema Objects”. If the preliminary value for
SIZE is small (more than four hash keys can be assigned per data block), you can
use this value for SIZE in the CREATE CLUSTER command.

However, if the value of SIZE is large (fewer than five hash keys can be assigned
per data block), you should also consider the expected frequency of collisions and
whether performance of data retrieval or efficiency of space usage is more impor-
tant to you:

■ If the hash cluster does not use the internal hash function (if you specified
HASH IS) and you expect little or no collisions, you can set SIZE as estimated;
no collisions occur and space is used as efficiently as possible.

■ If you expect frequent collisions on inserts, the likelihood of overflow blocks
being allocated to store rows is high. To reduce the possibility of overflow
16-6 Oracle8 Administrator’s Guide

Guidelines for Managing Hash Clusters
blocks and maximize performance when collisions are frequent, you should
increase SIZE according to Table 16–1.

Overestimating the value of SIZE increases the amount of unused space in the clus-
ter. If space efficiency is more important than the performance of data retrieval, dis-
regard the above adjustments and use the estimated value for SIZE.

Setting HASHKEYS
For maximum distribution of rows in a hash cluster, HASHKEYS should always be
a prime number.

For example, suppose you cluster the EMP table by DEPTNO, and there are 100
DEPTNOs, with values 10, 20, . . ., 1000. Assuming you bypass the internal hash
function and you create a cluster with HASHKEYS of 100, then department 10 will
hash to 10, department 20 to 20, . . ., department 110 to 10 (110 mod 100), depart-
ment 120 to 20, and so on. Notice that there are 10 entries for hash values of 10, 20 .
. ., but none for 1, 2, . . ., and so on. As a result, there is a lot of wasted space and
possibly a lot of overflow blocks because of collisions. Alternatively, if HASHKEYS
is set to 101, then each department number hashes to a unique hash key value.

Controlling Space in Hash Clusters: Examples
The following examples show how to correctly choose the cluster key and set the
HASH IS, SIZE, and HASHKEYS parameters. For all examples, assume that the

Table 16–1 SIZE Increase Chart

Available Space per
Block/Calculated SIZE Setting for SIZE

1 Calculated SIZE
2 Calculated SIZE +

15%
3 Calculated SIZE +

12%
4 Calculated SIZE + 8%
>4 Calculated SIZE
 Managing Hash Clusters 16-7

Guidelines for Managing Hash Clusters
data block size is 2K and that on average, 1950 bytes of each block is available data
space (block size minus overhead).

Example 1 You decide to load the EMP table into a hash cluster. Most
queries retrieve employee records by their employee num-
ber. You estimate that the maximum number of rows in the
EMP table at any given time is 10000 and that the average
row size is 55 bytes.

In this case, EMPNO should be the cluster key. Since this col-
umn contains integers that are unique, the internal hash
function can be bypassed. SIZE can be set to the average row
size, 55 bytes; note that 34 hash keys are assigned per data
block. HASHKEYS can be set to the number of rows in the
table, 10000, rounded up to the next highest prime number,
10001:

CREATE CLUSTER emp_cluster (empno
NUMBER)
. . .
SIZE 55
HASH IS empno HASHKEYS 10001;

Example 2 Conditions similar to the previous example exist. In this
case, however, rows are usually retrieved by department
number. At most, there are 1000 departments with an aver-
age of 10 employees per department. Note that department
numbers increment by 10 (0, 10, 20, 30, . . .).

In this case, DEPTNO should be the cluster key. Since this
column contains integers that are uniformly distributed, the
internal hash function can be bypassed. A pre-estimated
SIZE (the average amount of space required to hold all rows
per department) is 55 bytes * 10, or 550 bytes. Using this
value for SIZE, only three hash keys can be assigned per
data block. If you expect some collisions and want maxi-
mum performance of data retrieval, slightly alter your esti-
mated SIZE to prevent collisions from requiring overflow
blocks. By adjusting SIZE by 12%, to 620 bytes (see previous
section about setting SIZE for clarification), only three hash
keys are assigned per data block, leaving more space for
rows from expected collisions.
16-8 Oracle8 Administrator’s Guide

Guidelines for Managing Hash Clusters
HASHKEYS can be set to the number of unique department
numbers, 1000, rounded up to the next highest prime num-
ber, 1009:

CREATE CLUSTER emp_cluster (deptno NUMBER)
. . .
SIZE 620
HASH IS deptno HASHKEYS 1009;
 Managing Hash Clusters 16-9

Altering Hash Clusters
Altering Hash Clusters
You can alter a hash cluster with the SQL command ALTER CLUSTER:

ALTER CLUSTER emp_dept . . . ;

The implications for altering a hash cluster are identical to those for altering an
index cluster. However, note that the SIZE, HASHKEYS, and HASH IS parameters
cannot be specified in an ALTER CLUSTER statement. You must re-create the clus-
ter to change these parameters and then copy the data from the original cluster.

See Also: For more information about altering an index cluster, see “Altering Clus-
ters” on page 15-8.

Dropping Hash Clusters
You can drop a hash cluster using the SQL command DROP CLUSTER:

DROP CLUSTER emp_dept;

A table in a hash cluster is dropped using the SQL command DROP TABLE. The
implications of dropping hash clusters and tables in hash clusters are the same for
index clusters.

See Also: For more information about dropping clusters, see “Dropping Clusters”
on page 15-10.
16-10 Oracle8 Administrator’s Guide

 General Management of Schema O
17

General Management of Schema Objects

This chapter describes general schema object management issues that fall outside
the scope of Chapters 10 through 15, and includes the following topics:

■ Creating Multiple Tables and Views in A Single Operation

■ Renaming Schema Objects

■ Analyzing Tables, Indexes, and Clusters

■ Truncating Tables and Clusters

■ Enabling and Disabling Triggers

■ Managing Integrity Constraints

■ Managing Object Dependencies

■ Managing Object Name Resolution

■ Changing Storage Parameters for the Data Dictionary

■ Displaying Information About Schema Objects
bjects 17-1

Creating Multiple Tables and Views in A Single Operation
Creating Multiple Tables and Views in A Single Operation
To create schema objects you must have the required privileges for any included
operation. For example, to create multiple tables using the CREATE SCHEMA com-
mand, you must have the privileges required to create tables.

You can create several tables and views and grant privileges in one operation using
the SQL command CREATE SCHEMA. The CREATE SCHEMA command is useful
if you want to guarantee the creation of several tables and views and grants in one
operation. If an individual table, view or grant fails, the entire statement is rolled
back. None of the objects are created, nor are the privileges granted. The following
statement creates two tables and a view that joins data from the two tables:

CREATE SCHEMA AUTHORIZATION scott
 CREATE TABLE dept (
 deptno NUMBER(3,0) PRIMARY KEY,
 dname VARCHAR2(15),
 loc VARCHAR2(25)
 CREATE TABLE emp (
 empno NUMBER(5,0) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 job VARCHAR2(10),
 mgr NUMBER(5,0),
 hiredate DATE DEFAULT (sysdate),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(3,0) NOT NULL
 CONSTRAINT dept_fkey REFERENCES dept)
 CREATE VIEW sales_staff AS
 SELECT empno, ename, sal, comm
 FROM emp
 WHERE deptno = 30
 WITH CHECK OPTION CONSTRAINT sales_staff_cnst
 GRANT SELECT ON sales_staff TO human_resources;

The CREATE SCHEMA command does not support Oracle extensions to the ANSI
CREATE TABLE and CREATE VIEW commands; this includes the STORAGE
clause.

Renaming Schema Objects
To rename an object, you must own it. You can rename schema objects in either of
the following ways:

■ drop and re-create the object

■ rename the object using the SQL command RENAME
17-2 Oracle8 Administrator’s Guide

Analyzing Tables, Indexes, and Clusters
If you drop and re-create an object, all privileges granted for that object are lost.
Privileges must be re-granted when the object is re-created. Alternatively, a table,
view, sequence, or a private synonym of a table, view, or sequence can be renamed
using the RENAME command. When using the RENAME command, grants made
for the object are carried forward for the new name. For example, the following
statement renames the SALES_STAFF view:

RENAME sales_staff TO dept_30;

Before renaming a schema object, consider the following effects:

■ All views and PL/SQL program units dependent on a renamed object become
invalid, and must be recompiled before next use.

■ All synonyms for a renamed object return an error when used.

See Also: For more information about how Oracle manages object dependencies,
see “Managing Object Dependencies” on page 17-25.

Analyzing Tables, Indexes, and Clusters
This section describes how to analyze tables, indexes, and clusters, and includes the
following topics:

■ Using Statistics for Tables, Indexes, and Clusters

■ Validating Tables, Indexes, and Clusters

■ Listing Chained Rows of Tables and Clusters

You can analyze a table, index, or cluster to gather data about it, or to verify the
validity of its storage format. To analyze a table, cluster, or index, you must own
the table, cluster, or index or have the ANALYZE ANY system privilege.

These schema objects can also be analyzed to collect or update statistics about spe-
cific objects. When a DML statement is issued, the statistics for the referenced
objects are used to determine the most efficient execution plan for the statement.
This optimization is called “cost-based optimization.” The statistics are stored in
the data dictionary.

Note: You cannot rename a stored PL/SQL program unit, public
synonym, index, or cluster. To rename such an object, you must
drop and re-create it.
 General Management of Schema Objects 17-3

Analyzing Tables, Indexes, and Clusters
A table, index, or cluster can be analyzed to validate the structure of the object. For
example, in rare cases such as hardware or other system failures, an index can
become corrupted and not perform correctly. When validating the index, you can
confirm that every entry in the index points to the correct row of the associated
table. If a schema object is corrupt, you can drop and re-create it.

A table or cluster can be analyzed to collect information about chained rows of the
table or cluster. These results are useful in determining whether you have enough
room for updates to rows. For example, this information can show whether PCT-
FREE is set appropriately for the table or cluster.

See Also: For more information about analyzing tables, indexes, and clusters for
performance statistics and the optimizer, see Oracle8 Tuning.

Using Statistics for Tables, Indexes, and Clusters
Statistics about the physical storage characteristics of a table, index, or cluster can
be gathered and stored in the data dictionary using the SQL command ANALYZE
with the STATISTICS option. Oracle can use these statistics when cost-based optimi-
zation is employed to choose the most efficient execution plan for SQL statements
accessing analyzed objects. You can also use statistics generated by this command
to write efficient SQL statements that access analyzed objects.

You can compute or estimate statistics using the ANALYZE command, with either
the COMPUTE STATISTICS or ESTIMATE STATISTICS option:

COMPUTE

STATISTICS

When computing statistics, an entire object is scanned to
gather data about the object. This data is used by Oracle to
compute exact statistics about the object. Slight variances
throughout the object are accounted for in these computed
statistics. Because an entire object is scanned to gather
information for computed statistics, the larger the size of
an object, the more work that is required to gather the nec-
essary information.
17-4 Oracle8 Administrator’s Guide

Analyzing Tables, Indexes, and Clusters
See Also: For more information about the SQL command ANALYZE, see the
Oracle8 SQL Reference.

For more information about the data dictionary views containing statistics, see the
Oracle8 Reference.

ESTIMATE

STATISTICS

When estimating statistics, Oracle gathers representative
information from portions of an object. This subset of
information provides reasonable, estimated statistics
about the object. The accuracy of estimated statistics
depends upon how representative the sampling used by
Oracle is. Only parts of an object are scanned to gather
information for estimated statistics, so an object can be
analyzed quickly. You can optionally specify the number
or percentage of rows that Oracle should use in making
the estimate.

Note: When calculating statistics for tables or clusters, the
amount of temporary space required to perform the calculation is
related to the number of rows specified. For COMPUTE STATIS-
TICS, enough temporary space to hold and sort the entire table
plus a small overhead for each row is required. For ESTIMATE
STATISTICS, enough temporary space to hold and sort the
requested sample of rows plus a small overhead for each row is
required. For indexes, no temporary space is required for analyz-
ing.
 General Management of Schema Objects 17-5

Analyzing Tables, Indexes, and Clusters
Viewing Object Statistics
Whether statistics for an object are computed or estimated, the statistics are stored
in the data dictionary. The statistics can be queried using the following data dictio-
nary views:

■ USER_INDEXES, ALL_INDEXES, DBA_INDEXES

■ USER_TABLES, ALL_TABLES, DBA_TABLES

■ USER_TAB_COLUMNS, ALL_TAB_COLUMNS, DBA_TAB_COLUMNS

Table Statistics You can gather the following statistics on a table:

■ number of rows

■ number of blocks that have been used *

■ number of blocks never used

■ average available free space

■ number of chained rows

■ average row length

■ number of distinct values per column

■ the second smallest value per column *

■ the second largest value per column *

Note: Rows in these views contain entries in the statistics col-
umns only for indexes, tables, and clusters for which you have
gathered statistics. The entries are updated for an object each time
you ANALYZE the object.

Note: The * symbol indicates that the numbers will always be an
exact value when computing statistics.

Note: Statistics for all indexes associated with a table are automat-
ically gathered when the table is analyzed.
17-6 Oracle8 Administrator’s Guide

Analyzing Tables, Indexes, and Clusters
Index Statistics You can gather the following statistics on an index:

■ index level *

■ number of leaf blocks

■ number of distinct keys

■ average number of leaf blocks/key

■ average number of data blocks/key

■ clustering factor

■ minimum key value *

■ maximum key value*

Cluster Statistics The only statistic that can be gathered for a cluster is the average
cluster key chain length; this statistic can be estimated or computed. Statistics for
tables in a cluster and all indexes associated with the cluster’s tables (including the
cluster key index) are automatically gathered when the cluster is analyzed for statis-
tics.

Computing Statistics
The following statement computes statistics for the EMP table:

ANALYZE TABLE emp COMPUTE STATISTICS;

The following query estimates statistics on the EMP table, using the default statisti-
cal sample of 1064 rows:

ANALYZE TABLE emp ESTIMATE STATISTICS;

Note: If the data dictionary currently contains statistics for the
specified object when an ANALYZE statement is issued, the new
statistics replace the old statistics in the data dictionary.
 General Management of Schema Objects 17-7

Analyzing Tables, Indexes, and Clusters
To specify the statistical sample that Oracle should use, include the SAMPLE
option with the ESTIMATE STATISTICS option. You can specify an integer that
indicates either a number of rows or index values, or a percentage of the rows or
index values in the table. The following statements show examples of each option:

ANALYZE TABLE emp
 ESTIMATE STATISTICS
 SAMPLE 2000 ROWS;
ANALYZE TABLE emp
 ESTIMATE STATISTICS
 SAMPLE 33 PERCENT;

In either case, if you specify a percentage greater than 50, or a number of rows or
index values that is greater than 50% of those in the object, Oracle computes the
exact statistics, rather than estimating.

Removing Statistics for a Schema Object
You can remove statistics for a table, index, or cluster from the data dictionary
using the ANALYZE command with the DELETE STATISTICS option. For exam-
ple, you might want to delete statistics for an object if you do not want cost-based
optimization to be used for statements regarding the object. The following state-
ment deletes statistics for the EMP table from the data dictionary:

ANALYZE TABLE emp DELETE STATISTICS;

Shared SQL and Analyzing Statistics
Analyzing a table, cluster, or index can affect current shared SQL statements, which
are statements currently in the shared pool. Whenever an object is analyzed to
update or delete statistics, all shared SQL statements that reference the analyzed
object are flushed from memory so that the next execution of the statement can take
advantage of the new statistics.

You can call the following procedures:

DBMS_UTILITY.-
ANALYZE_SCHEMA()

This procedure takes two arguments: the name
of a schema and an analysis method (’COM-
PUTE’, ’ESTIMATE’, or ’DELETE’). It gathers
statistics on all of the objects in the schema.
17-8 Oracle8 Administrator’s Guide

Analyzing Tables, Indexes, and Clusters
You should call these procedures periodically to update the statistics.

Validating Tables, Indexes, and Clusters
To verify the integrity of the structure of a table, index, cluster, or snapshot, use the
ANALYZE command with the VALIDATE STRUCTURE option. If the structure is
valid, no error is returned. However, if the structure is corrupt, you receive an error
message. If a table, index, or cluster is corrupt, you should drop it and re-create it.
If a snapshot is corrupt, perform a complete refresh and ensure that you have reme-
died the problem; if not, drop and re-create the snapshot.

The following statement analyzes the EMP table:

ANALYZE TABLE emp VALIDATE STRUCTURE;

You can validate an object and all related objects by including the CASCADE
option. The following statement validates the EMP table and all associated indexes:

ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE;

Listing Chained Rows of Tables and Clusters
You can look at the chained and migrated rows of a table or cluster using the ANA-
LYZE command with the LIST CHAINED ROWS option. The results of this com-
mand are stored in a specified table created explicitly to accept the information
returned by the LIST CHAINED ROWS option.

To create an appropriate table to accept data returned by an ANALYZE... LIST
CHAINED ROWS statement, use the UTLCHAIN.SQL script provided with Ora-
cle. The UTLCHAIN.SQL script creates a table named CHAINED_ROWS in the
schema of the user submitting the script.

After a CHAINED_ROWS table is created, you can specify it when using the ANA-
LYZE command. For example, the following statement inserts rows containing
information about the chained rows in the EMP_DEPT cluster into the
CHAINED_ROWS table:

DBMS_DDL.-

ANALYZE_OBJECTS()

This procedure takes four arguments: the type
of an object (’CLUSTER’, ’TABLE’, or ’INDEX’),
the schema of the object, the name of the object,
and an analysis method (’COMPUTE’, ’ESTI-
MATE’, or ’DELETE’). It gathers statistics on
the object.
 General Management of Schema Objects 17-9

Truncating Tables and Clusters
ANALYZE CLUSTER emp_dept LIST CHAINED ROWS INTO chained_rows;

See Also: The name and location of the UTLCHAIN.SQL script are operating sys-
tem-dependent; see your operating system-specific Oracle documentation.

For more information about reducing the number of chained and migrated rows in
a table or cluster, see Oracle8 Tuning.

Truncating Tables and Clusters
You can delete all rows of a table or all rows in a group of clustered tables so that
the table (or cluster) still exists, but is completely empty. For example, you may
have a table that contains monthly data, and at the end of each month, you need to
empty it (delete all rows) after archiving its data.

To delete all rows from a table, you have the following three options:

1. Using the DELETE command

You can delete the rows of a table using the DELETE command. For example,
the following statement deletes all rows from the EMP table:

 DELETE FROM emp;

2. Using the DROP and CREATE commands

You can drop a table and then re-create the table. For example, the following
statements drop and then re-create the EMP table:

 DROP TABLE emp;
 CREATE TABLE emp (. . .);

3. Using TRUNCATE

You can delete all rows of the table using the SQL command TRUNCATE. For
example, the following statement truncates the EMP table:

 TRUNCATE TABLE emp;

Using DELETE
If there are many rows present in a table or cluster when using the DELETE com-
mand, significant system resources are consumed as the rows are deleted. For exam-
ple, CPU time, redo log space, and rollback segment space from the table and any
associated indexes require resources. Also, as each row is deleted, triggers can be
fired. The space previously allocated to the resulting empty table or cluster remains
associated with that object.
17-10 Oracle8 Administrator’s Guide

Truncating Tables and Clusters
Using DROP and CREATE
When dropping and re-creating a table or cluster, all associated indexes, integrity
constraints, and triggers are also dropped, and all objects that depend on the
dropped table or clustered table are invalidated. Also, all grants for the dropped
table or clustered table are dropped.

Using TRUNCATE
Using the TRUNCATE command provides a fast, efficient method for deleting all
rows from a table or cluster. A TRUNCATE statement does not generate any roll-
back information and it commits immediately; it is a DDL statement and cannot be
rolled back. A TRUNCATE statement does not affect any structures associated with
the table being truncated (constraints and triggers) or authorizations. A TRUN-
CATE statement also specifies whether space currently allocated for the table is
returned to the containing tablespace after truncation.

You can truncate any table or cluster in the user’s associated schema. Also, any
user that has the DROP ANY TABLE system privilege can truncate a table or clus-
ter in any schema.

Before truncating a table or clustered table containing a parent key, all referencing
foreign keys in different tables must be disabled. A self-referential constraint does
not have to be disabled.

As a TRUNCATE statement deletes rows from a table, triggers associated with the
table are not fired. Also, a TRUNCATE statement does not generate any audit infor-
mation corresponding to DELETE statements if auditing is enabled. Instead, a sin-
gle audit record is generated for the TRUNCATE statement being issued.

A hash cluster cannot be truncated. Also, tables within a hash or index cluster can-
not be individually truncated; truncation of an index cluster deletes all rows from
all tables in the cluster. If all the rows must be deleted from an individual clustered
table, use the DELETE command or drop and re-create the table.

The REUSE STORAGE or DROP STORAGE options of the TRUNCATE command
control whether space currently allocated for a table or cluster is returned to the
containing tablespace after truncation. The default option, DROP STORAGE,
reduces the number of extents allocated to the resulting table to the original setting
for MINEXTENTS. Freed extents are then returned to the system and can be used
by other objects.

Alternatively, the REUSE STORAGE option specifies that all space currently allo-
cated for the table or cluster remains allocated to it. For example, the following
 General Management of Schema Objects 17-11

Enabling and Disabling Triggers
statement truncates the EMP_DEPT cluster, leaving all extents previously allocated
for the cluster available for subsequent inserts and deletes:

TRUNCATE CLUSTER emp_dept REUSE STORAGE;

The REUSE or DROP STORAGE option also applies to any associated indexes.
When a table or cluster is truncated, all associated indexes are also truncated. Also
note that the storage parameters for a truncated table, cluster, or associated indexes
are not changed as a result of the truncation.

See Also: See Chapter 22, Auditing Database Use, for information about auditing.

Enabling and Disabling Triggers
This section describes database trigger management, and includes the following
topics:

■ Enabling Triggers

■ Disabling Triggers

Oracle enables you to define procedures, called database triggers, that are implicitly
executed when an INSERT, UPDATE, or DELETE statement is issued against an
associated table.

A trigger can be in either of two distinct modes:

To enable or disable triggers using the ALTER TABLE command, you must own the
table, have the ALTER object privilege for the table, or have the ALTER ANY
TABLE system privilege. To enable or disable an individual trigger using the
ALTER TRIGGER command, you must own the trigger or have the ALTER ANY
TRIGGER system privilege.

enabled An enabled trigger executes its trigger body if a trigger-
ing statement is issued and the trigger restriction, if any,
evaluates to TRUE.

disabled A disabled trigger does not execute its trigger body,
even if a triggering statement is issued and the trigger
restriction (if any) evaluates to TRUE.
17-12 Oracle8 Administrator’s Guide

Enabling and Disabling Triggers
Enabling Triggers
You enable a disabled trigger using the ALTER TRIGGER command with the
ENABLE option. To enable the disabled trigger named REORDER on the INVEN-
TORY table, enter the following statement:

ALTER TRIGGER reorder ENABLE;

To enable all triggers defined for a specific table, use the ALTER TABLE command
with the ENABLE clause and ALL TRIGGERS option. To enable all triggers defined
for the INVENTORY table, enter the following statement:

ALTER TABLE inventory
 ENABLE ALL TRIGGERS;

Disabling Triggers
You may want to temporarily disable a trigger if one of the following conditions is
true:

■ An object that the trigger references is not available.

■ You have to perform a large data load and want it to proceed quickly without
firing triggers.

■ You are loading data into the table to which the trigger applies.

By default, triggers are enabled when first created. You disable a trigger using the
ALTER TRIGGER command with the DISABLE option. To disable the trigger
REORDER on the INVENTORY table, enter the following statement:

ALTER TRIGGER reorder DISABLE;

You can disable all triggers associated with a table at the same time using the
ALTER TABLE command with the DISABLE clause and ALL TRIGGERS option.
For example, to disable all triggers defined for the INVENTORY table, enter the fol-
lowing statement:

ALTER TABLE inventory
 DISABLE ALL TRIGGERS;
 General Management of Schema Objects 17-13

Managing Integrity Constraints
Managing Integrity Constraints
Integrity constraints are rules or statements about data in a database. Constraints
check data as it is entered or updated in the database and prevent data that does
not conform to the constraint’s rule from being entered. Constraints can guarantee
uniqueness, maintain master-detail relationships, check for compliance with an
expression, or maintain that NULLs can not be entered.

These rules or statements are always true when the constraint is enabled and vali-
dated. However, the statement may or may not be true when the constraint is dis-
abled (or “enabled novalidate”) because data in violation of the integrity constraint
can be in the database.The following sections explain the mechanisms and proce-
dures for managing integrity constraints:

■ Integrity Constraint States

■ Deferring Constraint Checks

■ Managing Constraints That Have Associated Indexes

■ Disabling, Enable Novalidating and Enabling Integrity Constraints Upon Defi-
nition

■ Enabling and Disabling Existing Integrity Constraints

■ Dropping Integrity Constraints

■ Reporting Constraint Exceptions

See Also: You can identify exceptions to a specific integrity constraint while
attempting to enable the constraint. See “Reporting Constraint Exceptions” on
page 17-23.

Integrity Constraint States
An integrity constraint defined on a table can be in one of three states:

disabled When a constraint is disabled, the rule defined by the
constraint is not enforced on the data values in the col-
umns included in the constraint; however, the definition
of the constraint is retained in the data dictionary.

This mode is useful when you are performing a data
warehouse rollup or load and you want to speed up the
load process.
17-14 Oracle8 Administrator’s Guide

Managing Integrity Constraints
Disabling Constraints
To enforce the rules defined by integrity constraints, the constraints should always
be enabled. However, you may wish to temporarily disable the integrity constraints
of a table for the following performance reasons:

■ when loading large amounts of data into a table

■ when performing batch operations that make massive changes to a table (for
example, changing every employee’s number by adding 1000 to the existing
number)

■ when importing or exporting one table at a time

In all three cases, temporarily disabling integrity constraints can improve the per-
formance of the operation, especially in data warehouse configurations.

It is possible to enter data that violates a constraint while that constraint is dis-
abled. Thus, you should always enable the constraint after completing any of the
operations listed in the bullets above.

enable novali-
dated

A table with enable novalidated constraints can contain
invalid data, but it is not possible to add new invalid
data to it.

Useful as an intermediate state before validating the
data in the table using enable validate. This ensures no
new data can violate the constraint, and no locks are
held when taking constraints from enable no validate to
enable validate.

This mode is useful when you don’t want to enable the
constraint to check for exceptions, for example, after a
data warehouse load.

enabled and
validated

An enabled constraint is enforced and known to be valid
(validity of table data is checked). The definition of the
constraint is stored in the data dictionary.

This is the normal operational state for constraint pro-
cessing. This state is useful for preventing invalid data
entry during regular OLTP processing.
 General Management of Schema Objects 17-15

Managing Integrity Constraints
Enabling Constraints Novalidate
When a constraint is in the enable novalidated state, all subsequent statements are
checked for conformity to the constraint; however, any existing data in the table is
not checked. A table with enable novalidated constraints can contain invalid data,
but it is not possible to add new invalid data to it. Enabling constraints in the noval-
idated state is most useful in data warehouse configurations that are uploading
valid OLTP data.

Enabling a constraint does not require validation. Enabling a constraint novalidate
is much faster than enabling and validating a constraint. Also, validating a con-
straint that is already enabled does not require any DML locks during validation
(unlike validating a previously disabled constraint). Enforcement guarantees that
no violations are introduced during the validation. Hence, enabling without vali-
dating enables you to reduce the downtime typically associated with enabling a
constraint.

Enabling Constraints
While a constraint is enabled, no row violating the constraint can be inserted into
the table. However, while the constraint is disabled such a row can be inserted; this
row is known as an exception to the constraint. If the constraint is in the enable nov-
alidated state, violations resulting from data entered while the constraint was dis-
abled remain. The rows that violate the constraint must be either updated or
deleted in order for the constraint to be put in the enable state.

You can examine all rows violating constraints in the EXCEPTIONS table

See Also: For details about the EXCEPTIONS table, see Oracle8 Reference.

Integrity Constraint States: Procedures and Benefits
Using integrity constraint states in the following order can ensure the best benefits:

1. disable state

2. perform the operation (load, export, import)

3. enable novalidated state

4. enable state
17-16 Oracle8 Administrator’s Guide

Managing Integrity Constraints
Some benefits of using constraints in this order are:

■ no locks are held

■ all constraints can go to enable state concurrently

■ constraint enabling is done in parallel

■ concurrent activity on table permitted

Deferring Constraint Checks
When Oracle checks a constraint, it signals an error if the constraint is not satisfied.
You can defer checking the validity of constraints until the end of a transaction.

When you issue the SET CONSTRAINTS statement, the SET CONSTRAINTS mode
lasts for the duration of the transaction, or until another SET CONSTRAINTS state-
ment resets the mode.

See Also: For more details about the SET CONSTRAINTS statement, see the
Oracle8 SQL Reference.

For general information about constraints, see Oracle8 Concepts.

How To Defer Constraint Checks

Select Appropriate Data You may wish to defer constraint checks on UNIQUE and
FOREIGN keys if the data you are working with has any of the following character-
istics:

■ tables are snapshots

■ tables that contain a large amount of data being manipulated by another appli-
cation, which may or may not return the data in the same order

■ update cascade operations on FOREIGN keys

When dealing with bulk data being manipulated by outside applications, you can
defer checking constraints for validity until the end of a transaction.

Note: You cannot issue a SET CONSTRAINT statement inside a
trigger.
 General Management of Schema Objects 17-17

Managing Integrity Constraints
Ensure Constraints Are Created Deferrable After you have identified and selected the
appropriate tables, make sure the tables’ FOREIGN and UNIQUE key constraints
are created as deferrable. You can do so by issuing a statement similar to the follow-
ing:

CREATE TABLE dept (
 deptno NUMBER PRIMARY KEY,
 dname VARCHAR2 (30)
);
CREATE TABLE emp (
 empno NUMBER,
 ename VARCHAR2 (30),
 deptno NUMBER REFERENCES (dept),
 CONSTRAINT epk PRIMARY KEY (empno),
 CONSTRAINT efk FOREIGN KEY (deptno)
REFERENCES (dept. deptno) DEFERABLE);
INSERT INTO dept VALUES (10, ’Accounting’);
INSERT INTO dept VALUES (20, ’SALES’);
INSERT INTO emp VALUES (1, ’Corleone’, 10);
INSERT INTO emp VALUES (2, ’Costanza’, 20);
COMMIT;

SET CONSTRAINT efk DEFERRED;
UPDATE dept SET deptno = deptno + 10
 WHERE deptno = 20;

SELECT * from emp ORDER BY deptno;
EMPNO ENAME DEPTNO
----- -------------- -------
 1 Corleone 10
 2 Costanza 20
UPDATE emp SET deptno = deptno + 10
 WHERE deptno = 20;
SELECT * FROM emp ORDER BY deptno;

EMPNO ENAME DEPTNO
----- -------------- -------
 1 Corleone 10
 2 Costanza 30
COMMIT;

Set All Constraints Deferred Within the application being used to manipulate the data,
you must set all constraints deferred before you actually begin processing any data.
Use the following DML statement to set all constraints deferred:

SET CONSTRAINTS ALL DEFERRED;
17-18 Oracle8 Administrator’s Guide

Managing Integrity Constraints
Check the Commit (Optional) You can check for constraint violations before commit-
ting by issuing the SET ALL CONSTRAINTS IMMEDIATE statement just before
issuing the COMMIT. If there are any problems with a constraint, this statement
will fail and the constraint causing the error will be identified. If you commit while
constraints are violated, the transaction will be rolled back and you will receive an
error message.

Managing Constraints That Have Associated Indexes
When you create a UNIQUE or PRIMARY key, Oracle checks to see if an existing
index can be used to enforce uniqueness for the constraint. If there is no such index,
Oracle creates one.

When constraints associated with unique indexes are dropped or disabled, the
index is dropped. Oracle can use non-unique indexes to enforce UNIQUE and PRI-
MARY key constraints. If you allow Oracle to create a UNIQUE index automati-
cally, and constraints associated with UNIQUE index are dropped or disabled, then
the index is dropped.

While enabled foreign keys reference a PRIMARY or UNIQUE key, you cannot dis-
able or drop the PRIMARY or UNIQUE key constraint or the index.

Disabling, Enable Novalidating and Enabling Integrity Constraints Upon Definition
When an integrity constraint is defined in a CREATE TABLE or ALTER TABLE
statement, it can be enabled, disabled, or enable novalidated by including the
ENABLE, DISABLE or ENABLE NOVALIDATE clause in the constraint’s defini-

Note: The SET CONSTRAINTS statement applies only to the cur-
rent transaction. The defaults specified when you create a con-
straint remain as long as the constraint exists. The ALTER
SESSION SET CONSTRAINTS statement applies for the current
session only.

Note: Deferrable UNIQUE and PRIMARY keys all must use non-
unique indexes. Always create UNIQUE and PRIMARY key con-
straints in the disabled state. Then create any indexes on the table
and enable the constraint. This ensures the index will not be
dropped when you disable the constraint.
 General Management of Schema Objects 17-19

Managing Integrity Constraints
tion. If none of these clauses are identified in a constraint’s definition, Oracle auto-
matically enables and validates the constraint.

Disabling Constraints Upon Definition
The following CREATE TABLE and ALTER TABLE statements both define and dis-
able integrity constraints:

CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY DISABLE, . . . ;

ALTER TABLE emp
 ADD PRIMARY KEY (empno) DISABLE;

An ALTER TABLE statement that defines and disables an integrity constraint never
fails because of rows of the table that violate the integrity constraint. The definition
of the constraint is allowed because its rule is not enforced.

See Also: For more information about constraint exceptions, see “Reporting Con-
straint Exceptions” on page 17-23.

Enabling Constraints Upon Definition
The following CREATE TABLE and ALTER TABLE statements both define and
enable integrity constraints:

CREATE TABLE emp (
 empno NUMBER(5) CONSTRAINT emp.pk PRIMARY KEY, . . . ;
ALTER TABLE emp
 ADD CONSTRAINT emp.pk PRIMARY KEY (empno);

An ALTER TABLE statement that defines and attempts to enable an integrity con-
straint may fail because rows of the table may violate the integrity constraint. In
this case, the statement is rolled back and the constraint definition is not stored and
not enabled.

To enable a UNIQUE key or PRIMARY KEY, which creates an associated index, the
owner of the table also needs a quota for the tablespace intended to contain the
index, or the UNLIMITED TABLESPACE system privilege.
17-20 Oracle8 Administrator’s Guide

Managing Integrity Constraints
Enabling and Disabling Existing Integrity Constraints
You can use the ALTER TABLE command with the ENABLE clause to enable a dis-
abled constraint., or, with the DISABLE clause, to disable an enabled constraint.

Disabling Enabled Constraints
The following statements disable integrity constraints:

ALTER TABLE dept
 DISABLE CONSTRAINT dname_ukey;
ALTER TABLE dept
 DISABLE PRIMARY KEY,
 DISABLE UNIQUE (dname, loc);

To disable or drop a UNIQUE key or PRIMARY KEY constraint and all dependent
FOREIGN KEY constraints in a single step, use the CASCADE option of the DIS-
ABLE or DROP clauses. For example, the following statement disables a PRIMARY
KEY constraint and any FOREIGN KEY constraints that depend on it:

ALTER TABLE dept
 DISABLE PRIMARY KEY CASCADE;

Enable Novalidating Constraints that are Disabled
Enabling a constraint novalidate only checks new statements for compliance with
the constraint; thus, enabling a constraint novalidate is much faster than enabling a
constraint because no old data is checked. Also, enabling a constraint that is
already enforced does not require any DML locks during validation (unlike validat-
ing a disabled constraint). The enabled constraint guarantees that no violations are
introduced during validation.

The following statements enable novalidate disabled integrity constraints:

ALTER TABLE dept
 ENABLE NOVALIDATE CONSTRAINT dname_ukey;
ALTER TABLE dept
 ENABLE NOVALIDATE PRIMARY KEY,
 ENABLE NOVALIDATE UNIQUE (dname, loc);

To enable or enable novalidate a UNIQUE key or PRIMARY KEY (which creates an
associated index), the owner of the table also needs a quota for the tablespace
intended to contain the index, or the UNLIMITED TABLESPACE system privilege.
If the UNIQUE or PRIMARY key is using an existing index, then no index is cre-
ated and no quota is required.
 General Management of Schema Objects 17-21

Managing Integrity Constraints
When you enable novalidate a constraint you should use non-unique indexes for
the UNIQUE and PRIMARY key so that you don’t have to create them.

Enabling Disabled Constraints
The following statements enable disabled integrity constraints:

ALTER TABLE dept
 ENABLE CONSTRAINT dname_ukey;
ALTER TABLE dept
 ENABLE PRIMARY KEY,
 ENABLE UNIQUE (dname, loc);

An ALTER TABLE statement that attempts to enable an integrity constraint may
fail because rows of the table may violate the integrity constraint. In this case, the
statement is rolled back and the constraint is not enabled.

To enable a UNIQUE key or PRIMARY KEY (which creates an associated index),
the owner of the table also needs a quota for the tablespace intended to contain the
index, or the UNLIMITED TABLESPACE system privilege.

Note: In order to enable an enable novalidated constraint without
holding DML locks, each ALTER TABLE ENABLE statement must
enable one and only one constraint.

Note: If you ENABLE NOVALIDATE a constraint before you
enable it, no locks will be held during the ENABLE. This allows
the following:

■ all constraints are enabled concurrently

■ each constraint is internally parallelized

■ concurrent activity on the table is permitted
17-22 Oracle8 Administrator’s Guide

Managing Integrity Constraints
Dropping Integrity Constraints
You can drop an integrity constraint if the rule that it enforces is no longer true, or
if the constraint is no longer needed. You can drop the constraint using the ALTER
TABLE command with the DROP clause. The following two statements drop integ-
rity constraints:

ALTER TABLE dept
 DROP UNIQUE (dname, loc);
ALTER TABLE emp
 DROP PRIMARY KEY,
 DROP CONSTRAINT dept_fkey;

Dropping UNIQUE key and PRIMARY KEY constraints drops the associated
indexes. Also, if FOREIGN KEYs reference a UNIQUE or PRIMARY KEY, you must
include the CASCADE CONSTRAINTS clause in the DROP statement, or you can-
not drop the constraint.

Reporting Constraint Exceptions
If no exceptions are present when a CREATE TABLE . . . ENABLE. . . or ALTER
TABLE . . . ENABLE. . . statement is issued, the integrity constraint is enabled and
all subsequent DML statements are subject to the enabled integrity constraints.

If exceptions exist when a constraint is enabled, an error is returned and the integ-
rity constraint remains disabled. When a statement is not successfully executed
because integrity constraint exceptions exist, the statement is rolled back. If excep-
tions exist, you cannot enable the constraint until all exceptions to the constraint
are either updated or deleted.

You cannot use the CREATE TABLE statement to determine which rows are in vio-
lation. To determine which rows violate the integrity constraint, issue the ALTER
TABLE statement with the EXCEPTIONS option in the ENABLE clause. The
EXCEPTIONS option places the ROWID, table owner, table name, and constraint
name of all exception rows into a specified table.

Note: You must create an appropriate exceptions report table to
accept information from the EXCEPTIONS option of the ENABLE
clause before enabling the constraint. You can create an exception
table by submitting the script UTLEXCPT.SQL, which creates a
table named EXCEPTIONS. You can create additional exceptions
tables with different names by modifying and re-submitting the
script.
 General Management of Schema Objects 17-23

Managing Integrity Constraints
The following statement attempts to enable the PRIMARY KEY of the DEPT table,
and if exceptions exist, information is inserted into a table named EXCEPTIONS:

ALTER TABLE dept ENABLE PRIMARY KEY EXCEPTIONS INTO exceptions;

If duplicate primary key values exist in the DEPT table and the name of the PRI-
MARY KEY constraint on DEPT is SYS_C00610, the following rows might be
placed in the table EXCEPTIONS by the previous statement:

SELECT * FROM exceptions;

ROWID OWNER TABLE_NAME CONSTRAINT
------------------ --------- -------------- -----------
AAAAZ9AABAAABvqAAB SCOTT DEPT SYS_C00610
AAAAZ9AABAAABvqAAG SCOTT DEPT SYS_C00610

A more informative query would be to join the rows in an exception report table
and the master table to list the actual rows that violate a specific constraint, as
shown in the following example:

SELECT deptno, dname, loc FROM dept, exceptions
 WHERE exceptions.constraint = ’SYS_C00610’
 AND dept.rowid = exceptions.row_id;

DEPTNO DNAME LOC
---------- -------------- -----------
10 ACCOUNTING NEW YORK
10 RESEARCH DALLAS

All rows that violate a constraint must be either updated or deleted from the table
containing the constraint. When updating exceptions, you must change the value
violating the constraint to a value consistent with the constraint or a null. After the
row in the master table is updated or deleted, the corresponding rows for the excep-
tion in the exception report table should be deleted to avoid confusion with later
exception reports. The statements that update the master table and the exception
report table should be in the same transaction to ensure transaction consistency.

To correct the exceptions in the previous examples, you might issue the following
transaction:

UPDATE dept SET deptno = 20 WHERE dname = ’RESEARCH’;
DELETE FROM exceptions WHERE constraint = ’SYS_C00610’;
COMMIT;
17-24 Oracle8 Administrator’s Guide

Managing Object Dependencies
When managing exceptions, the goal is to eliminate all exceptions in your excep-
tion report table.

See Also: The exact name and location of the UTLEXCPT.SQL script is operating
system specific. For more information, see your operating system-specific Oracle
documentation.

Managing Object Dependencies
This section describes the various object dependencies, and includes the following
topics:

■ Manually Recompiling Views

■ Manually Recompiling Procedures and Functions

■ Manually Recompiling Packages

First, review Table 17–1, which shows how objects are affected by changes in other
objects on which they depend.

Note: While you are correcting current exceptions for a table with
the constraint disabled, other users may issue statements creating
new exceptions. You can avoid this by enable novalidating the con-
straint before you start eliminating exceptions.

Table 17–1 Operations that Affect Object Status

Operation
Resulting Status
of Object

Resulting Status
of Dependent
Objects

CREATE table, sequence, synonym VALID if there
are no errors

No change1

ALTER table (ADD column MOD-
IFY column)
RENAME table, sequence, syn-
onym, view

VALID if there
no errors

INVALID

DROP table, sequence, synonym,
view, procedure, function, package

None; the object
is dropped

INVALID
 General Management of Schema Objects 17-25

Managing Object Dependencies
CREATE view, procedure2 VALID if there
are no errors;
INVALID if
there are syntax
or authorization
errors

No change1

CREATE OR REPLACE view or
procedure2

VALID if there
are no error;
INVALID if
there are syntax
or authorization
errors

INVALID

REVOKE object privilege3 ON
objectTO/FROM user

No change All objects of
user that
depend on
object are
INVALID3

REVOKE object privilege3 ON
object TO/FROM PUBLIC

No change All objects in
the database
that depend on
object are
INVALID3

REVOKE system privilege4 TO/
FROM user

No change All objects of
user are
INVALID4

REVOKE system privilege4 TO/
FROM PUBLIC

No change All objects in
the database are
INVALID4

1 May cause dependent objects to be made INVALID, if object did not exist earlier.
2 Stand-alone procedures and functions, packages, and triggers.
3 Only DML object privileges, including SELECT, INSERT, UPDATE, DELETE, and EXE-
CUTE; revalidation does not require recompiling.
4 Only DML system privileges, including SELECT, INSERT, UPDATE, DELETE ANY
TABLE, and EXECUTE ANY PROCEDURE; revalidation does not require recompiling.

Table 17–1 Operations that Affect Object Status (Cont.)

Operation
Resulting Status
of Object

Resulting Status
of Dependent
Objects
17-26 Oracle8 Administrator’s Guide

Managing Object Dependencies
Oracle automatically recompiles an invalid view or PL/SQL program unit the next
time it is used. In addition, a user can force Oracle to recompile a view or program
unit using the appropriate SQL command with the COMPILE parameter. Forced
compilations are most often used to test for errors when a dependent view or pro-
gram unit is invalid, but is not currently being used. In these cases, automatic
recompilation would not otherwise occur until the view or program unit was exe-
cuted. To identify invalid dependent objects, query the views USER_/ALL_/
DBA_OBJECTS.

