Pro*COBOL © Precompiler

Programmer’s Guide

Release 8.0

December, 1997
Part No. A58232-01

ORACLE"

Enabling the Information Age™



Pro*COBOL® Precompiler Programmer’s Guide

Part No. A58232-01

Release 8.0

© Copyright 1997, Oracle Corporation. All rights reserved.
Primary Author: Jack Melnick

Contributors: Michael Chiocca, Maura Joglekar, Thomas Kurian, Shiao-yen Lin, Diana Lorentz, Lee
Osborne, Jacqui Pons, Ajay Popat, Pamela Rothman, Gael Turk

Graphic Designer: Valarie Moore

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inher-
ently dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe, back
up, redundancy and other measures to ensure the safe use of such applications if the Programs are
used for such purposes, and Oracle disclaims liability for any damages caused by such use of the Pro-
grams.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free.

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is deliv-
ered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are ‘commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software' and use, duplication and disclo-
sure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate Il (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, Pro*COBOL, SQL*Forms, SQL*Net, and SQL*Plus are registered trademarks of Oracle Corpora-
tion, Redwood City, California.

Net8, Oracle Call Interface, Oracle?7, Oracle7 Server, Oracle8, Oracle8 Server, Oracle Forms, PL/SQL,
Pro*C, Pro*C/C++, and Trusted Oracle are trademarks of Oracle Corporation, Redwood City, California.

VMS is a registered trademark of Digital Equipment Corporation.

All other products or company names are used for identification purposes only, and may be trademarks
of their respective owners.



Contents

Y=g [0 WO EI o 10 GO0 ] 1 110 11=1 01 &I

o =) =11 <

What This Manual Has t0 OFfer ...t
Who Should Read ThisS ManUAEI?............coviiiiiie s
How This Manual IS OrganizZed ...........cccueiiiieiiiiece et
Conventions Used in ThiS Manual ............cccooi i
[ To] =1 AT ] o OO PR PPN
SYNTAX DESCIIPTION ...ttt ettt ettt b e bt bbb e eneas
SAMPIE PrOGIAIMS ...ttt bbbt bbbttt
Does the Pro*COBOL Precompiler Meet Industry Standards?.........c..ccocvevvevvivnevvnenerennnennns
REGUITEIMENTS ...ttt b bbbt bt bbb b et e e e e e ebeens
COMPIIANCE ...t bbbt b et b et b et b et bbb
ST - To o T S S
FIPS OPTION ..okt b ekt b e eb e bbbt b bttt e et e ens
(1T 1) [r=1 (0] o TSSO PRTTRP
IMILAZ SPIRIT <ttt bbb bbbt bbb
Your COMMENTS AFE WEICOIME.........ooiiiiiiteite ettt bbbt bbbt eneas

1 Introduction

WAL 1S PrOFCOBOLY ...ttt bttt ettt be bbb sne

Language ATEINALIVES. .......cooviiiiieei ettt
Why Use the Pro*COBOL PreCOMPIlEI? ......coovoiiiieiece e
WY USE SQL? ...ttt ettt sttt b et b et b et et e et e e et et et e st et e sberesberesbesenberens
WY USE PLISQLL? ..ottt sttt sttt a et b ettt e e ettt et et e b e tenbetesaetesberesbesaaresens

XXViii
XXVili
XXiX

1-2
1-3

1-3
1-4



What D0ES Pro*COBOL OFFEI7 ...ttt sttt e s sb e s s sate e saaeas 1-4

2 Learning the Basics

Key Concepts of Embedded SQL Programming ... 2-2
Embedded SQL STAtEMENTS.......ccoiiieeieeieee ettt sne e 2-2
(=10 o1=To [0 [=To ST I3 Y/ | - DG 2-5
Static versus Dynamic SQL StatemMeENTS........c.cccvcviiieiiiiee et 2-6
Embedded PLZSQL BIOCKS ......oiiiiieieeeeee ettt 2-6
Host and INdiCator Variables ..o e e 2-6
O] = Tod [l B - #2114 01T OSSO T TR PRURTP PP 2-7
JLIE: 101 L= SRRSO PRSP 2-7
Datatype EQUIVAIENCING......cccoiiieieiisiee ettt era e neeresresnesrenns 2-8
Private SQL Areas, Cursors, and ACLIVE SELS .......ccceiiiie i 2-8
QLI L ST U1 [ LSRR 2-8
ST (o] £ L [0 INVA - g o VT o 2-9

Steps in Developing an Embedded SQL Application ... 2-10

The Format of SQL STAEMENTS .......coiiiiiieieee ettt 2-12

INCLUDE SETAEIMENTS ...ttt bbbt 2-12

THE SQLCA ... ettt b et b et b e ekttt b et E e e b et e b e e bR et et et et e 2-13

OFACIES DATALYPES ....vcveveiiiteieite etttk e et b bbbt bbbt b bbbt ekt bbb bbb nn e 2-14

Declaring and Referencing HOst Variables...........coooviiiiiiie e 2-14
VARCHAR VariabIes ........cooiiiii et 2-14
Host Variable GUIAEIINES..........ccccoiiiiiee e 2-15

Declaring and Referencing Indicator Variables...........c.ooovoviiiiiiiniie s 2-15

SAMPIE TABIES ... bbbttt b b b 2-15
SAMPIE DALA. ...ttt bbb bbbt e et bbb bbb et re e 2-16

A Program Example 1: SIMPIe QUEIY .....cccocvieiiiiee ettt 2-17

3  Writing a Pro*COBOL Program

Programming GUIAEIINES .........cccv ittt eenaeresresnesre e e 3-2
ADDFEVIALIONS ... ettt r s 3-2
CaSE-TNSENSTLIVITY ...ttt bbb bbbt bbbttt n bt 3-2
(61021 @ TIY =T €] o] o OSSO 3-2
LOT0To [T ol AN - USSR 3-2
(07011 01 0 0= T TP OPRURP 3-3

iv. Pro*xCOBOL Precompiler Programmer’s Guide



(020] 2 011 11=1 1 1 £ST OO 3-3

CONTINUATION LINES ...ttt ettt sttt ettt e st et e e b e aeebesbeseesaeeas 3-3
1= T 1] S 3-4
Embedded SQL SYNTAX .......cciiiiiiiieiesieie et e ettt st e e esesresresrestesresrens 3-4
FIQUIAtiVE CONSTANTS ....ouiitiitiiee ettt bttt e b s e et e e et ese et e e besaeeaeseeseens 3-5
FRIE LENGEN ..o bbbttt 3-5
HOSt Variable INAIMES ..ot 3-5
HYPRENATEA INAMIES ...ttt bttt ettt besae e e 3-5
Y] I N TU ] g1 oY S 3-6
MAXLITERAL DEFAUIL ..ottt 3-6
Multi-Byte (NCHAR) DatatyPeS ....ccueiueiuirieieiieieeieiee ettt sttt st se e e et see e e 3-6
WHhEN NLS LOCALSYES ...ttt sttt st sae e sa e e e enasnassesnesnensenes 3-6
INULES .ot b bbb bt e bt bbb bt b e 3-6
Paragraph INGIMES ...ttt ettt et et e bt et e beebesaesaeseens 3-7
REDEFINES CIAUSE .....coiviiitieiesiesiise e stesie e seetesee e e eta e stestestestessesaesaesaessesseseessesensessessessessessens 3-7
REIAtiONAl OPEIALOLS .....c.ecvicviiiiciecieie ettt s be et s b et st sa et e sb e e e seereetesseenestesresrens 3-8
SENTENCE TEIMINATON .....itiiiiiti ettt bbb se e e et et ese e b e e seeneebeebesaesbeneas 3-8
FILLER IS AHOWEG ..ottt st sttt a s nnesnesnenaennennens 3-9
Required Declarations and SQL Statements..........ccccviiiiiiieiie i 3-9
Declare Section iS OPLIONAl ..........coi it 3-9
Precompiler Option DECLARE_SECTION ......cccccoiiiiiniinnirieese s 3-10
Using the INCLUDE StatemMENT.........cccviiiieiieicieececes ettt st se e e 3-11
L0 U 4 o] o H SRRSO PRURURTRRN 3-12
Error HANAIING . ...cvoei bbb bbbttt 3-12
HOSE WVATTADIES........ooiicc bbbt 3-12
Declaring HOSt VariabIes...........ooi i 3-12
Referencing HOSt VariabIS..........ccoiiiiiiiiee s 3-19
N T=ES] C=To B o oo ¢ 1SS 3-22
SUPPOIt FOr NESTEA PrOgramS........co.iiiieiiiiieieeec ettt sttt snesne s 3-23
SAMPIE NESTEA PrOGIraM . ....c.viviiiiiiiiietee ettt 3-24
INAICALOr VariabIES. .......ooiieicie e 3-30
Declaring INdicator VariableS ...........ooi it 3-30
Referencing INAicator Variables ... 3-30
HOSE TADIES ... bbbt b ettt 3-33
Declaring HOSE TADIES ...ttt ettt n e see e 3-33



Referencing HOSt TaDIES ......cvv it 3-34

USING INAICAtOr TABIES ......oiiiiii e 3-35
VARCHAR VariabIeS.......cooiiiii ittt et 3-36
Declaring VARCHAR Variables..........coo oottt 3-36
IMPplicit VARCHAR Group ITEIMS .....c.oiiiiciiiiieees et 3-37
Referencing VARCHAR Variables..........cooiiiiiics e 3-38
Handling Character Data..........cccccoiieiiiie it ae et sre s 3-39
NEeW DEFAUIL FOr PIC X ..ottt sne s 3-39
Effects 0f the PICX OPLION. ...t st ene e 3-39
Fixed-Length Character VariabIes. ..o 3-40
Restrictions When NLS_LOCALZYES ... e 3-41
Variable-Length Variables ... e ene s 3-41
(Of0] ] g [=Tex [ [o [N (o T @ - To] I- SO SS 3-43
ConNECtiNg USING NET8 ...t 3-44
F AN 0} (0] g = Lo [ o o o] o <SSP 3-44
(Of0] o o181 8 ¢=7 01 8 Mo To o] o 17T PPRR 3-46
SOME PreliMUNAIIES ...ttt sttt sr ettt e e e nesneneas 3-47
Default Databases and CONNECLIONS .........ccviiiiiiisie e 3-47
EXPIICITE LOGONS ...ttt bbb bbb bbb sttt ettt et b bt 3-47
IMPEICIT LOGONS ...ttt bbbttt ettt 3-53
Changing Passwords at RUNTIME ... re s 3-55
USING the CONNECT SYNTAX.......iiiiiiiciicie ettt re et e saesraesresnaesrennaens 3-55

4 Advanced Pro*COBOL Programs

THE OracCled DAtatyPES .....cc.ecui ettt bbb bbbt b et e et st bt e bt bt et et sbe b e 4-2
INTEFNAI DALATYES .....covcvieeiieci ettt bbbt b ettt 4-2
=T T I T L7 1Y/ 0 LT 4-9

DatatyPe CONVEISION. ..ottt ettt b et b e bbb bbb e et s e e et ebenbeabeene s 4-17

Explicit Control Over DATE String FOMMAL ..o 4-19

Datatype EQUIVAIENCING ...c.ocvciiiiecice sttt st s e e neeneerenneaneas 4-20
Why EQUIVAIENCE DAtatyPES? .....ooveiiiiiieieeieeie ettt ane s 4-20
Host Variable EQUIVAIENCING ......coiviiiiie e 4-21
Using the CHARF Datatype SPECITIEr .......covoveicice e 4-25
GUIRIINES ...ttt r et ar e r e e r e an e ane e 4-26
RAW and LONG RAW VAIUES .......ccuoiiiiieieeeesese ettt 4-26

vi Pro*COBOL Precompiler Programmer’s Guide



(=g oT=To Lo T To I o I ST OSSP 4-29

HOSE VArTADIES ...ttt bttt ettt ne e e 4-29
VARCHAR VariableS .....ccoiiiiie ettt sne e e 4-29
Multi-Byte NCHAR Features When NLS_LOCALZYES........ccccooviiviinnineieneiese e 4-29
INAICALOr VArTADIES ... ettt be e sne 4-30
SQLCHECK ...ttt ettt bbb b b se st se sttt e st et et e be b e te st nerens 4-30
National Language SUPPOIT........cccciiiieiiieieieeeee e e e te e stesre st st este st st esesae e e e eseesessesaesressenns 4-30
MUIti-Byte NLS CRaraCter SETS.......ccoii ittt 4-32
Character Strings in Embedded SQL.........ccoeoiiiiiiiieee e 4-32
=100l oT=To [ [<To [ 5T 0 T TP 4-33
2] F=T g1 Q- To Lo [1 0 To USROS 4-33
FaTo [Tor=Y (ol g =T T o] 1= PRSP 4-33
Embedding OCI (Oracle Call Interface) Calls .........ccoooveioiiiiici e 4-34
SEttiNg UP the LDA ...ttt b e et e e e st e s e neenesbesnesaens 4-34
Remote and Multiple CONNECLIONS ........coiiiiiiiiiiee s 4-34
Developing X/Open APPHICAtIONS ..o e 4-35
OraCle-SPECITIC ISSUBS ....cuiitiiie ittt bttt neebesae e 4-37

5 Using Embedded SQL

USING HOSE VariabIes.... ..o ettt 5-2
Output versus INPUt HOSEt Variables...........coooviiiiiiie e 5-2
UsiNg INAICator VariabIes. ...........cociiieiciccc et re s 5-3
INPUL VAETADIES......eo ettt ettt bbb e e 5-3
OULPUL VATTADIES. ... bbbttt ettt 5-4
INSEITING NUIIS ..o e e e e e re e te e re s re e e 5-4
Handling ReturNed NUIIS...........ooiiii e e 5-5
FELCHING INUIIS ... bbbttt 5-5
TESEING FOF NUIIS ..o be s te e re s re e e 5-6
Fetching TrunCated VAlUES. ... ..ot seen 5-6
The BasiC SQL StAteMENTS ......ccccviiiiiiree ettt st e s e s e esaeresresnesre e nes 5-7
=Y [Tt T To T 0SS 5-8
INSEITING ROWS ...ttt ettt bbbttt e b et e e e e et et e b e e b e e beebeebesbesbesee e ee 5-9
USING SUDGQUETTES ...ttt bbb bbbttt 5-9
UPALING ROWS ...ttt sttt st e bt st e b et e e seeneataeneeneere st ee 5-10
DEIETING ROWS ...ttt ettt b ettt b ettt esb et e e e e e e e s e et eneabeebeenesaeneas 5-10

Vii



USING the WHERE CIAUSE ......ocuveiiciccecese sttt sae et stennne 5-10

L1 T | €70 ] £ TSP PRORPROP 5-11
(1T F= U] o I O UL T SRS 5-11
@] o LT o T To [ W G101 510 ] SO TP UO TSR PR PSRRI 5-12
FetChing frOM @ CUISOK ......oiiiiiieicieee ettt 5-13
(O (0171 o K- W @181 5o SR 5-14
UsiNg the CURRENT OF CIAUSE ......cccocoiiiieieiee ettt steenese e sae et saesnnen 5-15
R CEES] € o1 (o] LTSRS 5-15
A Typical Sequence Of STAtEMENTS ... 5-16
Sample Program 2: CUrsor OPEratioNS .........coooueieiiiiieinese ettt 5-16
Sample Program 4: Datatype EQUIVAIENCING ........ccooiiiiiiiiiieieeee e 5-19

6 Using Embedded PL/SQL

viii

AAVANTAGES OF PLISQL ...tttk 6-2
Better PEIrfOIMEANCE .....oveviiiiiiece bbbt sb et et sbe e 6-2
Integration With OracCle8............ccooiii e 6-2
CUISON FOR LOOPS ...ttt sttt sn s 6-2
31 UT o] o] oo ir= Va3 6-3
=T = o TSRS 6-4
PLZSQL TABIES ...ttt et ettt et bt e sa et e bt e sb e e sbe e eb e sre e 6-5
USEr-defiNed RECOIAS ......ccuiiiiice ettt sbe e 6-5

Embedding PL/ISQL BIOCKS.........cc.oiiiiiiiece ettt ettt sreaae e ae e e e nreens 6-6

USING HOSE VAriabIes . .......coiic e 6-7
AN EXAMPIE .ottt n e re e nenrenrenrens 6-7
A More ComMPIeX EXAMPIE ....cc.oiiiiie e 6-8
VARCHAR PSEUAOLYPE ...ttt ettt bbbttt 6-10

UsiNg INAIcator VariabIes............cooviiiiiiie e e sre s 6-11
HaNAING NULIS.......ceice et e e te e ente e b e nreenes 6-12
Handling TruncCated ValUES ..ot 6-12

L0 YT gL I o [0y A I o] =SSP 6-13
ARRAYLEN STAEMENT ... bbb 6-15
Optional Keyword EXECUTE ..........ccciiiiiiiiieie sttt 6-17

L0 YT Lo O =0 S SSSPS 6-19
AN ABINALIVE ...ttt b bbb b et s e e e st ebeebenbe b 6-20

STOFEd SUDPIOGIAMS ...ttt ettt ettt 6-21

Pro*COBOL Precompiler Programmer’s Guide



Creating Stored SUDPIrOQIramIS .......coiiiiiiecceee e reere e sresreas 6-21

Calling a Stored SUDPIOGIAM ........ooiiiie ettt e e ene b snesne s 6-23
Sample Program 9: Calling a Stored ProCedure ..o 6-24
Getting Information about Stored SUDPrograms ... s 6-29
USING DYNAMIC PLISQL ..ottt 6-29
SUDPrograms RESIIICLION ..o 6-29
CUISOr VarTADIES ...ttt 6-29
Declaring a Cursor Variable...... ... 6-30
Allocating a Cursor Variable ... 6-31
Opening a Cursor Variable ... sre s 6-31
Fetching from @ Cursor Variable ..o 6-33
ClosSing @ CUISOr Variable ...t e 6-34
RESTIICTIONS ...t bbb bbb 6-34
=g o] g o] gl [ 14 0] o 130U 6-35
SAMPIE PrOGIAIMS. ..ottt bbb bbbttt ettt 6-35

7 Running the Pro*COBOL Precompiler

The Pro*COBOL COMMANG .......oooviiiiiie ettt sttt e e e e enaesasresnesreseenes 7-2
What Occurs during PrecoOmMpPilation?...........ccoiviiiiiiiiieincie s 7-2
PrecoOMPIIEr OPTIONS ... .oo.o ittt et b et ettt et se et e e bt ebesbesaesbennas 7-3
Precedence Of OPLioN VAIUES ..ot e 7-4
[V E=To Co T Tale MY TTot fo T @] o) o] o 1RSSR 7-4
€SB SENSITIVITY ...ttt sttt sttt et e s et e et e beebesbeseesaeneas 7-6
CoNFIGUIALION FIIES ..ottt 7-6
S oY =T AT aTo [ @] o] i o] o 1SR 7-7
ON the COMMEANG LINE ..o ettt b et sae s 7-7
] T - S 7-7
STele] o 1-l o) I @] o] 1 [o] o 1= SRS 7-9
QUICK RETEIENCE ... ..ttt e be et s te et e s be e besteesbeste et e sabenbeenresreenes 7-9
USING Pro*COBOL OPLIONS ...ttt sttt et sttt sb bbbt sbe e b 7-11
AASACC ..o E b b £k b e bt Ee e b e e R e bRt bR e b e b e b et e 7-12
ASSUME_SQLCODE ..ottt ettt st sttt se b e st e ebe e eneseese e 7-12
AUTO _CONNECT .ottt ettt te s e be e s besteen e saeenbesneenteeneeseeanees 7-13
CLOSE_ON_COMMIT ..ottt bbbttt snne 7-14
CONFIG .ottt s b s ettt et e ekt e bt se b e st et e s et e st et et e te s et s ete et 7-14



DBIMIS .t h bR bR bbbt 7-16
DECLARE_SECTION . ...ttt 7-17
DEFRINE ...ttt bbbkt b bbbkttt bbb 7-18
END_OF _FETCH ...ttt bttt 7-19
ERRORS. ...t n e 7-19
P S bR bbbttt 7-20
FORMAT L.ttt b e E b bbb bbbt b et b et bbb bbbt bbb b nn e 7-21
HOLD_CURSOR ..ottt an s 7-22
HO ST ettt bbbt E b £ bbbt b e 7-23
INAIMIE .ot b bt bbbt b b bbbt b et bbbt et e 7-23
INCLUDE ..ottt n et n et n s 7-24
IRECLEN ...ttt bbb bbbkttt 7-24
LITDELIM ..ottt bbbt bbbt bbb 7-25
LINAME ..o 7-26
LRECLEN . ...ttt bbbttt bbb 7-26
LT Y PE bbb bbb E bR e R bR £ bbbt e bt b bRt 7-27
MAXLITERAL ..ottt 7-27
MAXOPENGCURSORS ..ottt bbbttt 7-28
IMIODIE ...ttt bbb R bbb bbbttt 7-29
INLS_LOCAL oottt 7-30
OINAME ...kt e bt e b bbbt b et b ettt 7-30
ORACA ettt bbb bbbt bR bR bR b bbbt b et r e re e 7-31
ORECLEN ...ttt r e 7-31
PAGELEN ...ttt bbbt bbbt bbbt 7-32
P I X e E bt bbb r et n e 7-32
RELEASE_CURSOR ..ottt 7-33
SELECT_ERROR ..otttk bbbttt 7-34
SQLCHECK ...ttt bbbtk ekt ne ekt b ekt b bbbt b et r e b re e 7-35
UNSAFE_INULL ...ttt 7-37
USERID. ...ttt bbbt bbbt bbbttt 7-38
VARCH AR ...ttt b bbbt bbbt b bbbttt 7-38
XREF .ot 7-39
Conditional PreCoOmMpPIilatioNs..........cooiiiiiiii e 7-39
AN EXAIMPIE ..ottt 7-40

X Pro*COBOL Precompiler Programmer’s Guide



DefiNING SYMDOIS ...c.ooiiicicec e ettt b e e e e e teetesreerears 7-40

Separate PreCOMPIIAtIONS. .........oooiiiii ettt sbe e sne 7-41
GUIBIINES ...t bt bbbttt ettt 7-41
RESTIICTIONS ...ttt bbbttt bbb 7-42

CompPiling aNd LINKING ....ocoi et et ae st sne 7-42

8 Defining and Controlling Transactions

Some Terms YOU ShOUTA KNOW .......oiiiiiii e 8-2
How Transactions Guard YOUr Database ..........c.ccciveiriiiiiiiiiense e 8-2
How to Begin and ENd TranNSACIONS ..........ccciviiiieiiie ettt st a s ese e e sresresnesrens 8-3
Using the COMMIT SEATEMENT.........ccoiiiiiiiiiie bbb 8-4
WITH HOLD Clause in DECLARE CURSOR Statements ........ccccocvvvrevereriereeeeinsie e seeseees 8-5
CLOSE_ON_COMMIT Precompiler Option ........c.cccoceiiiiiiiieneie s 8-5
Using the ROLLBACK STAteMENT ..ottt 8-5
Statement-LeVel ROIDACKS ......ccccviiiiieeece s 8-7
Using the SAVEPOINT StatemMENT ........cvciiiiiiciie et re e sre s 8-7
USING the RELEASE OPLION ...ttt 8-9
Using the SET TRANSACTION Statement .......ccccceiieiiieriiiiie e 8-10
OVverriding Default LOCKING ...t sttt st eeresresresne 8-11
Using the FOR UPDATE OF ClAUSE .....c.couiiiiiieiieeeeies ettt 8-11
Using the LOCK TABLE STAtEMENT .........coiiiiiiiiieirieneeneesiese e 8-12
FEtChing ACIOSS COMIMUTS......civiiiiiiie ettt et e e et e b e e e e eseereereaaesrenreans 8-12
Handling Distributed TranSaCtiONS. ........ccciiiiiiiiieeie e 8-13
LT U] Lo 1= 1 1= TSRS 8-14
DI (o aTTaTo I7AY o] o] LTox=1 1 o] o 1< TSSO 8-14
ODBTAINTNG LOCKS .....ceeteit ettt sttt st b e e et e e e et e e eneeseeneeneebesresreas 8-14
USING PLZSQL ..ttt bbbttt bbbt 8-15

9 Error Handling and Diagnostics

The Need for Error HaNAIING ..o 9-2
Error HaNdling AEINATIVES .......cc.cooieicccec et sttt e e re st b sre e 9-2
SQLCODE and SQLSTATE ..ottt sttt sttt ettt sn et nnns 9-3
310 I SR 9-3
ORACA e et E et E e bR bbbt be bttt 9-4

Xi



10

Xii

Using Status Variables when MODE={ANSI JANSIL4}.......ccccoooiiiiniieee e 9-4

Some Historical INFOrMatioN ..........ccccoiiiiiiiiie e 9-4
Declaring Status VariableS..........cvciiiiiie it sre e 9-5
Status Variable CombBINAIONS.........cciiiiiii e e 9-6
StAtUS Variable VAIUES .......c.ooi ittt ne e 9-9
Using the SQL COMMUNICAtIONS ATC@......ccciirieieieieieeeeeesese e se e ste e saessessesseseesaesessesssssesses 9-19
What's INThe SQLCA? ...ttt bt beresrne 9-20
Declaring the SQLCA ... bbbttt bbb 9-20
Key Components of Error REPOITING ........coeveiiieicsiesece e ene s 9-21
1O ] I OF ] 1 ¢ U o! (U PSPPI 9-22
PLZSQL CONSIABIALIONS. ......iitiieiiiieieeeee ettt sttt ne st re b e nnas 9-25
Getting the Full Text of Error MESSA0ES .......ccevvirieierieieeeese s se st sie e e e snenns 9-25
[ 1] AN A OO SS 9-27
Using the WHENEVER StatemMeNnt..........ccooiiiiiinieieeese e 9-27
Using the WHENEVER Statement in COBOL ........cccoviviviininie v 9-29
Getting the Text Of SQL StatemMeNtS .........ccveiiiice e 9-32
Using the Oracle COMMUNICATIONS ATBA.......ccoiuiiiiiiriiiiiies ettt 9-35
What'S INThe ORACA? ..ottt bbb 9-35
Declaring the ORACA........o et e e e e s te e e nteebenreenes 9-36
ENabling the ORACA ...ttt b 9-36
Choosing RUNTIME OPLIONS........coiiiiiieie it n e e enenns 9-37
ORACA SETUCKUIE ...ttt ettt ekt e bt st e sb e e bt enseabeennesreennas 9-37
ORACA EXAMPIE ...ttt ekttt r bbbt sb et ab e bbb 9-40
Using Host Tables
What 1S @ HOSE TADIE? ... et et ene 10-2
WY USE TABIES? ..ot ettt st sttt sa e s e s e e e e e enenrennenneas 10-2
Declaring HOSE TADIES .......c.ooeie et ettt e sae e sreennes 10-2
DiMeENSIONING TADIES.......ciiiiiiiiiie bbb 10-3
RESEFICHIONS ...t bbbttt ettt et e 10-3
Using Tables in SQL StatemMentS. ..ottt sne e 10-3
SeIECTING INTO TADIES. ...ttt et 10-3
BatCh FELCRES ... e 10-4
Number of ROWS FEICNEA .........coiiiiii e 10-5
R EES] € o1 (o] LSS PSSP 10-6
Pro*COBOL Precompiler Programmer’s Guide



11

FELChING NUIIS ..o e e et e be b e renre e 10-6

Fetching TrunCated ValUES. ..ot e 10-6
INSErting With TADIES .......ciiiii e 10-7
RESTIICTIONS ...ttt bbbttt bbb 10-8
UPdating With TADIES........ccooiii e 10-8
L ES] € o1 1 o LSS 10-9
Deleting With TADIES ... et re e saesre st e 10-9
RESTIICTIONS ...ttt ettt b ettt b et e e be e e e e e b et e e e neeneebeeneaneenas 10-10
USING INICator TabIes ..o e 10-10
USING the FOR CIAUSE.......c.ocieiciccese sttt sttt sttt na e neaneens 10-11
L ES] € o1 o] LTRSS 10-12
USING the WHERE CHAUSE .....c.oouiiiiiieee ettt bbb 10-13
Mimicking the CURRENT OF ClaUSE.......cccccoiviiiiieiecrse et sne s 10-14
USING SQLERRDI(3) ...ttt ettt bbbt bbbttt et b e 10-15
Sample Program 3: Fetching in BAtChES ..o 10-15
Using Dynamic SQL
What IS DYNAMIC SQL?....iiiiiiiiiiiiiieee ettt ettt et 11-3
Advantages and Disadvantages of Dynamic SQL ........cccccovvviiiiiiiineie e 11-3
When to Use DYNAMIC SQL ..ottt ettt te e sne e 11-3
Requirements for Dynamic SQL StatemMENTS .........ccoviiiiieriieniie e 11-4
How Dynamic SQL Statements Are ProCeSSed..........ccovviviiiieiieiiiene e seesesieses e e e sve e 114
Methods for UsSiNg DYNamC SQL .....c.oiiiiiiieieiee e 11-5
1V 11 1 T o I OSSP 11-5
IMEENOM 2. bbbttt 11-6
1Y 1=] 1 g ToTo IR OSSOSO PP 11-6
1V 11 1 T o I S SPP 11-6
GUITETINES ...t bbb b bt ne bbbt 11-7
USING IMEBTNOA L ...ttt bbbt bbb et e s e e s e eneeeenre e 11-9
The EXECUTE IMMEDIATE StatemMent .........ccooovviviiiiiienesese e seesiesie e eee e seesees 11-9
AN EXAMPIE ..ottt b ettt e et et et ne e e reanea 11-10
Sample Program 6: Dynamic SQL Method 1..........ccoooiiiiiiiiiee e 11-10
USING METNOA 2.ttt bbb 11-13
THE USING CIAUSE .....ouiiiiiiiieiee ettt 11-15
Sample Program 7: Dynamic SQL Method 2. 11-15

Xiii



USING IMETNOM 3 ...ttt e st et e be et e e ae e tesaeestesneesteanaeseeeneens 11-19

PREPARE ..ottt ettt bbbttt b bbbttt bt rens 11-20
DECLARE ..ottt bbbttt a e ettt 11-20
OPEN L.ttt bbb bRt bt bt Re bR bbb R b b re b nenane 11-21
o 1O TSSO 11-21
CLOSE ... e bbb bbbt b e bbb e bbb nane 11-21
Sample Program 8: Dynamic SQL Method 3..........cooiiiiiiiii s 11-21
USING METNOA 4 ... bbbt bbb 11-25
Need fOr the SQLDA ...ttt be st e b e et e sbeenbeebeenresreenees 11-26
The DESCRIBE STALEIMENT........ciiiiiiiieiieiee ettt sbe s 11-26
WHAL IS @ SQLDA? ..ottt bbb b et e sttt renes 11-27
IMplementing MELNOA 4 ..........oov i ens 11-28
Using the DECLARE STATEMENT Statement..........cccooiiieieiiceceee e 11-29
USING HOSE TADIES ...t 11-30
USING PLISQL oottt st se et e et e ae st et e st s e et e tene et e nee e eneenaerenneanens 11-30
WIth IMEBENOA L.ttt ettt ettt abe s 11-30
WIth IMEBENOA 2. bbbt a ettt s et s et abenes 11-30
WIth IMEENOA ... bbbttt ettt enes 11-31
WIh IMIEBENOM 4. bbbttt abenes 11-31
YN 1 (=1 a1 1o o USROS 11-31
CAUTION L. b bbbtk ek ek bbb bbb bbb b 11-31

12 Using Dynamic SQL: Advanced Concepts

Meeting the Special Requirements of Method 4 ... 12-2
What Makes Method 4 SPECIAI?........ccooiiiiie e 12-2
What Information D0oes Oracle8 NEEA?............coviieiiiiiciieece e 12-2
Where Is the INformation STOred? ..o 12-3
How Is the Information ObtaiNed? ...........ccoiveiiiicc s 12-3

Understanding the SQL Descriptor Area (SQLDA).......coiiiiiiiiieieneses e 12-4
PUrpose Of the SQLDA ..ot e e e e re e e eneerenns 12-4
MUILIPIE SQLDAS ...ttt bbbttt ettt bbb nenene 12-4
Declaring @ SQLDA ... bbb 12-5

The SQLDA Variables.........coiiiiiiciece ettt ettt be et s be et sbeesaesbeesbesreesbesreens 12-8

SOME PreliMINAIIES... ..ottt et e e te e e s beete et e esbesbeeneeaneeneesneenees 12-14
USING SQLADR ..ottt bbbttt ettt b e b et 12-14

xiv. Pro*COBOL Precompiler Programmer’s Guide



13

(0001 a1 V7= ] g Vo [ D - OSSPSR 12-15

COBICING DALALYES ...ttt b bbbt et e et nn b 12-18
Handling NUII/ZNOt NUI DAtatyPes........cccovieiriiiieiieine e e 12-21
TRE BASIC STEPIS .. uiiiieiieieietiee sttt sttt et e et et e e ae et e s tesbe st e s besee st et e teseenbesee e eneeneereanearens 12-22
A Closer LOOK @t EACH STEP .....couiiiiiiiie ettt sttt sne s 12-23
Declare @ HOSE SIFING ....ocveiiiiiieie e bbb 12-24
DeClare the SQLDAS........cvcieccce ettt s b e be e sa et et e e e s e s e ereeneanesraaneareas 12-25
Set the Maximum Number to DESCRIBE ..ot 12-26
INTtIAlIZE the DESCIIPTOIS. ..ot bbb 12-26
Store the Query Text in the HOSt STriNg ......cociveiiicicc e 12-30
PREPARE the Query from the HOSt StHNg.........cccooiiiiiiiiii e 12-30
(D] O I = O U | <o ] ST P 12-30
DESCRIBE the Bind VariabIes ... 12-30
Reset Number of place-holIders ..o 12-33
Get Values for Bind Variables..........ccvieiiieieecccese e 12-33
OPEN The CUFSOT ..ottt 12-35
DESCRIBE the SEIECE LISt ......c.cioiiiiiieiiiseceiiee ettt 12-35
Reset Number of SEleCt-LiSt ItEMS ......coiiiiiie e 12-36
Reset Length/Datatype of Each Select-List Item ..o 12-37
FETCH ROWS from the ACLIVE Set.......c.ooiiiee s 12-38
Get and Process Select-LiSt VAIUES. ... s 12-39
CLOSE The CUISOE ...ttt bbbttt 12-39
Using Host Tables With Method 4 ..o 12-40
Sample Program 10: Dynamic SQL Method 4............ooci i 12-45
Writing User Exits
WAL IS @ USEE EXIT?....eiiciiiicii ettt ettt 13-3
WY WIITE @ USEE EXIT? ...ociiiiiiiccce ettt sttt st sttt neenaete s neeneerenne e 13-4
DeVeloping @ USEI EXIT ... ..ottt et 13-4
WIITING 8 USEE EXIT ...ttt 13-5
Requirements for Variables..........cccc it 13-5
THe TAF GET STAEIMENT ..ottt et ettt teanesee e 13-5
THe TAF PUT SEAtEMENT ....c.iieieieiieeeee ettt st enesressesnesnennas 13-6
CalliNG @ USEE EXIT ..viiiicieicicec sttt sttt sttt et et en s eseeseeseetesrenrea 13-7
Passing Parameters t0 @ USEr EXIT.........cccoviiiiiiiiiiiieiiesie e 13-8

XV



Returning Values 10 @ FOIMML..........ci it ene s 13-8

THE TAP CONSTANTS ...ttt ettt sttt b et et et se e eneeseeneaneebeneeee 13-8
Using the SQLIEM FUNCLION ........ooveieicceeec ettt sne e 13-8
USING WHENEWVER ..ottt sttt st 13-9
Sample Program 5: Oracle FOrmS USEr EXIt .........cccveiiriiiniiiieiieiseseseee e 13-9
Precompiling and Compiling @ USEr EXit.........cccceveieiiiinieisese s ese s 13-11
USING the GENXTB ULHILY ...c.ooiiiiiiiicieceee et 13-12
Linking a User EXit iNt0 SQL*FOIMS.......coiiiiiiiiiii et 13-12
Guidelines for SQL*FOrms USEI EXITS ......ccccveiiiiiiiiciiie ettt sre e sre e sve s 13-13
NAMING the EXIT ..ottt e st et te e re e 13-13
COoNNECEING 10 OFACIE ..ot 13-13
(TS U T o T 4 2 O 1| RSO SR 13-13
USING HOSE VAriabIes........ccuviiiiicecee ettt 13-13
UPAAtiNG TADIES ...t bbb 13-13
ISSUING COMIMANTS ..ottt re st st se e e et e e e s ensesaeneeneerennes 13-14
EXEC TOOLS SEAEIMENTS.....c.tiitiiiiitieie ettt sr bbbt sne e sre e nbeanne s 13-14
EXEC TOOLS SET ..ottt ettt bttt ettt b ne b e sans 13-14
EXEC TOOLS GET ..ottt bbbttt b 13-15
EXEC TOOLS MESSAGE ..ottt 13-16

A New Features

DB2 Compatibility FEATUIES ........coiiiiiiiiie et A-2
Optional DECLARE SECTION ..ottt ettt A-2
Support of Additional DatatyPeS .......cccvvvireiiricereee e e A-2
Support of Group Items as HoSt Variables ... A-3
Implicit Form of VARCHAR Group ItEMS .........coiiiiiiiiese e A-3
Explicit Control Over the END_OF FETCH SQLCODE Number .........ccccoevvevvviviivinnnsnns A-3
Support of the WITH HOLD Clause in the DECLARE CURSOR Statement ...................... A-4
New Precompiler Option CLOSE_ON_COMMIT ......ccociiiiiiniiieinene e A-4
SUPPOIt FOFr DSNTIAR ...t ettt e e e e e eneene e e enesrenrenes A-4
Date String Format Precompiler OPLion ... A-4
Any Terminator Allowed after END-EXEC.........c.cccooiiiiiiiniiiieeeee e A-5

OTNEI NEW FEATUIES......ocviiiietiis ettt A-5
New Name for Configuration File ...........cccvoiiieiicie e A-5
Support of Other Additional DatatyPeS........ccoviriiirieiriirieirer s A-5

xvi Pro*COBOL Precompiler Programmer’s Guide



SUPPOIt OFf NESTEA PrOQIaMS ......ccviiviicieicieie ettt esnesbestesresreens
Support for REDEFINES and FILLER .........coooiiii e
New Precompiler Option PICX ..ot
Optional CONVBUFSZ Clause in VAR Statement..........ccccveviieienicieiereceeesie e e
IMProved Error REPOITING .....co.o ittt ettt ettt ee e
Changing Password When CONNECLING .......ocorieiiinenee e

B Operating System Dependencies

System-Specific References in this Manual.............ccccoooi e
COBOL VEISIONS.....tiiiteieisieie ettt ettt bbbt b bbbt bbbt nn ettt n b bt nen e
HOSE VArTADIES ...ttt ettt ettt sbe e e e
INCLUDE STATEIMENTS .....eiiieiieitieiesie ettt st ae st s e sbe e e st estesneensesneentesneeneesrens
MAXLITERAL DEFAUIL ..ottt
PIC N Clause for Multi-byte NLS CharaCters ..o

C Oracle8 Reserved Words, Keywords, and Namespaces

Oracle8 Reserved Words and KEYWOITS ..ottt
Oracle8 ReSErVed NAMESPACES. ..ottt bbbt b et b ettt sttt et

D Performance Tuning

What Causes POOF PErfOrMANCE? .........ccoviiiiiiiiniee ettt
How Can Performance be IMProved?..........cooiiiiiieiiii st
USING HOSE TADIES ...ttt et ettt et et aeebe b ne b neas
USIiNg EMDedded PLISQL ..ottt
OptiMizing SQL STALEMENTES.......ccci i e e s resresresresrs
OPLIMIZEN HINTS ...t ettt ne et e eeaeebeneeseesaeeas
THACE FACTITY .eviectisecee bbbt b ettt bbbt sb et e b sneneas
(0T Lo g To 1= (=TSR
Taking Advantage of ROW-LeVel LOCKING .....ccoiiiiiiiii e
Eliminating UNNECESSary Parsing.........ccoviiiiiiiiiiiessieee et
HanNdliNg EXPHCIT CUISOIS.......cccciiiiiiiie ettt sttt sa e te e snesresre e
Using the Cursor Management OPLIONS ........c.cooiiiiiiiie e

D-2
D-2
D-3

Xvii



E Syntactic and Semantic Checking

What Is Syntactic and Semantic Checking?...........coccoiiiiiiii e E-2
Controlling the Type and Extent of CheCKiNg.........cccocvvviiiiiiiinin i E-2
Specifying SQLCHECK=SEMANTICS.........ciiiiieii e E-3

Enabling @ SEMAaNtiC CHECK .........c.ciiiiiiicie e E-3

F Embedded SQL Commands and Precompiler Directives

xViii

Summary of Precompiler Directives and Embedded SQL Commands ..........cccoceovveivncrinennas F-3
About The Command DESCIIPLIONS ......cc.civeieieirieci et sre e srenes F-4
How t0 Read SYNtax DIagramiS.........c.cccieiiiiiiicicie ettt st ste sttt e ste e sreenes F-5

StAtEMENT TEIMINALOT ... .. ittt sttt et e et e b e e e b sne et e F-5

Required Keywords and Parameters ..o seesese e se e e snssnesne s F-5

Optional Keywords and Parameters..........coooiieeiiiiinese e F-6

SYNTAX LOOPS ...ttt ettt F-7

Y LU 0T L fl DT =T | Ut oS F-7

DT U7 10T =IO o] (<o £ OSSPSR F-7
ALLOCATE (Executable Embedded SQL EXtENSION) .......ccoiiiiniiiiniiinieinieise e F-8
CLOSE (Executable EMbedded SQL)......cccceiiiiieisieceee et e s snesnens F-9
COMMIT (Executable Embedded SQL).......cccciiiiiiiiii et F-10
CONNECT (Executable Embedded SQL EXIENSION) ....ccooiiiiiiiiiiieiieneee e F-12
DECLARE CURSOR (Embedded SQL DireCtiVe).......cccccciveiriviieiineseseseseseesieiesesesesesesnens F-14
DECLARE DATABASE (Oracle Embedded SQL Directive) ......ccccccvovevevieiviiese e F-17
DECLARE STATEMENT (Embedded SQL DIirectiVe) ......cccccovveriieriiieniiinseseeseesiessiessnens F-18
DECLARE TABLE (Oracle Embedded SQL DIreCtiVe) .......ccccoovivrvrieninieneseeereee e F-20
DELETE (Executable Embedded SQL) ......cccocieiiiiei et F-21
DESCRIBE (Executable Embedded SQL) ...ttt F-26
EXECUTE ... END-EXEC (Executable Embedded SQL EXteNSion).........cccccevveriereevcvnivsnnnnnn, F-27
EXECUTE (Executable Embedded SQL) ..ot F-29
EXECUTE IMMEDIATE (Executable Embedded SQL)......ccccccviiiieiiiiiiiiseneieeeee e F-31
FETCH (Executable Embedded SQL).......ccccivieiiiicieisese e sne e F-32
INSERT (Executable Embedded SQL) .......c.ccoiiiieiiiie et F-35
OPEN (Executable EMbedded SQL)........cccoiiiiiiiieinee e F-38
PREPARE (Executable Embedded SQL).......ccccceiiieiiieieicsiese s sne s F-40

LU EST= T (oI AN Lo (L TP P R TPPRRURI F-41
ROLLBACK (Executable Embedded SQL) ........cccoiiiiiiiiieieeesecse e F-42

Pro*COBOL Precompiler Programmer’s Guide



SAVEPOINT (Executable Embedded SQL) ........cccoouiiiiiieiiiiiese e e e sre e e F-45

SELECT (Executable EmMbedded SQL).......cooiiiiieeeeeec et F-46
UPDATE (Executable Embedded SQL) ..ot F-50
VAR (Oracle Embedded SQL DIFeCLIVE) ......ccccoveiciieiices et F-54

....................................................................................................................................................... F-54
WHENEVER (Embedded SQL DiIreCliVe)........ccoviiiiniirieiereie e F-56

Xix



xx Pro*COBOL Precompiler Programmer’s Guide



Send Us Your Comments

Pro*COBOL ® Precompiler Programmer’s Guide, Release 8.0

Part No. A58232-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?

What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

electronic mail - infodev@us.oracle.com
FAX - (650) 506-7228 Attn: Information Development
postal service:

Oracle Corporation

Server Technologies Documentation Manager
500 Oracle Parkway

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

XXi



xxii  Pro*COBOL® Precompiler Programmer’s Guide



Preface

This manual is a comprehensive user’s guide and reference to the Oracle
Pro*COBOL Precompiler. It shows you how to develop COBOL programs that use
the database languages SQL and PL/SQL to access and manipulate Oracle data.
See the Oracle8 SQL Reference and PL/SQL User’s Guide and Reference for more infor-
mation on SQL and PL/SQL.

This preface covers these topics:

«  What This Manual Has to Offer

«  Who Should Read This Manual?

« How This Manual Is Organized

« Conventions Used in This Manual

« Sample Programs

« Does the Pro*COBOL Precompiler Meet Industry Standards?

= Your Comments Are Welcome

Preface xxiii



What This Manual Has to Offer

What This Manual Has to Offer

This manual shows you how the Oracle Pro*xCOBOL Precompiler and embedded
SQL can benefit your entire applications development process. It gives you lessons
in how to design and develop applications that harness the power of Oracle. And,
as quickly as possible, it helps you become proficient in writing embedded SQL
programs.

An important feature of this manual is its emphasis on getting the most out of
Pro*COBOL and embedded SQL. To help you master these tools, this manual
shows you all the “tricks of the trade” including ways to improve program perfor-
mance. It also includes many program examples to better your understanding and
demonstrate the usefulness of embedded SQL.

Note: You will not find installation instructions or system-specific information
in this manual. For that kind of information, refer to your system-specific Ora-
cle documentation.

For information about migrating your applications from Oracle7 to Oracle8, see
Oracle8 Migration.

Who Should Read This Manual?