Manually Recompiling Views
To recompile a view manually, you must have the ALTER ANY TABLE system priv-
ilege or the view must be contained in your schema. Use the ALTER VIEW com-
mand with the COMPILE parameter to recompile a view. The following statement
recompiles the view EMP_DEPT contained in your schema:

ALTER VIEW emp_dept COMPILE;

Manually Recompiling Procedures and Functions
To recompile a procedure manually, you must have the ALTER ANY PROCEDURE
system privilege or the procedure must be contained in your schema. Use the
ALTER PROCEDURE/FUNCTION command with the COMPILE parameter to
recompile a stand-alone procedure or function. The following statement recompiles
the stored procedure UPDATE_SALARY contained in your schema:

ALTER PROCEDURE update_salary COMPILE;

Manually Recompiling Packages
To recompile a package manually, you must have the ALTER ANY PROCEDURE
system privilege or the package must be contained in your schema. Use the ALTER
PACKAGE command with the COMPILE parameter to recompile either a package
body or both a package specification and body. The following statements recompile
just the body, and the body and specification of the package ACCT_MGMT, respec-
tively:

ALTER PACKAGE acct_mgmt COMPILE BODY;
ALTER PACKAGE acct_mgmt COMPILE PACKAGE;
 General Management of Schema Objects 17-27

Managing Object Name Resolution
Managing Object Name Resolution
This section describes how Oracle resolves an object name.

1. First. Oracle attempts to qualify the first piece of the name referenced in the
SQL statement. For example, in SCOTT.EMP, SCOTT is the first piece. If there is
only one piece, the one piece is considered the first piece.

a. In the current schema, Oracle searches for an object whose name matches
the first piece of the object name. If it does not find such an object, it contin-
ues with Step b.

b. If no schema object is found in the current schema, Oracle searches for a
public synonym that matches the first piece of the name. If it does not find
one, it continues with Step c.

c. If no public synonym is found, Oracle searches for a schema whose name
matches the first piece of the object name. If it finds one, it returns to Step a,
now using the second piece of the name as the object to find in the quali-
fied schema. If the second piece does not correspond to a object in the previ-
ously qualified schema or there is not a second piece, Oracle returns an
error.

If no schema is found in Step c, the object cannot be qualified and Oracle
returns an error.

2. A schema object has been qualified. Any remaining pieces of the name must
match a valid part of the found object. For example, if SCOTT.EMP.DEPTNO is
the name, SCOTT is qualified as a schema, EMP is qualified as a table, and
DEPTNO must correspond to a column (because EMP is a table). If EMP is
qualified as a package, DEPTNO must correspond to a public constant, vari-
able, procedure, or function of that package.

When global object names are used in a distributed database, either explicitly or
indirectly within a synonym, the local Oracle resolves the reference locally. For
example, it resolves a synonym to a remote table’s global object name. The partially
resolved statement is shipped to the remote database, and the remote Oracle com-
pletes the resolution of the object as described here.
17-28 Oracle8 Administrator’s Guide

Changing Storage Parameters for the Data Dictionary
Changing Storage Parameters for the Data Dictionary
This section describes aspects of changing data dictionary storage parameters, and
includes the following topics:

■ Structures in the Data Dictionary

■ Errors that Require Changing Data Dictionary Storage

If your database is very large or contains an unusually large number of objects, col-
umns in tables, constraint definitions, users, or other definitions, the tables that
make up the data dictionary might at some point be unable to acquire additional
extents. For example, a data dictionary table may need an additional extent, but
there is not enough contiguous space in the SYSTEM tablespace. If this happens,
you cannot create new objects, even though the tablespace intended to hold the
objects seems to have sufficient space. To remedy this situation, you can change the
storage parameters of the underlying data dictionary tables to allow them to be allo-
cated more extents, in the same way that you can change the storage settings for
user-created segments. For example, you can adjust the values of NEXT or PCTIN-
CREASE for the data dictionary table.

Structures in the Data Dictionary
The following tables and clusters contain the definitions of all the user-created
objects in the database:

WARNING: Exercise caution when changing the storage settings
for the data dictionary objects. If you choose inappropriate set-
tings, you could damage the structure of the data dictionary and
be forced to re-create your entire database. For example, if you
set PCTINCREASE for the data dictionary table USER$ to 0 and
NEXT to 2K, that table will quickly reach the maximum number
of extents for a segment, and you will not be able to create any
more users or roles without exporting, re-creating, and importing
the entire database.

SEG$ segments defined in the database (includ-
ing temporary segments)

OBJ$ user-defined objects in the database
(including clustered tables); indexed by
I_OBJ1 and I_OBJ2
 General Management of Schema Objects 17-29

Changing Storage Parameters for the Data Dictionary
UNDO$ rollback segments defined in the data-
base; indexed by I_UNDO1

FET$ available free extents not allocated to any
segment

UET$ extents allocated to segments

TS$ tablespaces defined in the database

FILE$ files that make up the database; indexed
by I_FILE1

FILEXT$ datafiles with the AUTOEXTEND option
set on

TAB$ tables defined in the database (includes
clustered tables); indexed by I_TAB1

CLU$ clusters defined in the database

IND$ indexes defined in the database; indexed
by I_IND1

ICOL$ columns that have indexes defined on
them (includes individual entries for
each column in a composite index);
indexed by I_ICOL1

COL$ columns defined in tables in the data-
base; indexed by I_COL1 and I_COL2

CON$ constraints defined in the database
(includes information on constraint
owner); indexed by I_CON1 and I_CON2

CDEF$ definitions of constraints in CON$;
indexed by I_CDEF1, I_CDEF2, and
I_CDEF3

CCOL$ columns that have constraints defined on
them (includes individual entries for
each column in a composite key);
indexed by I_CCOL1
17-30 Oracle8 Administrator’s Guide

Changing Storage Parameters for the Data Dictionary
Of all of the data dictionary segments, the following are the most likely to require
change:

For the clustered tables, you must change the storage settings for the cluster, not for
the table.

Errors that Require Changing Data Dictionary Storage
Oracle returns an error if a user tries to create a new object that requires Oracle to
allocate an additional extent to the data dictionary when it is unable to allocate an
extent. The error message ORA-1653, “failed to allocate extent of size num in
tablespace ’name’” indicates this kind of problem.

USER$ users and roles defined in the database;
indexed by I_USER1

TSQ$ tablespace quotas for users (contains one
entry for each tablespace quota defined
for each user)

C_OBJ# cluster containing TAB$, CLU$, ICOL$,
IND$, and COL$: indexed by I_OBJ#

C_TS# cluster containing FET$, TS$, and FILE$;
indexed by I_TS#

C_USER# cluster containing USER and TSQ$$;
indexed by I_USER#

C_COBJ# cluster containing CDEF$ and CCOL$;
indexed by I_COBJ#

C_TS# if the free space in your database is very
fragmented

C_OBJ# if you have many indexes or many col-
umns in your tables

CON$, C_COBJ# if you use integrity constraints heavily

C_USER# If you have a large number of users
defined in your database
 General Management of Schema Objects 17-31

Displaying Information About Schema Objects
If you receive this error message and the segment you were trying to change (such
as a table or rollback segment) has not reached the limits specified for it in its defini-
tion, check the storage settings for the object that contains its definition.

For example, if you received an ORA-1547 while trying to define a new PRIMARY
KEY constraint on a table and there is sufficient space for the index that Oracle
must create for the key, check if CON$ or C_COBJ# cannot be allocated another
extent; to do this, query DBA_SEGMENTS and consider changing the storage
parameters for CON$ or C_COBJ#.

See Also: For more information, see “Example 7: Displaying Segments that Cannot
Allocate Additional Extents” on page 17-36.

Displaying Information About Schema Objects
The data dictionary provides many views about the schema objects described in
Chapters 10–16. The following list summarizes the views associated with schema
objects:

■ ALL_OBJECTS, USER_OBJECTS, DBA_OBJECTS

■ ALL_CATALOG, USER_CATALOG, DBA_CATALOG

■ ALL_TABLES, USER_TABLES, DBA_TABLES

■ ALL_TAB_COLUMNS, USER_TAB_COLUMNS, DBA_TAB_COLUMNS

■ ALL_TAB_COMMENTS, USER_TAB_COMMENTS

■ ALL_COL_COMMENTS, USER_COL_COMMENTS, DBA_COL_COMMENTS

■ ALL_VIEWS, USER_VIEWS, DBA_VIEWS

■ ALL_INDEXES, USER_INDEXES, DBA_INDEXES

■ ALL_IND_COLUMNS, USER_IND_COLUMNS, DBA_IND_COLUMNS

■ USER_CLUSTERS, DBA_CLUSTERS

■ USER_CLU_COLUMNS, DBA_CLU_COLUMNS

■ ALL_SEQUENCES, USER_SEQUENCES, DBA_SEQUENCES

■ ALL_SYNONYMS, USER_SYNONYMS, DBA_SYNONYMS

■ ALL_DEPENDENCIES, USER_DEPENDENCIES, DBA_DEPENDENCIES
17-32 Oracle8 Administrator’s Guide

Displaying Information About Schema Objects
The following data dictionary views contain information about the segments of a
database:

■ USER_SEGMENTS

■ DBA_SEGMENTS

The following data dictionary views contain information about a database’s extents:

■ USER_EXTENTS

■ DBA_EXTENTS

■ USER_FREE_SPACE

■ DBA_FREE_SPACE

Dictionary Storage Oracle Packages
Table 17–2 describes packages that are supplied with Oracle to either allow PL/
SQL access to some SQL features, or to extend the functionality of the database.

The following examples demonstrate ways to display miscellaneous schema objects.

Table 17–2 Supplied Packages: Additional Functionality

Procedure Description

dbms_space.unused_space Returns information about unused space in
an object (table, index, or cluster).

dbms_space.free_blocks Returns information about free blocks in an
object (table, index, or cluster).

dbms_session.free_unuse
d_ user_memory

Procedure for reclaiming unused memory
after performing operations requiring large
amounts of memory (where large>100K).
This procedure should only be used in
cases where memory is at a premium.

dbms_system.set_sql_tra
ce_in_session

Enables sql_trace in the session identi-
fied by serial number and SID (these values
are located in v$session).
 General Management of Schema Objects 17-33

Displaying Information About Schema Objects
Example 1: Displaying Schema Objects By Type
The following query lists all of the objects owned by the user issuing the query:

SELECT object_name, object_type FROM user_objects;

OBJECT_NAME OBJECT_TYPE
------------------------- -------------------
EMP_DEPT CLUSTER
EMP TABLE
DEPT TABLE
EMP_DEPT_INDEX INDEX
PUBLIC_EMP SYNONYM
EMP_MGR VIEW

Example 2: Displaying Column Information
Column information, such as name, datatype, length, precision, scale, and default
data values can be listed using one of the views ending with the _COLUMNS suf-
fix. For example, the following query lists all of the default column values for the
EMP and DEPT tables:

SELECT table_name, column_name, data_default
 FROM user_tab_columns
 WHERE table_name = ’DEPT’ OR table_name = ’EMP’;

TABLE_NAME COLUMN_NAME DATA_DEFAULT
---------- ------------- --------------------
DEPT DEPTNO
DEPT DNAME
DEPT LOC ’NEW YORK’
EMP EMPNO
EMP ENAME
EMP JOB
EMP MGR
EMP HIREDATE SYSDATE
EMP SAL
EMP COMM
EMP DEPTNO

Notice that not all columns have user-specified defaults. These columns automati-
cally have NULL as the default.
17-34 Oracle8 Administrator’s Guide

Displaying Information About Schema Objects
Example 3: Displaying Dependencies of Views and Synonyms
When you create a view or a synonym, the view or synonym is based on its under-
lying base object. The ALL/USER/DBA_DEPENDENCIES data dictionary views
can be used to reveal the dependencies for a view and the ALL/USER/
DBA_SYNONYMS data dictionary views can be used to list the base object of a syn-
onym. For example, the following query lists the base objects for the synonyms cre-
ated by the user JWARD:

SELECT table_owner, table_name, synonym_name
 FROM sys.dba_synonyms
 WHERE owner = ’JWARD’;

TABLE_OWNER TABLE_NAME SYNONYM_NAME
---------------------- ----------- -----------------
SCOTT DEPT DEPT
SCOTT EMP EMP

Example 4: Displaying General Segment Information
The following query returns the name of each rollback segment, the tablespace that
contains each, and the size of each rollback segment:

SELECT segment_name, tablespace_name, bytes, blocks, extents
 FROM sys.dba_segments
 WHERE segment_type = ’ROLLBACK’;

SEGMENT_NAME TABLESPACE_NAME BYTES BLOCKS EXTENTS
------------ --------------- --------- ------- ---------
RS1 SYSTEM 20480 10 2
RS2 TS1 40960 20 3
SYSTEM SYSTEM 184320 90 3

Example 5: Displaying General Extent Information
General information about the currently allocated extents in a database is stored in
the DBA_EXTENTS data dictionary view. For example, the following query identi-
fies the extents associated with rollback segments and the size of each of those
extents:
 General Management of Schema Objects 17-35

Displaying Information About Schema Objects
SELECT segment_name, bytes, blocks
 FROM sys.dba_extents
 WHERE segment_type = ’ROLLBACK’;

SEGMENT_NAME BYTES BLOCKS
--------------- --------- --------
RS1 10240 5
RS1 10240 5
SYSTEM 51200 25
SYSTEM 51200 25
SYSTEM 51200 25

Notice that the RS1 rollback segment is comprised of two extents, both 10K, while
the SYSTEM rollback segment is comprised of three equally sized extents of 50K.

Example 6: Displaying the Free Space (Extents) of a Database
Information about the free extents (extents not allocated to any segment) in a data-
base is stored in the DBA_FREE_SPACE data dictionary view. For example, the fol-
lowing query reveals the amount of free space available via free extents in each
tablespace:

SELECT tablespace_name, file_id, bytes, blocks
 FROM sys.dba_free_space;

TABLESPACE_NAME FILE_ID BYTES BLOCKS
------------------- --------- -------- ----------
SYSTEM 1 8120320 3965
SYSTEM 1 10240 5
TS1 2 10432512 5094

Example 7: Displaying Segments that Cannot Allocate Additional Extents
You can also use DBA_FREE_SPACE, in combination with the views
DBA_SEGMENTS, DBA_TABLES, DBA_CLUSTERS, DBA_INDEXES, and
DBA_ROLLBACK_SEGS, to determine if any other segment is unable to allocate
additional extents for data dictionary objects only.
17-36 Oracle8 Administrator’s Guide

Displaying Information About Schema Objects
 A segment may not be allocated to an extent for any of the following reasons:

■ The tablespace containing the segment does not have enough room for the next
extent.

■ The segment has the maximum number of extents, as recorded in the data dic-
tionary (in SEG.MAX_EXTENTS).

■ The segment has the maximum number of extents allowed by the data block
size, which is operating system specific.

The following query returns the names, owners, and tablespaces of all segments
that fit any of the above criteria:

SELECT seg.owner, seg.segment_name,
 seg.segment_type, seg.tablespace_name,
 DECODE(seg.segment_type,
 ’TABLE’, t.next_extent,
 ’CLUSTER’, c.next_extent,
 ’INDEX’, i.next_extent,
 ’ROLLBACK’, r.next_extent)
FROM sys.dba_segments seg,
 sys.dba_tables t,
 sys.dba_clusters c,
 sys.dba_indexes i,
 sys.dba_rollback_segs r

WHERE ((seg.segment_type = ’TABLE’
 AND seg.segment_name = t.table_name
 AND seg.owner = t.owner
 AND NOT EXISTS (SELECT tablespace_name
 FROM dba_free_space free
 WHERE free.tablespace_name = t.tablespace_name
 AND free.bytes >= t.next_extent))
OR (seg.segment_type = ’CLUSTER’
 AND seg.segment_name = c.cluster_name
 AND seg.owner = c.owner
 AND NOT EXISTS (SELECT tablespace_name
 FROM dba_free_space free
 WHERE free.tablespace_name = c.tablespace_name
 AND free.bytes >= c.next_extent))
OR (seg.segment_type = ’INDEX’

Note: While the STORAGE clause value for MAXEXTENTS can
be UNLIMITED, data dictionary tables cannot have MAXEX-
TENTS greater than the allowed block maximum. Thus, data dictio-
nary tables cannot be converted to unlimited format.
 General Management of Schema Objects 17-37

Displaying Information About Schema Objects
 AND seg.segment_name = i.index_name
 AND seg.owner = i.owner
 AND NOT EXISTS (SELECT tablespace_name
 FROM dba_free_space free
 WHERE free.tablespace_name = i.tablespace_name
 AND free.bytes >= i.next_extent))
OR (seg.segment_type = ’ROLLBACK’
 AND seg.segment_name = r.segment_name
 AND seg.owner = r.owner
 AND NOT EXISTS (SELECT tablespace_name
 FROM dba_free_space free
 WHERE free.tablespace_name = r.tablespace_name
 AND free.bytes >= r.next_extent)))
OR seg.extents = seg.max_extents OR seg.extents = data_block_size ;

Once you have identified a segment that cannot allocate additional extents, you can
solve the problem in either of two ways, depending on its cause:

■ If the tablespace is full, add datafiles to the tablespace.

■ If the segment has too many extents, and you cannot increase MAXEXTENTS
for the segment, perform the following steps: first, export the data in the seg-
ment; second, drop and recreate the segment, giving it a larger INITIAL setting
so that it does not need to allocate so many extents; and third, import the data
back into the segment.

Note: When you use this query, replace data_block_size with the
data block size for your system.
17-38 Oracle8 Administrator’s Guide

Part IV

Database Security

 Managing Rollback Segm
18

 Managing Rollback Segments

This chapter describes how to manage rollback segments, and includes the follow-
ing topics:

■ Guidelines for Managing Rollback Segments

■ Creating Rollback Segments

■ Specifying Storage Parameters for Rollback Segments

■ Taking Rollback Segments Online and Offline

■ Explicitly Assigning a Transaction to a Rollback Segment

■ Dropping Rollback Segments

■ Monitoring Rollback Segment Information

See Also: If you are using Oracle with the Parallel Server option, see Oracle8 Paral-
lel Server Concepts and Administration.

This chapter contains several references to Oracle Enterprise Manager. For more
information about performing specific tasks using Enterprise Manager/GUI or
Server Manager/LineMode, see the Oracle Server Manager User’s Guide or Oracle
Enterprise Manager Administrator’s Guide.
ents 18-1

Guidelines for Managing Rollback Segments
Guidelines for Managing Rollback Segments
This section describes guidelines to consider before creating or managing the roll-
back segments of your databases, and includes the following topics:

■ Use Multiple Rollback Segments

■ Choose Between Public and Private Rollback Segments

■ Specify Rollback Segments to Acquire Automatically

■ Set Rollback Segment Sizes Appropriately

■ Create Rollback Segments with Many Equally Sized Extents

■ Set an Optimal Number of Extents for Each Rollback Segment

■ Set the Storage Location for Rollback

Every database contains one or more rollback segments, which are portions of the
database that record the actions of transactions in the event that a transaction is
rolled back. You use rollback segments to provide read consistency, rollback transac-
tions, and recover the database.

See Also: For more information about rollback segments, see Oracle8 Concepts.

Use Multiple Rollback Segments
Using multiple rollback segments distributes rollback segment contention across
many segments and improves system performance. Multiple rollback segments are
required in the following situations:

■ When a database is created, a single rollback segment named SYSTEM is cre-
ated in the SYSTEM tablespace. You can create any objects in non-SYSTEM
tablespaces, but you cannot write to them until you have created and brought
online at least one additional rollback segment in the SYSTEM tablespace.

■ When many transactions are concurrently proceeding, more rollback informa-
tion is generated at the same time. You can indicate the number of concurrent
transactions you expect for the instance with the parameter TRANSACTIONS,
and the number of transactions you expect each rollback segment to have to
handle with the parameter TRANSACTIONS_PER_ROLLBACK_SEGMENT.
Then, when an instance opens a database, it attempts to acquire at least
TRANSACTIONS/ TRANSACTIONS_PER_ROLLBACK_SEGMENT rollback
segments to handle the maximum amount of transactions. Therefore, after set-
ting the parameters, create TRANSACTIONS/
TRANSACTIONS_PER_ROLLBACK_ SEGMENT rollback segments.
18-2 Oracle8 Administrator’s Guide

Guidelines for Managing Rollback Segments
See Also: In order to start instances in an Oracle Parallel Server environment, you
must give each instance access to its own rollback segment, in addition to the SYS-
TEM rollback segment. For additional details, see Oracle8 Parallel Server Concepts
and Administration.

Add a Rollback Segment to the SYSTEM Tablespace
An initial rollback segment called SYSTEM is created when a database is created.
The SYSTEM rollback segment is created in the SYSTEM tablespace using the
default storage parameters associated with that tablespace. You cannot drop this
rollback segment.

An instance always acquires the SYSTEM rollback segment in addition to any other
rollback segments it needs. However, if there are multiple rollback segments, Ora-
cle tries to use the SYSTEM rollback segment only for special system transactions
and distributes user transactions among other rollback segments; if there are too
many transactions for the non-SYSTEM rollback segments, Oracle uses the SYS-
TEM segment. Therefore, after database creation, create at least one additional roll-
back segment in the SYSTEM tablespace.

Choose Between Public and Private Rollback Segments
A private rollback segment is acquired explicitly by an instance when the instance
opens the database. Public rollback segments form a pool of rollback segments that
any instance requiring a rollback segment can use.

If a database does not have the Parallel Server option, public and private rollback
segments are identical. Therefore, you can create all public rollback segments. A
database with the Parallel Server option can also have only public segments, as
long as the number of segments is high enough that each instance opening the data-
base can acquire at least one rollback segment in addition to its SYSTEM rollback
segment. You may also use private rollback segments when using the Oracle Paral-
lel Server.

See Also: For more information about the Parallel Server option and rollback seg-
ments, see Oracle8 Parallel Server Concepts and Administration.

For more information about public and private rollback segments, see Oracle8 Con-
cepts.

Specify Rollback Segments to Acquire Automatically
When an instance starts, it acquires by default TRANSACTIONS/
TRANSACTIONS_PER_ROLLBACK_SEGMENT rollback segments. If you want to
 Managing Rollback Segments 18-3

Guidelines for Managing Rollback Segments
ensure that the instance acquires particular rollback segments that have particular
sizes or particular tablespaces, specify the rollback segments by name in the
ROLLBACK_SEGMENTS parameter in the instance’s parameter file.

The instance acquires all the rollback segments listed in this parameter, even if
more than TRANSACTIONS/TRANSACTIONS_PER_ROLLBACK_SEGMENT seg-
ments are specified. The rollback segments can be either private or public.

Set Rollback Segment Sizes Appropriately
Total rollback segment size should be set based on the size of the most common
transactions issued against a database. In general, short transactions experience bet-
ter performance when the database has many smaller rollback segments, while
long-running transactions, like batch jobs, perform better with larger rollback seg-
ments. Generally, rollback segments can handle transactions of any size easily; how-
ever, in extreme cases when a transaction is either very short or very long, a user
might want to use an appropriately sized rollback segment.

If a system is running only short transactions, rollback segments should be small so
that they are always cached in main memory. If the rollback segments are small
enough, they are more likely to be cached in the SGA according to the LRU algo-
rithm, and database performance is improved because less disk I/O is necessary.
The main disadvantage of small rollback segments is the increased likelihood of the
error “snapshot too old” when running a long query involving records that are fre-
quently updated by other transactions. This error occurs because the rollback
entries needed for read consistency are overwritten as other update entries wrap
around the rollback segment. Consider this issue when designing an application’s
transactions, and make them short atomic units of work so that you can avoid this
problem.

In contrast, long running transactions work better with larger rollback segments,
because the rollback entries for a long running transaction can fit in pre-allocated
extents of a large rollback segment.

When a database system’s applications concurrently issue a mix of very short and
very long transactions, performance can be optimized if transactions are explicitly
assigned to a rollback segment based on the transaction/rollback segment size. You
can minimize dynamic extent allocation and truncation for rollback segments. This
is not required for most systems and is intended for extremely large or small trans-
actions.

To optimize performance when issuing a mix of extremely small and large transac-
tions, make a number of rollback segments of appropriate size for each type of
transaction (such as small, medium, and large). Most rollback segments should cor-
18-4 Oracle8 Administrator’s Guide

Guidelines for Managing Rollback Segments
respond to the typical transactions, with a fewer number of rollback segments for
the atypical transactions. Then set OPTIMAL for each such rollback segment so
that the rollback segment returns to its intended size if it has to grow.

You should tell users about the different sets of rollback segments that correspond
to the different types of transactions. Often, it is not beneficial to assign a transac-
tion explicitly to a specific rollback segment; however, you can assign an atypical
transaction to an appropriate rollback segment created for such transactions. For
example, you can assign a transaction that contains a large batch job to a large roll-
back segment.

When a mix of transactions is not prevalent, each rollback segment should be 10
per cent of the size of the database’s largest table because most SQL statements
affect 10 per cent or less of a table; therefore, a rollback segment of this size should
be sufficient to store the actions performed by most SQL statements.

Generally speaking, you should set a high MAXEXTENTS for rollback segments;
this allows a rollback segment to allocate subsequent extents as it needs them.

Create Rollback Segments with Many Equally Sized Extents
Each rollback segment’s total allocated space should be divided among many
equally sized extents. In general, optimal rollback I/O performance is observed if
each rollback segment for an instance has 10 to 20 equally sized extents.

After determining the desired total initial size of a rollback segment and the num-
ber of initial extents for the segment, use the following formula to calculate the size
of each extent of the rollback segment:

T / n = s

where:

T = total initial rollback segment size, in bytes

n = number of extents initially allocate

s = calculated size, in bytes, of each extent initially allocated

After s is calculated, create the rollback segment and specify the storage parameters
INITIAL and NEXT as s, and MINEXTENTS to n. PCTINCREASE cannot be speci-
fied for rollback segments and therefore defaults to 0. Also, if the size s of an extent
is not an exact multiple of the data block size, it is rounded up to the next multiple.
 Managing Rollback Segments 18-5

Guidelines for Managing Rollback Segments
Set an Optimal Number of Extents for Each Rollback Segment
You should carefully assess the kind of transactions the system runs when setting
the OPTIMAL parameter for each rollback segment. For a system that executes
long-running transactions frequently, OPTIMAL should be large so that Oracle
does not have to shrink and allocate extents frequently. Also, for a system that exe-
cutes long queries on active data, OPTIMAL should be large to avoid “snapshot too
old” errors. OPTIMAL should be smaller for a system that mainly executes short
transactions and queries so that the rollback segments remain small enough to be
cached in memory, thus improving system performance.

To obtain estimates and monitor the effectiveness of the OPTIMAL settings for roll-
back segments, use the MONITOR ROLLBACK feature of Enterprise Manager/
GUI. In this monitor, the following statistics are given for each rollback segment:

Assuming that an instance has equally sized rollback segments with comparably
sized extents, the OPTIMAL parameter for a given rollback segment should be set

Size, High Water the most space ever allocated for the rollback seg-
ment, in bytes

Sizes, Optimal the OPTIMAL size of the rollback segment, in
bytes

Occurrences, Wraps the cumulative number of times a transaction con-
tinues writing from one extent in a rollback seg-
ment to another existing extent

Occurrences, Extends the cumulative number of times a new extent is
allocated for a rollback segment

Shrinks the cumulative number of times Oracle has trun-
cated extents from the rollback segment

Average Sizes, Shrunk the average size of the space Oracle truncated
from the rollback segment, in bytes

Average Sizes, Active the average number of bytes in active extents in
the rollback segment, measured over time
18-6 Oracle8 Administrator’s Guide

Guidelines for Managing Rollback Segments
slightly higher than Average Sizes, Active. Table 18–1 provides additional informa-
tion on how to interpret the statistics given in this monitor.

Set the Storage Location for Rollback
If possible, create one tablespace specifically to hold all rollback segments, in addi-
tion to the two required in the SYSTEM tablespace. This way, all rollback segment
data is stored separately from other types of data. Creating this “rollback segment”
tablespace can provide the following benefits:

■ A tablespace holding rollback segments can always be kept online, thus maxi-
mizing the combined storage capacity of rollback segments at all times. Note
that if some rollback segments are not available, the overall database operation
can be affected.

■ Because tablespaces with active rollback segments cannot be taken offline, des-
ignating a tablespace to hold all rollback segments of a database ensures that
the data stored in other tablespaces can be taken offline without concern for the
database’s rollback segments.

■ A tablespace’s free extents are likely to be more fragmented if the tablespace
contains rollback segments that frequently allocate and deallocate extents.

Table 18–1 Analyzing the Effectiveness of Current OPTIMAL Settings

Shrinks
Average Sizes,
Shrunk Analysis and Recommendation

Low Low If Average Sizes, active is close to Sizes,
Optimal, then the OPTIMAL setting is cor-
rect. Otherwise, OPTIMAL is too large
(not many shrinks are being performed.)

Low High Excellent: a good setting for OPTIMAL.
High Low OPTIMAL is too small: too many shrinks

are being performed.
High High Periodic long transactions are probably

causing these statistics. Set the OPTIMAL
parameter higher until Shrinks is low.
 Managing Rollback Segments 18-7

Creating Rollback Segments
Creating Rollback Segments
To create rollback segments, you must have the CREATE ROLLBACK SEGMENT
system privilege. To create additional rollback segments for a database, use either
the Create Rollback Segment property sheet of Enterprise Manager, or the SQL com-
mand CREATE ROLLBACK SEGMENT. The tablespace to contain the new rollback
segment must be online.

The following statement creates a public rollback segment named USERS_RS in the
USERS tablespace, using the default storage parameters of the USERS tablespace:

CREATE PUBLIC ROLLBACK SEGMENT users_rs TABLESPACE users;

Bringing New Rollback Segments Online
If you create a private rollback segment, you should add the name of this new roll-
back segment to the ROLLBACK_SEGMENTS parameter in the parameter file for
the database. Doing so enables the private rollback segment to be captured by the
instance at instance start up. For example, if two new private rollback segments are
created and named RS1 and RS2, the ROLLBACK_SEGMENTS parameter of the
parameter file should be similar to the following:

ROLLBACK SEGMENTS= (RS1, RS2)

See Also: Once a rollback segment is created, it is not available for use by transac-
tions of any instance until it is brought online. See “Taking Rollback Segments
Online and Offline” on page 18-11 for more information.

Specifying Storage Parameters for Rollback Segments
This section describes aspects of specifying rollback segment storage parameters,
and includes the following topics:

■ Setting Storage Parameters When Creating a Rollback Segment

■ Changing Rollback Segment Storage Parameters

■ Altering Rollback Segment Format

■ Shrinking a Rollback Segment Manually
18-8 Oracle8 Administrator’s Guide

Specifying Storage Parameters for Rollback Segments
Setting Storage Parameters When Creating a Rollback Segment
Suppose you wanted to create a public rollback segment DATA1_RS with storage
parameters and optimal size set as follows:

■ The rollback segment is allocated an initial extent of 50K.

■ The rollback segment is allocated the second extent of 50K.

■ The optimal size of the rollback segment is 750K.

■ The minimum number of extents and the number of extents initially allocated
when the segment is created is 15.

■ The maximum number of extents that the rollback segment can allocate, includ-
ing the initial extent, is 100.

The following statement creates a rollback segment with these characteristics:

CREATE PUBLIC ROLLBACK SEGMENT data1_rs
 TABLESPACE users
 STORAGE (
 INITIAL 50K
 NEXT 50K
 OPTIMAL 750K
 MINEXTENTS 15
 MAXEXTENTS 100);

You can also use the Create Rollback Segment property sheet of Enterprise Man-
ager to set the rollback segment’s storage parameters.

Changing Rollback Segment Storage Parameters
You can change a rollback segment’s storage parameters after creating it. However,
you cannot alter the size of any extent currently allocated to a rollback segment.
You can only affect future extents.

Alter a rollback segment’s storage parameters using either the Alter Rollback Seg-
ment property sheet of Enterprise Manager, or the SQL command ALTER ROLL-
BACK SEGMENT.

The following statement alters the maximum number of extents that the
DATA1_RS rollback segment can allocate.

ALTER PUBLIC ROLLBACK SEGMENT data1_rs
STORAGE (MAXEXTENTS 120);
 Managing Rollback Segments 18-9

Specifying Storage Parameters for Rollback Segments
You can alter the settings for the SYSTEM rollback segment, including the OPTI-
MAL parameter, just as you can alter those of any rollback segment.

See Also: For guidance on setting sizes and storage parameters (including OPTI-
MAL) for rollback segments, see “Guidelines for Managing Rollback Segments” on
page 18-2.

Altering Rollback Segment Format
To alter rollback segments, you must have the ALTER ROLLBACK SEGMENT sys-
tem privilege.

You can define limited or unlimited format for rollback segments. When converting
to limited or unlimited format, you must take the rollback segments offline. If you
identify unlimited format for rollback segments, extents for that segment must
have a minimum of 4 data blocks. Thus, a limited format rollback segment cannot
be converted to unlimited format if it has less than 4 data blocks in any extent. If
you want to convert from limited to unlimited format and have less than 4 data
blocks in an extent, your only choice is to drop and re-create the rollback segment.

Shrinking a Rollback Segment Manually
To shrink a rollback segment using you must have the ALTER ROLLBACK SEG-
MENT system privilege.

You can manually decrease the size of a rollback segment using the SQL command
ALTER ROLLBACK SEGMENT. The rollback segment you are trying shrink must
be online.

The following statement shrinks rollback segment RBS1 to 100K:

ALTER ROLLBACK SEGMENT rbs1 SHRINK TO 100K;

See Also: For a complete description of the ALTER ROLLBACK SEGMENT com-
mand, see the Oracle8 SQL Reference.

Note: If you are altering a public rollback segment, you must
include the keyword PUBLIC in the ALTER ROLLBACK SEG-
MENT command.
18-10 Oracle8 Administrator’s Guide

Taking Rollback Segments Online and Offline
Taking Rollback Segments Online and Offline
This section describes aspects of taking rollback segments online and offline, and
includes the following topics:

■ Bringing Rollback Segments Online

■ Taking Rollback Segments Offline

A rollback segment is either online and available to transactions, or offline and
unavailable to transactions. Generally, rollback segments are online and available
for use by transactions.

You may wish to take online rollback segments offline in the following situations:

■ When you want to take a tablespace offline, and the tablespace contains roll-
back segments. You cannot take a tablespace offline if it contains rollback seg-
ments that transactions are currently using. To prevent associated rollback
segments from being used, you can take them offline before taking the
tablespace offline.

■ You want to drop a rollback segment, but cannot because transactions are cur-
rently using it. To prevent the rollback segment from being used, you can take
it offline before dropping it.

You might later want to bring an offline rollback segment back online so that trans-
actions can use it. When a rollback segment is created, it is initially offline, and you
must explicitly bring a newly created rollback segment online before it can be used
by an instance’s transactions. You can bring an offline rollback segment online via
any instance accessing the database that contains the rollback segment.

Bringing Rollback Segments Online
You can bring online only a rollback segment whose current status (as shown in the
DBA_ROLLBACK_SEGS data dictionary view) is OFFLINE or PARTLY AVAIL-
ABLE. To bring an offline rollback segment online, use either the Place Online
menu item of Enterprise Manager or the SQL command ALTER ROLLBACK SEG-
MENT with the ONLINE option.

Note: You cannot take the SYSTEM rollback segment offline.
 Managing Rollback Segments 18-11

Taking Rollback Segments Online and Offline
Bringing a PARTLY AVAILABLE Rollback Segment Online
A rollback segment in the PARTLY AVAILABLE state contains data for an in-doubt
or recovered distributed transaction, and yet to be recovered transactions. You can
view its status in the data dictionary view DBA_ROLLBACK_SEGS as PARTLY
AVAILABLE. The rollback segment usually remains in this state until the transac-
tion is resolved either automatically by RECO, or manually by a DBA. However,
you might find that all rollback segments are PARTLY AVAILABLE. In this case,
you can bring a PARTLY AVAILABLE segment online, as described above.

Some resources used by the rollback segment for the in-doubt transaction remain
inaccessible until the transaction is resolved. As a result, the rollback segment may
have to grow if other transactions assigned to it need additional space.

As an alternative to bringing a PARTLY AVAILABLE segment online, you might
find it easier to create a new rollback segment temporarily, until the in-doubt trans-
action is resolved.

Bringing Rollback Segment Online Automatically
If you would like a rollback segment to be automatically brought online whenever
you start up the database, add the segment’s name to the ROLLBACK_SEGMENTS
parameter in the database’s parameter file.

Bringing Rollback Segments Online: Example
The following statement brings the rollback segment USER_RS_2 online:

ALTER ROLLBACK SEGMENT user_rs_2 ONLINE;

After you bring a rollback segment online, its status in the data dictionary view
DBA_ROLLBACK_SEGS is ONLINE.

See Also: For information about the ROLLBACK_SEGMENTS and
DBA_ROLLBACK_SEGS parameters, see the Oracle8 Reference.

To see a query for checking rollback segment state, see “Displaying Rollback Seg-
ment Information” on page 18-15.

Taking Rollback Segments Offline
To take an online rollback segment offline, use either the Take Offline menu item of
Enterprise Manager, or the ALTER ROLLBACK SEGMENT command with the
OFFLINE option. The rollback segment’s status in the DBA_ROLLBACK_SEGS
data dictionary view must be “ONLINE”, and the rollback segment must be
acquired by the current instance.
18-12 Oracle8 Administrator’s Guide

Explicitly Assigning a Transaction to a Rollback Segment
The following example takes the rollback segment USER_RS_2 offline:

ALTER ROLLBACK SEGMENT user_rs_2 OFFLINE;

If you try to take a rollback segment that does not contain active rollback entries
offline, Oracle immediately takes the segment offline and changes its status to
“OFFLINE”.

In contrast, if you try to take a rollback segment that contains rollback data for
active transactions (local, remote, or distributed) offline, Oracle makes the rollback
segment unavailable to future transactions and takes it offline after all the active
transactions using the rollback segment complete. Until the transactions complete,
the rollback segment cannot be brought online by any instance other than the one
that was trying to take it offline. During this period, the rollback segment’s status
in the view DBA_ROLLBACK_SEGS remains ONLINE; however, the rollback seg-
ment’s status in the view V$ROLLSTAT is PENDING OFFLINE.

The instance that tried to take a rollback segment offline and caused it to change to
PENDING OFFLINE can bring it back online at any time; if the rollback segment is
brought back online, it will function normally.

Taking Public and Private Rollback Segments Offline
After you take a public or private rollback segment offline, it remains offline until
you explicitly bring it back online or you restart the instance.

See Also: For information on viewing rollback segment status, see “Displaying
Rollback Segment Information” on page 18-15.

For information about the views DBA_ROLLBACK_SEGS and V$ROLLSTAT, see
the Oracle8 Reference.

Explicitly Assigning a Transaction to a Rollback Segment
A transaction can be explicitly assigned to a specific rollback segment using the
SET TRANSACTION command with the USE ROLLBACK SEGMENT parameter.
Transactions are explicitly assigned to rollback segments for the following reasons:

■ The anticipated amount of rollback information generated by a transaction can
fit in the current extents of the assigned rollback segment.

■ Additional extents do not have to be dynamically allocated (and subsequently
truncated) for rollback segments, which reduces overall system performance.

To assign a transaction to a rollback segment explicitly, the rollback segment must
be online for the current instance, and the SET TRANSACTION USE ROLLBACK
 Managing Rollback Segments 18-13

Dropping Rollback Segments
SEGMENT statement must be the first statement of the transaction. If a specified
rollback segment is not online or a SET TRANSACTION USE ROLLBACK SEG-
MENT statement is not the first statement in a transaction, an error is returned.

For example, if you are about to begin a transaction that contains a significant
amount of work (more than most transactions), you can assign the transaction to a
large rollback segment, as follows:

SET TRANSACTION USE ROLLBACK SEGMENT large_rs1;

After the transaction is committed, Oracle will automatically assign the next trans-
action to any available rollback segment unless the new transaction is explicitly
assigned to a specific rollback segment by the user.

Dropping Rollback Segments
You can drop rollback segments when the extents of a segment become too frag-
mented on disk, or the segment needs to be relocated in a different tablespace.

Before dropping a rollback segment, make sure that status of the rollback segment
is OFFLINE. If the rollback segment that you want to drop is currently ONLINE,
PARTLY AVAILABLE, NEEDS RECOVERY, or INVALID, you cannot drop it. If the
status is INVALID, the segment has already been dropped. Before you can drop it,
you must take it offline.

To drop a rollback segment, you must have the DROP ROLLBACK SEGMENT sys-
tem privilege.

If a rollback segment is offline, you can drop it using either the Drop menu item of
Enterprise Manager, or the SQL command DROP ROLLBACK SEGMENT.

The following statement drops the DATA1_RS rollback segment:

DROP PUBLIC ROLLBACK SEGMENT data1_rs;

If you use the DROP ROLLBACK SEGMENT command, indicate the correct type
of rollback segment to drop, public or private, by including or omitting the PUBLIC
keyword.

Note: If a rollback segment specified in ROLLBACK_SEGMENTS
is dropped, make sure to edit the parameter files of the database to
remove the name of the dropped rollback segment from the list in
the ROLLBACK_SEGMENTS parameter. If this step is not per-
formed before the next instance startup, startup fails because it can-
not acquire the dropped rollback segment.
18-14 Oracle8 Administrator’s Guide

Monitoring Rollback Segment Information
After a rollback segment is dropped, its status changes to INVALID. The next time
a rollback segment is created, it takes the row vacated by a dropped rollback seg-
ment, if one is available, and the dropped rollback segment’s row no longer
appears in the DBA_ROLLBACK_SEGS view.

See Also: For more information about the view DBA_ROLLBACK_SEGS, see the
Oracle8 Reference.

Monitoring Rollback Segment Information
Use the MONITOR ROLLBACK feature of Enterprise Manager/GUI to monitor a
rollback segment’s size, number of extents, optimal number of extents, activity con-
cerning dynamic deallocation of extents, and current usage by active transaction.

See Also: For a detailed description of how to use the MONITOR for the corre-
sponding operation, see “Set an Optimal Number of Extents for Each Rollback Seg-
ment” on page 18-6.

Displaying Rollback Segment Information
The DBA_ROLLBACK_SEGS data dictionary view stores information about the
rollback segments of a database. For example, the following query lists the name,
associated tablespace, and status of each rollback segment in a database:

SELECT segment_name, tablespace_name, status
 FROM sys.dba_rollback_segs;

SEGMENT_NAME TABLESPACE_NAME STATUS
------------- ---------------- ------
SYSTEM SYSTEM ONLINE
PUBLIC_RS SYSTEM ONLINE
USERS_RS USERS ONLINE

In addition, the following data dictionary views contain information about the seg-
ments of a database, including rollback segments:

■ USER_SEGMENTS

■ DBA_SEGMENTS
 Managing Rollback Segments 18-15

Monitoring Rollback Segment Information
Displaying All Rollback Segments
The following query returns the name of each rollback segment, the tablespace that
contains it, and its size:

SELECT segment_name, tablespace_name, bytes, blocks, extents
 FROM sys.dba_segments
 WHERE segment_type = ’ROLLBACK’;

SEGMENT_NAME TABLESPACE_NAME BYTES BLOCKS EXTENTS
------------ --------------- ------- ------ ---------
RS1 SYSTEM 20480 10 2
RS2 TS1 40960 20 3
SYSTEM SYSTEM 184320 90 3

Displaying Whether a Rollback Segment Has Gone Offline
When you take a rollback segment offline, it does not actually go offline until all
active transactions in it have completed. Between the time when you attempt to
take it offline and when it actually is offline, its status in DBA_ROLLBACK_SEGS
remains ONLINE, but it is not used for new transactions. To determine whether
any rollback segments for an instance are in this state, use the following query:

SELECT name, xacts ’ACTIVE TRANSACTIONS’
 FROM v$rollname, v$rollstat
WHERE status = ’PENDING OFFLINE’
 AND v$rollname.usn = v$rollstat.usn;

NAME ACTIVE TRANSACTIONS
---------- --------------------
RS2 3

If your instance is part of a Parallel Server configuration, this query displays infor-
mation for rollback segments of the current instance only, not those of other
instances.
18-16 Oracle8 Administrator’s Guide

Monitoring Rollback Segment Information
Displaying Deferred Rollback Segments
The following query shows which rollback segments are private and which are pub-
lic. Note that it only displays information about the rollback segments that are cur-
rently online for the current instance:

SELECT segment_name, tablespace_name, owner
 FROM sys.dba_rollback_segs;

SEGMENT_NAME TABLESPACE_NAME OWNER
------------- ---------------- ------
SYSTEM SYSTEM SYS
PUBLIC_RS SYSTEM PUBLIC
USERS_RS USERS SYS

Displaying All Deferred Rollback Segments
The following query shows all deferred rollback segments (rollback segments that
were created to hold rollback entries for tablespaces taken offline until the
tablespaces are brought back online):

SELECT segment_name, segment_type, tablespace_name
 FROM sys.dba_segments
WHERE segment_type = ’DEFERRED ROLLBACK’;

SEGMENT_NAME SEGMENT_TYPE TABLESPACE_NAME
------------ ----------------- ----------------
USERS_RS DEFERRED ROLLBACK USERS
 Managing Rollback Segments 18-17

Monitoring Rollback Segment Information
18-18 Oracle8 Administrator’s Guide

 Establishing Security Po
19

 Establishing Security Policies

This chapter provides guidelines for developing security policies for database oper-
ation, and includes the following topics:

■ System Security Policy

■ Data Security Policy

■ User Security Policy

■ Password Management Policy

■ Auditing Policy
licies 19-1

System Security Policy
System Security Policy
This section describes aspects of system security policy, and includes the following
topics:

■ Database User Management

■ User Authentication

■ Operating System Security

Each database has one or more administrators who are responsible for maintaining
all aspects of the security policy: the security administrators. If the database system
is small, the database administrator may have the responsibilities of the security
administrator. However, if the database system is large, a special person or group
of people may have responsibilities limited to those of a security administrator.

After deciding who will manage the security of the system, a security policy must
be developed for every database. A database’s security policy should include sev-
eral sub-policies, as explained in the following sections.

Database User Management
Database users are the access paths to the information in an Oracle database. There-
fore, tight security should be maintained for the management of database users.
Depending on the size of a database system and the amount of work required to
manage database users, the security administrator may be the only user with the
privileges required to create, alter, or drop database users. On the other hand, there
may be a number of administrators with privileges to manage database users.
Regardless, only trusted individuals should have the powerful privileges to admin-
ister database users.

User Authentication
Database users can be authenticated (verified as the correct person) by Oracle using
the host operating system, network services, or the database. Generally, user
authentication via the host operating system is preferred for the following reasons:

■ Users can connect to Oracle faster and more conveniently without specifying a
username or password.

■ Centralized control over user authorization in the operating system: Oracle
need not store or manage user passwords and usernames if the operating sys-
tem and database correspond.

■ User entries in the database and operating system audit trails correspond.
19-2 Oracle8 Administrator’s Guide

Data Security Policy
User authentication by the database is normally used when the host operating sys-
tem cannot support user authentication.

See Also: For more information about network authentication, see Oracle8 Distrib-
uted Database Systems.

For more information about user authentication, see “Creating Users” on
page 20-12.

Operating System Security
If applicable, the following security issues must also be considered for the operat-
ing system environment executing Oracle and any database applications:

■ Database administrators must have the operating system privileges to create
and delete files.

■ Typical database users should not have the operating system privileges to cre-
ate or delete files related to the database.

■ If the operating system identifies database roles for users, the security adminis-
trators must have the operating system privileges to modify the security
domain of operating system accounts.

See Also: For more information about operating system security issues for Oracle
databases, see your operating system-specific Oracle documentation.

Data Security Policy
Data security includes the mechanisms that control the access and use of the data-
base at the object level. Your data security policy determines which users have
access to a specific schema object, and the specific types of actions allowed for each
user on the object. For example, user SCOTT can issue SELECT and INSERT state-
ments but not DELETE statements using the EMP table. Your data security policy
should also define the actions, if any, that are audited for each schema object.

Your data security policy will be determined primarily by the level of security you
wish to establish for the data in your database. For example, it may be acceptable to
have little data security in a database when you wish to allow any user to create
any schema object, or grant access privileges for their objects to any other user of
the system. Alternatively, it might be necessary for data security to be very con-
trolled when you wish to make a database or security administrator the only per-
son with the privileges to create objects and grant access privileges for objects to
roles and users.
 Establishing Security Policies 19-3

User Security Policy
Overall data security should be based on the sensitivity of data. If information is
not sensitive, then the data security policy can be more lax. However, if data is sen-
sitive, a security policy should be developed to maintain tight control over access
to objects.

User Security Policy
This section describes aspects of user security policy, and includes the following
topics:

■ General User Security

■ End-User Security

■ Administrator Security

■ Application Developer Security

■ Application Administrator Security

General User Security
For all types of database users, consider the following general user security issues:

■ Password Security

■ Privilege Management

Password Security
If user authentication is managed by the database, security administrators should
develop a password security policy to maintain database access security. For exam-
ple, database users should be required to change their passwords at regular inter-
vals, and of course, when their passwords are revealed to others. By forcing a user
to modify passwords in such situations, unauthorized database access can be
reduced.

Secure Connections with Encrypted Passwords

To better protect the confidentiality of your password, Oracle can be configured to
use encrypted passwords for client/server and server/server connections.

By setting the following values, you can require that the password used to verify a
connection always be encrypted:

■ Set the ORA_ENCRYPT_LOGIN environment variable to TRUE on the client
machine.
19-4 Oracle8 Administrator’s Guide

User Security Policy
■ Set the DBLINK_ENCRYPT_LOGIN server initialization parameter to TRUE.

If enabled at both the client and server, passwords will not be sent across the net-
work “in the clear”, but will be encrypted using a modified DES (Data Encryption
Standard) algorithm.

The DBLINK_ENCRYPT_LOGIN parameter is used for connections between two
Oracle servers (for example, when performing distributed queries). If you are con-
necting from a client, Oracle checks the ORA_ENCRYPT_LOGIN environment vari-
able.

Whenever you attempt to connect to a server using a password, Oracle encrypts
the password before sending it to the server. If the connection fails and auditing is
enabled, the failure is noted in the audit log. Oracle then checks the appropriate
DBLINK_ENCRYPT_LOGIN or ORA_ENCRYPT_LOGIN value. If it set to FALSE,
Oracle attempts the connection again using an unencrypted version of the pass-
word. If the connection is successful, the connection replaces the previous failure in
the audit log, and the connection proceeds. To prevent malicious users from forcing
Oracle to re-attempt a connection with an unencrypted version of the password,
you must set the appropriate values to TRUE.

Privilege Management
Security administrators should consider issues related to privilege management for
all types of users. For example, in a database with many usernames, it may be bene-
ficial to use roles (which are named groups of related privileges that you grant to
users or other roles) to manage the privileges available to users. Alternatively, in a
database with a handful of usernames, it may be easier to grant privileges explicitly
to users and avoid the use of roles.

Security administrators managing a database with many users, applications, or
objects should take advantage of the benefits offered by roles. Roles greatly sim-
plify the task of privilege management in complicated environments.

End-User Security
Security administrators must also define a policy for end-user security. If a data-
base is large with many users, the security administrator can decide what groups of
users can be categorized, create user roles for these user groups, grant the neces-
sary privileges or application roles to each user role, and assign the user roles to the
users. To account for exceptions, the security administrator must also decide what
privileges must be explicitly granted to individual users.
 Establishing Security Policies 19-5

User Security Policy
Using Roles for End-User Privilege Management
Roles are the easiest way to grant and manage the common privileges needed by
different groups of database users.

Consider a situation where every user in the accounting department of a company
needs the privileges to run the ACCTS_RECEIVABLE and ACCTS_PAYABLE data-
base applications. Roles are associated with both applications, and contain the
object privileges necessary to execute those applications.

The following actions, performed by the database or security administrator,
address this simple security situation:

1. Create a role named ACCOUNTANT.

2. Grant the roles for the ACCTS_RECEIVABLE and ACCTS_PAYABLE database
applications to the ACCOUNTANT role.

3. Grant each user of the accounting department the ACCOUNTANT role.

This security model is illustrated in Figure 19–1.

Figure 19–1 User Role

This plan addresses the following potential situations:

■ If accountants subsequently need a role for a new database application, that
application’s role can be granted to the ACCOUNTANT role, and all users in
the accounting department will automatically receive the privileges associated

Users

User Roles

Application Roles

Application Privileges

ACCOUNTANT
Role

ACCTS_PAY
Role

ACCTS_REC
Role

Privileges to
execute the
ACCTS_PAY
application

Privileges to
execute the
ACCTS_REC
application
19-6 Oracle8 Administrator’s Guide

User Security Policy
with the new database application. The application’s role does not need to be
granted to individual users requiring use of the application.

■ Similarly, if the accounting department no longer requires the need for a spe-
cific application, the application’s role can be dropped from the ACCOUN-
TANT role.

■ If the privileges required by the ACCTS_RECEIVABLE or ACCTS_PAYABLE
applications change, the new privileges can be granted to, or revoked from, the
application’s role. The security domain of the ACCOUNTANT role, and all
users granted the ACCOUNTANT role automatically reflect the privilege modi-
fication.

■ You have an index where a user requires only 1 role.

When possible, utilize roles in all possible situations to make end-user privilege
management efficient and simple.

Administrator Security
Security administrators should have a policy addressing administrator security. For
example, when the database is large and there are several types of database admin-
istrators, the security administrator may decide to group related administrative
privileges into several administrative roles. The administrative roles can then be
granted to appropriate administrator users. Alternatively, when the database is
small and has only a few administrators, it may be more convenient to create one
administrative role and grant it to all administrators.

Protection for Connections as SYS and SYSTEM
After database creation, immediately change the passwords for the administrative
SYS and SYSTEM usernames to prevent unauthorized access to the database. Con-
necting as SYS and SYSTEM give a user the powerful privileges to modify a data-
base in many ways. Therefore, privileges for these usernames are extremely
sensitive, and should only be available to select database administrators.

See Also: The passwords for these accounts can be modified using the procedures
described in “Altering Users” on page 20-16.

Protection for Administrator Connections
Only database administrators should have the capability to connect to a database
with administrator privileges. Connecting as SYSDBA gives a user unrestricted
privileges to do anything to a database (such as startup, shutdown, and recover) or
the objects within a database (such as create, drop, and delete from).
 Establishing Security Policies 19-7

User Security Policy
Using Roles for Administrator Privilege Management
Roles are the easiest way to restrict the powerful system privileges and roles
required by personnel administrating of the database.

Consider a scenario where the database administrator responsibilities at a large
installation are shared among several database administrators, each responsible for
the following specific database management jobs:

■ an administrator responsible for object creation and maintenance

■ an administrator responsible for database tuning and performance

■ a security administrator responsible for creating new users, granting roles and
privileges to database users

■ a database administrator responsible for routine database operation (for exam-
ple, startup, shutdown, backup)

■ an administrator responsible for emergency situations, such as database recov-
ery

■ new, inexperienced database administrators needing limited capabilities to
experiment with database management

In this scenario, the security administrator should structure the security for admin-
istrative personnel as follows:

1. Six roles should be defined to contain the distinct privileges required to accom-
plish each type of job (for example, DBA_OBJECTS, DBA_TUNE,
DBA_SECURITY, DBA_MAINTAIN, DBA_RECOV, DBA_NEW).

2. Each role is granted the appropriate privileges.

3. Each type of database administrator can be granted the corresponding role.

This plan diminishes the likelihood of future problems in the following ways:

■ If a database administrator’s job description changes to include more responsi-
bilities, that database administrator can be granted other administrative roles
corresponding to the new responsibilities.

■ If a database administrator’s job description changes to include fewer responsi-
bilities, that database administrator can have the appropriate administrative
roles revoked.

■ The data dictionary always stores information about each role and each user, so
information is available to disclose the task of each administrator.
19-8 Oracle8 Administrator’s Guide

User Security Policy
Application Developer Security
Security administrators must define a special security policy for the application
developers using a database. A security administrator may grant the privileges to
create necessary objects to application developers. Alternatively, the privileges to
create objects may only be granted to a database administrator, who receives
requests for object creation from developers.

Application Developers and Their Privileges
Database application developers are unique database users who require special
groups of privileges to accomplish their jobs. Unlike end users, developers need
system privileges, such as CREATE TABLE, CREATE PROCEDURE, and so on.
However, only specific system privileges should be granted to developers to
restrict their overall capabilities in the database.

The Application Developer’s Environment: Test and Production Databases
In many cases, application development is restricted to test databases and not
allowed on production databases. This restriction ensures that application develop-
ers do not compete with end-users for database resources, and that they cannot det-
rimentally affect a production database.

After an application has been thoroughly developed and tested, it is permitted
access to the production database and made available to the appropriate end-users
of the production database.

Free Versus Controlled Application Development
The database administrator can define the following options when determining
which privileges should be granted to application developers:

Free Develop-
ment

An application developer is allowed to create new
schema objects, including tables, indexes, procedures,
packages, and so on. This option allows the application
developer to develop an application independent of
other objects.
 Establishing Security Policies 19-9

User Security Policy
Although some database systems use only one of these options, other systems
could mix them. For example, application developers can be allowed to create new
stored procedures and packages, but not allowed to create tables or indexes. A secu-
rity administrator’s decision regarding this issue should be based on the following:

■ the control desired over a database’s space usage

■ the control desired over the access paths to schema objects

■ the database used to develop applications—if a test database is being used for
application development, a more liberal development policy would be in order

Roles and Privileges for Application Developers
Security administrators can create roles to manage the privileges required by the
typical application developer. For example, a typical role named
APPLICATION_DEVELOPER might include the CREATE TABLE, CREATE VIEW,
and CREATE PROCEDURE system privileges. Consider the following when defin-
ing roles for application developers:

■ CREATE system privileges are usually granted to application developers so
that they can create their own objects. However, CREATE ANY system privi-
leges, which allow a user to create an object in any user’s domain, are not usu-
ally granted to developers. This restricts the creation of new objects only to the
developer’s user account.

■ Object privileges are rarely granted to roles used by application developers.
This is often impractical because granting object privileges via roles often
restricts their usability in the creation of other objects (primarily views and
stored procedures). It is more practical to allow application developers to create
their own objects for development purposes.

Controlled
Development

An application developer is not allowed to create new
schema objects. All required tables, indexes, procedures,
and so on are created by a database administrator, as
requested by an application developer. This option
allows the database administrator to completely control
a database’s space usage and the access paths to informa-
tion in the database.
19-10 Oracle8 Administrator’s Guide

User Security Policy
Space Restrictions Imposed on Application Developers
While application developers are typically given the privileges to create objects as
part of the development process, security administrators must maintain limits on
what and how much database space can be used by each application developer. For
example, as the security administrator, you should specifically set or restrict the fol-
lowing limits for each application developer:

■ the tablespaces in which the developer can create tables or indexes

■ the quota for each tablespace accessible to the developer

See Also: Both limitations can be set by altering a developer’s security domain. For
more information, see “Altering Users” on page 20-16.

Application Administrator Security
In large database systems with many database applications (for example, precom-
piler and Forms applications), you might want to have application administrators.
An application administrator is responsible for the following types of tasks:

■ creating roles for an application and managing the privileges of each applica-
tion role

■ creating and managing the objects used by a database application

■ maintaining and updating the application code and Oracle procedures and
packages, as necessary

Often, an application administrator is also the application developer that designed
the application. However, these jobs might not be the responsibility of the devel-
oper and can be assigned to another individual familiar with the database applica-
tion.
 Establishing Security Policies 19-11

Password Management Policy
Password Management Policy
Database security systems depend on passwords being kept secret at all times. Still,
passwords are vulnerable to theft, forgery, and misuse.To allow for greater control
over database security, Oracle’s password management policy is controlled by
DBAs.

This section describes the following aspects of Oracle password management:

■ Account Locking

■ Password Aging and Expiration

■ Password History

■ Password Complexity Verification

Account Locking
When a particular user exceeds a designated number of failed login attempts, the
server automatically locks that user’s account. DBAs specify the permissible num-
ber of failed login attempts using the CREATE PROFILE statement. DBAs also spec-
ify the amount of time accounts remain locked.

In the following example, the maximum number of failed login attempts for the
user ASHWINI is 4, and the amount of time the account will remain locked is 30
days; the account will unlock automatically after the passage of 30 days.

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 4
 ACCOUNT_LOCK_TIME 1/24;
ALTER USER ashwini PROFILE prof;

If the DBA does not specify a time interval for unlocking the account,
ACCOUNT_LOCK _TIME reverts to a default value. If the DBA specifies
ACCOUNT_LOCK_TIME as UNLIMITED, then the system security officer must
explicitly unlock the account. Thus, the amount of time an account remains locked
depends upon how the DBA configures the resource profile assigned to the user.

After a user successfully logs into an account, that user’s unsuccessful login
attempt count, if there is one, is reset to 0.

The security officer can also explicitly lock user accounts. When this occurs, the
account cannot be unlocked automatically; only the security officer should unlock
the account.

See Also: For more information about the CREATE PROFILE statement, see the
Oracle8 SQL Reference.
19-12 Oracle8 Administrator’s Guide

Password Management Policy
Password Aging and Expiration
DBAs use the CREATE PROFILE statement to specify a maximum lifetime for pass-
words. When the specified amount of time passes and the password expires, the
user or DBA must change the password. The following statement indicates that
ASHWINI can use the same password for 90 days before it expires:

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 4
 ACCOUNT_LOCK_TIME 30
 PASSWORD_LIFE_TIME 90;
ALTER USER ashwini PROFILE prof;

DBAs can also specify a grace period using the CREATE PROFILE statement. Users
enter the grace period upon the first attempt to login to a database account after
their password has expired. During the grace period, a warning message appears
each time users try to log in to their accounts, and continues to appear until the
grace period expires. Users must change the password within the grace period. If
the password is not changed within the grace period, the account expires and no
further log ins to that account are allowed until the password is changed.
Figure 19–2 shows the chronology of the password lifetime and grace period.

Figure 19–2 Chronology of Password Lifetime and Grace Period.

For example, the lifetime of a password is 60 days, and the grace period is 3 days. If
the user tries to log in on any day after the 60th day (this could be the 70th day,
100th day, or another; the point here is that it is the first log in attempt after the
password lifetime), that user receives a warning message indicating that the pass-
word is about to expire in 3 days. If the user does not change the password within
three days from the first day of the grace period, the user’s account expires. The fol-
lowing statement indicates that the user must change the password within 3 days
of its expiration:

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 4
 ACCOUNT_LOCK_TIME 30
 PASSWORD_GRACE_TIME 3;
ALTER USER ashwini PROFILE prof;

Password
Life time

last password
change

1st login after
password lifetime

Expires ...

.Grace period
 Establishing Security Policies 19-13

Password Management Policy
The security officer can also explicitly expire the account. This is particularly useful
for new accounts.

See Also: For more information about the CREATE PROFILE statement, see Oracle8
SQL Reference.

Password History
DBAs use the CREATE PROFILE statement to specify a time interval during which
users cannot reuse a password.

In the following statement, the DBA indicates that the user cannot reuse her pass-
word for 60 days.

CREATE PROFILE prof LIMIT
 PASSWORD_REUSE_TIME 60
 PASSWORD_REUSE_MAX UNLIMITED;

The next statement shows that the number of password changes the user must
make before her current password can be used again is 3.

CREATE PROFILE prof LIMIT
PASSWORD_REUSE_MAX 3
PASSWORD_REUSE_TIME UNLIMITED;

Password Complexity Verification
Oracle’s password complexity verification routine can be specified using a PL/SQL
script (utlpwdmg.sql), which sets the default profile parameters.

The password complexity verification routine performs the following checks:

■ The password has a minimum length of 4.

■ The password is not the same as the userid.

■ The password has at least one alpha, one numeric and one punctuation mark.

■ The password does not match simple words like welcome, account, database,
or user.

Note: Specify either PASSWORD_REUSE_TIME or
PASSWORD_REUSE_MAX, but do not use both at the same time.
19-14 Oracle8 Administrator’s Guide

Password Management Policy
■ The password differs from the previous password by at least 3 letters.

Password Verification Routine Formatting Guidelines
DBAs can enhance the existing password verification complexity routine or create
their own password verification routines using PL/SQL or third party tools.

The DBA-authored PL/SQL call must adhere to the following format:

routine_name (
userid_parameter IN VARCHAR(30),
password_parameter IN VARCHAR (30),
old_password_parameter IN VARCHAR (30)
)
RETURN BOOLEAN

After a new routine is created, it must be assigned as the password verification rou-
tine using the user’s profile or the system default profile.

CREATE/ALTER PROFILE profile_name LIMIT
PASSWORD_VERIFY_FUNCTIONroutine_name

The password verify routine must be owned by SYS.

Password Verification Routine: Sample Script The following sample script sets default
password resource limits and provides minimum checking of password complex-
ity. You can use this sample script as a model when developing your own complex-
ity checks for a new password.

This script sets the default password resource parameters, and must be run to
enable the password features. However, you can change the default resource
parameters if necessary.

The default password complexity function performs the following minimum com-
plexity checks:

■ The password satisfies minimum length requirements.

Note: Oracle recommends that you do not change passwords
using the ALTER USER statement because it does not fully support
the password verification function. Instead, you should use Oracle-
provided tools such as SQL*Plus or Enterprise Manager to change
passwords.
 Establishing Security Policies 19-15

Password Management Policy
■ Ensures the password is not the username. You can modify this function based
on your requirements.

This function must be created in SYS schema, and you must connect sys/
<password> as sysdba before running the script.

CREATE OR REPLACE FUNCTION verify_function
(username varchar2,
 password varchar2,
 old_password varchar2)
 RETURN boolean IS
 n boolean;
 m integer;
 differ integer;
 isdigit boolean;
 ischar boolean;
 ispunct boolean;
 digitarray varchar2(20);
 punctarray varchar2(25);
 chararray varchar2(52);

BEGIN
 digitarray:= '0123456789';
 chararray:= 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
 punctarray:='!"#$%&()‘‘*+,-/:;<=>?_';

 --Check if the password is same as the username
IF password = username THEN
 raise_application_error(-20001, 'Password same as user');
END IF;

 --Check for the minimum length of the password
IF length(password) < 4 THEN
 raise_application_error(-20002, 'Password length less than 4');
END IF;

 --Check if the password is too simple. A dictionary of words may be
 --maintained and a check may be made so as not to allow the words
 --that are too simple for the password.
IF NLS_LOWER(password) IN ('welcome', 'database', 'account', 'user', 'password',
'oracle', 'computer', 'abcd') THEN raise_application_error(-20002, 'Password too simple');
END IF;

 --Check if the password contains at least one letter, one digit and one
 --punctuation mark.
 --1. Check for the digit
 --You may delete 1. and replace with 2. or 3.
isdigit:=FALSE;
m := length(password);
FOR i IN 1..10 LOOP
19-16 Oracle8 Administrator’s Guide

Password Management Policy
 FOR j IN 1..m LOOP
 IF substr(password,j,1) = substr(digitarray,i,1) THEN
 isdigit:=TRUE;
 GOTO findchar;
 END IF;
 END LOOP;
END LOOP;
IF isdigit = FALSE THEN
 raise_application_error(-20003, 'Password should contain at least one
digit, one character and one punctuation');
END IF;
 --2. Check for the character
<<findchar>>
ischar:=FALSE;
FOR i IN 1..length(chararray) LOOP
 FOR j IN 1..m LOOP
 IF substr(password,j,1) = substr(chararray,i,1) THEN
 ischar:=TRUE;
 GOTO findpunct;
 END IF;
 END LOOP;
END LOOP;
IF ischar = FALSE THEN
 raise_application_error(-20003, 'Password should contain at least one digit, one
character and one punctuation');
END IF;
 --3. Check for the punctuation
<<findpunct>>
ispunct:=FALSE;
FOR i IN 1..length(punctarray) LOOP
 FOR j IN 1..m LOOP
 IF substr(password,j,1) = substr(punctarray,i,1) THEN
 ispunct:=TRUE;
 GOTO endsearch;
 END IF;
 END LOOP;
END LOOP;
IF ispunct = FALSE THEN raise_application_error(-20003, 'Password should contain at least
one \ digit, one character and one punctuation');
END IF;

<<endsearch>>

 --Check if the password differs from the previous password by at least 3 letters
IF old_password = '' THEN
 raise_application_error(-20004, 'Old password is null');
END IF;
 --Everything is fine; return TRUE ;
differ := length(old_password) - length(password);
 Establishing Security Policies 19-17

Auditing Policy
IF abs(differ) < 3 THEN
 IF length(password) < length(old_password) THEN
 m := length(password);
 ELSE
 m:= length(old_password);
 END IF;
 differ := abs(differ);
 FOR i IN 1..m LOOP
 IF substr(password,i,1) != substr(old_password,i,1) THEN
 differ := differ + 1;
 END IF;
 END LOOP;
 IF differ < 3 THEN
 raise_application_error(-20004, 'Password should differ by at \
 least 3 characters');
 END IF;
 END IF;
 --Everything is fine; return TRUE ;
 RETURN(TRUE);
END;

Auditing Policy
Security administrators should define a policy for the auditing procedures of each
database. You may, for example, decide to have database auditing disabled unless
questionable activities are suspected. When auditing is required, the security
administrator must decide what level of detail to audit the database; usually, gen-
eral system auditing is followed by more specific types of auditing after the origins
of suspicious activity are determined.
19-18 Oracle8 Administrator’s Guide

 Managing Users and Res
20

 Managing Users and Resources

This chapter describes how to control access to an Oracle database, and includes
the following topics:

■ Session and User Licensing

■ User Authentication

■ Oracle Users

■ Managing Resources with Profiles

■ Listing Information About Database Users and Profiles

See Also: For guidelines on establishing security policies for users and profiles, see
Chapter 19, Establishing Security Policies.

Privileges and roles control the access a user has to a database and the schema
objects within the database. For information on privileges and roles, see
Chapter 21, Managing User Privileges and Roles.

This chapter contains several references to Oracle Enterprise Manager. For more
information about performing specific tasks using Enterprise Manager/GUI or
Server Manager/LineMode, see the Oracle Server Manager User’s Guide or Oracle
Enterprise Manager Administrator’s Guide.
ources 20-1

Session and User Licensing
Session and User Licensing
This section describes aspects of session and user licensing, and includes the follow-
ing topics:

■ Concurrent Usage Licensing

■ Connecting Privileges

■ Setting the Maximum Number of Sessions

■ Setting the Session Warning Limit

■ Changing Concurrent Usage Limits While the Database is Running

■ Named User Limits

■ Viewing Licensing Limits and Current Values

Oracle helps you ensure that your site complies with its Oracle Server license agree-
ment. If your site is licensed by concurrent usage, you can track and limit the num-
ber of sessions concurrently connected to a database. If your site is licensed by
named users, you can limit the number of named users created in a database. In
either case, you control the licensing facilities, and must enable the facilities and set
the appropriate limits.

To use the licensing facility, you need to know which type of licensing agreement
your site has, and what the maximum number of sessions or named users is. Your
site may use either type of licensing (concurrent usage or named user), but not both.

Concurrent Usage Licensing
Concurrent usage licensing limits the number of sessions that can be connected
simultaneously to the database on the specified computer. You can set a limit on the
number of concurrent sessions before you start an instance. In fact, you should
have set this limit as part of the initial installation procedure. You can also change
the maximum number of concurrent sessions while the database is running.

Note: In a few cases, a site might have an unlimited license,
rather than concurrent usage or named user licensing. In these
cases only, leave the licensing mechanism disabled, and omit
LICENSE_MAX_SESSIONS, LICENSE_SESSIONS_WARNING,
and LICENSE_MAX_USERS from the parameter file, or set the
value of all three to 0.
20-2 Oracle8 Administrator’s Guide

Session and User Licensing
See Also: For information about the initial installation procedure, see Chapter 2,
“Creating an Oracle Database”.

Connecting Privileges
After your instance’s session limit is reached, only users with RESTRICTED SES-
SION privilege (usually DBAs) can connect to the database. When a user with
RESTRICTED SESSION privileges connects, Oracle sends the user a message indi-
cating that the maximum limit has been reached, and writes a message to the
ALERT file. When the maximum is reached, you should connect only to terminate
unneeded processes. Do not raise the licensing limits unless you have upgraded
your Oracle license agreement.

In addition to setting a maximum concurrent session limit, you can set a warning
limit on the number of concurrent sessions. After this limit is reached, additional
users can continue to connect (up to the maximum limit); however, Oracle writes
an appropriate message to the ALERT file with each connection, and sends each
connecting user who has the RESTRICTED SESSION privilege a warning indicat-
ing that the maximum is about to be reached.

If a user is connecting with administrator privileges, the limits still apply; however,
Oracle enforces the limit after the first statement the user executes.

In addition to enforcing the concurrent usage limits, Oracle tracks the highest num-
ber of concurrent sessions for each instance. You can use this “high water mark.”

See Also: For information about terminating sessions, see “Terminating Sessions”
on page 4-20.

For information about Oracle licensing limit upgrades, see “Viewing Licensing Lim-
its and Current Values” on page 20-7.
 Managing Users and Resources 20-3

Session and User Licensing
Parallel Server Concurrent Usage Limits
For instances running with the Parallel Server, each instance can have its own con-
current usage limit and warning limit. However, the sum of the instances’ limits
must not exceed the site’s concurrent usage license.

See Also: For more information about setting and changing limits in a parallel
server environment, see Oracle8 Parallel Server Concepts and Administration.

Setting the Maximum Number of Sessions
To set the maximum number of concurrent sessions for an instance, set the parame-
ter LICENSE_MAX_SESSIONS as follows:

LICENSE_MAX_SESSIONS = 80

If you set this limit, you are not required to set a warning limit
(LICENSE_SESSIONS_WARNING). However, using the warning limit makes the
maximum limit easier to manage, because it gives you advance notice that your site
is nearing maximum use.

Setting the Session Warning Limit
To set the warning limit for an instance, set the parameter
LICENSE_SESSIONS_WARNING in the parameter file used to start the instance.

Set the session warning to a value lower than the concurrent usage maximum limit
(LICENSE_MAX_SESSIONS).

WARNING: Sessions that connect to Oracle through multiplex-
ing software or hardware (such as a TP monitor) each contribute
individually to the concurrent usage limit. However, the Oracle
licensing mechanism cannot distinguish the number of sessions
connected this way. If your site uses multiplexing software or
hardware, you must consider that and set the maximum concur-
rent usage limit lower to account for the multiplexed sessions.
20-4 Oracle8 Administrator’s Guide

Session and User Licensing
Changing Concurrent Usage Limits While the Database is Running
To change either the maximum concurrent usage limit or the warning limit while
the database is running, use the ALTER SYSTEM command with the appropriate
option. The following statement changes the maximum limit to 100 concurrent ses-
sions:

ALTER SYSTEM SET LICENSE_MAX_SESSIONS = 100;

The following statement changes both the warning limit and the maximum limit:

ALTER SYSTEM
 SET LICENSE_MAX_SESSIONS = 64
 LICENSE_SESSIONS_WARNING = 54;

If you change either limit to a value lower than the current number of sessions, the
current sessions remain; however, the new limit is enforced for all future connec-
tions until the instance is shut down. To change the limit permanently, change the
value of the appropriate parameter in the parameter file.

To change the concurrent usage limits while the database is running, you must
have the ALTER SYSTEM privilege. Also, to connect to an instance after the
instance’s maximum limit has been reached, you must have the RESTRICTED SES-
SION privilege.

Named User Limits
Named user licensing limits the number of individuals authorized to use Oracle on
the specified computer. To enforce this license, you can set a limit on the number of
users created in the database before you start an instance. You can also change the
maximum number of users while the instance is running, or disable the limit alto-
gether. You cannot create more users after reaching this limit. If you try to do so,
Oracle returns an error indicating that the maximum number of users have been
created, and writes a message to the ALERT file.

This mechanism operates on the assumption that each person accessing the data-
base has a unique username, and that there are no shared usernames. Do not allow
multiple users to connect using the same username.

WARNING: Do not raise the concurrent usage limits unless you
have appropriately upgraded your Oracle Server license. Contact
your Oracle representative for more information.
 Managing Users and Resources 20-5

Session and User Licensing
See Also: For instances running with the Parallel Server, all instances connected to
the same database should have the same named user limit. See Oracle8 Parallel
Server Concepts and Administration for more information.

Setting User Limits
To limit the number of users created in a database, set the LICENSE_MAX_USERS
parameter in the database’s parameter file. The following example sets the maxi-
mum number of users to 200:

LICENSE_MAX_USERS = 200

If the database contains more than LICENSE_MAX_USERS when you start it, Ora-
cle returns a warning and writes an appropriate message in the ALERT file. You
cannot create additional users until the number of users drops below the limit or
until you delete users or upgrade your Oracle license.

Changing User Limits
To change the maximum named users limit, use the ALTER SYSTEM command
with the LICENSE_MAX_USERS option. The following statement changes the max-
imum number of defined users to 300:

ALTER SYSTEM SET LICENSE_MAX_USERS = 300;

If you try to change the limit to a value lower than the current number of users,
Oracle returns an error and continues to use the old limit. If you successfully
change the limit, the new limit remains in effect until you shut down the instance;
to change the limit permanently, change the value of LICENSE_MAX_USERS in the
parameter file.

To change the maximum named users limit, you must have the ALTER SYSTEM
privilege.

WARNING: Do not raise the named user limit unless you have
appropriately upgraded your Oracle license. Contact your Oracle
representative for more information.
20-6 Oracle8 Administrator’s Guide

User Authentication
Viewing Licensing Limits and Current Values
You can see the current limits of all of the license settings, the current number of
sessions, and the maximum number of concurrent sessions for the instance by que-
rying the V$LICENSE data dictionary view. You can use this information to deter-
mine if you need to upgrade your Oracle license to allow more concurrent sessions
or named users:

SELECT sessions_max s_max,
 sessions_warning s_warning,
 sessions_current s_current,
 sessions_highwater s_high,
 users_max
 FROM v$license;

S_MAX S_WARNING S_CURRENT S_HIGH USERS_MAX

100 80 65 82 50

In addition, Oracle writes the session high water mark to the database’s ALERT file
when the database shuts down, so you can check for it there.

To see the current number of named users defined in the database, use the follow-
ing query:

SELECT COUNT(*) FROM dba_users;

COUNT(*)

 174

User Authentication
This section describes aspects of authenticating users, and includes the following
topics:

■ Database Authentication

■ External Authentication

■ Enterprise Authentication
 Managing Users and Resources 20-7

User Authentication
Depending on how you want user identities to be authenticated, there are three
ways to define users before they are allowed to create a database session:

1. You can configure Oracle so that it performs both identification and authentica-
tion of users. This is called database authentication.

2. You can configure Oracle so that it performs only the identification of users
(leaving authentication up to the operating system or network service). This is
called external authentication.

3. You can configure Oracle so that it performs only the identification of users
(leaving authentication up to the Oracle Security Service). This is called enter-
prise authentication.

Database Authentication
If you choose database authentication for a user, administration of the user account,
password, and authentication of that user is performed entirely by Oracle. To have
Oracle authenticate a user, specify a password for the user when you create or alter
the user. Users can change their password at any time. Passwords are stored in an
encrypted format. Each password must be made up of single-byte characters, even
if your database uses a multi-byte character set.

To enhance security when using database authentication, Oracle recommends the
use of password management, including account locking, password aging and expi-
ration, password history, and password complexity verification.

The following statement creates a user who is identified and authenticated by Ora-
cle:

CREATE USER scott IDENTIFIED BY tiger;

See Also: For more information about the CREATE USER and ALTER USER com-
mands, see Oracle8 SQL Reference.

For more information about valid passwords, see Oracle8 SQL Reference.

For more information about Oracle password management, see Chapter 19, “Estab-
lishing Security Policies”.
20-8 Oracle8 Administrator’s Guide

User Authentication
Advantages of Database Authentication
Following are advantages of database authentication:

■ User accounts and all authentication are controlled by the database.There is no
reliance on anything outside of the database.

■ Oracle provides strong password management features to enhance security
when using database authentication.

■ It is easier to administer small user communities.

External Authentication
When you choose external authentication for a user, the user account is maintained
by Oracle, but password administration and user authentication is performed by
an external service. This external service can be the operating system or a network
service, such as the Oracle Advanced Networking Option (ANO).

With external authentication, your database relies on the underlying operating sys-
tem or network authentication service to restrict access to database accounts. A
database password is not used for this type of login. If your operating system or
network service permits, you can have it authenticate users. If you do so, set the
parameter OS_AUTHENT_PREFIX, and use this prefix in Oracle usernames. This
parameter defines a prefix that Oracle adds to the beginning of every user’s operat-
ing system account name. Oracle compares the prefixed username with the Oracle
usernames in the database when a user attempts to connect.

For example, assume that OS_AUTHENT_PREFIX is set as follows:

OS_AUTHENT_PREFIX=OPS$

If a user with an operating system account named “TSMITH” is to connect to an
Oracle database and be authenticated by the operating system, Oracle checks that
there is a corresponding database user “OPS$TSMITH” and, if so, allows the user
to connect. All references to a user authenticated by the operating system must
include the prefix, as seen in “OPS$TSMITH”.

The default value of this parameter is “OPS$” for backward compatibility with pre-
vious versions of Oracle. However, you might prefer to set the prefix value to some
other string or a null string (an empty set of double quotes: “”). Using a null string
eliminates the addition of any prefix to operating system account names, so that
Oracle usernames exactly match operating system usernames.

After you set OS_AUTHENT_PREFIX, it should remain the same for the life of a
database. If you change the prefix, any database username that includes the old pre-
 Managing Users and Resources 20-9

User Authentication
fix cannot be used to establish a connection, unless you alter the username to have
it use password authentication.

The following command creates a user who is identified by Oracle and authenti-
cated by the operating system or a network service:

CREATE USER scott IDENTIFIED EXTERNALLY;

Using CREATE USER IDENTIFIED EXTERNALLY, you can create database
accounts that must be authenticated via the operating system or network service
and cannot be authenticated using a password.

See Also: The text of the OS_AUTHENT_PREFIX parameter is case-sensitive on
some operating systems. See your operating system-specific Oracle documentation
for more information about this initialization parameter.

Operating System Authentication
By default, Oracle only allows operating system authenticated logins over secure
connections. Therefore, if you want the operating system to authenticate a user, by
default that user cannot connect to the database over Net8. This means the user can-
not connect using a multi-threaded server, since this connection uses Net8. This
default restriction prevents a remote user from impersonating another operating
system user over a network connection.

If you are not concerned about remote users impersonating another operating sys-
tem user over a network connection, and you want to use operating system user
authentication with network clients, set the parameter REMOTE_OS_AUTHENT
(default is FALSE) to TRUE in the database’s parameter file. Setting the initializa-
tion parameter REMOTE_OS_AUTHENT to TRUE allows the RDBMS to accept the
client operating system username received over a non-secure connection and use it
for account access. The change will take effect the next time you start the instance
and mount the database.

Network Authentication
Network authentication is performed via the Oracle Advanced Networking Option
(ANO), which may be configured to use a third party service such as Kerberos. If
you are using ANO as the only external authentication service, the setting of the
parameter REMOTE_OS_AUTHENT is irrelevant, since ANO only allows secure
connections.

See Also: For information about network authentication, see Oracle8 Distributed
Database Systems, and Oracle Security Server Guide.
20-10 Oracle8 Administrator’s Guide

User Authentication
Advantages of External Authentication
Following are advantages of external authentication:

■ More choices of authentication mechanism are available, such as smart cards,
fingerprints, Kerberos, or the operating system.

■ If you are already using some external mechanism for authentication, such as
one of those listed above, there may be less administrative overhead to use that
mechanism with the database as well.

Enterprise Authentication
If you choose enterprise authentication for a user, the user account is maintained by
Oracle, but password administration and user authentication is performed by the
Oracle Security Service (OSS). This authentication service can be shared among
multiple Oracle database servers and allows user’s authentication and authoriza-
tion information to be managed centrally.

Use the following command to create a user (known as a global user) who is identi-
fied by Oracle and authenticated by the Oracle Security Service:

CREATE USER scott IDENTIFIED GLOBALLY as ’<external name>’;

See Also: For information about the contents of the <EXTERNAL NAME> string,
see Oracle8 Distributed Database Systems, and Oracle Security Server Guide.

Advantages of Enterprise Authentication
Following are advantages of enterprise authentication:

■ It is easier to administer large user communities with many databases.

■ You can use industry standard public key certificates, giving increased opportu-
nity for interoperability.

See Also: For information about enterprise authentication, see Oracle8 Distributed
Database Systems, and Oracle Security Server Guide.
 Managing Users and Resources 20-11

Oracle Users
Oracle Users
Each Oracle database has a list of valid database users. To access a database, a user
must run a database application and connect to the database instance using a valid
username defined in the database. This section explains how to manage users for a
database, and includes the following topics:

■ Creating Users

■ Altering Users

■ Dropping Users

Creating Users
To create a database user, you must have the CREATE USER system privilege.
When creating a new user, tablespace quotas can be specified for any tablespace in
the database, even if the creator does not have a quota on a specified tablespace.
Due to such privileged power, a security administrator is normally the only type of
user that has the CREATE USER system privilege.

You create a user with either the Create User property sheet of Enterprise Manager/
GUI, or the SQL command CREATE USER. Using either option, you can also spec-
ify the new user’s default and temporary segment tablespaces, tablespace quotas,
and profile.

CREATE USER OPS$jward
 IDENTIFIED EXTERNALLY
 DEFAULT TABLESPACE data_ts
 TEMPORARY TABLESPACE temp_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 PROFILE clerk;

See Also: A newly-created user cannot connect to the database until granted the
CREATE SESSION system privilege; see “Granting System Privileges and Roles”
on page 21-16.

Specifying a Name
Within each database a username must be unique with respect to other usernames
and roles; a user and role cannot have the same name. Furthermore, each user has
an associated schema. Within a schema, each schema object must have unique
names.
20-12 Oracle8 Administrator’s Guide

Oracle Users
Usernames in Multi-Byte Character Sets In a database that uses a multi-byte character
set, each username should contain at least one single-byte character. If a username
contains only multi-byte characters, the encrypted username/password combina-
tion is considerably less secure.

Setting a User’s Authentication
In the previous CREATE USER statement, the new user is to be authenticated using
the operating system. The username includes the default prefix “OPS$.” If the
OS_AUTHENT_PREFIX parameter is set differently (that is, if it specifies either no
prefix or some other prefix), modify the username accordingly, by omitting the pre-
fix or substituting the correct prefix.

Alternatively, you can create a user who is authenticated using the database and a
password:

CREATE USER jward
 IDENTIFIED BY airplane
 . . . ;

In this case, the connecting user must supply the correct password to the database
to connect successfully.

User Passwords in Multi-Byte Character Sets In a database that uses a multi-byte char-
acter set, passwords must include only single-byte characters. Multi-byte characters
are not accepted in passwords.

See Also: For more information about valid passwords, see the Oracle8 SQL Refer-
ence.

Assigning a Default Tablespace
Each user has a default tablespace. When a user creates a schema object and speci-
fies no tablespace to contain it, Oracle stores the object in the user’s default
tablespace.

The default setting for every user’s default tablespace is the SYSTEM tablespace. If
a user does not create objects, this default setting is fine. However, if a user creates
any type of object, consider specifically setting the user’s default tablespace. You
can set a user’s default tablespace during user creation, and change it later. Chang-
ing the user’s default tablespace affects only objects created after the setting is
changed.

Consider the following issues when deciding which tablespace to specify:
 Managing Users and Resources 20-13

Oracle Users
■ Set a user’s default tablespace only if the user has the privileges to create
objects (such as tables, views, and clusters).

■ Set a user’s default tablespace to a tablespace for which the user has a quota.

■ If possible, set a user’s default tablespace to a tablespace other than the SYS-
TEM tablespace to reduce contention between data dictionary objects and user
objects for the same datafiles.

In the previous CREATE USER statement, JWARD’s default tablespace is DATA_TS.

Assigning a Temporary Tablespace
Each user also has a temporary tablespace. When a user executes a SQL statement
that requires a temporary segment, Oracle stores the segment in the user’s tempo-
rary tablespace.

If a user’s temporary tablespace is not explicitly set, the default is the SYSTEM
tablespace. However, setting each user’s temporary tablespace reduces file conten-
tion among temporary segments and other types of segments. You can set a user’s
temporary tablespace at user creation, and change it later.

In the previous CREATE USER statement, JWARD’s temporary tablespace is
TEMP_TS, a tablespace created explicitly to only contain temporary segments.

Assigning Tablespace Quotas
You can assign each user a tablespace quota for any tablespace. Assigning a quota
does two things:

■ Users with privileges to create certain types of objects can create those objects
in the specified tablespace.

■ Oracle limits the amount of space that can be allocated for storage of a user’s
objects within the specified tablespace to the amount of the quota.

By default, a user has no quota on any tablespace in the database. If the user has
the privilege to create a schema object, you must assign a quota to allow the user to
create objects. Minimally, assign users a quota for the default tablespace, and addi-
tional quotas for other tablespaces in which they will create objects.

You can assign a user either individual quotas for a specific amount of disk space in
each tablespace or an unlimited amount of disk space in all tablespaces. Specific
quotas prevent a user’s objects from consuming too much space in the database.
20-14 Oracle8 Administrator’s Guide

Oracle Users
You can assign a user’s tablespace quotas when you create the user, or add or
change quotas later. If a new quota is less than the old one, then the following con-
ditions hold true:

■ If a user has already exceeded a new tablespace quota, the user’s objects in the
tablespace cannot be allocated more space until the combined space of these
objects falls below the new quota.