Anyone developing new COBOL applications or converting existing applications
to run in the Oracle8 environment will benefit from reading this manual. Written
especially for programmers, this comprehensive treatment of Pro*COBOL will also
be of value to systems analysts, project managers, and others interested in embed-
ded SQL applications.

To use this manual effectively, you need a working knowledge of the following sub-
jects:

« applications programming in COBOL
« the SQL database language

« Oracle8 concepts and terminology

xxiv Pro*COBOL Precompiler Programmer’s Guide



How This Manual Is Organized

How This Manual Is Organized

A brief summary of what you will find in each chapter and appendix follows.
Chapter 1: Introduction

This chapter introduces you to Pro*COBOL. You look at its role in developing appli-
cation programs that manipulate Oracle data and find out what they allow your
applications to do.

Chapter 2: Learning the Basics

This chapter explains how embedded SQL programs do their work. You examine
the special environment in which they operate, the impact of this environment on
the design of your applications, the key concepts of embedded SQL programming,
and the steps you take in developing an application.

Chapter 3: Writing a Pro*COBOL Program

This chapter provides the basic information you need to write a Pro*COBOL pro-
gram. You learn programming guidelines, coding conventions, language-specific
features and restrictions.

Chapter 4: Advanced Pro*COBOL Programs

This chapter describes National Language Support (NLS), discusses datatype equiv-
alencing, shows you how to declare SQL communications areas, and how to con-
nect to an Oracle database. In addition, this chapter shows you how to embed
Oracle Call Interface (OCI) calls in your program and how to develop X/Open
applications.

Chapter 5: Using Embedded SQL

This chapter teaches you the essentials of embedded SQL programming. You learn
how to use host variables, indicator variables, cursors, cursor variables, and the fun-
damental SQL commands that insert, update, select, and delete Oracle data.

Chapter 6: Using Embedded PL/SQL

This chapter shows you how to improve performance by embedding PL/SQL trans-
action processing blocks in your program. You learn how to use PL/SQL with host
variables, indicator variables, cursors, stored subprograms, host arrays, and
dynamic PL/SQL.

Chapter 7: Running the Pro*COBOL Precompiler

This chapter details the requirements for running the Pro*COBOL Precompiler. You
learn what happens during precompilation, how to issue the Pro*COBOL com-

Preface xxv



How This Manual Is Organized

XXVi

mand, how to specify the many useful precompiler options, and how to do condi-
tional and separate precompilations.

Chapter 8: Defining and Controlling Transactions

This chapter describes transaction processing. You learn the basic techniques that
safeguard the consistency of your database.

Chapter 9: Error Handling and Diagnostics

This chapter provides an in-depth discussion of error reporting and recovery. You
learn how to detect and handle errors using the status variable SQLSTATE, the
SQLCA structure, and the WHENEVER statement. You also learn how to diagnose
problems using the ORACA.

Chapter 10: Using Host Tables

This chapter looks at using tables to improve program performance. You learn how
to manipulate Oracle data using tables, how to operate on all the elements of a
table with a single SQL statement, and how to limit the number of table elements
processed.

Chapter 11: Using Dynamic SQL

This chapter shows you how to take advantage of dynamic SQL. You are taught
four methods, from simple to complex, for writing flexible programs that let users
build SQL statements interactively at run time.

Chapter 12: Using Dynamic SQL: Advanced Concepts

This chapter shows you how to implement dynamic SQL Method 4, an advanced
programming technique that lets you write highly flexible applications. Numerous
examples are used to illustrate the method.

Chapter 13: Writing User Exits

This chapter focuses on writing user exits for your SQL*Forms or Oracle Forms
applications. First, you learn the commands that allow a Forms application to inter-
face with user exits. Then, you learn how to write and link a Forms user exit.

Appendix A: New Features

This appendix highlights the improvements and new features introduced with
Release 8.0 of the Pro*xCOBOL Precompiler.

Appendix B: Operating System Dependencies

Pro*COBOL Precompiler Programmer’s Guide



Conventions Used in This Manual

Some details of Pro*xCOBOL programming vary from one system to another. So,
you are occasionally referred to other manuals for system-specific information. For
convenience, this appendix collects all such external references.

Appendix C: Oracle8 Reserved Words, Keywords, and Namespaces

This appendix lists words that have a special meaning to Oracle and namespaces
that are reserved for Oracle libraries.

Appendix D: Performance Tuning

This appendix gives you some simple methods for improving the performance of
your applications.

Appendix E: Syntactic and Semantic Checking

This appendix shows you how to use the SQLCHECK option to control the type
and extent of syntactic and semantic checking done on embedded SQL statements
and PL/SQL blocks.

Appendix F: Embedded SQL Commands and Precompiler Directives

This appendix contains descriptions of precompiler directives, embedded SQL com-
mands, and Oracle embedded SQL extensions. These commands are prefaced in
your source code with the keywords, EXEC SQL.

Conventions Used in This Manual

Notation

Important terms being defined for the first time are italicized. In discussions,
UPPER CASE is used for database objects and SQL keywords, and italicized lower
case is used for the names of variables, constants, and parameters.

The following notation is used in this manual:

<> Angle brackets enclose the name of a syntactic element.

A dot separates an object name from a component name and so qualifies a
reference.

Two dots separate the lowest and highest values in a range.

An ellipsis shows that statements or clauses irrelevant to the discussion were
left out.

Preface xxvii



Sample Programs

# This character is used in text to represent blank spaces when referring to the
content of a database column.

Syntax Description

Embedded SQL syntax is described using a variant of Backus-Naur Form (BNF),
which includes the following symbols:

[] Brackets enclose optional items.
{} Braces enclose items only one of which is required.
| A vertical bar separates alternatives within brackets or braces.

An ellipsis shows that the preceding parameter can be repeated.

Sample Programs

This manual provides several Pro*COBOL programs to help you in writing your
own. These programs illustrate the key concepts and features of Pro*xCOBOL pro-
gramming and demonstrate techniques that let you take full advantage of SQL’s
power and flexibility.

Each sample program in this manual is available on-line. The following table
shows the usual filenames of the sample programs. However, the exact filenames
are system-dependent. For exact filenames, see your Oracle system-specific docu-
mentation.

xxviii  Pro*COBOL Precompiler Programmer’s Guide



Does the Pro*COBOL Precompiler Meet Industry Standards?

Does the Pro*COBOL Precompiler Meet Industry Standards?

Requirements

Filename
SAMPLEL1.PCO
SAMPLE2.PCO
SAMPLE3.PCO
SAMPLE4.PCO
SAMPLES.PCO
SAMPLEG6.PCO
SAMPLE7.PCO
SAMPLES8.PCO
SAMPLE9.PCO
SAMPLE10.PCO
SAMPLE11.PCO

Demonstrates...

Simple Query

Cursor Operations

Host Tables

Datatype Equivalencing
Oracle Forms User Exit
Dynamic Sql Method 1
Dynamic Sql Method 2
Dynamic Sgl Method 3
Calling A Stored Procedure
Dynamic SQL Method 4

Cursor Variable Operations

SQL has become the standard language for relational database management sys-
tems. This section describes how the Pro*COBOL Precompiler conforms to the lat-

est SQL standards established by the following organizations:

« American National Standards Institute (ANSI)

« International Standards Organization (1SO)

« U.S. National Institute of Standards and Technology (NIST)

Those organizations have adopted SQL as defined in the following publications:

« ANSI Document ANSI X3.135-1992, Database Language SQL

«  ANSI Document ANSI X3.168-1992, Database Language Embedded SQL

« International Standard ISO/IEC 9075:1992, Database Language SQL

« NIST Federal Information Processing Standard FIPS PUB 127-2, Database Lan-

guage SQL

ANSI X3.135-1992 (known informally as SQL92) specifies a “conforming SQL lan-
guage” and, to allow implementation in stages, defines three language levels:

. Full SQL

Preface xxix



Does the Pro*COBOL Precompiler Meet Industry Standards?

« Intermediate SQL (a subset of Full SQL)
« Entry SQL (a subset of Intermediate SQL)
A conforming SQL implementation must support at least Entry SQL.

ANSI X3.168-1992 specifies the syntax and semantics for embedding SQL state-
ments in application programs written in a standard programming language such
as COBOL-74 and COBOL-85.

ISO/IEC 9075-1992 fully adopts the ANSI standards.

FIPS PUB 127-2, which applies to RDBMS software acquired for federal use, also
adopts the ANSI/ISO standards. In addition, it specifies minimum sizing parame-
ters for database constructs and requires a “FIPS Flagger” to identify ANSI exten-
sions.

For copies of the ANSI standards, write to
American National Standards Institute
1430 Broadway

New York, NY 10018, USA

For a copy of the ISO standard, write to the national standards office of any I1SO par-
ticipant. For a copy of the NIST standard, write to

National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161, USA

Compliance
Under Oracle8, the Pro*COBOL Precompiler complies 100% with the ANSI, ISO,
and NIST standards. As required, they support Entry SQL and provide a FIPS Flag-
ger.

FIPS Flagger

According to FIPS PUB 127-1, “an implementation that provides additional facili-
ties not specified by this standard shall also provide an option to flag nonconform-
ing SQL language or conforming SQL language that may be processed in a
nonconforming manner.” To meet this requirement, the Pro*COBOL Precompiler
provides the FIPS Flagger, which flags ANSI extensions. An extension is any SQL ele-

xxX Pro*COBOL Precompiler Programmer’s Guide



Your Comments Are Welcome

FIPS Option

Certification

MIA/SPIRIT

ment that violates ANSI format or syntax rules, except privilege enforcement rules.
For a list of Oracle extensions to standard SQL, see the Oracle8 SQL Reference.

You can use the FIPS Flagger to identify

« nonconforming SQL elements that might have to be modified if you move the
application to a conforming environment

« conforming SQL elements that might behave differently in another processing
environment

Thus, the FIPS Flagger helps you develop portable applications.

An option named FIPS governs the FIPS Flagger. To enable the FIPS Flagger, you
specify FIPS=YES inline or on the command line. For more information about the
command-line option FIPS, see "FIPS" on page 7-20.

NIST tested the Pro*COBOL Precompiler for ANSI Entry SQL compliance using the
SQL Test Suite, which consists of nearly 300 test programs. Specifically, the pro-
grams tested for conformance to the COBOL embedded SQL standards. As a result,
the Pro*COBOL Precompiler was certified 100% ANSI-compliant.

For more information about the tests, write to
National Computer Systems Laboratory
Attn.: Software Standards Testing Program

National Institute of Standards

The Pro*COBOL Precompiler provides National Language Support (NLS) of
multi-byte character data by complying with the Multivendor Integration Architec-
ture (MIA) specification, Version 1.3, and the Service Providers Integrated Require-
ments for Information Technology (SPIRIT) specification, Issue 2.

Your Comments Are Welcome

The Oracle Corporation technical staff values your comments. As we write and
revise, your opinions are the most important feedback we receive. Please use the

Preface xxxi



Your Comments Are Welcome

Reader’s Comment Form to tell us what you like and dislike about this Oracle pub-
lication.

xxxii  Pro*COBOL Precompiler Programmer’s Guide



1

Introduction

This chapter introduces you to the Pro*COBOL Precompiler. You look at its role in
developing application programs that manipulate Oracle data and find out what it
allows your applications to do. The following questions are answered:

What Is Pro*xCOBOL?

Why Use the ProxCOBOL Precompiler?
Why Use SQL?

Why Use PL/SQL?

What Does Pro*COBOL Offer?

Introduction 1-1



What Is Pro*COBOL?

What Is Pro*COBOL?

The Pro*COBOL Precompiler is a programming tool that allows you to embed SQL
statements in a high-level host program. As Figure 1-1 shows, the precompiler
accepts the host program as input, translates the embedded SQL statements into
standard Oracle run-time library calls, and generates a source program that you
can compile, link, and execute in the usual way.

Figure 1-1 Embedded SQL Program Development

Host
Program

Oracle
Precompiler

Source
Program

Object
Program

Executable
Program

1-2 Pro*COBOL Precompiler Programmer’s Guide

With embedded SQL statements

With all SQL statements replaced by library calls

Oracle
Runtime
Library

To resolve calls (SQLLIB)




Why Use SQL?

Language Alternatives

Oracle Precompilers are available (but not on all systems) for the following high-
level languages:

« C/C++
. COBOL
« FORTRAN

Pro*Pascal, Pro*ADA and Pro*PL/1 will not be released with Oracle8. However,
Oracle will continue to issue patch releases for Pro*FORTRAN as bugs are reported
and corrected.

Why Use the Pro*COBOL Precompiler?

The Pro*COBOL Precompiler lets you pack the power and flexibility of SQL into
your application programs. You can use SQL in popular high-level languages such
as COBOL. A convenient, easy to use interface lets your application access Oracle
directly.

Unlike many application development tools, Pro*COBOL lets you create highly
customized applications. For example, you can create user interfaces that
incorporate the latest windowing and mouse technology. You can also create
applications that run in the background without the need for user interaction.

Furthermore, with Pro*COBOL you can fine-tune your applications. They allow
close monitoring of resource usage, SQL statement execution, and various run-time
indicators. With this information, you can adjust program parameters for
maximum performance.

Why Use SQL?
If you want to access and manipulate Oracle data, you need SQL. Whether you use
SQL interactively or embedded in an application program depends on the job at
hand. If the job requires the procedural processing power of COBOL, or must be
done on a regular basis, use embedded SQL.

SQL has become the database language of choice because it is flexible, powerful,
and easy to learn. Being non-procedural, it lets you specify what you want done
without specifying how to do it. A few English-like statements make it easy to
manipulate Oracle data one row or many rows at a time.

You can execute any SQL (not SQL*Plus) statement from an application program.
For example, you can

Introduction 1-3



Why Use PL/SQL?

« CREATE, ALTER, and DROP database tables dynamically
« SELECT, INSERT, UPDATE, and DELETE rows of data
« COMMIT or ROLLBACK transactions

Before embedding SQL statements in an application program, you can test them
interactively using SQL*Plus or Server Manager. Usually, only minor changes are
required to switch from interactive to embedded SQL.

Why Use PL/SQL?

An extension to SQL, PL/SQL is a transaction processing language that supports
procedural constructs, variable declarations, and robust error handling. Within the
same PL/SQL block, you can use SQL and all the PL/SQL extensions.

The main advantage of embedded PL/SQL is better performance. Unlike SQL,
PL/SQL allows you to group SQL statements logically and send them to Oracle in
a block rather than one by one. This reduces network traffic and processing
overhead.

For more information about PL/SQL including how to embed it in an application
program, see Chapter 5, “Using Embedded SQL”.

What Does Pro*COBOL Offer?

As Figure 1-2 shows, Pro*COBOL offers many features and benefits that help you
to develop effective, reliable applications.

1-4 Pro*COBOL Precompiler Programmer’s Guide



What Does Pro*COBOL Offer?

Figure 1-2  Features and Benefits

Runtime
Diagnostics

Separate
Precompilation

Conditional
Precompilation

Concurrent
Connects

Array
Operations

Datatype
Equivalencing

ANSI/ISO SQL
Conformance

Highly
Customized
Applications

Dynamic
SQL

Event Language

Handling [ Alternatives
Pro*COBOL

Syntax

Checking User Exits

Support for
PL/SQL

Automatic
Datatype
Conversion

Runtime
Options

For example, the Pro*COBOL Precompiler allows you to:

write your application in COBOL
conform to the ANSI/ISO embedded SQL standard

take advantage of dynamic SQL, an advanced programming technique that lets
your program accept or build any valid SQL statement at run-time in a COBOL

program

design and develop highly customized applications

Introduction

1-5



What Does Pro*COBOL Offer?

« convert automatically between Oracle8 internal datatypes and COBOL
datatypes

« improve performance by embedding PL/SQL transaction processing blocks in
your COBOL application program

« specify useful precompiler options and change their values during precompila-
tion

« Use datatype equivalencing to control the way Oracle8 interprets input data
and formats output data

« precompile several program modules separately, then link them into one exe-
cutable program

« check the syntax and semantics of embedded SQL data manipulation state-
ments and PL/SQL blocks

« access Oracle8 databases on multiple nodes concurrently using Net8
« Uuse arrays as input and output program variables

« precompile sections of code conditionally so that your host program can run in
different environments

« interface with tools such as Oracle Forms and Oracle Reports via user exits
written in a high-level language

« handle errors and warnings with the ANSI-approved status variables SQL-
STATE and SQLCODE, and/or the SQL Communications Area (SQLCA) and
WHENEVER statement

« use an enhanced set of diagnostics provided by the Oracle Communications
Area (ORACA)

1-6 Pro*COBOL Precompiler Programmer’s Guide



2

Learning the Basics

This chapter explains how embedded SQL programs do their work. You examine
the special environment in which they operate and the impact of this environment
on the design of your applications.

After covering the key concepts of embedded SQL programming and the steps you
take in developing an application, this chapter uses a simple program to illustrate
the main points.

Topics covered are:

Key Concepts of Embedded SQL Programming
Steps in Developing an Embedded SQL Application
The Format of SQL Statements

INCLUDE Statements

The SQLCA

Oracle8 Datatypes

Declaring and Referencing Host Variables
Declaring and Referencing Indicator Variables
Sample Tables

A Program Example 1: Simple Query

Learning the Basics 2-1



Key Concepts of Embedded SQL Programming

Key Concepts of Embedded SQL Programming

This section lays the conceptual foundation on which later chapters build. It dis-
cusses the following subjects:

« embedded SQL statements

« executable versus declarative SQL statements
»  static versus dynamic SQL statements

« embedded PL/SQL blocks

« host and indicator variables

« Oracle datatypes

« tables

« datatype equivalencing

« private SQL areas, cursors, and active sets

« transactions

« errors and warnings

Embedded SQL Statements

The term embedded SQL refers to SQL statements placed within an application pro-
gram. Because the application program houses the SQL statements, it is called a
host program, and the language in which it is written is called the host language. For
example, with Pro*COBOL you can embed SQL statements in a COBOL host pro-
gram.

For example, to manipulate and query Oracle data, you use the INSERT, UPDATE,
DELETE, and SELECT statements. INSERT adds rows of data to database tables,
UPDATE modifies rows, DELETE removes unwanted rows, and SELECT retrieves
rows that meet your search criteria.

Only SQL statements—not SQL*Plus statements—are valid in an application pro-
gram. (SQL*Plus has additional statements for setting environment parameters,
editing, and report formatting.)

Executable versus Declarative Statements

Embedded SQL includes all the interactive SQL statements plus others that allow
you to transfer data between Oracle and a host program. There are two types of
embedded SQL statements: executable and declarative.

2-2  Pro*COBOL Precompiler Programmer’s Guide



Key Concepts of Embedded SQL Programming

Executable SQL statements generate calls to the database. They include almost all
gueries, DML (Data Manipulation Language), DDL (Data Definition Language),
and DCL (Data Control Language) statements.

Declarative statements, on the other hand, do not result in calls to SQLLIB and do
not operate on Oracle data. You use them to declare Oracle objects, communica-
tions areas, and SQL variables. They can be placed wherever host-language declara-
tions can be placed.

Table 2-1 groups the various embedded SQL statements:

Learning the Basics 2-3



Key Concepts of Embedded SQL Programming

Table 2-1 Embedded SQL Statements

Declarative SQL

STATEMENT

PURPOSE

ARRAYLEN*

To use host tables with PL/SQL

BEGIN DECLARE SECTION*
END DECLARE SECTION*

To declare host variables

DECLARE*

To name Oracle objects

INCLUDE*

To copy in files

VAR*

To equivalence variables

WHENEVER*

To handle runtime errors

Executable SQL

STATEMENT

PURPOSE

ALLOCATE*
ALTER
ANALYZE
AUDIT
COMMENT
CONNECT*
CREATE
DROP
GRANT
NOAUDIT
RENAME
REVOKE
TRUNCATE

To define and control Oracle data

2-4 Pro*COBOL Precompiler Programmer’s Guide




Key Concepts of Embedded SQL Programming

Table 2-1 Embedded SQL Statements

CLOSE* To query and manipulate Oracle data
DELETE
EXPLAIN PLAN
FETCH*
INSERT

LOCK TABLE
OPEN*

SELECT
UPDATE

COMMIT To process transactions
ROLLBACK

SAVEPOINT

SET TRANSACTION
DESCRIBE* To use dynamic SQL
EXECUTE*
PREPARE*

ALTER SESSION To control sessions
SET ROLE

*Has no interactive counterpart

Embedded SQL Syntax

In your application program, you can freely intermix SQL statements with host-lan-
guage statements and use host-language variables in SQL statements. The only spe-
cial requirement for building SQL statements into your host program is that you
begin them with the words EXEC SQL and end them with the token END-EXEC.
Pro*COBOL translates all executable EXEC SQL statements into calls to the runtime
library SQLLIB.

Most embedded SQL statements differ from their interactive counterparts only
through the adding of a new clause or the use of program variables. Compare the
following interactive and embedded ROLLBACK statements:

ROLLBACK WORK; - interactive

Learning the Basics 2-5



Key Concepts of Embedded SQL Programming

* embedded
EXEC SQL
ROLLBACK WORK
END-EXEC.

Static versus Dynamic SQL Statements

Most application programs are designed to process static SQL statements and fixed
transactions. In this case, you know the makeup of each SQL statement and transac-
tion before run time. That is, you know which SQL commands will be issued,
which database tables might be changed, which columns will be updated, and so
on. See Chapter 5, “Using Embedded SQL”.

However, some applications are required to accept and process any valid SQL state-
ment at run time. So, you might not know until then all the SQL commands, data-
base tables, and columns involved.

Dynamic SQL is an advanced programming technique that lets your program
accept or build SQL statements at run time and take explicit control over datatype
conversion. See Chapter 11, “Using Dynamic SQL” and Chapter 12, “Using
Dynamic SQL: Advanced Concepts”.

Embedded PL/SQL Blocks

Pro*COBOL treats a PL/SQL block like a single embedded SQL statement. So, you
can place a PL/SQL block anywhere in an application program that you can place a
SQL statement. To embed PL/SQL in your host program, you simply declare the
variables to be shared with PL/SQL and bracket the PL/SQL block with the key-
words EXEC SQL EXECUTE and END-EXEC.

From embedded PL/SQL blocks, you can manipulate Oracle data flexibly and
safely because PL/SQL supports all SQL data manipulation and transaction pro-
cessing commands. For more information about PL/SQL, see Chapter 6, “Using
Embedded PL/SQL”.

Host and Indicator Variables

A host variable is a scalar or table variable or group item declared in the host lan-
guage and shared with Oracle, meaning that both your program and Oracle can ref-
erence its value. Host variables are the key to communication between Oracle and
your program.

You use input host variables to pass data to the database. You use output host vari-
ables to pass data and status information from the database to your program.

2-6 Pro*COBOL Precompiler Programmer’s Guide



Key Concepts of Embedded SQL Programming

Host variables can be used anywhere an expression can be used. But, in SQL state-
ments, host variables must be prefixed with a colon, ’:’, to set them apart from data-
base schema names.

You can associate any host variable with an optional indicator variable. An indicator
variable is an integer variable that indicates the value or condition of its host vari-
able. You use indicator variables to assign nulls to input host variables and to
detect nulls or truncated values in output host variables. A null is a missing,
unknown, or inapplicable value.

In SQL statements, an indicator variable must be prefixed with a colon and
appended to its associated host variable (unless, to improve readability, you pre-
cede the indicator variable with the optional keyword INDICATOR).

Oracle Datatypes

Typically, a host program inputs data to the database, and the database outputs
data to the program. Oracle inserts input data into database tables and selects out-
put data into program host variables. To store a data item, Oracle must know its
datatype, which specifies a storage format and valid range of values.

Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes
specify how Oracle stores data in database columns. Oracle also uses internal
datatypes to represent database pseudo-columns, which return specific data items
but are not actual columns in a table.

External datatypes specify how data is stored in host variables. When your host
program inputs data to Oracle, if necessary, Oracle converts between the external
datatype of the input host variable and the internal datatype of the database col-
umn. When Oracle outputs data to your host program, if necessary, Oracle converts
between the internal datatype of the database column and the external datatype of
the output host variable.

Tables

Pro*COBOL lets you define table host variables (called host tables) and operate on
them with a single SQL statement. Using the table SELECT, FETCH, DELETE,
INSERT, and UPDATE statements, you can query and manipulate large volumes of
data with ease.

Learning the Basics 2-7



Key Concepts of Embedded SQL Programming

Datatype Equivalencing

Pro*COBOL adds flexibility to your applications by letting you equivalence
datatypes. That means you can customize the way Oracle interprets input data and
formats output data.

On a variable-by-variable basis, you can equivalence supported host language
datatypes to Oracle external datatypes. For more information, see "Datatype Equiv-
alencing" on page 4-20

Private SQL Areas, Cursors, and Active Sets

Transactions

To process a SQL statement, Oracle opens a work area called a private SQL area. The
private SQL area stores information needed to execute the SQL statement. An iden-
tifier called a cursor lets you name a SQL statement, access the information in its pri-
vate SQL area, and, to some extent, control its processing.

For static SQL statements, there are two types of cursors: implicit and explicit. Ora-
cle implicitly declares a cursor for all data definition and data manipulation state-
ments, including SELECT statements (queries) that return only one row. However,
for queries that return more than one row, to process beyond the first row, you
must explicitly declare a cursor (or use host tables).

The set of rows retrieved is called the active set; its size depends on how many rows
meet the query search condition. You use an explicit cursor to identify the row cur-
rently being processed, which is called the current row.

Imagine the set of rows being returned to a terminal screen. A screen cursor can
point to the first row to be processed, then the next row, and so on. In the same
way, an explicit cursor “points” to the current row in the active set, allowing your
program to process the rows one at a time.

A transaction is a series of logically related SQL statements (two UPDATES that
credit one bank account and debit another, for example) that Oracle treats as a unit,
so that all changes brought about by the statements are made permanent or undone
at the same time. The current transaction consists of all data manipulation state-
ments executed since the last data definition, COMMIT, or ROLLBACK statement
was executed.

To help ensure the consistency of your database, Pro*COBOL lets you define trans-
actions using the COMMIT, ROLLBACK, and SAVEPOINT statements. COMMIT
makes permanent any changes made during the current transaction. ROLLBACK
ends the current transaction and undoes any changes made since the transaction

2-8 Pro*COBOL Precompiler Programmer’s Guide



Key Concepts of Embedded SQL Programming

began. SAVEPOINT marks the current point in a transaction; used with ROLL-
BACK, it undoes part of a transaction.

Errors and Warnings

When you execute an embedded SQL statement, it either succeeds or fails, and
might result in an error or warning. You need a way to handle these results.
Pro*COBOL provides these error handling mechanisms:

« SQLCODE status variable

« SQLSTATE status variable

«  SQL Communications Area (SQLCA)

« WHENEVER statement

« Oracle Communications Area (ORACA)

SQLCODE/SQLSTATE Status Variables

After executing a SQL statement, the Oracle Server returns a status code to a vari-
able named SQLCODE or SQLSTATE. The status code indicates whether the SQL
statement executed successfully or caused an error or warning condition.

SQLCA Status Variable

The SQLCA is a data structure that defines program variables used by Oracle to
pass runtime status information to the program. With the SQLCA, you can take dif-
ferent actions based on feedback from Oracle about work just attempted. For exam-
ple, you can check to see if a DELETE statement succeeded and if so, how many
rows were deleted.

WHENEVER Statement

With the WHENEVER statement, you can specify actions to be taken automatically
when Oracle detects an error or warning condition. These actions include continu-
ing with the next statement, calling a subroutine, branching to a labeled statement,
or stopping.

ORACA

When more information is needed about runtime errors than the SQLCA provides,
you can use the ORACA. The ORACA is a data structure that handles Oracle com-
munication. It contains cursor statistics, information about the current SQL state-
ment, option settings, and system statistics.

Learning the Basics 2-9



Steps in Developing an Embedded SQL Application

Steps in Developing an Embedded SQL Application

Figure 2-1 walks you through the embedded SQL application development process.

2-10 Pro*COBOL Precompiler Programmer’s Guide



Steps in Developing an Embedded SQL Application

Figure 2-1  Application Development Process

Steps Results
Design >
yes o ( Host
_> COde -
i . ( Source
Precompile > Program

Object
Program

Compile

v

Linked
Program

v

Execute

Learning the Basics 2-11



The Format of SQL Statements

As you can see, precompiling results in a source file that can be compiled normally.
Although precompiling adds a step to the traditional development process, that
step is well worth taking because it lets you write very flexible applications.

The Format of SQL Statements

SQL statements begin with EXEC SQL and end with END-EXEC. A period or any
other terminator can follows a SQL statement. Either of the following is allowed:

EXEC SQL ... END-EXEC,
EXEC SQL ... END-EXEC.

INCLUDE Statements

The INCLUDE statement lets you copy files into your host program. It is similar to
the COBOL COPY command. An example follows:

* copyinthe SQLCA file
EXEC SQL INCLUDE SQLCA END-EXEC.

When you precompile your program, each EXEC SQL INCLUDE statement is
replaced by a copy of the file named in the statement.

You can INCLUDE any file. If a file contains embedded SQL, you must INCLUDE it
because only INCLUDEA files are precompiled.

If you do not specify a file extension, Pro*COBOL assumes the default extension,
.cob.

You can set a directory path for INCLUDEG files by specifying the precompiler
option
INCLUDE=<path>

where path defaults to the current directory. (In this context, a directory is an index
of file locations.)

Pro*COBOL searches first in the current directory, then in the directory specified by
INCLUDE, and finally in a directory for standard INCLUDE files. So, you need not
specify a directory path for standard files such as the SQLCA and ORACA. You
must still use INCLUDE to specify a directory path for nonstandard files unless
they are stored in the current directory.

If your operating system is case-sensitive (UNIX, for example), be sure to specify
the same upper/lower case filename under which the file is stored. The syntax for

2-12 Pro*COBOL Precompiler Programmer’s Guide



The SQLCA

The SQLCA

specifying a directory path is system-specific. Check your system-specific Oracle8
manuals.

The SQLCA is a data structure that provides for diagnostic checking and event han-
dling. At run time, the SQLCA holds status information passed to your program by
Oracle8. After executing a SQL statement, Oracle8 sets SQLCA variables to indicate
the outcome, as illustrated in Figure 2-2.

Figure 2-2  Updating the SQLCA

Host Program

I: Error Codes
: Warning Flag Settings
: Number of Rows
: Diagnostic Test

SQL

Oracle8 Server

Learning the Basics 2-13



Oracle8 Datatypes

Thus, you can check to see if an INSERT, UPDATE, or DELETE statement suc-
ceeded and if so, how many rows were affected. Or, if the statement failed, you can
get more information about what happened.

When MODE={ANSI13] ORACLE]}, you must declare the SQLCA by hard-coding it
or by copying it into your program with the INCLUDE statement. The section "Using
the SQL Communications Area" on page 9-19 shows you how to declare and use the
SQLCA.

Oracle8 Datatypes

Oracle8 recognizes two kinds of datatypes: internal and external. Internal datatypes
specify how Oracle8 stores data in database columns. Oracle8 also uses internal datatypes
to represent database pseudo-columns. An external datatype specifies how data is stored
in a host variable.

At precompile time, each host variable is associated with an external datatype
code. At run time, the datatype code of every host variable used in a SQL statement
is passed to Oracle8. Oracle8 uses the codes to convert between internal and exter-
nal datatypes.

Note: You can override default datatype conversions by using dynamic SQL
Method 4 or datatype equivalencing. For information about datatype equiva-
lencing, see "Datatype Equivalencing"” on page 4-20.

Declaring and Referencing Host Variables

Every program variable used in a SQL statement must be declared according to the
rules of the COBOL language. Normal rules of scope apply. COBOL variable names
can be any length, but only the first 30 characters are significant for Pro*COBOL..
Any valid COBOL identifier can be used as host variables, including those beginning with
digits.

The external datatype of a host variable and the internal datatype of its source or
target database column need not be the same, but they must be compatible.

Table 4-6, “Conversions Between Internal and External Datatypes” shows the com-
patible datatypes between which Oracle8 converts automatically when necessary.

VARCHAR Variables

You can use the VARCHAR pseudotype to declare variable-length character
strings. (A pseudotype is a datatype not native to your host language.) Recall that VAR-
CHAR variables have a 2-byte length field followed by a string field. For example,
Pro*COBOL expands the VARCHAR declaration

2-14 Pro*COBOL Precompiler Programmer’s Guide



Sample Tables

01 ENAME PIC X(20) VARYING.

into the following COBOL group item with array and length members:

01 ENAME.
05 ENAME-LEN PIC S9(4) COMP.
05 ENAME-ARR PIC X(20).

To get the length of a VARCHAR, you simply refer to its length field. You need not
use a string function or character-counting algorithm.
For more information about VARCHARSs, see "VARCHAR Variables" on page 3-36.

Host Variable Guidelines

The following guidelines apply to declaring and referencing host variables. A host
variable must be

« prefixed with a colon (:) in SQL statements and PL/SQL blocks

« of a datatype supported by COBOL

« of a datatype compatible with that of its source or target database column
A host variable must not be

« prefixed with a colon in COBOL statements

« used in data definition statements such as ALTER and CREATE

A host variable can be

« used anywhere an expression can be used in a SQL statement

« associated with an indicator variable

Declaring and Referencing Indicator Variables

You can associate every host variable with an optional indicator variable. An indica-
tor variable must be defined as a signed 4-digit computational number and, in SQL
statements, must be prefixed with a colon and must directly follows its host vari-
able unless you use the keyword INDICATOR. For a detailed discussion, see "Indi-
cator Variables" on page 3-30.

Sample Tables

Most of the complete program examples in this guide use two sample database
tables: DEPT and EMP. Their definitions follow:

Learning the Basics 2-15



Sample Tables

CREATE TABLE DEPT
(DEPTNO NUMBER(),
DNAME VARCHAR2(14),
LOC VARCHAR2(13))

CREATE TABLE EMP

(EMPNO NUMBER(4) primary key,
ENAME VARCHAR2(10),

JOB VARCHAR2(9),

MGR  NUMBER(4),
HIREDATE DATE,

SAL  NUMBER(7,2),

COMM  NUMBER(7,2),
DEPTNO NUMBER(2))

Sample Data
Respectively, the DEPT and EMP tables contain the following rows of data:
DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONSBOSTON

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

7369 SMITH CLERK 7902 17-DEC-80 800 20
TA9ALLEN SALESMAN 769820-FEB-81 1600 300 30
7521WARD SALESMAN 7698 22-FEB-81 1250 500 30
7566 JONES MANAGER 7839 02-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER  783909-JUN-81 2450 10
7788 SCOTT ANALYST 7566 19-APR-87 3000 20
7839KING PRESIDENT  17-NOV-81 5000 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 30
7876 ADAMS CLERK  778823-MAY-87 1100 20
7900 JAMES CLERK 7698 03-DEC-81 950 30
7902FORD ANALYST 7566 03-DEC-81 3000 20
7934 MILLER CLERK  778223-JAN-82 1300 10

2-16 Pro*COBOL Precompiler Programmer’s Guide



A Program Example 1: Simple Query

A Program Example 1: Simple Query
A good way to get acquainted with embedded SQL is to look at a program example.

This program logs on to the database, prompts the user for an employee number,
gueries the database table EMP for the employee’s name, salary, and commission.
The selected results are stored in host variables EMP-NAME, SALARY, and COM-
MISSION. The program uses the host indicator variable, COMM-IND to detect null
values in column COMMISSION. See "Indicator Variables" on page 3-30.

The paragraph DISPLAY-INFO then displays the result.

The COBOL variables USERNAME, PASSWD, and EMP-NUMBER are declared
using the VARYING clause, which allows you to use a variable-length string exter-
nal Oracle datatype called VARCHAR. This datatype is explained in "VARCHAR
Variables" on page 3-36.

The SQLCA Communications Area is included to handle errors. If an error occurs,
paragraph SQL-ERROR is performed. See "Using the SQL Communications Area"
on page 9-19.

The BEGIN DECLARE SECTION and END DECLARE SECTION statements used
are optional, unless you set the Precompiler option DECLARE_SECTION to YES.

The program ends when the user enters a zero employee number.

IDENTIFICATION DIVISION.
PROGRAM-D. QUERY.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10) VARYING.
01 PASSWD PIC X(10) VARYING.
01 EMP-REC-VARS.
05 EMP-NAME  PIC X(10) VARYING.
05 EMP-NUMBER  PIC S9(4) COMP VALUE ZERO.
05 SALARY  PIC S9(5)V99 COMP-3 VALUE ZERO.
05 COMMISSION  PIC S9(5)V99 COMP-3 VALUE ZERO.
05 COMMHND  PIC S9(4) COMP VALUE ZERO.
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL INCLUDE SQLCA END-EXEC.

01 DISPLAY-VARIABLES.
05 D-EMP-NAME  PIC X(10).

Learning the Basics 2-17



A Program Example 1: Simple Query

05 D-SALARY  PIC Z(4)9.99.
05 D-COMMISSION PIC Z(4)9.99.

01 D-TOTAL-QUERIED PIC9(4) VALUE ZERO.

PROCEDURE DIVISION.
BEGIN-PGM.
EXEC SQL
WHENEVER SQLERROR DO PERFORM SQL-ERROR
END-EXEC.
PERFORM LOGON.

QUERY-LOOP.
DISPLAY "".
DISPLAY "ENTER EMP NUMBER (0 TO QUIT): " WITH NO ADVANCING.
ACCEPT EMP-NUMBER.
IF (EMP-NUMBER = 0) PERFORM SIGN-OFF.
MOVE SPACES TO EMP-NAME-ARR.
EXEC SQL
WHENEVER NOT FOUND GOTO NO-EMP
END-EXEC.
EXEC SQL
SELECT ENAME, SAL, COMM
INTO :EMP-NAME, :SALARY, :COMMISSION:COMM-IND
FROM EMP
WHERE EMPNO = :EMP-NUMBER
END-EXEC.
PERFORM DISPLAY-INFO.
ADD 1 TO D-TOTAL-QUERIED.
GO TO QUERY-LOOP.

NO-EMP.
DISPLAY "NOT A VALID EMPLOYEE NUMBER - TRY AGAIN.".
GO TO QUERY-LOOP.

LOGON.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.
MOVE '"TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY """,
DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

2-18 Pro*COBOL Precompiler Programmer’s Guide



A Program Example 1: Simple Query

DISPLAY-INFO.
DISPLAY "*".
DISPLAY "EMPLOYEE SALARY COMMISSION".
DISPLAY "— — —"
MOVE EMP-NAME-ARR TO D-EMP-NAME.
MOVE SALARY TO D-SALARY.
IFCOMM-IND =-1
DISPLAY D-EMP-NAME, D-SALARY, " NULL"
ELSE
MOVE COMMISSION TO D-COMMISSION
DISPLAY D-EMP-NAME, D-SALARY," ", D-COMMISSION
END-IF.

SIGN-OFF.
DISPLAY "".

DISPLAY "TOTAL NUMBER QUERIED WAS ", D-TOTAL-QUERIED, "".

DISPLAY """,
DISPLAY "HAVE A GOOD DAY,
DISPLAY """,
EXEC SQL

COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.

EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Learning the Basics 2-19



A Program Example 1: Simple Query

2-20 Pro*COBOL Precompiler Programmer’s Guide



3

Writing a Pro*COBOL Program

This chapter provides the basic information you need to write a Pro*COBOL pro-
gram, including:

Programming Guidelines

Required Declarations and SQL Statements
Host Variables

Nested Programs

Indicator Variables

Host Tables

VARCHAR Variables

Connecting to Oracle

Handling Character Data

Concurrent Logons

Changing Passwords at Runtime

Writing a Pro*COBOL Program  3-1



Programming Guidelines

Programming Guidelines

This section deals with embedded SQL syntax, coding conventions, and
Pro*COBOL-specific features and restrictions. Topics are arranged alphabetically
for quick reference.

Abbreviations

You can use the standard COBOL abbreviations, such as PIC for PICTURE IS and
COMP for USAGE IS COMPUTATIONAL.

Case-insensitivity
Pro*COBOL precompiler options and values as well as all EXEC SQL statements,

inline commands, and COBOL statements are case-insensitive. The precompiler
accepts both upper- and lower-case tokens.

COBOL Versions

Pro*COBOL supports the standard implementation of COBOL for your operating
system (usually COBOL-85 or COBOL-74). Some platforms may support both
COBOL implementations. For more information, see your Oracle8 system-specific
documentation.

Coding Area

You must code EXEC SQL and EXEC ORACLE statements in columns 12 through
72 (columns 73 through 80 are ignored).

Note: The precompiler option FORMAT, specifies the format of COBOL input
lines. If you specify FORMAT=ANSI (default), columns 1 through 6 can contain
an optional sequence number, and column 7 indicates comments or continua-
tion lines. Division headers, section headers, paragraph names, FD and 01 state-
ments begin in columns 8 through 11 (area A). Other statements begin in
columns 12 through 72 (area B).

If you specify FORMAT=TERMINAL, columns 1 through 6 are omitted, making col-
umn 7 the left-most column.

Note: In this manual, program examples use the FORMAT=TERMINAL set-
ting. The online sample programs use FORMAT=ANSI.

3-2 Pro*COBOL Precompiler Programmer’s Guide



Programming Guidelines

Commas

Comments

In SQL, you must use commas to separate list items, as the following example
shows:

EXEC SQL SELECT ENAME, JOB, SAL
INTO :EMP-NAME, :JOB-TITLE, :SALARY
FROM EMP
WHERE EMPNO = :EMP-NUMBER

END-EXEC.

In COBOL, you can use commas or blanks to separate list items. For example, the
following two statements are equivalent:

ADD AMT1, AMT2, AMT3 TO TOTAL-AMT.
ADD AMT1 AMT2 AMT3 TO TOTAL-AMT.

You can place COBOL Comment lines within SQL statements. COBOL Comment
lines start with an asterisk (*) in column 7. You can also place ANSI SQL-style Com-
ments (-- ...) within SQL statements at the end of a line (but not after the last line of
the SQL statement), and you can place C-style Comments (/* ... */) in SQL state-
ments.

The following example shows all three styles of Comments:

EXEC SQL SELECT ENAME, SAL
* assign column values to output host variables
INTO :EMP-NAME, :SALARY - output host variables
¥ column values assigned to output host variables */
FROM EMP
WHERE DEPTNO = :DEPT-NUMBER
END-EXEC. -illegal Comment

However, you cannot nest Comments or place them on the last line of a SQL state-
ment after the terminator END-EXEC.

Continuation Lines

You can continue SQL statements from one line to the next, according to the rules
of COBOL, as this example shows:

EXEC SQL SELECT ENAME, SAL INTO :EMP-NAME, :SALARY FROM EMP
WHERE DEPTNO = :DEPT-NUMBER
END-EXEC.

Writing a Pro*COBOL Program 3-3



Programming Guidelines

No continuation indicator is needed.

To continue a string literal from one line to the next, code the literal through col-
umn 72. On the next line, code a hyphen (-) in column 7, a quote in column 12 or
beyond, and then the rest of the literal. An example follows:

WORKING STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 UPDATE-STATEMENT PIC X(80) VALUE "UPDATE EMP SET BON

- "US =500 WHERE DEPTNO = 20"
EXEC SQL END DECLARE SECTION END-EXEC.

Delimiters
The LITDELIM option specifies the delimiters for COBOL string constants and liter-
als. If you specify LITDELIM=APOST, the Pro*COBOL uses apostrophes when gener-
ating COBOL code. If you specify LITDELIM=QUOTE (default), quotation marks are
used, asin
CALL "SQLROL" USING SQL-TMPO.
In SQL statements, you must use quotation marks to delimit identifiers containing
special or lowercase characters, as in
EXEC SQL CREATE TABLE "Emp2" END-EXEC.
However, you must use apostrophes to delimit string constants, as in
EXEC SQL SELECT ENAME FROM EMP WHERE JOB ="CLERK’ END-EXEC.
Regardless of which delimiter is used in the Pro*COBOL source file, Pro*COBOL
generates the delimiter specified by the LITDELIM value.
Embedded SQL Syntax

To use a SQL statement in your Pro*COBOL program, precede the SQL statement
with the EXEC SQL clause, and end the statement with the END-EXEC keyword.
Embedded SQL syntax is described in the Oracle8 Server SQL Reference.

3-4 Pro*COBOL Precompiler Programmer’s Guide



Programming Guidelines

Figurative Constants

Figurative constants, such as HIGH-VALUE, ZERO, and SPACE, cannot be used in
SQL statements. For example, the following is invalid:

EXEC SQL DELETE FROM EMP WHERE COMM =ZERO END-EXEC.

Instead, use the following:
EXEC SQL DELETE FROM EMP WHERE COMM =0 END-EXEC.

File Length

Pro*COBOL cannot process arbitrarily long source files. Some of the variables used
internally limit the size of the generated file. There is no absolute limit to the num-
ber of lines allowed, but the following aspects of the source file are contributing fac-
tors to the file-size constraint:

« complexity of the embedded SQL statements (for example, the number of bind
and define variables)

« whether a database name is used (for example, connecting to a database with
an AT clause)

« number of embedded SQL statements

To prevent problems related to this limitation, use multiple program units to suffi-
ciently reduce the size of the source files.

Host Variable Names

Any valid standard COBOL identifier can be used as a host variable. Variable
names can be any length, but only the first 30 characters are significant. The maxi-
mum number of significant characters recognized by COBOL compilers is 30.

Hyphenated Names

You can use hyphenated host-variable names in static SQL statements but not in
dynamic SQL. For example, the following usage is invalid:

MOVE "DELETE FROM EMP WHERE EMPNO = :EMP-NUMBER" TO SQLSTMT.
EXEC SQL PREPARE STMT1 FROM SQLSTMT END-EXEC.

Writing a Pro*COBOL Program 3-5



Programming Guidelines

Level Numbers

When declaring host variables, you can use level numbers 01 through 49, and 77.
Pro*COBOL does not allow variables containing the VARYING clause, or SQL-
CURSOR variables to be declared level 49 or 77.

MAXLITERAL Default

With the MAXLITERAL option, you can specify the maximum length of string liter-
als generated by Pro*COBOL, so that compiler limits are not exceeded. For
Pro*COBOL, the default value is 256, but you might have to specify a lower value.