■ If a user has not exceeded a new tablespace quota, or if the space used by the
user’s objects in the tablespace falls under a new tablespace quota, the user’s
objects can be allocated space up to the new quota.

Revoking Tablespace Access You can revoke a user’s tablespace access by changing
the user’s current quota to zero. After a quota of zero is assigned, the user’s objects
in the revoked tablespace remain, but the objects cannot be allocated any new space.

UNLIMITED TABLESPACE System Privilege To permit a user to use an unlimited
amount of any tablespace in the database, grant the user the UNLIMITED
TABLESPACE system privilege. This overrides all explicit tablespace quotas for the
user. If you later revoke the privilege, explicit quotas again take effect. You can
grant this privilege only to users, not to roles.

Before granting the UNLIMITED TABLESPACE system privilege, consider the con-
sequences of doing so:

Advantage

■ You can grant a user unlimited access to all tablespaces of a database with one
statement.

Disadvantages

■ The privilege overrides all explicit tablespace quotas for the user.

■ You cannot selectively revoke tablespace access from a user with the UNLIM-
ITED TABLESPACE privilege. You can grant access selectively only after revok-
ing the privilege.

Setting Default Roles
You cannot set a user’s default roles in the CREATE USER statement. When you
first create a user, the user’s default role setting is ALL, which causes all roles subse-
 Managing Users and Resources 20-15

Oracle Users
quently granted to the user to be default roles. Use the ALTER USER command to
change the user’s default roles.

Altering Users
Users can change their own passwords. However, to change any other option of a
user’s security domain, you must have the ALTER USER system privilege. Security
administrators are normally the only users that have this system privilege, as it
allows a modification of any user’s security domain. This privilege includes the abil-
ity to set tablespace quotas for a user on any tablespace in the database, even if the
user performing the modification does not have a quota for a specified tablespace.

You can alter a user’s security settings with either the Alter User property sheet of
Enterprise Manager/GUI, or the SQL command ALTER USER. Changing a user’s
security settings affects the user’s future sessions, not current sessions.

The following statement alters the security settings for user AVYRROS:

ALTER USER avyrros
 IDENTIFIED EXTERNALLY
 DEFAULT TABLESPACE data_ts
 TEMPORARY TABLESPACE temp_ts
 QUOTA 100M ON data_ts
 QUOTA 0 ON test_ts
 PROFILE clerk;

The ALTER USER statement here changes AVYRROS’s security settings as follows:

■ Authentication is changed to use AVYRROS’s operating system account.

■ AVYRROS’s default and temporary tablespaces are explicitly set.

■ AVYRROS is given a 100M quota for the DATA_TS tablespace.

■ AVYRROS’s quota on the TEST_TS is revoked.

■ AVYRROS is assigned the CLERK profile.

WARNING: When you create a role (other than a user role), it is
granted to you implicitly and added as a default role. You will
get an error at login if you have more than
MAX_ENABLED_ROLES. You can avoid this error by altering
the user’s default roles to be less than MAX_ENABLED_ROLES.
Thus, you should change the DEFAULT ROLE settings of SYS
and SYSTEM before creating user roles.
20-16 Oracle8 Administrator’s Guide

Oracle Users
Changing a User’s Authentication Mechanism
While most non-DBA users do not use Enterprise Manager, they can still change
their own passwords with the ALTER USER command, as follows:

ALTER USER andy
 IDENTIFIED BY swordfish;

Users can change their own passwords this way, without any special privileges
(other than those to connect to the database). Users should be encouraged to
change their passwords frequently.

Users must have the ALTER USER privilege to switch between Oracle database
authentication, external authentication, and enterprise authentication; usually, only
DBAs should have this privilege.

Passwords in Multi-Byte Character Sets In a database that uses a multi-byte character
set, passwords must include only single-byte characters. Multi-byte characters are
not accepted in passwords.

See Also: For more information about valid passwords, see the Oracle8 SQL Refer-
ence.

Changing a User’s Default Roles
A default role is one that is automatically enabled for a user when the user creates a
session. You can assign a user zero or more default roles.

See Also: For more information on changing users’ default roles, see Chapter 21,
“Managing User Privileges and Roles”.

Dropping Users
When a user is dropped, the user and associated schema is removed from the data
dictionary and all schema objects contained in the user’s schema, if any, are imme-
diately dropped.

A user that is currently connected to a database cannot be dropped. To drop a con-
nected user, you must first terminate the user’s sessions using either Enterprise

Note: If a user’s schema and associated objects must remain but
the user must be revoked access to the database, revoke the CRE-
ATE SESSION privilege from the user.
 Managing Users and Resources 20-17

Managing Resources with Profiles
Manager/GUI, or the SQL command ALTER SYSTEM with the KILL SESSION
clause.

To drop a user and all the user’s schema objects (if any), you must have the DROP
USER system privilege. Because the DROP USER system privilege is so powerful, a
security administrator is typically the only type of user that has this privilege.

You can drop a user from a database using either the Drop menu item of Enterprise
Manager/GUI, or the SQL command DROP USER.

If the user’s schema contains any schema objects, use the CASCADE option to drop
the user and all associated objects and foreign keys that depend on the tables of the
user successfully. If you do not specify CASCADE and the user’s schema contains
objects, an error message is returned and the user is not dropped. Before dropping
a user whose schema contains objects, thoroughly investigate which objects the
user’s schema contains and the implications of dropping them before the user is
dropped. Pay attention to any unknown cascading effects. For example, if you
intend to drop a user who owns a table, check whether any views or procedures
depend on that particular table.

DROP USER jones CASCADE;

See Also: For more information about terminating sessions, see “Terminating Ses-
sions” on page 4-20.

Managing Resources with Profiles
A profile is a named set of resource limits. If resource limits are turned on, Oracle
limits database usage and instance resources to whatever is defined in the user’s
profile. You can assign a profile to each user, and a default profile to all users who
do not have specific profiles. For profiles to take effect, resource limits must be
turned on for the database as a whole.

This section describes aspects of profile management, and includes the following
topics:

■ Creating Profiles

■ Assigning Profiles

■ Altering Profiles

■ Using Composite Limits

■ Dropping Profiles

■ Enabling and Disabling Resource Limits
20-18 Oracle8 Administrator’s Guide

Managing Resources with Profiles
Creating Profiles
To create a profile, you must have the CREATE PROFILE system privilege. You can
create profiles using either the Create Profile property sheet of Enterprise Manager/
GUI, or the SQL command CREATE PROFILE. At the same time, you can explicitly
set particular resource limits.

The following statement creates the profile CLERK:

CREATE PROFILE clerk LIMIT
 SESSIONS_PER_USER 2
 CPU_PER_SESSION unlimited
 CPU_PER_CALL 6000
 LOGICAL_READS_PER_SESSION unlimited
 LOGICAL_READS_PER_CALL 100
 IDLE_TIME 30
 CONNECT_TIME 480;

All unspecified resource limits for a new profile take the limit set by the DEFAULT
profile. You can also specify limits for the DEFAULT profile.

Using the DEFAULT Profile
Each database has a DEFAULT profile, and its limits are used in two cases:

■ If a user is not explicitly assigned a profile, then the user conforms to all the lim-
its of the DEFAULT profile.

■ All unspecified limits of any profile use the corresponding limit of the
DEFAULT profile.

Initially, all limits of the DEFAULT profile are set to UNLIMITED. However, to pre-
vent unlimited resource consumption by users of the DEFAULT profile, the security
administrator should change the default limits using the Alter Profile dialog box of
Enterprise Manager, or a typical ALTER PROFILE statement:

ALTER PROFILE default LIMIT
 . . . ;

Any user with the ALTER PROFILE system privilege can adjust the limits in the
DEFAULT profile. The DEFAULT profile cannot be dropped.

Assigning Profiles
After a profile has been created, you can assign it to database users. Each user can
be assigned only one profile at any given time. If a profile is assigned to a user who
already has a profile, the new profile assignment overrides the previously assigned
 Managing Users and Resources 20-19

Managing Resources with Profiles
profile. Profile assignments do not affect current sessions. Profiles can be assigned
only to users and not to roles or other profiles.

Profiles can be assigned to users using the Assign Profile dialog box of Enterprise
Manager/GUI, or the SQL commands CREATE USER or ALTER USER.

See Also: For more information about assigning a profile to a user, see “Creating
Users” on page 20-12 and “Altering Users” on page 20-16.

Altering Profiles
You can alter the resource limit settings of any profile using either the Alter Profile
property sheet of Enterprise Manager/GUI or the SQL command ALTER PROFILE.
To alter a profile, you must have the ALTER PROFILE system privilege.

Any adjusted profile limit overrides the previous setting for that profile limit. By
adjusting a limit with a value of DEFAULT, the resource limit reverts to the default
limit set for the database. All profiles not adjusted when altering a profile retain the
previous settings. Any changes to a profile do not affect current sessions. New pro-
file settings are used only for sessions created after a profile is modified.

The following statement alters the CLERK profile:

ALTER PROFILE clerk LIMIT
 CPU_PER_CALL default
 LOGICAL_READS_PER_SESSION 20000;

See Also: For information about default profiles, see “Using the DEFAULT Profile”
on page 20-19.

Using Composite Limits
You can limit the total resource cost for a session via composite limits. In addition
to setting specific resource limits explicitly for a profile, you can set a single com-
posite limit that accounts for all resource limits in a profile. You can set a profile’s
composite limit using the Composite Limit checkbox of the Create Profile and Alter
Profile property sheets of Enterprise Manager/GUI, or the COMPOSITE_LIMIT
parameter of the SQL commands CREATE PROFILE or ALTER PROFILE. A com-
posite limit is set via a service unit, which is a weighted sum of all resources used.

The following CREATE PROFILE statement is defined using the
COMPOSITE_LIMIT parameter:

CREATE PROFILE clerk LIMIT
 COMPOSITE_LIMIT 20000
 SESSIONS_PER_USER 2
 CPU_PER_CALL 1000;
20-20 Oracle8 Administrator’s Guide

Managing Resources with Profiles
Notice that both explicit resource limits and a composite limit can exist concur-
rently for a profile. The limit that is reached first stops the activity in a session.
Composite limits allow additional flexibility when limiting the use of system
resources.

Determining the Value of the Composite Limit
The correct service unit setting for a composite limit depends on the total amount
of resource used by an average profile user. As with each specific resource limit, his-
torical information should be gathered to determine the normal range of composite
resource usage for a typical profile user.

Setting Resource Costs
Each system has its own characteristics; some system resources may be more valu-
able than others. Oracle enables you to give each system resource a cost. Costs
weight each system resource at the database level. Costs are only applied to the
composite limit of a profile; costs do not apply to set individual resource limits
explicitly.

To set resource costs, you must have the ALTER RESOURCE system privilege.

Only certain resources can be given a cost, including CPU_PER_ SESSION,
LOGICAL_READS_PER_SESSION, CONNECT_TIME, and PRIVATE_SGA. Set
costs for a database using the SQL command ALTER RESOURCE COST:

ALTER RESOURCE COST
 CPU_PER_SESSION 1
 LOGICAL_READS_PER_SESSION 50;

A large cost means that the resource is very expensive, while a small cost means
that the resource is not expensive. By default, each resource is initially given a cost
of 0. A cost of 0 means that the resource should not be considered in the composite
limit (that is, it does not cost anything to use this resource). No resource can be
given a cost of NULL.

See Also: For additional information and recommendations on setting resource
costs, see your operating system-specific Oracle documentation.
 Managing Users and Resources 20-21

Managing Resources with Profiles
Dropping Profiles
To drop a profile, you must have the DROP PROFILE system privilege. You can
drop a profile using either Enterprise Manager/GUI, or the SQL command DROP
PROFILE. To successfully drop a profile currently assigned to a user, use the CAS-
CADE option.

The following statement drops the profile CLERK, even though it is assigned to a
user:

DROP PROFILE clerk CASCADE;

Any user currently assigned to a profile that is dropped is automatically assigned
to the DEFAULT profile. The DEFAULT profile cannot be dropped. Note that when
a profile is dropped, the drop does not affect currently active sessions; only sessions
created after a profile is dropped abide by any modified profile assignments.

Enabling and Disabling Resource Limits
A profile can be created, assigned to users, altered, and dropped at any time by any
authorized database user, but the resource limits set for a profile are enforced only
when you enable resource limitation for the associated database. Resource limita-
tion enforcement can be enabled or disabled by two different methods, as described
in the next two sections.

To alter the enforcement of resource limitation while the database remains open,
you must have the ALTER SYSTEM system privilege.

Enabling and Disabling Resource Limits Before Startup
If a database can be temporarily shut down, resource limitation can be enabled or
disabled by the RESOURCE_LIMIT initialization parameter in the database’s
parameter file. Valid values for the parameter are TRUE (enables enforcement) and
FALSE; by default, this parameter’s value is set to FALSE. Once the parameter file
has been edited, the database instance must be restarted to take effect. Every time
an instance is started, the new parameter value enables or disables the enforcement
of resource limitation.

Enabling and Disabling Resource Limits While the Database is Open
If a database cannot be temporarily shut down or the resource limitation feature
must be altered temporarily, you can enable or disable the enforcement of resource
limitation using the SQL command ALTER SYSTEM. After an instance is started,
an ALTER SYSTEM statement overrides the value set by the RESOURCE_LIMIT
20-22 Oracle8 Administrator’s Guide

Listing Information About Database Users and Profiles
parameter. For example, the following statement enables the enforcement of
resource limitation for a database:

ALTER SYSTEM
 SET RESOURCE_LIMIT = TRUE;

An ALTER SYSTEM statement does not permanently determine the enforcement of
resource limitation. If the database is shut down and restarted, the enforcement of
resource limits is determined by the value set for the RESOURCE_LIMIT parameter.

Listing Information About Database Users and Profiles
The data dictionary stores information about every user and profile, including the
following:

■ all users in a database

■ each user’s default tablespace for tables, clusters, and indexes

■ each user’s tablespace for temporary segments

■ each user’s space quotas, if any

■ each user’s assigned profile and resource limits

■ the cost assigned to each applicable system resource

■ each current session’s memory usage

The following data dictionary views may be of interest when you work with data-
base users and profiles:

■ ALL_USERS

■ USER_USERS

■ DBA_USERS

■ USER_TS_QUOTAS

■ DBA_TS_QUOTAS

■ USER_PASSWORD_LIMITS

■ USER_RESOURCE_LIMITS

■ DBA_PROFILES

Note: This does not apply to password resources.
 Managing Users and Resources 20-23

Listing Information About Database Users and Profiles
■ RESOURCE_COST

■ V$SESSION

■ V$SESSTAT

■ V$STATNAME

See Also: See the Oracle8 Reference for detailed information about each view.

Listing Information about Users and Profiles: Examples
The examples in this section assume a database in which the following statements
have been executed:

CREATE PROFILE clerk LIMIT
 SESSIONS_PER_USER 1
 IDLE_TIME 30
 CONNECT_TIME 600;

CREATE USER jfee
 DENTIFIED BY wildcat
 DEFAULT TABLESPACE users
 TEMPORARY TABLESPACE temp_ts
 QUOTA 500K ON users
 PROFILE clerk;

CREATE USER dcranney
 IDENTIFIED BY bedrock
 DEFAULT TABLESPACE users
 TEMPORARY TABLESPACE temp_ts
 QUOTA unlimited ON users;

CREATE USER userscott
 IDENTIFIED BY "scott1"
 PASSWORD_LIFETIME 60
 PASSWORD_GRACE_TIME 10;
20-24 Oracle8 Administrator’s Guide

Listing Information About Database Users and Profiles
Listing All Users and Associated Information
The following query lists users and their associated information as defined in the
database:

SELECT username, profile, account_status from dba_users;
USERNAME PROFILE ACCOUNT_STATUS
--------------- --------------- ----------------
SYS DEFAULT OPEN
SYSTEM DEFAULT OPEN
BLAKE DEFAULT OPEN
SCOTT DEFAULT OPEN
ADAMS DEFAULT OPEN
JONES DEFAULT OPEN
CLARK DEFAULT OPEN
U DEFAULT LOCKED
USERSCOTT PROF EXPIRED

All passwords are encrypted to preserve security.

Listing All Tablespace Quotas
The following query lists all tablespace quotas specifically assigned to each user:

SELECT * FROM sys.dba_ts_quotas;
TABLESPACE USERNAME BYTES MAX_BYTES BLOCKS MAX_BLOCKS
---------- --------- -------- ---------- ------- ----------
SYSTEM SYSTEM 0 0 0 0
SYSTEM JFEE 0 512000 0 250
SYSTEM DCRANNEY 0 -1 0 -1

When specific quotas are assigned, the exact number is indicated in the
MAX_BYTES column. Unlimited quotas are indicated by “-1”.
 Managing Users and Resources 20-25

Listing Information About Database Users and Profiles
Listing All Profiles and Assigned Limits
The following query lists all profiles in the database and associated settings for
each limit in each profile:

SELECT * FROM sys.dba_profiles
 ORDER BY profile;
PROFILE RESOURCE_NAME RESOURCE LIMIT

------------------------- --------------- ---------- --------------
DEFAULT COMPOSITE_LIMIT KERNEL UNLIMITED
DEFAULT SESSIONS_PER_USER KERNEL 1
DEFAULT CPU_PER_CALL KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_CALL KERNEL UNLIMITED
DEFAULT CONNECT_TIME KERNEL 30
DEFAULT IDLE_TIME KERNEL 600
DEFAULT LOGICAL_READS_PER_SESSION KERNEL UNLIMITED
DEFAULT CPU_PER_SESSION KERNEL UNLIMITED
DEFAULT PRIVATE_SGA KERNEL UNLIMITED
DEFAULT FAILED_LOGIN_ATTEMPTS PASSWORD UNLIMITED
DEFAULT PASSWORD_LIFE_TIME PASSWORD UNLIMITED
DEFAULT PASSWORD_REUSE_MAX PASSWORD UNLIMITED
DEFAULT PASSWORD_LOCK_TIME PASSWORD UNLIMITED
DEFAULT PASSWORD_GRACE_TIME PASSWORD UNLIMITED
DEFAULT PASSWORD_VERIFY_FUNCTION PASSWORD UNLIMITED
DEFAULT PASSWORD_REUSE_TIME PASSWORD UNLIMITED
PROF COMPOSITE_LIMIT KERNEL DEFAULT
PROF PRIVATE_SGA KERNEL DEFAULT
PROF CONNECT_TIME KERNEL DEFAULT
PROF IDLE_TIME KERNEL DEFAULT
PROF LOGICAL_READS_PER_CALL KERNEL DEFAULT
PROF LOGICAL_READS_PER_SESSION KERNEL DEFAULT
PROF SESSIONS_PER_USER KERNEL DEFAULT
PROF CPU_PER_CALL KERNEL DEFAULT
PROF CPU_PER_SESSION KERNEL DEFAULT
PROF FAILED_LOGIN_ATTEMPTS PASSWORD 5
PROF PASSWORD_LIFE_TIME PASSWORD 60
PROF PASSWORD_REUSE_MAX PASSWORD UNLIMITED
PROF PASSWORD_LOCK_TIME PASSWORD 1
PROF PASSWORD_GRACE_TIME PASSWORD 10
PROF PASSWORD_VERIFY_FUNCTION PASSWORD UNLIMITED
PROF PASSWORD_REUSE_TIME PASSWORD 60
32 rows selected.
20-26 Oracle8 Administrator’s Guide

Examples
Viewing Memory Use Per User Session
The following query lists all current sessions, showing the Oracle user and current
memory use per session:

SELECT username, value || ’bytes’ ”Current session memory”
 FROM v$session sess, v$sesstat stat, v$statname name
WHERE sess.sid = stat.sid
 AND stat.statistic# = name.statistic#
 AND name.name = ’session memory’;

The amount of space indicated in “Current session memory” is allocated in the
shared pool for each session connected through the multi-threaded server. You can
limit the amount of memory allocated per user with the PRIVATE_SGA resource
limit.

To see the maximum memory ever allocated to each session since the instance
started, replace ’session memory’ in the query above with ’max session memory’.

Examples
This section contains examples that use functions described throughout this chap-
ter.

1. The following statement creates the profile prof:

 CREATE PROFILE prof limit
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LIFE_TIME 60
 PASSWORD_REUSE_MAX 60
 PASSWORD_REUSE_MAX UNLIMITED
 PASSWORD_VERIFY_FUNCTION verify_function
 PASSWORD_LOCK_TIME 1
 PASSWORD_GRACE_TIME 10;

2. The following statement creates a user with the same password as the user-
name with profile prof;

 CREATE USER userscott IDENTIFIED BY userscott PROFILE prof;
 ORA-28003: Password verification for the specified password failed
 ORA-20001: Password same as user

3. The following statement creates user userscott identified by "scott1%" with pro-
file prof;

 CREATE USER userscott IDENTIFIED BY "scott%" PROFILE prof;
 Managing Users and Resources 20-27

Examples
4. The following statement changes the user's password to "scott%" again and
returns an error:

 ALTER USER userscott IDENTIFIED BY "scott%";
 ORA-28007: The password cannot be reused

5. The following statement locks the user account:

 ALTER USER userscott ACCOUNT LOCK;

6. The following statement checks the user account status:

 SELECT username, user_id, account_status, lock_date
 FROM dba_users
 WHERE username='USERSCOTT';

7. The following statement expires the password:

 ALTER USER userscott PASSWORD EXPIRE;

8. The following statement checks the user account status:

 SELECT username, user_id, account_status, expiry_date
 FROM dba_users
 WHERE username='USERSCOTT';

9. The following statement unlocks the user:

 ALTER USER userscott ACCOUNT UNLOCK;

10. The following statement checks the account status:

 SELECT username, user_id, account_status, expiry_date
 FROM dba_users
 WHERE username='USERSCOTT';
20-28 Oracle8 Administrator’s Guide

 Managing User Privileges and
21

 Managing User Privileges and Roles

This chapter explains how to control the ability to execute system operations and
access to schema objects using privileges and roles. The following topics are
included:

■ Identifying User Privileges

■ Managing User Roles

■ Granting User Privileges and Roles

■ Revoking User Privileges and Roles

■ Granting Roles Using the Operating System or Network

■ Listing Privilege and Role Information

See Also: For information about controlling access to a database, see Chapter 20.

For suggested general database security policies, see Chapter 19.

This chapter contains several references to Oracle Enterprise Manager. For more
information about performing specific tasks using Enterprise Manager/GUI or
Server Manager/LineMode, see the Oracle Enterprise Manager Administrator’s Guide
or Oracle Server Manager User’s Guide.
 Roles 21-1

Identifying User Privileges
Identifying User Privileges
This section describes Oracle user privileges, and includes the following topics:

■ System Privileges

■ Object Privileges

A user privilege is a right to execute a particular type of SQL statement, or a right to access
another user’s object. Oracle also provides shortcuts for grouping privileges that are com-
monly granted or revoked together.

System Privileges
There are over 80 distinct system privileges. Each system privilege allows a user to
perform a particular database operation or class of database operations. Table 21–1
lists all system privileges and the operations that they permit.

For security reasons, system privileges do not allow users to access the data dictio-
nary. Hence, users with ANY privileges (such as UPDATE ANY TABLE, SELECT
ANY TABLE or CREATE ANY INDEX) cannot access dictionary tables and views
that have not been granted to PUBLIC.

WARNING: System privileges can be very powerful, and should
be cautiously granted to roles and trusted users of the database.
Users with the ANY privilege cannot access the data dictionary.

Table 21–1 System Privileges

System Privilege Operations Permitted

ANALYZE

ANALYZE ANY Analyze any table, cluster, or index in the data-
base.

AUDIT

AUDIT ANY Audit any schema object in the database.
AUDIT SYSTEM Enable and disable statement and privilege audit

options.
CLUSTER

CREATE CLUSTER Create a cluster in own schema.
CREATE ANY CLUS-
TER

Create a cluster in any schema. Behaves similarly
to CREATE ANY TABLE.
21-2 Oracle8 Administrator’s Guide

Identifying User Privileges
ALTER ANY CLUS-
TER

Alter any cluster in the database.

DROP ANY CLUSTER Drop any cluster in the database.
DATABASE

ALTER DATABASE Alter the database; add files to the operating sys-
tem via Oracle, regardless of operating system
privileges.

DATABASE LINK

CREATE DATABASE
LINK

Create private database links in own schema.

INDEX

CREATE ANY INDEX Create an index in any schema on any table.
ALTER ANY INDEX Alter any index in the database.
DROP ANY INDEX Drop any index in the database.
LIBRARY

CREATE LIBRARY Create callout libraries in own schema.
CREATE ANY
LIBRARY

Create callout libraries in any schema

DROP LIBRARY Drop callout libraries in own schema.
DROP ANY LIBRARY Drop callout libraries in any schema.
PRIVILEGE

GRANT ANY PRIVI-
LEGE

Grant any system privilege (not object privileges).

PROCEDURE

CREATE PROCEDURE Create stored procedures, functions, and pack-
ages in own schema.

CREATE ANY PROCE-
DURE

Create stored procedures, functions, and pack-
ages in any schema. (Requires that user also have
ALTER ANY TABLE, BACKUP ANY TABLE,
DROP ANY TABLE, SELECT ANY TABLE,
INSERT ANY TABLE, UPDATE ANY TABLE,
DELETE ANY TABLE, or GRANT ANY TABLE
privilege.)

Table 21–1 System Privileges (Cont.)

System Privilege Operations Permitted
 Managing User Privileges and Roles 21-3

Identifying User Privileges
ALTER ANY PROCE-
DURE

Compile any stored procedure, function, or pack-
age in any schema.

DROP ANY PROCE-
DURE

Drop any stored procedure, function, or package
in any schema.

EXECUTE ANY PRO-
CEDURE

Execute any procedure or function (stand-alone
or packaged), or reference any public package
variable in any schema.

PROFILE

CREATE PROFILE Create profiles.
ALTER PROFILE Alter any profile in the database.
DROP PROFILE Drop any profile in the database.
ALTER RESOURCE
COST

Set costs for resources used in all user sessions.

PUBLIC DATABASE LINK

CREATE PUBLIC
DATABASE LINK

Create public database links.

DROP PUBLIC DATA-
BASE LINK

Drop public database links.

PUBLIC SYNONYM
CREATE PUBLIC SYN-
ONYM

Create public synonyms.

DROP PUBLIC SYN-
ONYM

Drop public synonyms.

ROLE

CREATE ROLE Create roles.
ALTER ANY ROLE Alter any role in the database.
DROP ANY ROLE Drop any role in the database.
GRANT ANY ROLE Grant any role in the database.
ROLLBACK SEGMENT

CREATE ROLLBACK
SEGMENT

Create rollback segments.

ALTER ROLLBACK
SEGMENT

Alter rollback segments.

Table 21–1 System Privileges (Cont.)

System Privilege Operations Permitted
21-4 Oracle8 Administrator’s Guide

Identifying User Privileges
DROP ROLLBACK
SEGMENT

Drop rollback segments.

SESSION

CREATE SESSION Connect to the database.
ALTER SESSION Issue ALTER SESSION statements.
RESTRICTED SES-
SION

Connect when the database has been started
using STARTUP RESTRICT. (The OSOPER and
OSDBA roles contain this privilege.)

SEQUENCE

CREATE SEQUENCE Create a sequence in own schema.
CREATE ANY
SEQUENCE

Create any sequence in any schema.

ALTER ANY
SEQUENCE

Alter any sequence in any schema.

DROP ANY
SEQUENCE

Drop any sequence in any schema.

SELECT ANY
SEQUENCE

Reference any sequence in any schema.

SNAPSHOT

CREATE SNAPSHOT Create snapshots in own schema. (User must also
have the CREATE TABLE privilege.)

CREATE SNAPSHOT Create snapshots in any schema. (User must also
have the CREATE ANY TABLE privilege.)

ALTER SNAPSHOT Alter any snapshot in any schema.
DROP ANY SNAP-
SHOT

Drop any snapshot in any schema.

SYNONYM

CREATE SYNONYM Create a synonym in own schema.
CREATE SYNONYM Create any synonym in any schema.
DROP ANY SYN-
ONYM

Drop any synonym in any schema.

SYSTEM

ALTER SYSTEM Issue ALTER SYSTEM statements.

Table 21–1 System Privileges (Cont.)

System Privilege Operations Permitted
 Managing User Privileges and Roles 21-5

Identifying User Privileges
TABLE

CREATE TABLE Create tables in own schema. Also allows grantee
to create indexes (including those for integrity
constraints) on table in own schema. (The
grantee must have a quota for the tablespace or
the UNLIMITED TABLESPACE privilege.)

CREATE ANY TABLE Create tables in any schema. (If grantee has CRE-
ATE ANY TABLE privilege and creates a table in
another user’s schema, the owner must have
space quota on that tablespace. The table owner
need not have the CREATE [ANY] TABLE privi-
lege.)

ALTER ANY TABLE Alter any table in any schema and compile any
view in any schema.

BACKUP ANY TABLE Perform an incremental export using the Export
utility of tables in any schema.

DROP ANY TABLE Drop or truncate any table in any schema.
LOCK ANY TABLE Lock any table or view in any schema.
COMMENT ANY
TABLE

Comment on any table, view, or column in
schema.

SELECT ANY TABLE Query any table, view, or snapshot in any
schema.

INSERT ANY TABLE Insert rows into any table or view in any schema.
UPDATE ANY TABLE Update rows in any table or view in any schema.
DELETE ANY TABLE Delete rows from any table or view in any

schema.
TABLESPACE

CREATE TABLESPACE Create tablespaces; add files to the operating sys-
tem via Oracle, regardless of the user’s operating
system privileges.

ALTER TABLESPACE Alter tablespaces; add files to the operating sys-
tem via Oracle, regardless of the user’s operating
system privileges.

Table 21–1 System Privileges (Cont.)

System Privilege Operations Permitted
21-6 Oracle8 Administrator’s Guide

Identifying User Privileges
MANAGE
TABLESPACE

Take any tablespace offline, bring any tablespace
online, and begin and end backups of any
tablespace.

DROP TABLESPACE Drop tablespaces.
UNLIMITED
TABLESPACE

Use an unlimited amount of any tablespace. This
privilege overrides any specific quotas assigned.
If revoked, the grantee’s schema objects remain
but further tablespace allocation is denied unless
allowed by specific tablespace quotas. This system
privilege can be granted only to users and not to roles.
In general, specific tablespace quotas are assigned
instead of granting this system privilege.

TRANSACTION

FORCE TRANSAC-
TION

Force the commit or rollback of own in-doubt dis-
tributed transaction in the local database.

FORCE ANY TRANS-
ACTION

Force the commit or rollback of any in-doubt dis-
tributed transaction in the local database.

TRIGGER

CREATE TRIGGER Create a trigger in own schema.
CREATE ANY TRIG-
GER

Create any trigger in any schema associated with
any table in any schema.

ALTER ANY TRIGGER Enable, disable, or compile any trigger in any
schema.

DROP ANY TRIGGER Drop any trigger in any schema.
USER

CREATE ANY USER Create users; assign quotas on any tablespace, set
default and temporary tablespaces, and assign a
profile as part of a CREATE USER statement.

BECOME ANY USER Become another user. (Required by any user per-
forming a full database import.)

ALTER USER Alter other users: change any user’s password or
authentication method, assign tablespace quotas,
set default and temporary tablespaces, assign pro-
files and default roles, in an ALTER USER state-
ment. (Not required to alter own password.)

Table 21–1 System Privileges (Cont.)

System Privilege Operations Permitted
 Managing User Privileges and Roles 21-7

Identifying User Privileges
System Privilege Restrictions
The dictionary protection mechanism prevents unauthorized users from accessing
dictionary objects.

Access to dictionary objects is restricted to the users SYSDBA and SYSOPER. Sys-
tem privileges providing access to objects in other schemas do not give you access
to dictionary objects. For example, the SELECT ANY TABLE privilege allows you
to access views and tables in other schemas, but does not enable you to select dictio-
nary objects (base tables, views, packages, and synonyms).

Also, attempting to connect with the SQL*Plus command connect SYS/pass-
word results in failure. However, the following two SQL*Plus commands are valid:

 connect SYS/password as SYSDBA
 connect SYS/password as SYSOPER

Use the 07_DICTIONARY_ACCESSIBILITY parameter (default=TRUE) to revert
the behavior to Oracle7 (and remove the restrictions on system privileges).

See Also: For details about the 07_DICTIONARY_ACCESSIBILITY parameter, see
the Oracle8 Reference.

Accessing Frequently Used Dictionary Objects
Users with explicit object privileges and the SYSDBA can access dictionary objects.
If, however, you need access to dictionary objects and do not have explicit object
privileges, you can be granted the following roles:

■ SELECT_CATALOG_ROLE

DROP USER Drop another user.
VIEW

CREATE VIEW Create a view in own schema.
CREATE ANY VIEW Create a view in any schema. To create a view in

another user’s schema, you must have CREATE
ANY VIEW privileges, and the owner must have
the required privileges on the objects referenced
in the view.

DROP ANY VIEW Drop any view in any schema.

Table 21–1 System Privileges (Cont.)

System Privilege Operations Permitted
21-8 Oracle8 Administrator’s Guide

Identifying User Privileges
Enables users to SELECT all exported catalog views and tables granted to this role.
Grant this role to users who must access all exported views and tables in the data
dictionary.

■ EXECUTE_CATALOG_ROLE

Provides EXECUTE privilege on exported packages in the dictionary.

■ DELETE_CATALOG_ROLE

Enables users to delete records from the AUD$ table.

These roles enable database administrators to access certain objects in the dictio-
nary while maintaining dictionary security.

See Also: For details about any exported table or view, see the Oracle8 Reference.

Object Privileges
Each type of object has different privileges associated with it. Table 21–2 summa-
rizes the object privileges available for each type of object.

Note: SYSDBA should not grant any user the object privileges for
non-exported objects in the dictionary; doing so may compromise
the integrity of the database.

Table 21–2 Object Privileges

Object Privilege Table View Sequence
Proce-
dure (a)

ALTER (1) (1)
DELETE (1) (1)
EXECUTE (1)
INDEX ✓ (2)
INSERT (1) (1)
REFERENCES ✓ (2)
SELECT (1) ✓ (2) (1)
UPDATE (1) (1)
1. Can also be granted for snapshots.
2. Privilege cannot be granted to a role.
✓ Includes stand-alone stored procedures and functions, and public package constructs.
 Managing User Privileges and Roles 21-9

Identifying User Privileges
Not all types of schema objects are included in Table 21–2. Many of the schema
objects not listed here (such as clusters, indexes, triggers, and database links) are
controlled exclusively using system privileges. For example, to alter a cluster, a
user must own the cluster or have the ALTER ANY CLUSTER system privilege.

Table 21–3 lists the SQL statements permitted by the object privileges listed in
Table 21–2.

Object Privilege Shortcut
The ALL and ALL PRIVILEGES shortcuts grant or revoke all available object privi-
leges for a object. This shortcut is not a privilege, rather, it is a way of granting or
revoking all object privileges with one word in GRANT and REVOKE statements.
Note that if all object privileges are granted using the ALL shortcut, individual priv-
ileges can still be revoked.

Likewise, all individually granted privileges can be revoked using the ALL short-
cut. However, if you REVOKE ALL, and revoking causes integrity constraints to be
deleted (because they depend on a REFERENCES privilege that you are revoking),
you must include the CASCADE CONSTRAINTS option in the REVOKE statement.

Table 21–3 SQL Statements Permitted by Object Privileges

Object Privilege SQL Statements Permitted

ALTER ALTER object (table or sequence)
DELETE DELETE FROM object (table or view)
EXECUTE EXECUTE object (procedure or function). References to

public package variables
INDEX CREATE INDEX ON object (tables only)
INSERT INSERT INTO object (table or view)
REFERENCES CREATE or ALTER TABLE statement defining a FOREIGN

KEY integrity constraint on object (tables only)
SELECT SELECT...FROM object (table, view, or snapshot). SQL

statements using a sequence
UPDATE UPDATE object (table or view)
21-10 Oracle8 Administrator’s Guide

Managing User Roles
Managing User Roles
This section describes aspects of managing roles, and includes the following topics:

■ Creating a Role

■ Predefined Roles

A role groups several privileges and roles, so that they can be granted and revoked
simultaneously from users. Roles can be enabled and disabled per user.

See Also: For information about roles, see Oracle8 Concepts.

Creating a Role
You can create a role using either the SQL command CREATE ROLE, or the Create
Role property sheet of Enterprise Manager.

You must have the CREATE ROLE system privilege to create a role. Typically, only
security administrators have this system privilege.

The following statement creates the CLERK role, which is authorized by the data-
base using the password BICENTENNIAL:

CREATE ROLE clerk
IDENTIFIED BY bicentennial;

Role Names
You must give each role you create a unique name among existing usernames and
role names of the database. Roles are not contained in the schema of any user.

Role Names in Multi-Byte Character Sets
In a database that uses a multi-byte character set, Oracle Corporation recommends
that each role name contain at least one single-byte character. If a role name con-
tains only multi-byte characters, the encrypted role name/password combination is
considerably less secure.

Note: Immediately after creation, a role has no privileges associ-
ated with it. To associate privileges with a new role, you must
grant privileges or other roles to the new role.
 Managing User Privileges and Roles 21-11

Managing User Roles
Predefined Roles
The roles listed in Table 21–4 are automatically defined for Oracle databases. These
roles are provided for backward compatibility to earlier versions of Oracle. You can
grant and revoke privileges and roles to these predefined roles, much the way you
do with any role you define.

Table 21–4 Predefined Roles

Role Name Privileges Granted To Role

CONNECT 1 ALTER SESSION, CREATE CLUSTER,
CREATE DATABASE LINK, CREATE
SEQUENCE, CREATE SESSION, CRE-
ATE SYNONYM, CREATE TABLE, CRE-
ATE VIEW

CREATE TYPE 7 CREATE TYPE, EXECUTE, EXECUTE
ANY TYPE, ADMIN OPTION, GRANT
OPTION

RESOURCE 1,2 CREATE CLUSTER, CREATE PROCE-
DURE, CREATE SEQUENCE, CREATE
TABLE, CREATE TRIGGER

DBA 1,3, 4 All system privileges WITH ADMIN
OPTION

EXP_FULL_DATABASE 5 SELECT ANY TABLE, BACKUP ANY
TABLE, INSERT, DELETE, AND
UPDATE ON THE TABLES
SYS.INCVID, SYS.INCFIL, AND
SYS.INCEXP

IMP_FULL_DATABASE 5 BECOME USER
DELETE_CATALOG_ROLE 6 DELETE privileges on all dictionary

packages for this role.
EXECUTE_CATALOG_ROLE 6 EXECUTE privilege on all dictionary

packages for this role.
SELECT_CATALOG_ROLE 6 SELECT privilege on all catalog tables

and views for this role.
21-12 Oracle8 Administrator’s Guide

Managing User Roles
Role Authorization
A database role can optionally require authorization when a user attempts to
enable the role. Role authorization can be maintained by the database (using pass-
words), by the operating system, or by a network service.

To alter the authorization method for a role, you must have the ALTER ANY ROLE
system privilege or have been granted the role with the ADMIN OPTION.

See Also: For more information about network roles, see Oracle8 Distributed Data-
base Systems.

Role Authorization by the Database
The use of a role can be protected by an associated password. If you are granted a
role protected by a password, you can enable or disable the role only by supplying
the proper password for the role in a SET ROLE command.

See Also: For more information about valid passwords, see the Oracle8 Reference.

1Created by SQL.BSQ.
2Grantees of the RESOURCE role also receive the UNLIMITED TABLESPACE system privilege
as an explicitly grant (not as part of the RESOURCE role).
3Grantees of the DBA role also receive the UNLIMITED TABLESPACE system privilege with
the ADMIN OPTION as an explicit grant (not as part of the DBA role). Therefore when the
DBA role is revoked, any explicit grant of UNLIMITED TABLESPACE is also revoked.
4Also includes the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles if CATEXP.SQL
has been run.
5Created by CATEXP.SQL.
6These roles must be granted to users who do not have the DBA role, but require access to the
views and tables in the data dictionary.
7The CREATE TYPE command is only available if the Oracle objects option is installed on your
database server.

Note: In a database that uses a multi-byte character set, pass-
words for roles must include only single-byte characters. Multi-
byte characters are not accepted in passwords.

Table 21–4 Predefined Roles (Cont.)

Role Name Privileges Granted To Role
 Managing User Privileges and Roles 21-13

Managing User Roles
Role Authorization by the Operating System
The following statement creates a role named ACCTS_REC and requires that the
operating system authorize its use:

CREATE ROLE role IDENTIFIED EXTERNALLY;

Role authentication via the operating system is useful only when the operating sys-
tem must be able to dynamically link operating system privileges with applica-
tions. When a user starts an application, the operating system grants an operating
system privilege to the user. The granted operating system privilege corresponds to
the role associated with the application. At this point, the application can enable
the application role. When the application is terminated, the previously granted
operating system privilege is revoked from the user’s operating system account.

If a role is authorized by the operating system, you must configure information for
each user at the operating system level. This operation is operating system depen-
dent.

If roles are granted by the operating system, you do not need to have the operating
system authorize them also; this is redundant.

See Also: For more information about roles granted by the operating system, see
“Granting Roles Using the Operating System or Network” on page 21-23.

Role Authorization and Network Clients
If users connect to the database over SQL*Net, by default their roles cannot be
authenticated by the operating system. This includes connections through a multi-
threaded server, as this connection requires SQL*Net. This restriction is the default
because a remote user could impersonate another operating system user over a net-
work connection.

If you are not concerned with this security risk and want to use operating system
role authentication for network clients, set the parameter REMOTE_OS_ROLES in
the database’s parameter file to TRUE. The change will take effect the next time you
start the instance and mount the database. (The parameter is FALSE by default.)

Withholding Authorization
A role can also be created without authorization. If a role is created without any
protection, the role can be enabled or disabled by any grantee.
21-14 Oracle8 Administrator’s Guide

Managing User Roles
Changing a Role’s Authorization
You can set and change the authorization method for a role using either the Alter
Role property sheet of Enterprise Manager/GUI or the SQL command ALTER
ROLE.

The following statement alters the CLERK role to be authorized externally:

ALTER ROLE clerk
IDENTIFIED EXTERNALLY;

Changing a User’s Default Roles
A user’s list of default roles can be set and altered using either the Alter User dia-
log box of Enterprise Manager or the SQL command ALTER USER.

See Also: See “Altering Users” on page 20-16 for more information about these
options.

Using the ALL Keyword If the user’s list of default roles is specified as ALL, every role
granted to a user is automatically added to the user’s list of default roles. Only subse-
quent modification of a user’s default role list can remove newly granted roles from a
user’s list of default roles.

Using the MAX_ENABLED_ROLES Parameter A user can enable as many roles as speci-
fied by the initialization parameter MAX_ENABLED_ROLES. All indirectly granted
roles enabled as a result of enabling a primary role are included in this count. The data-
base administrator can alter this limitation by modifying the value for this parameter.
Higher values permit each user session to have more concurrently enabled roles. How-
ever, the larger the value for this parameter, the more memory space is required on
behalf of each user session; this is because the PGA size is affected for each user session,
and requires four bytes per role. Determine the highest number of roles that will be con-
currently enabled by any one user and use this value for the MAX_ENABLED_ROLES
parameter.

Dropping Roles
In some cases, it may be applicable to drop a role from the database. The security
domains of all users and roles granted a dropped role are immediately changed to
reflect the absence of the dropped role’s privileges. All indirectly granted roles of
the dropped role are also removed from affected security domains. Dropping a role
automatically removes the role from all users’ default role lists.

Because the creation of objects is not dependent on the privileges received via a
role, tables and other objects are not dropped when a role is dropped.
 Managing User Privileges and Roles 21-15

Granting User Privileges and Roles
To drop a role, you must have the DROP ANY ROLE system privilege or have been
granted the role with the ADMIN OPTION.

You can drop a role using either the Drop menu item of Enterprise Manager or the
SQL command DROP ROLE.

The following statement drops the role CLERK:

DROP ROLE clerk;

Granting User Privileges and Roles
This section describes aspects of granting privileges and roles, and includes the fol-
lowing topics:

■ Granting System Privileges and Roles

■ Granting Object Privileges and Roles

■ Granting Privileges on Columns

Granting System Privileges and Roles
You can grant system privileges and roles to other roles and users using either the
Grant System Privileges/Roles dialog box of Enterprise Manager or the SQL com-
mand GRANT.

To grant a system privilege or role, you must have the ADMIN OPTION for all sys-
tem privileges and roles being granted. Also, any user with the GRANT ANY
ROLE system privilege can grant any role in a database.

The following statement grants the system privilege and the ACCTS_PAY role to
the user JWARD:

GRANT create session, accts_pay
TO jward;

The ADMIN Option
When a user creates a role, the role is automatically granted to the creator with the
ADMIN OPTION. A grantee with the ADMIN option has several expanded capa-
bilities:

Note: Object privileges cannot be granted along with system privi-
leges and roles in the same GRANT statement.
21-16 Oracle8 Administrator’s Guide

Granting User Privileges and Roles
■ The grantee can grant or revoke the system privilege or role to or from any user
or other role in the database. (Users cannot revoke a role from themselves.)

■ The grantee can further grant the system privilege or role with the ADMIN
OPTION.

■ The grantee of a role can alter or drop the role.

In the following statement, the security administrator grants the NEW_DBA role to
MICHAEL:

GRANT new_dba TO michael WITH ADMIN OPTION;

The user MICHAEL cannot only use all of the privileges implicit in the NEW_DBA
role, but can grant, revoke, or drop the NEW_DBA role as deemed necessary.
Because of these powerful capabilities, exercise caution when granting system privi-
leges or roles with the ADMIN OPTION. Such privileges are usually reserved for a
security administrator and rarely granted to other administrators or users of the
system.

Granting Object Privileges and Roles
You can grant object privileges to roles and users using the Add Privilege to Role/
User dialog box of Enterprise Manager or the SQL command GRANT.

To grant an object privilege, you must fulfill one of the following conditions:

■ You own the object specified.

■ You have been granted the object privileges being granted with the GRANT
OPTION.

The following statement grants the SELECT, INSERT, and DELETE object privi-
leges for all columns of the EMP table to the users JFEE and TSMITH:

GRANT select, insert, delete ON emp TO jfee, tsmith;

To grant the INSERT object privilege for only the ENAME and JOB columns of the
EMP table to the users JFEE and TSMITH, issue the following statement:

GRANT insert(ename, job) ON emp TO jfee, tsmith;

To grant all object privileges on the SALARY view to the user JFEE, use the ALL
shortcut, as shown in the following example:

GRANT ALL ON salary TO jfee;
 Managing User Privileges and Roles 21-17

Granting User Privileges and Roles
The GRANT OPTION
The user whose schema contains an object is automatically granted all associated
object privileges with the GRANT OPTION. This special privilege allows the
grantee several expanded privileges:

■ The grantee can grant the object privilege to any user or any role in the data-
base.

■ The grantee can also grant the object privilege to other users, with or without
the GRANT OPTION.

■ If the grantee receives object privileges for a table with the GRANT OPTION
and the grantee has the CREATE VIEW or CREATE ANY VIEW system privi-
lege, the grantee can create views on the table and grant the corresponding
privileges on the view to any user or role in the database.

The GRANT OPTION is not valid when granting an object privilege to a role. Ora-
cle prevents the propagation of object privileges via roles so that grantees of a role
cannot propagate object privileges received by means of roles.

Granting Privileges on Columns
You can grant INSERT, UPDATE, or REFERENCES privileges on individual col-
umns in a table.

Grant INSERT privilege on the ACCT_NO column of the ACCOUNTS table to
SCOTT:

Note: System privileges and roles cannot be granted along with
object privileges in the same GRANT statement.

WARNING: Before granting a column-specific INSERT privi-
lege, determine if the table contains any columns on which NOT
NULL constraints are defined. Granting selective insert capabil-
ity without including the NOT NULL columns prevents the user
from inserting any rows into the table. To avoid this situation,
make sure that each NOT NULL column is either insertable or
has a non-NULL default value. Otherwise, the grantee will not
be able to insert rows into the table and will receive an error.
21-18 Oracle8 Administrator’s Guide

Revoking User Privileges and Roles
GRANT INSERT (acct_no)
ON accounts TO scott;

Revoking User Privileges and Roles
This section describes aspects of revoking user privileges and roles, and includes
the following topics:

■ Revoking System Privileges and Roles

■ Revoking Object Privileges and Roles

Revoking System Privileges and Roles
You can revoke system privileges and/or roles using either the Revoke System Priv-
ileges/Roles dialog box of Enterprise Manager or the SQL command REVOKE.

Any user with the ADMIN OPTION for a system privilege or role can revoke the
privilege or role from any other database user or role The grantor does not have to
be the user that originally granted the privilege or role. Also, users with the
GRANT ANY ROLE can revoke any role.

The following statement revokes the CREATE TABLE system privilege and the
ACCTS_REC role from TSMITH:

REVOKE create table, accts_rec FROM tsmith;

Revoking Object Privileges and Roles
You can revoke object privileges using Enterprise Manager or the SQL command
REVOKE.

To revoke an object privilege, the revoker must be the original grantor of the object
privilege being revoked.

For example, assuming you are the original grantor, to revoke the SELECT and
INSERT privileges on the EMP table from the users JFEE and TSMITH, you would
issue the following statement:

REVOKE select, insert ON emp
FROM jfee, tsmith;

Note: The ADMIN OPTION for a system privilege or role cannot
be selectively revoked. The privilege or role must be revoked and
then the privilege or role re-granted without the ADMIN OPTION.
 Managing User Privileges and Roles 21-19

Revoking User Privileges and Roles
The following statement revokes all privileges (which were originally granted to
the role HUMAN_RESOURCE) from the table DEPT:

REVOKE ALL ON dept FROM human_resources;

Revoking Column Selective Object Privileges
Although users can grant column selective INSERT, UPDATE, and REFERENCES
privileges for tables and views, they cannot selectively revoke column specific privi-
leges with a similar REVOKE statement. Instead, the grantor must first revoke the
object privilege for all columns of a table or view, and then selectively re-grant the
column specific privileges that should remain.

For example, assume that role HUMAN_RESOURCES has been granted the
UPDATE privilege on the DEPTNO and DNAME columns of the table DEPT. To
revoke the UPDATE privilege on just the DEPTNO column, you would issue the
following two statements:

REVOKE UPDATE ON dept FROM human_resources;
GRANT UPDATE (dname) ON dept TO human_resources;

The REVOKE statement revokes UPDATE privilege on all columns of the DEPT table
from the role HUMAN_RESOURCES. The GRANT statement re-grants UPDATE privi-
lege on the DNAME column to the role HUMAN_RESOURCES.

Revoking the REFERENCES Object Privilege
If the grantee of the REFERENCES object privilege has used the privilege to create
a foreign key constraint (that currently exists), the grantor can only revoke the privi-
lege by specifying the CASCADE CONSTRAINTS option in the REVOKE state-
ment:

REVOKE REFERENCES ON dept FROM jward CASCADE CONSTRAINTS;

Any foreign key constraints currently defined that use the revoked REFERENCES
privilege are dropped when the CASCADE CONSTRAINTS options is specified.

Note: This statement above would only revoke the privileges that
the grantor authorized, not the grants made by other users. The
GRANT OPTION for an object privilege cannot be selectively
revoked. The object privilege must be revoked and then re-granted
without the GRANT OPTION. Users cannot revoke object privi-
leges from themselves.
21-20 Oracle8 Administrator’s Guide

Revoking User Privileges and Roles
Effects of Revoking Privileges
Depending on the type of privilege, there may be cascading effects when a privi-
lege is revoked.

System Privileges
There are no cascading effects when revoking a system privilege related to DDL
operations, regardless of whether the privilege was granted with or without the
ADMIN OPTION. For example, assume the following:

1. The security administrator grants the CREATE TABLE system privilege to JFEE
with the ADMIN OPTION.

2. JFEE creates a table.

3. JFEE grants the CREATE TABLE system privilege to TSMITH.

4. TSMITH creates a table.

5. The security administrator revokes the CREATE TABLE system privilege from
JFEE.

6. JFEE’s table continues to exist. TSMITH still has the table and the CREATE
TABLE system privilege.

Cascading effects can be observed when revoking a system privilege related to a
DML operation. For example, if SELECT ANY TABLE is granted to a user, and that
user has created any procedures, all procedures contained in the user’s schema
must be re-authorized before they can be used again.

Object Privileges
Revoking an object privilege may have cascading effects that should be investi-
gated before issuing a REVOKE statement.

■ Object definitions that depend on a DML object privilege can be affected if the
DML object privilege is revoked. For example, assume the procedure body of
the TEST procedure includes a SQL statement that queries data from the EMP
table. If the SELECT privilege on the EMP table is revoked from the owner of
the TEST procedure, the procedure can no longer be executed successfully.

■ Object definitions that require the ALTER and INDEX DDL object privileges
are not affected if the ALTER or INDEX object privilege is revoked. For exam-
ple, if the INDEX privilege is revoked from a user that created an index on
someone else’s table, the index continues to exist after the privilege is revoked.
 Managing User Privileges and Roles 21-21

Revoking User Privileges and Roles
■ When a REFERENCES privilege for a table is revoked from a user, any foreign
key integrity constraints defined by the user that require the dropped REFER-
ENCES privilege are automatically dropped. For example, assume that the user
JWARD is granted the REFERENCES privilege for the DEPTNO column of the
DEPT table and creates a foreign key on the DEPTNO column in the EMP table
that references the DEPTNO column. If the REFERENCES privilege on the
DEPTNO column of the DEPT table is revoked, the foreign key constraint on
the DEPTNO column of the EMP table is dropped in the same operation.

■ The object privilege grants propagated using the GRANT OPTION are revoked
if a grantor’s object privilege is revoked. For example, assume that USER1 is
granted the SELECT object privilege with the GRANT OPTION, and grants the
SELECT privilege on EMP to USER2. Subsequently, the SELECT privilege is
revoked from USER1. This revoke is cascaded to USER2 as well. Any objects
that depended on USER1’s and USER2’s revoked SELECT privilege can also be
affected, as described in previous bullet items.

Granting to and Revoking from the User Group PUBLIC
Privileges and roles can also be granted to and revoked from the user group PUB-
LIC. Because PUBLIC is accessible to every database user, all privileges and roles
granted to PUBLIC are accessible to every database user.

Security administrators and database users should only grant a privilege or role to
PUBLIC if every database user requires the privilege or role. This recommendation
reinforces the general rule that at any given time, each database user should only
have the privileges required to accomplish the group’s current tasks successfully.

Revoking a privilege from PUBLIC can cause significant cascading effects. If any
privilege related to a DML operation is revoked from PUBLIC (for example,
SELECT ANY TABLE, UPDATE ON emp), all procedures in the database, includ-
ing functions and packages, must be reauthorized before they can be used again. There-
fore, exercise caution when granting DML-related privileges to PUBLIC.

See Also: For more information about object dependencies, see “Managing Object
Dependencies” on page 17-25.

When Do Grants and Revokes Take Effect?
Depending on what is granted or revoked, a grant or revoke takes effect at different
times:

■ All grants/revokes of system and object privileges to anything (users, roles,
and PUBLIC) are immediately observed.
21-22 Oracle8 Administrator’s Guide

Granting Roles Using the Operating System or Network
■ All grants/revokes of roles to anything (users, other roles, PUBLIC) are only
observed when a current user session issues a SET ROLE statement to re-enable
the role after the grant/revoke, or when a new user session is created after the
grant/revoke.

Granting Roles Using the Operating System or Network
This section describes aspects of granting roles via your operating system or net-
work, and includes the following topics:

■ Using Operating System Role Identification

■ Using Operating System Role Management

■ Granting and Revoking Roles When OS_ROLES=TRUE

■ Enabling and Disabling Roles When OS_ROLES=TRUE

■ Using Network Connections with Operating System Role Management

Instead of a security administrator explicitly granting and revoking database roles
to and from users using GRANT and REVOKE statements, the operating system
that operates Oracle can grant roles to users at connect time. Roles can be adminis-
tered using the operating system and passed to Oracle when a user creates a ses-
sion. As part of this mechanism, each user’s default roles and the roles granted to a
user with the ADMIN OPTION can be identified. Even if the operating system is
used to authorize users for roles, all roles must be created in the database and privi-
leges assigned to the role with GRANT statements.

Roles can also be granted through a network service. For information about net-
work roles, see Oracle8 Distributed Database Systems.

The advantage of using the operating system to identify a user’s database roles is
that privilege management for an Oracle database can be externalized. The security
facilities offered by the operating system control a user’s privileges. This option
may offer advantages of centralizing security for a number of system activities. For
example, MVS Oracle administrators may want RACF groups to identify a data-
base user’s roles, UNIX Oracle administrators may want UNIX groups to identify a
database user’s roles, or VMS Oracle administrators may want to use rights identifi-
ers to identify a database user’s roles.

The main disadvantage of using the operating system to identify a user’s database
roles is that privilege management can only be performed at the role level. Individ-
ual privileges cannot be granted using the operating system, but can still be
granted inside the database using GRANT statements.
 Managing User Privileges and Roles 21-23

Granting Roles Using the Operating System or Network
A secondary disadvantage of using this feature is that by default users cannot con-
nect to the database through the multi-threaded server, or any other network con-
nection, if the operating system is managing roles. However, you can change this
default; see “Using Network Connections with Operating System Role Manage-
ment” on page 21-26.

See Also: The features described in this section are available only on some operat-
ing systems. This information is operating system-dependent; see your operating
system-specific Oracle documentation.

Using Operating System Role Identification
To operate a database so that it uses the operating system to identify each user’s
database roles when a session is created, set the initialization parameter OS_ROLES
to TRUE (and restart the instance, if it is currently running). When a user attempts
to create a session with the database, Oracle initializes the user’s security domain
using the database roles identified by the operating system.

To identify database roles for a user, each Oracle user’s operating system account
must have operating system identifiers (these may be called groups, rights identifi-
ers, or other similar names) that indicate which database roles are to be available
for the user. Role specification can also indicate which roles are the default roles of
a user and which roles are available with the ADMIN OPTION. No matter which
operating system is used, the role specification at the operating system level fol-
lows the format:

ORA_<ID>_<ROLE>[_[D][A]]
where:

ID
The definition of ID varies on different operating systems. For example, on VMS,
ID is the instance identifier of the database; on MVS, it is the machine type; on
UNIX, it is the system ID.

D
This optional character indicates that this role is to be a default role of the database
user.
21-24 Oracle8 Administrator’s Guide

Granting Roles Using the Operating System or Network
A
This optional character indicates that this role is to be granted to the user with the
ADMIN OPTION. This allows the user to grant the role to other roles only. (Roles
cannot be granted to users if the operating system is used to manage roles.)

For example, an operating system account might have the following roles identi-
fied in its profile:

ORA_PAYROLL_ROLE1
ORA_PAYROLL_ROLE2_A
ORA_PAYROLL_ROLE3_D
ORA_PAYROLL_ROLE4_DA

When the corresponding user connects to the PAYROLL instance of Oracle, ROLE3
and ROLE4 are defaults, while ROLE2 and ROLE4 are available with the ADMIN
OPTION.

Using Operating System Role Management
When you use operating system managed roles, it is important to note that data-
base roles are being granted to an operating system user. Any database user to
which the OS user is able to connect will have the authorized database roles
enabled. For this reason, you should consider defining all Oracle users as IDENTI-
FIED EXTERNALLY if you are using OS_ROLES = TRUE, so that the database
accounts are tied to the OS account that was granted privileges.

Granting and Revoking Roles When OS_ROLES=TRUE
If OS_ROLES is set to TRUE, the operating system completely manages the grants
and revokes of roles to users. Any previous grants of roles to users via GRANT state-
ments do not apply; however, they are still listed in the data dictionary. Only the role
grants made at the operating system level to users apply. Users can still grant privileges
to roles and users.

Note: If either the D or A characters are specified, they must be
preceded by an underscore.

Note: If the operating system grants a role to a user with the
ADMIN OPTION, the user can grant the role only to other roles.
 Managing User Privileges and Roles 21-25

Listing Privilege and Role Information
Enabling and Disabling Roles When OS_ROLES=TRUE
If OS_ROLES is set to TRUE, any role granted by the operating system can be
dynamically enabled using the SET ROLE command. If the role was defined to
require a password or operating system authorization, that still applies. However,
any role not identified in a user’s operating system account cannot be specified in a
SET ROLE statement, even if a role has been granted using a GRANT statement
when OS_ROLES = FALSE. (If you specify such a role, Oracle ignores it.)

When OS_ROLES = TRUE, a user can enable as many roles as specified by the
parameter MAX_ENABLED_ROLES.

Using Network Connections with Operating System Role Management
If you want to have the operating system manage roles, by default users cannot con-
nect to the database through the multi-threaded server. This restriction is the
default because a remote user could impersonate another operating system user
over a non-secure connection.

If you are not concerned with this security risk and want to use operating system
role management with the multi-threaded server, or any other network connection,
set the parameter REMOTE_OS_ROLES in the database’s parameter file to TRUE.
The change will take effect the next time you start the instance and mount the data-
base. (The parameter is FALSE by default.)

Listing Privilege and Role Information
To list the grants made for objects, a user can query the following data dictionary
views:

■ ALL_COL_PRIVS, USER_COL_PRIVS, DBA_COL_PRIVS

■ ALL_COL_PRIVS_MADE, USER_COL_PRIVS_MADE

■ ALL_COL_PRIVS_RECD, USER_COL_PRIVS_RECD

■ ALL_TAB_PRIVS, USER_TAB_PRIVS, DBA_TAB_PRIVS

■ ALL_TAB_PRIVS_MADE, USER_TAB_PRIVS_MADE

■ ALL_TAB_PRIVS_RECD, USER_TAB_PRIVS_RECD

■ DBA_ROLES

■ USER_ROLE_PRIVS, DBA_ROLE_PRIVS

■ USER_SYS_PRIVS, DBA_SYS_PRIVS
21-26 Oracle8 Administrator’s Guide

Listing Privilege and Role Information
■ COLUMN_PRIVILEGES

■ ROLE_ROLE_PRIVS, ROLE_SYS_PRIVS, ROLE_TAB_PRIVS

■ SESSION_PRIVS, SESSION_ROLES

See Also: See the Oracle8 Reference for a detailed description of these data dictionary
views.

Listing Privilege and Role Information: Examples
For the following examples, assume the following statements are issued:

CREATE ROLE security_admin IDENTIFIED BY honcho;

GRANT create profile, alter profile, drop profile,
 create role, drop any role, grant any role, audit any,
 audit system, create user, become user, alter user, drop user
 TO security_admin WITH ADMIN OPTION;

GRANT SELECT, DELETE ON sys.aud$ TO security_admin;

GRANT security_admin, create session TO swilliams;

GRANT security_admin TO system_administrator;

GRANT create session TO jward;

GRANT SELECT, DELETE ON emp TO jward;

GRANT INSERT (ename, job) ON emp TO swilliams, jward;
 Managing User Privileges and Roles 21-27

Listing Privilege and Role Information
Listing All System Privilege Grants
The following query indicates all system privilege grants made to roles and users:

SELECT * FROM sys.dba_sys_privs;

GRANTEE PRIVILEGE ADM
-------------- --------------------------------- ---
SECURITY_ADMIN ALTER PROFILE YES
SECURITY_ADMIN ALTER USER YES
SECURITY_ADMIN AUDIT ANY YES
SECURITY_ADMIN AUDIT SYSTEM YES
SECURITY_ADMIN BECOME USER YES
SECURITY_ADMIN CREATE PROFILE YES
SECURITY_ADMIN CREATE ROLE YES
SECURITY_ADMIN CREATE USER YES
SECURITY_ADMIN DROP ANY ROLE YES
SECURITY_ADMIN DROP PROFILE YES
SECURITY_ADMIN DROP USER YES
SECURITY_ADMIN GRANT ANY ROLE YES
SWILLIAMS CREATE SESSION NO
JWARD CREATE SESSION NO

Listing All Role Grants
The following query returns all the roles granted to users and other roles:

SELECT * FROM sys.dba_role_privs;

GRANTEE GRANTED_ROLE ADM
------------------ ------------------------------------ ---
SWILLIAMS SECURITY_ADMIN NO

Listing Object Privileges Granted to a User
The following query returns all object privileges (not including column specific
privileges) granted to the specified user:

SELECT table_name, privilege, grantable FROM sys.dba_tab_privs
 WHERE grantee = ’JWARD’;

TABLE_NAME PRIVILEGE GRANTABLE
----------- ------------ ----------
EMP SELECT NO
EMP DELETE NO
21-28 Oracle8 Administrator’s Guide

Listing Privilege and Role Information
To list all the column specific privileges that have been granted, use the following
query:

SELECT grantee, table_name, column_name, privilege
 FROM sys.dba_col_privs;

GRANTEE TABLE_NAME COLUMN_NAME PRIVILEGE
----------- ------------ ------------- --------------
SWILLIAMS EMP ENAME INSERT
SWILLIAMS EMP JOB INSERT
JWARD EMP NAME INSERT
JWARD EMP JOB INSERT

Listing the Current Privilege Domain of Your Session
The following query lists all roles currently enabled for the issuer:

SELECT * FROM session_roles;

If SWILLIAMS has enabled the SECURITY_ADMIN role and issues this query, Ora-
cle returns the following information:

ROLE

SECURITY_ADMIN

The following query lists all system privileges currently available in the issuer’s
security domain, both from explicit privilege grants and from enabled roles:

SELECT * FROM session_privs;

If SWILLIAMS has the SECURITY_ADMIN role enabled and issues this query, Ora-
cle returns the following results:

PRIVILEGE
--
AUDIT SYSTEM
CREATE SESSION
CREATE USER
BECOME USER
ALTER USER
DROP USER
CREATE ROLE
DROP ANY ROLE
GRANT ANY ROLE
AUDIT ANY
CREATE PROFILE
ALTER PROFILE
DROP PROFILE
 Managing User Privileges and Roles 21-29

Listing Privilege and Role Information
If the SECURITY_ADMIN role is disabled for SWILLIAMS, the first query would
have returned no rows, while the second query would only return a row for the
CREATE SESSION privilege grant.

Listing Roles of the Database
The DBA_ROLES data dictionary view can be used to list all roles of a database
and the authentication used for each role. For example, the following query lists all
the roles in the database:

SELECT * FROM sys.dba_roles;

ROLE PASSWORD
---------------- --------
CONNECT NO
RESOURCE NO
DBA NO
SECURITY_ADMIN YES

Listing Information About the Privilege Domains of Roles
The ROLE_ROLE_PRIVS, ROLE_SYS_PRIVS, and ROLE_TAB_PRIVS data dictio-
nary views contain information on the privilege domains of roles.

For example, the following query lists all the roles granted to the SYSTEM_ADMIN
role:

SELECT granted_role, admin_option
 FROM role_role_privs
 WHERE role = ’SYSTEM_ADMIN’;
GRANTED_ROLE ADM
---------------- ----
SECURITY_ADMIN NO
21-30 Oracle8 Administrator’s Guide

Listing Privilege and Role Information
The following query lists all the system privileges granted to the
SECURITY_ADMIN role:

SELECT * FROM role_sys_privs WHERE role = ’SECURITY_ADMIN’;

ROLE PRIVILEGE ADM
----------------------- ----------------------------- ---
SECURITY_ADMIN ALTER PROFILE YES
SECURITY_ADMIN ALTER USER YES
SECURITY_ADMIN AUDIT ANY YES
SECURITY_ADMIN AUDIT SYSTEM YES
SECURITY_ADMIN BECOME USER YES
SECURITY_ADMIN CREATE PROFILE YES
SECURITY_ADMIN CREATE ROLE YES
SECURITY_ADMIN CREATE USER YES
SECURITY_ADMIN DROP ANY ROLE YES
SECURITY_ADMIN DROP PROFILE YES
SECURITY_ADMIN DROP USER YES
SECURITY_ADMIN GRANT ANY ROLE YES

The following query lists all the object privileges granted to the
SECURITY_ADMIN role:

SELECT table_name, privilege FROM role_tab_privs
 WHERE role = ’SECURITY_ADMIN’;

TABLE_NAME PRIVILEGE
--------------------------- ----------------
AUD$ DELETE
AUD$ SELECT
 Managing User Privileges and Roles 21-31

Listing Privilege and Role Information
21-32 Oracle8 Administrator’s Guide

 Auditing Databa
22

 Auditing Database Use

This chapter describes how to use the Oracle auditing facilities, and includes the fol-
lowing topics:

■ Guidelines for Auditing

■ Creating and Deleting the Database Audit Trail Views

■ Managing Audit Trail Information

■ Viewing Database Audit Trail Information

■ Auditing Through Database Triggers
se Use 22-1

Guidelines for Auditing
Guidelines for Auditing
This section describes guidelines for auditing and includes the following topics:

■ Audit via the Database or Operating System

■ Keep Audited Information Manageable

Audit via the Database or Operating System
The data dictionary of every database has a table named SYS.AUD$, commonly
referred to as the database audit trail.

Either the database or operating system audit trail can store all audit records gener-
ated as the result of statement, privilege, or object auditing.

Your operating system may or may not support database auditing to the operating
system audit trail. If this option is available, consider the advantages and disadvan-
tages of using either the database or operating system auditing trail to store data-
base audit records.

Using the database audit trail offers the following advantages:

■ You can view selected portions of the audit trail with the predefined audit trail
views of the data dictionary.

■ You can use Oracle tools (such as Oracle Reports) to generate audit reports.

Alternatively, your operating system audit trail may allow you to consolidate audit
records from multiple sources including Oracle and other applications. Therefore,
examining system activity might be more efficient because all audit records are in
one place.

See Also: Your operating system may also contain an audit trail that stores audit
records generated by the operating system auditing facility. However, this facility is
operating system-dependent. See your operating system-specific Oracle documen-
tation.

Keep Audited Information Manageable
Although auditing is relatively inexpensive, limit the number of audited events as
much as possible. This will minimize the performance impact on the execution of
statements that are audited, and minimize the size of the audit trail.

Use the following general guidelines when devising an auditing strategy:

■ Evaluate your purpose for auditing.
22-2 Oracle8 Administrator’s Guide

Guidelines for Auditing
After you have a clear understanding of the reasons for auditing, you can
devise an appropriate auditing strategy and avoid unnecessary auditing.

For example, suppose you are auditing to investigate suspicious database activ-
ity. This information by itself is not specific enough. What types of suspicious
database activity do you suspect or have you noticed? A more focused auditing
purpose might be to audit unauthorized deletions from arbitrary tables in the
database. This purpose narrows the type of action being audited and the type
of object being affected by the suspicious activity.

■ Audit knowledgeably.

Audit the minimum number of statements, users, or objects required to get the
targeted information. This prevents unnecessary audit information from clutter-
ing the meaningful information and consuming valuable space in the SYSTEM
tablespace. Balance your need to gather sufficient security information with
your ability to store and process it.

For example, if you are auditing to gather information about database activity,
determine exactly what types of activities you are tracking, audit only the activ-
ities of interest, and audit only for the amount of time necessary to gather the
information you desire. Do not audit objects if you are only interested in each
session’s logical I/O information.

Auditing Suspicious Database Activity
When you audit to monitor suspicious database activity, use the following guide-
lines:

■ Audit generally, then specifically.

When starting to audit for suspicious database activity, it is common that not
much information is available to target specific users or schema objects. There-
fore, audit options must be set more generally at first. Once preliminary audit
information is recorded and analyzed, the general audit options should be
turned off and more specific audit options enabled. This process should con-
tinue until enough evidence is gathered to make concrete conclusions about the
origin of the suspicious database activity.

■ Protect the audit trail.

When auditing for suspicious database activity, protect the audit trail so that
audit information cannot be added, changed, or deleted without being audited.

See Also: For more information about the audit trail, see “Protecting the Audit
Trail” on page 22-17.
 Auditing Database Use 22-3

Creating and Deleting the Database Audit Trail Views
Auditing Normal Database Activity
When your purpose for auditing is to gather historical information about particular
database activities, use the following guidelines:

■ Audit only pertinent actions.

To avoid cluttering meaningful information with useless audit records and
reduce the amount of audit trail administration, only audit the targeted data-
base activities.

■ Archive audit records and purge the audit trail.

After you have collected the required information, archive the audit records of
interest and purge the audit trail of this information.

Creating and Deleting the Database Audit Trail Views
This section describes how to create and delete database audit trail views, and
includes the following topics:

■ Creating the Audit Trail Views

■ Deleting the Audit Trail Views

The database audit trail (SYS.AUD$) is a single table in each Oracle database’s data
dictionary. To help you view meaningful auditing information in this table, several
predefined views are provided. They must be created for you to use auditing; you
can later delete them if you decide not to use auditing.

See Also: On most operating systems, the audit trail views are created automati-
cally with the data dictionary. See your operating system-specific Oracle documen-
tation.

Creating the Audit Trail Views
If you decide to use auditing, create the auditing views by connecting as SYS and
running the script CATAUDIT.SQL. This script creates the following views:

■ STMT_AUDIT_OPTION_MAP

■ AUDIT_ACTIONS

■ ALL_DEF_AUDIT_OPTS

■ DBA_STMT_AUDIT_OPTS

■ USER_OBJ_AUDIT_OPTS, DBA_OBJ_AUDIT_OPTS
22-4 Oracle8 Administrator’s Guide

Managing Audit Trail Information
■ USER_AUDIT_TRAIL, DBA_AUDIT_TRAIL

■ USER_AUDIT_SESSION, DBA_AUDIT_SESSION

■ USER_AUDIT_STATEMENT, DBA_AUDIT_STATEMENT

■ USER_AUDIT_OBJECT, DBA_AUDIT_OBJECT

■ DBA_AUDIT_EXISTS

■ USER_AUDIT_SESSION, DBA_AUDIT_SESSION

■ USER_TAB_AUDIT_OPTS

See Also: For information about these views, see the Oracle8 Reference.

For examples of audit information interpretations, see “Viewing Database Audit
Trail Information” on page 22-17.

Deleting the Audit Trail Views
If you disable auditing and no longer need the audit trail views, delete them by con-
necting to the database as SYS and running the script file CATNOAUD.SQL. The
name and location of the CATNOAUD.SQL script are operating system-dependent.

Managing Audit Trail Information
This section describes various aspects of managing audit trail information, and
includes the following topics:

■ Events Audited by Default

■ Setting Auditing Options

■ Enabling and Disabling Database Auditing

■ Controlling the Growth and Size of the Audit Trail

■ Protecting the Audit Trail

Depending on the events audited and the auditing options set, the audit trail
records can contain different types of information. The following information is
always included in each audit trail record, provided that the information is mean-
ingful to the particular audit action:

■ user name

■ session identifier

■ terminal identifier
 Auditing Database Use 22-5

Managing Audit Trail Information
■ name of the object accessed

■ operation performed or attempted

■ completion code of the operation

■ date and time stamp

Audit trail records written to the operating system audit trail contain some encod-
ings that are not readable. These can be decoded as follows:

Action Code
This describes the operation performed or attempted. The AUDIT_ACTIONS data
dictionary table contains a list of these codes and their descriptions.

Privileges Used
This describes any system privileges used to perform the operation. The
SYSTEM_PRIVILEGE_MAP table lists all of these codes, and their descriptions.

Completion Code
This describes the result of the attempted operation. Successful operations return a
value of zero, while unsuccessful operations return the Oracle error code describ-
ing why the operation was unsuccessful.

See Also: Error codes are listed in Oracle8 Error Messages.
22-6 Oracle8 Administrator’s Guide

Managing Audit Trail Information
Events Audited by Default
Regardless of whether database auditing is enabled, the Oracle Server will always
audit certain database-related actions into the operating system audit trail. These
events include the following:

On operating systems that do not make an audit trail accessible to Oracle, these
audit trail records are placed in an Oracle audit trail file in the same directory as
background process trace files.

Setting Auditing Options
Depending on the auditing options set, audit records can contain different types of
information. However, all auditing options generate the following information:

■ the user that executed the audited statement

■ the action code (a number) that indicates the audited statement executed by the
user

■ the object or objects referenced in the audited statement

■ the date and time that the audited statement was executed

instance startup An audit record is generated that details the OS user
starting the instance, his terminal identifier, the date
and time stamp, and whether database auditing was
enabled or disabled. This is audited into the OS
audit trail because the database audit trail is not
available until after startup has successfully com-
pleted. Recording the state of database auditing at
startup further prevents an administrator from
restarting a database with database auditing dis-
abled so that they are able to perform unaudited
actions.

instance shutdown An audit record is generated that details the OS user
shutting down the instance, her terminal identifier,
the date and time stamp.

connections to the
database with
administrator
privileges

An audit record is generated that details the OS user
connecting to Oracle as SYSOPER or SYSDBA, to
provide accountability of users with administrator
privileges.
 Auditing Database Use 22-7

Managing Audit Trail Information
The audit trail does not store information about any data values that might be
involved in the audited statement. For example, old and new data values of
updated rows are not stored when an UPDATE statement is audited. However, this
specialized type of auditing can be performed on DML statements involving tables
by using database triggers.

Oracle allows you to set audit options at three levels:

See Also: For examples of trigger usage for this specialized type of auditing, see
“Auditing Through Database Triggers” on page 22-21.

Statement Audit Options
Valid statement audit options that can be included in AUDIT and NOAUDIT state-
ments are listed in the Oracle8 SQL Reference.

Shortcuts for Statement Audit Options Shortcuts are provided so that you can specify
several related statement options with one word.

Shortcuts are not statement options themselves; rather, they are ways of specifying
sets of related statement options with one word in AUDIT and NOAUDIT state-
ments. Shortcuts for system privileges and statement options are detailed in the
Oracle8 SQL Reference.

Auditing Connections and Disconnections
The SESSION statement option (and CONNECT shortcut) is unique because it does
not generate an audit record when a particular type of statement is issued; this
option generates a single audit record for each session created by connections to an
instance. An audit record is inserted into the audit trail at connect time and
updated at disconnect time. Cumulative information about a session such as con-
nection time, disconnection time, logical and physical I/Os processed, and more is
stored in a single audit record that corresponds to the session.

statement audits based on the type of a SQL statement, such as
any SQL statement on a table (which records each CRE-
ATE, TRUNCATE, and DROP TABLE statement)

privilege audits use of a particular system privilege, such as CRE-
ATE TABLE

object audits specific statements on specific objects, such as
ALTER TABLE on the EMP table
22-8 Oracle8 Administrator’s Guide

Managing Audit Trail Information
See Also: The Oracle8 SQL Reference also lists additional audit options not covered
by the shortcuts.

Privilege Audit Options
Privilege audit options exactly match the corresponding system privileges. For
example, the option to audit use of the DELETE ANY TABLE privilege is DELETE
ANY TABLE. To turn this option on, you would use a statement similar to the fol-
lowing example:

AUDIT DELETE ANY TABLE
 BY ACCESS
 WHENEVER NOT SUCCESSFUL;

Oracle’s system privileges are listed in “System Privileges” on page 21-2.

Object Audit Options
The Oracle8 SQL Reference lists valid object audit options and the schema object
types for which each option is available.

Table 22–1 lists the SQL statements audited by each object option.

Table 22–1 SQL Statement Audited by Database Object Audit Option

Object Option Table

ALTER ALTER object (table or sequence)
AUDIT AUDIT (Form II) object
COMMENT COMMENT object (table or view)
DELETE DELETE FROM object (table or view)
EXECUTE EXECUTE object (procedure 1)
GRANT GRANT (Form II) privilege ON object
INDEX CREATE INDEX ON object (tables only)
INSERT INSERT INTO object (table, view, or procedure)
LOCK LOCK object (table or view)
RENAME RENAME object (table, view, or procedure 1)
SELECT SELECT . . .FROM object (table, view, snapshot)
UPDATE UPDATE object (table or view)
1 Procedure refers to stand-alone stored procedures and functions, and pack-

ages.
 Auditing Database Use 22-9

Managing Audit Trail Information
Shortcut for Object Audit Options The ALL shortcut can be used to specify all avail-
able object audit options for a schema object. This shortcut is not an option itself;
rather, it is a way of specifying all object audit options with one word in AUDIT
and NOAUDIT statements.

Enabling Audit Options
The SQL command AUDIT turns on statement and privilege audit options, and
object audit options. Audit statements that set statement and privilege audit
options can include the BY USER option to specify a list of users to limit the scope
of the statement and privilege audit options. The SQL command AUDIT turns on
audit options. To use it to set statement and privilege options, you must have the
AUDIT SYSTEM privilege. To use it to set object audit options, you must own the
object to be audited or have the AUDIT ANY privilege.

You can set any auditing option, and specify the following conditions for auditing:

■ WHENEVER SUCCESSFUL/WHENEVER NOT SUCCESSFUL

■ BY SESSION/BY ACCESS

A new database session picks up auditing options from the data dictionary when
the session is created. These auditing options remain in force for the duration of the
database connection. Setting new system or object auditing options causes all subse-
quent database sessions to use these options; existing sessions will continue using
the audit options in place at session creation.

See Also: For a complete description of the AUDIT command, see the Oracle8 SQL
Reference.

 For more information about enabling and disabling auditing, see “Enabling and
Disabling Database Auditing” on page 22-13.

Enabling Statement Privilege Auditing To audit all successful and unsuccessful connec-
tions to and disconnections from the database, regardless of user, BY SESSION (the
default and only value for this option), enter the following statement:

AUDIT SESSION;

WARNING: The AUDIT command only turns auditing options
on; it does not enable auditing as a whole. To turn auditing on
and control whether Oracle generates audit records based on the
audit options currently set, set the parameter AUDIT_TRAIL in
the database’s parameter file.
22-10 Oracle8 Administrator’s Guide

Managing Audit Trail Information
You can set this option selectively for individual users also, as in the next example:

AUDIT SESSION
BY scott, lori;

To audit all successful and unsuccessful uses of the DELETE ANY TABLE system
privilege, enter the following statement:

AUDIT DELETE ANY TABLE;

To audit all unsuccessful SELECT, INSERT, and DELETE statements on all tables
and unsuccessful uses of the EXECUTE PROCEDURE system privilege, by all data-
base users, BY ACCESS, enter the following statement:

AUDIT SELECT TABLE, INSERT TABLE, DELETE TABLE,
 EXECUTE PROCEDURE
 BY ACCESS
 WHENEVER NOT SUCCESSFUL;

The AUDIT SYSTEM system privilege is required to set any statement or privilege
audit option. Normally, the security administrator is the only user granted this sys-
tem privilege.

Enabling Object Auditing To audit all successful and unsuccessful DELETE state-
ments on the SCOTT.EMP table, BY SESSION (the default value), enter the follow-
ing statement:

AUDIT DELETE ON scott.emp;

To audit all successful SELECT, INSERT, and DELETE statements on the DEPT
table owned by user JWARD, BY ACCESS, enter the following statement:

AUDIT SELECT, INSERT, DELETE
 ON jward.dept
 BY ACCESS
 WHENEVER SUCCESSFUL;

To set the default object auditing options to audit all unsuccessful SELECT state-
ments, BY SESSION (the default), enter the following statement:

AUDIT SELECT
 ON DEFAULT
 WHENEVER NOT SUCCESSFUL;

A user can set any object audit option for the objects contained in the user’s
schema. The AUDIT ANY system privilege is required to set an object audit option
for an object contained in another user’s schema or to set the default object audit-
 Auditing Database Use 22-11

Managing Audit Trail Information
ing options; normally, the security administrator is the only user granted this sys-
tem privilege.

Disabling Audit Options
The NOAUDIT command turns off the various audit options of Oracle. Use it to
reset statement and privilege audit options, and object audit options. A NOAUDIT
statement that sets statement and privilege audit options can include the BY USER
option to specify a list of users to limit the scope of the statement and privilege
audit options.

You can use a NOAUDIT statement to disable an audit option selectively using the
WHENEVER clause. If the clause is not specified, the auditing option is disabled
entirely, for both successful and non-successful cases.

The BY SESSION/BY ACCESS option pair is not supported by the NOAUDIT com-
mand; audit options, no matter how they were turned on, are turned off by an
appropriate NOAUDIT statement.

See Also: For a complete syntax listing of the NOAUDIT command, see the Oracle8
SQL Reference.

Also see “Enabling and Disabling Database Auditing” on page 22-13.

Disabling Statement and Privilege Auditing
The following statements turn off the corresponding audit options:

NOAUDIT session;
NOAUDIT session BY scott, lori;
NOAUDIT DELETE ANY TABLE;
NOAUDIT SELECT TABLE, INSERT TABLE, DELETE TABLE,
 EXECUTE PROCEDURE;

The following statements turn off all statement (system) and privilege audit
options:

NOAUDIT ALL;
NOAUDIT ALL PRIVILEGES;

WARNING: The NOAUDIT command only turns auditing
options off; it does not disable auditing as a whole. To turn audit-
ing off and stop Oracle from generating audit records, even
though you have audit options currently set, set the parameter
AUDIT_TRAIL in the database’s parameter file.
22-12 Oracle8 Administrator’s Guide

Managing Audit Trail Information
To disable statement or privilege auditing options, you must have the AUDIT SYS-
TEM system privilege.

Disabling Object Auditing The following statements turn off the corresponding audit-
ing options:

NOAUDIT DELETE
 ON emp;
NOAUDIT SELECT, INSERT, DELETE
 ON jward.dept;

Furthermore, to turn off all object audit options on the EMP table, enter the follow-
ing statement:

NOAUDIT ALL
 ON emp;

Disabling Default Object Audit Options To turn off all default object audit options, enter
the following statement:

NOAUDIT ALL
 ON DEFAULT;

Note that all schema objects created before this NOAUDIT statement is issued con-
tinue to use the default object audit options in effect at the time of their creation,
unless overridden by an explicit NOAUDIT statement after their creation.

To disable object audit options for a specific object, you must be the owner of the
schema object. To disable the object audit options of an object in another user’s
schema or to disable default object audit options, you must have the AUDIT ANY
system privilege. A user with privileges to disable object audit options of an object
can override the options set by any user.

Enabling and Disabling Database Auditing
Any authorized database user can set statement, privilege, and object auditing
options at any time, but Oracle does not generate and store audit records in the
audit trail unless database auditing is enabled. The security administrator is nor-
mally responsible for this operation.
 Auditing Database Use 22-13

Managing Audit Trail Information
Database auditing is enabled and disabled by the AUDIT_TRAIL initialization
parameter in the database’s parameter file. The parameter can be set to the follow-
ing values:

After you have edited the parameter file, restart the database instance to enable or
disable database auditing as intended.

See Also: For more information about editing parameter files, see the Oracle8 Refer-
ence.

Controlling the Growth and Size of the Audit Trail
If the audit trail becomes completely full and no more audit records can be
inserted, audited statements cannot be successfully executed until the audit trail is
purged. Warnings are returned to all users that issue audited statements. Therefore,
the security administrator must control the growth and size of the audit trail.

When auditing is enabled and audit records are being generated, the audit trail
grows according to two factors:

■ the number of audit options turned on

■ the frequency of execution of audited statements

To control the growth of the audit trail, you can use the following methods:

■ Enable and disable database auditing. If it is enabled, audit records are gener-
ated and stored in the audit trail; if it is disabled, audit records are not gener-
ated.

■ Be very selective about the audit options that are turned on. If more selective
auditing is performed, useless or unnecessary audit information is not gener-
ated and stored in the audit trail.

■ Tightly control the ability to perform object auditing. This can be done two dif-
ferent ways:

DB enables database auditing and directs all
audit records to the database audit trail

OS enables database auditing and directs all
audit records to the operating system
audit trail

NONE disables auditing (This value is the
default.)
22-14 Oracle8 Administrator’s Guide

Managing Audit Trail Information
– A security administrator owns all objects and the AUDIT ANY system priv-
ilege is never granted to any other user. Alternatively, all schema objects
can belong to a schema for which the corresponding user does not have
CREATE SESSION privilege.

– All objects are contained in schemas that do not correspond to real data-
base users (that is, the CREATE SESSION privilege is not granted to the cor-
responding user) and the security administrator is the only user granted
the AUDIT ANY system privilege.

In both scenarios, object auditing is controlled entirely by the security adminis-
trator.

The maximum size of the database audit trail (SYS.AUD$ table) is predetermined
during database creation. By default, up to 99 extents, each 10K in size, can be allo-
cated for this table.

You cannot move SYS.AUD$ to another tablespace as a means of controlling the
growth and size of the audit trail. However, you can modify the default storage
parameters (except INITIAL) in SYS.AUD$.

See Also: If you are directing audit records to the operating system audit trail, see
your operating system-specific Oracle documentation for more information about
managing the operating system audit trail.

For more details on the SYS.AUD$ storage parameters, see the Oracle8 Reference.

Purging Audit Records from the Audit Trail
After auditing is enabled for some time, the security administrator may want to
delete records from the database audit trail both to free audit trail space and to facil-
itate audit trail management.

For example, to delete all audit records from the audit trail, enter the following
statement:

DELETE FROM sys.aud$;

Alternatively, to delete all audit records from the audit trail generated as a result of
auditing the table EMP, enter the following statement:

DELETE FROM sys.aud$
 WHERE obj$name=’EMP’;

If audit trail information must be archived for historical purposes, the security
administrator can copy the relevant records to a normal database table (for exam-
 Auditing Database Use 22-15

Managing Audit Trail Information
ple, using “INSERT INTO table SELECT ... FROM sys.aud$...”) or export the audit
trail table to an operating system file.