Multi-Byte (NCHAR) Datatypes

ANSI standard National Character (NCHAR) datatypes are supported for handling
multi-byte character data. The PIC N or PIC G clause declares variables that store
fixed-length NCHAR strings. You can store variable-length, multi-byte NCHAR
strings using COBOL group items consisting of a length field and a string field, or
using the modifier VARYING.

Beginning with Oracle8, the environmental variable NLS_NCHAR is made avail-
able to specify a client-side National Character Set.

When NLS_LOCAL=YES

Nulls

When NLS_LOCAL=YES, because dynamic SQL statements are not processed at
precompile time, and the Oracle8 Server does not itself process multi-byte NLS
strings, you cannot embed multi-byte NLS strings in dynamic SQL statements.

Also, when NLS_LOCAL=YES, columns storing multi-byte NLS data cannot be
used in embedded data definition language (DDL) statements. This restriction can-
not be enforced when precompiling, so the use of these column types within
embedded DDL statements results in an execution error rather than a precompile
error.

In SQL, a null represents a missing, unknown, or inapplicable column value; it
equates neither to zero nor to a blank. Use the NVL function to convert nulls to non-
null values, use the IS [NOT] NULL comparison operator to search for nulls, and
use indicator variables to insert and test for nulls.

3-6 Pro*COBOL Precompiler Programmer’s Guide



Programming Guidelines

Paragraph Names

You can associate standard COBOL paragraph names with SQL statements, as
shown in the following example:

LOAD-DATA.
EXEC SQL
INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
VALUES (EMP-NUMBER, :EMP-NAME, :DEPT-NUMBER)
END-EXEC.

Also, you can reference paragraph names in a WHENEVER ... DO or WHENEVER
... GOTO statement, as the next example shows:

PROCEDURE DIVISION.
MAIN.
EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.

SQL-ERROR.

You must begin all paragraph names in columns 8 through 11.

REDEFINES Clause

You can use the COBOL REDEFINES clause to redefine group or elementary items.
For example, the following declarations are valid:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 RECAD PICX(4).
01 REC-NUM REDEFINES REC-ID PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.

And:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 STOCK.
05 DIVIDEND  PIC X(5).
05 PRICE  PICX(®).
01 BOND REDEFINES STOCK.
05 COUPON-RATE PIC X(4).
05 PRICE  PICX(?).
EXEC SQL END DECLARE SECTION END-EXEC.

Pro*COBOL issues no warning or error if a single INTO clause uses items from
both a group item host variable and from its re-definition.

Writing a Pro*COBOL Program  3-7



Programming Guidelines

Relational Operators

COBOL relational operators differ from their SQL equivalents, as shown in
Table 3-1. Furthermore, COBOL allows the use of words instead of symbols,
whereas SQL does not.

Table 3-1 Relational Operators

SQL Operators COBOL Operators

= = EQUAL TO

<> I= A= NOT=, NOT EQUAL TO

> >, GREATER THAN

< <, LESS THAN

>= >=, GREATER THAN OR EQUAL
TO

<=, LESS THAN OR EQUAL TO

Sentence Terminator

A COBOL sentence includes one or more COBOL and/or SQL statements and ends with a
period. In conditional sentences, only the last statement must end with a period, as the fol-
lowing example shows:

IF EMP-NUMBER =ZERO

MOVE FALSE TO VALID-DATA

PERFORM GET-EMP-NUM UNTIL VALID-DATA=TRUE
ELSE

EXEC SQL DELETE FROM EMP

WHERE EMPNO =:EMP-NUMBER

END-EXEC

ADD 1 TO DELETE-TOTAL.
END-IF.

With COBOL-74, however, if you use WHENEVER ... GOTO or WHENEVER ...
STOP to handle errors for a SQL statement, the SQL statement must be terminated
by a period or followed by an ELSE.

The DELETE statement below is repositioned to meet this requirement:

EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.
IF EMP-NUMBER =ZERO
MOVE FALSE TO VALID-DATA

3-8 Pro*COBOL Precompiler Programmer’s Guide



Required Declarations and SQL Statements

PERFORM GET-EMP-NUM UNTIL VALID-DATA=TRUE
ELSE
ADD 1 TO DELETE-TOTAL
EXEC SQL DELETE FROM EMP
WHERE EMPNO =:EMP-NUMBER
END-EXEC.

Alternatively, you can place the SQL statement in a separate paragraph and PER-
FORM that paragraph.

FILLER is Allowed

The word FILLER is allowed in host variable declarations. The word FILLER is

used to specify an elementary item of a group that cannot be referred to explicitly.
The following declaration is valid:

01 STOCK.
05 DIVIDEND  PIC X(5).
05 FILLER  PICX.
05 PRICE  PICX(6).

Required Declarations and SQL Statements

Passing data between Oracle8 and your application program requires host vari-
ables and error handling. This section shows you how to meet these requirements.

Declare Section is Optional

When DECLARE_SECTION is set to NO (the default), the Declare Section is
optional. This is a change from Pro*xCOBOL prior to release 8.0. (See Chapter 7,
“Running the Pro*COBOL Precompiler” for details of the precompiler options.)

If DECLARE_SECTION is YES, you must declare all program variables used in
SQL statements in the Declare Section, which begins with the statement

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

and ends with the statement

EXEC SQL END DECLARE SECTION END-EXEC.

Between these two statements only the following are allowed:

« host-variable and indicator-variable declarations

Writing a Pro*COBOL Program 3-9



Required Declarations and SQL Statements

« non-host COBOL variables

« EXEC SQL DECLARE statements
« EXEC SQL INCLUDE statements
« EXEC SQL VAR statements

« EXEC ORACLE statements

« COBOL Comments

If DECLARE_SECTION is set to NO, you may or may not use a Declare Section.
Declarations of host variables and indicator variables can be made either inside or
outside a Declare Section.

Precompiler Option DECLARE_SECTION

For backward compatibility with releases prior to 8.0, Pro*COBOL provides this
command-line option for explicit control over whether only declarations in the
Declare Section are allowed as host variables. This option is

DECLARE_SECTION = YES | NO (default NO)

You must use the DECLARE_SECTION option on the command line or in a config-
uration file. When MODE=ORACLE and DECLARE_SECTION=YES, only vari-
ables declared inside the Declare Section are allowed as host variables. When
MODE=ANSI then DECLARE_SECTION is implicitly set to YES. See the discus-
sion of macro and micro options in "Macro and Micro Options" on page 7-4.

Multiple Declare Sections are allowed per precompiled unit. Furthermore, a host
program can contain several independently precompiled units.

An Example

In the following example, you declare four host variables for use later in your pro-
gram.

WORKING-STORAGE SECTION.

*The next line is optional
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 EMP-NUMBER  PIC 9(4) COMP VALUE ZERO.

01EMP-NAME  PIC X(10) VARYING.

01SALARY  PIC S9(5)V99 COMP-3 VALUE ZERO.

01 COMMISSION  PIC S9(5)V99 COMP-3 VALUE ZERO.
*The nextline is optional

3-10 Pro*COBOL Precompiler Programmer’s Guide



Required Declarations and SQL Statements

EXEC SQL END DECLARE SECTION END-EXEC.

Using the INCLUDE Statement

The INCLUDE statement lets you copy files into your host program, as the follow-
ing example shows:

* Copy in the SQL Communications Area (SQLCA)
EXEC SQL INCLUDE SQLCA END-EXEC.

* Copy in the Oracle Communications Area (ORACA)
EXEC SQL INCLUDE ORACA END-EXEC.

You can INCLUDE any file. When you precompile your Pro*COBOL program, each
EXEC SQL INCLUDE statement is replaced by a copy of the file named in the state-
ment.

Filename Extensions

If your system uses file extensions but you do not specify one, Pro*COBOL
assumes the default extension for source files (usually COB). The default extension
is system-dependent. For more information, see your Oracle system-specific docu-
mentation.

Search Paths

If your system uses directories, you can set a search path for included files using
the INCLUDE option, as follows:

INCLUDE=ath

where path defaults to the current directory.

Pro*COBOL first searches the current directory, then the directory specified by the
INCLUDE option, and finally the directory for standard INCLUDE files. You need
not specify a path for standard files such as the SQLCA and ORACA. However, a
path is required for nonstandard files unless they are stored in the current directory.

You can also specify multiple paths on the command line, as follows:

... INCLUDE=<path1> INCLUDE=<path2> ...

When multiple paths are specified, Pro*COBOL searches the current directory first,
then the pathl directory, then the path2 directory, and so on. The directory containing stan-

dard INCLUDE files is searched last. The path syntax is system specific. For more informa-
tion, see your Oracle system-specific documentation.

Writing a Pro*COBOL Program 3-11



Host Variables

Caution

Error Handling

Remember that Pro*COBOL searches for a file in the current directory first even if
you specify a search path. If the file you want to INCLUDE is in another directory,
make sure no file with the same name is in the current directory or any other direc-
tory that precedes it in the search path. If your operating system is case sensitive,
be sure to specify the same upper/lowercase filename under which the file is
stored.

Oracle returns the success or failure of SQL statements in status variables, SQL-
STATE and SQLCODE. With Oracle mode, you can declare SQLCODE by including
the SQLCA. With ANSI mode. you must declare either SQLSTATE or SQLCODE.
For more information, see Chapter 9, “Error Handling and Diagnostics”.

Host Variables

Host variables are the key to communication between your host program and
Oracle8. Typically, a host program inputs data to Oracle8, and Oracle8 outputs data
to the program. Oracle8 stores input data in database columns and stores output
data in program host variables.

Declaring Host Variables

Host variables are declared according to COBOL rules, using the COBOL datatypes
that are supported by Oracle8. COBOL datatypes must be compatible with the
source/target database column.

The supported COBOL datatypes are shown in Table 3-2

3-12 Pro*COBOL Precompiler Programmer’s Guide



Host Variables

Table 3-2 Host Variable Declarations

Variable Declaration

Description

PIC X..X
PIC X(n)
PIC X..X VARYING
PIC X(n) VARYING

fixed-length string of 1-byte characters (1)
n-length string of 1-byte characters
variable-length string of 1-byte characters (1,2)

variable-length (n max.) string of 1-byte characters

@

PIC N...N
PICG..G
PIC N(n)
PIC G(n)
PIC N...N VARYING
PIC N(n) VARYING
PIC G...G VARYING
PIC G(n) VARYING

fixed-length string of multi-byte NCHAR charac-
ters (1,3)

n-length string of multi-byte NCHAR characters (3)

variable-length string of multi-byte characters (2,3)

variable-length (n max.) string of multi-byte char-
acters (2,3)

PIC S9...9 BINARY
PIC S9(n) BINARY
PIC $9..9 COMP
PIC S9(n) COMP
PIC S9...9 COMP-4
PIC S9(n) COMP-4

integer (4,5,7)

COMP-1
COMP-2

floating-point number (5)

PIC $9...9V9...9 COMP-3
PIC S9(n)V9(n) COMP-3
PIC S9..9V9...9
PACKED-DECIMAL
PIC S9(n)VO(n)
PACKED-DECIMAL

packed-decimal (4,5)

Writing a Pro*COBOL Program 3-13




Host Variables

Table 3-2  Host Variable Declarations

PIC S9...9 COMP-5 byte-swapped integer (4,5,6,7)
PIC S9(n) COMP-5
PIC S9...9V9...9 DISPLAY display leading (9,12)

SIGN LEADING SEPARATE
PIC S9(n)V9(m) DISPLAY
SIGN LEADING SEPARATE
PIC $9...9V9...9 DISPLAY display trailing (9)
SIGN TRAILING SEPARATE
PIC S9(n)V9(m) DISPLAY
SIGN TRAILING SEPARATE

PIC 9..9 DISPLAY unsigned display(10)
PIC 9(n)V9(m) DISPLAY
PIC S9...9V9...9 DISPLAY over-punch trailing (10,11

SIGN TRAILING
PIC S9(n)V9(m) DISPLAY
SIGN TRAILING over-punch leading (10))
PIC S9...9V9...9 DISPLAY
SIGN LEADING
PIC S9(n)V9(m) DISPLAY
SIGN LEADING

SQL-CURSOR cursor variable

Notes:

1. X..Xand?9..9 stand for a given number (n) of Xs or 9s. For variable-length
strings, n is the maximum length.

2. The keyword VARYING assigns the VARCHAR external datatype to a charac-
ter string. For more information, see "Declaring VARCHAR Variables" on page
3-36.

3. Before using the PIC N or PIC G datatype in your Pro*COBOL source files, verify that
it is supported by your COBOL compiler.

3-14 Pro*COBOL Precompiler Programmer’s Guide



Host Variables

10.
11.

12.

Only signed numbers (PIC S...) are allowed. For floating-point numbers, how-
ever, PIC strings are not accepted.

Not all COBOL compilers support all of these datatypes.

With COMP or COMP-5, the number cannot have a fractional part; scaled
binary numbers are not supported.

The maximum value of n ranges from 9 to 18, depending upon your system.
One-dimensional tables of COBOL types are also supported.

Both DISPLAY and SIGN are optional.

DISPLAY is optional

If TRAILING is omitted, the embedded sign position is operating-system
dependent.

LEADING is optional.

Writing a Pro*COBOL Program 3-15



Host Variables

Table 3-3 shows the compatible Oracle8 internal datatypes.

Table 3-3 Compatible Oracle8 Internal Datatypes

Internal
Datatype

COBOL Datatype

escription

CHAR(x)
VARCHAR2(y)

(13)
(13)

PIC [X..X] N..N| G...G]
PIC [X(n) ] N(n) ] G(n)]
PIC [X(n) | X(n)] VARYING
PIC $9...9 COMP

PIC S9(n) COMP

PIC $9...9 BINARY

PIC S9(n) BINARY

PIC $9..9 COMP-5

PIC S9(n) COMP-5
COMP-1

COMP-2

PIC $9...9V9...9 COMP-3
PIC S9(n)V9(n) COMP-3
PIC $9...9V9...9 DISPLAY
PIC S9(n)V9(n) DISPLAY

character string
n-character string
variable-length string
integer

integer

integer

floating point number

packed decimal

display

3-16 Pro*COBOL Precompiler Programmer’s Guide




Host Variables

Table 3-3 Compatible Oracle8 Internal Datatypes

Internal
Datatype COBOL Datatype Description
NUMBER PIC S9...9 COMP integer
NUMBER (p,s) |(14) |PIC S9(n) COMP
PIC S9...9 BINARY integer
PIC S9(n) BINARY
PIC $9...9 COMP-5 integer
PIC S9(n) COMP-5
COMP-1 floating point number
COMP-2
PIC S9...9V9...9 COMP-3 packed decimal
PIC S9(n)V9(n) COMP-3
PIC $9..9V9..9 DISPLAY | display
PIC S9(n)V9(n) DISPLAY
PIC [X..X] N..N| G...G] character string (15)
PIC [X(n)] N(n)] G(n)] n-character string (15)
PIC X..X VARYING variable-length string
PIC X(n) VARYING n-byte variable-length
string
DATE (16) PIC X(n) n-byte character string
LONG
RAW (13) PIC X..X VARYING n-byte variable-length
LONG RAW string
ROWID (17)
MLSLABEL (18)

Notes:

13. x ranges from 1 to 255, and 1 is the default. y ranges from 1 to 4000.

Writing a Pro*COBOL Program 3-17



Host Variables

14. p ranges from 2 to 38. s ranges from -84 to 127.

15. Strings can be converted to NUMBERSs only if they consist of convertible char-
acters —0to 9, period (.), +, -, E, e. The NLS settings for your system might
change the decimal point from a period (.) to a comma (,).

16. When converted to a string type, the default size of a DATE depends on the
NCHAR settings in effect on your system. When converted to a binary value,
the length is 7 bytes.

17. When converted to a string type, a ROWID requires from 18 to 256 bytes.
18. Trusted Oracle only.

Example Declarations

In the following example, you declare several host variables for use later in your
Pro*COBOL program:

01 STR1 PICX(3).

01 STR2 PIC X(3) VARYING.
01 NUML PIC S9(5) COMP.
01 NUM2 COMP-L.

01 NUM3 COMP-2.

You can also declare one-dimensional tables of simple COBOL types, as the next
example shows:

01 XMP-TABLES.
05 TAB1 PIC XXX OCCURS 3 TIMES.
05 TAB2 PIC XXX VARYING OCCURS 3 TIMES.
05 TAB3 PIC S999 COMP-3 OCCURS 3 TIMES.

Initialization
No error or warning is issued, but any VALUES clause on a pseudo-type variable is
ignored and discarded.

You can initialize host variables, except pseudo-type host variables, using the
VALUE clause, as shown in the following example:

01 USERNAME PIC X(10) VALUE "SCOTT".
01 MAX-SALARY PIC S9(4) COMP VALUE 5000.

3-18 Pro*COBOL Precompiler Programmer’s Guide



Host Variables

If a string value assigned to a character variable is shorter than the declared length
of the variable, the string is blank-padded on the right. If the string value assigned
to a character variable is longer than the declared length, the string is truncated.

Restrictions

You cannot use alphabetic character (PIC A) variables or edited data items as host
variables. Therefore, the following variable declarations cannot be made for host
variables:

01 AMOUNT-OF-CHECK PIC ***0,99,
01 FIRST-NAME  PIC A(10).
01 BIRTH-DATE  PIC 99/99/99.

Referencing Host Variables

You use host variables in SQL data manipulation statements. A host variable must be
prefixed with a colon (;) in SQL statements but must not be prefixed with a colon in
COBOL statements, as this example shows:

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
01 EMP-NAME PIC X(10) VALUE SPACE.

01 SALARY PIC S9(5)V99 COMP-3.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

DISPLAY "Employee number? " WITH NO ADVANCING.
ACCEPT EMP-NUMBER.
EXEC SQL SELECT ENAME, SAL
INTO :EMP-NAME, :SALARY FROM EMP
WHERE EMPNO = :EMP-NUMBER
END-EXEC.
COMPUTE BONUS =SALARY/10.

Writing a Pro*COBOL Program 3-19



Host Variables

Though it might be confusing, you can give a host variable the same name as an
Oracle8 table or column, as the following example shows:

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMPNO PIC S9(4) COMP VALUE ZERO.
01 ENAME PIC X(10) VALUE SPACE.
01 COMM PIC S9(5)V99 COMP-3.

EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

EXEC SQL SELECT ENAME, COMM
INTO :ENAME, :COMM FROM EMP
WHERE EMPNO =:EMPNO

END-EXEC.

Group ltems as Host Variables

Pro*COBOL now allows the use of group items in embedded SQL statements.
Group items with elementary items (containing only one level) can be used as host
variables. The host group items (also referred to as host structures) can be refer-
enced in the INTO clause of a SELECT or a FETCH statement, and in the VALUES
list of an INSERT statement. When a group item is used as a host variable, only the
group name is used in the SQL statement. For example, given the following declara-
tion

01 DEPARTURE.

05HOUR PICX(2).
05MINUTE PIC X(2).

the following statement is valid:

EXEC SQL SELECT DHOUR, DMINUTE
INTO :DEPARTURE
FROM SCHEDULE
WHERE ...

The order that the members are declared in the group item must match the order
that the associated columns occur in the SQL statement, or in the database table if
the column list in the INSERT statement is omitted. Using a group item as a host
variable has the semantics of substituting the group item with elementary items. In

3-20 Pro*COBOL Precompiler Programmer’s Guide



Host Variables

the above example, it would mean substituting :DEPARTURE with :DEPAR-
TURE.HOUR, :DEPARTURE.MINUTE.

Group items used as host variables can contain host tables. In the following exam-
ple, the group item containing tables is used to INSERT three entries into the
SCHEDULE table:

01 DEPARTURE.
05 HOUR PIC X(2) OCCURS 3 TIMES.
05 MINUTE PIC X(2) OCCURS 3 TIMES.

EXEC SQL INSERT INTO SCHEDULE ( DHOUR, DMINUTE)
VALUES (:DEPARTURE) END-EXEC.

If VARCHAR=YES is specified, Pro*COBOL will recognize implicit VARCHARs. If
the nested group item declaration resembles a VARCHAR host variable, then the
entire group item is treated like an elementary item of VARYING type. See "VAR-
CHAR" on page 7-38.

When referencing elementary items instead of the group items as host variables ele-
mentary names need not be unique because you can qualify them using the follow-
ing syntax:

<group_item>.<elementary_item>

This naming convention is allowed only in SQL statements. It is similar to the IN
(or OF) clause in COBOL, examples of which follow:

MOVE MINUTE IN DEPARTURE TO MINUTE-OUT.
DISPLAY HOUR OF DEPARTURE.

The COBOL IN (or OF) clause is not allowed in SQL statements. Qualify elementary
names to avoid ambiguity. For example;

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 DEPARTURE.
05 HOUR PICX().
05 MINUTE PIC X(2).
01 ARRIVAL.
05 HOUR PICX(2).
05 MINUTE PIC X(2).
EXEC SQL END DECLARE SECTION END-EXEC.

Writing a Pro*COBOL Program 3-21



Nested Programs

Restrictions

A host variable cannot substitute for a column, table, or other Oracle8 object in a
SQL statement and must not be an Oracle8 reserved word. See Appendix C,
“Oracle8 Reserved Words, Keywords, and Namespaces’for a list of Oracle8 reserved
words and keywords.

Nested Programs

Nesting programs in COBOL means that you place one program inside another.
The contained programs may reference some of the resources of the programs
within which they are contained. The names within the higher-level program and
the nested program can be the same, and describe different data items without con-
flict, because the names are known only within the programs. However, names
described in the Configuration Section of the higher-level program can be refer-
enced in the nested program.

The higher-level program can contain several nested programs. Likewise, nested
programs can have programs nested within them. You must place the nested pro-
gram directly before the END PROGRAM header of the program in which it is
nested.

You can call a nested program only by a program in which it is either directly or
indirectly nested. If you want a nested program to be called by any program, even
one on a different branch of the nested tree structure, you code the COMMON
clause in the PROGRAM-ID paragraph of the nested program. You can code COM-
MON only for nested programs:

PROGRAM-ID. <nested-program-name> COMMON.

You can code the GLOBAL phrase for File Definitions and level 01 data items (any
subordinate items automatically become global). This allows them to be referenced
in all subprograms directly or indirectly contained within them. You code GLOBAL
on the higher-level program. If the nested program defines the same name as one
declared GLOBAL in a higher-level program, COBOL uses the declaration within
the nested program. If the data item contains a REDEFINES clause, GLOBAL must
follow it.

FD file-name GLOBAL ...
01 data-namel GLOBAL ...
01 data-name2 REDEFINES data-name3 GLOBAL ...

3-22 Pro*COBOL Precompiler Programmer’s Guide



Nested Programs

Support for Nested Programs

Pro*COBOL allows nested programs with embedded SQL within a single source
file. All 01 level items which are marked as global in a containing program and are
valid host variables at the containing program level are usable as valid host vari-

ables in any programs directly or indirectly contained by the containing program.
Consider the following example:

IDENTIFICATION DIVISION.
PROGRAM-ID. MAINPROG.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01REC1 GLOBAL.
05 VARL PICX(10).
05 VAR2 PICX(10).
01 VAR1 PIC X(10) GLOBAL.
EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.
<main program statements>
IDENTIFICATION DIVISION.
PROGRAM-ID. NESTEDPROG.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.
01VARL PIC S9(4).
PROCEDURE DIVISION.
EXEC SQL SELECT X, Y INTO :REC1 FROM ... END-EXEC.
EXEC SQL SELECT XINTO :VAR1 FROM ... END-EXEC.
EXEC SQL SELECT XINTO :REC1.VAR1 FROM ... END-EXEC.

END PROGRAM NESTEDPROG.
END PROGRAM MAINPROG.

Writing a Pro*COBOL Program 3-23



Nested Programs

The main program declares the host variable REC1 as global and thus the nested
program can use RECL1 in the first select statement without having to declare it.
Since VARL1 is declared as a global variable and also as a local variable in the nested
program, the second select statement will use the VAR1 declared as S9(4), overrid-
ing the global declaration. In the third select statement, the global VAR1 of REC1
declared as PIC X(10) is used.

The previous paragraph describes the results when DECLARE_SECTION=NO is
used. When DECLARE_SECTION=YES, Pro*COBOL will not recognize host vari-
ables unless they are declared inside a Declare Section. If the above program is pre-
compiled with DECLARE_SECTION=YES, then the second select statement would
result in an ambiguous host variable error. The first and third select statements
would function the same.

Note: Recursive nested programs are not supported

Declaring the SQLCA

About declaring the SQLCA for nested programs, (see "SQLCA" on page 9-3 and
later), the included SQLCA definition provided will be declared as global, so the
declaration of SQLCA is only required in the higher-level program. The SQLCA
can change each time a new SQL statement is executed. The SQLCA provided can
always be modified to remove the global specification if you want to declare addi-
tional SQLCA areas in the nested programs. The same will apply to SQLDA and
ORACA.

Sample Nested Program

IDENTIFICATION DIVISION.
PROGRAM-ID. NESTED.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME  PIC X(10) VARYING.
0L PASSWD  PICX(10) VARYING.
01 GEMP-REC-VAR1 GLOBAL.
05 EMP-NUM  PIC S9(4) COMP.
05 EMP-NAME  PIC X(10) VARYING.
05 SALARY  PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
05 COMMISSION  PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
01 EMPNAME  PICX(10) VARYING GLOBAL.

3-24 Pro*COBOL Precompiler Programmer’s Guide



Nested Programs

0L EMPNUM  PIC S9(4) COMP GLOBAL.
01 EMP-REC-VARL
05 EMPNUM  PIC S9(4) COMP.
05 EMP-NAME  PIC X(10) VARYING.
05 SALARY  PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
05 COMMISSION  PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
01 GEMP-REC-AND1 GLOBAL.
05 EMP-NUMHND PIC S9(4) COMP.
05 EMP-NAME-IND PIC S9(4) COMP.
05 EMP-SAL-ND PIC S9(4) COMP.
05 EMP-COMMHIND PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL INCLUDE SQLCA END-EXEC.

01 DISPLAY-VARIABLES GLOBAL.
05 D-EMP-NUM  PIC Z(3)0.
05 D-EMP-NAME  PIC X(10).
05 D-SALARY  PIC Z(4)9.99.
05 D-COMMISSION PIC Z(4)9.99.

PROCEDURE DIVISION.
BEGIN-PGM.
EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.

PERFORM LOGON.
DISPLAY "In Main Program'.

CALL"INNERT",
CALL"NESTED1".

GO TO SIGN-OFF.

LOGON.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.
MOVE '"TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY ",

Writing a Pro*COBOL Program 3-25



Nested Programs

DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.
DISPLAY "".

SIGN-OFF.
DISPLAY "".
DISPLAY "HAVE A GOOD DAY.".
DISPLAY "".
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
DISPLAY "".
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY ™"
DISPLAY SQLERRMC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
STOP RUN.

IDENTIFICATION DIVISION.
PROGRAMH-D. INNER1 COMMON.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.
01 EMP-NAME IS GLOBAL PIC X(15) VARYING.

PROCEDURE DIVISION.
P1.

DISPLAY "In Innerl Nested Program".

* Using a global host var.

EXEC SQL SELECT EMPNO, ENAME, SAL, COMM

INTO :GEMP-REC-VARL.GEMP-REC-IND1

FROM EMP WHERE EMPNO = 7566 END-EXEC.
DISPLAY ",
DISPLAY "EMPNO SALESPERSON SALARY COMMISSION".
DISPLAY "—
MOVE EMP-NUM OF GEMP-REC-VAR1 TO D-EMP-NUM.
MOVE EMP-NAME-ARR OF GEMP-REC-VAR1 TO D-EMP-NAME.
MOVE SALARY OF GEMP-REC-VARL1 TO D-SALARY.
MOVE COMMISSION OF GEMP-REC-VAR1 TO D-COMMISSION.
DISPLAY D-EMP-NUM, " ", D-EMP-NAME," ", D-SALARY,

" ", D-COMMISSION.

DISPLAY "Answers should be 7566, JONES, 2975, 0.

* overiding global host var with a local one.

3-26 Pro*COBOL Precompiler Programmer’s Guide



Nested Programs

* should use PIC X(15) decl.
DISPLAY "".
EXEC SQL SELECT ENAME INTO :EMP-NAME
FROM EMP WHERE EMPNO = 7499 END-EXEC.
DISPLAY "Emp Name: ", EMP-NAME, "',
DISPLAY "Emp Name should be ALLEN",

*  Using the element of a global host var.
DISPLAY "".
EXEC SQL SELECT ENAME INTO :GEMP-REC-VARL.EMP-NAME
FROM EMP WHERE EMPNO = 7499 END-EXEC.
DISPLAY "Emp Name: ", EMP-NAME, ",
DISPLAY "Emp Name should be ALLEN".

CALL"INNER2".

IDENTIFICATION DIVISION.
PROGRAM-ID. INNER2 COMMON.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-NUM PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.
P2.
DISPLAY "In Inner2 Nested Program"”.
* Using a global host var even when not directly within the
* main program.
EXEC SQL SELECT EMPNO, ENAME, SAL, COMM
INTO :GEMP-REC-VARL.GEMP-REC-IND1
FROM EMP WHERE EMPNO = 7566 END-EXEC.
DISPLAY "".
DISPLAY "EMPNO SALESPERSON SALARY COMMISSION".
DISPLAY "—
MOVE EMP-NUM OF GEMP-REC-VAR1 TO D-EMP-NUM.
MOVE EMP-NAME-ARR OF GEMP-REC-VAR1 TO D-EMP-NAME.
MOVE SALARY OF GEMP-REC-VAR1 TO D-SALARY.
MOVE COMMISSION OF GEMP-REC-VAR1 TO D-COMMISSION.
DISPLAY D-EMP-NUM, " ", D-EMP-NAME," ", D-SALARY,
" ", D-COMMISSION.
DISPLAY "Answers should be 7566, JONES, 2975, 0".

* Using a global host var in a nested function and a
* |ocal hostvar. Should use PIC X(15) decl from

Writing a Pro*COBOL Program 3-27



Nested Programs

*  INNER1 for EMP-NAME, and local EMP-NUM.
DISPLAY "".
EXEC SQL SELECT ENAME, EMPNO INTO :EMP-NAME, :EMP-NUM
FROM EMP WHERE EMPNO = 7499 END-EXEC.
DISPLAY "Emp Name: ", EMP-NAME, "Emp Number: ", EMP-NUM.
DISPLAY "Emp name should be ALLEN and emp number 7499".

*  Using the element of a global host var even when indirectly
* within the main program.
DISPLAY "".
EXEC SQL SELECT ENAME INTO :GEMP-REC-VARL.EMP-NAME
FROM EMP WHERE EMPNO = 7499 END-EXEC.
DISPLAY "Emp Name: ", EMP-NAME, "',
DISPLAY "Emp Name should be ALLEN".

END PROGRAM INNER2.
END PROGRAM INNER1.

IDENTIFICATION DIVISION.
PROGRAM-ID. NESTED1.
DATADIVISION.
WORKING-STORAGE SECTION.
01 EMP-NAME  PIC X(15) VARYING GLOBAL.
PROCEDURE DIVISION.
N1.

DISPLAY "In Nested1 Nested Program”.
DISPLAY "Calling innerl".

* Should work since INNER1 has the COMMON clause.
CALL"INNER1".

END PROGRAM NESTED1.

When you execute the COBOL program created by running Pro*COBOL, the result-
ing output is as follows:

>nested
CONNECTED TO ORACLE ASUSER: SCOTT

In Main Program
In Innerl Nested Program

EMPNO SALESPERSON SALARY COMMISSION

3-28 Pro*COBOL Precompiler Programmer’s Guide



Nested Programs

7566 JONES 297500 000
Answers should be 7566, JONES, 2975, 0

EmpName: ALLEN ~ **
Emp Name should be ALLEN

Emp Name: ALLEN **
Emp Name should be ALLEN
In Inner2 Nested Program

EMPNO SALESPERSON SALARY COMMISSION

7566 JONES 297500 000
Answers should be 7566, JONES, 2975, 0

Emp Name: ALLEN Emp Number; +7499
Emp name should be ALLEN and emp number 7499

Emp Name: ALLEN **
Emp Name should be ALLEN
In Nested1 Nested Program
Calling innerl

In Inner1 Nested Program

EMPNO SALESPERSON SALARY COMMISSION

7566 JONES 297500 000
Answers should be 7566, JONES, 2975, 0

Emp Name: ALLEN **
Emp Name should be ALLEN

Emp Name: ALLEN b
Emp Name should be ALLEN
In Inner2 Nested Program

EMPNO SALESPERSON SALARY COMMISSION

7566 JONES 297500 000
Answers should be 7566, JONES, 2975, 0

Emp Name: ALLEN Emp Number: +7499
Emp name should be ALLEN and emp number 7499

Emp Name: ALLEN w*

Writing a Pro*COBOL Program  3-29



Indicator Variables

Emp Name should be ALLEN

HAVE A GOOD DAY.

Indicator Variables

You can associate any host variable with an optional indicator variable. Each time
the host variable is used in a SQL statement, a result code is stored in its associated
indicator variable. Thus, indicator variables let you monitor host variables.

You use indicator variables in the VALUES or SET clause to assign nulls to input
host variables and in the INTO clause to detect nulls or truncated values in output
host variables.

Declaring Indicator Variables

An indicator variable must be explicitly declared as PIC S9(4) COMP and must not
be an Oracle8 reserved word. In the following example, you declare an indicator
variable named COMM-IND (the name is arbitrary):

WORKING-STORAGE SECTION.

01 EMP-NAME PIC X(10) VALUE SPACE.
01 SALARY  PIC S9(5)V99 COMP-3.

01 COMMISSION PIC S9(5)V99 COMP-3.
01 COMM-IND  PIC S9(4) COMP.

Referencing Indicator Variables

In SQL statements, an indicator variable must be prefixed with a colon and
appended to its associated host variable. In COBOL statements, an indicator vari-
able must not be prefixed with a colon or appended to its associated host variable. An exam-
ple follows:

EXEC SQL SELECT SAL, COMM
INTO :SALARY, :COMMISSION:COMM-IND FROM EMP
WHERE EMPNO =:EMP-NUMBER
END-EXEC.
IFCOMM-IND =-1
COMPUTE PAY =SALARY
ELSE
COMPUTE PAY =SALARY + COMMISSION.

3-30 Pro*COBOL Precompiler Programmer’s Guide



Indicator Variables

To improve readability, you can precede any indicator variable with the optional
keyword INDICATOR. You must still prefix the indicator variable with a colon. The
correct syntax is

<host_variable> INDICATOR :<indicator_variable>

and is equivalent to
<host_variable>:<indicator_variable>

You can use both forms of expression in your host program.

Restriction

Indicator variables cannot be used in the WHERE clause to search for nulls. For example,
the following DELETE statement triggers an error at run time:
*  Setindicator variable.

COMM-IND =-1

EXEC SQL

DELETE FROM EMP WHERE COMM = :COMMISSION:COMM-IND
END-EXEC.

The correct syntax follows:

EXEC SQL
DELETE FROM EMP WHERE COMM IS NULL
END-EXEC.

Oracle8 Restrictions
If you SELECT or FETCH a null into a host variable that has no indicator, Oracle8
issues the following error message:

ORA-01405: fetched column value is NULL

You can disable the ORA-01405 message by also specifying UNSAFE_NULL=YES
on the command line. For more information, see Chapter 7, “Running the
Pro*COBOL Precompiler”.

ANSI Requirements

When MODE=ORACLE, if you SELECT or FETCH a truncated column value into a
host variable that is not associated with an indicator variable, Oracle8 issues the fol-
lowing error message:

Writing a Pro*COBOL Program 3-31



Indicator Variables

ORA-01406: fetched column value was truncated
However, when MODE={ANSI| ANSI14] ANSI13}, no error is generated. Values for
indicator variables are discussed in Chapter 5, “Using Embedded SQL”.

Indicator Variables for Multi-Byte NCHAR Variables

Indicator variables for multi-byte NCHAR character variables can be used as with
any other host variable. However, a positive value (the result of a SELECT or
FETCH was truncated) represents the string length in multi-byte characters instead
of 1-byte characters.

Indicator Variables with Host Group Items

To use indicator variables with a host group item, either setup a second group item
that contains an indicator variable for each nullable variable in the group item or
use a table of half-word integer variables. You do NOT have to have an indicator
variable for each variable in the group item, but the nullable fields which you wish
to use indicators for must be placed at the beginning of the data group item. The
following indicator group item can be used with the DEPARTURE group item:

01 DEPARTURE-IND.
05 HOURIND PIC S9(4) COMP.
05 MINUTE-IND PIC S9(4) COMP.

If you use an indicator table, you do NOT have to declare a table of as many ele-
ments as there are members in the host group item. The following indicator table
can be used with the DEPARTURE group item:

01 DEPARTURE-IND PIC S9(4) COMP OCCURS 2 TIMES.

Reference the indicator group item in the SQL statement in the same way that a
host indicator variable is referenced:

EXEC SQL SELECT DHOUR, DMINUTE
INTO :DEPARTURE:DEPARTURE-IND
FROM SCHEDULE
WHERE ...

When the query completes, the NULL/NOT NULL status of each selected compo-
nent is available in the host indicator group item. The restrictions on indicator host
variables and the ANSI requirements also apply to host indicator group items.

3-32 Pro*COBOL Precompiler Programmer’s Guide



Host Tables

Host Tables

Host tables can improve performance by letting you manipulate an entire collection
of data items with a single SQL statement. With few exceptions, you can use host
tables wherever scalar host variables are allowed. Also, you can associate an indica-
tor table with any host table.

Declaring Host Tables

You declare and dimension host tables in the Data Division. In the following exam-
ple, three host tables are declared, each dimensioned with 50 elements:

01 EMP-TABLES.
05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
05 EMP-NAME OCCURS 50 TIMES PIC X(10.
05 SALARY OCCURS 50 TIMES PIC S9(5)V99 COMP-3.

You can use the INDEXED BY phrase in the OCCURS clause to specify an index, as
the next example shows:

01 EMP-TABLES.
05 EMP-NUMBER PIC X(10) OCCURS 50 TIMES
INDEXED BY EMP-INDX.

The INDEXED BY phrase implicitly declares the index item EMP-INDX.

Restrictions

Multi-dimensional host tables are not allowed. Thus, the two-dimensional host
table declared in the following example is invalid:

01 NATION.
05 STATE OCCURS 50 TIMES.
10 STATENAME ~ PIC X(25).
10 COUNTY ~ OCCURS 25 TIMES.
15 COUNTY-NAME PIX X(25).

Variable-length host tables are not allowed either. For example, the following decla-
ration of EMP-REC is invalid for a host variable:

Writing a Pro*COBOL Program 3-33



Host Tables

01 EMP-FILE.
05 REC-COUNT PIC S9(3) COMP.
05 EMP-REC OCCURSO0TO 250 TIMES
DEPENDING ON REC-COUNT.

Referencing Host Tables

If you use multiple host tables in a single SQL statement, their dimensions should
be the same. This is not a requirement, however, because Pro*COBOL always uses
the smallest dimension for the SQL operation. In the following example, only 25 rows are
INSERTed:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-TABLES.
05 EMP-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
05 EMP-NAME  PIC X(10) OCCURS 50 TIMES.
05 DEPT-NUMBER PIC S9(4) COMP OCCURS 25 TIMES.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.
*  Populate host tables here.

EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
VALUES (EMP-NUMBER, :EMP-NAME, :DEPT-NUMBER)
END-EXEC.
Host tables must not be subscripted in SQL statements. For example, the following
INSERT statement is invalid:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-TABLES.
05 EMP-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
05 EMP-NAME  PIC X(10) OCCURS 50 TIMES.
05 DEPT-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.
PERFORM LOAD-EMP VARYING JFROM 1 BY 1 UNTIL J>50.

LOAD-EMP.
EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)

3-34 Pro*COBOL Precompiler Programmer’s Guide



Host Tables

VALUES (EMP-NUMBER(J), EMP-NAME(J),
‘DEPT-NUMBER(J))
END-EXEC.

You need not process host tables in a PERFORM VARYING statement. Instead, use
the un-subscripted table names in your SQL statement. Oracle8 treats a SQL state-
ment containing host tables of dimension n like the same statement executed n times
with n different scalar host variables, except its more efficient. For more information, see
"Host Tables" on page 3-33.

Using Indicator Tables

You can use indicator tables to assign nulls to elements in input host tables and to
detect nulls or truncated values in output host tables. The following example
shows how to INSERT with indicator tables:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-TABLES.
05 EMP-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
05 DEPT-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
05 COMMISSION PIC S9(5)V99 COMP-3 OCCURS 50 TIMES.
05 COMM-IND  PIC S9(4) COMP OCCURS 50 TIMES.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

*  Populate the host and indicator tables.
*  Setindicator table to all zeros.

EXEC SQL INSERT INTO EMP (EMPNO, DEPTNO, COMM)
VALUES (EMP-NUMBER, :DEPT-NUMBER,
:COMMISSION:COMM-IND)
END-EXEC.

The dimension of the indicator table must be greater than, or equal to, the dimen-
sion of the host table.

Host Group Item Containing Tables

Note: If you have a host group item containing tables, you cannot use a table of
half-word integer variables for an indicator. You must use a corresponding group
item of tables for an indicator. For example, if your group item is the following:

01 DEPARTURE.

Writing a Pro*COBOL Program 3-35



VARCHAR Variables

05HOUR PIC X(2) OCCURS 3 TIMES.
05MINUTE PIC X(2) OCCURS 3 TIMES.
the following indicator variable cannot be used:
01 DEPARTURE-IND PIC S9(4) COMP OCCURS 6 TIMES.
The indicator variable you use with the group item of tables must itself be a group
item of tables such as the following:

01 DEPARTURE-IND.
05HOUR-IND PIC S9(4) COMP OCCURS 3 TIMES.
05 MINUTE-IND PIC S9(4) COMP OCCURS 3 TIMES.

VARCHAR Variables

COBOL string datatypes are fixed length. However, Pro*xCOBOL lets you declare a
variable-length string pseudotype called VARCHAR.

Declaring VARCHAR Variables

You define a VARCHAR host variable by adding the keyword VARYING to its dec-
laration, as shown in the following example:

01 ENAME PIC X(15) VARYING.
The COBOL VARYING phrase is used in PERFORM and SEARCH statements to

increment subscripts and indexes. Do not confuse this with the Pro*COBOL VARY-
ING clause in the preceding example.

VARCHAR is an extended Pro*COBOL datatype or pre-declared group item. For
example, Pro*COBOL expands the VARCHAR declaration

01 ENAME PIC X(15) VARYING.

into a group item with length and string fields, as follows:

01 ENAME.
05 ENAME-LEN PIC S9(4) COMP.
05 ENAME-ARR PIC X(15).

The length field (suffixed with -LEN) holds the current length of the value stored in the

string field (suffixed with -ARR). The maximum length in the VARCHAR host-variable
declaration must be in the range of 1 to 65533 bytes.

3-36 Pro*COBOL Precompiler Programmer’s Guide



VARCHAR Variables

The advantage of using VARCHAR variables is that you can explicitly set and refer-
ence the length field. With input host variables, Oracle8 reads the value of the
length field and uses that many characters of the string field. With output host vari-
ables, Oracle8 sets the length value to the length of the character string stored in the
string field.

Implicit VARCHAR Group Items

Pro*COBOL implicitly recognizes some group items as VARCHAR host variables
when the precompiler option VARCHAR=YES is specified on the command line.
For variable-length single-byte character types, use the following structure (length
expressed in single-byte characters):

<nn>  DATA-NAME-1.
49 DATA-NAME-2 PIC S9(4) COMP.
49 DATA-NAME-3 PIC X(<length>).

nn must be 01 through 48. For variable-length multi-byte NCHAR character types,
use these formats (length expressed in double-byte characters):

<nn>  DATA-NAME-1.
49 DATA-NAME-2 PIC S9(4) COMP.
49 DATA-NAME-3 PIC N(<length>).

or,

<n>  DATA-NAME-1.
49 DATA-NAME-2 PIC S9(4) COMP.
49 DATA-NAME-3 PIC G(<length>).

The elementary items in these group-item structures must be declared as level 49 for
Pro*COBOL to recognize them as VARCHAR host variables.

The VARCHAR=YES command line option must be specified for Pro*COBOL to
recognize the extended form of the VARCHAR group items. If VARCHAR=NO,
then any declarations that resemble the above formats will be interpreted as regular
group items. If VARCHAR=YES and a group item declaration format looks similar
(but not identical) to the extended VARCHAR format, then the item will be inter-
preted as a regular group item rather than a VARCHAR group item. For example, if
VARCHAR=YES is specified and you write the following:

01 lastname
48lastname-len PIC S9(4) USAGE COMP.
48 lastname-text PIC X(15).

Writing a Pro*COBOL Program 3-37



VARCHAR Variables

then, since level 48 instead of 49 is used for the group item elements, the item is
interpreted as a regular group item rather than a VARCHAR group item.

For more information about the Pro*COBOL VARCHAR option, see Chapter 7,
“Running the Pro*COBOL Precompiler”

Referencing VARCHAR Variables

In SQL statements, you reference a VARCHAR variable using the group name pre-
fixed with a colon, as the following example shows:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 PART-NUMBER PIC X(5).
01 PART-DESC PIC X(20) VARYING.
EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.
EXEC SQL
SELECT PDESC INTO :PART-DESC FROM PARTS

WHERE PNUM = :PART-NUMBER
END-EXEC.

After the query executes, PART-DESC-LEN holds the actual length of the character
string retrieved from the database and stored in PART-DESC-ARR.

In COBOL statements, you can reference VARCHAR variables using the group
name or the elementary items, as this example shows:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 EMP-TABLES.
05 EMP-NAME OCCURS 50 TIMES PIC X(15) VARYING.

EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.

PERFORM DISPLAY-NAME
VARYING JFROM 1 BY 1 UNTIL J > NAME-COUNT.

3-38 Pro*COBOL Precompiler Programmer’s Guide



Handling Character Data

DISPLAY-NAME.
DISPLAY EMP-NAME-ARR OF EMP-NAME(J).