Only the user SYS, a user who has the DELETE ANY TABLE privilege, or a user to
whom SYS has granted DELETE privilege on SYS.AUD$ can delete records from
the database audit trail.

See Also: For information about exporting tables, see Oracle8 Utilities.

Reducing the Size of the Audit Trail
As with any database table, after records are deleted from the database audit trail,
the extents allocated for this table still exist.

If the database audit trail has many extents allocated for it, but many of them are
not being used, the space allocated to the database audit trail can be reduced using
the following steps:

1. If you want to save information currently in the audit trail, copy it to another
database table or export it using the EXPORT utility.

2. Connect as with administrator privileges.

3. Truncate SYS.AUD$ using the TRUNCATE command.

4. Reload archived audit trail records generated from Step 1.

The new version of SYS.AUD$ is allocated only as many extents that are necessary
to contain current audit trail records.

Note: If the audit trail is completely full and connections are
being audited (that is, if the SESSION option is set), typical users
cannot connect to the database because the associated audit record
for the connection cannot be inserted into the audit trail. In this
case, the security administrator must connect as SYS (operations by
SYS are not audited) and make space available in the audit trail.

Note: SYS.AUD$ is the only SYS object that should ever be
directly modified.
22-16 Oracle8 Administrator’s Guide

Viewing Database Audit Trail Information
Protecting the Audit Trail
When auditing for suspicious database activity, protect the integrity of the audit
trail’s records to guarantee the accuracy and completeness of the auditing informa-
tion.

To protect the database audit trail from unauthorized deletions, grant the DELETE
ANY TABLE system privilege to security administrators only.

To audit changes made to the database audit trail, use the following statement:

AUDIT INSERT, UPDATE, DELETE
 ON sys.aud$
 BY ACCESS;

Audit records generated as a result of object audit options set for the SYS.AUD$
table can only be deleted from the audit trail by someone connected with adminis-
trator privileges, which itself has protection against unauthorized use. As a final
measure of protecting the audit trail, any operation performed while connected
with administrator privileges is audited in the operating system audit trail, if avail-
able.

See Also: For more information about the availability of an operating system audit
trail and possible uses, see your operating system-specific Oracle documentation.

Viewing Database Audit Trail Information
This section offers examples that demonstrate how to examine and interpret the
information in the audit trail, and includes the following topics:

■ Listing Active Statement Audit Options

■ Listing Active Privilege Audit Options

■ Listing Active Object Audit Options for Specific Objects

■ Listing Default Object Audit Options

■ Listing Audit Records

■ Listing Audit Records for the AUDIT SESSION Option

You may have to audit a database for the following suspicious activities:

■ Passwords, tablespace settings, and quotas for some database users are being
altered without authorization.

■ A high number of deadlocks are occurring, most likely because of users acquir-
ing exclusive table locks.
 Auditing Database Use 22-17

Viewing Database Audit Trail Information
■ Rows are arbitrarily being deleted from the EMP table in SCOTT’s schema.

As an example, say that you suspect the users JWARD and SWILLIAMS of several
of these detrimental actions. The database administrator may then issue the follow-
ing statements (in order):

AUDIT ALTER, INDEX, RENAME ON DEFAULT
 BY SESSION;
CREATE TABLE scott.emp . . . ;
CREATE VIEW scott.employee AS SELECT * FROM scott.emp;
AUDIT SESSION BY jward, swilliams;
AUDIT ALTER USER;
AUDIT LOCK TABLE
 BY ACCESS
 WHENEVER SUCCESSFUL;
AUDIT DELETE ON scott.emp
 BY ACCESS
 WHENEVER SUCCESSFUL;

The following statements are subsequently issued by the user JWARD:

ALTER USER tsmith QUOTA 0 ON users;
DROP USER djones;

The following statements are subsequently issued by the user SWILLIAMS:

LOCK TABLE scott.emp IN EXCLUSIVE MODE;
DELETE FROM scott.emp WHERE mgr = 7698;
ALTER TABLE scott.emp ALLOCATE EXTENT (SIZE 100K);
CREATE INDEX scott.ename_index ON scott.emp (ename);
CREATE PROCEDURE scott.fire_employee (empid NUMBER) AS
 BEGIN
 DELETE FROM scott.emp WHERE empno = empid;
 END;
/

EXECUTE scott.fire_employee(7902);

The following sections show the information that can be listed using the audit trail
views in the data dictionary.
22-18 Oracle8 Administrator’s Guide

Viewing Database Audit Trail Information
Listing Active Statement Audit Options
The following query returns all the statement audit options that are set:

SELECT * FROM sys.dba_stmt_audit_opts;

USER_NAME AUDIT_OPTION SUCCESS FAILURE
-------------------- ------------------- ---------- ---------
JWARD SESSION BY SESSION BY SESSION
SWILLIAMS SESSION BY SESSION BY SESSION
 LOCK TABLE BY ACCESS NOT SET

Notice that the view reveals the statement audit options set, whether they are set
for success or failure (or both), and whether they are set for BY SESSION or BY
ACCESS.

Listing Active Privilege Audit Options
The following query returns all the privilege audit options that are set:

SELECT * FROM sys.dba_priv_audit_opts;

USER_NAME AUDIT_OPTION SUCCESS FAILURE
------------------- -------------------- --------- ----------
ALTER USER BY SESSION BY SESSION

Listing Active Object Audit Options for Specific Objects
The following query returns all audit options set for any objects contained in
SCOTT’s schema:

SELECT * FROM sys.dba_obj_audit_opts
 WHERE owner = ’SCOTT’ AND object_name LIKE ’EMP%’;

OWNER OBJECT_NAME OBJECT_TY ALT AUD COM DEL GRA IND INS LOC ...
----- ----------- --------- --- --- --- --- --- --- --- --- ...
SCOTT EMP TABLE S/S -/- -/- A/- -/- S/S -/- -/- ...
SCOTT EMPLOYEE VIEW -/- -/- -/- A/- -/- S/S -/- -/- ...

Notice that the view returns information about all the audit options for the speci-
fied object. The information in the view is interpreted as follows:

■ The character “-” indicates that the audit option is not set.

■ The character “S” indicates that the audit option is set, BY SESSION.

■ The character “A” indicates that the audit option is set, BY ACCESS.
 Auditing Database Use 22-19

Viewing Database Audit Trail Information
■ Each audit option has two possible settings, WHENEVER SUCCESSFUL and
WHENEVER NOT SUCCESSFUL, separated by “/”. For example, the DELETE
audit option for SCOTT.EMP is set BY ACCESS for successful delete statements
and not set at all for unsuccessful delete statements.

Listing Default Object Audit Options
The following query returns all default object audit options:

SELECT * FROM all_def_audit_opts;

ALT AUD COM DEL GRA IND INS LOC REN SEL UPD REF EXE
--- --- --- --- --- --- --- --- --- --- --- --- ---
S/S -/- -/- -/- -/- S/S -/- -/- S/S -/- -/- -/- -/-

Notice that the view returns information similar to the USER_OBJ_AUDIT_OPTS
and DBA_OBJ_AUDIT_OPTS views (see previous example).

Listing Audit Records
The following query lists audit records generated by statement and object audit
options:

 SELECT * FROM sys.dba_audit_object;

Listing Audit Records for the AUDIT SESSION Option
The following query lists audit information corresponding to the AUDIT SESSION
statement audit option:

SELECT username, logoff_time, logoff_lread, logoff_pread,
 logoff_lwrite, logoff_dlock
 FROM sys.dba_audit_session;

USERNAME LOGOFF_TI LOGOFF_LRE LOGOFF_PRE LOGOFF_LWR LOGOFF_DLO
---------- --------- ---------- ---------- ---------- ----------
JWARD 02-AUG-91 53 2 24 0
SWILLIAMS 02-AUG-91 3337 256 630 0
22-20 Oracle8 Administrator’s Guide

Auditing Through Database Triggers
Auditing Through Database Triggers
You can use triggers to supplement the built-in auditing features of Oracle.
Although you can write triggers to record information similar to that recorded by
the AUDIT command, do so only when you need more detailed audit information.
For example, you can use triggers to provide value-based auditing on a per-row
basis for tables.

When deciding whether to create a trigger to audit database activity, consider the
advantages that the standard Oracle database auditing features provide compared
to auditing by triggers:

■ Standard auditing options cover DML and DDL statements regarding all types
of schema objects and structures. In contrast, triggers can audit only DML state-
ments issued against tables.

■ All database audit information is recorded centrally and automatically using
the auditing features of Oracle.

■ Auditing features enabled using the standard Oracle features are easier to
declare and maintain and less prone to errors than are auditing functions
defined through triggers.

■ Any changes to existing auditing options can also be audited to guard against
malicious database activity.

■ Using the database auditing features, you can generate records once every time
an audited statement is issued (BY ACCESS) or once for every session that
issues an audited statement (BY SESSION). Triggers cannot audit by session; an
audit record is generated each time a trigger-audited table is referenced.

■ Database auditing can audit unsuccessful data access. In comparison, any audit
information generated by a trigger is rolled back if the triggering statement is
rolled back.

■ Connections and disconnections, as well as session activity (such as physical
I/Os, logical I/Os, and deadlocks), can be recorded by standard database audit-
ing.

Note: In some fields, the Oracle AUDIT command is considered a
security audit facility, while triggers can provide a financial audit
facility.
 Auditing Database Use 22-21

Auditing Through Database Triggers
When using triggers to provide sophisticated auditing, normally use AFTER trig-
gers. By using AFTER triggers, you record auditing information after the triggering
statement is subjected to any applicable integrity constraints, preventing cases
where audit processing is carried out unnecessarily for statements that generate
exceptions to integrity constraints.

When you should use AFTER row vs. AFTER statement triggers depends on the
information being audited. For example, row triggers provide value-based auditing
on a per-row basis for tables. Triggers can also allow the user to supply a “reason
code” for issuing the audited SQL statement, which can be useful in both row and
statement-level auditing situations.

The following trigger audits modifications to the EMP table on a per-row basis. It
requires that a “reason code” be stored in a global package variable before the
update. The trigger demonstrates the following:

■ how triggers can provide value-based auditing

■ how to use public package variables

Comments within the code explain the functionality of the trigger.

CREATE TRIGGER audit_employee
AFTER INSERT OR DELETE OR UPDATE ON emp
FOR EACH ROW
BEGIN
/* AUDITPACKAGE is a package with a public package
 variable REASON. REASON could be set by the
 application by a command such as EXECUTE
 AUDITPACKAGE.SET_REASON(reason_string). Note that a
 package variable has state for the duration of a
 session and that each session has a separate copy of
 all package variables. */
IF auditpackage.reason IS NULL THEN
 raise_application_error(-20201,’Must specify reason with ’,
 ’AUDITPACKAGE.SET_REASON(reason_string)’);
END IF;

/* If the above conditional evaluates to TRUE, the
 user-specified error number and message is raised,
 the trigger stops execution, and the effects of the
 triggering statement are rolled back. Otherwise, a
 new row is inserted into the pre-defined auditing
 table named AUDIT_EMPLOYEE containing the existing
 and new values of the EMP table and the reason code
 defined by the REASON variable of AUDITPACKAGE. Note
 that the ”old” values are NULL if triggering
 statement is an INSERT and the ”new” values are NULL
 if the triggering statement is a DELETE. */
22-22 Oracle8 Administrator’s Guide

Auditing Through Database Triggers
INSERT INTO audit_employee VALUES
 (:old.ssn, :old.name, :old.job_classification, :old.sal,
 :new.ssn, :new.name, :new.job_classification, :new.sal,
 auditpackage.reason, user, sysdate);
END;

Optionally, you can also set the reason code back to NULL if you want to force the
reason code to be set for every update. The following AFTER statement trigger sets
the reason code back to NULL after the triggering statement is executed:

CREATE TRIGGER audit_employee_reset
 AFTER INSERT OR DELETE OR UPDATE ON emp
BEGIN
 auditpackage.set_reason(NULL);
END;

The previous two triggers are both fired by the same type of SQL statement. How-
ever, the AFTER row trigger is fired once for each row of the table affected by the
triggering statement, while the AFTER statement trigger is fired only once after the
triggering statement execution is completed.
 Auditing Database Use 22-23

Auditing Through Database Triggers
22-24 Oracle8 Administrator’s Guide

 Archiving Redo Infor
23

 Archiving Redo Information

This chapter describes how to create and maintain the archived redo log, and
includes the following topics:

■ Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

■ Turning Archiving On and Off

■ Tuning Archiving

■ Displaying Archiving Status Information

■ Specifying the Archived Redo Log Filename Format and Destination

See Also: If you are using Oracle with the Parallel Server, see Oracle8 Parallel Server
Concepts and Administration for additional information about archiving in the envi-
ronment.

This chapter contains several references to Oracle Enterprise Manager. For more
information about performing specific tasks using Enterprise Manager/GUI or
Server Manager/LineMode, see the Oracle Enterprise Manager User’s Guide.
mation 23-1

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode
Choosing Between NOARCHIVELOG and ARCHIVELOG Mode
This section describes the issues you must consider when choosing to run your
database in NOARCHIVELOG or ARCHIVELOG mode, and includes the follow-
ing topics:

■ Running a Database in NOARCHIVELOG Mode

■ Running a Database in ARCHIVELOG Mode

Running a Database in NOARCHIVELOG Mode
When you run your database in NOARCHIVELOG mode, the archiving of the
online redo log is disabled. Information in the database’s control file indicates that
filled groups are not required to be archived. Therefore, after a filled group
becomes inactive and the checkpoint at the log switch completes, the group is avail-
able for reuse by LGWR.

NOARCHIVELOG mode protects a database only from instance failure, not from
disk (media) failure. Only the most recent changes made to the database, stored in
the groups of the online redo log, are available for instance recovery. In other
words, if you are using NOARCHIVELOG mode, you can only restore (not recover)
the database to the point of the most recent full database backup. You cannot
recover subsequent transactions.

Also, in NOARCHIVELOG mode you cannot perform online tablespace backups.
Furthermore, you cannot use online tablespace backups previously taken while the
database operated in ARCHIVELOG mode. Only full backups taken while the data-
base is closed can be used to restore a database operating in NOARCHIVELOG
mode. Therefore, if you decide to operate a database in NOARCHIVELOG mode,
take full database backups at regular, frequent intervals.

Running a Database in ARCHIVELOG Mode
When you run a database in ARCHIVELOG mode, the archiving of the online redo
log is enabled. Information in a database control file indicates that a group of filled
online redo log files cannot be used by LGWR until the group is archived. A filled
group is immediately available to the process performing the archiving after a log
switch occurs (when a group becomes inactive). The process performing the
archiving does not have to wait for the checkpoint of a log switch to complete
before it can access the inactive group for archiving.

Figure 23–1 illustrate how the database’s online redo log is generated by the pro-
cess archiving the filled groups (ARCH in this illustration).
23-2 Oracle8 Administrator’s Guide

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode
Figure 23–1 Online Redo Log File Use in ARCHIVELOG Mode

ARCHIVELOG mode enables complete recovery from disk failure as well as
instance failure, because all changes made to the database are permanently saved
in an archived redo log.

If all databases in a distributed database operate in ARCHIVELOG mode, you can
perform coordinated distributed database recovery. However, if any database in a
distributed database uses NOARCHIVELOG mode, recovery of a global distrib-
uted database (to make all databases consistent) is limited by the last full backup of
any database operating in NOARCHIVELOG mode.

Also, the entire database can be open and available for normal use while you back
up or recover all or part of the database in ARCHIVELOG mode. Note that extra
administrative operations are required to manage the files of the archived redo log
and that you must have a dedicated tape drive or additional disk space to store the
archived redo log files when the database operates in ARCHIVELOG mode.

LGWR

ARCH ARCH ARCH

LGWR LGWR

0001

0002

0001

0002

0003

TIME

LGWR

Archived
Redo Log
Files

Online
Redo Log
Files

Log
0004

Log
0003

Log
0002

0001 0002

0001

0003

0002

0001

Log
0001
 Archiving Redo Information 23-3

Turning Archiving On and Off
You must also decide how filled groups of the online redo log are to be archived.
An instance can be configured to have Oracle automatically archive filled online
redo log files, or you can manually archive filled groups.

See Also: You can also configure Oracle to verify redo log blocks when they are
archived. For more information, see “Verifying Blocks in Redo Log Files” on
page 5-13.

Turning Archiving On and Off
This section describes aspect of archiving, and includes the following topics:

■ Setting the Initial Database Archiving Mode

■ Changing the Database Archiving Mode

■ Enabling Automatic Archiving

■ Disabling Automatic Archiving

■ Performing Manual Archiving

You set a database’s initial archiving mode as part of database creation. Usually,
you can use the default of NOARCHIVELOG mode at database creation because
there is no need to archive the redo information generated then. After creating the
database, decide whether to change from the initial archiving mode.

After a database has been created, you can switch the database’s archiving mode
on demand. However, you should generally not switch the database between
archiving modes.

See Also: If a database is automatically created during Oracle installation, the ini-
tial archiving mode of the database is operating system specific. See your operating
system-specific Oracle documentation.

Setting the Initial Database Archiving Mode
When you create the database, you set the initial archiving mode of the redo log in
the CREATE DATABASE statement. If you do not specify either ARCHIVELOG or
NOARCHIVELOG, NOARCHIVELOG is the default.

See Also: See Chapter 2, “Creating an Oracle Database” for more information
about creating a database.
23-4 Oracle8 Administrator’s Guide

Turning Archiving On and Off
Changing the Database Archiving Mode
To switch a database’s archiving mode between NOARCHIVELOG and
ARCHIVELOG mode, use the SQL command ALTER DATABASE with the
ARCHIVELOG or NOARCHIVELOG option. The following statement switches the
database’s archiving mode from NOARCHIVELOG to ARCHIVELOG:

ALTER DATABASE ARCHIVELOG;

Before switching the database’s archiving mode, perform the following operations:

1. Shut down the database instance.

An open database must be closed and dismounted and any associated
instances shut down before the database’s archiving mode can be switched.
Archiving cannot be disabled if any datafiles need media recovery.

2. Back up the database.

Before making any major alteration to a database, always back up the database
to protect against any problems that might occur.

3. Perform any operating system specific steps (optional).

These steps may involve exiting Enterprise Manager to configure how Oracle
will perform the archiving of the filled groups. Once this operation is complete,
start Enterprise Manager again and continue to Step 4.

4. Start up a new instance and mount but do not open the database.

To enable or disable archiving, the database must be mounted but not open. .

5. Switch the database’s archiving mode.

After using the ALTER DATABASE command to switch a database’s archiving
mode, open the database for normal operation. If you switched to ARCHIVELOG
mode, you should also set the archiving options—decide whether to enable Oracle
to archive groups of online redo log files automatically as they fill.

If you want to archive filled groups, you may have to execute some additional
steps at this point, depending on your operating system; see your operating system-
specific Oracle documentation for details for your system.

Note: If you are using the Oracle Parallel Server, you must mount
the database exclusively, using one instance, to switch the data-
base’s archiving mode.
 Archiving Redo Information 23-5

Turning Archiving On and Off
For more information about database backup, see the Oracle8 Backup and Recovery
Guide.

See Oracle8 Parallel Server Concepts and Administration for more information about
switching the archiving mode when using the Oracle Parallel Server.

Enabling Automatic Archiving
If your operating system permits, you can enable automatic archiving of the online
redo log. Under this option, no action is required to copy a group after it fills; Ora-
cle automatically archives groups after they are filled. For this convenience alone,
automatic archiving is the method of choice for archiving the filled groups of online
redo log files.

To enable automatic archiving after instance startup, you must be connected to Ora-
cle with administrator privileges.

Automatic archiving can be enabled before or after instance startup.

See Also: See your operating system-specific Oracle documentation to determine
whether this is a valid option for your Oracle Server.

Always specify an archived redo log destination and filename format when
enabling automatic archiving; see “Specifying the Archived Redo Log Filename For-
mat and Destination” on page 23-12.

If automatic archiving is enabled, manual archiving is still possible; see “Perform-
ing Manual Archiving” on page 23-8.

Enabling Automatic Archiving at Instance Startup
To enable automatic archiving of filled groups each time an instance is started,
include the LOG_ARCHIVE_START parameter, set to TRUE, in the database’s
parameter file:

LOG_ARCHIVE_START=TRUE

The new value takes effect the next time you start the database.

WARNING: Oracle does not automatically archive log files
unless the database is also in ARCHIVELOG mode.
23-6 Oracle8 Administrator’s Guide

Turning Archiving On and Off
Enabling Automatic Archiving After Instance Startup
To enable automatic archiving of filled online redo log groups without shutting
down the current instance, use the SQL command ALTER SYSTEM with the
ARCHIVE LOG START parameter; you can optionally include the archiving desti-
nation.

ALTER SYSTEM ARCHIVE LOG START;

Using either of the options above, you do not need to shut down the instance to
enable automatic archiving. However, if an instance is shut down and restarted
after automatic archiving is enabled, the instance is reinitialized using the settings
of the parameter file, which may or may not enable automatic archiving.

Disabling Automatic Archiving
You can disable automatic archiving of the online redo log groups at any time.
However, once automatic archiving is disabled, you must manually archive groups
of online redo log files in a timely fashion. If a database is operated in
ARCHIVELOG mode, automatic archiving is disabled, and all groups of online
redo log files are filled but not archived, then LGWR cannot reuse any inactive
groups of online redo log groups to continue writing redo log entries. Therefore,
database operation is temporarily suspended until the necessary archiving is per-
formed.

To disable automatic archiving after instance startup, you must be connected with
administrator privilege and have the ALTER SYSTEM privilege.

Automatic archiving can be disabled at or after instance startup.

Disabling Automatic Archiving at Instance Startup
To disable the automatic archiving of filled online redo log groups each time a data-
base instance is started, set the LOG_ARCHIVE_START parameter of a database’s
parameter file to FALSE:

LOG_ARCHIVE_START=FALSE

The new value takes effect the next time the database is started.

Disabling Automatic Archiving after Instance Startup
To disable the automatic archiving of filled online redo log groups without shutting
down the current instance, use the SQL command ALTER SYSTEM with the
ARCHIVE LOG STOP parameter. The following statement stops archiving:

ALTER SYSTEM ARCHIVE LOG STOP;
 Archiving Redo Information 23-7

Turning Archiving On and Off
If ARCH is archiving a redo log group when you attempt to disable automatic
archiving, ARCH finishes archiving the current group, but does not begin archiving
the next filled online redo log group.

The instance does not have to be shut down to disable automatic archiving. How-
ever, if an instance is shut down and restarted after automatic archiving is disabled,
the instance is reinitialized using the settings of the parameter file, which may or
may not enable automatic archiving.

Performing Manual Archiving
If a database is operating in ARCHIVELOG mode, inactive groups of filled online
redo log files must be archived. You can manually archive groups of the online redo
log whether or not automatic archiving is enabled:

■ If automatic archiving is not enabled, you must manually archive groups of
filled online redo log files in a timely fashion. If all online redo log groups are
filled but not archived, LGWR cannot reuse any inactive groups of online redo
log members to continue writing redo log entries. Therefore, database opera-
tion is temporarily suspended until the necessary archiving is performed.

■ If automatic archiving is enabled, but you want to rearchive an inactive group
of filled online redo log members to another location, you can use manual
archiving. (However, the instance can decide to reuse the redo log group before
you have finished manually archiving, and thereby overwrite the files; if this
happens, Oracle will put an error message in the ALERT file.)

To manually archive a filled online redo log group, you must be connected with
administrator privileges.

Manually archive inactive groups of filled online redo log members using the SQL
command ALTER SYSTEM with the ARCHIVE LOG clause.

The following statement archives all unarchived log files:

ALTER SYSTEM ARCHIVE LOG ALL;

See Also: With both manual or automatic archiving, you need to specify a thread
only when you are using the Oracle Parallel Server. See Oracle8 Parallel Server Con-
cepts and Administration for more information.
23-8 Oracle8 Administrator’s Guide

Tuning Archiving
Tuning Archiving
This section describes aspects of tuning the archive process, and includes the fol-
lowing topics:

■ Minimizing the Impact on System Performance

■ Improving Archiving Speed

For most databases, the archive process has no effect on overall system perfor-
mance. In some large database sites, however, archiving can have an impact on sys-
tem performance. On one hand, if the archiver works very quickly, overall system
performance can be reduced while the archiver runs, since CPU cycles are being
consumed in archiving. On the other hand, if the archiver runs extremely slowly, it
has little detrimental effect on system performance, but it takes longer to archive
redo log files, and can be a bottleneck if all redo log groups are unavailable because
they are waiting to be archived.

For these large database sites you can tune archiving to cause it to run either as
slowly as possible without being a bottleneck or as quickly as possible without
reducing system performance substantially. To do so, adjust the values of the initial-
ization parameters LOG_ARCHIVE_BUFFERS (the number of buffers allocated to
archiving) and LOG_ARCHIVE_BUFFER_SIZE (the size of each such buffer).

Minimizing the Impact on System Performance
To make the archiver work as slowly as possible without forcing the system to wait
for redo logs, begin by setting the number of archive buffers
(LOG_ARCHIVE_BUFFERS) to 1 and the size of each buffer
(LOG_ARCHIVE_BUFFER_SIZE) to the maximum possible.

Note: When you change the value of LOG_ARCHIVE_BUFFERS
or LOG_ARCHIVE_BUFFER_SIZE, the new value takes effect the
next time you start the instance.
 Archiving Redo Information 23-9

Displaying Archiving Status Information
If the performance of the system drops significantly while the archiver is working,
make the value of LOG_ARCHIVE_BUFFER_SIZE lower, until system performance
is no longer reduced when the archiver runs.

Improving Archiving Speed
To improve archiving performance (for example, if you want to stream input to a
tape drive), use multiple archive buffers, so that the archiver process can read the
archive log at the same time that it writes the output log. You can set
LOG_ARCHIVE_BUFFERS to 2, but for a very fast tape drive you might want to
set it to 3 or more. Then, set the size of the archive buffers to a moderate number,
and increase it until archiving is as fast as you want it to be without impairing sys-
tem performance.

See Also: This maximum is operating system dependent; see your operating sys-
tem-specific Oracle documentation.

For more information about these parameters, see the Oracle8 Reference.

Displaying Archiving Status Information
To see the current archiving mode, query the V$DATABASE view:

SELECT log_mode FROM sys.v$database;

LOG_MODE

NOARCHIVELOG

The V$ARCHIVE and V$LOG data dictionary views also contain archiving infor-
mation of a database. For example, the following query lists all log groups for the
database and indicates the ones that remain to be archived:

Note: If you want to set archiving to be very slow, but find that
Oracle frequently has to wait for redo log files to be archived
before they can be reused, consider creating additional redo log file
groups. Adding groups can ensure that a group is always available
for Oracle to use.
23-10 Oracle8 Administrator’s Guide

Displaying Archiving Status Information
SELECT group#, archived
 FROM sys.v$log;

GROUP# ARC
---------- ---
1 YES
2 NO

The command ARCHIVE LOG with the LIST parameter also shows archiving infor-
mation for the connected instance:

ARCHIVE LOG LIST;

Database log mode ARCHIVELOG
Automatic archival ENABLED
Archive destination destination
Oldest online log sequence 30
Next log sequence to archive 32
Current log sequence number 33

This display tells you all the necessary information regarding the redo log settings
for the current instance:

■ The database is currently operating in ARCHIVELOG mode.

■ Automatic archiving is enabled.

■ The destination of the archived redo log (operating system specific) is destina-
tion (corresponds to LOG_ARCHIVE_DEST or an overriding destination).

■ The oldest filled online redo log group has a sequence number of 30.

■ The next filled online redo log group to archive has a sequence number of 32.

■ The current online redo log file has a sequence number of 33.

You must archive all redo log groups with a sequence number equal to or greater
than the Next log sequence to archive, yet less than the Current log sequence number.
For example, the display above indicates that the online redo log group with
sequence number 32 needs to be archived.
 Archiving Redo Information 23-11

Specifying the Archived Redo Log Filename Format and Destination
Specifying the Archived Redo Log Filename Format and Destination
When the database is used in ARCHIVELOG mode, Oracle must know the
archived redo log filename format and destination so that automatic or manual
archiving creates uniquely named archived redo log files in the proper location.

Archived redo log files are uniquely named as specified by the
LOG_ARCHIVE_FORMAT parameter. Filename format is operating system spe-
cific; for most operating systems it consists of a text string, one or more parameters,
and a filename extension. When a filled online redo log group is archived, the
archiving process concatenates the supplied text string with the return values of the
specified parameters to create uniquely identified archived redo log files. Each
parameter has an upper bound, which is operating system dependent.

Table 23–1 lists the parameters that can be included in a filename format and corre-
sponding examples to show how the parameter affects the filenames created by the
archiving process.

The different options are provided so that you can customize the archived redo log
filenames as you need. For example, you might want to take into account the oper-
ating system sorting algorithm used to list filenames.

The %T and %t are useful only when the Oracle Parallel Server is used. In a non-
Parallel Server configuration, you must decide whether to use %S or %s to identify
each archived redo log file uniquely. The following is a typical example of a com-
mon archived redo log filename format:

LOG_ARCHIVE_FORMAT = arch%S.arc

Table 23–1 Archived Redo Log Filename Format Parameters

Parameter Description Example a

%T thread number, left-zero-padded arch0000000001
%t thread number, not padded arch1
%S log sequence number,

left-zero-padded
arch0000000251

%s log sequence number, not padded arch251
a Assume LOG_ARCHIVE_FORMAT=arch%parameter, and the upper bound for all
parameters is 10 characters.
23-12 Oracle8 Administrator’s Guide

Specifying the Archived Redo Log Filename Format and Destination
Here, arch is the filename, %S is the zero-padded log sequence parameter, and .arc
is the file extension. Assuming the upper bound for the %S parameter is four, this
filename format generates archived redo log filenames of the following format:

arch0001.arc
arch0002.arc
arch0003.arc
 .
 .

Take into account the maximum operating system filename length when specifying
the archive filename format. If ARCH or a user process attempts to archive a file
and the supplied filename format is too large, the process fails to archive the file.

The archived redo log destination is also operating system-specific. For most oper-
ating systems, the archive redo log destination points to a disk drive and a file
directory. If permitted by your Oracle Server, this destination can also point to a
tape drive dedicated to Oracle for archiving filled online redo log files.

The archived redo log destination is determined at instance startup by the
LOG_ARCHIVE_DEST initialization parameter, but can be overridden while the
instance is up:

■ If a database’s parameter file is edited to include a destination using the
LOG_ARCHIVE_DEST parameter, the current instance must be shut down and
restarted to read the new parameter file.

■ If the current instance cannot be shut down, but the archived redo log destina-
tion must be specified or changed for automatic archiving, use the ALTER SYS-
TEM ARCHIVE LOG START ’destination’ statement to override the automatic
archiving destination.

■ During manual archiving, a specified destination overrides the default
archived redo log destination. However, automatic archiving continues to use
the current automatic archive destination. If no destination is specified, Oracle
automatically uses the destination specified by the LOG_ARCHIVE_DEST
parameter of the parameter file used to start the instance. If no destination is
supplied by the LOG_ARCHIVE_DEST parameter, Oracle uses a default desti-
nation that is operating system-dependent.

Note: If no archived filename format is specified using
LOG_ARCHIVE_FORMAT, Oracle uses a default filename format
that is operating system-specific.
 Archiving Redo Information 23-13

Specifying the Archived Redo Log Filename Format and Destination
See Also: See your operating system-specific Oracle documentation for more infor-
mation about the LOG_ARCHIVE_FORMAT and LOG_ARCHIVE_DEST initializa-
tion parameters, and the default archived redo log filename format and destination.

For more information about filename format parameters and the term “thread” see
Oracle8 Parallel Server Concepts and Administration.
23-14 Oracle8 Administrator’s Guide

 Space Estimations for Schema Ob
A

 Space Estimations for Schema Objects

This appendix contains equations that can help you approximate the amount of
space for specific schema objects. Constants in estimate calculations are operating
system-specific.

Attention: While these equations help estimate schema object
size, they are approximations, and may vary from your actual results.
jects A-1

Estimating Space Required by Non-Clustered Tables
Estimating Space Required by Non-Clustered Tables
The procedures in this section describe how to estimate the total number of data
blocks necessary to hold data inserted into a non-clustered table. Within this sam-
ple calculation, no concurrency is assumed, and users are not performing interven-
ing delete or update operations.

Typically, the space required to store a set of rows will exceed this calculation when
updates and deletes are also being performed on the table. The actual space
required for complex workloads is best determined empirically, and then scaled by
the number of rows in the table. In general, increasing amounts of concurrent activ-
ity on the same data block results in additional overhead (for transaction records),
so it is important that you take into account such activity when scaling empirical
results.

To Calculate Space Required by Non-Clustered Tables

1. Calculate the total block header size.

2. Calculate the available data space per data block.

3. Calculate the space used per row.

4. Calculate the total number of rows that will fit in a data block.

Step 1: Calculate the Total Block Header Size
The space required by the data block header is the result of the following formula:

Space after headers (hsize)
=
DB_BLOCK_SIZE - KCBH - UB4 - KTBBH - ((INITRANS - 1) * KTBIT) - KDBH

Where:

Note: This is a best-case scenario only when users insert rows
without performing deletes or updates.

DB_BLOCK_ SIZE is the database block size as viewed in the
V$PARAMETER view

KCBH, UB4, KTBBH,
KTBIT,KDBH

are constants whose sizes you can obtain by select-
ing from entries in the V$TYPE_SIZE view
A-2 Oracle8 Administrator’s Guide

Estimating Space Required by Non-Clustered Tables
Step 2: Calculate the Available Data Space Per Data Block
The space reserved in each data block for data, as specified by PCTFREE, is calcu-
lated as follows:

available data space (availspace)
=
CEIL(hsize * (1 - PCTFREE/100)) - KDBT

Where:

Step 3: Calculate the Space Used per Row
Calculating the amount of space used per row is a multi-step task.

First, you must calculate the column size, including byte lengths:

Column size including byte length
=
column size + (1, if column size < 250, else 3)

INITRANS is the initial number of transaction entries allo-
cated to the table

CEIL rounds a fractional result to the next highest integer

PCTFREE is the percentage of space reserved for updates in the
table

KDBT is a constant whose size you can obtain by selecting
the entry from the V$TYPE_SIZE view

Note: If you are unable to locate the value of KDBT, use the value
of UB4 instead.

Note: You can also determine column size empirically, by select-
ing avg(vsize(colname)) for each column in the table.
 Space Estimations for Schema Objects A-3

Estimating Space Required by Non-Clustered Tables
Then, calculate the row size:

Rowsize
=
row header (3 * UB1) + sum of column sizes including length bytes

Finally, you can calculate the space used per row:

Space used per row (rowspace)
=
MAX(UB1 * 3 + UB4 + SB2, rowsize) + SB2

Where:

When the space per row exceeds the available space per data block, but is less than
the available space per data block without any space reserved for updates (for
example, available space with PCTFREE=0), each row will be stored in its own
block.

When the space per row exceeds the available space per data block without any
space reserved for updates, rows inserted into the table will be chained into 2 or
more pieces, hence, this storage overhead will be higher.

Figure A–1 depicts elements in a table row.

Figure A–1 Calculating the Size of a Row

UB1, UB4, SB2 are constants whose size can be obtained
by selecting entries from the
V$TYPE_SIZE view

Row
Header

Length Bytes and
Index Column Data

Table Row
A-4 Oracle8 Administrator’s Guide

Estimating Space for Indexes
Step 4: Calculate the Total Number of Rows That Will Fit in a Data Block
You can calculate the total number of rows that will fit into a data block using the
following equation:

Number of rows in block
=
FLOOR(availspace / rowspace)

Where:

In summary, remember that this procedure provides a reasonable estimate of a
table’s size, not an exact number of blocks or bytes. After you have estimated the
size of a table, you can use this information when specifying the INITIAL storage
parameter (size of the table’s initial extent) in your corresponding CREATE TABLE
statement.

See Also: See your operating system-specific Oracle documentation for any sub-
stantial deviations from the constants provided in this procedure.

Space Requirements for Tables in Use
After a table is created and in use, the space required by the table is usually higher
than the estimate derived from your calculations. More space is required due to the
method by which Oracle manages free space in the database.

Estimating Space for Indexes
The calculations in the procedure rely on average column lengths of the columns
that constitute an index; therefore, if column lengths in each row of a table are rela-
tively constant with respect to the indexed columns, the estimates calculated by the
following procedure are more accurate. Also, the following factors can impact the
accuracy of your calculations:

■ port-specific variables

■ the 5 per cent multiplication factor in the branch blocks portion, which is an
arbitrary variable

■ internal fragmentation

FLOOR rounds a fractional result to the next lowest integer
 Space Estimations for Schema Objects A-5

Estimating Space for Indexes
To Estimate Space for Indexes

1. Calculate the total block header size.

2. Calculate the available data space per data block.

3. Calculate the combined column lengths of an average index value.

4. Calculate the total average index value size.

5. Calculate the number of blocks and bytes required for the index.

See Also: See your operating system-specific Oracle documentation for any sub-
stantial deviations from the constants provided in the following procedure.

Step 1: Calculate the Total Block Header Size
Figure A–2 shows the elements of an index block used in the following calcula-
tions. The space required by the data block header of a block to contain index data
is given by the formula:

block header size = fixed header + variable transaction header

where:

If INITRANS =2 (the default for indexes), the previous formula can be simplified:

block header = 113 + (24*2) bytes
 = 161 bytes

Note: Several calculations are required to obtain a final estimate,
and several of the constants (indicated by *) provided are operat-
ing system-specific. Your estimates should not significantly differ
from actual values.

fixed header 113 bytes

variable transaction header 24*I is the value of INITRANS for the
index.
A-6 Oracle8 Administrator’s Guide

Estimating Space for Indexes
Figure A–2 Calculating the Space for an Index

Step 2: Calculate Available Data Space Per Data Block
The space reserved in each data block for index data, as specified by PCTFREE, is
calculated as a percentage of the block size minus the block header:

available data = (block size - block header) -
space per block ((block size - block header)*(PCTFREE/100))

The block size of a database is set during database creation and can be determined
using the Server Manager command SHOW, if necessary:

SHOW PARAMETERS db_block_size;

If the data block size is 2K and PCTFREE=10 for a given index, the total space for
new data in data blocks allocated for the index is:

available data space per block
 = (2048 bytes - 161 bytes) -
 ((2048 bytes - 161 bytes)*(10/100))
 = (1887 bytes) - (1887 bytes * 0.1)
 = 1887 bytes - 188.7 bytes
 = 1698.3 bytes

Index Block

Fixed Header & Variable Transaction

Free Space (determined by PCTFREE)

Available Data Space

Block
Size
 Space Estimations for Schema Objects A-7

Estimating Space for Indexes
Step 3: Calculate Combined Column Lengths
The space required by the average value of an index must be calculated before you
can complete Step 4, calculating the total row size. This step is identical to Step 3 in
the procedure for calculating table size, except you only need to calculate the aver-
age combined column lengths of the columns in the index.

Step 4: Calculate Total Average Index Value Size
Figure A–3 shows elements of an index entry used in the following calculations.
Once you have calculated the combined column length of an average index entry,
you can calculate the total average entry size according to the following formula:

bytes/entry = entry header + ROWID length + F + V + D

Where:

Figure A–3 Calculating the Average Size of an Index Entry

entry header 2 bytes

ROWID length 6 bytes

F Total length bytes of all columns that store 127 bytes
or less. The number of length bytes required by
each column of this type is 1 byte.

V Total length bytes of all columns that store more
than 127 bytes. The number of length bytes required
by each column of this type is 2 bytes.

D Combined data space of all index columns (from
Step 3).

Entry
Header

ROWID Length Bytes and
Index Column Data

Index Entry
A-8 Oracle8 Administrator’s Guide

Estimating Space for Indexes
For example, given that D is calculated to be 22 bytes and that the index is com-
prised of three VARCHAR(10) columns, the total average entry size of the index is:

avg. entry size = 2 + 6 + (1 * 3) + (2 * 0) + 22 bytes
 = 33 bytes

Step 5: Calculate Number of Blocks and Bytes
Calculate the number of blocks required to store the index using the following for-
mula:

blocks for index =

For example, continuing with the previous example, and assuming you estimate
that indexed table will have 10000 rows that contain non-null values in the columns
that constitute the index:

blocks for index =

This results in 204 blocks. The number of bytes can be calculated by multiplying
the number of blocks by the data block size.

Remember that this procedure provides a reasonable estimate of an index’s size, not
an exact number of blocks or bytes. Once you have estimated the size of a index,
you can use this information when specifying the INITIAL storage parameter (size
of the index’s initial extent) in your corresponding CREATE INDEX statement.

Note: For a non-unique index, the ROWID is considered another
column, so it must have one length byte.

Note: The additional 5% added to this result (by means of the
multiplication factor of 1.05) accounts for the extra space required
for branch blocks of the index.

1.05 # not null rows
FLOOR(avail. data space per block/avg. entry size)
---¥

1.05 10000 x 33 bytes
FLOOR(1700 bytes/33 bytes) x (33 bytes)
---¥
 Space Estimations for Schema Objects A-9

Estimating Space Required by Clusters
CreatingTemporary Space Required for Index
When creating an index for a loaded table, temporary segments are created to sort
the index. The amount of space required to sort an index varies, but can be up to
110% of the size of the index.

Estimating Space Required by Clusters
The following procedure demonstrates how to estimate the initial amount of space
required by a set of tables in a cluster. This procedure estimates only the initial
amount of space required for a cluster. When using these estimates, note that the
following items can affect the accuracy of estimations:

■ Trailing nulls are not stored, nor is a length byte.

■ Inserts of, updates to, and deletes of rows, as well as tables containing columns
larger than a single data block can cause fragmentation and chained row
pieces. Therefore, the following estimates may tend to be lower that the actual
space required if significant fragmentation occurs.

Once you calculate a table’s size using the following procedure, you should add
about 10 to 20 per cent additional space to calculate the initial extent size for a
working table.

To Estimate Space Required by Clusters

1. Calculate total block header size and space available for table data.

2. Calculate the combined column lengths of the average rows per cluster key.

3. Calculate the average row size of all clustered tables.

4. Calculate the average cluster block size.

5. Calculate the total number of blocks required for the cluster.

Note: Temporary space is not required if the NOSORT option is
included in the CREATE INDEX command. However, you cannot
specify this option when creating a cluster index.
A-10 Oracle8 Administrator’s Guide

Estimating Space Required by Clusters
Step 1: Calculate Total Block Header Size and Space Available for Table Data
The following formula returns the amount of available space in a block:

space left in block after headers (hspace)
= BLOCKSIZE - KCBH - UB4 - KTBBH - KTBIT*(INITTRANS - 1) - KDBH

where the sizes of KCBH, KTBBH, KTBIT, KDBH, and UB4 can be obtained by
selecting * from v$type_size table.

Then use the following formula to calculate the space available for table data:

space available for table data
= hspace*(1 - PCTFREE/100) - 4*(NTABLES + 1) * ROWSINBLOCK

Where:

Note: Several calculations are required to obtain a final estimate,
and several of the constants (indicated by *) provided are operat-
ing system-specific. Your estimates should not significantly differ
from actual values. See your operating system-specific Oracle docu-
mentation for any substantial deviations from the constants pro-
vided in the following procedure.

Note: If this is a table segment (instead of the cluster segment
shown above), the table directory would simply be 4.

BLOCKSIZE is the size of a data block

INITTRANS is the initial number of transaction entries for the
object

PCTFREE is the percentage of space to reserve in a block for
updates

NTABLES is the number of tables in the cluster

ROWS INBLOCK is the number of rows in a block
 Space Estimations for Schema Objects A-11

Estimating Space Required by Clusters
Step 2: Calculate Space Required by a Row
Use Step 3 from the procedure in “Estimating Space Required by Non-Clustered
Tables” on page A-2 to calculate this number. Make note of the following caveats:

■ Calculate the data space required by an average row for each table in the clus-
ter. For example, in a cluster that contains tables T1 and T2, calculate the aver-
age row size for both tables.

■ Do not include the space required by the cluster key in any of the above calcula-
tions. However, make note of the space required to store an average cluster key
value for Step 5. For example, calculate the data space required by an average
row in table T1, not including the space required to store the cluster key.

■ Do not include any space required by the row header (that is, the length bytes
for each column); this space is accounted for in the next step.

For example, assume two clustered tables are created with the following statements:

CREATE TABLE t1 (a CHAR(10), b DATE, c NUMBER(10,2))
 CLUSTER t1_t2 (c);

CREATE TABLE t2 (c NUMBER(10,2), d CHAR(10))
 CLUSTER t1_t2 (c);

Notice that the cluster key is column C in each table.

Considering these example tables, the space required for an average row (D1) of
table T1 and the space required for an average row (D2) of table T2 is:

D1 (space/average row) = (a + b)
 = (10 + 7) bytes
 = 17 bytes

D2 (space/average row) = (d)
 = 10 bytes

Step 3 Calculate Total Average Row Size
You can calculate the minimum amount of space required by a row in a clustered
table according to the following equation:

Sn bytes/row = row header + Fn + Vn + Dn
A-12 Oracle8 Administrator’s Guide

Estimating Space Required by Clusters
Where:

For example, the total average row size of the clustered tables T1 and T2 are as fol-
lows:

 S1 = (4 + (1 * 2) + (3 * 0) + 17) bytes
 = 23 bytes

 S = (4 + (1 * 1) + (3 * 0) + 10) bytes
 = 15 bytes

row header* 4 bytes per row of a clustered table.

Fn Total length bytes of all 250 bytes or less. The number
of length bytes required by each column of this type is
1 byte.

Vn Total length bytes of all columns in table n that store
more than 250 bytes. The number of length bytes
required by each column of this type is 3 bytes.

Dn Combined data space of all columns in table n (from
Step 3).

Note: Do not include the column length for the cluster key in vari-
ables F or V for any table in the cluster. This space is accounted for
in Step 5.

Note: The absolute minimum row size of a clustered row is 10
bytes, and is operating system-specific. Therefore, if your calcu-
lated value for a table’s total average row size is less than these
absolute minimum row sizes, use the minimum value as the aver-
age row size in subsequent calculations.
 Space Estimations for Schema Objects A-13

Estimating Space Required by Clusters
Step 4: Calculate Average Cluster Block Size
To calculate the average cluster block size, first estimate the average number of
rows (for all tables) per cluster key. Once this is known, use the following formula
to calculate average cluster block size:

avg. cluster block size (bytes)=
((R1*S1) + (R2*S2) + .. + (Rn*Sn)) + key header + Ck + Sk + 2Rt

Where:

For example, consider the cluster that contains tables T1 and T2. An average cluster
key has one row per table T1 and 20 rows per table T2. Also, the cluster key is of
datatype NUMBER (column length is 1 byte), and the average number is 4 digits (3
bytes). Considering this information and the previous results, the average cluster
key size is:

SIZE = ((1 * 23) + (20 * 15) + 19 + 1 + 3 + (2 * 21)) bytes
 = 388 bytes

Specify the estimated SIZE in the SIZE option when you create the cluster with the
CREATE CLUSTER command. This specifies the space required to hold an average
cluster key and its associated rows; Oracle uses the value of SIZE to limit the num-
ber of cluster keys that can be assigned to any given data block. After estimating an
average cluster key SIZE, choose a SIZE somewhat larger than the average
expected size to account for the space required for cluster keys on the high side of
the estimate.

Rn The average number of rows in table n associated with a
cluster key.

Sn The average row size in table n (see Step 4).

key header* 19

Ck Column length for the cluster key.

Sk Space required to store average cluster key value.

Rt Total number of rows associated with an average cluster
key (R1 + R2 ... + Rn). This accounts for the space
required in the data block header for each row in the
block.
A-14 Oracle8 Administrator’s Guide

Estimating Space Required by Clusters
To estimate the number of cluster keys that will fit in a database block, use the fol-
lowing formula, which uses the value you calculated in Step 2 for available data
space, the number of rows associated with an average cluster key (Rt), and SIZE:

cluster keys per block
= FLOOR(available data space + 2R / SIZE + 2Rt)

For example, with SIZE previously calculated as 400 bytes (calculated as 388 earlier
in this step and rounded up), Rt estimated at 21, and available space per data block
(from Step 2) calculated as 1742 - 2R bytes, the result is as follows:

cluster keys per block
= FLOOR((1936 - 2 R + 2R) / (400 + 2 * 21))

= FLOOR(1936 / 442)
= FLOOR(4.4)
= 4

Step 5: Calculate Total Number of Blocks
To calculate the total number of blocks for the cluster, you must estimate the num-
ber of cluster keys in the cluster. Once this is estimated, use the following formula
to calculate the total number of blocks required for the cluster:

blocks = CEIL(# cluster keys / # cluster keys per block)

For example, assume that there are approximately 500 cluster keys in the T1_T2
cluster:

blocks T1_T2 = CEIL(500/3)
 = CEIL(166.7)
 = 167

To convert the number of blocks to bytes, multiply the number of blocks by the
data block size.

This procedure provides a reasonable estimation of a cluster’s size, but not an exact
number of blocks or bytes. Once you have estimated the space for a cluster, you can

Note: If you have a test database, you can use statistics generated
by the ANALYZE command to determine the number of key val-
ues in a cluster key. See “Analyzing Tables, Indexes, and Clusters”
on page -3.
 Space Estimations for Schema Objects A-15

Estimating Space Required by Hash Clusters
use this information when specifying the INITIAL storage parameter (size of the
cluster’s initial extent) in your corresponding CREATE CLUSTER statement.

Space Requirements for Clustered Tables in Use
Once clustered tables are created and in use, the space required by the tables is usu-
ally higher than the estimate given by the previous section. More space is required
due to the method Oracle uses to manage free space in the database.

Estimating Space Required by Hash Clusters
As with index clusters, it is important to estimate the storage required for the data
in a hash cluster. Use the procedure described in “Estimating Space Required by
Clusters” on page -10, with the following additional notes:

■ A sub-goal of the procedure is to determine the SIZE of each cluster key. How-
ever, for hash clusters, the corresponding sub-goal is to determine the SIZE of
each hash key. Therefore, you must consider not only the number of rows per
cluster key value, but also the distribution of cluster keys over the hash keys in
the cluster.

■ In Step 3, make sure to include the space required by the cluster key value.
Unlike an index cluster, the cluster key value is stored with each row placed in
a hash cluster.

■ In Step 5, you are calculating the average hash key size, not cluster key size.
Therefore, take into account how many cluster keys map to each hash value.
Also, disregard the addition of the space required by the cluster key value, Ck.
This value has already been accounted for in Step 3 (see previous item).
A-16 Oracle8 Administrator’s Guide

Index

Symbols
, 7-6
Empty, 17-23

A
abort

shutting down an instance, 3-12
access

data
managing, 21-1
system privileges, 21-2

database
controling, 20-1
database administrator account, 1-4
granting privileges, 21-16
restricting, 3-4
revoking privileges, 21-19

object
granting privileges, 21-17
privilege types, 21-9
revoking privileges, 21-19

accounts
operating-system

database administrator, 1-4
role identification, 21-24

user
SYS and SYSTEM, 1-5

Add Datafiles to Tablespace dialog, 9-5
Add Online Redo Log Group dialog box, 5-5
Add Online Redo Log Member dialog, 5-6
ADD PARTITION clause

ALTER TABLE command, 11-5

ADMIN OPTION
about, 21-16
revoking, 21-19

AFTER triggers
auditing and, 22-22

ALERT file
about, 4-14
location of, 4-15
session high water mark in, 20-7
size of, 4-15
using, 4-14
when written, 4-16

ALL_INDEXES view
filling with data, 17-6

ALL_TAB_COLUMNS view
filling with data, 17-6

ALL_TABLES view
filling with data, 17-6

allocation
extents, 12-9
extents for clusters, 15-9
minimizing extents for rollback segments, 18-13
multi-threaded server and, 4-5
temporary space, 12-6

alphanumeric datatypes, 10-17
ALTER CLUSTER command

ALLOCATE EXTENT option, 15-10
MAXTRANS option, 10-9
using for hash clusters, 16-10
using for index clusters, 15-9

ALTER DATABASE command
ADD LOG MEMBER option, 5-6
ADD LOGFILE option, 5-5
ARCHIVELOG option, 23-5
 Index-1

database partially available to users, 3-6
DATAFILE...OFFLINE DROP option, 9-8
DROP LOGFILE MEMBER option, 5-10
DROP LOGFILE option, 5-9
MOUNT option, 3-7
NOARCHIVELOG option, 23-5
OPEN option, 3-7
RENAME FILE option

datafiles for multiple tablespaces, 9-10
ALTER FUNCTION command

COMPILE option, 17-27
ALTER INDEX command, 11-11

about, 14-9
MAXTRANS option, 10-9
MOVE PARTITION clause, 11-5
REBUILD PARTITION clause, 11-5, 11-16

ALTER PACKAGE command
COMPILE option, 17-27

ALTER PROCEDURE command
COMPILE option, 17-27

ALTER PROFILE command
altering resource limits, 20-20
COMPOSITE_LIMIT option, 20-20

Alter Profile dialog, 20-20
ALTER RESOURCE COST command, 20-21
ALTER ROLE command

changing authorization method, 21-15
Alter Role dialog, 21-15
ALTER ROLLBACK SEGMENT command

changing storage parameters, 18-9
OFFLINE option, 18-12
ONLINE option, 18-11, 18-12
PUBLIC option, 18-10
STORAGE clause, 18-9

Alter Rollback Segment Storage dialog, 18-9
ALTER SEQUENCE command, 13-11
ALTER SESSION command

SET SQL_TRACE parameter, 4-14
ALTER SYSTEM command

ARCHIVE LOG ALL option, 23-8
ARCHIVE LOG START option, specifying

destination, 23-13
ARCHIVE LOG STOP option, 23-7
CHECKPOINT option, 5-13
ENABLE RESTRICTED SESSION option, 3-8

SET LICENSE_MAX_SESSIONS option, 20-5
SET LICENSE_MAX_USERS option, 20-6
SET LICENSE_SESSIONS_WARNING

option, 20-5
SET MTS_DISPATCHERS option, 4-10
SET MTS_SERVERS option, 4-10
SET RESOURCE_LIMIT option, 20-22
SWITCH LOGFILE option, 5-13

ALTER TABLE command
ADD PARTITION clause, 11-5
ALLOCATE EXTENT option, 12-9
DISABLE ALL TRIGGERS option, 17-13
DISABLE integrity constraint option, 17-21
DROP integrity constraint option, 17-23
DROP PARTITION clause, 11-6
ENABLE ALL TRIGGERS option, 17-13
ENABLE integrity constraint option, 17-21,

17-22
example, 12-8
MAXTRANS option, 10-9
MODIFY PARTITION clause, 11-4
SPLIT PARTITION clause, 11-5, 11-10
TRUNCATE PARTITION clause, 11-8

ALTER TABLESPACE command
ADD DATAFILE parameter, 9-5
ONLINE option

example, 8-8
READ ONLY option, 8-11
READ WRITE option, 8-13
RENAME DATA FILE option, 9-9

ALTER TRIGGER command
DISABLE option, 17-13
ENABLE option, 17-13

ALTER USER command
changing passwords with, 20-17

Alter User dialog, 20-16
ALTER USER privilege, 20-16
ALTER VIEW command

COMPILE option, 17-27
altering

cluster indexes, 15-9
clustered tables, 15-9
clusters, 15-8
database status, 3-6
hash clusters, 16-10
Index-2

indexes, 14-9
passwords, 20-17
public rollback segments, 18-10
rollback segment storage parameters, 18-9
sequences, 13-11
storage parameters, 12-8
tables, 12-7, 12-8
tablespace storage, 8-6
users, 20-16

ANALYZE command
CASCADE option, 17-9
COMPUTE STATISTICS option, 17-7
ESTIMATE STATISTICS SAMPLE option, 17-8
LIST CHAINED ROWS option, 17-9
number of cluster keys, A-15
shared SQL and, 17-8
STATISTICS option, 17-4
VALIDATE STRUCTURE option, 17-9

analyzing objects
about, 17-3
privileges, 17-3

application administrator, 1-3
database administrator versus, 19-11

application developers
privileges for, 19-9
roles for, 19-10

application development
security for, 19-9

applications
quiescing during maintenance operations, 11-17

ARCHIVE LOG command
LIST parameter, 5-8

archived redo log
archiving modes, 23-5
automatic archiving, 23-6
automatic, disabling archiving, 23-7
enabling automatic archiving, 23-6
filename format, 23-12
listing status, 23-10
setting archive destination, 23-13
specifying archive destination, 23-12

ARCHIVELOG mode
archiving, 23-2
enabling, 23-5
setting at database creation, 23-4

taking datafiles offline and online in, 9-8
archiving

advantages, 23-2
automatic

disabling, 23-7
disabling after setup, 23-7
disabling at startup, 23-7
enabling, 23-6

changing mode, 23-5
disadvantages, 23-2
enabling and disabling, 23-4
enabling automatic, 23-6
increasing speed of, 23-10
manually, 23-8
minimizing impact on system

performance, 23-9
privileges

disabling, 23-7
enabling, 23-6
for manually archiving, 23-8

specifying destination, 23-12
tuning, 23-9
viewing information on, 23-10

AUDIT command, 22-10
schema objects, 22-11
statement auditing, 22-10
system privileges, 22-10

audit trail, 22-14
archiving, 22-15
auditing changes to, 22-17
controlling size of, 22-14
creating and deleting, 22-4
deleting views, 22-5
interpreting, 22-17
maximum size of, 22-15
protecting integrity of, 22-17
purging records from, 22-15
recording changes to, 22-17
records in, 22-7
reducing size of, 22-16
table that holds, 22-2
views on, 22-4

AUDIT_TRAIL parameter
setting, 22-14

auditing, 22-2
 Index-3

AUDIT command, 22-10
audit option levels, 22-8
audit trail records, 22-5
default options, 22-11
disabling default options, 22-13
disabling options, 22-12, 22-13
disabling options versus auditing, 22-12
enabling options, 22-10, 22-13
enabling options versus auditing, 22-10
guidelines, 22-2
historical information, 22-4
keeping information manageable, 22-2
managing the audit trail, 22-4
operating-system audit trails, 22-7
policies for, 19-18
privilege audit options, 22-9
privileges required for object, 22-11
privileges required for system, 22-11
schema object types, 22-9
schema objects, 22-11
session level, 22-8
shortcuts for object, 22-10
shortcuts for system, 22-8
statement, 22-10
statement level, 22-8
suspicious activity, 22-3
system privileges, 22-10
triggers and, 22-21
using the database, 22-2
viewing

active object options, 22-19
active privilege options, 22-19
active statement options, 22-19
defauly object options, 22-20

views, 22-4
authentication

changing, 20-17
database managed, 20-8
operating system, 1-7
password file, 1-9
password policy, 19-4
specifying when creating a user, 20-13
users, 19-2, 20-7, 20-10

authorization
changing for roles, 21-15

omitting for roles, 21-14
operating-system role management and, 21-14
roles

about, 21-13
multi-threaded server and, 21-14

automatic archiving
archive log destination, 23-6

B
background processes

Oracle7 processes, 4-13
BACKGROUND_DUMP_DEST parameter, 4-15
backups

after creating new databases
full backups, 2-7
guidelines, 1-20

before database creation, 2-4
effects of archiving on, 23-2

Begin Manual Archive dialog box, 23-8
branch blocks

space required, A-9
bringing online

tablespaces, 8-8
broken jobs

about, 7-14
marking, 7-14
running, 7-15

buffers
buffer cache in SGA, 2-11

bug fixes, 1-21

C
CASCADE option

integrity constraints, 15-11
when dropping unique or primary keys, 17-21

cascading revokes, 21-21
CATAUDIT.SQL

running, 22-4
CATBLOCK.SQL script, 4-12
CATNOAUD.SQL

running, 22-5
CHAR datatype

increasing column length, 12-8
Index-4

space use of, 10-17
character sets

multi-byte characters
in role names, 21-11
in role passwords, 21-13
in user names, 20-13
user passwords and, 20-13

parameter file and, 3-13
specifying when creating a database, 2-2
supported by Oracle, 10-17

CHECK constraint, 17-20
checkpoint process (CKPT)

starting, 4-16
CHECKPOINT_PROCESS parameter

setting, 4-16
checkpoints

controlling, 5-10
fast checkpoint, 5-13
forcing, 5-13
log switches and, 5-10
setting intervals, 5-11

checksums
for data blocks, 9-12
for redo blocks, 5-13

CKPT, 4-16
CLEAR LOGFILE clause, 5-14
clearing log files, 5-14
cluster keys

ANALYZE command and, A-15
columns for, 15-4
SIZE parameter, 15-5

clustered tables, 15-10
clusters

allocating extents, 15-9
altering, 15-8
analyzing statistics, 17-3
choosing data, 15-4
columns for cluster key, 15-4
creating, 15-7
dropped tables and, 12-10
dropping, 15-10
estimating space, 15-5, 15-6, A-10
guidelines for managing, 15-4
hash

contrasted with index, 16-2

hash clusters, 16-1
index

contrasted with hash, 16-2
index creation, 15-8
indexes and, 14-2
keys, 15-2
location, 15-5
managing, 15-1
overview of, 15-2
privileges

for controling, 21-10
for creating, 15-6
for dropping, 15-10

specifying PCTFREE for, 10-4
storage parameters, 10-10
truncating, 17-10
validating structure, 17-9

columns
displaying information about, 17-34
granting privileges for selected, 21-17
granting privileges on, 21-18
increasing length, 12-8
INSERT privilege and, 21-18
listing users granted to, 21-29
privileges, 21-18
revoking privileges on, 21-20

composite limits, 20-20
costs and, 20-21
service units, 20-20

COMPUTE STATISTICS option, 17-7
configuring an instance

with dedicated server processes, 4-2
CONNECT role, 21-12
connecting

administrator privileges, 3-9
to a database as INTERNAL, 3-2

connections
auditing, 22-8
dedicated servers, 4-3
during shutdown, 3-8

control files
adding, 6-4
changing size, 6-4
conflicts with data dictionary, 6-8
creating
 Index-5

about, 6-3
additional control files, 6-4
initially, 6-4
new files, 6-5

default name, 2-10, 6-4
dropping, 6-9
errors during creation, 6-9
guidelines for, 6-2
importance of mirrored, 6-2
location of, 6-3
managing, 6-1
mirroring, 2-10
moving, 6-4
names, 6-2
number of, 6-3
overwriting existing, 2-10
relocating, 6-4
renaming, 6-4
requirement of one, 6-3
size of, 6-3
specifying names before database creation, 2-10
unavailable during startup, 3-3

CONTROL_FILES parameter
overwriting existing control files, 2-10
setting

before database creation, 2-10, 6-4
names for, 6-2

costs
resource limits and, 20-21

CREATE CLUSTER command
example, 15-7
for hash clusters, 16-5
HASH IS option, 16-6
HASHKEYS option, 16-7
SIZE option, 16-6, A-14

CREATE CONTROLFILE command
about, 6-5
checking for inconsistencies, 6-8
NORESETLOGS option, 6-7
RESETLOGS option, 6-6

CREATE DATABASE command
CONTROLFILE REUSE option, 6-4
example, 2-7
MAXLOGFILES option, 5-4
MAXLOGMEMBERS option, 5-4

CREATE INDEX command
explicitly, 14-8
ON CLUSTER option, 15-8
temporary space required, A-10
UNRECOVERABLE, 14-5
with a constraint, 14-7

CREATE PROFILE command
about, 20-19
COMPOSITE_LIMIT option, 20-20

Create Profile dialog, 20-19
CREATE ROLE command

IDENTIFIED BY option, 21-13
IDENTIFIED EXTERNALLY option, 21-14

CREATE ROLLBACK SEGMENT command
about, 18-8
tuning guidelines, 2-15

Create Rollback Segment dialog, 18-8
CREATE SCHEMA command

multiple tables and views, 17-2
privileges required, 17-2

CREATE SEQUENCE command, 13-10
CREATE SYNONYM command, 13-12
CREATE TABLE command

about, 12-7
CLUSTER option, 15-7
PARTITION clause, 11-2
UNRECOVERABLE, 12-4

CREATE TABLESPACE command
datafile names in, 8-4
example, 8-4

Create Tablespace dialog, 8-4
CREATE USER command

IDENTIFIED BY option, 20-13
IDENTIFIED EXTERNALLY option, 20-13

CREATE VIEW command
about, 13-2
OR REPLACE option, 13-9
WITH CHECK OPTION, 13-3

creating
audit trail, 22-4
cluster index, 15-7
clustered tables, 15-7
clusters, 15-7
control files, 6-3
database, 1-20, 2-1
Index-6

archiving mode, 23-4
backing up the new database, 2-7
during installation, 2-3
executing CREATE DATABASE, 2-6
migration from different versions, 2-3
preparing to, 2-2
prerequisites for, 2-3
problems encountered while, 2-8

datafiles, 8-3, 9-5
hash clustered tables, 16-5
hash clusters, 16-5
indexes

explicitly, 14-8
multiple objects, 17-2
online redo log groups, 5-5
parameter file, 2-4
partitioned objects, 11-2
partitioned tables, 11-2
profiles, 20-19
redo log members, 5-6
rollback segments

about, 18-8
specifying storage parameters, 18-8

sequences, 13-10
synonyms, 13-12
tables, 12-7
tablespaces, 8-3

rollback segments required, 8-5
views, 13-2

D
data

security of, 19-3
data blocks

altering size of, 2-11
managing space usage of, 10-2
managing space use of, 10-2
operating system blocks versus, 2-11
PCTFREE storage parameter, 10-3
PCTUSED storage parameter, 10-5
shared in clusters, 15-2
size of, 2-11
verifying, 9-12

data dictionary

changing storage parameters, 17-31
conflicts with control files, 6-8
dropped tables and, 12-10
schema object views, 17-32
segments in the, 17-29
setting storage parameters of, 17-29
V$DBFILE view, 2-8
V$DISPATCHER view, 4-10
V$LOGFILE view, 2-8
V$QUEUE view, 4-10

data integrity, 17-20
integrity constraints, 17-20

database administrator, 1-2
application administrator versus, 19-11
initial priorities, 1-18
operating-system account, 1-4
password files for, 1-7
responsibilities of, 1-2
roles

about, 1-6
for security, 19-8

security and privileges of, 1-4
security for, 19-7
security officer versus, 1-3, 19-2
usernames, 1-5
utilities for, 1-17

database links
job queues and, 7-10
privileges for controlling, 21-10

databases
administering, 1-1
auditing, 22-1
availability, 3-6
backing up

after creation of, 1-20
full backups, 2-7

control files of, 6-2
CREATE DATABASE command, 2-7
creating

opening and, 1-20
trouble-shooting problems, 2-8

design of
implementing, 1-20

dropping, 2-8
exclusive mode, 3-5
 Index-7

global database name
about, 2-9

global database names
in a distributed system, 2-9

hardware evaluation, 1-19
logical structure of, 1-19
managing

size of, 9-1
migration of, 2-3
mounting a database, 3-3
mounting to an instance, 3-7
name

starting an instance, 3-2
names

about, 2-9
conflicts in, 2-9

opening
a closed database, 3-7

parallel mode, 3-5
physical structure of, 1-19
planning, 1-19
production, 19-9, 19-11
renaming, 6-5
restricting access to, 3-4, 3-7
shutting down, 3-8
specifying control files, 2-10
starting up

before database creation, 2-6
general procedures for, 3-2
parameter filenames, 3-3
restricting access, 3-4

structure of
distributed database, 1-19

test, 19-9
tuning

archiving large databases, 23-9
responsibilities for, 1-21

user responsibilities, 1-3
viewing datafiles and redo log files, 2-8

datafiles
adding to a tablespace, 9-5
bringing online and offline, 9-7
checking associated tablespaces, 8-16
creating, 8-3
database administratorsaccessto', 1-4

default directory, 9-5
dropping, 8-14

NOARCHIVELOG mode, 9-8
fully specifying filenames, 9-5
identifying filenames, 9-11
location, 9-4
managing, 9-1
maximum number of, 9-2
minimum number of, 9-2
MISSING, 6-8
monitoring, 9-13
offline, 9-8
online, 9-8
privileges to rename, 9-9
privileges to take offline, 9-8
relocating, 9-8, 9-10
relocating, example, 9-11
renaming, 9-8, 9-10
renaming for single tables, 9-9
reusing, 9-5
size of, 9-4
storing separately from redo log files, 9-4
unavailable when database is opened, 3-3
verifying data blocks, 9-12
viewing

general status of, 9-13
V$DBFILE and V$LOGFILE views, 2-8

datatypes
character, 10-17
DATE, 10-18
individual type names, 10-17
LONG, 10-18
NUMBER, 10-17
ROWID, 10-19
space use of, 10-17
summarized, 10-20

DATE datatype, 10-18
DB_BLOCK_BUFFERS parameter

setting before database creation, 2-11
DB_BLOCK_CHECKSUM, 9-12
DB_BLOCK_SIZE parameter

database buffer cache size and, 2-11
setting before creation, 2-11

DB_DOMAIN parameter
setting before database creation, 2-9
Index-8

DB_NAME parameter
MTS_SERVICE and, 4-6
setting before database creation, 2-9

DBA, 1-2
DBA role, 1-6, 21-12
DBA_DATA_FILES, 8-15, 9-13
DBA_EXTENTS, 9-13
DBA_FREE_SPACE, 8-15, 9-13
DBA_FREE_SPACE_COALESCED view, 8-7
DBA_INDEXES view

filling with data, 17-6
DBA_ROLLBACK_SEGS view, 18-15
DBA_SEGMENTS, 8-15, 9-13
DBA_TAB_COLUMNS view

filling with data, 17-6
DBA_TABLES view

filling with data, 17-6
DBA_TABLESPACES, 8-15, 9-13
DBA_TABLESPACES view, 8-14
DBA_TS_QUOTAS, 8-15, 9-13
DBA_USERS, 8-15, 9-13
DBMS_JOB package

altering a job, 7-12
forcing jobs to execute, 7-15
job queues and, 7-4
REMOVE procedure and, 7-12
submitting jobs, 7-6

DBMS_UTILITY.ANALYZE_SCHEMA()
running, 17-8

dedicated server processes
configuring, 4-2
connecting with, 4-3
trace files for, 4-14

dedicated servers
multi-threaded servers contrasted with, 4-3

default
audit options, 22-11

disabling, 22-13
profile, 20-19
role, 20-17
tablespace quota, 20-14
temporary tablespace, 20-14
user tablespaces, 20-13

deleting
table statistics, 17-4

dependencies
displaying, 17-35

developers, application, 19-9
disabling

archiving, 23-4
audit options, 22-12, 22-13
auditing, 22-13
automatic archiving, 23-7
integrity constraints, 17-19

effects on indexes, 14-6
resource limits, 20-22
triggers, 17-13

disconnections
auditing, 22-8

dispatcher processes
calculating maximum number of, 4-8
number to start, 4-7
privileges to change number of, 4-11
removing, 4-10
service name, 4-6
setting the number of, 4-10
spawning new, 4-10

distributed databases
running in ARCHIVELOG mode, 23-3
running in NOARCHIVELOG mode, 23-3
starting a remote instance, 3-6

distributed processing
parameter file location in, 3-13

distributing I/O, 2-16
DROP CLUSTER command

CASCADE CONSTRAINTS option, 15-11
dropping

cluster with no tables, 15-11
hash cluster, 16-10

INCLUDING TABLES option, 15-11
Drop Online Redo Log dialog, 5-9
Drop Online Redo Log Member dialog box, 5-10
DROP PARTITION clause

ALTER TABLE command, 11-6
DROP PROFILE command, 20-22
Drop Profile dialog, 20-22
DROP ROLE command, 21-15, 21-16
DROP ROLLBACK SEGMENT command, 18-14
Drop Rollback Segment dialog, 18-14
DROP SYNONYM command, 13-13
 Index-9

DROP TABLE command
about, 12-9
CASCADE CONSTRAINTS option, 12-9
for clustered tables, 15-10

DROP TABLESPACE command, 8-14
Drop Tablespace dialog box, 8-14
DROP USER command, 20-18
Drop User dialog, 20-18
DROP USER privilege, 20-18
dropping

audit trail, 22-4
cluster indexes, 15-10
clusters, 15-10
control files, 6-9
databases, 2-8
datafiles, 8-14
hash clusters, 16-10
index partition, 11-8
indexes, 14-10
integrity constraints

about, 17-23
effects on indexes, 14-6

online redo log groups, 5-8
online redo log members, 5-9
profiles, 20-22
roles, 21-15
rollback segments, 18-11, 18-14
sequences, 13-12
synonyms, 13-13
table partitions, 11-6
tables, 12-9
tablespaces

about, 8-14
required privileges, 8-14

users, 20-17
views, 13-10

dynamic performance tables
using, 4-13

E
enabling

archiving, 23-4
auditing options

about, 22-10

privileges for, 22-13
integrity constraints

at creation, 17-19
example, 17-20
reporting exceptions, 17-23
when violations exist, 17-16

resource limits, 20-22
triggers, 17-13

encryption
Oracle passwords, 20-8

enroll
database users, 1-21

Enterprise, 1-17
Enterprise Manager

operating system account, 1-4
Enterpsie Manager, 1-17
environment of a job, 7-7
errors

ALERT file and, 4-14
ORA-00028, 4-21
ORA-00114, 4-6
ORA-01090, 3-8
ORA-01173, 6-9
ORA-01176, 6-9
ORA-01177, 6-9
ORA-1215, 6-9
ORA-1216, 6-9
ORA-1547, 17-31
ORA-1628 through 1630, 17-31
snapshot too old, 18-6
trace files and, 4-14
when creating a database, 2-8
when creating control file, 6-9
while starting an instance, 3-5

ESTIMATE STATISTICS option, 17-7
estimating size

hash clusters, 16-4
tables, 12-5, A-5

evaluating
hardware for the Oracle7 Server, 1-19

example
creating constraints, 17-20

examples
altering an index, 14-9

exceptions
Index-10

integrity constraints, 17-23
exclusive mode

of the database, 3-5
rollback segments and, 18-3
terminating remaining user sessions, 4-20

EXP_FULL_DATABASE role, 21-12
Export utility

about, 1-17
restricted mode and, 3-4

exporting jobs, 7-8
extents

allocating
clusters, 15-9
index creation, 14-6
tables, 12-9

data dictionary views for, 17-33
displaying free extents, 17-36
displaying information on, 17-35
dropped tables and, 12-10

F
fast checkpoint, 5-13
files

OS limit on number open, 8-2
Force Checkpoint menu option, 5-13
Force Log Switch menu option, 5-13
FOREIGN KEY constraint

enabling, 17-20
free space

coalescing, 8-6
listing free extents, 17-36
tablespaces and, 8-17

functions
recompiling, 17-27

G
global database name, 2-9
global index

dropping partition with, 11-6, 11-9
splitting partition in, 11-11

global user, 20-11
GRANT command

ADMIN option, 21-16

GRANT option, 21-18
object privileges, 21-17
SYSOPER/SYSDBA privileges, 1-13
system privileges and roles, 21-16
when takes effect, 21-22

GRANT OPTION
about, 21-18
revoking, 21-20

granting privileges and roles
listing grants, 21-26
shortcuts for object privileges, 21-10
SYSOPER/SYSDBA privileges, 1-13

guidelines
for managing rollback segments, 18-2

H
hardware

evaluating, 1-19
hash clusters

altering, 16-10
choosing key, 16-5
clusters, 16-1
controlling space use of, 16-5
creating, 16-5
dropping, 16-10
estimating storage, 16-4
example, 16-8
managing, 16-1
usage, 16-2

high water mark
for a session, 20-3

historical table
moving time window in, 11-16

HOST
command in Server Manager, 5-7

I
I/O

distributing, 2-16
identification

users, 20-8
IMP_FULL_DATABASE role, 21-12
implementing database design, 1-20
 Index-11

Import utility
about, 1-17
restricted mode and, 3-4

importing
jobs, 7-8

index partition
dropping, 11-8
merging, 11-12
moving, 11-5
rebuilding, 11-16
splitting, 11-11

indexes
adding partition, 11-5
altering, 14-9
analyzing statistics, 17-3
cluster

altering, 15-9
creating, 15-7
dropping, 15-10
managing, 15-1

correct tables and columns, 14-7
creating

after inserting table data, 14-3
explicitly, 14-8
unrecoverably, 14-5

disabling and dropping constraints and, 14-6
dropped tables and, 12-10
dropping, 14-10
estimating size, 14-5
extent allocation for, 14-6
guidelines for managing, 14-2
INITRANS for, 14-4
limiting per table, 14-3
managing, 14-1, 14-10
MAXTRANS for, 14-4
monitoring space use of, 14-9
overview of, 14-2
parallelizing index creation, 14-5
PCTFREE for, 14-4
PCTUSED for, 14-4
privileges

for altering, 14-9
for controling, 21-10
for dropping, 14-10

separating from a table, 12-6

setting storage parameters for, 14-5
SQL*Loader and, 14-3
storage parameters, 10-10
tablespace for, 14-4
temporary segments and, 14-3
temporary space and, A-10
validating structure, 17-9

index-organized table, 12-10
in-doubt transactions

rollback segments and, 18-12
initial

passwords for SYS and SYSTEM, 1-5
INITIAL storage parameter, 10-7

altering, 12-8
initialization parameters

affecting sequences, 13-11
multi-threaded server and, 4-5

INITRANS storage parameter
altering, 12-8
default, 10-9
guidelines for setting, 10-9
transaction entries and, 10-9

INSERT privilege
granting, 21-18
revoking, 21-20

installation
and creating a database, 2-3
Oracle7 Server, 1-18
tuning recommendations for, 2-14

instance identifier
process names and, 4-14

instance menu
Open option, 3-7
prevent Connections option, 3-8

instances
aborting, 3-12
shutting down immediately, 3-11
starting, 3-2
starting before database creation, 2-6

integrity constraints
disabling, 17-14, 17-20
disabling on creation, 17-19
dropping, 17-23
dropping and disabling, 14-6
dropping tablespaces and, 8-14
Index-12

enabling, 17-15
enabling on creation, 17-19
enabling when violations exist, 17-16
exceptions to, 17-23
managing, 17-16
violations, 17-16
when to disable, 17-16

INTERNAL
alternatives to, 1-8
connecting for shutdown, 3-9
creating a database as, 2-6
OSOPER and OSDBA, 1-8
security for, 19-7
starting an instance as, 3-2

INTERNAL date function
executing jobs and, 7-9

J
job queues, 7-2

, 7-3
executing jobs in, 7-10
locks, 7-11
privileges for using, 7-4
removing jobs from, 7-12
scheduling jobs, 7-4
viewing, 7-16

jobs
altering, 7-12
broken, 7-14
database links and, 7-10
executing, 7-10
exporting, 7-8
forcing to execute, 7-15
importing, 7-8
INTERNAL date function and, 7-9
job definition, 7-8
job number, 7-8
killing, 7-16
managing, 7-4
marking broken jobs, 7-14
ownership of, 7-8
removing from job queue, 7-12
running broken jobs, 7-15
scheduling, 7-4

submitting to job queue, 7-6
trace files, 7-11
troubleshooting, 7-11

join view, 13-4
DELETE statements, 13-7
key-preserved tables in, 13-5
mergeable, 13-5
modifying

rule for, 13-6
when modifiable, 13-4

JQ locks, 7-11

K
key-preserved tables

in join views, 13-5
keys

cluster, 15-2
Kill User Session dialog, 4-20
killing

jobs, 7-16

L
LGWR, 4-15
LICENSE_MAX_SESSIONS parameter

changing while instance runs, 20-5
setting, 20-4
setting before database creation, 2-12

LICENSE_MAX_USERS parameter
changing while database runs, 20-6
setting, 20-6
setting before database creation, 2-12

LICENSE_SESSION_WARNING parameter
setting before database creation, 2-12

LICENSE_SESSIONS_WARNING parameter
changing while instance runs, 20-5
setting, 20-4

licensing
complying with license agreement, 2-12, 20-2
concurrent usage, 20-2
named user, 20-2, 20-5
number of concurrent sessions, 2-13
privileges for changing named user limits, 20-6
privileges for changing session limits, 20-5
 Index-13

session-based, 20-2
viewing limits, 20-7

limits
composite limits, 20-20
concurrent usage, 20-2
resource limits, 20-20
session, high water mark, 20-3

LIST CHAINED ROWS option, 17-9
listener process

configuration file, 4-6
setting MTS_LISTENER_ADDRESS, 4-5

location
rollback segments, 18-7

locks
job queue, 7-11
monitoring, 4-12

log sequence numbers, 5-2
log switches

checkpoints and, 5-10
forcing, 5-12
privileges, 5-13

log writer process (LGWR)
trace file monitoring, 4-15

LOG_ARCHIVE_BUFFER_SIZE parameter
setting, 23-9, 23-10

LOG_ARCHIVE_BUFFERS parameter
setting, 23-9, 23-10

LOG_ARCHIVE_DEST parameter
setting, 23-13

LOG_ARCHIVE_FORMAT parameter
setting, 23-12

LOG_ARCHIVE_START parameter, 23-6
setting, 23-6, 23-7

LOG_CHECKPOINT_INTERVAL parameter
setting, 5-11

LOG_CHECKPOINT_TIMEOUT parameter
setting, 5-12

LOG_FILES parameter
number of log files and, 5-4

logical structure of a database, 1-19
LONG datatype, 10-18

M
maintenance release number, 1-22

managing
auditing, 22-1
cluster indexes, 15-1
clustered tables, 15-1
clusters, 15-1
indexes, 14-1, 14-10
jobs, 7-4
object dependencies, 17-25
profiles, 20-18
roles, 21-11
rollback segments, 18-1
sequences, 13-10
synonyms, 13-12
tables, 12-1
users, 20-12
views, 13-1, 13-10

manual archiving
in ARCHIVELOG mode, 23-8

marked user session, 4-21
MAX_DUMP_FILE_SIZE parameter, 4-15
MAX_ENABLED_ROLES parameter

default roles and, 21-15
enabling roles and, 21-15

MAXDATAFILES parameter
changing, 6-5

MAXEXTENTS storage parameter
about, 10-8
setting for the data dictionary, 17-29

MAXINSTANCES parameter
changing, 6-5

MAXLOGFILES parameter
changing, 6-5
number of log files and, 5-4

MAXLOGHISTORY
changing, 6-5

MAXLOGMEMBERS parameter
changing, 6-5
number of log files and, 5-4

MAXTRANS storage parameter
altering, 12-8
default, 10-9
guidelines for setting, 10-9
transaction entries and, 10-9

memory
viewing per user, 20-27
Index-14

migration
database migration, 2-3

MINEXTENTS storage parameter
about, 10-8
altering, 12-8

mirrored control files
importance of, 6-2

mirrored redo log files
location of, 5-3
size of, 5-3

mirroring
control files, 2-10

modes
exclusive, 3-5
parallel, 3-5
restricted, 3-4, 3-7

modifiable join view
definition of, 13-4

MODIFY PARTITION clause
ALTER TABLE command, 11-4

modifying
a join view, 13-4

MONITOR command
ROLLBACK option, 18-15

monitoring
datafiles, 9-13
locks, 4-12
performance tables, 4-13
processes of an instance, 4-11
rollback segments, 18-6, 18-15
tablespaces, 9-13

mounting a database, 3-3
exclusive mode, 3-5
parallel mode, 3-5

MOVE PARTITION clause
ALTER TABLE command, 11-5

moving
control files, 6-4
index partitions, 11-5
relocating, 9-8
table partition, 11-4

MTS_DISPATCHERS parameter
setting initially, 4-7

MTS_LISTENER_ADDRESS parameter
setting, 4-5

starting new dispatchers and, 4-10
MTS_MAX_DISPATCHERS parameter, 4-8

setting, 4-8
MTS_MAX_SERVERS parameter

setting, 4-9
MTS_SERVERS parameter

minimum value, 4-9
setting, 4-9

MTS_SERVICE parameter
DB_NAME parameter as default, 4-6
setting, 4-6

multi-plex online redo logs
symmetric groups, 5-2

multi-plexing
online redo log, 5-2
redo log files, 5-2

multi-plexing online redo log, 5-2
multi-threaded server

configuring dispatchers, 4-7
database startup and, 3-2
dedicated server contrasted with, 4-3
enabling and disabling, 4-9, 4-10
OS role management restrictions, 21-26
restrictions on OS role authorization, 21-14
service name, 4-6
shared pool and, 4-5
starting, 4-5

N
named user limits, 20-5

setting initially, 2-13
network protocol

dispatcher for each, 4-7
NEXT storage parameter, 10-8

setting for the data dictionary, 17-29
NOARCHIVELOG mode

archiving, 23-2
setting at database creation, 23-4
taking datafiles offline in, 9-8

NOAUDIT command
disabling audit options, 22-12
privileges, 22-12
schema objects, 22-13
statements, 22-12
 Index-15

non-clustered tables
estimating size of, A-2

NOT NULL constraint, 17-20
NUMBER datatype, 10-17

O
objects, schema

cascading effects on revoking, 21-21
default tablespace for, 20-13
granting privileges, 21-17
in a revoked tablespace, 20-15
owned by dropped users, 20-17
privileges with, 21-9
revoking privileges, 21-19

offline datafiles, 9-8
offline rollback segments

about, 18-11
bringing online, 18-11
when to use, 18-11

offline tablespaces
altering, 8-8
priorities, 8-9
rollback segments and, 18-11

online datafiles, 9-8
online redo log, 5-2

creating groups, 5-5
creating members, 5-6
dropping groups, 5-8
dropping members, 5-9
forcing a log switch, 5-12
guidelines for configuring, 5-2
location of, 5-3
managing, 5-1
moving files, 5-8
multi-plexing, 5-2
number of files, 5-4
privileges

adding groups, 5-5
dropping groups, 5-8
dropping members, 5-9
forcing a log switch, 5-13

renaming files, 5-8
renaming members, 5-6
STALE members, 5-9

storing separately from datafiles, 9-4
unavailable when database is opened, 3-3
viewing information about, 5-15

online rollback segments
about, 18-11
bringing rollback segments online, 18-11
taking offline, 18-12
when new, 18-8

online tablespaces
altering, 8-8

opening a database
after creation, 1-20
mounted database, 3-7

operating system
accounts, 21-24
auditing with, 22-2
authentication, 21-23
database administratorsrequirementsfor', 1-4
deleting datafiles, 8-14
enabling and disabling roles, 21-26
limit of number of open files, 9-2
Oracle7 process names, 4-13
renaming and relocating files, 9-9
role identification, 21-24
roles and, 21-23
security in, 19-3

OPTIMAL storage parameter, 18-6
Oracle blocks, 2-11
Oracle Parallel Server, 5-12
Oracle7 Server

complying with license agreement, 20-2
identifying releases, 1-21
installing, 1-18
processes

checkpoint (CKPT), 4-16
monitoring, 4-11
operating-system names, 4-13
service names for dispatchers, 4-6
trace files fpr, 4-14

Oracle7 Server processes
processes

dedicated server processes, 4-2
identifying and managing, 4-11

ORAPWD utility, 1-9
OS authentication, 1-7
Index-16

OS_ROLES parameter
operating-system authorization and, 21-14
REMOTE_OS_ROLES and, 21-26
using, 21-24

owner of a queued job, 7-8

P
packages

privileges for recompiling, 17-27
recompiling, 17-27

parallel mode
of the database, 3-5

parallel query option
number of server processes, 4-17
parallelizing index creation, 14-5
parallelizing table creation, 12-4
query servers, 4-17

Parallel Server
ALTER CLUSTER..ALLOCATE EXTENT, 15-10
archive log file name format, 23-12
datafile upper bound for instances, 9-3
forcing a checkpoint for the local instance, 5-13
licensed session limit and, 2-13
limits on named users and, 20-6
LOG_CHECKPOINT_TIMEOUT and, 5-12
named users and, 2-13
own rollback segments, 18-3
sequence numbers and, 13-11
session and warning limits, 20-4
specifying thread for archiving, 23-8
V$THREAD view, 5-15

PARALLEL_MAX_SERVERS parameter, 4-17
PARALLEL_MIN_SERVERS parameter, 4-17
PARALLEL_SERVER_IDLE_TIME parameter, 4-17
parameter files

character set of, 3-13
choosing for startup, 3-3
creating for database creation, 2-4
default for instance startup, 3-3
editing, 3-13
editing before database creation, 2-5
individual parameter names, 2-9
location of, 3-13
minimum set of, 2-9

number of, 3-13
sample of, 3-13
using, 3-13

partition
adding to index, 11-5
dropping from index, 11-8

PARTITION clause
CREATE TABLE command, 11-2

partitioned index
merging, 11-12
rebuilding partitions, 11-16

partitioned objects, 11-1 to 11-17
adding, 11-5
creating, 11-2
definition, 11-2
maintaining, 11-3 to 11-17
merging, 11-12
moving, 11-4
quiescing applications during maintenance

of, 11-17
splitting partition, 11-10
truncating, 11-8

partitioned table
adding partitions, 11-5
converting to non-partitioned, 11-13
merging partitions, 11-12, 11-13
splitting partition, 11-10

partitioned view
converting to partitioned table, 11-14

passwords
altering user passwords, 20-17
authentication file for, 1-9
changing for roles, 21-15
initial for SYS and SYSTEM, 1-5
password file