Handling Character Data

This section explains how Pro*COBOL handles character host variables. There are
two kinds of single-byte character host variables and two kinds of multi-byte NLS
character host variables:

=« PIC X(n) (or PIC X...X)
= PIC X(n) VARYING (or PIC X..X VARYING)
« PIC N(n) (or PIC N..N) or PIC G(n) (or PIC G...G)

. PIC N(n) VARYING (or PIC N...N VARYING) or PIC G(n) VARYING (or PIC
G...G VARYING)

Attention: Before using multi-byte NCHAR datatypes, verify that the PIC N or
PIC G datatype is supported by your COBOL compiler.

New Default for PIC X

Starting in Pro*COBOL 8.0, the default datatype of PIC X variables is changed from
VARCHAR?2 to CHARF. The new precompiler command line option, PICX, is pro-
vided for backward compatibility. PICX can be entered only on the command line
or in a configuration file. See "PICX" on page 7-32 for more details.

Effects of the PICX Option

The PICX option determines how Pro*COBOL treats data in character strings. The
PICX option allows your program to use ANSI fixed-length strings or to maintain
compatibility with previous versions of the Oracle8 Server and Pro*COBOL.

You must use PICX=VARCHAR?2 (not the default) to obtain the same results as
releases of Pro*COBOL before 8.0. Or, use

EXEC SQL <vamame> IS VARCHAR@ END-EXEC

for each variable.

Writing a Pro*COBOL Program  3-39



Handling Character Data

Fixed-Length Character Variables

Fixed-length character variables are declared using the PIC X(n) and PIC G(n) and
PIC N(n) datatypes. These types of variables handle character data based on their roles as
input or output variables.

On Input

When PICX=VARCHARZ2, the program interface strips trailing blanks before send-
ing the value to the database. If you insert into a fixed-length CHAR column,
Oracle8 re-appends trailing blanks up to the length of the database column. How-
ever, if you insert into a variable-length VARCHAR2 column, Oracle8 never
appends blanks.

When PICX=CHAREF, trailing blanks are never stripped.

Make sure that the input value is not trailed by extraneous characters. For example,
nulls are not stripped and are inserted into the database. Normally, this is not a
problem because when a value is ACCEPTed or MOVEd into a PIC X(n) variable,
COBOL appends blanks up to the length of the variable.

The following example illustrates the point:
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMPLOYEES.
05 EMP-NAME  PIC X(10).
05 DEPT-NUMBER PIC S9(4) VALUE 20 COMP.
05 EMP-NUMBER PIC S9(9) VALUE 9999 COMP.
05 JOB-NAME  PIC X(@).

EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.

DISPLAY "Employee name? " WITH NO ADVANCING.
ACCEPT EMP-NAME.
*  Assume that the name MILLER was entered
*  EMP-NAME contains "MILLER " (4 trailing blanks)
MOVE "SALES" TO JOB-NAME.
* JOB-NAME now contains "SALES " (3 tralling blanks)
EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO, JOB)
VALUES (EMP-NUMBER, :EMP-NAME, :DEPT-NUMBER, :JOB-NAME
END-EXEC.

3-40 Pro*COBOL Precompiler Programmer’s Guide



Handling Character Data

If you precompile the last example with PICX=VARCHAR2 and the target database
columns are VARCHAR?2, the program interface strips the trailing blanks on input
and inserts just the 6-character string "MILLER" and the 5-character string "SALES"
into the database. However, if the target database columns are CHAR, the strings
are blank-padded to the width of the columns.

If you precompile the last example with PICX=CHARF and the JOB column is
defined as CHAR(10), the value inserted into that column is "SALES#H##" (five
trailing blanks). However, if the JOB column is defined as VARCHAR2(10), the
value inserted is "SALES###" (three trailing blanks), because the host variable is
declared as PIC X(8). This might not be what you want, so be careful.

On Output

The PICX option has no effect on output to fixed-length character variables. When
you use a PIC X(n) variable as an output host variable, Oracle8 blank-pads it. In our
example, when your program fetches the string "MILLER" from the database, EMP-
NAME contains the value "MILLER###" (with four trailing blanks). This character string
can be used without change as input to another SQL statement.

Restrictions When NLS_LOCAL=YES

Tables Disallowed. Host variables declared using the PIC N or PIC G datatype
must not be tables.

No Odd-Byte Widths. Oracle8 CHAR columns should not be used to store multi-
byte NCHAR characters. A run-time error is generated if data with an odd number
of bytes is FETCHed from a single-byte column into a multi-byte NCHAR host vari-
able.

No Host Variable Equivalencing. Multi-byte NCHAR character variables cannot
be equivalenced using an EXEC SQL VAR statement.

No Dynamic SQL. Dynamic SQL is not available for NCHAR multi-byte character
string host variables in Pro*COBOL.

Functions should not be used on columns that store multi-byte NLS data.
Variable-Length Variables

VARCHAR variables handle character data based on their roles as input or output
variables.

Writing a Pro*COBOL Program 3-41



Handling Character Data

On Input

When you use a VARCHAR variable as an input host variable, your program must
assign values to the length and string fields of the expanded VARCHAR declara-
tion, as shown in the following example:

IFENAME-IND =-1
MOVE "NOT AVAILABLE" TO ENAME-ARR
MOVE 13 TO ENAME-LEN.

You need not blank-pad the string variable. In SQL operations, Oracle8 uses exactly
the number of characters given by the length field, counting any spaces.

Host input variables for multi-byte NLS data are not stripped of trailing double-byte
spaces. The length component is assumed to be the length of the data in characters, not
bytes.

On Output

When you use a VARCHAR variable as an output host variable, Oracle8 sets the
length field. An example follows:

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMPNO PIC S9(4) COMP.
01 ENAME PIC X(15) VARYING.

EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.

EXEC SQL
SELECT ENAME INTO :ENAME FROM EMP
WHERE EMPNO = EMPNO

END-EXEC.

IF ENAME-LEN =0
MOVE FALSE TO VALID-DATA.

An advantage of VARCHAR variables over fixed-length strings is that the length of
the value returned by Oracle8 is available right away. With fixed-length strings, to
get the length of the value, your program must count the number of characters.

Host output variables for multi-byte NCHAR data are not padded at all. The length of
the buffer is set to the length in characters, not bytes..

3-42 Pro*COBOL Precompiler Programmer’s Guide



Connecting to Oracle

Connecting to Oracle

Your Pro*COBOL program must log on to Oracle before querying or manipulating
data. To log on, you use the CONNECT statement, as in

EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.

where USERNAME and PASSWD are PIC X(n) or PIC X(n) VARYING host variables.
Alternatively, you can use the statement

EXEC SQL
CONNECT :USR-PWD
END-EXEC.

where the host variable USR-PWD contains your username and password sepa-
rated by a slash (/).

The syntax for the CONNECT statement has an optional ALTER AUTHORIZA-
TION clause. The syntax (Oracle8 and later) for CONNECT is shown here:

EXEC SQL CONNECT {:user IDENTIFIED BY :oldpswd | :usr_psw}
[[AT {dbname | :host_variable }] USING :connect_string ]
[ALTER AUTHORIZATION :newpswd ]

(The ALTER AUTHORIZATION clause is explained in "Changing Passwords at
Runtime" on page 3-55.)

The CONNECT statement must be the first SQL statement executed by the pro-
gram. That is, other executable SQL statements can positionally, but not logically,
precede the CONNECT statement. If the precompiler option
AUTO_CONNECT=YES, a CONNECT statement is not needed.)

To supply the Oracle username and password separately, you define two host vari-
ables as character strings or VARCHAR variables. If you supply a userid containing
both username and password, only one host variable is needed.

Make sure to set the username and password variables before the CONNECT is
executed or it will fail. Your program can prompt for the values or you can hard-
code them, as follows:

WORKING STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 USERNAME PIC X(10) VARYING.
01 PASSWD PIC X(10) VARYING.

Writing a Pro*COBOL Program 3-43



Connecting to Oracle

EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.
LOGON.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.
MOVE "TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
EXEC SQL WHENEVER SQLERROR GOTO LOGON-ERROR END-EXEC.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.

However, you cannot hard-code a username and password into the CONNECT
statement or use quoted literals. For example, the following statements are invalid:

EXEC SQL
CONNECT SCOTT IDENTIFIED BY TIGER
END-EXEC.

EXEC SQL
CONNECT "SCOTT" IDENTIFIED BY 'TIGER"
END-EXEC.

See "Sample Tables" on page 2-15

Connecting Using Net8

To connect using a Net8 driver, substitute a service hame, as defined in your
tnsnames.ora configuration file or in Oracle Names, in place of the SQL*Net V1 connect string.

If you are using Oracle Names, the name server obtains the service name from the
network definition database.

Note: SQL*Net V1 does work with Oracle8.

See Oracle Net8 Administrator’s Guide for more information about Net8.

Automatic Logons
You can log on to Oracle automatically with the userid:

<prefic><usemame>
where prefix is the value of the Oracle initialization parameter OS AUTHENT_PREFIX (the
default value is OPS$) and username is your operating system user or task name. For exam-

3-44 Pro*COBOL Precompiler Programmer’s Guide



Connecting to Oracle

ple, if the prefix is OPS$, your user name is TBARNES, and OPS$TBARNES is a valid Oracle
userid, you log on to Oracle as user OPS$TBARNES.

To take advantage of the automatic logon feature, you simply pass a slash (/) char-
acter to Pro*COBOL, as follows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 ORACLEID PICX.

EXEC SQL END DECLARE SECTION END-EXEC.

MOVE 7 TO ORACLEID.
EXEC SQL CONNECT :ORACLEID END-EXEC.

This automatically connects you as user OPS$username. For example, if your operating
system username is RHILL, and OPS$RHILL is a valid Oracle username, connecting with a
slash (/) automatically logs you on to Oracle as user OPS$SRHILL.

You can also pass a character string to Pro*COBOL. However, the string cannot con-
tain trailing blanks. For example, the following CONNECT statement will fail:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01ORACLEID PICX().

EXEC SQL END DECLARE SECTION END-EXEC.

MOVE"/ ' TO ORACLEID.
EXEC SQL CONNECT :ORACLEID END-EXEC.

The AUTO_CONNECT Precompiler Option

Pro*COBOL lets your program log on to the default database without using the
CONNECT statement. Simply specify the precompiler option AUTO_CONNECT
on the command line.

Assume that the default value of OS_ AUTHENT_PREFIX is OPS$, your username
is TBARNES, and OPS$TBARNES is a valid Oracle userid. When
AUTO_CONNECT=YES, as soon as Pro*COBOL encounters an executable SQL
statement, your program logs on to Oracle automatically with the userid
OPS$TBARNES.

When AUTO_CONNECT=NO (the default), you must use the CONNECT state-
ment to log on to Oracle.

Writing a Pro*COBOL Program 3-45



Concurrent Logons

Concurrent Logons

Pro*COBOL supports distributed processing via Net8. Your application can concur-
rently access any combination of local and remote databases or make multiple con-
nections to the same database. In Figure 3-1, an application program
communicates with one local and three remote Oracle8 databases. ORA2, ORA3,
and ORA4 are simply logical names used in CONNECT statements.

Figure 3-1  Connecting via Net8

Application Local
Program Oracle
Database

Remote Remote
Oracle Oracle
Database Remote Database
Oracle
Database

By eliminating the boundaries in a network between different machines and operat-
ing systems, Net8 provides a distributed processing environment for Oracle tools.
This section shows you how the Pro*COBOL supports distributed processing via
Net8. You learn how your application can

= access other databases directly or indirectly
= concurrently access any combination of local and remote databases

« make multiple connections to the same database

3-46 Pro*COBOL Precompiler Programmer’s Guide



Concurrent Logons

Some Preliminaries

The communicating points in a network are called nodes. Net8 lets you transmit infor-
mation (SQL statements, data, and status codes) over the network from one node to another.

A protocol is a set of rules for accessing a network. The rules establish such things as proce-
dures for recovering after a failure and formats for transmitting data and checking errors.

The Net8 syntax for connecting to the default database in the local domain is sim-
ply to use the service name for the database.

If the service name is not in the default (local) domain, you must use a global speci-
fication (all domains specified). For example:

HR.US.ORACLE.COM

Default Databases and Connections

Explicit Logons

Each node has a default database. If you specify a node but no database in your CONNECT
statement, you connect to the default database on the named local or remote node. If you
specify no database and no node, you connect to the default database on the current node.
Although it is unnecessary, you can specify the default database and current node in your
CONNECT statement.

A default connection is made using a CONNECT statement without an AT clause. The con-
nection can be to any default or non-default database at any local or remote node. SQL state-
ments without an AT clause are executed against the default connection. Conversely, a non-
default connection is made by a CONNECT statement that has an AT clause. A SQL state-
ment with an AT clause is executed against the non-default connection.

All database names must be unique, but two or more database names can specify
the same connection. That is, you can have multiple connections to any database on
any node.

Usually, you establish a connection to Oracle as follows:
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD END-EXEC.

Or, you can use:
EXEC SQL CONNECT :USR-PWD END-EXEC.

where USR-PWD contains USERNAME/PASSWORD.

You can also log on automatically as shown on "Automatic Logons" on page 3-44.

Writing a Pro*COBOL Program 3-47



Concurrent Logons

If you do not specify a database and node, you are connected to the default data-
base at the current node. If you want to connect to a different database, you must
explicitly identify that database.

With explicit logons, you connect to another database directly, giving the connection a name
that will be referenced in SQL staterments. You can connect to several databases at the same
time and to the same database multiple times.

Single Explicit Logons
In the following example, you connect to a single non-default database at a remote
node:

*— Declare necessary host variables
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10).
01 PASSWORD PIC X(10).
01 DB-STRING PIC X(20).

EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.
MOVE "scott’ TO USERNAME.
MOVE "tiger" TO PASSSWORD.
MOVE "nyremote” TO DB-STRING.

*— Assign a unique name to the database connection.
EXEC SQL DECLARE DBNAME DATABASE END-EXEC.
*— Connect to the non-default database
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWORD
AT DBNAME USING :DB-STRING
END-EXEC.

The identifiers in this example serve the following purposes:
« The host variables USERNAME and PASSWORD identify a valid user.

« The host variable DB-STRING contains the Net8 syntax for logging on to a non-
default database at a remote node using the DECnet protocol.

« The undeclared identifier DBNAME names a non-default connection; it is an identi-
fier used by Oracle, not a host or program variable.

3-48 Pro*COBOL Precompiler Programmer’s Guide



Concurrent Logons

The USING clause specifies the network, machine, and database to be associated
with DBNAME. Later, SQL statements using the AT clause (with DBNAME) are executed at
the database specified by DB-STRING.

Alternatively, you can use a character host variable in the AT clause, as the follow-
ing example shows:

*— Declare necessary host variables
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10).
01 PASSWORD PIC X(10).
01 DB-NAME PIC X(10).
01 DB-STRING PIC X(20).

EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.
MOVE "scott’ TO USERNAME.
MOVE "tiger" TO PASSSWORD.
MOVE "oraclel” TO DB-NAME.
MOVE "nyremote” TO DB-STRING.

*— Connect to the non-default database
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWORD
AT :DB-NAME USING :DB-STRING
END-EXEC.

If DB-NAME is a host variable, the DECLARE DATABASE statement is not needed. Only if
DBNAME is an undeclared identifier must you execute a DECLARE DBNAME DATABASE
statement before executinga CONNECT ... AT DBNAME statement.

SQL Operations. If granted the privilege, you can execute any SQL data manipula-
tion statement at the non-default connection. For example, you might execute the
following sequence of statements:

EXEC SQL AT DBNAME SELECT ...
EXEC SQL AT DBNAME INSERT ...
EXEC SQL AT DBNAME UPDATE ...

In the next example, DB-NAME is a host variable:
EXEC SQL AT :DB-NAME DELETE ...

Writing a Pro*COBOL Program  3-49



Concurrent Logons

If DB-NAME is a host variable, all database tables referenced by the SQL statement must be
defined in DECLARE TABLE statements.

Cursor Control. Cursor control statements such as OPEN, FETCH, and CLOSE are
exceptions—they never use an AT clause. If you want to associate a cursor with an
explicitly identified database, use the AT clause in the DECLARE CURSOR state-
ment, as follows:

EXEC SQL AT :DB-NAME DECLARE emp_cursor CURSOR FOR ...
EXEC SQL OPEN EMP-CURSOR ...

EXEC SQL FETCH EMP-CURSOR ...

EXEC SQL CLOSE EMP-CURSOR END-EXEC.

If DB-NAME is a host variable, its declaration must be within the scope of all SQL state-
ments that refer to the declared cursor. For example, if you open the cursor in one subpro-
gram, then fetch from it in another, you must declare DB-NAME globally or pass it to each
subprogram.

When opening, closing, or fetching from the cursor, you do not use the AT clause.
The SQL statements are executed at the database named in the AT clause of the
DECLARE CURSOR statement or at the default database if no AT clause is used in
the cursor declaration.

The AT :host-variable clause allows you to change the connection associated with a cursor.
However, you cannot change the association while the cursor is open. Consider the follow-
ing example:

EXEC SQL AT :DB-NAME DECLARE EMP-CURSOR CURSOR FOR ...
MOVE "oraclel" TO DB-NAME.
EXEC SQL OPEN EMP-CURSOR END-EXEC.
EXEC SQL FETCH EMP-CURSOR INTO. ...
MOVE "oracle2" TO DB-NAME.
*—illegal, cursor still open
EXEC SQL OPEN EMP-CURSOR END-EXEC.
EXEC SQL FETCH EMP-CURSOR INTO. ...

This is illegal because EMP-CURSOR is still open when you try to execute the second
OPEN statement. Separate cursors are not maintained for different connections; there is only
one EMP-CURSOR, which must be closed before it can be reopened for another connection.
To debug the last example, simply close the cursor before reopening it, as follows:

* — close cursor first
EXEC SQL CLOSE EMP-CURSOR END-EXEC.
MOVE "oracle?2" TO DB-NAME.
EXEC SQL OPEN EMP-CUROR END-EXEC.
EXEC SQL FETCH EMP-CURSORINTO...

3-50 Pro*COBOL Precompiler Programmer’s Guide



Concurrent Logons

Dynamic SQL. Dynamic SQL statements are similar to cursor control statements in
that some never use the AT clause. For dynamic SQL Method 1, you must use the
AT clause if you want to execute the statement at a non-default connection. An
example follows:

EXEC SQL AT :DB-NAME EXECUTE IMMEDIATE :SQL-STMT END-EXEC.

For Methods 2, 3, and 4, you use the AT clause only in the DECLARE STATEMENT
statement if you want to execute the statement at a non-default connection. All
other dynamic SQL statements such as PREPARE, DESCRIBE, OPEN, FETCH, and
CLOSE never use the AT clause. The next example shows Method 2:

EXEC SQL AT :DB-NAME DECLARE SQL-STMT STATEMENT END-EXEC.
EXEC SQL PREPARE SQL-STMT FROM :SQL-STRING END-EXEC.
EXEC SQL EXECUTE SQL-STMT END-EXEC.

The following example shows Method 3:

EXEC SQL AT :DB-NAME DECLARE SQL-STMT STATEMENT END-EXEC.
EXEC SQL PREPARE SQL-STMT FROM :SQL-STRING END-EXEC.

EXEC SQL DECLARE EMP-CURSOR CURSOR FOR SQL-STMT END-EXEC.
EXEC SQL OPEN EMP-CURSOR ...

EXEC SQL FETCH EMP-CURSORINTO....

EXEC SQL CLOSE EMP-CURSOR END-EXEC.

You need not use the AT clause when connecting to a remote database unless you
open two or more connections simultaneously (in which case the AT clause is
needed to identify the active connection). To make the default connection to a
remote database, use the following syntax:

EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWORD USING :DB-STRING
END-EXEC.

Multiple Explicit Logons

You can use the AT db_name clause for multiple explicit logons, just as you would for a sin-
gle explicit logon. In the following example, you connect to two non-default databases con-
currently:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10).
01 PASSWORD PIC X(10).
01 DB-STRING1 PIC X(20).

Writing a Pro*COBOL Program 3-51



Concurrent Logons

01 DB-STRING2 PIC X(20).
EXEC SQL END DECLARE SECTION END-EXEC.

MOVE "scott’ TO USERNAME.
MOVE "tiger' TO PASSWORD.
MOVE "New-York' TO DB-STRINGL1.
MOVE "Boston” TO DB-STRING2.

*— give each database connection a unique name
EXEC SQL DECLARE DBNAME1 DATABASE END-EXEC.
EXEC SQL DECLARE DBNAME2 DATABASE;

*— connect to the two non-default databases
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD
AT DBNAME1L USING :DB-STRING1 END-EXEC.
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD
AT DBNAMEZ2 USING :DB-STRING2 END-EXEC.

The undeclared identifiers DBNAME1 and DBNAME? are used to name the default data-
bases at the two non-default nodes so that later SQL statements can refer to the databases by
name.

Alternatively, you can use a host variable in the AT clause, as the following exam-
ple shows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10).
01 PASSWORD PIC X(10).
01 DB-NAME PIC X(10).
01 DB-STRING PIC X(20).
EXEC SQL END DECLARE SECTION END-EXEC.

MOVE "scott’ TO USERNAME.
MOVE "tiger* TO PASSWORD.
PERFORM GETDB 2 TIMES.

*— get next database name and Net8 string
GETDB.
DISPLAY "Database Name?".
ACCEPT DB-NAME.
DISPLAY "Net8 String? "
ACCEPT DB-STRING.
*— connect to the non-default database
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD
AT :DB-NAME USING :DB-STRING
END-EXEC.

3-52  Pro*COBOL Precompiler Programmer’s Guide



Concurrent Logons

You can also use this method to make multiple connections to the same database,
as the following example shows:

MOVE "scott’ TO USERNAME.
MOVE "tiger' TO PASSWORD.
MOVE "nyremote” TO DB-STRING.
PERFORM GETDB 2 TIMES

GETDB.
*— get next database name
DISPLAY 'Database Name?".
ACCEPT DB-NAME.
*— connect to the non-default database
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD
AT :DB-NAME USING :DB-STRING
END-EXEC.

You must use different database names for the connections, even if they use the
same Net8 string.

Implicit Logons

Implicit logons are supported through the Oracle8 distributed database option,
which does not require explicit logons. For example, a distributed query allows a
single SELECT statement to access data on one or more non-default databases.

The distributed query facility depends on database links, which assign a name to a
CONNECT statement rather than to the connection itself. At run time, the embed-
ded SELECT statement is executed by the specified Oracle8 Server, which connects
implicitly to the non-default database(s) to get the required data.

Single Implicit Logons
In the next example, you connect to a single non-default database. First, your pro-

gram executes the following statement to define a database link (database links are
usually established interactively by the DBA or user):

EXEC SQL CREATE DATABASE LINK db_link
CONNECT TO usemame IDENTIFIED BY password
USING 'nyremote’

END-EXEC.

Writing a Pro*COBOL Program  3-53



Concurrent Logons

Then, the program can query the non-default EMP table using the database link, as
follows:

EXEC SQL SELECT ENAME, JOB INTO :EMP-NAME, :JOB-TITLE
FROM emp@db_link
WHERE DEPTNO = :DEPT-NUMBER

END-EXEC.

The database link is not related to the database name used in the AT clause of an
embedded SQL statement. It simply tells Oracle where the non-default database is
located, the path to it, and what Oracle username and password to use. The data-
base link is stored in the data dictionary until it is explicitly dropped.

In our example, the default Oracle8 Server logs on to the non-default database via
Net8 using the database link db_link. The query is submitted to the default server, but is
“forwarded” to the non-default database for execution.

To make referencing the database link easier, you can create a synonym as follows
(again, this is usually done interactively):

EXEC SQL CREATE SYNONYM emp FOR emp@db_link END-EXEC.
Then, your program can query the non-default EMP table, as follows:

EXEC SQL SELECT ENAME, JOB INTO :EMP-NAME, :JOB-TITLE
FROM emp
WHERE DEPTNO = :DEPT-NUMBER

END-EXEC.

This provides location transparency for emp.

Multiple Implicit Logons

In the following example, you connect to two non-default databases concurrently.
First, you execute the following sequence of statements to define two database
links and create two synonymes:

EXEC SQL CREATE DATABASE LINK db_link1
CONNECT TO usemamel IDENTIFIED BY passwordl
USING 'nyremote’
END-EXEC.
EXEC SQL CREATE DATABASE LINK db_link2
CONNECT TO usemame?2 IDENTIFIED BY password?2
USING 'chiremote’
END-EXEC.
EXEC SQL CREATE SYNONYM emp FOR emp@db_linkl END-EXEC.
EXEC SQL CREATE SYNONYM dept FOR dept@db _link2 END-EXEC.

3-54 Pro*COBOL Precompiler Programmer’s Guide



Changing Passwords at Runtime

Then, your program can query the non-default EMP and DEPT tables, as follows:

EXEC SQL SELECT ENAME, JOB, SAL, LOC

FROM emp, dept

WHERE emp.DEPTNO = dept DEPTNO AND DEPTNO = :dept_number
END-EXEC.

Oracle8 executes the query by performing a join between the non-default EMP
table at db_link1 and the non-default DEPT table at db_link2.

Changing Passwords at Runtime

Pro*COBOL now provides client applications with a convenient way to change a
user password at runtime through a simple extension to the EXEC SQL CONNECT
statement.

The syntax for the CONNECT statement now has an optional ALTER AUTHORI-
ZATION clause. The new syntax for CONNECT is shown here:

EXEC SQL CONNECT {:user IDENTIFIED BY :oldpswd | :usr_psw}
[[AT {dbname | host_variable J] USING :connect_string ]
[ALTER AUTHORIZATION :newpswd ]

Using the Connect Syntax

This section describes the possible outcomes of different variations of the new
CONNECT statement.

Standard CONNECT
If an application issues the following statement

EXEC SQL CONNECT .. /*No ALTER AUTHORIZATION clause */

it performs a normal connection attempt. The possible results include the following:
1. The application will connect without issue.

2. The application will connect, but will receive a password warning. The warn-
ing indicates that the password has expired but is in a grace period which will
allow logins. At this point, the user is encouraged to change the password
before the account becomes locked.

3. The application will fail to connect. Possible causes include the following:

Writing a Pro*COBOL Program  3-55



Changing Passwords at Runtime

The password is incorrect.

The account has expired, and is possibly in a locked state.

Change Password on CONNECT
The following CONNECT statement

EXEC SQL CONNECT .. ALTER AUTHORIZATION :newpswd END-EXEC

indicates that the application wants to change the account password to the value
indicated by newpswd. After the change is made, an attempt is made to connect as
user /newpswd. This can have the following results:

1. The application will connect without issue
2. The application will fail to connect. This could be due to either of the following:

a. Password verification failed for some reason. In this case the password
remains unchanged.

b. The account is locked. Changes to the password are not permitted.

3-56 Pro*COBOL Precompiler Programmer’s Guide



A

Advanced Pro*COBOL Programs

Advanced Pro*COBOL techniques are presented. Topics are:
« The Oracle8 Datatypes

« Datatype Conversion

« Explicit Control Over DATE String Format

« Datatype Equivalencing

. Embedding PL/SQL

« National Language Support

«  Multi-Byte NLS Character Sets

« Embedding OCI (Oracle Call Interface) Calls

« Developing X/Open Applications

Advanced Pro*COBOL Programs 4-1



The Oracle8 Datatypes

The Oracle8 Datatypes

Oracle8 recognizes two kinds of datatypes: internal and external. Internal datatypes specify
how Oracle8 stores data in database columns. Oracle8 also uses internal datatypes to repre-
sent database pseudo-columns. An external datatype specifies how data is stored in a host
variable.

Internal Datatypes
For values stored in database columns, Oracle8 uses the following internal datatypes:

Table 4-1 Internal Datatypes

Name Code Description

CHAR 96 <= 2000-byte, fixed-length string

NCHAR 96 <= 2000-byte, fixed-length single-byte or fixed-
width multi-byte string

DATE 12 7-byte, fixed-length date/time value

LONG 8 <= 2147483647-byte, variable-length string

LONG RAW 24 <= 2147483647-byte, variable-length binary
data

MLSLABEL 105 <= 5-byte, variable-length binary label

NUMBER 2 fixed or floating point number, represented in
abinary coded decimal format

RAW 23 <= 255-byte, variable-length binary data

ROWID 11 fixed-length binary value

VARCHAR?2 1 <= 4000-byte, variable-length string

NVARCHAR?2 1 <= 4000-byte, variable-length single-byte or

fixed-width multi-byte string

These internal datatypes can be quite different from COBOL datatypes. For example,
COBOL has no equivalent to the NUMBER datatype, which was specially designed for
portability and high precision.

4-2 Pro*COBOL Precompiler Programmer’s Guide



The Oracle8 Datatypes

CHAR

You use the CHAR datatype to store fixed-length character data. How the data is repre-
sented internally depends on the database character set. The CHAR datatype takes an
optional parameter that lets you specify a maximum width up to 2000 bytes. The syntax
follows:

CHAR[(maximum_width)]

If you do not specify the maximum width, it defaults to 1. Remember, you specify the max-
imum width of a CHAR(n) column in bytes, not characters. So, if a CHAR(n) column
stores multi-byte (2-byte) characters, its maximum width is less than n/2 characters.

NCHAR

Use this datatype to store NLS (National Language Support) strings. See "National Lan-
guage Support" on page 4-30. NCHAR values can not be converted to an internal datatype
and are only used in the Declare Table when performing a semantics check with
SQLCHECK=SEMANTICS (or FULL). See “Specifying SQLCHECK=SEMANTICS” on
page E-3 for a discussion of semantics checking. See “DECLARE TABLE (Oracle Embed-
ded SQL Directive)” on page F-20 for a discussion and syntax diagram of this embedded
SQL directive. You can not insert CHAR values into an NCHAR column. You can not
insert NCHAR values into a CHAR column. This datatype can not be used in VAR state-
ments for datatype equivalences.

DATE

You use the DATE datatype to store dates and times in 7-byte, fixed-length fields. The date
portion defaults to the first day of the current month; the time portion defaults to midnight.

Internally, DATESs are stored in a binary format. When converting a DATE column value to
a character string in your program, Oracle8 uses the default format mask for your session.
If you need other date/time information such as the date in Julian days, use the
TO_CHAR function with a format mask. Always convert DATE column values to and
from character strings using (external) character datatypes such as VARCHAR?2 or
STRING.

LONG

You use the LONG datatype to store variable-length character strings. LONG columns can
store text, arrays of characters, or even short documents. The LONG datatype is like the
VARCHAR? datatype, except the maximum width of a LONG column is 2147483647
bytes or two gigabytes.

Advanced Pro*COBOL Programs 4-3



The Oracle8 Datatypes

You can use LONG columns in UPDATE, INSERT, and (most) SELECT statements, but
not in expressions, function calls, or SQL clauses such as WHERE, GROUP BY, and CON-
NECT BY. Only one LONG column is allowed per database table and that column cannot
be indexed.

LONG RAW

You use the LONG RAW datatype to store variable-length binary data or byte strings. The
maximum width of a LONG RAW column is 2147483647 bytes or two gigabytes.

LONG RAW data is like LONG data, except that Oracle8 assumes nothing about the
meaning of LONG RAW data and does no character set conversions when you transmit
LONG RAW data from one system to another. The restrictions that apply to LONG data
also apply to LONG RAW data.

MLSLABEL

With Trusted Oracle, you use the MLSLABEL datatype to store variable-length, binary
operating system labels. Trusted Oracle uses labels to control access to data. For more infor-
mation, see the Trusted Oracle documentation.

You can use the MLSLABEL datatype to define a database column. However, with stan-
dard Oracle8, such columns can store only nulls. With Trusted Oracle, you can insert any
valid operating system label into a column of type MLSLABEL. If the label is in text for-
mat, Trusted Oracle converts it to a binary value automatically. The text string can be up to
255 bytes long. However, the internal length of an MLSLABEL value is between 2 and 5
bytes.

With Trusted Oracle, you can also select values from a MLSLABEL column into a charac-
ter variable. Trusted Oracle converts the internal binary value to a VARCHAR? value auto-
matically.

NUMBER

You use the NUMBER datatype to store fixed or floating point numbers of virtually any
size. You can specify precision, which is the total number of digits, and scale, which deter-
mines where rounding occurs.

The maximum precision of a NUMBER value is 38; the magnitude range is 1.0E-129 to
9.99E125. Scale can range from -84 to 127. For example, a scale of -3 means the number is
rounded to the nearest thousand (3456 becomes 3000). A scale of 2 means the value is
rounded to the nearest hundredth (3.456 becomes 3.46).

4-4 Pro*COBOL Precompiler Programmer’s Guide



The Oracle8 Datatypes

When you specify precision and scale, Oracle8 does extra integrity checks before storing
the data. If a value exceeds the precision, Oracle8 issues an error message; if a value
exceeds the scale, Oracle8 rounds the value.

RAW
You use the RAW datatype to store binary data or byte strings (a sequence of graphics
characters, for example). RAW data is not interpreted by Oracle8.

The RAW datatype takes a required parameter that lets you specify a maximum width up
to 255 bytes. The syntax follows:

RAW(maximum_width)
You cannot use a constant or variable to specify the maximum width; you must use an
integer literal.

RAW data is like CHAR data, except that Oracle8 assumes nothing about the meaning of
RAW data and does no character set conversions (from 7-bit ASCII to EBCDIC Code Page
500 for example) when you transmit RAW data from one system to another.

ROWID

Internally, every table in an Oracle8 database has a pseudo-column named ROWID, which
stores binary values called rowids. ROWIDs uniquely identify rows and provide the fastest
way to access particular rows.

VARCHAR2

You use the VARCHAR? datatype to store variable-length character strings. How the
strings are represented internally depends on the database character set, which might be 7-
bit ASCII or EBCDIC Code Page 500 for example.

The maximum width of a VARCHAR? database column is 4000 bytes. To define a
VARCHAR?2 column, you use the syntax

VARCHAR2(maximum_width)

where maximum_width is an integer literal in the range 1 .. 2000.

You specify the maximum width of a VARCHAR2(n) column in bytes, not characters. So,
if a VARCHARZ2(n) column stores multi-byte (2-byte) characters, its maximum width is
less than n/2 characters.

Advanced Pro*COBOL Programs 4-5



The Oracle8 Datatypes

NVARCHAR?2

Use NVARCHAR? to store variable-length NLLS character data. For fixed-width character
sets, specify the maximum length in characters. For variable-width character sets, specify
the maximum length in bytes. See "National Language Support" on page 4-30.
NVARCHAR? values can not be converted to an internal datatype and are only used in
the Declare Table when performing a semantics check with SQLCHECK=SEMANTICS
(or FULL). See “Specifying SQLCHECK=SEMANTICS” on page E-3 for a discussion of
semantics checking. See “DECLARE TABLE (Oracle Embedded SQL Directive)” on
page F-20 for a discussion and syntax diagram of this embedded SQL directive. You can
not insert VARCHAR?2 values into an NVARCHAR?2 column. You can not insert
NVARCHAR? values into a VARCHAR?2 column.This datatype can not be used in VAR
statements for datatype equivalences.

SQL Pseudo-columns and Functions
SQL recognizes the pseudo-columns in Table 4-2, which return specific data items:

Table 4-2 Pseudocolumns and Internal Datatypes

Pseudo-column Internal Datatype
CURRVAL NUMBER
LEVEL NUMBER
NEXTVAL NUMBER
ROWID ROWID
ROWLABEL MLSLABEL
ROWNUM NUMBER

Pseudocolumns are not actual columns in a table. However, pseudocolumns are treated
like columns, so their values must be SELECTed from a table. Sometimes it is convenient
to select pseudo-column values from a dummy table.

In addition, SQL recognizes the parameterless functions in Table 4-3, which also return
specific data items:

4-6 Pro*COBOL Precompiler Programmer’s Guide



The Oracle8 Datatypes

Table 4-3 Functions and Internal Datatypes

Function Internal Datatype
SYSDATE DATE
uiD NUMBER
USER VARCHAR?2

You can refer to SQL pseudocolumns and functions in SELECT, INSERT, UPDATE, and
DELETE statements. In the following example, you use SYSDATE to compute the number
of months since an employee was hired:

EXEC SQL SELECT MONTHS_BETWEEN(SYSDATE, HIREDATE)
INTO :MONTHS-OF-SERVICE
FROM EMP
WHERE EMPNO =:EMP-NUMBER

END EXEC.

Brief descriptions of the SQL pseudo-columns and functions follow. For details, see the
Oracle8 Server SQL Reference.

CURRVAL returns the current number in a specified sequence. Before you can reference
CURRVAL, you must use NEXTVAL to generate a sequence number.

LEVEL returns the level number of a node in a tree structure. The root is level 1, children
of the root are level 2, grandchildren are level 3, and so on.

LEVEL is used in the SELECT CONNECT BY statement to incorporate some or all the
rows of a table into a tree structure. In an ORDER BY or GROUP BY clause, LEVEL segre-
gates the data at each level in the tree.

You specify the direction in which the query walks the tree (down from the root or up
from the branches) with the PRIOR operator. In the START WITH clause, you specify a
condition that identifies the root of the tree.

NEXTVAL returns the next number in a specified sequence. After creating a sequence,
you can use it to generate unique sequence numbers for transaction processing. In the fol-
lowing example, you use the sequence named partno to assign part numbers:

EXEC SQL INSERT INTO PARTS
VALUES (PARTNO.NEXTVAL, :DESCRIPTION, :QUANTITY, :PRICE
END EXEC.

Advanced Pro*COBOL Programs 4-7



The Oracle8 Datatypes

If a transaction generates a sequence number, the sequence is incremented when you com-
mit or rollback the transaction. A reference to NEXTVAL stores the current sequence num-
ber in CURRVAL.

ROWID returns a row address in hexadecimal.

ROWNUM returns a number indicating the sequence in which a row was selected from a
table. The first row selected has a ROWNUM of 1, the second row has a ROWNUM of 2,
and so on. If a SELECT statement includes an ORDER BY clause, ROWNUMs are
assigned to the selected rows before the sort is done.

You can use ROWNUM to limit the number of rows returned by a SELECT statement.
Also, you can use ROWNUM in an UPDATE statement to assign unique values to each
row in a table. Using ROWNUM in the WHERE clause does not stop the processing of a
SELECT statement; it just limits the number of rows retrieved. The only meaningful use of
ROWNUM in a WHERE clause is

... WHERE ROWNUM < constant END-EXEC.
because the value of ROWNUM increases only when a row is retrieved. The following
search condition can never be met because the first four rows are not retrieved:

... WHERE ROWNUM =5 END-EXEC.

SYSDATE returns the current date and time.
UID returns the unique ID number assigned to an Oracle user.

USER returns the username of the current Oracle user.

ROWLABEL Column

SQL also recognizes the special column ROWLABEL, which Trusted Oracle creates for
every database table. Like other columns, ROWLABEL can be referenced in SQL state-
ments. However, with standard Oracle, ROWLABEL returns a null. With Trusted Oracle,
ROWLABEL returns the operating system label for a row.

A common use of ROWLABEL is to filter query results. For example, the following state-
ment counts only those rows with a security level higher than "unclassified™:

EXEC SQL SELECT COUNT(*) INTO :HEAD-COUNT FROM EMP
WHERE ROWLABEL >"UNCLASSIFIED’
END-EXEC.

For more information about the ROWLABEL column, see the Trusted Oracle documenta-
tion.

4-8 Pro*COBOL Precompiler Programmer’s Guide



The Oracle8 Datatypes

External Datatypes

As the table below shows, the external datatypes include all the internal datatypes plus
several datatypes found in other supported host languages. For example, the STRING
external datatype refers to a C null-terminated string. You use the datatype names in
datatype equivalencing, and you use the datatype codes in dynamic SQL Method 4.

Table 4-4 External Datatypes

Name Code Description

CHAR 1 <= 65535-byte, variable-length character string (1)
96 <= 65535-byte, fixed-length character string (1)

CHARF 96 <= 65535-byte, fixed-length character string

CHARZ 97 <= 65535-byte, fixed-length, null-terminated string

)

DATE 12 7-byte, fixed-length date/time value

DECIMAL 7 COBOL packed decimal

DISPLAY 91 COBOL numeric character string

DISPLAY 152 COBOL numeric with trailing sign

TRAILING

FLOAT 4 4-byte or 8-byte floating-point number

INTEGER 3 2-byte or 4-byte signed integer

LONG 8 <= 2147483647-byte, fixed-length string

LONG RAW 24 <= 217483647-byte, fixed-length binary data

LONG VAR- 94 <= 217483643-byte, variable-length string

CHAR

LONG 95 <= 217483643-byte, variable-length binary data

VARRAW

MLSLABEL 106 2..5-byte, variable-length binary data

NUMBER 2 integer or floating-point number

OVER- 172 numeric with embedded leading sign

PUNCH

LEADING

Advanced Pro*COBOL Programs 4-9



The Oracle8 Datatypes

Table 4-4 External Datatypes

Name Code Description

OVER- 154 numeric with embedded trailing sign

PUNCH

TRAILING

RAW 23 <= 65535-byte, fixed-length binary data (2)
ROWID 11 fixed-length binary value (system-specific)
STRING 5 <= 65535-byte, null-terminated character string (2)
UNSIGNED 68 2-byte or 4-byte unsigned integer

UNSIGNED 153 COBOL unsigned numeric

DISPLAY

VARCHAR 9 <= 65533-byte, variable-length character string
VARCHAR?2 1 <= 65535-byte, variable-length character string (2)
VARNUM 6 variable-length binary number

VARRAW 15 <= 65533-byte, variable-length binary data
Notes:

1. CHAR is datatype 1 when PICX=VARCHAR?2 and datatype 96 when

PICX=CHAREF.

2. Maximum size is 32767 (32K) on some platforms.

CHAR
CHAR behavior depends on the settings of the option PICX. See "PICX" on page 7-32.

CHARF

By default, Oracle8 assigns the CHARF datatype to all non-varying character host vari-
ables. You use the CHARF datatype to store fixed-length character strings. On most plat-
forms, the maximum length of a CHARF value is 65535 (64K) bytes. See "PICX" on page 7-
32

On Input. Oracle8 reads the number of bytes specified for the input host variable, does
not strip trailing blanks, then stores the input value in the target database column.

If the input value is longer than the defined width of the database column, Oracle8 gener-
ates an error. If the input value is all-blank, Oracle8 treats it like a character value.

4-10 Pro*COBOL Precompiler Programmer’s Guide



The Oracle8 Datatypes

On Output. Oracle8 returns the number of bytes specified for the output host variable,
blank-padding if necessary, then assigns the output value to the target host variable. If a
null is returned, Oracle8 fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle8 truncates
the value before assigning it to the host variable. If an indicator variable is available,
Oracle8 sets it to the original length of the output value.

CHARZ

Use the CHARZ datatype to store fixed-length, null-terminated character strings. On most
platforms, the maximum length of a CHARZ value is 65,535 bytes. You should not need
this external type in Pro*COBOL.

On input, the CHARZ and STRING datatypes work the same way. You must null-termi-
nate the input value. The null terminator serves only to delimit the string; it is not part of
the data.

On output, the CHARZ and CHAR datatypes work the same way. Oracle8 appends a null
terminator to the output value, which is also blank-padded if necessary.

DATE

Use the DATE datatype to store dates and times in 7-byte, fixed-length fields. As Table 4-5
shows, the century, year, month, day, hour (in 24-hour format), minute, and second are
stored in that order from left to right.

Table 4-5 DATE Format

Byte 1 2 3 4 5 6 7
Meaning Century |Year [Month |Day |Hour |Minute |Second
Example 119 194 10 17 14 24 13
17-OCT-1994

at 1:23:12 PM

The century and year bytes are in excess-100 notation. The hour, minute, and second are in
excess-1 notation. Dates before the Common Era (B.C.E.) are less than 100. The epoch is
January 1, 4712 B.C.E. For this date, the century byte is 53 and the year byte is 88. The hour
byte ranges from 1 to 24. The minute and second bytes range from 1 to 60. The time
defaults to midnight (1, 1, 1).

Advanced Pro*COBOL Programs 4-11



The Oracle8 Datatypes

DECIMAL

With Pro*COBOL, use the DECIMAL datatype to store packed decimal numbers for calcu-
lation. In COBOL, the host variable must be a signed COMP-3 field with an implied deci-
mal point. If significant digits are lost during data conversion, Oracle8 fills the host
variable with asterisks.

DISPLAY

With Pro*COBOL, use the DISPLAY datatype to store numeric character data. The DIS-
PLAY datatype refers to a COBOL "DISPLAY SIGN LEADING SEPARATE" number,
which requires n + 1 bytes of storage for PIC S9(n), and n + d + 1 bytes of storage for PIC
S9(n)V9(d).

FLOAT

Use the FLOAT datatype to store numbers that have a fractional part or that exceed the
capacity of the INTEGER datatype. The number is represented using the floating-point for-
mat of your computer and typically requires 4 or 8 bytes of storage. You must specify a
length for input and output host variables.

Oracle8 can represent numbers with greater precision than floating point implementations
because the internal format of Oracle8 numbers is decimal.

Note: In SQL statements, when comparing FLOAT values, use the SQL func-
tion ROUND because FLOAT stores binary (not decimal) numbers; so, fractions
do not convert exactly.

INTEGER

Use the INTEGER datatype to store numbers that have no fractional part. An integer is a
signed, 2- or 4-byte binary number. The order of the bytes in a word is system-dependent.
You must specify a length for input and output host variables. On output, if the column
value is a floating point number, Oracle8 truncates the fractional part.

LONG

Use the LONG datatype to store fixed-length character strings. The LONG datatype is like
the VARCHAR?2 datatype, except that the maximum length of a LONG value is
2147483647 bytes (two gigabytes).

LONG RAW

Use the LONG RAW datatype to store fixed-length, binary data or byte strings. The maxi-
mum length of a LONG RAW value is 2147483647 bytes (two gigabytes).

4-12 Pro*COBOL Precompiler Programmer’s Guide



The Oracle8 Datatypes

LONG RAW data is like LONG data, except that Oracle8 assumes nothing about the
meaning of LONG RAW data and does no character set conversions when you transmit
LONG RAW data from one system to another.

LONG VARCHAR

Use the LONG VARCHAR datatype to store variable-length character strings. LONG
VARCHAR variables have a 4-byte length field followed by a string field. The maximum
length of the string field is 2147483643 bytes. In an EXEC SQL VAR statement, do not
include the 4-byte length field.

LONG VARRAW

Use the LONG VARRAW datatype to store binary data or byte strings. LONG VARRAW
variables have a 4-byte length field followed by a data field. The maximum length of the

data field is 2147483643 bytes. In an EXEC SQL VAR statement, do not include the 4-byte
length field.

MLSLABEL

Use the MLSLABEL datatype to store variable-length, binary operating system labels.
Trusted Oracle uses labels to control access to data. For more information, see your
Trusted Oracle documentation, You can use the MLSLABEL datatype to define a column.
However, with standard Oracle, such columns can store nulls only. With Trusted Oracle,
you can insert any valid operating system label into a column of type MLSLABEL.

On Input. Trusted Oracle translates the input value into a binary label, which must be a
valid operating system label. If the label is invalid, Trusted Oracle issues an error message.
If the label is valid, Trusted Oracle stores it in the target database column.

On Output. Trusted Oracle converts the binary label to a character string, which can be of
type CHAR, CHARZ, STRING, VARCHAR, or VARCHAR2.

NUMBER

Use the NUMBER datatype to store fixed or floating point Oracle8 numbers. You can spec-
ify precision and scale. The maximum precision of a NUMBER value is 38; the magnitude
range is 1.0E-129 to 9.99E125. Scale can range from -84 to 127.

NUMBER values are stored in variable-length format, starting with an exponent byte and
followed by up to 20 mantissa bytes. The high-order bit of the exponent byte is a sign bit,
which is set for positive numbers. The low-order 7 bits represent the exponent, which is a
base-100 digit with an offset of 65.

Advanced Pro*COBOL Programs 4-13



The Oracle8 Datatypes

Each mantissa byte is a base-100 digit in the range 1 .. 100. For positive numbers, 1 is
added to the digit. For negative numbers, the digit is subtracted from 101, and, unless
there are 20 mantissa bytes, a byte containing 102 is appended to the data bytes. Each man-
tissa byte can represent two decimal digits. The mantissa is normalized and leading zeros
are not stored. You can use up to 20 data bytes for the mantissa but only 19 are guaranteed
accurate. The 19 bytes, each representing a base-100 digit, allow a maximum precision of
38 digits.

On output, the host variable contains the number as represented internally by Oracle8. To
accommodate the largest possible number, the output host variable must be 21 bytes long.
Only the bytes used to represent the number are returned. Oracle8 does not blank-pad or

null-terminate the output value. If you need to know the length of the returned value, use
the VARNUM datatype instead.

Normally, there is little reason to use this datatype.

RAW

Use the RAW datatype to store fixed-length binary data or byte strings. On most plat-
forms, the maximum length of a RAW value is 65535 bytes.

RAW data is like CHAR data, except that Oracle8 assumes nothing about the meaning of
RAW data and does no character set conversions when you transmit RAW data from one
system to another.

ROWID

Use the ROWID datatype to store binary rowids in 18-byte fixed-length fields. The field
size is system-specific. So, check your system-specific Oracle8 manuals.

The ROWID in Oracle 8 has a format of 'OOOOOOFFFBBBBBBSSS' which is an
18 character string where:
000000 =is a hase 64 encoding of the 32-bit data object number.

(Data object number was introduced in 8.0 to track versions of the same segment because
certain operations can change the version. It is used to discover stale ROWIDs and stale
undo records)

FFF = is a base 64 encoding of the relative file number
BBBBBB = is a base 64 encoding of the block number

SSS =is a base 64 encoding of the slot (row) number

4-14 Pro*COBOL Precompiler Programmer’s Guide



The Oracle8 Datatypes

This format is called the extended ROWID character format.

You can use VARCHAR? host variables to store rowids in a readable format. When you
select or fetch a ROWID into a VARCHAR? host variable, Oracle8 converts the binary
value to an 18-byte character string and returns it in the format

BBBBBBBB.RRRR.FFFF

where BBBBBBBB is the block in the database file, RRRR is the row in the block (the first
row is 0), and FFFF is the database file. These numbers are hexadecimal. For example, the
ROWID

(0000000E.000A.0007

points to the 11th row in the 15th block in the 7th database file.

Typically, you fetch a ROWID into a VARCHAR? host variable, then compare the host
variable to the ROWID pseudocolumn in the WHERE clause of an UPDATE or DELETE
statement. That way, you can identify the latest row fetched by a cursor. For an example,
see "Mimicking the CURRENT OF Clause" on page 10-14.

Note: If you need full portability or your application communicates with a non-
Oracle database via Transparent Gateway, specify a maximum length of 256
(not 18) bytes when declaring the VARCHAR? host variable. If your applica-
tion communicates with a non-Oracle data source via Oracle Open Gateway,
specify a maximum length of 256 bytes. Though you can assume nothing about
its contents, the host variable will behave normally in SQL statements.

STRING

The STRING datatype is like the VARCHAR? datatype, except that a STRING value is
always null-terminated.

On Input. Oracle8 uses the specified length to limit the scan for a null terminator. If a null
terminator is not found, Oracle8 generates an error. If you do not specify a length, Oracle8
assumes the maximum length, which is 65535 on most platforms.

The minimum length of a STRING value is 2 bytes. If the first character is a null terminator
and the specified length is 2, Oracle8 inserts a null unless the column is defined as NOT
NULL. An all-blank or null-terminated value is stored intact.

On Output. Oracle8 appends a null byte to the last character returned. If the string length
exceeds the specified length, Oracle8 truncates the output value and appends a null byte.

Advanced Pro*COBOL Programs 4-15



The Oracle8 Datatypes

UNSIGNED

Use the UNSIGNED datatype to store unsigned integers. An unsigned integer is a binary
number of 2 or 4 bytes. The order of the bytes in a word is system-dependent. You must
specify a length for input and output host variables. On output, if the column value is a
floating point number, Oracle8 truncates the fractional part.

VARCHAR

Use the VARCHAR datatype to store variable-length character strings. VARCHAR vari-
ables have a 2-byte length field followed by a 65533-byte string field. However, for VAR-
CHAR array elements, the maximum length of the string field is 65530 bytes. When you
specify the length of a VARCHAR variable, be sure to include 2 bytes for the length field.
For longer strings, use the LONG VARCHAR datatype. In an EXEC SQL VAR statement,
do not include the 2-byte length field.

VARCHAR2

Use the VARCHAR? datatype to store variable-length character strings. On most plat-
forms, the maximum length of a VARCHAR? value is 65535 bytes.

Specify the maximum length of a VARCHAR2(n) value in bytes, not characters. So, if a
VARCHAR2(n) variable stores multi-byte characters, its maximum length is less than n
characters.

On Input. Oracle8 reads the number of bytes specified for the input host variable, strips
any trailing blanks, then stores the input value in the target database column. Be careful.

An un-initialized host variable can contain nulls. So, always blank-pad a character input

host variable to its declared length. (COBOL PIC X(n) variables do this automatically.)

If the input value is longer than the defined width of the database column, Oracle8 gener-
ates an error. If the input value is all-blank, Oracle8 treats it like a null.

Oracle8 can convert a character value to a NUMBER column value if the character value
represents a valid number. Otherwise, Oracle8 generates an error.

On Output. Oracle8 returns the number of bytes specified for the output host variable,
blank-padding if necessary, then assigns the output value to the target host variable. If a
null is returned, Oracle8 fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle8 truncates
the value before assigning it to the host variable. If an indicator variable is available,
Oracle8 sets it to the original length of the output value.

Oracle8 can convert NUMBER column values to character values. The length of the charac-
ter host variable determines precision. If the host variable is too short for the number, scien-

4-16 Pro*COBOL Precompiler Programmer’s Guide



Datatype Conversion

tific notation is used. For example, if you select the column value 123456789 into a host
variable of length 6, Oracle8 returns the value "1.2E08" to the host variable.

VARNUM

The VARNUM datatype is like the NUMBER datatype, except that the first byte of a VAR-
NUM variable stores the length of the value.

On input, you must set the first byte of the host variable to the length of the value. On out-
put, the host variable contains the length followed by the number as represented internally
by Oracle8. To accommodate the largest possible number, the host variable must be 22
bytes long. After selecting a column value into a VARNUM host variable, you can check
the first byte to get the length of the value.

VARRAW

Use the VARRAW datatype to store variable-length binary data or byte strings. The
VARRAW datatype is like the RAW datatype, except that VARRAW variables have a 2-
byte length field followed by a <= 65533-byte data field. For longer strings, use the LONG
VARRAW datatype. In an EXEC SQL VAR statement, do not include the 2-byte length
field. To get the length of a VARRAW variable, simply refer to its length field.

Datatype Conversion

At precompile time, an external datatype is assigned to each host variable. For example,
Pro*COBOL assigns the INTEGER external datatype to host variables of type PIC S9(n)
COMP. At run time, the datatype code of every host variable used in a SQL statement is
passed to Oracle8. Oracle8 uses the codes to convert between internal and external
datatypes.

Before assigning a SELECTed column value to an output host variable, Oracle8 must con-
vert the internal datatype of the source column to the datatype of the host variable. Like-
wise, before assigning or comparing the value of an input host variable to a column,
Oracle8 must convert the external datatype of the host variable to the internal datatype of
the target column.

Conversions between internal and external datatypes follow the usual data conversion
rules. For example, you can convert a CHAR value of "1234" to a PIC S9(4) COMP value.
You cannot, however, convert a CHAR value of "65543" (number too large) or "10F" (hum-
ber not decimal) to a PIC S9(4) COMP value. Likewise, you cannot convert a PIC X(n)
value that contains alphabetic characters to a NUMBER value.

The datatype of the host variable must be compatible with that of the database column. It
is your responsibility to make sure that values are convertible. For example, if you try to

Advanced Pro*COBOL Programs 4-17



Datatype Conversion

convert the string value "YESTERDAY" to a DATE column value, you get an error.Conver-
sions between internal and external datatypes follow the usual data conversion rules. For
instance, you can convert a CHAR value of "1234" to a 2-byte integer. But, you cannot con-
vert a CHAR value of "65543" (hnumber too large) or "10F" (hnumber not decimal) to a 2-byte
integer. Likewise, you cannot convert a string value that contains alphabetic characters to a
NUMBER value.

Number conversion follows the conventions specified by National Language Support
(NLS) parameters in the Oracle8 initialization file. For example, your system might be con-
figured to recognize a comma (,) instead of a period (.) as the decimal character. For more
information about NLS, see the Oracle8 Application Developer’s Guide.

The following table shows the supported conversions between internal and external datatypes.

Table 4-6 Conversions Between Internal and External Datatypes

Internal
LONG

External CHAR DATE |LONG RAW MLSLABEL NUMBER | RAW ROWID | VARCHAR2
CHAR I/0 110 (2) |10 I(3) 110 (7) 110 1o @3) |[Wo@) |1o
CHARF 110 110 (2) |I/O 1(3) 110 (7) 110 /0 (3) [0 (1) 110
CHARZ 110 110 (2) |10 1(3) 110(7) 10 @ |vo@ |wo
DATE /10 110 | 110
DECIMAL I/0 (4) [ I/0 10 (4)
DISPLAY /0 (4)) [ /0 110 (4)
FLOAT 1/0 (4) [ 110 10 (4)
INTEGER I/0 (4) [ I/0 10 (4)
LONG 10 110 (2) |10 1 (3.5) 110 (7) 10 1o @) |1o@ |o
LONG RAW | O(6) 1(56) |llO /0 O (6)
LONG VAR-
CHAR 110 I10@) |10 1 (3,5) 110 (7) 110 10@3)) [Wo @ |1o
LONG
VARRAW /O (6) 1(56) |lIO /0 1/0 (6)
MLSLABEL 1/0 (8) 1/0 (8) 110 110 (8)
NUMBER I/0 (4) [ 110 10 (4)
RAW 1/0 (6) I (5,6) 110 110 1/0 (6)
ROWID | | 110 |

4-18 Pro*COBOL Precompiler Programmer’s Guide




Explicit Control Over DATE String Format

Table 4-6 Conversions Between Internal and External Datatypes

STRING 110 110 (2) |10 | (3.5) 110 (7) 110 o @) (vo@ |ro
UNSIGNED I/0 (4) [ 110 110 (4)
VARCHAR 10 110 (2) |10 1(3,5) 110 (7) 10 110 (3) 10
VARCHAR2 110 110 (2) |10 1(3) 110 (7) 110 1o @) (vo@ |ro
VARNUM I/0 (4) [ I/0 110 (4)
VARRAW /O (6) 1(56) |lIO /0 1/0 (6)
Notes:

1. On input, host string must be in Oracle’BBBBBBBB.RRRR.FFFF' format.

On output, column value is returned in same format.

2. On input, host string must be the default DATE character format.

On output, column value is returned in same format

3. On input, host string must be in hex format.

On output, column value is returned in same format.

4. On output, column value must represent a valid number.
5. On input, length must be less than or equal to 2000.

6. On input, column value is stored in hex format.

On output, column value must be in hex format.

7. On input, host string must be a valid OS label in text format.

On output, column value is returned in same format.

8. On input, host string must be a valid OS label in raw format.

On output, column value is returned in same format.

Legend:

| = input only

O = output only

I/O = input or output

Explicit Control Over DATE String Format

When you select a DATE column value into a character host variable, Oracle8 must con-
vert the internal binary value to an external character value. So, Oracle8 implicitly calls the
SQL function TO_CHAR, which returns a character string in the default date format. The
default is set by the Oracle8 initialization parameter NLS_DATE_FORMAT. To get other
information such as the time or Julian date, you must explicitly call TO_CHAR with a for-

mat mask.

A conversion is also necessary when you insert a character host value into a DATE col-
umn. Oracle8 implicitly calls the SQL function TO_DATE, which expects the default date
format. To insert dates in other formats, you must explicitly call TO_DATE with a format

mask.

Advanced Pro*COBOL Programs 4-19




Datatype Equivalencing

For compatibility with other versions of SQL Pro*COBOL now provides the following pre-
compiler option to specify date strings:

DATE_FORMAT={ISO | USA | EUR | JIS | LOCAL | 'fmt’ (default LOCAL)}

The DATE_FORMAT option must be used on the command line or in a configuration file.
The date strings are shown in the following table:

Table 4-7 Formats for Date Strings

Format Name Abbreviation Date Format
International Standards Organization ISO yyyy-mm-dd
USA standard USA mm/dd/yyyy
European standard EUR dd.mm.yyyy
Japanese Industrial Standard JIS yyyy-mm-dd
installation-defined LOCAL Any installation-

defined form.

‘fmt’ is a date format model, such as 'Month dd, yyyy’. See the Oracle8 SQL Reference
Manual for the list of date format model elements.

Note: All separately compiled units to be linked together must use the same DATE_FORMAT value.

Datatype Equivalencing
Datatype equivalencing lets you control the way Oracle8 interprets input data and the
way Oracle8 formats output data. You can equivalence supported COBOL datatypes to
Oracle8 external datatypes on a variable-by-variable basis.

Why Equivalence Datatypes?
Datatype equivalencing is useful in several ways. For example, suppose you want to use a
null-terminated host string in a COBOL program. You can declare a PIC X host variable,
then equivalence it to the external datatype STRING, which is always null-terminated.

You can use datatype equivalencing when you want Oracle8 to store but not interpret
data. For example, if you want to store an integer host array in a LONG RAW database col-
umn, you can equivalence the host array to the external datatype LONG RAW.

Also, you can use datatype equivalencing to override default datatype conversions. Unless
NLS parameters in the Oracle8 initialization file specify otherwise, if you select a DATE col-

4-20 Pro*COBOL Precompiler Programmer’s Guide



Datatype Equivalencing

umn value into a character host variable, Oracle8 returns a 9-byte string formatted as fol-
lows:

DD-MON-YY
However, if you equivalence the character host variable to the DATE external datatype,
Oracle8 returns a 7-byte value in the internal format.

Host Variable Equivalencing

By default, Pro*COBOL assigns a specific external datatype to every host variable. You can
override the default assignments by equivalencing host variables to Oracle8 external
datatypes. This is called host variable equivalencing.

The syntax of the VAR embedded SQL statement is:

EXEC SQL
VAR <host_variable> IS <datatype> [CONVBUFSZ [1S] (<size>)]
END-EXEC

or

EXEC SQL VAR <host_variable> [CONVBUFSZ [IS] (<size>)] END-EXEC
where <datatype> is:

<SQL datatype> [ ({<length> | <precision>, <scale>}) ]

There must be at least one of the two clauses, or both.

where:

host_variable is an input or output host variable (or host table) declared earlier.

The VARCHAR and VARRAW external datatypes have a 2-byte
length field followed by an n-byte data field, where nlies in the range 1
.. 65533. So, if type_name is VARCHAR or VARRAW, host_variable
must be at least 3 bytes long.

The LONG VARCHAR and LONG VARRAW external datatypes
have a 4-byte length field followed by an n-byte data field, where nlies
in the range 1 .. 2147483643. So, if type_name is LONG VARCHAR or
LONG VARRAW, host_variable must be at least 5 bytes long.

SQL datatype is the name of a valid external datatype such as RAW or STRING.

Advanced Pro*COBOL Programs 4-21



Datatype Equivalencing

length is an integer literal specifying a valid length in bytes. The value of
length must be large enough to accommaodate the external datatype.

When type_nameis DECIMAL or DISPLAY, you must specify precision
and scale instead of length. When type_name is VARNUM, ROWID, or
DATE, you cannot specify length because it is predefined. For other
external datatypes, length is optional. It defaults to the length of
host_variable.

When specifying length, if type_nameis VARCHAR, VARRAW, LONG
VARCHAR, or LONG VARRAW, use the maximum length of the data
field. Pro*COBOL accounts for the length field. If type_name is LONG
VARCHAR or LONG VARRAW and the data field exceeds 65533 bytes,
put "-1" in the length field.

precision and scale are integer literals that represent, respectively, the number of
significant digits and the point at which rounding will occur. For
example, a scale of 2 means the value is rounded to the nearest
hundredth (3.456 becomes 3.46); a scale of -3 means the number is
rounded to the nearest thousand (3456 becomes 3000).

You can specify a precisionof 1 .. 99 and a scale of -84 .. 99. However,
the maximum precision and scale of a database column are 38 and 127,
respectively. So, if precision exceeds 38, you cannot insert the value of
host _variable into a database column. On the other hand, if the scale of
a column value exceeds 99, you cannot select or fetch the value into
host _variable.

Specify precision and scale only when type_name is DECIMAL or
DISPLAY.

size an integer which is the size, in bytes, of a buffer used to perform
conversion of the specified host_variable to another character set.

Table 4-8 shows which parameters to use with each external datatype.

The CONVBUFSZ clause is explained in "CONVBUFSZ Clause in VAR Statement” on
page 4-23.

You cannot use EXEC SQL VAR with NCHAR host variables (those containing PIC G or
PIC N clauses).

If DECLARE_SECTION=TRUE then you must have a Declare Section and you must place
EXEC SQL VAR statements in the Declare Section.

For a syntax diagram of this statement, see “VVAR (Oracle Embedded SQL Directive)” on
page F-53.

When ext_type_name is FLOAT, use length; when ext_type_name is DECIMAL, you must
specify precision and scale instead of length.

Host variable equivalencing is useful in several ways. For example, you can use it when
you want Oracle8 to store but not interpret data. Suppose you want to store a host table of

4-22 Pro*COBOL Precompiler Programmer’s Guide



Datatype Equivalencing

4-byte integers in a RAW database column. Simply equivalence the host table to the RAW
external datatype, as follows:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-TABLES.
05 EMP-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.

* Reset default datatype (INTEGER) to RAW.
EXEC SQL VAR EMP-NUMBER IS RAW (200) END-EXEC.
EXEC SQL END DECLARE SECTION END-EXEC.

With host tables, the length you specify must match the buffer size required to hold the
table. In the last example, you specified a length of 200, which is the buffer size needed to
hold 50 4-byte integers.

You can also declare a group item to be used as a LONG VARCHAR:

01 MY-LONG-VARCHAR.
05 UC-LEN PIC S9(9) COMP.
05 UC-ARR PIC X(6000).
EXEC SQL VAR MY-LONG-VARCHAR IS LONG VARCHAR(G000).

CONVBUFSZ Clause in VAR Statement

The EXEC SQL VAR statement can have an optional CONVBUFSZ clause. You specify the
size, in bytes, of the buffer in the Oracle8 runtime library used to perform conversion of
the specified host variable between character sets.

When you have not used the CONVBUFSZ clause, the Oracle8 runtime automatically
determines a buffer size based on the ratio of the host variable character size (determined
by NLS_LANG) and the character size of the database character set. This can sometimes
result in the creation of a buffer of LONG size. Databases are allowed to have only one
LONG column. An error is raised if there is more than one LONG value.

To avoid such errors, you use a length shorter than the size of a LONG. If a character set
conversion results in a value longer than the length specified by CONVBUFSZ, then
Pro*COBOL returns an error.

An Example

Suppose you want to select employee names from the EMP table, then pass them to a C-
language routine that expects null-terminated strings. You need not explicitly null-termi-
nate the names. Simply equivalence a host variable to the STRING external datatype, as
follows:

Advanced Pro*COBOL Programs 4-23



Datatype Equivalencing

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 EMP-NAME PIC X(11).
EXEC SQL VAR EMP-NAME IS STRING (11) END-EXEC.
EXEC SQL END DECLARE SECTION END-EXEC.

The width of the ENAME column is 10 characters, so you allocate the new EMP-NAME 11
characters to accommodate the null terminator. (Here, length is optional because it defaults
to the length of the host variable.) When you select a value from the ENAME column into
EMP-NAME, Oracle8 null-terminates the value for you.

Table 4-8 Parameters for Host Variable Equivalencing

External l

Datatype Length Rrecision  Scale Default Length

CHAR optional n/a n/a declared length of
variable

CHARZ optional n/a n/a declared length of
variable

DATE n/a n/a n/a 7 bytes

DECIMAL n/a required required |none

DISPLAY n/a required required |none

DISPLAY TRAIL- |n/a required required |none

ING

UNSIGNED DIS- [n/a required required |none

PLAY

OVERPUNCH n/a required required |none

TRAILING

OVERPUNCH n/a required required |none

LEADING

FLOAT optional (4 or 8) n/a n/a declared length of
variable

INTEGER optional (1,2,0r4) |n/a n/a declared length of
variable

LONG optional n/a n/a declared length of
variable

4-24 Pro*COBOL Precompiler Programmer’s Guide



Datatype Equivalencing

Table 4-8 Parameters for Host Variable Equivalencing

External l

Datatype Length Rrecision  Scale Default Length

LONG RAW optional n/a n/a declared length of
variable

LONG VAR- required (note 1) n/a n/a none

CHAR

LONG VARRAW | required (note 1) n/a n/a none

MLSLABEL required n/a n/a none

NUMBER n/a n/a n/a not available

STRING optional n/a n/a declared length of
variable

RAW optional n/a n/a declared length of
variable

ROWID n/a n/a n/a 18 bytes (see note 2)

UNSIGNED optional (1,2, 0r4) [n/a n/a declared length of
variable

VARCHAR required n/a n/a none

VARCHAR?2 optional n/a n/a declared length of
variable

VARNUM n/a n/a n/a 22 bytes

VARRAW optional n/a n/a none

1. If the data field exceeds 65,533 bytes, pass -1.
2. This length is typical but the default is port-specific.

Using the CHARF Datatype Specifier

You can use the datatype specifier CHARF in VAR statements to equivalence COBOL
datatypes to the fixed-length ANSI datatype CHAR.

When PICX=CHAREF, specifying the datatype CHAR in a VAR statement equivalences the
host-language datatype to the fixed-length ANSI datatype CHAR (Oracle8 external
datatype code 96). However, when PICX=VARCHAR?2, the host-language datatype is
equivalenced to the variable-length datatype VARCHAR? (code 1).

Advanced Pro*COBOL Programs 4-25



Datatype Equivalencing

Guidelines

However, you can always equivalence host-language datatypes to the fixed-length ANSI
datatype CHAR. Simply specify the datatype CHARF in the VAR statement. If you use
CHAREF, the host-language datatype is equivalenced to the fixed-length ANSI datatype
CHAR even when PICX=VARCHAR2.

To input VARNUM or DATE values, you must use the Oracle8 internal format. Keep in
mind that Oracle8 uses the internal format to output VARNUM and DATE values.

After selecting a column value into a VARNUM host variable, you can check the first byte
to get the length of the value. Table 4-9 gives some examples of returned VARNUM values.

Table 4-9 VARNUM Examples

VARNUM Value
Length Exponent Mantissa [Terminator
Decimal Value [Byte Byte Bytes Byte
0 1 128 n/a n/a
5 2 193 6 n/a
-5 3 62 96 102
2767 3 194 28, 68 n/a
-2767 4 61 74,34 102
100000 2 195 11 n/a
1234567 5 196 2,24, 46,68 n/a

For converting DATE values, see "Explicit Control Over DATE String Format" on page 4-
19.

If no Oracle8 external datatype suits your needs exactly, use a VARCHAR2-based or RAW-
based external datatype.

RAW and LONG RAW Values

When you select a RAW or LONG RAW column value into a character host variable,
Oracle8 must convert the internal binary value to an external character value. In this case,
Oracle8 returns each binary byte of RAW or LONG RAW data as a pair of characters. Each
character represents the hexadecimal equivalent of a nibble (half a byte). For example,

4-26 Pro*COBOL Precompiler Programmer’s Guide



Datatype Equivalencing

Oracle8 returns the binary byte 11111111 as the pair of characters "FF". The SQL function
RAWTOHEX performs the same conversion.

A conversion is also necessary when you insert a character host value into a RAW or
LONG RAW column. Each pair of characters in the host variable must represent the hexa-
decimal equivalent of a binary byte. If a character does not represent the hexadecimal
value of a nibble, Oracle8 issues the following error message:

ORA-01465: invalid hex number
For more information about datatype conversion, see "Sample Program 4: Datatype Equiv-
alencing" on page 5-19.

See "Sample Program 4: Datatype Equivalencing"” on page 5-19
The default assignments of External and COBOL datatypes are shown in Table 4-10

Advanced Pro*COBOL Programs 4-27



Datatype Equivalencing

Table 4-10 Host Variable Equivalencing

External
COBOL Datatype Datatype Code
PIC X..X CHARF 96
PIC X(n)
PIC X..X VARYING VARCHAR 9
PIC X(n) VARYING
PIC S9...9 COMP INTEGER 3
PIC S9(n) COMP
PIC S9...9 COMP-5
PIC S9(n) COMP-5
PIC S9...9 COMP-4
PIC S9(n) COMP-4
PIC S9...9 BINARY
PIC S9(n) BINARY
COMP-1 FLOAT 4
COMP-2
PIC S9...9V9...9 COMP-3 DECIMAL 7
PIC S9(n)V9(n) COMP-3
PIC S9...9V9...9 PACKED-DECIMAL
PIC S9(n)V9(n) PACKED-DECIMAL
PIC 9(n) COMP UNSIGNED 68
PIC9..9 COMP
PIC S9...9V9...9 LEADING SEPARATE | DISPLAY 91
PIC S9(n)V9(n) LEADING SEPARATE
PIC 9(n)V9(9) UNSIGNED DIS- |153
PIC9..9Vv9...9 PLAY
PIC S9...9V9..9 TRAILING OVERPUNCH 154
PIC S9(N)VO(n) TRAILING TRAILING

4-28 Pro*COBOL Precompiler Programmer’s Guide



Embedding PL/SQL

Table 4-10 Host Variable Equivalencing

External
COBOL Datatype Datatype Code
PIC S9..9V9...9 LEADING OVERPUNCH 172
LEADING

PIC S9(n)V9(n) LEADING

PIC $9...9V9...9 TRAILING SEPARATE | DISPLAY TRAIL- |152
PIC S9()V9(n) TRAILING SEPARATE |'NC

Embedding PL/SQL

Host Variables

Pro*COBOL treats a PL/SQL block like a single embedded SQL statement. So, you can
place a PL/SQL block anywhere in a host program that you can place a SQL statement.

To embed a PL/SQL block in your host program, declare the variables to be shared with
PL/SQL and bracket the PL/SQL block with the EXEC SQL EXECUTE and END-EXEC
keywords.

Inside a PL/SQL block, host variables are global to the entire block and can be used any-
where a PL/SQL variable is allowed. Like host variables in a SQL statement, host vari-
ables in a PL/SQL block must be prefixed with a colon. The colon sets host variables apart
from PL/SQL variables and database objects.

VARCHAR Variables

When entering a PL/SQL block, Oracle8 automatically checks the length fields of VAR-
CHAR host variables, so you must set the length fields before the block is entered. For input
variables, set the length field to the length of the value stored in the string field. For output
variables, set the length field to the maximum length allowed by the string field.

Multi-Byte NCHAR Features When NLS_LOCAL=YES

When NLS_LOCAL=YES, multi-byte NCHAR features are not supported within a
PL/SQL block. These features include N-quoted character literals (see Chapter 4,
“Advanced Pro*COBOL Programs”) and fixed-length character variables.

Advanced Pro*COBOL Programs 4-29



National Language Support

Indicator Variables

SQLCHECK

In a PL/SQL block, you cannot refer to an indicator variable by itself; it must be appended
to its associated host variable. Also, if you refer to a host variable with its indicator vari-
able, you must always refer to it that way in the same block.

Handling Nulls

When entering a block; if an indicator variable has a value of -1, PL/SQL automatically
assigns a null to the host variable. When exiting the block, if a host variable is null,
PL/SQL automatically assigns a value of -1 to the indicator variable.

Handling Truncated Values

PL/SQL does not raise an exception when a truncated string value is assigned to a host
variable. However, if you use an indicator variable, PL/SQL sets it to the original length of
the string.

You must specify SQLCHECK=SEMANTICS when precompiling a program with an
embedded PL/SQL block. You must also use the USERID option. For more information,
see Chapter 7, “Running the Pro*COBOL Precompiler”.

National Language Support

Although the widely-used 7- or 8-bit ASCII and EBCDIC character sets are adequate to
represent the Roman alphabet, some Asian languages, such as Japanese, contain thou-
sands of characters. These languages require 16 bits or more, to represent each character.
How does Oracle8 deal with such dissimilar languages?

Oracle8 provides National Language Support (NLS), which lets you process single-byte
and multi-byte character data and convert between character sets. It also lets your applica-
tions run in different language environments. With NLS, number and date formats adapt
automatically to the language conventions specified for a user session. Thus, NLS allows
users around the world to interact with Oracle8 in their native languages.

You control the operation of language-dependent features by specifying various NLS
parameters. You can set default parameter values in the Oracle8 initialization file.
Table 4-11 shows what each NLS parameter specifies.

4-30 Pro*COBOL Precompiler Programmer’s Guide



National Language Support

Table 4-11 NLS Parameters

NLS Parameter specifies ...

NLS_LANGUAGE language-dependent conventions
NLS_TERRITORY territory-dependent conventions
NLS_DATE_FORMAT date format

NLS_DATE_LANGUAGE language for day and month names
NLS_NUMERIC_CHARACTERS |decimal character and group separator
NLS_CURRENCY local currency symbol
NLS_ISO_CURRENCY ISO currency symbol

NLS_SORT sort sequence

The main parameters are NLS_LANGUAGE and NLS_TERRITORY. NLS_LANGUAGE
specifies the default values for language-dependent features, which include

« language for Server messages
« language for day and month names
= sortsequence

NLS_TERRITORY specifies the default values for territory-dependent features, which
include

« date format

« decimal character

= group separator

« local currency symbol
« 1SO currency symbol

You can control the operation of language-dependent NLS features for a user session by
specifying the parameter NLS_LANG as follows

NLS_LANG =<language>_<tenitory>.<character set>
where language specifies the value of NLS_L ANGUAGE for the user session, territory speci-

fies the value of NLS_TERRITORY, and character set specifies the encoding scheme used for
the terminal. An encoding scheme (usually called a character set or code page) is a range of

Advanced Pro*COBOL Programs 4-31



Multi-Byte NLS Character Sets

numeric codes that corresponds to the set of characters a terminal can display:. It also includes
codes that control communication with the terminal.

You define NLS_LANG as an environment variable (or the equivalent on your system).
For example, on UNIX using the C shell, you might define NLS_LANG as follows:

setenv NLS_LANG French_France WESISO8859P1

To change the values of NLS parameters during a session, you use the ALTER SESSION
statement as follows:

ALTER SESSION SET <nls_parameter> = <value>

Pro*COBOL fully supports all the NLS features that allow your applications to process
multilingual data stored in an Oracle8 database. For example, you can declare foreign-lan-
guage character variables and pass them to string functions such as INSTRB, LENGTHB,
and SUBSTRB. These functions have the same syntax as the INSTR, LENGTH, and SUB-
STR functions, respectively, but operate on a per-byte basis rather than a per-character
basis.

You can use the functions NLS_INITCAP, NLS L OWER, and NLS_UPPER to handle spe-
cial instances of case conversion. And, you can use the function NLSSORT to specify
WHERE-clause comparisons based on linguistic rather than binary ordering. You can even
pass NLS parameters to the TO_CHAR, TO_DATE, and TO_NUMBER functions. For
more information about NLS, see the Oracle8 Application Developer’s Guide.

Multi-Byte NLS Character Sets

Pro*COBOL extends support for multi-byte NLS character sets through

« recognition of multi-byte character strings by Pro*COBOL in embedded SQL
statements.

« the COBOL PIC N and PIC G datatype declaration clauses, that instruct
Pro*COBOL to interpret host character variables as strings of multi-byte charac-
ters.

Character Strings in Embedded SQL

A multi-byte NLS character string in an embedded SQL statement consists of the letter N,
followed by the string enclosed in single quotes.

For example,

EXEC SQL
SELECT EMPNO INTO :EMP-NUM FROM EMP

4-32 Pro*COBOL Precompiler Programmer’s Guide



Multi-Byte NLS Character Sets

Embedded DDL

Blank Padding

WHERE ENAME=N'<NLS_string>'
END-EXEC.

When the precompiler option, NLS_LOCAL=YES, columns storing NCHAR data cannot
be used in embedded data definition language (DDL) statements. This restriction cannot
be enforced when precompiling, so the use of extended column types, such as NCHAR,
within embedded DDL statements results in an execution error rather than a precompile
error.

For more information about these options, see their entries in Chapter 7, “Running the
Pro*COBOL Precompiler”.

When a Pro*COBOL character variable is defined as a multi-byte NLS variable, the follow-
ing blank padding and blank stripping rules apply, depending on the external datatype of
the variable. See the section "Handling Character Data" on page 3-39.

CHAREF. Input data is stripped of any trailing double-byte spaces. However, if a string
consists only of multi-byte spaces, a single multi-byte space is left in the buffer to act as a
sentinel.

Output host variables are blank padded with multi-byte spaces.

VARCHAR. On input, host variables are not stripped of trailing double-byte spaces. The
length component is assumed to be the length of the data in characters, not bytes.

On output, the host variable is not blank padded at all. The length of the buffer is set to the
length of the data in characters, not bytes.

STRING/LONG VARCHAR. These host variables are not supported for NLS data,
since they can only be specified using dynamic SQL or datatype equivalencing, neither of
which is supported for NLS data.

Indicator Variables

You can use indicator variables with multi-byte NLS character variables as use you would
with any other variable, except column length values are expressed in characters instead of
bytes. For a list of possible values, see "Using Indicator Variables" on page 5-3.

Advanced Pro*COBOL Programs 4-33



Embedding OCI (Oracle Call Interface) Calls

Embedding OCI (Oracle Call Interface) Calls

Pro*COBOL let s you embed OCI calls in your program. Just take the following steps:

1. Declare the OCI Logan Data Area (LDA) outside the Declare Section, if it exists.
For details, see the Oracle Call Interface Programmer’s Guide.

2. Connect to Oracle using the embedded SQL statement CONNECT, not the OCI
call OLOG.

3. Call the Oracle8 run-time library routine SQLLDA to store the connect informa-
tion in the LDA.

That way, Pro*COBOL and the OCI “know” that they are working together. However,
there is no sharing of Oracle8 cursors.

You need not worry about declaring the OCI Host Data Area (HDA) because the Oracle8
run-time library manages connections and maintains the HDA for you.

Setting Up the LDA
You set up the LDA by issuing the OClI call

CALL "SQLLDA" USING LDA.
where LDA identifies the LDA data structure. See the Oracle Call Interface Programmer’s Guide.
If the CONNECT statement fails, the LDA-RC field in the Ida is set to 1012 to indicate the
error.

Remote and Multiple Connections

A call to SQLLDA sets up an LDA for the connection used by the most recently executed
SQL statement. To set up the different LDAs needed for additional connections, just call
SQLLDA with a different Ida after each CONNECT. In the following example, you connect
to two non-default databases concurrently:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10).
01 PASSWORD PICX(10).
01 DB-STRING1 PIC X(20).
01 DB-STRING2 PIC X(20).
EXEC SQL END DECLARE SECTION END-EXEC.

*— Field sizes in LDA are system-dependent.
01 LDA1L.
02 LDA1-V2RC PIC S9(4) COMP.
02FILLER PIC X(10).
02LDA1-RC PIC S9(4) COMP.

4-34 Pro*COBOL Precompiler Programmer’s Guide



Developing X/Open Applications

02FILLER PIC X(50).
01 LDA2.
02 LDA2\V2RC PIC S9(4) COMP.
02FILLER PIC X(10).
02LDA2-RC PIC S9(4) COMP.,
02FILLER  PIC X(50).

MOVE 'SCOTT TO USERNAME.

MOVE TIGER TO PASSWORD.

MOVE 'D:NEWYORK-NONDEF1' TO DB-STRING1.
MOVE 'D:CHICAGO-NONDEF2' TO DB-STRING2.

*— give each database connection a unique name
EXEC SQL DECLARE db_namel DATABASE END-EXEC.
EXEC SQL DECLARE db_name2 DATABASE END-EXEC.

* — connect to first non-default database
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD
AT db_namel USING :DB-STRING1
END-EXEC.
*— setupfirst LDA for OCl use
CALL 'SQLLDA’ USING LDA1.
* — connect to second non-default database
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD
AT db_name2 USING :DB-STRING2
END-EXEC.
*— setup second LDA for OCl use
CALL 'SQLLDA’ USING LDA2.

Remember, do not declare db_namel and db_name?2 because they are not host variables. You
use them only to name the default databases at the two non-default nodes so that later SQL
statements can refer to the databases by name.

Developing X/Open Applications

X/Open applications run in a distributed transaction processing (DTP) environment. In an
abstract model, an X/Open application calls on resource managers (RMs) to provide a variety
of services. For example, a database resource manager provides access to data in a database.
Resource managers interact with a transaction manager (TM), which controls all transactions
for the application.

Figure4-1 shows one way that components of the DTP model can interact to provide
efficient access to data in an Oracle8 database. The DTP model specifies the XA interface
between resource managers and the transaction manager. Oracle supplies an XA-compliant

Advanced Pro*COBOL Programs 4-35



Developing X/Open Applications

library, which you must link to your X/Open application. Also, you must specify the native
interface between your application program and the resource managers.

Figure 4-1  Hypothetical DTP Model

TX Interface o
Application Program

i ‘.

XA Interface Resource
; e
Transaction Manager

Manager
v
P XA Interface - Resource
< » Manager
v l
Oracle Server Other
Resources

The DTP model that specifies how a transaction manager and resource managers interact
with an application program is described in the X/Open guide Distributed Transaction Pro-
cessing Reference Model and related publications, which you can obtain by writing to

X/0pen Company Ltd.
1010 El Camino Real, Suite 380
Menlo Park, CA 94025

For instructions on using the XA interface, see your Transaction Processing (TP) Monitor
user’s guide.

4-36 Pro*COBOL Precompiler Programmer’s Guide



Developing X/Open Applications

Oracle-Specific Issues

You can use Pro*COBOL to develop applications that comply with the X/Open standards.
However, you must meet the following requirements.

Connecting to Oracle

The X/Open application does not establish and maintain connections to a database.
Instead, the transaction manager and the XA interface, which is supplied by Oracle, han-
dle database connections and disconnections transparently. So, normally an X/Open-com-
pliant application does not execute CONNECT statements.

Transaction Control

The X/Open application must not execute statements such as COMMIT, ROLLBACK,
SAVEPOINT, and SET TRANSACTION that affect the state of global transactions. For
example, the application must not execute the COMMIT statement because the transaction
manager handles commits. Also, the application must not execute SQL data definition
statements such as CREATE, ALTER, and RENAME because they issue an implicit com-
mit.

The application can execute an internal ROLLBACK statement if it detects an error that
prevents further SQL operations. However, this might change in later versions of the XA
interface.

OCI Calls

If you want your X/Open application to issue OCI calls, you must use the run-time library
routine SQLLD2, which sets up an LDA for a specified connection established through the
XA interface. For a description of the SQLLD2 call, see the Oracle Call Interface Programmer’s
Guide. Note that OCOM, OCON, OCOF, ORLON, OLON, OLOG, and OLOGOF cannot be
issued by an X/Open application.

Linking

To get XA functionality, you must link the XA library to your X/Open application object
modaules. For instructions, see your system-specific Oracle8 manuals.

Advanced Pro*COBOL Programs 4-37



Developing X/Open Applications

4-38 Pro*COBOL Precompiler Programmer’s Guide



D

Using Embedded SQL

This chapter helps you to understand and apply the basic techniques of embedded
SQL programming. Topics are:

Using Host Variables

Using Indicator Variables

The Basic SQL Statements

Cursors

Sample Program 2: Cursor Operations

Sample Program 4: Datatype Equivalencing

Using Embedded SQL 5-1



Using Host Variables

Using Host Variables

Oracle uses host variables to pass data and status information to your program;
your program uses host variables to pass data to Oracle.

Output versus Input Host Variables

Depending on how they are used, host variables are called output or input host
variables. Host variables in the INTO clause of a SELECT or FETCH statement are
called output host variables because they hold column values output by Oracle. Ora-
cle assigns the column values to corresponding output host variables in the INTO
clause.

All other host variables in a SQL statement are called input host variables because
your program inputs their values to Oracle. For example, you use input host vari-
ables in the VALUES clause of an INSERT statement and in the SET clause of an
UPDATE statement. They are also used in the WHERE, HAVING, and FOR clauses.
In fact, input host variables can appear in a SQL statement wherever a value or
expression is allowed.

Attention: In an ORDER BY clause, you can use a host variable, but it is treated
as a constant or literal, and hence the contents of the host variable have no
effect. For example, the SQL statement

EXEC SQL SELECT ENAME, EMPNO INTO :NAME, :NUMBER
FROM EMP
ORDERBY :ORD

END-EXEC.

appears to contain an input host variable, ORD. However, the host variable in this case
is treated as a constant, and regardless of the vatud, afo ordering is done.

You cannot use input host variables to supply SQL keywords or the names of data-
base objects. Thus, you cannot use input host variables in data definition state-
ments (sometimes called DDL) such as ALTER, CREATE, and DROP. In the
following example, the DROP TABLE statement is invalid:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 TABLE-NAME  PIC X(30) VARYING.
EXEC SQL END DECLARE SECTION END-EXEC.

DISPLAY Table name?".

ACCEPT TABLE-NAME.

EXEC SQL DROP TABLE :TABLE-NAME END-EXEC.
* — host variable not allowed

5-2 Pro*COBOL Precompiler Programmer’s Guide



Using Indicator Variables

Before Oracle executes a SQL statement containing input host variables, your pro-
gram must assign values to them. Consider the following example:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-NUMBER PIC S9(4) COMP.
01 EMP-NAME PIC X(20) VARYING.

EXEC SQL END DECLARE SECTION END-EXEC.

* — get values for input host variables
DISPLAY 'Employee number?’.
ACCEPT EMP-NUMBER.
DISPLAY Employee name?”.
ACCEPT EMP-NAME.
EXEC SQL INSERT INTO EMP (EMPNO, ENAME)
VALUES (EMP-NUMBER, :EMP-NAME)
END-EXEC.

Notice that the input host variables in the VALUES clause of the INSERT statement
are prefixed with colons.

Using Indicator Variables

Input Variables

You can associate any host variable with an optional indicator variable. Each time
the host variable is used in a SQL statement, a result code is stored in its associated
indicator variable. Thus, indicator variables let you monitor host variables.

You use indicator variables in the VALUES or SET clause to assign nulls to input
host variables and in the INTO clause to detect nulls or truncated values in output
host variables.

For input host variables, the values your program can assign to an indicator vari-
able have the following meanings:

-1 Oracle will assign a null to the column, ignoring the value of the host variable.

>=0 Oracle will assigns the value of the host variable to the column.

Using Embedded SQL 5-3



Using Indicator Variables

Output Variables

Inserting Nulls

For output host variables, the values Oracle can assign to an indicator variable
have the following meanings:

-2 Oracle assigned a truncated column value to the host variable, but could not
assign the original length of the column value to the indicator variable
because the number was too large.

-1 The column value is null, so the value of the host variable is indeterminate.
0 Oracle assigned an intact column value to the host variable.
>0 Oracle assigned a truncated column value to the host variable, assigned the

original column length (expressed in characters, instead of bytes, for multi-
byte NLS host variables) to the indicator variable, and set SQLCODE in the
SQLCA to zero.

Remember, an indicator variable must be declared as a 2-byte integer and, in SQL
statements, must be prefixed with a colon and appended to its host variable (unless
you use the keyword INDICATOR).

You can use indicator variables to insert nulls. Before the insert, for each column
you want to be null, set the appropriate indicator variable to -1, as shown in the fol-
lowing example:

MOVE -1 TO IND-COMM.

EXEC SQL INSERT INTO EMP (EMPNO, COMM)
VALUES (EMP-NUMBER, :cOMMISSION:IND-COMM)

END-EXEC.