, 1-12
creating, 1-9
OS authentication, 1-7
relocating, 1-15
removing, 1-16
state of, 1-16

privileges for changing for roles, 21-13
privileges to alter, 20-16
roles, 21-13
security policy for users, 19-4
 Index-17

setting REMOTE_LOGIN_PASSWORD
parameter, 1-11

user authentication, 20-8
patch release number, 1-22
PCTFREE storage parameter

altering, 12-8
block overhead and, 10-6
clustered tables, 10-4
default, 10-3
guidelines for setting, 10-3
how it works, 10-2
indexes, 10-4
non-clustered tables, 10-4
PCTUSED and, 10-6

PCTINCREASE storage parameter
about, 10-8
altering, 10-11
setting for the data dictionary, 17-29

PCTUSED storage parameter
altering, 12-8
block overhead and, 10-6
default, 10-5
guidelines for setting, 10-5
how it works, 10-4
PCTFREE and, 10-6

performance
location of datafiles and, 9-4
tuning archiving, 23-9

performance tables
dynamic performance tables, 4-13

physical structure of a database, 1-19
PL/SQL program units

dropped tables and, 12-10
replaced views and, 13-9

planning
database creation, 2-2
relational design, 1-19
the database, 1-19

precedence of storage parameters, 10-11
predefined roles, 1-6
preface

Send Us Your Comments, xix
prerequisites

for creating a database, 2-3
PRIMARY KEY constraint

disabling, 17-20
dropping associated indexes, 14-10
enabling, 17-20
enabling on creation, 14-7
foreign key references when dropped, 17-21
indexes associated with, 14-7
storage of associated indexes, 14-7

private
rollback segments, 18-8

taking offline, 18-13
synonyms, 13-12

privileges, 21-2, 21-10
adding datafiles to a tablespace, 9-5
adding redo log groups, 5-5
altering

default storage parameters, 8-6
dispatcher privileges, 4-11
indexes, 14-9
named user limit, 20-6
passwords, 20-17
role authentication, 21-13
rollback segments, 18-10
sequences, 13-10
tables, 12-7
users, 20-16

analyzing objects, 17-3
application developers and, 19-9
audit object, 22-11
auditing system, 22-11
auditing use of, 22-9
bringing datafiles offline and online, 9-8
bringing tablespaces online, 8-8
cascading revokes, 21-21
cluster creation, 15-6
coalescing tablespaces, 8-7
column, 21-18
CREATE SCHEMA command, 17-2
creating

roles, 21-11
rollback segments, 18-8
sequences, 13-10
synonyms, 13-12
tables, 12-6
tablespaces, 8-4
users, 20-12
Index-18

views, 13-2
database administrator, 1-4
disabling automatic archiving, 23-7
dropping

clusters, 15-10
indexes, 14-10
online redo log members, 5-9
redo log groups, 5-8
roles, 21-16
rollback segments, 18-14
sequences, 13-12
synonyms, 13-13
tables, 12-9
views, 13-10

dropping profiles, 20-22
enabling and disabling resource limits, 20-22
enabling and disabling triggers, 17-12
enabling automatic archiving, 23-6
for changing session limits, 20-5
forcing a checkpoint, 5-13
forcing a log switch, 5-13
granting

about, 21-16
object privileges, 21-17
required privileges, 21-17
system privileges, 21-16

grouping with roles, 21-11
individual privilege names, 21-2
job queues and, 7-4
listing grants, 21-28
manually archiving, 23-8
object, 21-9
on selected columns, 21-20
operating system

required for database administrator, 1-4
policies for managing, 19-5
recompiling packages, 17-27
recompiling procedures, 17-27
recompiling views, 17-27
renaming

datafiles of a tablespace, 9-9
datafiles of several tablespaces, 9-10
objects, 17-2
redo log members, 5-6

replacing views, 13-9

RESTRICTED SESSION system privilege, 3-4,
3-8

revoking, 21-19
ADMIN OPTION, 21-19
GRANT OPTION, 21-20
object privileges, 21-21
system privileges, 21-19

revoking object, 21-19
revoking object privileges, 21-19
setting resource costs, 20-21
SQL statements permitted by, 21-10
system, 21-2
taking tablespaces offline, 8-9
truncating, 17-11

procedures
recompiling, 17-27

processes, 4-1
SNP background processes, 7-2

PROCESSES parameter
setting before database creation, 2-12

profiles, 20-18
altering, 20-20
assigning to users, 20-19
composite limit, 20-20
creating, 20-19
default, 20-19
disabling resource limits, 20-22
dropping, 20-22
enabling resource limits, 20-22
listing, 20-23
managing, 20-18
privileges for dropping, 20-22
privileges to alter, 20-20
privileges to set resource costs, 20-21
PUBLIC_DEFAULT, 20-19
setting a limit to null, 20-20
viewing, 20-26

program global area (PGA)
effect of MAX_ENABLED_ROLES on, 21-15

pseudo-column, 10-19
public

synonyms, 13-12
public rollback segments

making available for use, 18-11
taking offline, 18-13
 Index-19

PUBLIC user group
granting and revoking privileges to, 21-22
procedures and, 21-22

PUBLIC_DEFAULT profile
dropping profiles and, 20-22
using, 20-19

Q
query server process

about, 4-17
quotas

listing, 20-23
revoking from users, 20-15
setting to zero, 20-15
tablespace, 20-14
tablespace quotas, 8-3
temporary segments and, 20-15
unlimited, 20-15
viewing, 20-25

R
read-only tablespaces

altering to writable, 8-13
creating, 8-11
datafiles, 9-7
on a WORM device, 8-13

REBUILD PARTITION clause
ALTER INDEX command, 11-5, 11-16

recompiling
automatically, 17-27
functions, 17-27
packages, 17-27
procedures, 17-27
views, 17-27

recovery
creating new control files, 6-5
effects of archiving on, 23-2
startup with automatic, 3-5

redo log
archived redo log, 23-2
online redo log, 5-1

redo log files
archived redo log files, 23-4

log sequence numbers of
defined, 5-2

multi-plexing
overview of, 5-2

online, 5-2
viewing, 2-8

REFERENCES privilege
CASCADE CONSTRAINTS option, 21-20
revoking, 21-20

referential integrity constraints
dropping table partition with, 11-7
truncating table partition with, 11-9

relational design
planning, 1-19

releases
checking the release number, 1-23
identifying for Oracle7 Server, 1-21
maintenance release number, 1-22
patch release number, 1-22
port-specific release number, 1-22
versions of other Oracle software, 1-23

relocating
control files, 6-4
datafiles, 9-8, 9-10

remote connections
connecting as INTERNAL, 1-14, 1-15, 1-16,

1-17, 1-19, 1-20, 1-21, 1-22, 1-23
connecting as SYSOPER/SYSDBA, 1-14
password files, 1-9

REMOTE_LOGIN_PASSWORDFILE
parameter, 1-11

REMOTE_OS_AUTHENT parameter
setting, 20-10

REMOTE_OS_ROLES parameter
setting, 21-14, 21-26

RENAME command, 17-2
Rename Data File dialog, 9-9
Rename Online Redo Log Member dialog box, 5-7
renaming

control files, 6-4
datafiles, 9-8, 9-10
datafiles with a single table, 9-9
online redo log members, 5-6
schema objects, 17-2

replacing
Index-20

views, 13-9
resource limits

altering in profiles, 20-20
assigning with profiles, 20-19
composite limits and, 20-20
costs and, 20-21
creating profiles and, 20-19
disabling, 20-22
enabling, 20-22
privileges to enable and disable, 20-22
privileges to set costs, 20-21
profiles, 20-18
PUBLIC_DEFAULT profile and, 20-19
service units, 20-20
setting to null, 20-20

RESOURCE role, 21-12
RESOURCE_LIMIT parameter

enabling and disabling limits, 20-22
resources

profiles, 20-18
responsibilities

of a database administrator, 1-2
of database users, 1-3

RESTRICTED SESSION privilege
instances in restricted mode, 3-7
restricted mode and, 3-4
session limits and, 20-3

restricting access to database
starting an instance, 3-4

REVOKE command, 21-19
when takes effect, 21-22

Revoke System Privileges/Roles dialog, 21-19
revoking

privileges and roles
SYSOPER/DBA privileges, 1-13

revoking privileges and roles
on selected columns, 21-20
REVOKE command, 21-19
shortcuts for object privileges, 21-10
when using operating-system roles, 21-25

roles
ADMIN OPTION and, 21-16
application developers and, 19-10
authorization, 21-13
backward compatibility, 21-12

changing authorization for, 21-15
changing passwords, 21-15
CONNECT role, 21-12
database authorization, 21-13
DBA role, 1-6, 21-12
default, 20-17
dropping, 21-15
EXP_FULL_DATABASE, 21-12
GRANT command, 21-26
GRANT OPTION and, 21-18
granting

about, 21-16
grouping with roles, 21-11
IMP_FULL_DATABASE, 21-12
listing, 21-30
listing grants, 21-28
listing privileges and roles in, 21-30
management using the operating system, 21-23
managing, 21-11
multi-byte characters

in names, 21-11
multi-byte characters in passwords, 21-13
multi-threaded server and, 21-14
operating system granting of, 21-24, 21-26
operating-system authorization, 21-14
OS management and the multi-threaded

server, 21-26
passwords for enabling, 21-13
predefined, 1-6, 21-12
privileges

changing authorization method, 21-13
changing passwords, 21-13
for creating, 21-11
for dropping, 21-16
granting system privileges or roles, 21-16

RESOURCE role, 21-12
REVOKE command, 21-26
revoking, 21-19
revoking ADMIN OPTION, 21-19
security and, 19-6
SET ROLE command, 21-26
unique names for, 21-11
without authorization, 21-14

rollback segments
acquiring automatically, 18-3, 18-12
 Index-21

acquiring on startup, 2-12
allocating, 2-14
altering public, 18-10
altering storage parameters, 18-9
AVAILABLE, 18-11
bringing

online, 18-11
online automatically, 18-12
online when new, 18-8
PARTLY AVAILABLE segment online, 18-12

checking if offline, 18-13
choosing how many, 2-14
choosing size for, 2-14
creating, 18-8
creating after database creation, 18-3
creating public and private, 18-3
decreasing size of, 18-10
deferred, 18-17
displaying

all deferred rollback segments, 18-17
deferred rollback segments, 18-17
information on, 18-15
PENDING OFFLINE segments, 18-16

displaying names of all, 18-16
dropping, 18-14
equally sized extents, 18-5
explicitly assigning transactions to, 18-13
guidelines for managing, 18-2
initial, 18-2
invalid status, 18-15
listing extents in, 17-35
location of, 18-7
making available for use, 18-11
managing, 18-1
monitoring, 18-6, 18-15
OFFLINE, 18-11
offline rollback segments, 18-11
offline status, 18-12
online rollback segments, 18-11
online status, 18-12
PARTLY AVAILABLE, 18-11
PENDING OFFLINE, 18-13
privileges

for dropping, 18-14
required to alter, 18-10

required to create, 18-8
setting size of, 18-4
status for dropping, 18-14
status or state, 18-11
storage parameters, 18-9
storage parameters and, 18-8
SYSTEM rollback segment, 18-3
taking offline, 18-12
taking tablespaces offline and, 8-11
transactions and, 18-13
using multiple, 18-2

ROLLBACK_SEGMENTS parameter
adding rollback segments to, 18-8
setting before database creation, 2-12

ROWID datatype, 10-19
ROWID pseudo-column, 10-19
rows

chaining across blocks, 10-4, 17-9
violating integrity constraints, 17-16

S
schema objects

auditing, 22-9
creating multiple objects, 17-2
default audit options, 22-11
dependencies between, 17-25
disabling audit options, 22-13
enabling audit options on, 22-11
listing by type, 17-34
listing information, 17-32
privileges to access, 21-9
privileges to rename, 17-2
renaming, 17-2, 17-3

SCN, 9-13
security

accessing a database, 19-2
administrator of, 19-2
application developers and, 19-9
auditing policies, 19-18
authentication of users, 19-2
data, 19-3
database administratorsresponsibilities', 1-4
database security, 19-2
database users and, 19-2
Index-22

establishing policies, 19-1
general users, 19-4
multi-byte characters

in role names, 21-11
in role passwords, 21-13
in user names, 20-13
in user passwords, 20-13

operating-system security and the
database, 19-3

policies for database administrators, 19-7
privilege management policies, 19-5
privileges, 19-2
protecting the audit trail, 22-17
REMOTE_OS_ROLES parameter, 21-26
roles to force security, 19-6
security officer, 1-3
sensitivity, 19-3

segments
data and index

default storage parameters, 10-10
data dictionary, 17-29
displaying information on, 17-35
monitoring, 18-15
rollback, 18-1
temporary storage parameters, 10-12

Send Us Your Comments
boilerplate, xix

sensitivity
security, 19-3

SEQUENCE_CACHE_ENTRIES parameter, 13-11
sequences

altering, 13-11
creating, 13-10
dropping, 13-12
initialization parameters, 13-11
managing, 13-10
Parallel Server and, 13-11
privileges for altering, 13-10
privileges for creating, 13-10
privileges for dropping, 13-12

server units
composite limits and, 20-20

servers
dedicated

multi-threaded contrasted with, 4-3

multi-threaded
dedicated contrasted with, 4-3

service name
for dispatcher in multi-threaded server, 4-6

session limits, license
setting initially, 2-13

session monitor, 4-12
session, user

active, 4-21
inactive, 4-21
marked to be terminated, 4-21
terminating, 4-20
viewing terminated sessions, 4-21

sessions
auditing connections and disconnections, 22-8
limits per instance, 20-2
listing privilege domain of, 21-29
number of concurrent sessions, 2-13
Parallel Server session limits, 2-13
setting maximum for instance, 20-4
setting warning limit for instance, 20-4
viewing current number and high water

mark, 20-7
viewing memory use, 20-27

SET ROLE command
how password is set, 21-13
when using operating-system roles, 21-26

Set Rollback Segment Offline dialog, 18-12
Set Rollback Segment Online dialog, 18-11
Set Rollback Segment Storage dialog, 18-8
Set Tablespace Online dialog, 8-8
Set Tablespace Storage dialog box, 8-6
SET TRANSACTION command

USE ROLLBACK SEGMENT option, 18-13
SGA

determing buffers in cache, 2-11
shared mode

rollback segments and, 18-3
shared pool

ANALYZE command and, 17-8
multi-threaded server and, 4-5

shared server processes
changing the minimum number of, 4-10
maximum number of, 4-9
number to start initially, 4-9
 Index-23

privileges to change number of, 4-10
trace files for, 4-14

shared SQL areas
ANALYZE command and, 17-8

shortcuts
CONNECT, for auditing, 22-8
object auditing, 22-10
object privileges, 21-10
statement level auditing options, 22-8

Shut Down menu, 3-8
Abort Instance option, 3-12
Immediate option, 3-11
Normal option, 3-10

SHUTDOWN command, 3-8
ABORT option, 3-12
IMMEDIATE option, 3-11
NORMAL option, 3-11

shutting down a database, 3-1
shutting down an instance

aborting the instance, 3-12
connecting and, 3-8
connecting as INTERNAL, 3-9
example of, 3-11
general procedures, 3-8
immediately, 3-11
normally, 3-10

size
clusters, A-10
datafile, 9-4
hash clusters, 16-4
on non-clusterd tables, A-2
rollback segments, 18-4

snapshot logs
storage parameters, 10-10

snapshots
storage parameters, 10-10
too old

OPTIMAL storage parameter and, 18-6
SNP background processes

about, 7-2
software versions, 1-21
SORT_AREA_SIZE parameter

index creation and, 14-3
space

adding to the database, 8-4

used by indexes, 14-9
space management

PCTFREE, 10-2
PCTUSED, 10-4

SPLIT PARTITION clause, 11-11
ALTER INDEX command, 11-11
ALTER TABLE command, 11-5, 11-10

SQL statements
disabling audit options, 22-12
enabling audit options on, 22-10
privileges required for, 21-10

SQL trace facility
when to enable, 4-16

SQL*Loader
about, 1-17
indexes and, 14-3

SQL_TRACE parameter
trace files and, 4-14

STALE status
of redo log members, 5-9

Start Automatic Archiving dialog, 23-13
Start Up Instance dialog box, 3-2

Force check box, 3-5
Mount radio button, 3-4
Nomount radio button, 3-3
Open radio button, 3-4
Restrict to DBAs check box, 3-5
specifying a parameter file, 3-3

starting a database
about, 3-1
general procedures, 3-2

starting an instance
at database creation, 3-3
automatically at system startup, 3-6
connecting as INTERNAL, 3-2
database closed and mounted, 3-3
database name conflicts and, 2-9
dispatcher processes and, 4-7
enabling automatic archiving, 23-6
examples of, 3-5
exclusive mode, 3-5
forcing, 3-5
general procedures, 3-2
mounting and opening the database, 3-4
multi-threaded server and, 3-2
Index-24

normally, 3-4
parallel mode, 3-5
parameter files, 3-3
problems encountered while, 3-5
recovery and, 3-5
remote instance startup, 3-6
restricted mode, 3-4
specifying database name, 3-2
with multi-threaded servers, 4-5
without mounting a database, 3-3

starting Server Manager, 2-6
STARTUP command, 3-2

FORCE option, 3-5
MOUNT option, 3-4
NOMOUNT option, 3-3
OPEN option, 3-4
RECOVER option, 3-5
RESTRICT option, 3-5
specifying database name, 3-2
specifying parameter file, 3-3

statistics
updating, 17-4

Stop Auto Archive menu option, 23-7
storage

altering tablespaces, 8-6
quotas and, 20-14
revoking tablespaces and, 20-15
unlimited quotas, 20-15

storage parameters
applicable objects, 10-7
changing settings, 10-11
data dictionary, 17-29
default, 10-7
for the data dictionary, 17-29
INITIAL, 10-7, 12-8
INITRANS, 10-9, 12-8
MAXEXTENTS, 10-8
MAXTRANS, 10-9, 12-8
MINEXTENTS, 10-8, 12-8
NEXT, 10-8
OPTIMAL (in rollback segments), 18-6
PCTFREE, 12-8
PCTINCREASE, 10-8
PCTUSED, 12-8
precedence of, 10-11

rollback segments, 18-9
SYSTEM rollback segment, 18-10
temporary segments, 10-12

stored procedures
privileges for recompiling, 17-27
using privileges granted to PUBLIC, 21-22

stream
tape drive, 23-10

synonyms
creating, 13-12
displaying dependencies of, 17-35
dropped tables and, 12-10
dropping, 13-13
managing, 13-12
private, 13-12
privileges for creating, 13-12
privileges for dropping, 13-13
public, 13-12

SYS
initial password, 1-5
objects owned, 1-5
policies for protecting, 19-7
privileges, 1-5
user, 1-5

SYS.AUD$
audit trail, 22-2
creating and deleting, 22-4

SYSOPER/SYSDBA privileges
adding users to the password file, 1-12
connecting with, 1-14
determining who has privileges, 1-13
granting and revoking, 1-13

SYSTEM
initial password, 1-5
objects owned, 1-5
policies for protecting, 19-7
user, 1-5

System Change Number (SCN)
checking for a datafile, 9-13

System Global Area, 2-11
System Global Area (SGA), 2-11
system privileges, 21-2
SYSTEM rollback segment

adding, 18-3
altering storage parameters of, 18-10
 Index-25

rollback segments, 18-3
SYSTEM tablespace

cannot drop, 8-14
initial rollback segment, 18-2
non-data dictionary tables and, 12-3
restrictions on taking offline, 9-7
when created, 8-3

T
table partition

containing global index, 11-6
creating, 11-2
dropping, 11-6
exchanging, 11-13
merging, 11-12
merging adjacent, 11-13
splitting, 11-10
truncating, 11-8

tables
adding partitions, 11-5
allocating extents, 12-9
altering, 12-7, 12-8
analyzing statistics, 17-3
clustered, 15-2
clustered tables

altering, 15-9
creating, 15-7
dropping, 15-10
managing, 15-1
privileges to drop, 15-10
storage, A-16

creating, 12-7
designing before creating, 12-2
dropping, 12-9
estimating initial size, A-2
estimating size, 12-5, A-5
guidelines for managing, 12-1, 12-6
hash clustered

creating, 16-5
managing, 16-1

increasing column length, 12-8
indexes and, 14-2
key-preserved, 13-5
limiting indexes on, 14-3

location, 12-7
location of, 12-3
managing, 12-1
parallelizing creation of, 12-4
privileges for creation, 12-6
privileges for dropping, 12-9
privileges to alter, 12-7
schema of clustered, 15-7
separating from indexes, 12-6
specifying PCTFREE for, 10-4
specifying tablespace, 12-3, 12-7
storage parameters, 10-10
SYSTEM tablespace and, 12-3
temporary space and, 12-6
transaction parameters, 12-3
truncating, 17-10
UNRECOVERABLE, 12-4
validating structure, 17-9

tablespaces
adding datafiles, 9-5
altering availability, 8-8
altering storage settings, 8-6
assigning defaults for users, 20-13
assigning user quotas, 8-3
bringing online, 8-8
checking default storage parameters, 8-16
coalescing, 8-6
creating, 8-3
creating additional, 8-4
default quota, 20-14
default storage parameters for, 10-10
default temporary, 20-14
dropping

about, 8-14
required privileges, 8-14

guidelines for managing, 8-2
listing files of, 8-16
listing free space in, 8-17
location, 9-4
managing, 9-1
monitoring, 9-13
privileges for creating, 8-4
privileges to take offline, 8-9
quotas

assigning, 8-3
Index-26

quotas for users, 20-14
read-only, 8-11
revoking from users, 20-15
rollback segments required, 8-5
setting default storage parameters for, 8-3
SYSTEM tablespace, 8-3
taking offline normal, 8-9
taking offline temporarily, 8-9
temporary, 20-14
unlimited quotas, 20-15
using multiple, 8-2
viewing quotas, 20-25
writable, 8-13

taking offline
tablespaces, 8-9

tape drives
streaming for archiving, 23-10

temporary segments
index creation and, 14-3

temporary space
allocating, 12-6

terminating
a user session, 4-20

terminating sessions
active sessions, 4-21
identifying sessions, 4-20
inactive session, example, 4-21
inactive sessions, 4-21

test
security for databases, 19-9

time window
moving, in historical table, 11-16

tip
object privilege shortcut, 21-10
shortcuts for auditing objects, 22-10
statement auditing shortcut, 22-8

trace files
job failures and, 7-11
location of, 4-15
log writer, 4-15
size of, 4-15
using, 4-14, 4-15
when written, 4-16

trailing nulls, A-10
transaction entries

guidelines for storage, 10-9
transactions

assigning to specific rollback segment, 18-13
rollback segments and, 18-13

TRANSACTIONS parameter
using, 18-2

TRANSACTIONS_PER_ROLLBACK_SEGMENT
parameter

using, 18-2
triggers

auditing, 22-21
disabling, 17-13
dropped tables and, 12-10
enabling, 17-13
examples, 22-21
privileges for controlling, 21-10
privileges for enabling and disabling, 17-12

TRUNCATE command, 17-10
DROP STORAGE option, 17-11
REUSE STORAGE option, 17-11

TRUNCATE PARTITION clause
ALTER TABLE command, 11-8

truncating
clusters, 17-10
partitioned objects, 11-8
privileges for, 17-11
tables, 17-10

Trusted Oracle7 Server
controlling database access, 20-1
managing tablespaces and datafiles, 9-2
managing users and resources, 20-1

tuning
archiving, 23-9
databases, 1-21
initially, 2-14

U
UNIQUE key constraints

disabling, 17-20
dropping associated indexes, 14-10
enabling, 17-20
enabling on creation, 14-7
foreign key references when dropped, 17-21
indexes associated with, 14-7
 Index-27

storage of associated indexes, 14-7
UNLIMITED TABLESPACE privilege, 20-15
unrecoverable

tables, 12-4
unrecoverable indexes

indexes, 14-5
UPDATE privilege

revoking, 21-20
Use, 20-11
USER_DUMP_DEST parameter, 4-15
USER_EXTENTS, 9-13
USER_FREE, 8-15, 9-13
USER_INDEXES view

filling with data, 17-6
USER_SEGMENTS, 8-15, 9-13
USER_TAB_COLUMNS view

filling with data, 17-6
USER_TABLES view

filling with data, 17-6
USER_TABLESPACES, 8-15, 9-13
usernames

SYS and SYSTEM, 1-5
users

altering, 20-16
assigning profiles to, 20-19
assigning tablespace quotas, 8-3
assigning unlimited quotas for, 20-15
auhentication

database authentication, 20-8
authentication

about, 19-2, 20-7
changing authentication method, 20-17
changing default roles, 20-17
changing passwords, 20-17
composite limits and, 20-20
default tablespaces, 20-13
dropping, 20-17
dropping profiles and, 20-22
dropping roles and, 21-15
end-user security policies, 19-5
enrolling, 1-21
identification, 20-8
in a newly created database, 2-14
limiting number of, 2-13
listing, 20-23

listing privileges granted to, 21-28
listing roles granted to, 21-28
managing, 20-12
multi-byte characters

in names, 20-13
in passwords, 20-13

objects after dropping, 20-17
password security, 19-4
policies for managing privileges, 19-5
privileges for changing passwords, 20-16
privileges for creating, 20-12
privileges for dropping, 20-18
PUBLIC group, 21-22
security and, 19-2
security for general users, 19-4
session, terminating, 4-21
specifying user names, 20-12
tablespace quotas, 20-14
unique user names, 2-13, 20-6
viewing information on, 20-25
viewing memory use, 20-27
viewing tablespace quotas, 20-25

utilities
Export, 1-17
for the database administrator, 1-17
Import, 1-17
SQL*Loader, 1-17

UTLCHAIN.SQL, 17-9
UTLLOCKT.SQL script, 4-12

V
V$ARCHIVE view, 23-10
V$DATABASE view, 23-10
V$DATAFILE, 8-15, 9-13
V$DBFILE view, 2-8
V$DISPATCHER view

controlling dispatcher process load, 4-10
V$LICENSE view, 20-7
V$LOG view

displaying archiving status, 23-10
online redo log and, 5-15

V$LOGFILE view, 2-8
V$PWFILE_USERS view, 1-13
V$QUEUE view
Index-28

controlling dispatcher process load, 4-10
V$ROLLNAME

finding PENDING OFFLINE segments, 18-16
V$ROLLSTAT

finding PENDING OFFLINE segments, 18-16
V$SESSION, 7-16
V$SESSION view, 4-21
V$THREAD view, 5-15
VALIDATE STRUCTURE option, 17-9
VARCHAR2 datatype, 10-17

space use of, 10-17
versions, 1-21

of other Oracle software, 1-23
view

partitioned
converting to partitioned table, 11-14

views
creating, 13-2
creating with errors, 13-4
displaying dependencies of, 17-35
dropped tables and, 12-10
dropping, 13-10
FOR UPDATE clause and, 13-3
managing, 13-1, 13-10
ORDER BY clause and, 13-3
privileges, 13-2
privileges for dropping, 13-10
privileges for recompiling, 17-27
privileges to replace, 13-9
recompiling, 17-27
replacing, 13-9
wildcards in, 13-3
WITH CHECK OPTION, 13-3

violating integrity constraints, 17-16

W
warning

changing data dictionary storage
parameters, 17-29

creating a rollback segment, 2-12
disabling audit options, 22-12
enabling auditing, 22-10
setting the CONTROL_FILES parameter, 2-10
use mirrored control files, 6-2

wildcards
in views, 13-3

WORM devices
and read-only tablespaces, 8-13

writable tablespaces, 8-13
 Index-29

Index-30

	Contents
	Send Us Your Comments
	Preface
	1 The Oracle Database Administrator
	Types of Oracle Users
	Database Administrators
	Security Officers
	Application Developers
	Application Administrators
	Database Users
	Network Administrators

	Database Administrator Security and Privileges
	The Database Administrator’s Operating System Acco...
	Database Administrator Usernames
	The DBA Role

	Database Administrator Authentication
	Selecting an Authentication Method
	Using Operating System Authentication
	OSOPER and OSDBA
	Using an Authentication Password File

	Password File Administration
	Using ORAPWD
	Setting REMOTE_LOGIN_ PASSWORDFILE
	Adding Users to a Password File
	Connecting with Administrator Privileges
	Maintaining a Password File

	Database Administrator Utilities
	Enterprise Manager
	SQL*Loader
	Export and Import

	Initial Priorities of a Database Administrator
	Step 1: Install the Oracle Software
	Step 2: Evaluate the Database Server Hardware
	Step 3: Plan the Database
	Step 4: Create and Open the Database
	Step 5: Implement the Database Design
	Step 6: Back up the Database
	Step 7: Enroll System Users
	Step 8: Tune Database Performance

	Identifying Oracle Software Releases
	Release Number Format
	Versions of Other Oracle Software
	Checking Your Current Release Number

	2 Creating an Oracle Database
	Considerations Before Creating a Database
	Creation Prerequisites
	Using an Initial Database
	Migrating an Older Version of the Database

	Creating an Oracle Database
	Steps for Creating an Oracle Database
	Creating a Database: Example
	Troubleshooting Database Creation
	Dropping a Database

	Parameters
	DB_NAME and DB_DOMAIN
	CONTROL_FILES
	DB_BLOCK_SIZE
	DB_BLOCK_BUFFERS
	PROCESSES
	ROLLBACK_SEGMENTS
	License Parameters
	LICENSE_MAX_SESSIONS_and LICENSE_SESSIONS WARNING
	LICENSE_MAX_USERS

	Considerations After Creating a Database
	Initial Tuning Guidelines
	Allocating Rollback Segments
	Choosing the Number of DB_BLOCK_LRU_LATCHES
	Distributing I/O

	3 Starting Up and Shutting Down
	Startup Procedures
	Preparing to Start an Instance
	Starting an Instance: Scenarios

	Altering Database Availability
	Mounting a Database to an Instance
	Opening a Closed Database
	Restricting Access to an Open Database

	Shutdown Procedures
	Shutting Down a Database Under Normal Conditions
	Shutting Down a Database Immediately
	Shutdown Transactional
	Aborting an Instance

	Using Parameter Files
	The Sample Parameter File
	The Number of Parameter Files
	The Location of the Parameter File in Distributed ...

	4 Managing Oracle Processes
	Configuring Oracle for Dedicated Server Processes
	When to Connect to a Dedicated Server Process

	Configuring Oracle for Multi-Threaded Server Proce...
	SHARED_POOL_ SIZE: Allocating Additional Space in ...
	MTS_LISTENER_ ADDRESS: Setting the Listener Proces...
	MTS_SERVICE: Specifying Service Names for Dispatch...
	MTS_DISPATCHERS: Setting the Initial Number of Dis...
	MTS_MAX_ DISPATCHERS: Setting the Maximum Number o...
	MTS_SERVERS: Setting the Initial Number of Shared ...
	MTS_MAX_SERVERS: Setting the Maximum Number of Sha...

	Modifying Server Processes
	Changing the Minimum Number of Shared Server Proce...
	Adding and Removing Dispatcher Processes

	Tracking Oracle Processes
	Monitoring the Processes of an Oracle Instance
	Trace Files, the ALERT File, and Background Proces...
	Starting the Checkpoint Process

	Managing Processes for the Parallel Query Option
	Managing the Query Servers
	Variations in the Number of Query Server Processes...

	Managing Processes for External Procedures
	Terminating Sessions
	Identifying Which Session to Terminate
	Terminating an Active Session
	Terminating an Inactive Session

	5 Managing the Online Redo Log
	Planning the Online Redo Log
	Multiplex the Online Redo Log
	Place Online Redo Log Members on Different Disks
	Set the Size of Online Redo Log Members
	Choose an Appropriate Number of Online Redo Log Fi...

	Creating Online Redo Log Groups and Members
	Creating Online Redo Log Groups
	Creating Online Redo Log Members

	Renaming and Relocating Online Redo Log Members
	Dropping Online Redo Log Groups
	Dropping Online Redo Log Members
	Controlling Checkpoints and Log Switches
	Setting Database Checkpoint Intervals
	Forcing a Log Switch
	Forcing a Fast Database Checkpoint Without a Log S...

	Verifying Blocks in Redo Log Files
	Clearing an Online Redo Log File
	Restrictions

	Listing Information about the Online Redo Log

	6 Managing Control Files
	Guidelines for Control Files
	Name Control Files
	Multiplex Control Files on Different Disks
	Place Control Files Appropriately
	Manage the Size of Control Files

	Creating Control Files
	Creating Initial Control Files
	Creating Additional Copies of the Control File, an...
	New Control Files
	Creating New Control Files

	Troubleshooting After Creating Control Files
	Checking for Missing or Extra Files
	Handling Errors During CREATE CONTROLFILE

	Dropping Control Files

	7 Managing Job Queues
	SNP Background Processes
	Multiple SNP processes
	Starting up SNP processes

	Managing Job Queues
	DBMS_JOB Package
	Submitting a Job to the Job Queue
	How Jobs Execute
	Removing a Job From the Job Queue
	Altering a Job
	Broken Jobs
	Forcing a Job to Execute
	Terminating a Job

	Viewing Job Queue Information

	8 Managing Tablespaces
	Guidelines for Managing Tablespaces
	Using Multiple Tablespaces
	Specifying Tablespace Storage Parameters
	Assigning Tablespace Quotas to Users

	Creating Tablespaces
	Creating a Temporary Tablespace

	Managing Tablespace Allocation
	Altering Storage Settings for Tablespaces
	Coalescing Free Space

	Altering Tablespace Availability
	Bringing Tablespaces Online
	Taking Tablespaces Offline

	Making a Tablespace Read-Only
	Prerequisites
	Making a Read-Only Tablespace Writeable
	Creating a Read-Only Tablespace on a WORM Device

	Dropping Tablespaces
	Viewing Information About Tablespaces

	9 Managing Datafiles
	Guidelines for Managing Datafiles
	Number of Datafiles
	Set the Size of Datafiles
	Place Datafiles Appropriately
	Store Datafiles Separately From Redo Log Files

	Creating and Adding Datafiles to a Tablespace
	Changing a Datafile’s Size
	Enabling and Disabling Automatic Extension for a D...
	Manually Resizing a Datafile

	Altering Datafile Availability
	Bringing Datafiles Online in ARCHIVELOG Mode
	Taking Datafiles Offline in NOARCHIVELOG Mode

	Renaming and Relocating Datafiles
	Renaming and Relocating Datafiles for a Single Tab...
	Renaming and Relocating Datafiles for Multiple Tab...

	Verifying Data Blocks in Datafiles
	Viewing Information About Datafiles

	10 10 Guidelines for Managing Schema Objects
	Managing Space in Data Blocks
	The PCTFREE Parameter
	The PCTUSED Parameter
	Selecting Associated PCTUSED and PCTFREE Values

	Setting Storage Parameters
	Storage Parameters You Can Specify
	Setting INITRANS and MAXTRANS
	Setting Default Storage Parameters for Segments in...
	Setting Storage Parameters for Data Segments
	Setting Storage Parameters for Index Segments
	Setting Storage Parameters for LOB Segments
	Changing Values for Storage Parameters
	Understanding Precedence in Storage Parameters

	Deallocating Space
	Viewing the High Water Mark
	Issuing Space Deallocation Statements

	Understanding Space Use of Datatypes
	Summary of Oracle Datatypes

	11 Managing Partitioned Tables and Indexes
	What Are Partitioned Tables and Indexes?
	Creating Partitions
	Maintaining Partitions
	Moving Partitions
	Adding Partitions
	Dropping Partitions
	Truncating Partitions
	Splitting Partitions
	Merging Partitions
	Exchanging Table Partitions
	Rebuilding Index Partitions
	Moving the Time Window in a Historical Table
	Quiescing Applications During a Multi-Step Mainten...

	12 Managing Tables
	Guidelines for Managing Tables
	Design Tables Before Creating Them
	Specify How Data Block Space Is to Be Used
	Specify Transaction Entry Parameters
	Specify the Location of Each Table
	Parallelize Table Creation
	Consider Creating UNRECOVERABLE Tables
	Estimate Table Size and Set Storage Parameters
	Plan for Large Tables
	Table Restrictions

	Creating Tables
	Altering Tables
	Manually Allocating Storage for a Table
	Dropping Tables
	Index-Organized Tables
	What Are Index-Organized Tables?
	Creating Index-Organized Tables
	Maintaining Index-Organized Tables
	Scenario: Using the ORDER BY Clause with Index-Org...
	Scenario: Updating the Key Column
	Converting Index-Organized Tables to Regular Table...

	13 Managing Views, Sequences and Synonyms
	Managing Views
	Creating Views
	Modifying a Join View
	Replacing Views
	Dropping Views

	Managing Sequences
	Creating Sequences
	Altering Sequences
	Initialization Parameters Affecting Sequences
	Dropping Sequences

	Managing Synonyms
	Creating Synonyms
	Dropping Synonyms

	14 Managing Indexes
	Guidelines for Managing Indexes
	Create Indexes After Inserting Table Data
	Limit the Number of Indexes per Table
	Specify Transaction Entry Parameters
	Specify Index Block Space Use
	Specify the Tablespace for Each Index
	Parallelize Index Creation
	Consider Creating UNRECOVERABLE Indexes
	Estimate Index Size and Set Storage Parameters
	Considerations Before Disabling or Dropping Constr...

	Creating Indexes
	Creating an Index Associated with a Constraint
	Creating an Index Explicitly
	Re-creating an Existing Index

	Altering Indexes
	Monitoring Space Use of Indexes
	Dropping Indexes

	15 Managing Clusters
	Guidelines for Managing Clusters
	Cluster Appropriate Tables
	Choose Appropriate Columns for the Cluster Key
	Specify Data Block Space Use
	Specify the Space Required by an Average Cluster K...
	Specify the Location of Each Cluster and Cluster I...
	Estimate Cluster Size and Set Storage Parameters

	Creating Clusters
	Creating Clustered Tables
	Creating Cluster Indexes

	Altering Clusters
	Altering Cluster Tables and Cluster Indexes

	Dropping Clusters
	Dropping Clustered Tables
	Dropping Cluster Indexes

	16 Managing Hash Clusters
	Guidelines for Managing Hash Clusters
	Advantages of Hashing
	Disadvantages of Hashing
	Estimate Size Required by Hash Clusters and Set St...
	Creating Hash Clusters
	Controlling Space Use Within a Hash Cluster

	Altering Hash Clusters
	Dropping Hash Clusters

	17 General Management of Schema Objects
	Creating Multiple Tables and Views in A Single Ope...
	Renaming Schema Objects
	Analyzing Tables, Indexes, and Clusters
	Using Statistics for Tables, Indexes, and Clusters...
	Validating Tables, Indexes, and Clusters
	Listing Chained Rows of Tables and Clusters

	Truncating Tables and Clusters
	Enabling and Disabling Triggers
	Enabling Triggers
	Disabling Triggers

	Managing Integrity Constraints
	Integrity Constraint States
	Deferring Constraint Checks
	Managing Constraints That Have Associated Indexes
	Disabling, Enable Novalidating and Enabling Integr...
	Enabling and Disabling Existing Integrity Constrai...
	Dropping Integrity Constraints
	Reporting Constraint Exceptions

	Managing Object Dependencies
	Manually Recompiling Views
	Manually Recompiling Procedures and Functions
	Manually Recompiling Packages

	Managing Object Name Resolution
	Changing Storage Parameters for the Data Dictionar...
	Structures in the Data Dictionary
	Errors that Require Changing Data Dictionary Stora...

	Displaying Information About Schema Objects
	Dictionary Storage Oracle Packages
	Example 1: Displaying Schema Objects By Type
	Example 2: Displaying Column Information
	Example 3: Displaying Dependencies of Views and Sy...
	Example 4: Displaying General Segment Information
	Example 5: Displaying General Extent Information
	Example 6: Displaying the Free Space (Extents) of ...
	Example 7: Displaying Segments that Cannot Allocat...

	18 Managing Rollback Segments
	Guidelines for Managing Rollback Segments
	Use Multiple Rollback Segments
	Choose Between Public and Private Rollback Segment...
	Specify Rollback Segments to Acquire Automatically...
	Set Rollback Segment Sizes Appropriately
	Create Rollback Segments with Many Equally Sized E...
	Set an Optimal Number of Extents for Each Rollback...
	Set the Storage Location for Rollback

	Creating Rollback Segments
	Bringing New Rollback Segments Online

	Specifying Storage Parameters for Rollback Segment...
	Setting Storage Parameters When Creating a Rollbac...
	Changing Rollback Segment Storage Parameters
	Altering Rollback Segment Format
	Shrinking a Rollback Segment Manually

	Taking Rollback Segments Online and Offline
	Bringing Rollback Segments Online
	Taking Rollback Segments Offline

	Explicitly Assigning a Transaction to a Rollback S...
	Dropping Rollback Segments
	Monitoring Rollback Segment Information
	Displaying Rollback Segment Information

	19 Establishing Security Policies
	System Security Policy
	Database User Management
	User Authentication
	Operating System Security

	Data Security Policy
	User Security Policy
	General User Security
	End-User Security
	Administrator Security
	Application Developer Security
	Application Administrator Security

	Password Management Policy
	Account Locking
	Password Aging and Expiration
	Password History
	Password Complexity Verification

	Auditing Policy

	20 Managing Users and Resources
	Session and User Licensing
	Concurrent Usage Licensing
	Connecting Privileges
	Setting the Maximum Number of Sessions
	Setting the Session Warning Limit
	Changing Concurrent Usage Limits While the Databas...
	Named User Limits
	Viewing Licensing Limits and Current Values

	User Authentication
	Database Authentication
	External Authentication
	Enterprise Authentication

	Oracle Users
	Creating Users
	Altering Users
	Dropping Users

	Managing Resources with Profiles
	Creating Profiles
	Assigning Profiles
	Altering Profiles
	Using Composite Limits
	Dropping Profiles
	Enabling and Disabling Resource Limits

	Listing Information About Database Users and Profi...
	Listing Information about Users and Profiles: Exam...

	Examples

	21 Managing User Privileges and Roles
	Identifying User Privileges
	System Privileges
	Object Privileges

	Managing User Roles
	Creating a Role
	Predefined Roles
	Role Authorization
	Dropping Roles

	Granting User Privileges and Roles
	Granting System Privileges and Roles
	Granting Object Privileges and Roles
	Granting Privileges on Columns

	Revoking User Privileges and Roles
	Revoking System Privileges and Roles
	Revoking Object Privileges and Roles
	Effects of Revoking Privileges
	Granting to and Revoking from the User Group PUBLI...

	Granting Roles Using the Operating System or Netwo...
	Using Operating System Role Identification
	Using Operating System Role Management
	Granting and Revoking Roles When OS_ROLES=TRUE
	Enabling and Disabling Roles When OS_ROLES=TRUE
	Using Network Connections with Operating System Ro...

	Listing Privilege and Role Information
	Listing Privilege and Role Information: Examples

	22 Auditing Database Use
	Guidelines for Auditing
	Audit via the Database or Operating System
	Keep Audited Information Manageable

	Creating and Deleting the Database Audit Trail Vie...
	Creating the Audit Trail Views
	Deleting the Audit Trail Views

	Managing Audit Trail Information
	Events Audited by Default
	Setting Auditing Options
	Enabling and Disabling Database Auditing
	Controlling the Growth and Size of the Audit Trail...
	Protecting the Audit Trail

	Viewing Database Audit Trail Information
	Listing Active Statement Audit Options
	Listing Active Privilege Audit Options
	Listing Active Object Audit Options for Specific O...
	Listing Default Object Audit Options
	Listing Audit Records
	Listing Audit Records for the AUDIT SESSION Option...

	Auditing Through Database Triggers

	23 Archiving Redo Information
	Choosing Between NOARCHIVELOG and ARCHIVELOG Mode
	Running a Database in NOARCHIVELOG Mode
	Running a Database in ARCHIVELOG Mode

	Turning Archiving On and Off
	Setting the Initial Database Archiving Mode
	Changing the Database Archiving Mode
	Enabling Automatic Archiving
	Disabling Automatic Archiving
	Performing Manual Archiving

	Tuning Archiving
	Minimizing the Impact on System Performance
	Improving Archiving Speed

	Displaying Archiving Status Information
	Specifying the Archived Redo Log Filename Format a...

	A Space Estimations for Schema Objects
	Estimating Space Required by Non-Clustered Tables
	Estimating Space for Indexes
	Estimating Space Required by Clusters
	Estimating Space Required by Hash Clusters

	Index