The indicator variable IND-COMM specifies that a null is to be stored in the
COMM column.
You can hard-code the null instead, as follows:

EXEC SQL INSERT INTO EMP (EMPNO, COMM)
VALUES (EMP-NUMBER, NULL)
END-EXEC.

While this is less flexible, it might be more readable.
Typically, you insert nulls conditionally, as the next example shows:

DISPLAY 'Enter employee number or O if not available: ’

5-4 Pro*COBOL Precompiler Programmer’s Guide



Using Indicator Variables

WITH NO ADVANCING.
ACCEPT EMP-NUMBER.
IF EMP-NUMBER =0
MOVE -1 TO IND-EMPNUM
ELSE
MOVE 0 TO IND-EMPNUM
END-IF.
EXEC SQL INSERT INTO EMP (EMPNO, SAL)
VALUES (EMP-NUMBER:IND-EMPNUM, :SALARY)
END-EXEC.

Handling Returned Nulls

You can also use indicator variables to manipulate returned nulls, as the following
example shows:

EXEC SQL SELECT ENAME, SAL, COMM
INTO :EMP-NAME, :SALARY, :COMMISSION:IND-COMM
FROM EMP
WHERE EMPNO =:EMP_NUMBER

END-EXEC.

IFIND-COMM =-1
MOVE SALARY TO PAY.

* —commission is null; ignore it

ELSE
ADD SALARY TO COMMISSIO GIVING PAY.

END-IF.

Fetching Nulls

Using the precompiler option UNSAFE_NULL=YES, you can select or fetch nulls
into a host variable that lacks an indicator variable, as the following example shows:

* — assume that commission is NULL
EXEC SQL SELECT ENAME, SAL, COMM
INTO :EMP-NAME, :SALARY, :COMMISSION
FROM EMP
WHERE EMPNO = :EMP-NUMBER
END-EXEC.

SQLCODE in the SQLCA is set to zero indicating that Oracle executed the state-
ment without detecting an error or exception.

Using Embedded SQL 5-5



Using Indicator Variables

There is no way to know whether or not a NULL was returned, or the value of the
host variable if a NULL is returned. This is to be avoided, thus the name of the
option. UNSAFE_NULL=YES should not be used in new applications. It is pro-
vided only for backward compatibility.

However, when UNSAFE_NULL=NO, if you select or fetch nulls into a host vari-
able that lacks an indicator variable, Oracle issues the following error message:

ORA-01405: fetched column value is NULL
For more information, see "UNSAFE_NULL" on page 7-37.

Testing for Nulls

You can use indicator variables in the WHERE clause to test for nulls, as the follow-
ing example shows:

EXEC SQL SELECT ENAME, SAL
INTO :EMP-NAME, :SALARY
FROM EMP
WHERE :COMMISSION:IND-COMM IS NULL ...

However, you cannot use a relational operator to compare nulls with each other or
with other values. For example, the following SELECT statement fails if the COMM
column contains one or more nulls:

EXEC SQL SELECT ENAME, SAL

INTO :EMP-NAME, :SALARY

FROM EMP

WHERE COMM = :COMMISSION:IND-COMM
END-EXEC.

The next example shows how to compare values for equality when some of them
might be nulls:

EXEC SQL SELECT ENAME, SAL
INTO :EEMP_NAME, :SALARY
FROM EMP
WHERE (COMM = :COMMISSION) OR ((COMM IS NULL) AND
(COMMISSION:ND-COMM IS NULL))
END-EXEC.

Fetching Truncated Values
If a value is truncated when fetched into a host variable, no error is generated.

5-6 Pro*COBOL Precompiler Programmer’s Guide



The Basic SQL Statements

The Basic SQL Statements

Executable SQL statements let you query, manipulate, and control Oracle data and
create, define, and maintain Oracle objects such as tables, views, and indexes. This
chapter focuses on data manipulation statements (sometimes called DML) and cur-
sor control statements. The following SQL statements let you query and manipu-
late Oracle data:

SELECT Returns rows from one or more tables.
INSERT Adds new rows to a table.

UPDATE Modifies rows in a table.

DELETE Removes rows from a table.

When executing a data manipulation statement such as INSERT, UPDATE, or
DELETE, your only concern, besides setting the values of any input host variables,
is whether the statement succeeds or fails. To find out, you simply check the
SQLCA. (Executing any SQL statement sets the SQLCA variables.) You can check in
the following two ways:

« implicit checking with the WHENEVER statement
« explicit checking of SQLCA variables

Alternatively, when MODE={ANSI]| ANSI14}, you can check the status variable
SQLSTATE or SQLCODE. For more information, see "Using Status Variables when
MODE={ANSI ]| ANSI14}" on page 9-4.

When executing a SELECT statement (query), however, you must also deal with
the rows of data it returns. Queries can be classified as follows:

« queries that return no rows (that is, merely check for existence)
= Queries that return only one row
= queries that return more than one row

Queries that return more than one row require an explicitly declared cursor or cur-
sor variable (or the use of host arrays, which are discussed in Chapter 10, “Using
Host Tables”). The following embedded SQL statements let you define and control
an explicit cursor:

Using Embedded SQL 5-7



The Basic SQL Statements

Selecting Rows

DECLARE Names the cursor and associates it with a query.

OPEN Executes the query and identifies the active set.

FETCH Advances the cursor and retrieves each row in the active set, one by one.
CLOSE Disables the cursor (the active set becomes undefined.

In the coming sections, first you learn how to code INSERT, UPDATE, DELETE,
and single-row SELECT statements. Then, you progress to multi-row SELECT state-
ments. For a detailed discussion of each statement and its clauses, see the Oracle8
SQL Reference.

Querying the database is a common SQL operation. To issue a query you use the
SELECT statement. In the following example, you query the EMP table:

EXEC SQL SELECT ENAME, JOB, SAL + 2000
INTO :emp_name, :JOB-TITLE, :SALARY
FROM EMP
WHERE EMPNO = :EMP-NUMBER

END-EXEC.

The column names and expressions following the keyword SELECT make up the
select list. The select list in our example contains three items. Under the conditions
specified in the WHERE clause (and following clauses, if present), Oracle returns
column values to the host variables in the INTO clause. The number of items in the
select list should equal the number of host variables in the INTO clause, so there is
a place to store every returned value.

In the simplest case, when a query returns one row, its form is that shown in the
last example (in which EMPNO is a unique key). However, if a query can return
more than one row, you must fetch the rows using a cursor or select them into a
host array.

If a query is written to return only one row but might actually return several rows,
the result depends on how you specify the option SELECT_ERROR. When
SELECT_ERROR=YES (the default), Oracle issues the following error message if
more than one row is returned:

ORA-01422: exact fetch retums more than requested number of rows
When SELECT_ERROR=NO, a row is returned and Oracle generates no error.

5-8 Pro*COBOL Precompiler Programmer’s Guide



The Basic SQL Statements

Available Clauses

You can use all of the following standard SQL clauses in your SELECT statements:
INTO, FROM, WHERE, CONNECT BY, START WITH, GROUP BY, HAVING,
ORDER BY, and FOR UPDATE OF.

Inserting Rows

You use the INSERT statement to add rows to a table or view. In the following
example, you add a row to the EMP table:

EXEC SQL INSERT INTO EMP (EMPNO, ENAME, SAL, DEPTNO)
VALUES (EMP_NUMBER, :EMP-NAME, :SALARY, :DEPT-NUMBER)
END-EXEC.

Each column you specify in the column list must belong to the table named in the
INTO clause. The VALUES clause specifies the row of values to be inserted. The val-
ues can be those of constants, host variables, SQL expressions, or pseudocolumns,
such as USER and SYSDATE.

The number of values in the VALUES clause must equal the number of names in
the column list. However, you can omit the column list if the VALUES clause con-
tains a value for each column in the table in the same order they were defined by
CREATE TABLE.

Using Subqueries

A subquery is a nested SELECT statement. Subqueries let you conduct multi-part
searches. They can be used to

« supply values for comparison in the WHERE, HAVING, and START WITH
clauses of SELECT, UPDATE, and DELETE statements

« define the set of rows to be inserted by a CREATE TABLE or INSERT statement
« define values for the SET clause of an UPDATE statement

For example, to copy rows from one table to another, replace the VALUES clause in
an INSERT statement with a subquery, as follows:

EXEC SQL INSERT INTO EMP2 (EMPNO, ENAME, SAL, DEPTNO)
SELECT EMPNO, ENAME, SAL, DEPTNO FROM EMP
WHERE JOB =:JOB-TITLE

END-EXEC.

Notice how the INSERT statement uses the subquery to obtain intermediate results.

Using Embedded SQL 5-9



The Basic SQL Statements

Updating Rows

Deleting Rows

You use the UPDATE statement to change the values of specified columns in a table
or view. In the following example, you update the SAL and COMM columns in the
EMP table:

EXEC SQL UPDATE EMP
SET SAL =:SALARY, COMM =:COMMISSION
WHERE EMPNO = EMP-NUMBER
END-EXEC.

You can use the optional WHERE clause to specify the conditions under which
rows are updated. See "Using the WHERE Clause” on page 5-10.

The SET clause lists the names of one or more columns for which you must provide
values. You can use a subquery to provide the values, as the following example
shows:

EXEC SQL UPDATE EMP

SET SAL =(SELECT AVG(SAL)*1.1 FROM EMP WHERE DEPTNO = 20)
WHERE EMPNO =:EMP-NUMBER

END-EXEC.

You use the DELETE statement to remove rows from a table or view. In the follow-
ing example, you delete all employees in a given department from the EMP table;

EXEC SQL DELETE FROM EMP
WHERE DEPTNO = :DEPT-NUMBER
END-EXEC.

You can use the optional WHERE clause to specify the condition under which rows
are deleted.

Using the WHERE Clause

You use the WHERE clause to select, update, or delete only those rows in a table or
view that meet your search condition. The WHERE-clause search condition is a Bool-
ean expression, which can include scalar host variables, host arrays (not in SELECT
statements), and subqueries.

If you omit the WHERE clause, all rows in the table or view are processed. If you
omit the WHERE clause in an UPDATE or DELETE statement, Oracle sets SQL-
WARN(5) in the SQLCA to "W’ to warn that all rows were processed.

5-10 Pro*COBOL Precompiler Programmer’s Guide



Cursors

Cursors

When a query returns multiple rows, you can explicitly define a cursor to
« process beyond the first row returned by the query
« keep track of which row is currently being processed

A cursor identifies the current row in the set of rows returned by the query. This
allows your program to process the rows one at a time. The following statements
let you define and manipulate a cursor:

« DECLARE
« OPEN

« FETCH

« CLOSE

First you use the DECLARE statement to name the cursor and associate it with a
query.

The OPEN statement executes the query and identifies all the rows that meet the
query search condition. These rows form a set called the active set of the cursor.
After opening the cursor, you can use it to retrieve the rows returned by its associ-
ated query.

Rows of the active set are retrieved one by one (unless you use host arrays). You
use a FETCH statement to retrieve the current row in the active set. You can execute
FETCH repeatedly until all rows have been retrieved.

When done fetching rows from the active set, you disable the cursor with a CLOSE
statement, and the active set becomes undefined.

Declaring a Cursor

You use the DECLARE statement to define a cursor by giving it a name and associ-
ating it with a query, as the following example shows:

EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT ENAME, EMPNO, SAL
FROM EMP
WHERE DEPTNO = :DEPT_NUMBER

END-EXEC.

The cursor name is an identifier used by the precompiler, not a host or program
variable, and should not be declared in a COBOL statement. Therefore, cursor

Using Embedded SQL 5-11



Cursors

names cannot be passed from one precompilation unit to another. Cursor names
cannot be hyphenated. They can be any length, but only the first 31 characters are
significant. For ANSI compatibility, use cursor names no longer than 18 characters.

The WITH HOLD clause can be used in a DECLARE CURSOR statement to hold
the cursor open after a COMMIT or a ROLLBACK.

The precompiler option CLOSE_ON_COMMIT is provided for use in the command
line or in a configuration file. Any cursor not declared with the WITH HOLD
clause is closed after a COMMIT or ROLLBACK when
CLOSE_ON_COMMIT=YES. See "WITH HOLD Clause in DECLARE CURSOR
Statements" on page 8-5, and "CLOSE_ON_COMMIT" on page 7-14.

The SELECT statement associated with the cursor cannot include an INTO clause.
Rather, the INTO clause and list of output host variables are part of the FETCH
statement.

Because it is declarative, the DECLARE statement must physically (not just logi-
cally) precede all other SQL statements referencing the cursor. That is, forward ref-
erences to the cursor are not allowed. In the following example, the OPEN
statement is misplaced:

EXEC SQL OPEN EMPCURSOR END-EXEC.
* —MISPLACED OPEN STATEMENT
EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT ENAME, EMPNO, SAL
FROM EMP
WHERE ENAME = :EMP-NAME
END-EXEC.

The cursor control statements (DECLARE, OPEN, FETCH, CLOSE) must all occur
within the same precompiled unit. For example, you cannot declare a cursor in file
A, then open it in file B.

Your host program can declare as many cursors as it needs. However, in a given
file, every DECLARE statement must be unique. That is, you cannot declare two
cursors with the same name in one precompilation unit, even across blocks or pro-
cedures, because the scope of a cursor is global within a file. If you will be using
many cursors, you might want to specify the MAXOPENCURSORS option. For
more information, see "MAXOPENCURSORS" on page 7-28.

Opening a Cursor

Use the OPEN statement to execute the query and identify the active set. In the fol-
lowing example, a cursor named EMPCURSOR is opened.

5-12 Pro*COBOL Precompiler Programmer’s Guide



Cursors

EXEC SQL OPEN EMPCURSOR END-EXEC.

OPEN positions the cursor just before the first row of the active set. It also zeroes
the rows-processed count kept by SQLERRD(3) in the SQLCA. However, none of
the rows is actually retrieved at this point. That will be done by the FETCH state-
ment.

Once you open a cursor, the query’s input host variables are not reexamined until
you reopen the cursor. Thus, the active set does not change. To change the active
set, you must reopen the cursor.

Generally, you should close a cursor before reopening it. However, if you specify
CLOSE_ON_COMMIT=YES, you need not close a cursor before reopening it. This
can boost performance; for details, see Appendix D, “Performance Tuning”The
amount of work done by OPEN depends on the values of three precompiler
options: HOLD_CURSOR, RELEASE_CURSOR, and MAXOPENCURSORS. For
more information, see "Using Pro*COBOL Options" on page 7-11.

Fetching from a Cursor

You use the FETCH statement to retrieve rows from the active set and specify the
output host variables that will contain the results. Recall that the SELECT state-
ment associated with the cursor cannot include an INTO clause. Rather, the INTO
clause and list of output host variables are part of the FETCH statement. In the fol-
lowing example, you fetch into three host variables;

EXEC SQL FETCH EMPCURSOR
INTO :EMP-NAME, :-EMP-NUMBER, :SALARY
END-EXEC.

The cursor must have been previously declared and opened. The first time you exe-
cute FETCH, the cursor moves from before the first row in the active set to the first
row. This row becomes the current row. Each subsequent execution of FETCH
advances the cursor to the next row in the active set, changing the current row. The
cursor can only move forward in the active set. To return to a row that has already
been fetched, you must reopen the cursor, then begin again at the first row of the
active set.

If you want to change the active set, you must assign new values to the input host
variables in the query associated with the cursor, then reopen the cursor. When
CLOSE_ON_COMMIT=NO, you must close the cursor before reopening it.

Using Embedded SQL 5-13



Cursors

As the next example shows, you can fetch from the same cursor using different sets
of output host variables. However, corresponding host variables in the INTO clause
of each FETCH statement must have the same datatype.

EXEC SQL DECLARE EMPCURSOr CURSOR FOR
SELECT ENAME, SAL FROM EMP WHERE DEPTNO =20
END-EXEC.

EXEC SQL OPEN EMPCURSOr END-EXEC.
EXEC SQL WHENEVER NOT FOUND DO ...

PERFORM
EXEC SQL FETCH EMPCURSOR INTO :EMP-NAMEL, :SAL1 END-EXEC
EXEC SQL FETCH EMPCURSOR INTO :EMP-NAME2, :SAL2 END-EXEC
EXEC SQL FETCH EMPCURSOR INTO :EMP-NAMES3, :SAL3 END-EXEC

END-PERFORM.

If the active set is empty or contains no more rows, FETCH returns the “no data
found" Oracle warning code to SQLCODE in the SQLCA (or when MODE=ANSI,
to the status variable SQLSTATE). The status of the output host variables is indeter-
minate. (In a typical program, the WHENEVER NOT FOUND statement detects
this error.) To reuse the cursor, you must reopen it.

Closing a Cursor

When finished fetching rows from the active set, you close the cursor to free the
resources, such as storage, acquired by opening the cursor. When a cursor is closed,
parse locks are released. What resources are freed depends on how you specify the
options HOLD_CURSOR and RELEASE_CURSOR. In the following example, you
close the cursor named EMPCURSOR:

EXEC SQL CLOSE EMPCURSOR END-EXEC.

You cannot fetch from a closed cursor because its active set becomes undefined. If
necessary, you can reopen a cursor (with new values for the input host variables,
for example).

When CLOSE_ON_COMMIT=NO, issuing a commit or rollback closes cursors ref-
erenced in a CURRENT OF clause. Other cursors are unaffected by a commit or roll-
back and if open, remain open. However, when CLOSE_ON_COMMIT=YES,
issuing a commit or rollback closes all explicit cursors.

5-14 Pro*COBOL Precompiler Programmer’s Guide



Cursors

Using the CURRENT OF Clause

Restrictions

You use the CURRENT OF cursor_name clause in a DELETE or UPDATE statement
to refer to the latest row fetched from the named cursor. The cursor must be open
and positioned on a row. If no fetch has been done or if the cursor is not open, the
CURRENT OF clause results in an error and processes no rows.

The FOR UPDATE OF clause is optional when you declare a cursor that is refer-
enced in the CURRENT OF clause of an UPDATE or DELETE statement. The CUR-
RENT OF clause signals the precompiler to add a FOR UPDATE clause if necessary.
For more information, see"Mimicking the CURRENT OF Clause" on page 10-14.

In the following example, you use the CURRENT OF clause to refer to the latest
row fetched from a cursor named EMPCURSOR:

EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT ENAME, SAL FROM EMP WHERE JOB ='CLERK’
FOR UPDATE OF SAL

END-EXEC.

EXEC SQL OPEN EMPCURSOR END-EXEC.
EXEC SQL WHENEVER NOT FOUND DO ...
PERFORM

EXEC SQL FETCH EMPCURSOR INTO :EMP-NAME, :SALARY
END-EXEC

EXEC SQL UPDATE EMP SET SAL = :NEW-SALARY
WHERE CURRENT OF EMPCURSOR
END-EXEC
END-PERFORM.

An explicit FOR UPDATE OF or an implicit FOR UPDATE acquires exclusive row
locks. All rows are locked at the open, not as they are fetched, and are released
when you commit or rollback. If you try to fetch from a FOR UPDATE cursor after
a commit, Oracle generates the following error:

ORA-01002: fetch out of sequence
You cannot use host arrays with the CURRENT OF clause. For an alternative, see

"Mimicking the CURRENT OF Clause" on page 10-14. Also, you cannot reference
multiple tables in an associated FOR UPDATE OF clause, which means that you

Using Embedded SQL 5-15



Sample Program 2: Cursor Operations

cannot do joins with the CURRENT OF clause. Finally, you cannot use the CUR-
RENT OF clause in dynamic SQL.

A Typical Sequence of Statements

The following example shows the typical sequence of cursor control statements in
an application program:

*— Define a cursor.
EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT ENAME, JOB FROM EMP
WHERE EMPNO =:EMP-NUMBER
FOR UPDATE OF JOB
END-EXEC.
*— Open the cursor and identify the active set.
EXEC SQL OPEN EMPCURSOR END-EXEC.
*— Exit if the last row was already fetched.
EXEC SQL
WHENEVER NOT FOUND DO PERFORM NO-MORE
END-EXEC.
*— Fetch and process data in aloop.
PERFORM
EXEC SQL FETCH EMPCURSOR INTO :EMP-NAME, :JOB-TITLE
END-EXEC
* — hostlanguage statements that operate on the fetched data
EXEC SQL UPDATE EMP
SET JOB =:NEW-JOB-TITLE
WHERE CURRENT OF EMPCURSOR
END-EXEC
END-PERFORM.

MO-MORE.
*— Disable the cursor.
EXEC SQL CLOSE EMPCURSOR END-EXEC.
EXEC SQL COMMIT WORK RELEASE END-EXEC.
STOP RUN.

Sample Program 2: Cursor Operations

This program logs on to Oracle, declares and opens a cursor, fetches the names, sal-
aries, and commissions of all salespeople, displays the results, then closes the cursor

All fetches except the final one return a row and, if no errors were detected during
the fetch, a success status code. The final fetch fails and returns the “no data found”

5-16 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 2: Cursor Operations

Oracle warning code to SQLCODE in the SQLCA. The cumulative number of rows

actually fetched is found in SQLERRD(3) in the SQLCA.

IDENTIFICATION DIVISION.
PROGRAM-ID. CURSOR-OPS.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME  PICX(10) VARYING.
0L PASSWD  PICX(10) VARYING.
01 EMP-REC-VARS.
05 EMP-NAME PIC X(10) VARYING.
05 SALARY PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
05 COMMISSIO PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
EXEC SQL VAR SALARY IS DISPLAY(8,2) END-EXEC.
EXEC SQL VAR COMMISSION IS DISPLAY(8,2) END-EXEC.
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL INCLUDE SQLCA END-EXEC.

01 DISPLAY-VARIABLES.
05 D-EMP-NAME PIC X(10).
05 D-SALARY  PIC Z(4)9.99.
05 D-COMMISSION PIC Z(4)9.99.

PROCEDURE DIVISION.

BEGIN-PGM.
EXEC SQL
WHENEVER SQLERROR DO PERFORM SQL-ERROR
END-EXEC.
PERFORM LOGON.
EXEC SQL
DECLARE SALESPEOPLE CURSOR FOR
SELECT ENAME, SAL, COMM FROM EMP
WHERE JOB LIKE 'SALES%
END-EXEC.
EXEC SQL
OPEN SALESPEOPLE
END-EXEC.
DISPLAY "SALESPERSON SALARY ~COMMISSION'".
DISPLAY "

Using Embedded SQL

5-17



Sample Program 2: Cursor Operations

FETCH-LOOP.
EXEC SQL
WHENEVER NOT FOUND DO PERFORM SIGN-OFF
END-EXEC.
EXEC SQL
FETCH SALESPEOPLE
INTO :EMP-NAME, :SALARY, :COMMISSION
END-EXEC.
MOVE EMP-NAME-ARR TO D-EMP-NAVE.
MOVE SALARY TO D-SALARY.
MOVE COMMISSION TO D-COMMISSION.
DISPLAY D-EMP-NAME," * D-SALARY," ",
- D-COMMISSION.
MOVE SPACES TO EMP-NAME-ARR.
GO TO FETCH-LOOP.

LOGON.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.
MOVE '"TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY "*".
DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.
DISPLAY"".

SIGN-OFF.

EXEC SQL

CLOSE SALESPEOPLE
END-EXEC.
DISPLAY ",
DISPLAY "HAVE A GOOD DAY,
DISPLAY """,
EXEC SQL

COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.

5-18 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 4: Datatype Equivalencing

DISPLAY """,
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY """,
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Sample Program 4. Datatype Equivalencing

After connecting to Oracle, this program creates a database table named IMAGE in
the SCOTT account, then simulates the insertion of bitmap images of employee
numbers into the table. Datatype equivalencing lets the program use the Oracle
external datatype LONG RAW to represent the images. Later, when the user enters

an employee number, the number’s “bitmap" is selected from the IMAGE table and
pseudo-displayed on the terminal screen.

IDENTIFICATION DIVISION.
PROGRAM-D. DTY-EQUIV.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME  PIC X(10) VARYING.
0L PASSWD  PICX(10) VARYING.
01 EMP-REC-VARS.
05 EMP-NUMBER PIC S9(4) COMP.
05 EMP-NAME  PIC X(10) VARYING.
05 SALARY  PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
05 COMMISSION  PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
05 COMMHND  PIC S9(4) COMP.

EXEC SQL VAR SALARY IS DISPLAY(8,2) END-EXEC.

EXEC SQL VAR COMMISSION IS DISPLAY(8,2) END-EXEC.
01 BUFFER-VAR.

05 BUFFER  PIC X(8192).

EXEC SQL VAR BUFFER IS LONG RAW END-EXEC.
01 SELECTION  PIC S9(4) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL INCLUDE SQLCA END-EXEC.

Using Embedded SQL 5-19



Sample Program 4: Datatype Equivalencing

01 DISPLAY-VARIABLES.
05 D-EMP-NAME PIC X(10).
05 D-SALARY  PIC $7(4)9.99.
05 D-COMMISSION PIC $2(4)9.99.
01 REPLY PIC X(10).
01 INDX PIC S9(9) COMP.
01 PRT-QUOT  PIC S9(9) COMP.
01 PRT-MOD  PIC S9(9) COMP.

PROCEDURE DIVISION.

BEGIN-PGM.
EXEC SQL
WHENEVER SQLERROR DO PERFORM SQL-ERROR
END-EXEC.
PERFORM LOGON.
DISPLAY "OK TO DROP THE IMAGE TABLE? (YIN) "
WITH NO ADVANCING.
ACCEPT REPLY.
IF (REPLY NOT ="Y") AND (REPLY NOT ="Y")
PERFORM SIGN-OFF.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
EXEC SQL
DROP TABLE IMAGE
END-EXEC.
DISPLAY """,
IF (SQLCODE =0) DISPLAY
"TABLE IMAGE DROPPED - CREATING NEW TABLE."
ELSE IF (SQLCODE = -942) DISPLAY
"TABLE IMAGE DOES NOT EXIST - CREATING NEW TABLE"
ELSE PERFORM SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR DO PERFORM SQL-ERROR
END-EXEC.
EXEC SQL
CREATE TABLE IMAGE
(EMPNO NUMBER(4) NOT NULL, BITMAP LONG RAW)
END-EXEC.
EXEC SQL
DECLARE EMPCUR CURSOR FOR
SELECT EMPNO, ENAME FROM EMP
END-EXEC.
EXEC SQL

5-20 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 4: Datatype Equivalencing

OPEN EMPCUR
END-EXEC.
DISPLAY "".
DISPLAY "INSERTING BITMAPS INTO IMAGE FOR ALL EMPLOYEES.".
DISPLAY "*".

INSERT-LOOP.
EXEC SQL
WHENEVER NOT FOUND GOTO NOT-FOUND
END-EXEC.
EXEC SQL
FETCH EMPCUR INTO :EMP-NUMBER, :-EMP-NAME
END-EXEC.
MOVE EMP-NAME-ARR TO D-EMP-NAME.
DISPLAY "EMPLOYEE ", D-EMP-NAME WITH NO ADVANCING.
PERFORM GET-IMAGE.
EXEC SQL
INSERT INTO IMAGE VALUES (EMP-NUMBER, :-BUFFER)
END-EXEC.
DISPLAY " IS DONE!".
MOVE SPACES TO EMP-NAME-ARR.
GO TO INSERT-LOOP.

NOT-FOUND.
EXEC SQL
CLOSE EMPCUR
END-EXEC.
EXEC SQL
COMMIT WORK
END-EXEC.
DISPLAY """,
DISPLAY "DONE INSERTING BITMAPS. NEXT, DISPLAY SOME.".

DISP-LOOP.
MOVE 0 TO SELECTION.
DISPLAY """,
DISPLAY "ENTER EMP NUMBER (0 TO QUIT). "
- WITHNO ADVANCING.
ACCEPT SELECTION.
IF (SELECTION = 0) PERFORM SIGN-OFF.
EXEC SQL
WHENEVER NOT FOUND GOTO NO-EMP
END-EXEC.
EXEC SQL
SELECT EMP.EMPNO, ENAME, SAL, COMM, BITMAP

Using Embedded SQL 5-21



Sample Program 4: Datatype Equivalencing

INTO :EMP-NUMBER, :EMP-NAME, :SALARY,
‘COMMISSION:COMM-IND, :BUFFER
FROM EMP, IMAGE
WHERE EMP.EMPNO = :SELECTION AND EMP.EMPNO = IMAGE.EMPNO
END-EXEC.
DISPLAY "*".
PERFORM SHOW-IMAGE.
MOVE EMP-NAME-ARR TO D-EMP-NAME.
MOVE SALARY TO D-SALARY.
MOVE COMMISSION TO D-COMMISSION.
DISPLAY "EMPLOYEE ", D-EMP-NAME, " HAS SALARY ", D-SALARY
WITH NO ADVANCING.
IFCOMM-IND =-1
DISPLAY " AND NO COMMISSION."
ELSE
DISPLAY " AND COMMISSION ", D-COMMISSION
END-IF.
MOVE SPACES TO EMP-NAME-ARR.
GO TO DISP-LOOP.

NO-EMP.
DISPLAY "NOT A VALID EMPLOYEE NUMBER - TRY AGAIN.".
GO TO DISP-LOOP.

LOGON.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.
MOVE '"TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY """,
DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.
DISPLAY """,

GET-IMAGE.
PERFORM MOVE-IMAGE
VARYING INDX FROM 1 BY 1 UNTIL INDX > 8192.

MOVE-IMAGE.

STRING * DELIMITED BY SIZE INTO BUFFER WITH POINTER
- INDX.

DIVIDE 256 INTO INDX GIVING PRT-QUOT REMAINDER
- PRT-MOD.

5-22 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 4: Datatype Equivalencing

IF (PRT-MOD =0) DISPLAY "." WITH NO ADVANCING.

SHOW-IMAGE.
PERFORM VARYING INDX FROM 1 BY 1 UNTIL INDX > 10
DISPLAY "
END-PERFORM.
DISPLAY "*".

SIGN-OFF.

DISPLAY ",

DISPLAY "HAVE A GOOD DAY,
DISPLAY """,

EXEC SQL

COMMIT WORK RELEASE

END-EXEC.

STOP RUN.

SQL-ERROR.

EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY """,
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Using Embedded SQL 5-23



Sample Program 4: Datatype Equivalencing

5-24 Pro*COBOL Precompiler Programmer’s Guide



6

Using Embedded PL/SQL

This chapter shows you how to improve performance by embedding PL/SQL
transaction processing blocks in your program. After pointing out the advantages
of PL/SQL, this chapter discusses the following subjects:

« Advantages of PL/SQL

« Embedding PL/SQL Blocks

« Using Host Variables

« Using Indicator Variables

» Using Host Tables

« Using Cursors

« Stored Subprograms

« Stored Subprograms

« Sample Program 9: Calling a Stored Procedure
» Using Dynamic PL/SQL

=«  Cursor Variables

Using Embedded PL/SQL 6-1



Advantages of PL/SQL

Advantages of PL/SQL

This section looks at some of the features and benefits offered by PL/SQL, such as
«  Dbetter performance

« integration with Oracle8

« cursor FOR loops

« procedures and functions

« packages

« PL/SQL tables

« user-defined records

For more information about PL/SQL, see the PL/SQL User’s Guide and Reference.

Better Performance

PL/SQL can help you reduce overhead, improve performance, and increase
productivity. For example, without PL/SQL, Oracle8 must process SQL statements
one at a time. Each SQL statement results in another call to the Server and higher
overhead. However, with PL/SQL, you can send an entire block of SQL statements
to the Server. This minimizes communication between your application and
Oracles.

Integration with Oracle8

PL/SQL is tightly integrated with the Oracle8 Server. For example, most PL/SQL
datatypes are native to the Oracle8 data dictionary. Furthermore, you can use
the%TYPE attribute to base variable declarations on column definitions stored in
the data dictionary, as the following example shows:

job_tite emp.job%TYPE;
That way, you need not know the exact datatype of the column. Furthermore, if a
column definition changes, the variable declaration changes accordingly and

automatically. This provides data independence, reduces maintenance costs, and
allows programs to adapt as the database changes.

Cursor FOR Loops

With PL/SQL, you need not use the DECLARE, OPEN, FETCH, and CLOSE
statements to define and manipulate a cursor. Instead, you can use a cursor FOR

6-2 Pro*COBOL Precompiler Programmer’s Guide



Advantages of PL/SQL

Subprograms

loop, which implicitly declares its loop index as a record, opens the cursor
associated with a given query, repeatedly fetches data from the cursor into the
record, then closes the cursor. An example follows:

DECLARE
BEGIN
FOR emprec IN (SELECT empno, sal, comm FROM emp) LOOP
IF emprec.comm/emprec.sal >0.25 THEN ...

END LOOP;
END;

Notice that you use dot notation to reference fields in the record.

PL/SQL has two types of subprograms called procedures and functions, which aid
application development by letting you isolate operations. Generally, you use a
procedure to perform an action and a function to compute a value.

Procedures and functions provide extensibility. That is, they let you tailor the
PL/SQL language to suit your needs. For example, if you need a procedure that
creates a new department, just write your own as follows:

PROCEDURE create_dept
(new_dname IN CHAR(14),
new_loc IN CHAR(13),
new_deptno OUT NUMBER(2)) IS
BEGIN
SELECT deptno_seq.NEXTVAL INTO new_deptno FROM dual;
INSERT INTO dept VALUES (new_deptno, new_dname, new_loc);
END create_dept;

When called, this procedure accepts a new department name and location, selects
the next value in a department-number database sequence, inserts the new number,
name, and location into the dept table, then returns the new number to the caller.

You can store subprograms in the database (using CREATE FUNCTION and
CREATE PROCEDURE) that can be called from multiple applications without
needing to be re-compiled each time.

Using Embedded PL/SQL 6-3



Advantages of PL/SQL

Packages

Parameter Modes

You use parameter modes to define the behavior of formal parameters. There are
three parameter modes: IN (the default), OUT, and IN OUT. An IN parameter lets
you pass values to the subprogram being called. An OUT parameter lets you return
values to the caller of a subprogram. An IN OUT parameter lets you pass initial
values to the subprogram being called and return updated values to the caller.

The datatype of each actual parameter must be convertible to the datatype of its
corresponding formal parameter. Table 4-11 shows the legal conversions between
datatypes.

PL/SQL lets you bundle logically related types, program objects, and subprograms
into a package. Packages can be compiled and stored in an Oracle8 database, where
their contents can be shared by multiple applications.

Packages usually have two parts: a specification and a body. The specification is the
interface to your applications; it declares the types, constants, variables, exceptions,
cursors, and subprograms available for use. The body defines cursors and
subprograms and so implements the specification. In the following example, you
“package” two employment procedures:

PACKAGE emp_actions IS - package specification
PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...);
PROCEDURE fire_employee (emp_id NUMBER);

END emp_actions;

PACKAGE BODY emp_actions IS — package body
PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...) IS
BEGIN
INSERT INTO emp VALUES (empno, ename, ...);
END hire_employee;
PROCEDURE fire_employee (emp_id NUMBER) IS
BEGIN
DELETE FROM emp WHERE empno =emp_id;
END fire_employee;
END emp_actions;

Only the declarations in the package specification are visible and accessible to
applications. Implementation details in the package body are hidden and
inaccessible.

6-4 Pro*COBOL Precompiler Programmer’s Guide



Advantages of PL/SQL

PL/SQL Tables

PL/SQL provides a composite datatype named TABLE. Objects of type TABLE are
called PL/SQL tables, which are modeled as (but not the same as) database tables.
PL/SQL tables have only one column and use a primary key to give you array-like
access to rows. The column can belong to any scalar type (such as CHAR, DATE, or
NUMBER), but the primary key must belong to type BINARY_INTEGER.

You can declare PL/SQL table types in the declarative part of any block, procedure,
function, or package. In the following example, you declare a TABLE type called
NumTabTyp:

DECLARE
TYPE NumTabTyp IS TABLE OF NUMBER
INDEX BY BINARY_INTEGER;

BI;GIN
END
Once you define type NumTabTyp, you can declare PL/SQL tables of that type, as

the next example shows:

num_tab NumTabTyp;

The identifier num_tab represents an entire PL/SQL table.

You reference rows in a PL/SQL table using array-like syntax to specify the
primary key value. For example, you reference the ninth row in the PL/SQL table
named num_tab as follows:

num_tab(9) ...

User-defined Records

You can use the %ROWTYPE attribute to declare a record that represents a row in a
database table or a row fetched by a cursor. However, you cannot specify the
datatypes of fields in the record or define fields of your own. The composite
datatype RECORD lifts those restrictions.

Objects of type RECORD are called records. Unlike PL/SQL tables, records have
uniquely named fields, which can belong to different datatypes. For example,
suppose you have different kinds of data about an employee such as name, salary,
hire date, and so on. This data is dissimilar in type but logically related. A record
that contains such fields as the name, salary, and hire date of an employee would
let you treat the data as a logical unit.

Using Embedded PL/SQL 6-5



Embedding PL/SQL Blocks

You can declare record types and objects in the declarative part of any block,
procedure, function, or package. In the following example, you declare a RECORD
type called DeptRecTyp:

DECLARE
TYPE DeptRecTyp IS RECORD
(deptno NUMBER(@) NOT NULL := 10, — must initialize
dname CHAR(9),
loc CHAR(14));

Notice that the field declarations are like variable declarations. Each field has a
unique name and specific datatype. You can add the NOT NULL option to any
field declaration and so prevent the assigning of nulls to that field. However, you
must initialize NOT NULL fields.

Once you define type DeptRecTyp, you can declare records of that type, as the next
example shows:

dept _rec DeptRecTyp;

The identifier dept_rec represents an entire record.

You use dot notation to reference individual fields in a record. For example, you
reference the dname field in the dept_rec record as follows:

dept_rec.dname ...

Embedding PL/SQL Blocks

Pro*COBOL treats a PL/SQL block like a single embedded SQL statement. So, you
can place a PL/SQL block anywhere in a host program that you can place a SQL
statement.

To embed a PL/SQL block in your host program, simply bracket the PL/SQL block
with the keywords EXEC SQL EXECUTE and END-EXEC as follows:

EXEC SQL EXECUTE
DECLARE

BEGIN

END;
END-EXEC.

When your program embeds PL/SQL blocks, you must specify the precompiler
option SQLCHECK=SEMANTICS because PL/SQL must be parsed by Oracle8. To

6-6 Pro*COBOL Precompiler Programmer’s Guide



Using Host Variables

connect to Oracle8, you must also specify the option USERID. For more
information, see "Using Pro*COBOL Options" on page 7-11.

Using Host Variables

An Example

Host variables are the key to communication between a host language and a
PL/SQL block. Host variables can be shared with PL/SQL, meaning that PL/SQL
can set and reference host variables.

For example, you can prompt a user for information and use host variables to pass
that information to a PL/SQL block. Then, PL/SQL can access the database and
use host variables to pass the results back to your host program.

Inside a PL/SQL block, host variables are treated as global to the entire block and
can be used anywhere a PL/SQL variable is allowed. However, character host
variables cannot exceed 255 characters in length. Like host variables in a SQL
statement, host variables in a PL/SQL block must be prefixed with a colon. The
colon sets host variables apart from PL/SQL variables and database objects.

The following example illustrates the use of host variables with PL/SQL. The
program prompts the user for an employee number, then displays the job title, hire
date, and salary of that employee.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
OLUSERNAME PIC X(20) VARYING.
01LPASSWORD PIC X(20) VARYING.

01 EMP-NUMBER PIC S9(4) COMP.
01 JOB-TITLE PIC X(20) VARYING.
01 HIRE-DATE PIC X(9) VARYING.
0LSALARY PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
EXEC SQL END DECLARE SECTION END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

DISPLAY 'Usemame?” WITH NO ADVANCING.
ACCEPT USERNAME.
DISPLAY 'Password? " WITH NO ADVANCING.
ACCEPT PASSWORD.
EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWORD
END-EXEC.
DISPLAY 'Connected to Orade’.

Using Embedded PL/SQL 6-7



Using Host Variables

PERFORM
DISPLAY "Employee Number (0 to end)? WITH NO ADVANCING
ACCEPTd EMP-NUMBER
IF EMP-NUMBER =0
EXEC SQL COMMIT WORK RELEASE END-EXEC
DISPLAY "Exiting program’
STOP RUN
END-IF.
*  —————begin PL/SQL block ————
EXEC SQL EXECUTE
BEGIN
SELECT job, hiredate, sal
INTO :JOB-TITLE, :HIRE-DATE, :SALARY
FROM EMP
WHERE EMPNO = :EMP-NUMBER;
END;
END-EXEC.
* ————end PL/SQL block ————
DISPLAY 'Number Job Tile Hire Date Salary'.
DISPLAY "
DISPLAY EMP-NUMBER, JOB-TITLE, HIRE-DATE, SALARY.
END-PERFORM.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
DISPLAY "Processing eror.
STOP RUN.

Notice that the host variable EMP-NUMBER is set before the PL/SQL block is
entered, and the host variables JOB-TITLE, HIRE-DATE, and SALARY are set inside
the block.

A More Complex Example

In the example below, you prompt the user for a bank account number, transaction
type, and transaction amount, then debit or credit the account. If the account does
not exist, you raise an exception. When the transaction is complete, you display its
status.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(20) VARYING.
01LACCT-NUM PIC S9(4) COMP.

01 TRANS-TYPE PIC X(1).
01 TRANS-AMT PIC PIC S9(6)V99

6-8 Pro*COBOL Precompiler Programmer’s Guide



Using Host Variables

DISPLAY SIGN LEADING SEPARATE.
0L STATUS PIC X(80) VARYING.
EXEC SQL END DECLARE SECTION END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.
DISPLAY 'Usemame? 'WITH NO ADVANCING.
ACCEPT USERNAME.
DISPLAY "Password?’.
ACCEPT PASSWORD.
EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR.
EXEC SQL CONNECT :.USERNAME IDENTIFIED BY :PASSWORD.
PERFORM
DISPLAY "Account Number (0 to end)?’
WITH NO ADVANCING
ACCEPT ACCT_NUM
IFACCT-NUM=0
EXEC SQL COMMIT WORK RELEASE END-EXEC
DISPLAY "Exiting program’ WITH NO ADVANCING
STOPRUN
END-IF.
DISPLAY Transaction Type - D)ebit or C)redit?’
WITH NO ADVANCING
ACCEPT TRANS-TYPE
DISPLAY Transaction Amount?’
ACCEPT trans_amt
* ——begin PL/SQL block
EXEC SQL EXECUTE
DECLARE
od bal NUMBER(@,2);
er_msg CHAR(70);
nonexistent EXCEPTION,;
BEGIN
TRANS-TYP-TYPE ="C' THEN — credit the account
UPDATE accts SET bal = bal + TRANS-AMT
WHERE acctid = :acct-num;
IF SQLY%ROWCOUNT=0THEN  —no rows affected
RAISE nonexistent;
ELSE
:STATUs = Credit applied’;
ENDIF;
ELSIF .-TRANS-TYPe ="D' THEN — debit the account
SELECT bal INTO old_bal FROM accts
WHERE acctid = ACCT-NUM;
IFold_bal>=TRANS-AMTTHEN - enough funds
UPDATE accts SET bal = bal - TRANS-AMT
WHERE acctid = :ACCT-NUM,;

Using Embedded PL/SQL 6-9



Using Host Variables

:STATUS = "Debit applied’;
ELSE
:‘STATUS :="Insufficient funds’;
ENDIF;
ELSE
:STATUS :="Invalid type: ' || :TRANS-TYPE;
ENDIF;
COMMIT;
EXCEPTION
WHEN NO_DATA_FOUND OR nonexistent THEN
:STATUS = "Nonexistent account;
WHEN OTHERS THEN
err_msg = SUBSTR(SQLERRM, 1, 70);
‘STATUS :="Error:’ || err_msg;
END;
END-EXEC.
* ———end PL/SQL block
DISPLAY 'Status:’, STATUS
END-PERFORM.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
DISPLAY "Processing error’.
STOP RUN.

VARCHAR Pseudotype

Recall from Chapter 4, “Advanced Pro*COBOL Programs”, that you can use the
VARCHAR pseudotype to declare variable-length character strings. If the
VARCHAR is an input host variable, you must tell Oracle8 what length to expect.
So, set the length field to the actual length of the value stored in the string field.

If the VARCHAR is an output host variable, Oracle8 automatically sets the length
field. However, to use a VARCHAR output host variable in your PL/SQL block,
you must initialize the length field before entering the block. So, set the length field
to the declared (maximum) length of the VARCHAR, as shown in the following

example:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
0LEMP-NUM PIC S9(4) COMP.
01 EMP-NAME PIC X(10) VARYING.
01 SALARY PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.

6-10 Pro*COBOL Precompiler Programmer’s Guide



Using Indicator Variables

EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.

* — initialize length field
MOVE 10 TO EMP-NAME-LEN.
EXEC SQL EXECUTE
BEGIN
SELECT ename, sal INTO :EMP-NAME, :SALARY

FROMemp
WHERE empno = :EMP-NUM,;

END;
END-EXEC.

Using Indicator Variables

PL/SQL does not need indicator variables because it can manipulate nulls. For
example, within PL/SQL, you can use the IS NULL operator to test for nulls, as
follows:

IF variable IS NULL THEN ...

You can use the assignment operator (:=) to assign nulls, as follows:

variable .= NULL;

However, host languages need indicator variables because they cannot manipulate
nulls. Embedded PL/SQL meets this need by letting you use indicator variables to

« accept nulls input from a host program

« output nulls or truncated values to a host program

When used in a PL/SQL block, indicator variables are subject to the following rules:

= You cannot refer to an indicator variable by itself; it must be appended to its
associated host variable.

« If you refer to a host variable with an indicator variable, you must always refer
to it that way in the same block.

In the following example, the indicator variable IND-COMM appears with its host
variable COMMISSION in the SELECT statement, so it must appear that way in the
IF statement:

Using Embedded PL/SQL 6-11



Using Indicator Variables

EXEC SQL EXECUTE
BEGIN
SELECT ename, comm
INTO :EMP-NAME, :COMMISSION:IND-COMM FROM emp
WHERE empno = :EMP-NUM,;
IF :COMMISSION:IND-COMM IS NULL THEN ...

END;
END-EXEC.

Notice that PL/SQL treats :COMMISSION:IND-COMM like any other simple
variable. Though you cannot refer directly to an indicator variable inside a PL/SQL
block, PL/SQL checks the value of the indicator variable when entering the block
and sets the value correctly when exiting the block.

Handling Nulls

When entering a block, if an indicator variable has a value of -1, PL/SQL
automatically assigns a null to the host variable. When exiting the block, if a host
variable is null, PL/SQL automatically assigns a value of -1 to the indicator
variable. In the next example, if IND-SAL had a value of -1 before the PL/SQL
block was entered, the salary_missing exception is raised. An exception is a named
error condition.

EXEC SQL EXECUTE
BEGIN
IF:SALARY:IND-SAL IS NULL THEN
RAISE salary_missing;
ENDIF;

END;
END-EXEC.

Handling Truncated Values

PL/SQL does not raise an exception when a truncated string value is assigned to a
host variable. However, if you use an indicator variable, PL/SQL sets it to the
original length of the string. In the following example, the host program will be
able to tell, by checking the value of IND-NAME, if a truncated value was assigned
to EMP-NAME:

EXEC SQL EXECUTE
DECLARE

6-12 Pro*COBOL Precompiler Programmer’s Guide



Using Host Tables

new_name CHAR(10);
BEGIN

‘EMP_NAME:IND-NAVE = new_name;

END;
END-EXEC.

Using Host Tables

You can pass input host tables and indicator tables to a PL/SQL block. They can be
indexed by a PL/SQL variable of type BINARY_INTEGER or by a host variable
compatible with that type. Normally, the entire host table is passed to PL/SQL, but
you can use the ARRAYLEN statement (discussed later) to specify a smaller table
dimension.

Furthermore, you can use a subprogram call to assign all the values in a host table
to rows in a PL/SQL table. Given that the table subscript range is m .. n, the
corresponding PL/SQL table index range is always 1 .. (n - m + 1). For example, if
the table subscript range is 5 .. 10, the corresponding PL/SQL table index range is 1
.(10-5+1orl..6.

Note: Pro*COBOL does not check your usage of host tables. For instance, no
index range checking is done.

In the example below, you pass a host table named salary to a PL/SQL block, which
uses the host table in a function call. The function is named median because it finds
the middle value in a series of numbers. Its formal parameters include a PL/SQL
table named num_tab. The function call assigns all the values in the actual
parameter salary to rows in the formal parameter num_tab.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 SALARY OCCURS 100 TIMES PIC S9(6)VV99
DISPLAY SIGN LEADING SEPARATE.
01 MEDIAN-SALARY PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
EXEC SQL END DECLARE SECTION END-EXEC.
*— populate the host table
EXEC SQL EXECUTE
DECLARE
TYPE NumTabTyp IS TABLE OF REAL
INDEX BY BINARY_INTEGER;
n BINARY_INTEGER;

Using Embedded PL/SQL 6-13



Using Host Tables

FUNCTION median (hum_tab NumTabTyp, n INTEGER)
RETURN REAL IS
BEGIN
*— compute median
END;
BEGIN
n:=100;
‘MEDIAN-SALARY = median(:SALARY END;
END-EXEC.

You can also use a subprogram call to assign all row values in a PL/SQL table to
corresponding elements in a host table. For an example, see "Stored Subprograms”
on page 6-21.

Table 6-1 shows the legal conversions between row values in a PL/SQL table
and elements in a host table. For example, a host table of type LONG is compatible
with a PL/SQL table of type VARCHAR2, LONG, RAW, or LONG RAW. Notably, it
is not compatible with a PL/SQL table of type CHAR.

6-14 Pro*COBOL Precompiler Programmer’s Guide



Using Host Tables

Table 6-1 Legal Datatype Conversions

PL/SQL Table

CHAR |[DATE |[LONG LONG |NUMBER RAW ROWID |[VARCHAR?2
Host table RAW

CHARF
CHARZ
DATE X
DECIMAL
DISPLAY
FLOAT
INTEGER
LONG X

LONG VAR- X X X X
CHAR

LONG X X
VARRAW

NUMBER X
RAW X X
ROWID X
STRING X X X X
UNSIGNED X
VARCHAR
VARCHAR?2 X X X X
VARNUM X
VARRAW X X

X | X[ X] X

ARRAYLEN Statement

Suppose you must pass an input host table to a PL/SQL block for processing. By
default, when binding such a host table, Pro*COBOL use its declared dimension.
However, you might not want to process the entire table. In that case, you can use

Using Embedded PL/SQL 6-15



Using Host Tables

the ARRAYLEN statement to specify a smaller table dimension. ARRAYLEN
associates the host table with a host variable, which stores the smaller dimension.
The statement syntax is:

EXEC SQL ARRAYLEN host_array (dimension) EXECUTE END-EXEC.

where dimension is a 4-byte, integer host variable, not a literal or an expression.

The ARRAYLEN statement must appear somewhere after the declarations of
host_array and dimension. You cannot specify an offset into the host table. However,
you might be able to use COBOL features for that purpose.

In the following example, you use ARRAYLEN to override the default dimension
of a host table named bonus:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 BONUS OCCURS 100 TIMES PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.

01 MY-DIM PIC S9(4) COMP.

EXEC SQL ARRAYLEN BONUS (MY-DIM) END-EXEC.
EXEC SQL END DECLARE SECTION END-EXEC.
* — populate the host table

* — set smaller table dimension
MOVE 25 TO MY-DIM.
EXEC SQL EXECUTE
DECLARE
TYPE NumTabTyp IS TABLE OF REAL
INDEX BY BINARY_INTEGER;
median_bonus REAL;
FUNCTION median (hum_tab NumTabTyp, n INTEGER)
RETURN REAL IS
BEGIN
*— compute median
END;
BEGIN
median_bonus := median(BONUS, :MY-DIM);

END;
END-EXEC.

Only 25 table elements are passed to the PL/SQL block because ARRAYLEN
reduces the host table from 100 to 25 elements. As a result, when the PL/SQL block
is sent to Oracle8 for execution, a much smaller host table is sent along. This saves
time and, in a networked environment, reduces network traffic.

6-16 Pro*COBOL Precompiler Programmer’s Guide



Using Host Tables

Optional Keyword EXECUTE

Host tables used in a dynamic SQL method 2 EXEC SQL EXECUTE statement may
have two different interpretations based on the presence or absence of the optional
keyword EXECUTE. See “Using Method 2” on page 11 - 13.

By default (if the EXECUTE keyword is absent):

« The host array is considered when determining the number of times a PL/SQL
block will be executed. The minimum array dimension is used.

« The host array must not be bound to a PL/SQL index table.

If the keyword EXECUTE is present:;

«  The host table must be bound to an index table.

« The PL/SQL block will be executed one time.

. All host variables specified in the EXEC SQL EXECUTE statement must either
« be specified in an ARRAYLEN ... EXECUTE statement, or
« beascalar.

For example, given the following PL/SQL procedure:

CREATE OR REPLACE PACKAGE pkg AS
TYPE tab IS TABLE OF NUMBER(5) INDEX BY BINARY_INTEGER,;
PROCEDURE procl (parml tab, parm2 NUMBER, parm3 tab);

END,;

The following Pro*COBOL example demonstrates how host tables can be used to
determine how many times a given PL/SQL block is executed. In this case, the
PL/SQL block will be execute 3 times resulting in 3 new rows in the emp table.

01 DYNSTMT PIC X(80) VARYING.

01 EMPNOTAB PIC S9(4) COMPUTATIONAL OCCURS 5 TIMES.
01 ENAMETAB PIC X(10) OCCURS 3 TIMES.

01 DIM  PIC S9(9) COMP VALUE 2.

MOVE 1111 TO EMPNOTAB(L).
MOVE 2222 TO EMPNOTAB(2).
MOVE 3333 TO EMPNOTAB(3).
MOVE 4444 TO EMPNOTAB(4).
MOVE 5555 TO EMPNOTAB().

MOVE "MICKEY" TO ENAMETAB(1).

Using Embedded PL/SQL 6-17



Using Host Tables

MOVE "MINNIE" TO ENAMETAB(2).
MOVE "GOOFY" TO ENAMETAB(3).

MOVE "BEGIN INSERT INTO emp(empno, ename) VALUES :b1, :b2; END;"
TODYNSTMT-ARR.
MOVE 57 TO DYNSTMT-LEN.

EXEC SQL PREPARE s1 FROM :DYNSTMT END-EXEC.
EXEC SQL EXECUTE s1 USING :EMPNOTAB, :ENAMETAB END-EXEC.

The following Pro*COBOL example demonstrates how to bind a host table to a
PL/SQL index table through dynamic method 2. Note the presence of the
ARRAYLEN...EXECUTE statement for all host arrays specified in the EXEC SQL
EXECUTE statement.

01 DYNSTMT PIC X(80) VARYING.

011l  PICS94)COMPVALUE 2.

01 INTTAB PIC S9(9) COMP OCCURS 3 TIMES.
01 DIM  PIC S9(9) COMP VALUE 3.

EXEC SQL ARRAYLEN INTTAB (DIM) EXECUTE END-EXEC.

MOVE 1 TO INTTAB(L).
MOVE 2 TO INTTAB(2).
MOVE 3TO INTTAB(3).

MOVE "BEGIN pkg.procl (v, v2, v3); end;”;
TODYNSTMT-ARR.
MOVE 37 TO DYNSTMT-LEN.

EXEC SQL PREPARE s1 FROM :DYNSTMT END-EXEC.
EXEC SQL EXECUTE s1 USING :INTTAB, :II, INTTAB END-EXEC.

However, the following Pro*COBOL example will result in a precompile-time error
because there is no ARRAYLEN...EXECUTE statement for INTTAB2.

01 DYNSTMT PIC X(80) VARYING.

01 INTTAB PIC S9(9) COMP OCCURS 3 TIMES.
01 INTTAB2 PIC S9(9) COMP OCCURS 3 TIMES.
01 DIM  PIC S9(9) COMP VALUE 3.

6-18 Pro*COBOL Precompiler Programmer’s Guide



Using Cursors

EXEC SQL ARRAYLEN INTTAB (DIM) EXECUTE END-EXEC.

MOVE 1 TO INTTAB(L).
MOVE 2 TO INTTAB(2).
MOVE 3 TO INTTAB(3).

MOVE "BEGIN pkg.procl (v, v2, v3); end;”;
TODYNSTMT-ARR.
MOVE 37 TO DYNSTMT-LEN.

EXEC SQL PREPARE s1 FROM :DYNSTMT END-EXEC.
EXEC SQL EXECUTE s1 USING :INTTAB, INTTAB2, :INTTAB END-EXEC.

Using Cursors

Every embedded SQL statement is assigned a cursor, either explicitly by you in a
DECLARE CURSOR statement or implicitly by Pro*COBOL. Internally,
Pro*COBOL maintains a cache, called the cursor cache, to control the execution of
embedded SQL statements. When executed, every SQL statement is assigned an
entry in the cursor cache. This entry is linked to a private SQL area in your
Program Global Area (PGA) within Oracle8.

Various precompiler options, including MAXOPENCURSORS, HOLD_CURSOR,
and RELEASE_CURSOR, let you manage the cursor cache to improve performance.
For example, RELEASE_CURSOR controls what happens to the link between the
cursor cache and private SQL area. If you specify RELEASE_CURSOR=YES, the
link is removed after Oracle8 executes the SQL statement. This frees memory
allocated to the private SQL area and releases parse locks.

For purposes of cursor cache management, an embedded PL/SQL block is treated
just like a SQL statement. At run time, a cursor, called a parent cursor, is associated
with the entire PL/SQL block. A corresponding entry is made to the cursor cache,
and this entry is linked to a private SQL area in the PGA.

Each SQL statement inside the PL/SQL block also requires a private SQL area in
the PGA. So, PL/SQL manages a separate cache, called the child cursor cache, for
these SQL statements. Their cursors are called child cursors. Because PL/SQL
manages the child cursor cache, you do not have direct control over child cursors.

The maximum number of cursors your program can use simultaneously is set by
the Oracle8 initialization parameter OPEN_CURSORS. Figure 6-1  shows you
how to calculate the maximum number of cursors in use.

Using Embedded PL/SQL 6-19



Using Cursors

An Alternative

Figure 6-1 Maximum Cursors in Use

SQL statement cursors

PL/SQL parent cursors

PL/SQL child cursors
+ 6 cursors for overhead

Sum of cursors in use

Must not exceed OPEN_CURSORS

If your program exceeds the limit imposed by OPEN_CURSORS, you get the
following Oracle8 error:

ORA-01000: maximum open cursors exceeded

You can avoid this error by specifying the RELEASE_CURSOR=YES and
HOLD_CURSOR=NO options. If you do not want to precompile the entire
program with RELEASE_CURSOR set to YES, simply reset it to NO after each
PL/SQL block, as follows:

EXEC ORACLE OPTION (RELEASE_CURSOR=YES) END-EXEC.
* — first embedded PL/SQL block

EXEC ORACLE OPTION (RELEASE_CURSOR=NO)END-EXEC.
*— embedded SQL statements

EXEC ORACLE OPTION (RELEASE_CURSOR=YES)END-EXEC.
*— second embedded PL/SQL block

EXEC ORACLE OPTION (RELEASE_CURSOR=NO)END-EXEC.
*— embedded SQL statements

The MAXOPENCURSORS option specifies the initial size of the cursor cache. For
example, when MAXOPENCURSORS=10, the cursor cache can hold up to 10
entries. If a new cursor is needed, there are no free cache entries, and
HOLD_CURSOR=NO, then Pro*COBOL tries to reuse an entry. If you specify a
very low value for MAXOPENCURSORS, then Pro*COBOL is forced to reuse the
parent cursor more often. All the child cursors are released as soon as the parent
cursor is reused.

6-20 Pro*COBOL Precompiler Programmer’s Guide



Stored Subprograms

Stored Subprograms

Unlike anonymous blocks, PL/SQL subprograms (procedures and functions) can
be compiled separately, stored in an Oracle8 database, and invoked. A subprogram
explicitly created using an Oracle8 tool such as SQL*Plus or Server Manager is
called a stored subprogram. Once compiled and stored in the data dictionary, it is a
database object, which can be re-executed without being re-compiled.

When a subprogram within a PL/SQL block or stored subprogram is sent to
Oracle8 by your application, it is called an inline subprogram. Oracle8 compiles the
inline subprogram and caches it in the System Global Area (SGA), but does not
store the source or object code in the data dictionary.

Subprograms defined within a package are considered part of the package, and so
are called packaged subprograms. Stored subprograms not defined within a package
are called stand-alone subprograms.

Creating Stored Subprograms

You can embed the SQL statements CREATE FUNCTION, CREATE PROCEDURE,
and CREATE PACKAGE in a COBOL program, as the following example shows:

EXEC SQL CREATE
FUNCTION sal_ok (salary REAL, tite CHAR)
RETURN BOOLEAN AS
min_sal REAL;
max_sal REAL,;
BEGIN
SELECT losal, hisal INTO min_sal, max_sal
FROM sals
WHERE job =title;
RETURN (salary >=min_sal) AND
(salary <=max_sal);
END sal ok;
END-EXEC.

Notice that the embedded CREATE {FUNCTION | PROCEDURE | PACKAGE}
statement is a hybrid. Like all other embedded CREATE statements, it begins with
the keywords EXEC SQL (not EXEC SQL EXECUTE). But, unlike other embedded
CREATE statements, it ends with the PL/SQL terminator END-EXEC.

In the example below, you create a package that contains a procedure named
get_employees, which fetches a batch of rows from the emp table. The batch size is
determined by the caller of the procedure, which might be another stored
subprogram or a client application program.

Using Embedded PL/SQL 6-21



Stored Subprograms

The procedure declares three PL/SQL tables as OUT formal parameters, then
fetches a batch of employee data into the PL/SQL tables. The matching actual
parameters are host tables. When the procedure finishes, it automatically assigns all
row values in the PL/SQL tables to corresponding elements in the host tables.

EXEC SQL CREATE OR REPLACE PACKAGE emp_actions AS
TYPE CharArrayTyp IS TABLE OF VARCHAR2(10)
INDEX BY BINARY_INTEGER,;
TYPE NumAray Typ IS TABLE OF FLOAT
INDEX BY BINARY_INTEGER,;
PROCEDURE get_employees(
dept_numberIN INTEGER,
batch size IN  INTEGER,
found  INOUT INTEGER,
done_fetch OUT INTEGER,
emp_name OUT CharAmayTyp,
jobile OUT CharAmrayTyp,
salary OUT NumAmayTyp);
END emp_actions;

END-EXEC.

EXEC SQL CREATE OR REPLACE PACKAGE BODY emp_actions AS
CURSOR get_emp (dept_number IN INTEGER) IS
SELECT ename, job, sal FROM emp

WHERE deptno = dept_number;

PROCEDURE get_employees(
dept numberIN  INTEGER,
batch size IN INTEGER,
found INOUT INTEGER,
done_fetch OUT INTEGER,
emp_name OUT CharArayTyp,
job_tite OUT CharArrayTyp,
salary OUT NumAmayTyp) IS
BEGIN
IFNOT get_emp%ISOPEN THEN
OPEN get_emp(dept_number);
ENDIF;
done_fetch:=0;
found :=0;
FORIIN 1.baich_size LOOP

FETCH get_emp INTO emp_name(j),
job_titie(), salary();

IF get_ emp%NOTFOUND THEN
CLOSE get_emp;
done_fetch:=1;

EXIT;

6-22 Pro*COBOL Precompiler Programmer’s Guide



Stored Subprograms

ELSE
found :=found + 1
END IF;
END LOOP;
END get_employees,
END emp_actions;
END-EXEC.

You specify the REPLACE clause in the CREATE statement to redefine an existing
package without having to drop the package, recreate it, and re-grant privileges on
it. For the full syntax of the CREATE statement see the Oracle8 SQL Reference.

If an embedded CREATE {FUNCTION | PROCEDURE | PACKAGE]} statement fails,
Oracle8 generates a warning, not an error.

Calling a Stored Subprogram

To invoke (call) a stored subprogram from your COBOL program, you must use an
anonymous PL/SQL block. In the following example, you call a stand-alone
procedure named raise_salary:

EXEC SQL EXECUTE
BEGIN
raise_salary(:emp_id, iincrease);
END;
END-EXEC.

Notice that stored subprograms can take parameters. In this example, the actual
parameters emp_id and increase are host variables.

In the next example, the procedure raise_salary is stored in a package named
emp_actions, so you must use dot notation to fully qualify the procedure call:

EXEC SQL EXECUTE
BEGIN
emp_actions.raise_salary(:emp _id, :increase);
END;
END-EXEC.

An actual IN parameter can be a literal, host variable, host table, PL/SQL constant
or variable, PL/SQL table, PL/SQL user-defined record, subprogram call, or
expression. However, an actual OUT parameter cannot be a literal, subprogram
call, or expression.

Using Embedded PL/SQL 6-23



Sample Program 9: Calling a Stored Procedure

Sample Program 9: Calling a Stored Procedure

Before trying the sample program, you must create a PL/SQL package named
calldemo, by running a script named CALLDEMO.SQL, which is supplied with
Pro*COBOL and shown below. The script can be found in the Pro*COBOL demo
library. Check your system-specific Oracle8 documentation for exact spelling of the

script.
CREATE OR REPLACE PACKAGE calldemo AS

TYPE name_array IS TABLE OF emp.ename%otype
INDEX BY BINARY_INTEGER;

TYPE job_aray IS TABLE OF emp.job%type
INDEX BY BINARY_INTEGER;

TYPE sal_aray IS TABLE OF emp.sal%%type
INDEX BY BINARY_INTEGER;

PROCEDURE get_employees(

dept_numberIN  number, - departmentto query
batch size IN INTEGER, -rowsatatime

found INOUTINTEGER, -rows actually retumed
done_fetch OUT INTEGER, - alldoneflag
emp_name OUT name_aray,

job OUT job aray,

sa  OUT sal aray);

END calldemo;
/

CREATE OR REPLACE PACKAGE BODY calldemo AS

CURSOR get_emp (dept_number IN number) IS
SELECT ename, job, sal FROM emp
WHERE deptno = dept_number;

- Procedure "get_employees' fetches a batch of employee
- rows (batch size is determined by the client/caller

- of the procedure). It can be called from other

— stored procedures or client application programs.

- The procedure opens the cursor if it is not

—already open, fetches a batch of rows, and

- retums the number of rows actually refrieved. At

—end of fetch, the procedure closes the cursor.

6-24 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 9: Calling a Stored Procedure

PROCEDURE get_employees(
dept_numberIN  number,
batch size IN  INTEGER,
found INOUT INTEGER,
done_fetch OUT INTEGER,
emp_name OUT name_array,
job OUT job aray,

sal  OUT sal _aray)lS

BEGIN
IFNOT get_ emp%ISOPEN THEN  — open the cursor if
OPEN get_emp(dept_number); —not already open
ENDIF;

—Fetch up to "batch_size'" rows into PL/SQL table,
—tallying rows found as they are retrieved. When all
—rows have been fetched, close the cursor and exit
—the loop, retuming only the last set of rows found.

done_fetch :=0; — setthe done flag FALSE
found =0;

FORIIN 1.batch_size LOOP
FETCH get_emp INTO emp_name(i), job(i), sal(j);
IF get_emp%NOTFOUND THEN - if no row was found
CLOSE get_emp;
done_fetch:=1; —indicate alldone
EXIT;
ELSE
found :=found + 1; —count row
ENDIF;
END LOOP;
END;
END,;
/

The following sample program connects to Oracle8, prompts the user for a
department number, then calls a PL/SQL procedure named get_employees, which is
stored in package calldemo. The procedure declares three PL/SQL tables as OUT
formal parameters, then fetches a batch of employee data into the PL/SQL tables.
The matching actual parameters are host tables. When the procedure finishes, row
values in the PL/SQL tables are automatically assigned to the corresponding
elements in the host tables. The program calls the procedure repeatedly, displaying
each batch of employee data, until no more data is found.

Using Embedded PL/SQL 6-25



Sample Program 9: Calling a Stored Procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. CALL-STORED-PROC.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME  PIC X(15) VARYING.
0L PASSWD  PIC X(15) VARYING.
01 DEPTNUM  PIC S9(9) COMP.
01 EMP-TABLES.
05 EMP-NAME  OCCURS 10 TIMES PIC X(10).
05 JOB-TITLE  OCCURS 10 TIMES PIC X(10).
05 SALARY  OCCURS 10 TIMES COMP-2.
01 DONE-FLAG  PIC S9(9) COMP.
01 TABLE-SIZE  PIC S9(9) COMP VALUE 10.
01 NUMRET  PIC S9(9) COMP.
01 SQLCODE  PIC S9(9) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.

01 COUNTER  PIC S9(9) COMP.
01 DISPLAY-VARIABLES.

05 D-EMP-NAME PIC X(10).

05 D-JOB-TITLE PIC X(10).

05 D-SALARY PICZ(5)9.

EXEC SQL INCLUDE SQLCA END-EXEC.
PROCEDURE DIVISION.

BEGIN-PGM.
EXEC SQL
WHENEVER SQLERROR DO PERFORM SQL-ERROR
END-EXEC.
PERFORM LOGON.
PERFORM INIT-TABLES VARYING COUNTER FROM 1 BY 1
UNTIL COUNTER > 10.
PERFORM GET-DEPT-NUM.
PERFORM DISPLAY-HEADER.
MOVE ZERO TO DONE-FLAG.
MOVE ZERO TO NUM-RET.
PERFORM FETCH-BATCH UNTIL DONE-FLAG = 1.
PERFORM LOGOFF.

INIT-TABLES.

6-26 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 9: Calling a Stored Procedure

MOVE SPACE TO EMP-NAME(COUNTER).
MOVE SPACE TO JOB-TITLE(COUNTER).
MOVE ZERO TO SALARY(COUNTER).

GET-DEPT-NUM.
MOVE ZERO TO DEPT-NUM.
DISPLAY "*".

DISPLAY "ENTER DEPARTMENT NUMBER: " WITH NO ADVANCING.

ACCEPT DEPT-NUM.

DISPLAY-HEADER.
DISPLAY "*".
DISPLAY "EMPLOYEE JOBTITLE SALARY".
DISPLAY"—— —— —"

FETCH-BATCH.
EXEC SQL EXECUTE
BEGIN
CALLDEMO.GET_EMPLOYEES
(DEPT-NUM, :TABLE-SIZE,
‘NUM-RET, :-DONE-FLAG,
‘EMP-NAME, :JOB-TITLE, :SALARY);
END;
END-EXEC.
PERFORM PRINT-ROWS VARYING COUNTERFROM 1BY 1
UNTIL COUNTER >NUM-RET.

PRINT-ROWS.
MOVE EMP-NAME(COUNTER) TO D-EMP-NAME.
MOVE JOB-TITLE(COUNTER) TO D-JOB-TITLE.
MOVE SALARY(COUNTER) TO D-SALARY.
DISPLAY D-EMP-NAME, " *,
D-JOB-TITLE," ",
D-SALARY.

LOGON.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.
MOVE '"TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY ",
DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

Using Embedded PL/SQL

6-27



Sample Program 9: Calling a Stored Procedure

LOGOFF.

DISPLAY """,

DISPLAY "HAVE A GOOD DAY,
DISPLAY """,

EXEC SQL

COMMIT WORK RELEASE

END-EXEC.

STOP RUN.

SQL-ERROR.

EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY """,
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY """,
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Remember, the datatype of each actual parameter must be convertible to the
datatype of its corresponding formal parameter. Also, before a stored subprogram
exits, all OUT formal parameters must be assigned values. Otherwise, the values of
corresponding actual parameters are indeterminate.

Remote Access

PL/SQL lets you access remote databases via database links. Typically, database
links are established by your DBA and stored in the Oracle8 data dictionary. A
database link tells Oracle8 where the remote database is located, the path to it, and
what Oracle8 username and password to use. In the following example, you use
the database link dallas to call the raise_salary procedure:

EXEC SQL EXECUTE
BEGIN
raise_salary@dallas(:emp_id, iincrease);
END;

END-EXEC.

You can create synonyms to provide location transparency for remote
subprograms, as the following example shows:

6-28 Pro*COBOL Precompiler Programmer’s Guide



Cursor Variables

CREATE PUBLIC SYNONYM aise_salary FOR raise_salary@dallas;

Getting Information about Stored Subprograms

In Chapter 4, you learned how to embed OCI calls in your host program. After
calling the library routine SQLLDA to set up the LDA, you can use the OCI call
ODESSP to get useful information about a stored subprogram. When you call
ODESSP, you must pass it a valid LDA and the name of the subprogram. For
packaged subprograms, you must also pass the name of the package. ODESSP
returns information about each subprogram parameter such as its datatype, size,
position, and so on. For details, see the <Title>Programmer’s Guide to the Oracle
Call Interface, Volume I1: OCI Reference.

You can also use the procedure describe_procedure in package DBMS_DESCRIBE,
which is supplied with Oracle8. For more information, see the Oracle8 Application
Developer’s Guide.

Using Dynamic PL/SQL
Recall that Pro*COBOL treats an entire PL/SQL block like a single SQL statement.
Therefore, you can store a PL/SQL block in a string host variable. Then, if the block
contains no host variables, you can use dynamic SQL Method 1 to execute the
PL/SQL string. Or, if the block contains a known number of host variables, you can
use dynamic SQL Method 2 to prepare and execute the PL/SQL string. If the block
contains an unknown number of host variables, you must use dynamic SQL
Method 4. For more information, refer to Chapter 12, “Using Dynamic SQL.:

Advanced Concepts”.

Subprograms Restriction

In dynamic SQL Method 4, a host table cannot be bound to a PL/SQL procedure
with a parameter of type "table.”

Cursor Variables

Starting with Release 1.7 of Pro*xCOBOL, you can use cursor variables in your
Pro*COBOL programs to process multi-row queries using static embedded SQL. A cursor
variable identifies a cursor reference that is defined and opened on the Oracle7 Server,
Release 7.2 or later, using PL/SQL. See the PL/SQL User’s Guide and Reference for complete
information about cursor variables.

Like a cursor, a cursor variable points to the current row in the active set of a multi-
row query. Cursors differ from cursor variables the way constants differ from

Using Embedded PL/SQL 6-29



Cursor Variables

variables. While a cursor is static, a cursor variable is dynamic, because it is not tied
to a specific query. You can open a cursor variable for any type-compatible query.

You can assign new values to a cursor variable and pass it as a parameter to
subprograms, including subprograms stored in an Oracle8 database. This gives you
a convenient way to centralize data retrieval.

First, you declare the cursor variable. After declaring the variable, you use four
statements to control a cursor variable:

« ALLOCATE
« OPEN..FOR
« FETCH

« CLOSE

After you declare the cursor variable and allocate memory for it, you must pass it
as an input host variable (bind variable) to PL/SQL, OPEN it FOR a multi-row
guery on the server side, FETCH from it on the client side, then CLOSE it on either
side.

The advantages of cursor variables are

«  Ease of maintenance: queries are centralized, in the stored procedure that opens
the cursor variable. If you need to change the cursor, you only need to make
the change in one place: the stored procedure. There is no need to change each
application.

«  Security: the user of the application (the username when the Pro*COBOL appli-
cation connected to the database) must have execute permission on the stored
procedure that opens the cursor. This user, however, does not need to have
read permission on the tables used in the query. This capability can be used to
limit access to the columns in the table.

Declaring a Cursor Variable

You declare a Pro*COBOL cursor variable using the SQL-CURSOR pseudotype. For
example:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 CUR-VAR SQL-CURSOR.

6-30 Pro*COBOL Precompiler Programmer’s Guide



Cursor Variables

EXEC SQL END DECLARE SECTION END-EXEC.

A SQL-CURSOR variable is implemented as a COBOL group item in the code that
Pro*COBOL generates. A cursor variable is just like any other Pro*COBOL host
variable.

Allocating a Cursor Variable

Before you can OPEN or FETCH from a cursor variable, you must initialize it using
the Pro*COBOL ALLOCATE command. For example, to initialize the cursor
variable CUR-VAR that was declared in the previous section, write the following
statement:

EXEC SQL ALLOCATE :CUR-VAR END-EXEC.

Allocating a cursor variable does not require a call to the server, either at precompile
time or at run time.

Warning: Allocating a cursor variable does cause heap memory to be used. For this
reason, avoid allocating a cursor variable in a program loop.

Opening a Cursor Variable

You must use an embedded anonymous PL/SQL block to open a cursor variable on
the Oracle8 Server. The anonymous PL/SQL block may open the cursor either
indirectly by calling a PL/SQL stored procedure that opens the cursor (and defines
it in the same statement) or directly from the ProxCOBOL program.

Opening Indirectly through a Stored PL/SQL Procedure
Consider the following PL/SQL package stored in the database:

CREATE PACKAGE demo_cur_pkg AS
TYPE EmpName IS RECORD (name VARCHAR2(10));
TYPE cur_type IS REF CURSOR RETURN EmpName;
PROCEDURE open_emp_cur (
curs  IN OUT curtype,
dept numIN  number);
END;

CREATE PACKAGE BODY demo_cur_pkg AS
CREATE PROCEDURE open_emp_cur (
curs  IN OUT curtype,
dept numIN number) IS

Using Embedded PL/SQL 6-31



Cursor Variables

BEGIN
OPEN curs FOR
SELECT ename FROM emp
WHERE deptno =dept_num
ORDER BY ename ASC;
END;
END;

After this package has been stored, you can open the cursor curs by calling the
open_emp_cur stored procedure from your Pro*COBOL program, and FETCH from
the cursor variable EMP-CURSOR in the program. For example:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-CURSOR SQL-CURSOR.
01 DEPT-NUM  PIC S9(4).
01 EMP-NAME  PIC X(10) VARYING.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

* Allocate the cursor variable.
EXEC SQL
ALLOCATE :EMP-CURSOR
END-EXEC.

MOVE 30 TO DEPT_NUM.
* Open the cursor on the Oracle Server.
EXEC SQL EXECUTE
BEGIN
demo_cur_pkg.open_emp_cur(: EMP-CURSOR, :DEPT-NUM);

END;
END-EXEC.
EXEC SQL

WHENEVER NOT FOUND DO PERFORM SIGN-OFF
END-EXEC.

FETCH-LOOP.

EXEC SQL

FETCH :EMP-CURSOR INTO :EMP-NAME
END-EXEC.
DISPLAY "Employee Name: ", EMP-NAME.
GO TO FETCH-LOOP.

SIGN-OFF.

6-32 Pro*COBOL Precompiler Programmer’s Guide



Cursor Variables

Opening Directly from Your Pro*COBOL Application

To open a cursor using a PL/SQL anonymous block in a Pro*COBOL program,
define the cursor in the anonymous block. Consider the following example:

PROCEDURE DIVISION.

EXEC SQL EXECUTE
BEGIN
OPEN EMP-CURSOR FOR SELECT ENAME FROM EMP
WHERE deptno = :DEPT-NUM;
end;
END-EXEC.

Fetching from a Cursor Variable

After opening a cursor variable for a multi-row query, you use the FETCH
statement to retrieve rows from the active set one at a time. The syntax follows:

EXEC SQL FETCH cursor_variable_name
INTO {record_name | variable_name], variable_name, ...}
END-EXEC.
Each column value returned by the cursor variable is assigned to a corresponding
field or variable in the INTO clause, providing their datatypes are compatible.

The FETCH statement must be executed on the client side. In the following
example, you fetch rows into a host record named EMP-REC:

* — exit loop when done fetching

EXEC SQL

WHENEVER NOT FOUND DO PERFORM NO-MORE

END-EXEC.

PERFORM
* — fetch rowinto record

EXEC SQL FETCH :EMP-CUR INTO :EMP-REC END-EXEC
* —test for transfer out of loop

*— process the data

END-PERFORM.

Using Embedded PL/SQL 6-33



Cursor Variables

NO-MORE.

Use the embedded SQL FETCH .... INTO command to retrieve the rows SELECTed
when you opened the cursor variable. For example:

EXEC SQL
FETCH :EMP-CURSOR INTO :EMP-INFO:EMP-INFO-IND
END-EXEC.

Before you can FETCH from a cursor variable, the variable must be initialized and
opened. You cannot FETCH from an unopened cursor variable.

Closing a Cursor Variable

Restrictions

Use the embedded SQL CLOSE statement to close a cursor variable, at which point
its active set becomes undefined. The syntax follows:

EXEC SQL CLOSE cursor_variable_name END-EXEC.
The CLOSE statement can be executed on the client side or the server side. In the
following example, when the last row is processed, you close the cursor variable
CUR-VAR:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
*  Declare the cursor variable.
01 CUR-VAR  SQL-CURSOR.

EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.
* Allocate and open the cursor variable, then
* Fetch one or more rows.

*  Close the cursor variable.
EXEC SQL
CLOSE :CUR-VAR
END-EXEC.

The following restrictions apply to the use of cursor variables:

«  Cursor variables are not supported in dynamic SQL.

6-34 Pro*COBOL Precompiler Programmer’s Guide



Cursor Variables

= You can only use cursor variables with the ALLOCATE, FETCH, and CLOSE
commands. The DECLARE CURSOR command does not apply to cursor vari-
ables.

« You cannot FETCH from a CLOSEd or un-allocated cursor variable.

« If you precompile with CLOSE_ON_COMMIT=NO, itis an error to close a cur-
sor variable that is already closed.

=« You cannot use the AT clause with the ALLOCATE command.

Error Conditions
Do not perform any of the following operations:

« FETCH from a closed cursor variable
« Uuse acursor variable that is not ALLOCATEd
« CLOSE a cursor variable that is not open

These operations on cursor variables result in errors.

Sample Programs

The following sample programs — a SQL script (SAMPLE11.SQL) and a Pro*COBOL
program (SAMPLE11.PCO) — demonstrate how you can use cursor variables in
Pro*COBOL.

SAMPLE11.SQL

Following is the PL/SQL source code for a creating a package that declares and
opens a cursor variable:

CONNECT SCOTT/TIGER
CREATE OR REPLACE PACKAGE emp_demo_pkg AS
TYPE emp_cur_type IS REF CURSOR RETURN emp%ROWTYPE;
PROCEDURE open_cur (
cursor INOUT emp_cur_type,
dept numIN  number);
END emp_demo_pkg;
/
CREATE OR REPLACE PACKAGE BODY emp_demo_pkg AS

PROCEDURE open_cur (

cursor INOUT emp_cur_type,
dept numIN number) IS

Using Embedded PL/SQL 6-35



Cursor Variables

BEGIN
OPEN cursor FOR SELECT * FROM emp
WHERE deptno =dept_num
ORDER BY ename ASC;
END;
END emp_demo_pkg;
/

SAMPLE11.PCO

Following is a Pro*COBOL sample program that uses the cursor declared in the
SAMPLE11.SQL example to fetch employee names, salaries, and commissions from the
EMP table.

IDENTIFICATION DIVISION.
PROGRAM-ID. CURSOR-VARIABLES.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
EXEC ORACLE OPTION (SQLCHECK=FULL) END-EXEC.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(15) VARYING.
01 PASSWD PIC X(15) VARYING.
01 HOST PIC X(15) VARYING.
* Declare the cursor variable.
01 EMP-CUR SQL-CURSOR.

01 EMP-INFO.
05 EMP-NUM  PIC S9(4) COMP.
05 EMP-NAM  PIC X(10) VARYING.
05 EMP-JOB  PIC X(10) VARYING.
05 EMP-MGR  PIC S9(4) COMP.
05 EMP-DAT  PIC X(10) VARYING.
05 EMP-SAL  PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
05 EMP-COM  PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
05 EMP-DEP  PIC S9(4) COMP.
01 EMP-INFO-IND.
05 EMP-NUMHND PIC S9(2) COMP.
05 EMP-NAMHND PIC S9(2) COMP.
05 EMP-JOBIND PIC S9(2) COMP.
05 EMP-MGR-ND PIC S9(2) COMP.
05 EMP-DAT-IND PIC S9(2) COMP.
05 EMP-SAL-IND PIC S9(2) COMP.

6-36 Pro*COBOL Precompiler Programmer’s Guide



Cursor Variables

05 EMP-COM-IND PIC S9(2) COMP.
05 EMP-DEP-IND PIC S9(2) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL INCLUDE SQLCA END-EXEC.
01 DISPLAY-VARIABLES.
05 D-DEP-NUM  PIC Z(3)0.
05 D-EMP-NAM  PIC X(10).
05 D-EMP-SAL  PIC Z(4)9.99.
05 D-EMP-COM  PIC Z(4)9.99.

PROCEDURE DIVISION.
BEGIN-PGM.
EXEC SQL
WHENEVER SQLERROR DO PERFORM SQL-ERROR
END-EXEC.
PERFORM LOGON.

* Initilize the cursor variable.
EXEC SQL
ALLOCATE :EMP-CUR
END-EXEC.
DISPLAY "Enter department number (O to exit): "
WITH NO ADVANCING.
ACCEPT EMP-DEP.
IFEMP-DEP <=0
PERFORM SIGN-OFF
END-IF.
MOVE EMP-DEP TO D-DEP-NUM.

*  Open the cursor by calling a PL/SQL stored procedure.
EXEC SQL EXECUTE
BEGIN
emp_demo_pkg.open_cur(EMP-CUR, :EMP-DEP);
END;
END-EXEC.
DISPLAY "".
DISPLAY "For department ", D-DEP-NUM, ",
DISPLAY "".
DISPLAY "EMPLOYEE SALARY COMMISSION".
DISPLAY " oo ",

FETCH-LOOP.

Using Embedded PL/SQL 6-37



Cursor Variables

EXEC SQL
WHENEVER NOT FOUND DO PERFORM SIGN-OFF
END-EXEC.
MOVE SPACES TO EMP-NAM-ARR.
*  Fetch data from the cursor into the host variables.
EXEC SQL FETCH :EMP-CUR
INTO :EMP-NUM:EMP-NUM-IND,
EMP-NAM:EMP-NAM-IND,
EMP-JOB:EMP-JOB-IND,
EMP-MGR:EMP-MGR-IND,
EMP-DAT:EMP-DAT-IND,
EMP-SAL:EMP-SAL-IND,
EMP-COM:EMP-COM-IND,
‘EMP-DEP:EMP-DEP-IND
END-EXEC.
MOVE EMP-SAL TO D-EMP-SAL.
MOVE EMP-COM TO D-EMP-COM.
*  Check for commission and print results.
IF EMP-COM-IND=0
DISPLAY EMP-NAM-ARR, " ", D-EMP-SAL,
" ", D-EMP-COM
ELSE
DISPLAY EMP-NAM-ARR, " ", D-EMP-SAL,
" ONA
ENDAF.
GO TO FETCH-LOORP.

LOGON.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.
MOVE '"TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
MOVE "INSTL_ALIAS" TO HOST-ARR.
MOVE 11 TOHOST-LEN.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY """,
DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

SIGN-OFF.
*  Close the cursor variable.
EXEC SQL
CLOSE :EMP-CUR
END-EXEC.

6-38 Pro*COBOL Precompiler Programmer’s Guide



Cursor Variables

DISPLAY ™",
DISPLAY "HAVE A GOOD DAY.".
DISPLAY ™",
EXEC SQL

COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY """,
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY """,
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Using Embedded PL/SQL 6-39



Cursor Variables

6-40 Pro*COBOL Precompiler Programmer’s Guide



v

Running the Pro*COBOL Precompiler

This chapter details the requirements for running the Pro*COBOL. You learn
« The Pro*COBOL Command

«  What Occurs during Precompilation?

« Precompiler Options

« Entering Options

« Scope of Options

«  Quick Reference

« Using Pro*COBOL Options

« Conditional Precompilations

« Separate Precompilations

« Compiling and Linking

Running the Pro*xCOBOL Precompiler 7-1



The Pro*COBOL Command

The Pro*COBOL Command

To run the Oracle Pro*COBOL Precompiler, you issue the command

procob

The location of Pro*COBOL differs from system to system. Typically, your system
manager or DBA defines environment variables, logicals, or aliases or uses other
operating system-specific means to make the Pro*xCOBOL executable accessible.

The INAME option specifies the source file to be precompiled. For example, the
command

procob INAME=test

precompiles the file test.pco in the current directory, since ProxCOBOL assumes that
the filename extension is.pco. You need not use a file extension when specifying
INAME unless the extension is nonstandard.

Input and output filenames need not be accompanied by their respective option
names, INAME and ONAME. When the option names are not specified,
Pro*COBOL assumes that the first filename specified on the command line is the
input filename and that the second filename is the output filename.

Thus, the command
procob MODE=ANSI myfile.pco myfile.cob

is equivalent to
procob MODE=ANSI INAME=myfile.pco ONAME=myfile.cob

Note: Option nhames and option values that do not name specific operating sys-
tem objects, such as filenames, are not case-sensitive. In the examples in this
guide, option names are written in upper case, and option values are usually in
lower case. Filenames, including the name of the Pro*COBOL executable itself,
always follow the case conventions used by the operating system on which it is
executed.

What Occurs during Precompilation?

During precompilation, Pro*COBOL generates COBOL code that replaces the SQL
statements embedded in your host program. The generated code includes data
structures that contain the datatype, length, and address of each host variable, as
well as other information required by the Oracle runtime library, SQLLIB. The gen-

7-2 Pro*COBOL Precompiler Programmer’s Guide



Precompiler Options

erated code also contains the calls to SQLLIB routines that perform the embedded
SQL operations.

Note: Pro*COBOL does not generate calls to Oracle Call Interface (OCI) rou-
tines.

Pro*COBOL can issue warnings and error messages. These messages have the pre-
fix PCC-, and are described in Oracle8 Error Messages.

Precompiler Options

Many useful options are available at precompile time. They let you control how
resources are used, how errors are reported, how input and output are formatted,
and how cursors are managed. To specify a precompiler option, use the following
syntax:

<option_name>=<value>

The value of an option is a string literal, which represents text or numeric values.
For example, for the option

.. INAME=my test

the value is a string literal that specifies a filename, but for the option
... MAXOPENCURSORS=20

the value is numeric.

Some options take Boolean values, which you can represent with the strings YES or
NO, TRUE or FALSE, or with the integer literals 1 or 0, respectively. For example,
the option

.. SELECT_ERROR=YES

is equivalent to
.. SELECT_ERROR=TRUE

or

.. SELECT_ERROR=1

The option value is always separated from the option name by an equal sign, leave
no whitespace around the equal sign, because spaces delimit individual options.

For example, you might specify the option AUTO_CONNECT on the command
line as follows:

Running the Pro*COBOL Precompiler 7-3



Precompiler Options

..AUTO_CONNECT=YES

You can abbreviate the names of options if the abbreviation is unambiguous. For
example, you cannot use the abbreviation MAX because it might stand for MAX-
LITERAL or MAXOPENCURSORS.

A handy reference to the Pro*COBOL options is available online. To see the online
display, enter the Pro*COBOL command, with no arguments, at your operating sys-
tem prompt:

procob
The display gives the name, syntax, default value, and purpose of each option.

Options marked with an asterisk (*) can be specified inline as well as on the com-
mand line.

Precedence of Option Values
Option values are determined by the following, in order of increasing precedence:

« adefault built in to Pro*COBOL

« aVvalue set in the system configuration file
« aVvalue setin a user configuration file

» avalue entered in the command line

« avalue setin an inline specification

For example, the option MAXOPENCURSORS specifies the maximum number of
cached open cursors. The built-in Pro*COBOL default value for this option is 10.
However, if MAXOPENCURSORS=32 is specified in the system configuration file,
the value becomes 32. The user configuration file could set it to yet another value,
which then overrides the system configuration value.

Then, if this option is set on the command line, the new command-line value takes
precedence. Finally, an inline specification takes precedence over all preceding
defaults. For more information, see "Configuration Files" on page 7-6 and "Entering
Options" on page 7-7.

Macro and Micro Options

Pro*COBOL has two options, DBMS and MODE, that existed before release 8.0,
and that also control several functions at once. These are known as macro options.
Some newer options, such as END_OF_FETCH, control only one function and are
known as micro options. When setting a macro and a micro option, you must

7-4 Pro*COBOL Precompiler Programmer’s Guide



Precompiler Options

remember that macro options have precedence over micro options, if, and only if,
the macro option is at a higher level of precedence than the micro option, as listed
in the section "Precedence of Option Values" on page 7-4. This behavior is a change
from releases of Pro*xCOBOL prior to 8.0.

For example, the default for MODE is ORACLE, and for END_OF FETCH is 1403.
If you specify MODE=ANSI in the user configuration file, Pro*COBOL will return a
value of 100 at the end of fetch, overriding the default END_OF FETCH value of
1403. If you specify both MODE=ANSI and END_OF_ FETCH=1403 in the configu-
ration file, then 1403 will be returned. If you specify MODE=ANSI in your configu-
ration file and END_OF_FETCH=1403 on the command line, 1403 will be returned.

The following table lists the values of micro options set by the macro option values:

Table 7-1 How Macro Option Values Set Micro Oprion Values

Macro Option Micro Option

MODE=ANSI | 1SO CLOSE_ON_COMMIT=YES
DECLARE_SECTION=YES
END_OF_FETCH=100
MODE=ANSI14 | ANSI13 | ISO14| | CLOSE_ON_COMMIT=NO
1SO13 DECLARE_SECTION=YES
END_OF_FETCH=100
MODE=ORACLE CLOSE_ON_COMMIT=NO
DECLARE_SECTION=NO
END_OF FETCH=1403
DBMS=V6 UNSAFE_NULL=YES
DBMS=NATIVE | V7 | V8 UNSAFE_NULL=NO

Determining Current Values

You can interactively determine the current value for one or more options by using
a question mark on the command line. For example, if you issue the command

procob?

Running the Pro*COBOL Precompiler 7-5



Precompiler Options

Case Sensitivity

the complete option set, along with current values, is displayed on your terminal.
In this case, the values are those built into Pro*COBOL, overridden by any values
in the system configuration file. But if you issue the following command

procob CONFIG=my_config_file.cfg?

and there is a file named my_config_file.cfg in the current directory, the options from
the my_config_file.cfg file are listed with the other default values. Values in the user
configuration file supply missing values, and they supersede values built into
Pro*COBOL and values specified in the system configuration file.

You can also determine the current value of a single option by simply specifying
the option name followed by "=?"as in

procob MAXOPENCURSORS=?

Note: With some operating systems and user shells, such as UNIX C shell, the
"?" may need to be preceded by an “escape” character, such as a back-slash (\).
For example, instead of "procob?," you might need to use "procob \?" to list the
Pro*COBOL option settings.

In general, you can use either uppercase or lowercase for command-line option
names and values. However, if your operating system is case-sensitive, (UNIX for
example) you must specify filename values, including the name of Pro*COBOL exe-
cutable, using the correct combination of upper and lowercase letters.

Configuration Files

A configuration file is a text file that contains precompiler options. Each record
(line) in the file contains one option, with its associated value or values. For exam-
ple, a configuration file might contain the lines

FIPS=YES
MODE=ANSI
to set values for the FIPS and MODE options.

There is a single system configuration file for each system. The name of the system
configuration file is

pchcfg.cfy

The location of the file is operating system-specific. On most UNIX systems, the
Pro*COBOL configuration file is usually located in the $ORACLE_HOME/pre-

7-6 Pro*COBOL Precompiler Programmer’s Guide



Entering Options

comp/admin directory, where $ORACLE_HOME is the environment variable for the
database software.

Note that before release 8.0 of Pro*COBOL, the configuration file was called
pccob.cfg.

The Pro*COBOL user can have one or more user configuration files. The name of
the configuration file must be specified using the CONFIG command-line option.
For more information, see "Determining Current Values" on page 7-5.

Note: You cannot nest configuration files. This means that CONFIG is not a
valid option inside a configuration file.

Entering Options

All Pro*COBOL options can be entered on the command line or (except CONFIG)
from a configuration file. Many options can also be entered inline. During a given
run, Pro*COBOL can accept options from all three sources.

On the Command Line

Inline

You enter precompiler options on the command line using the following syntax:

... [option_name=value] [option_name=value] ...

Separate each option with one or more spaces. For example, you might enter the fol-
lowing options:

... ERRORS=no0 LTYPE=short

You enter options inline by coding EXEC ORACLE statements, using the following
syntax:

EXEC ORACLE OPTION (option_name=value) END-EXEC.

For example, you might code the following statement:
EXEC ORACLE OPTION (RELEASE_CURSOR=YES) END-EXEC.

An option entered inline overrides the same option entered on the command line.

Running the Pro*COBOL Precompiler 7-7



Entering Options

Advantages

The EXEC ORACLE feature is especially useful for changing option values during
precompilation. For example, you might want to change the HOLD _CURSOR and
RELEASE_CURSOR values on a statement-by-statement basis. Appendix D shows
you how to use inline options to optimize runtime performance.

Specifying options inline is also helpful if your operating system limits the number
of characters you can enter on the command line, and you can store inline options
in configuration files, which are discussed in the next section.

Scope of EXEC ORACLE

An EXEC ORACLE statement stays in effect until textually superseded by another
EXEC ORACLE statement specifying the same option. In the following example,
HOLD_CURSOR=NO stays in effect until superseded by HOLD_CURSOR=YES:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-NAME PIC X(20) VARYING.
01 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
01 SALARY  PIC S9(5)V99 COMP-3 VALUE ZERO.
01 DEPT-NUMBER PIC S9(4) COMP VALUE ZERO.
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO NO-MORE END-EXEC.
EXEC ORACLE OPTION (HOLD_CURSOR=NO)END-EXEC.

EXEC SQL DECLARE EMP-CURSOR CURSOR FOR
SELECT EMPNO, DEPTNO FROM EMP

END-EXEC.

EXEC SQL OPEN EMP-CURSOR END-EXEC.

DISPLAY 'Employee Number Dept.
DISPLAY '——M8M— —.
PERFORM
EXEC SQL
FETCH EMP-CURSOR INTO :EMP-NUMBER, :DEPT-NUMBER
END-EXEC
DISPLAY EMP-NUMBER, DEPT-NUMBER END-EXEC
END-PERFORM.

NO-MORE.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
PERFORM
DISPLAY 'Employee number?’

7-8 Pro*COBOL Precompiler Programmer’s Guide



Quick Reference

ACCEPT EMP-NUMBER
IFEMP-NUMBER ISNOT =0
EXEC ORACLE OPTION (HOLD_CURSOR=YES) END-EXEC
EXEC SQL SELECT ENAME, SAL
INTO :EMP-NAME, :SALARY
FROM EMP
WHERE EMPNO =:EMP-NUMBER
DISPLAY 'Salary for’, EMP-NAME, ’is’, SALARY
END-EXEC
END-IF
END-PERFORM.
NEXT-PARA.

Scope of Options

A precompilation unit is a file containing COBOL code and one or more embedded
SQL statements. The options specified for a given precompilation unit affect only
that unit; they have no effect on other units.

For example, if you specify HOLD_CURSOR=YES and RELEASE_CURSOR=YES
for unit A but not unit B, SQL statements in unit A run with these HOLD_CURSOR
and RELEASE_CURSOR values, but SQL statements in unit B run with the default
values. However, the MAXOPENCURSORS setting that is in effect when you con-
nect to Oracle stays in effect for the life of that connection.

The scope of an inline option is positional, not logical. That is, an inline option
affects SQL statements that follow it in the source file, not in the flow of program
logic. An option setting stays in effect until the end-of-file unless you re-specify the
option.

Quick Reference

Table 7-2 is a quick reference to the Pro*COBOL options. Options marked with an
asterisk can be entered inline.

Another handy reference is available online. To see the online display, just enter the
Pro*COBOL command without options at your operating system prompt. The dis-
play gives the name, syntax, default value, and purpose of each option.

Note: There are some platform-specific options. For example, on byte-swapped
platforms the option COMPS5 governs the use of certain COMPUTATIONAL
items. Check your system-specific Oracle manuals.

Running the Pro*COBOL Precompiler 7-9



Quick Reference

Table 7-2 Option List

Syntax Default Specifies ...

ASACC={YES|NO} NO If YES, use ASA carriage control for listing

ASSUME_SQLCODE={YES|NO} NO If YES, assume SQLCODE variable exists

AUTO_CONNECT={YES|NO} NO If YES, allow automatic connect to ops$ accounts

CLOSE_ON_COMMIT NO If YES, close all cursors on COMMIT

CONFIG=filename Specifies name of user-defined configuration file

DATE_FORMAT LOCAL Specifies date string format

DBMS={NATIVE|V7]V8} NATIVE Version-specific behavior of Oracle at precompile time

DECLARE_SECTION NO If YES, DECLARE SECTION is required.

DEFINE=symbol * Define a symbol used in conditional precompilation

END_OF_FETCH 1403 End-of-fetch SQLCODE value

ERRORS={YES|NO} * YES If YES, display errors on the terminal

FIPS={YES|NO} NO If YES, ANSI/ZISO extensions are flagged

FORMAT={ANSI| TERMINAL} ANSI Format of input file COBOL statements

HOLD_CURSOR={YES|NO}* NO If YES, hold OraCursor (do not re-assign)

HOST={COBOL | COB74} COBOL COBOL version used in input file (COBOL 85 or
COBOL 74)

[INAME=]filename Name of input file

INCLUDE=path* Pathname for EXEC SQL INCLUDE files

IRECLEN=integer 80 Record length of input file

LITDELIM={APOST | QUOTE} QUOTE Delimiters for COBOL strings

LNAME=filename Name of listing file

LRECLEN-=integer 132 Record length of listing file

LTYPE={LONG | SHORT | NONE} * LONG Type of listing

7-10 Pro*COBOL Precompiler Programmer’s Guide



Using Pro*COBOL Options

Table 7-2 Option List

Syntax Default Specifies ...
MAXLITERAL=integer * platform- Maximum length of strings
specific
MAXOPENCURSORS=integer * 10 Maximum number of OraCursors cached (1)
MODE={ORA- ORACLE If ANSI, follow the ANSI/ZISO SQL standard
CLE] ANSIJANSI14 | ANSI13}
NLS_LOCAL={YES|NO} NO If YES, use NCHAR semantics of previous Pro*COBOL
releases
[ONAME=]filename Name of output file
ORACA={YES|NO}* NO If YES, use ORACA communications area
ORECLEN-=integer 80 Record length of output file
PAGELEN=integer 66 Lines per page in listing
PICX CHARF Datatype of PIC X COBOL variables
RELEASE_CURSOR={YES|NO} * NO If YES, release OraCursor after execute
SELECT_ERROR={YES|NO}* YES If YES, generate FOUND error on SELECT
SQLCHECK={FULL |]SYNTAX]LIM- | SYNTAX SQL checking level
ITED | NONE}*
UNSAFE_NULL={YES|NO} NO If YES, unsafe null fetches are allowed (disables the
ORA-01405 message)
USERID=username/password Oracle username and password
VARCHAR={YES|NO} NO If YES, accept user-defined VARCHAR group items
XREF={YES|NO}* YES If YES, generate symbol cross references in listing

Using Pro*COBOL Options

This section is organized for easy reference. It lists Pro*COBOL options alphabeti-
cally, and for each option gives its purpose, syntax, and default value. Usage notes
that help you understand how the option works are also provided. Unless the
usage notes say otherwise, the option can be entered on the command line, inline,
or from a configuration file.

Running the Pro*COBOL Precompiler

7-11



Using Pro*COBOL Options

ASACC

Purpose

Specifies whether the listing file follows the ASA convention of using the first col-
umn in each line for carriage control.

Syntax
ASACC={YES|NO}

Default
NO

Usage Notes
Cannot be entered inline.

ASSUME_SQLCODE

Purpose

Instructs Pro*COBOL to presume that SQLCODE is declared whether or not it is
declared in the program, or of the proper type.

Syntax
ASSUME_SQLCODE={YES|NO}

Default
NO

Usage Notes
Cannot be entered inline.

When DECLARE_SECTION=YES and ASSUME_SQLCODE=YES, SQLCODE can
be declared outside a Declare Section.

When DECLARE_SECTION=YES and ASSUME_SQLCODE=NO, SQLCODE is rec-
ognized as the status variable if and only if at least one of the following criteria is
satisfied:

« Itis declared with exactly the right datatype.

7-12 Pro*COBOL Precompiler Programmer’s Guide



Using Pro*COBOL Options

« Pro*COBOL finds no other status variable. If Pro*COBOL finds a SQLSTATE
declaration (of exactly the right type of course), or finds an include of a SQLCA,
then it will not presume SQLCODE is declared.

When ASSUME_SQLCODE=YES,and when SQLSTATE and/or SQLCA are
declared as status variables, Pro*COBOL presumes SQLCODE is declared whether
or not it is declared or of the proper type.

AUTO_CONNECT

Purpose
Specifies whether your program connects automatically to the default user account.

Syntax
AUTO_CONNECT={YES|NO}

Default
NO

Usage Notes
Cannot be entered inline.

When AUTO_CONNECT=YES, as soon as Pro*COBOL encounters an executable
SQL statement, your program tries to log on to Oracle automatically with the userid

<prefix><usemame>

where prefix is the value of the Oracle initialization parameter
OS_AUTHENT_PREFIX (the default value is OPS$) and username is your operating
system user or task name. In this case, you cannot override the default value for
MAXOPENCURORS (10), even if you specify a different value on the command
line.

When AUTO_CONNECT=NO (the default), you must use the CONNECT state-
ment to logon to Oracle.

Running the Pro*COBOL Precompiler 7-13



Using Pro*COBOL Options

CLOSE_ON_COMMIT

CONFIG

Purpose

Specifies whether or not all cursors declared without the WITH HOLD clause are
closed on commit.

Syntax
CLOSE_ON_COMMIT={YES | NO}

Default
NO

Usage Notes
Can be used only on the command line or in a configuration file.

This option will only have an effect when a cursor is not coded using the WITH
HOLD clause in a DECLARE CURSOR statement, since that will override both the
new option and the existing behavior which is associated with the MODE option. If
MODE is specified at a higher level than CLOSE_ON_COMMIT, then MODE takes
precedence. For example, the defaults are MODE=ORACLE and
CLOSE_ON_COMMIT=NO. If the user specifies MODE=ANSI on the command
line, then any cursors not using the WITH HOLD clause will be closed on commit.

Issuing a COMMIT or ROLLBACK closes all explicit cursors. (When
MODE={ANSI13] ORACLE}, a commit or rollback closes only cursors referenced in
a CURRENT OF clause.)

For a further discussion of the precedence of this option see "Macro and Micro
Options" on page 7-4.

Purpose
Specifies the name of a user configuration file.

Syntax
CONFIG=filename

7-14 Pro*COBOL Precompiler Programmer’s Guide



Using Pro*COBOL Options

Default
None

Usage Notes
Can be entered only on the command line.

Pro*COBOL can use a configuration file containing preset command-line options.
However, you can specify any of several alternative files, called user configuration
files. For more information, see "Configuration Files" on page 7-6.

You cannot nest configuration files. Therefore, you cannot specify the option CON-
FIG in a configuration file.

DATE_FORMAT

Purpose
Species the string format in which dates are returned.

Syntax
DATE_FORMAT={ISO | USA | EUR ] JIS | LOCAL | ’fmt’ (default LOCAL)

Default
LOCAL

Usage Notes

Can only be entered on the command line or in a configuration file. The date
strings are shown in the following table:

Table 7-3 Formats for Date Strings

Format Name Abbreviation Date Format
International Standards Organization 1ISO yyyy-mm-dd
USA standard USA mm/dd/yyyy
European standard EUR dd.mm.yyyy
Japanese Industrial Standard JIS yyyy-mm-dd

Running the Pro*COBOL Precompiler 7-15



Using Pro*COBOL Options

DBMS

Table 7-3 Formats for Date Strings

Format Name Abbreviation Date Format

installation-defined LOCAL Any installation-

defined form.

‘fmt’ is a date format model, such as 'Month dd, yyyy’. See the Oracle8 SQL Refer-
ence for the list of date format model elements.

There is one restriction on the use of the DATE_FORMAT option: All compilation
units to be linked together must use the same DATE_FORMAT value. An error
occurs when there is a mismatch in the values of DATE_FORMAT across compila-
tion units

Purpose

Specifies whether Oracle follows the semantic and syntactic rules of Oracle7,
Oracle8, or the native version of Oracle (that is, the version to which your applica-
tion is connected).

Syntax
DBMS={NATIVE| V7] V8}

Default
NATIVE

Usage Notes
Cannot be entered inline.
With the DBMS option you control the version-specific behavior of Oracle. When

DBMS=NATIVE (the default), Oracle follows the semantic and syntactic rules of
the native version of Oracle.

Table 7-4 shows how the compatible DBMS and MODE settings interact. All other
combinations are incompatible or not recommended.

7-16 Pro*COBOL Precompiler Programmer’s Guide



Using Pro*COBOL Options

Table 7-4 How DBMS and MODE Interact

Situation DBMS=V7 or V8 DBMS=V7 or V8
MODE=ANSI MODE=ORACLE
fetch truncated values without using no error but no error but

indicator variables SOLWARN(2) isset | SQLWARN(2) is set

open an already OPENed cursor error -2117 no error

close an already CLOSEd cursor error -2114 no error

SQL group function ignores nulls no warning no warning

when SQL group function in multi-row |FETCH time FETCH time

query is called

declare SQLCA structure optional required

declare SQLCODE or SQLSTATE status |required optional but Oracle ignores

variable

external datatype code DESCRIBE 96 96

returns (dynamic SQL Method 4)

integrity constraints enabled enabled

PCTINCREASE for rollback segments not allowed not allowed

MAXEXTENTS storage parameters not allowed not allowed
Notes:

1. Includes ANSI13.
2. Includes ANSI14 and ANSI13.

DECLARE_SECTION

Purpose

Specifies whether or not only declarations in a Declare Section are allowed as host
variables.

Running the Pro*COBOL Precompiler 7-17



Using Pro*COBOL Options

DEFINE

Syntax
DECLARE_SECTION={YES | NO}

Default
NO

Usage Notes

Can be entered only on the command line or in a configuration file.

When MODE=ORACLE, use of the BEGIN DECLARE SECTION and END
DECLARE SECTION statements are optional, starting with release 8.0 of
Pro*COBOL. The DECLARE_SECTION option is provided for backward compati-
bility with previous releases. DECLARE_SECTION is a micro option of MODE. For

a discussion of precedence of this option, see "Macro and Micro Options" on page 7-
4.

Purpose

Specifies a user-defined symbol that is used to include or exclude portions of
source code during a conditional precompilation. For more information, see "Condi-
tional Precompilations” on page 7-39.

Syntax
DEFINE=symbol

Default
None

Usage Notes
If you enter DEFINE inline, the EXEC ORACLE statement takes the following form:

EXEC ORACLE DEFINE <symbol> END-EXEC.

7-18 Pro*COBOL Precompiler Programmer’s Guide



Using Pro*COBOL Options

END_OF_FETCH

ERRORS

Purpose

Specifies which SQLCODE value is returned when an END-OF-FETCH condition
occurs after execution of a SQL statement.

Syntax
END_OF_FETCH={100 | 1403}

Default
1403

Usage Notes

Can be entered only on the command line or in a configuration file.

If you specify MODE=ANSI in a configuration file, Pro*COBOL returns the SQL-
CODE value 100 at the END_OF_FETCH, overriding the default
END_OF_FETCH=1403. If you specify MODE=ANSI and END_OF_FETCH=1403
in the configuration file, then Pro*COBOL will return the SQLCODE value 1403 at
the END_OF_FETCH. If you specify MODE=ANSI in the configuration file and
END_OF FETCH=1403 on the command line, Pro*COBOL will again return the
SQLCODE value 1403 at the END_OF _FETCH.

END_OF _FETCH is a micro option of MODE. For further discussion, see "Macro
and Micro Options" on page 7-4.

Purpose

Specifies whether Pro*COBOL error messages are sent to the terminal and listing
file or only to the listing file.

Syntax
ERRORS={YES|NO}

Default
YES

Running the Pro*COBOL Precompiler 7-19



Using Pro*COBOL Options

FIPS

Usage Notes
When ERRORS=YES, error messages are sent to the terminal and listing file.

When ERRORS=NO, error messages are sent only to the listing file.

Purpose

Specifies whether extensions to ANSI/ZISO SQL are flagged (by the FIPS Flagger).
An extension is any SQL element that violates ANSI/ISO format or syntax rules,
except privilege enforcement rules.

Syntax
FIPS={YES|NO}

Default
NO

Usage Notes

When FIPS=YES, the FIPS Flagger issues warning (not error) messages if you use
an Oracle extension to the ANSIZISO embedded SQL standard (SQL92) or use a
SQL92 feature in a nonconforming manner.

The following extensions to ANSI/ZISO SQL are flagged at precompile time:
« array interface including the FOR clause

« SQLCA, ORACA, and SQLDA data structures

« dynamic SQL including the DESCRIBE statement

« embedded PL/SQL blocks

« automatic datatype conversion

« DATE, COMP-3, NUMBER, RAW, LONG RAW, VARRAW, ROWID, and VAR-
CHAR datatypes

« ORACLE OPTION statement for specifying runtime options
« EXEC IAF and EXEC TOOLS statements in user exits

= CONNECT statement

« TYPE and VAR datatype equivalencing statements

7-20 Pro*COBOL Precompiler Programmer’s Guide



Using Pro*COBOL Options

FORMAT

« AT db_name clause

« DECLARE..DATABASE, ..STATEMENT, and .. TABLE statements

«  SQLWARNING condition in WHENEVER statement

« DO and STOP actions in WHENEVER statement

« COMMENT and FORCE TRANSACTION clauses in COMMIT statement

« FORCE TRANSACTION and TO SAVEPOINT clauses in ROLLBACK state-
ment

« RELEASE parameter in COMMIT and ROLLBACK statements

« optional colon-prefixing of WHENEVER...DO labels and of host variables in
the INTO clause

Purpose
Specifies the format of COBOL input lines.

Syntax
FORMAT={ANSI| TERMINAL}

Default
ANSI

Usage Notes
Cannot be entered inline.

The format of input lines is system-dependent. Check your system-specific Oracle
manuals.

When FORMAT=ANSI, the format of input lines conforms as much as possible to
the current ANSI standard for COBOL. When FORMAT=TERMINAL, input lines
start with column 7. Example code in this book is in TERMINAL format. See "Cod-
ing Area" on page 3-2 for a more complete description.

Running the Pro*COBOL Precompiler 7-21



Using Pro*COBOL Options

HOLD_CURSOR

Purpose

Specifies how the cursors for SQL statements and PL/SQL blocks are handled in
the cursor cache.

Syntax
HOLD_CURSOR={YES|NO}

Default
NO

Usage Notes

You can use HOLD_CURSOR to improve the performance of your program. For
more information, see Appendix D.

When a SQL data manipulation statement is executed, its associated cursor is
linked to an entry in the cursor cache. The cursor cache entry is in turn linked to an
Oracle private SQL area, which stores information needed to process the statement.
HOLD_CURSOR controls what happens to the link between the cursor and cursor
cache.

When HOLD_CURSOR=NO, after Oracle executes the SQL statement and the cur-
sor is closed, Pro*COBOL marks the link as reusable. The link is reused as soon as
the cursor cache entry to which it points is needed for another SQL statement. This
frees memory allocated to the private SQL area and releases parse locks.

When HOLD_CURSOR=YES and RELEASE_CURSOR=NO, the link is maintained;
Pro*COBOL does not reuse it. This is useful for SQL statements that are executed
often because it speeds up subsequent executions. There is no need to re-parse the
statement or allocate memory for an Oracle private SQL area.

For inline use with implicit cursors, set HOLD _CURSOR before executing the SQL
statement. For inline use with explicit cursors, set HOLD CURSOR before opening
the cursor.

Note that RELEASE_CURSOR=YES overrides HOLD CURSOR=YES and that
HOLD_CURSOR=NO overrides RELEASE_CURSOR=NO. For information show-
ing how these two options interact, see Table 4-11.

7-22 Pro*COBOL Precompiler Programmer’s Guide



Using Pro*COBOL Options

HOST

INAME

Purpose
Specifies the host language to be used.

Syntax
HOST={COB74]COBOL}

Default
COBOL

Usage Notes
Cannot be entered inline.

COB74 refers to the 1974 version of ANSI-approved COBOL. COBOL refers to the
1985 version. Other values might be available on your platform.

Purpose
Specifies the name of the input file.

Syntax
INAME=filename

Default
None

Usage Notes
Cannot be entered inline.

When specifying the name of your input file on the command line, the keyword
INAME is optional. For example, in Pro*COBOL, you can specify myprog.pco
instead of INAME=myprog.pco.

Pro*COBOL assumes the standard input file extension, pco. So, you need not use a
file extension when specifying INAME unless the extension is nonstandard. For
Pro*COBOL, if you use a nonstandard input file extension when specifying
INAME, you must also specify HOST.

Running the Pro*COBOL Precompiler 7-23



Using Pro*COBOL Options

INCLUDE

IRECLEN

Purpose

Specifies a directory path for EXEC SQL INCLUDE files. It only applies to operat-
ing systems that use directories.

Syntax
INCLUDE=path

Default
Current directory

Usage Notes

Typically, you use INCLUDE to specify a directory path for the SQLCA and
ORACA files. Pro*COBOL searches first in the current directory, then in the direc-
tory specified by INCLUDE, and finally in a directory for standard INCLUDE files.
Hence, you need not specify a directory path for standard files such as the SQLCA
and ORACA.

You must still use INCLUDE to specify a directory path for nonstandard files
unless they are stored in the current directory. You can specify more than one path
on the command line, as follows:

... INCLUDE=<path1> INCLUDE=<path2> ...

Pro*COBOL searches first in the current directory, then in the directory named by
pathl, then in the directory named by path2, and finally in the directory for stan-
dard INCLUDE files.

Remember, Pro*COBOL looks for a file in the current directory first—even if you
specify a directory path. So, if the file you want to INCLUDE resides in another
directory, make sure no file with the same name resides in the current directory.

The syntax for specifying a directory path is system-specific. Follow the conven-
tions of your operating system.

Purpose
Specifies the record length of the input file.

7-24 Pro*COBOL Precompiler Programmer’s Guide



Using Pro*COBOL Options

LITDELIM

Syntax
IRECLEN=integer

Default
80

Usage Notes
Cannot be entered inline.

The value you specify for IRECLEN should not exceed the value of ORECLEN. The
maximum value allowed is system-dependent.

Purpose

The LITDELIM option specifies the delimiters for string constants and literals in
the COBOL code generated by Pro*COBOL.

Syntax
LITDELIM={APOST| QUOTE}

Default
QUOTE

Usage Notes

When LITDELIM=APOST, Pro*COBOL uses apostrophes when generating COBOL
code. If you specify LITDELIM=QUOTE, quotation marks are used, as in

CALL "SQLROL" USING SQL-TMPO.

In SQL statements, you must use quotation marks to delimit identifiers containing
special or lowercase characters, as in

EXEC SQL CREATE TABLE "Emp2" END-EXEC.

but you must use apostrophes to delimit string constants, as in
EXEC SQL SELECT ENAME FROM EMP WHERE JOB ="CLERK’ END-EXEC.

Running the Pro*COBOL Precompiler 7-25



Using Pro*COBOL Options

Regardless of which delimiters are used in the Pro*COBOL source file, Pro*COBOL
generates the delimiters specified by the LITDELIM value.

LNAME

Purpose
Specifies a non-default name for the listing file.

Syntax
LNAME=filename

Default
input.LIS, where input is the base name of the input file.

Usage Notes
Cannot be entered inline.

By default, the listing file is written to the current directory.
LRECLEN

Purpose
Specifies the record length of the listing file.

Syntax
LRECLEN=integer

Default
132

Usage Notes

Cannot be entered inline.

The value of LRECLEN can range from 80 through 255. If you specify a value
below the range, 80 is used instead. If you specify a value above the range, 255 is

used instead. LRECLEN should exceed IRECLEN by at least 8 to allow for the inser-
tion of line numbers.

7-26 Pro*COBOL Precompiler Programmer’s Guide



Using Pro*COBOL Options

LTYPE
Purpose
Specifies the listing type.
Syntax
LTYPE={LONG | SHORT | NONE}
Default
LONG
Usage Notes
Cannot be entered inline.
Table 7-5 Listing Types
LTYPE=LONG input lines appear in the listing file.
LTYPE=SHORT input lines do not appear in the listing file.
LTYPE=NONE no listing file is created.
MAXLITERAL
Purpose

Specifies the maximum length of string literals generated by Pro*COBOL so that
compiler limits are not exceeded. For example, if your compiler cannot handle
string literals longer than 132 characters, you can specify MAXLITERAL=132 on
the command line.

Syntax
MAXLITERAL=integer

Default
The default is 256.

Running the Pro*COBOL Precompiler 7-27



Using Pro*COBOL Options

Usage Notes

The maximum value of MAXLITERAL is compiler-dependent. The default value is
language-dependent, but you might have to specify a lower value. For example,
some COBOL compilers cannot handle string literals longer than 132 characters, so
you would specify MAXLITERAL=132.

Strings that exceed the length specified by MAXLITERAL are divided during pre-
compilation, then recombined (concatenated) at run time.

You can enter MAXLITERAL inline but your program can set its value just once,
and the EXEC ORACLE statement must precede the first EXEC SQL statement. Oth-
erwise, Pro*COBOL issues a warning message, ignores the extra or misplaced

EXEC ORACLE statement, and continues processing.

MAXOPENCURSORS

Purpose

Specifies the number of concurrently open cursors that Pro*COBOL tries to keep
cached.

Syntax
MAXOPENCURSORS=integer

Default
10

Usage Notes

You can use MAXOPENCURSORS to improve the performance of your program.
For more information, see Appendix D.

When precompiling separately, use MAXOPENCURSORS as described in "Separate
Precompilations” on page 7-41.

MAXOPENCURSORS specifies the initial size of the SQLLIB cursor cache. If a new cur-
sor is needed, and there are no free cache entries, Oracle tries to reuse an entry. Its success
depends on the values of HOLD_CURSOR and RELEASE_CURSOR, and, for explicit cur-
sors, on the status of the cursor itself. Oracle allocates an additional cache entry if it cannot
find one to reuse. If necessary, Oracle keeps allocating additional cache entries until it runs
out of memory or reaches the limit set by OPEN_CURSORS. To avoid a “maximum open
cursors exceeded” Oracle error, MAXOPENCURSORS must be lower than
OPEN_CURSORS by at least 6.

7-28 Pro*COBOL Precompiler Programmer’s Guide



Using Pro*COBOL Options

MODE

As your program’s need for concurrently open cursors grows, you might want to
re-specify MAXOPENCURSORS to match the need. A value of 45 to 50 is not
uncommon, but remember that each cursor requires another private SQL area in
the user process memory space. The default value of 10 is adequate for most pro-
grams.

Purpose

Specifies whether your program observes Oracle practices or complies with the cur-
rent ANSI SQL standard.

Syntax
MODE={ANSI|ISO] ANSI14]1SO14] ANSI13]|1SO13] ORACLE}

Default
ORACLE

Usage Notes
Cannot be entered inline.

The following pairs of MODE values are equivalent: ANSI and 1SO, ANSI14 and
ISO14, ANSI13 and ISO13.

When MODE=ORACLE (the default), your embedded SQL program observes Ora-
cle practices.

When MODE={ANSI14 ] ANSI13}, your program complies closely with the current
ANSI SQL standard.

When MODE=ANSI, your program complies fully with the ANSI standard and the fol-
lowing changes go into effect:

« You cannot OPEN a cursor that is already open or CLOSE a cursor that is already
closed. (When MODE=0ORACLE, you can reOPEN an open cursor to avoid re-pars-
ing.).

« No error message is issued if Oracle assigns a truncated column value to an out-
put host variable.

Running the Pro*COBOL Precompiler 7-29



Using Pro*COBOL Options

NLS_LOCAL

ONAME

When MODE={ANSI | ANSI14}, a 4-byte integer variable named SQLCODE or a 5-
byte character variable named SQLSTATE must be declared. For more information,
see "Error Handling Alternatives" on page 9-2.

Table 7-4  shows how the MODE and DBMS settings interact. Other combina-
tions are incompatible or are not recommended.

Purpose

The NLS_LOCAL option determines whether NLS character conversions are per-
formed by the Pro*COBOL runtime library or by the Oracle Server.

Syntax
NLS_LOCAL={YES|NO}

Default
NO

Usage Notes

Cannot be entered inline.

When NLS_LOCAL=YES, the runtime library (SQLLIB) locally performs blank-pad-
ding and blank-stripping for host variables that have multi-byte NLS datatypes.

Continue to use this value only for Pro*COBOL applications written for previous
releases that have not been updated for Oracle8.

When NLS_LOCAL=NO, blank-padding and blank-stripping operations are per-
formed by the Oracle Server for host variables that have multi-byte NLS datatypes. Use for
all new Oracle8, or later, applications.

Purpose
Specifies the name of the output file.

Syntax
ONAME-=filename

7-30 Pro*COBOL Precompiler Programmer’s Guide



Using Pro*COBOL Options

ORACA

ORECLEN

Default
System-dependent

Usage Notes
Cannot be entered inline.

Use this option to specify the name of the output file, where the name differs from
that of the input file. For example, if you issue

procob INAME=my _test

the default output filename is my_test.cob. If you want the output filename to be

my_test 1.cob, issue the command

procob INAME=my_test ONAME=my test 1.cob

Note that you should add the .cob extension to files specified using ONAME. There is no
default extension with the ONAME option.

Attention: Oracle recommends that you not let the output filename default, but
rather name it explicitly using ONAME.

Purpose
Specifies whether a program can use the Oracle Communications Area (ORACA).

Syntax ORACA={YES|NO}

Default
NO

Usage Notes

When ORACA=YES, you must place the INCLUDE ORACA statement in your pro-
gram.

Purpose
Specifies the record length of the output file.

Running the Pro*COBOL Precompiler 7-31



Using Pro*COBOL Options

PAGELEN

PICX

Syntax
ORECLEN-=integer

Default
80

Usage Notes
Cannot be entered inline.

The value you specify for ORECLEN should equal or exceed the value of IRE-
CLEN. The maximum value allowed is system-dependent.

Purpose
Specifies the number of lines per physical page of the listing file.

Syntax
PAGELEN=integer

Default
66

Usage Notes
Cannot be entered inline. The maximum value allowed is system-dependent.

Purpose
Specifies the default datatype of PIC X variables.

Syntax
PICX={CHARF | VARCHAR?2}

Default
CHARF

7-32  Pro*COBOL Precompiler Programmer’s Guide



Using Pro*COBOL Options

Usage Notes
Can be entered only on the command line or in a configuration file.

Starting in Pro*COBOL 8.0, the default datatype of PIC X, N, or G variables is
changed from VARCHAR?2 to CHARF. PICX is provided for backward compatibil-
ity.

This new default behavior is consistent with the normal COBOL move semantics.
Note that this is a change in behavior for the case where you are inserting a PIC X
variable (with MODE=ORACLE) into a VARCHAR2 column. Any trailing blanks
which had formerly been trimmed will be preserved. Note also, that the new
default lessens the occurrence of the following anomaly: Using a PIC X bind vari-
able initialized with trailing blanks in a WHERE clause would never match a value
with the same number of trailing blanks which was stored in a char column
because the bind variable’s trailing blanks were stripped before the comparison.

When PICX=VARCHAR?2, Oracle treats local CHAR variables in a PL/SQL block
like variable-length character values. When PICX=CHARF, however, Oracle treats
the CHAR variables like ANSI-compliant, fixed-length character values.

RELEASE_CURSOR

Purpose

Specifies how the cursors for SQL statements and PL/SQL blocks are handled in
the cursor cache.

Syntax
RELEASE_CURSOR={YES|NO}

Default
NO

Usage Notes

You can use RELEASE_CURSOR to improve the performance of your program. For
more information, see Appendix D.

When a SQL data manipulation statement is executed, its associated cursor is
linked to an entry in the cursor cache. The cursor cache entry is in turn linked to an
Oracle private SQL area, which stores information needed to process the statement.
RELEASE_CURSOR controls what happens to the link between the cursor cache
and private SQL area.

Running the Pro*COBOL Precompiler 7-33



Using Pro*COBOL Options

When RELEASE_CURSOR=YES, after Oracle executes the SQL statement and the
cursor is closed, Pro*COBOL immediately removes the link. This frees memory allo-
cated to the private SQL area and releases parse locks. To make sure that associated
resources are freed when you CLOSE a cursor, you must specify
RELEASE_CURSOR=YES.

When RELEASE_CURSOR=NO and HOLD_CURSOR=YES, the link is maintained.
Pro*COBOL does not reuse the link unless the number of open cursors exceeds the
value of MAXOPENCURSORS. This is useful for SQL statements that are executed
often because it speeds up subsequent executions. There is no need to re-parse the
statement or allocate memory for an Oracle private SQL area.

For inline use with implicit cursors, set RELEASE_CURSOR before executing the
SQL statement. For inline use with explicit cursors, set RELEASE_CURSOR before
opening the cursor.

Note that RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES and that
HOLD_CURSOR=NO overrides RELEASE_CURSOR=NO. For information show-
ing how these two options interact, see Table 4-11.

SELECT_ERROR

Purpose

Specifies whether your program generates an error when a single-row SELECT
statement returns more than one row or more rows than a host array can accommo-
date.

Syntax
SELECT_ERROR={YES|NO}

Default
YES

Usage Notes

When SELECT_ERROR=YES, an error is generated if a single-row select returns too
many rows or an array select returns more rows than the host array can accommo-
date.

When SELECT_ERROR=NO, no error is generated when a single-row select
returns too many rows or when an array select returns more rows than the host
array can accommodate.

7-34 Pro*COBOL Precompiler Programmer’s Guide



Using Pro*COBOL Options

SQLCHECK

Whether you specify YES or NO, a random row is selected from the table. To
ensure a specific ordering of rows, use the ORDER BY clause in your SELECT state-
ment. When SELECT_ERROR=NO and you use ORDER BY, Oracle returns the first
row, or the first n rows if you are selecting into an array. When SELECT_ERROR=YES,
whether or not you use ORDER BY, an error is generated if too many rows are returned.

Purpose
Specifies the type and extent of syntactic and semantic checking.

Syntax
SQLCHECK={SEMANTICS|FULL]SYNTAX|]LIMITED | NONE}

Default
SYNTAX

Usage Notes

The values SEMANTICS and FULL are equivalent, as are the values SYNTAX and
LIMITED.

Pro*COBOL can help you debug a program by checking the syntax and semantics
of embedded SQL statements and PL/SQL blocks. Any errors found are reported
at precompile time.

You control the level of checking by entering the SQLCHECK option inline and/or
on the command line. However, the level of checking you specify inline cannot be
higher than the level you specify (or accept by default) on the command line. For
example, if you specify SQLCHECK=NONE on the command line, you cannot
specify SQLCHECK=SYNTAX inline.

If SQLCHECK=SYNTAX]SEMANTICS, Pro*COBOL generates an error when
PL/SQL reserved words are used in SQL statements, even though the SQL state-
ments are not themselves PL/SQL. If a PL/SQL reserved word must be used as an
identifier, you can enclose it in double-quotes.

When SQLCHECK=SEMANTICS, Pro*COBOL checks the syntax and semantics of
« data manipulation statements such as INSERT and UPDATE
« PL/SQL blocks

Running the Pro*COBOL Precompiler 7-35



Using Pro*COBOL Options

However, Pro*COBOL checks only the syntax of remote data manipulation state-
ments (those using the AT db_name clause).

Pro*COBOL gets the information for a semantic check from embedded DECLARE
TABLE statements or, if you specify the option USERID, by connecting to Oracle
and accessing the data dictionary. You need not connect to Oracle if every table ref-
erenced in a data manipulation statement or PL/SQL block is defined in a
DECLARE TABLE statement.

If you connect to Oracle but some information cannot be found in the data dictio-
nary, you must use DECLARE TABLE statements to supply the missing informa-
tion. During precompilation, a DECLARE TABLE definition overrides a data
dictionary definition if they conflict.

Specify SQLCHECK=SEMANTICS when precompiling new programs. If you
embed PL/SQL blocks in a host program, you must specify SQLCHECK=SEMAN-
TICS and the option USERID.

When SQLCHECK=SYNTAX, Pro*COBOL checks the syntax of
« data manipulation statements
« PL/SQL blocks

No semantic checking is done. DECLARE TABLE statements are ignored and
PL/SQL blocks are not allowed. When checking data manipulation statements,
Pro*COBOL uses Oracle8 syntax rules, which are downwardly compatible. Specify
SQLCHECK=SYNTAX when migrating your precompiled programs.

When SQLCHECK=NONE, no syntactic or semantic checking is done. DECLARE
TABLE statements are ignored and PL/SQL blocks are not allowed. Specify
SQLCHECK=NONE if your program

« contains non-Oracle SQL (for example, because it will connect to a non-Oracle
server via Open Gateway)

« references tables not yet created and lacks DECLARE TABLE statements for
them

Table 7-6  summarizes the checking done by SQLCHECK. For more information
about syntactic and semantic checking, see Appendix E, “Syntactic and Semantic
Checking”.

7-36 Pro*COBOL Precompiler Programmer’s Guide



Using Pro*COBOL Options

UNSAFE_NULL

Table 7-6 Checking Done by SQLCHECK

SQLCHECK=SEMANTICS | SQLCHECK=SYNTAX |SQLCHECK=NONE
Syntax Semantics Syntax Semantics Syntax | Semantics
DML X X X
Remote X X
DML
PL/SQL | X X
Purpose

Specifying UNSAFE_NULL=YES prevents generation of ORA-01405 messages
when fetching NULLSs without using indicator variables.

Syntax
UNSAFE_NULL={YES|NO}

Default
NO

Usage Notes
Cannot be entered inline.

The UNSAFE_NULL=YES is allowed only when MODE=0ORACLE and DBMS=V7
or V8.

The UNSAFE_NULL option has no effect on host variables in an embedded
PL/SQL block. You must use indicator variables to avoid ORA-01405 errors.

When UNSAFE_NULL=YES, no error is returned if a SELECT or FETCH statement
selects a null, and there is no indicator variable associated with the output host vari-
able. When UNSAFE_NULL=NO, SELECTing or FETCHing a null column or
expression into a host variable that has no associated indicator variable causes an
error (SQLSTATE is "22002"; SQLCODE is ORA-01405).

Running the Pro*COBOL Precompiler 7-37




Using Pro*COBOL Options

USERID

Purpose
Specifies an Oracle username and password.

Syntax
USERID=username/password

Default
None

Usage Notes
Cannot be entered inline.
Do not specify this option when using the automatic logon feature, which accepts

your Oracle username prefixed with the value of the Oracle initialization parameter
OS_AUTHENT_PREFIX.

When SQLCHECK=SEMANTICS, if you want Pro*COBOL to get needed informa-
tion by connecting to Oracle and accessing the data dictionary, you must also spec-
ify USERID.

VARCHAR

Purpose

The VARCHAR option instructs Pro*COBOL to treat the COBOL group item
described in Chapter 5, “Using Embedded SQL” as a VARCHAR datatype.

Syntax
VARCHAR={YES|NO}

Default
NO

Usage Notes
Cannot be entered inline.

7-38 Pro*COBOL Precompiler Programmer’s Guide



Conditional Precompilations

XREF

When VARCHAR=YES, the implicit group item described in Chapter 5, “Using
Embedded SQL” is accepted as an Oracle8 VARCHAR external datatype with a length
field and a string field.

When VARCHAR=NO, Pro*COBOL does not accept the implicit group items as
VARCHAR external datatypes.

Purpose
Specifies whether a cross-reference section is included in the listing file.

Syntax
XREF={YES|NO}

Default
YES

Usage Notes

When XREF=YES, cross references are included for host variables, cursor names,
and statement names. The cross references show where each object is defined and
referenced in your program.

When XREF=NO, the cross-reference section is not included.

Conditional Precompilations

Conditional precompilation includes (or excludes) sections of code in your host pro-
gram based on certain conditions. For example, you might want to include one sec-
tion of code when precompiling under UNIX and another section when
precompiling under VMS. Conditional precompilation lets you write programs that
can run in different environments.

Conditional sections of code are marked by statements that define the environment
and actions to take. You can code host-language statements as well as EXEC SQL
statements in these sections. The following statements let you exercise conditional
control over precompilation:

* — define a symboal
EXEC ORACLE DEFINE symbol
* —ifsymbolis defined

Running the Pro*COBOL Precompiler 7-39



Conditional Precompilations

An Example

EXEC ORACLE IFDEF symbol
* —if symbolis not defined

EXEC ORACLE IFNDEF symbol
* —otherwise

EXEC ORACLE ELSE
* —end this control block

EXEC ORACLE ENDIF

All EXEC ORACLE statements must be terminated with the statement terminator
for your host language. For example, in Pro*COBOL, a conditional statement must
be terminated with END-EXEC.

In the following example, the SELECT statement is precompiled only when the
symbol SITE2 is defined:

EXEC ORACLE IFDEF SITE2 END-EXEC.
EXEC SQL SELECT DNAME

INTO :DEPT-NAME

FROM DEPT

WHERE DEPTNO = :DEPT-NUMBER
EXEC ORACLE ENDIF END-EXEC.

Blocks of conditions can be nested as shown in the following example:
EXEC ORACLE IFDEF OUTER END-EXEC.
EXEC ORACLE IFDEF INNER END-EXEC.

EXEC ORACLE ENDIF END-EXEC.
EXEC ORACLE ENDIF END-EXEC.

You can “Comment out” host-language or embedded SQL code by placing it
between IFDEF and ENDIF and not defining the symbol.

Defining Symbols

You can define a symbol in two ways. Either include the statement
EXEC ORACLE DEFINE symbol END-EXEC.

in your host program or define the symbol on the command line using the syntax
... INAME=filename ... DEFINE=symbol

where symbol is not case-sensitive.

7-40 Pro*COBOL Precompiler Programmer’s Guide



Separate Precompilations

Some port-specific symbols are predefined for you when the Oracle Precompilers
are installed on your system. For example, predefined operating system symbols
include CMS, MVS, MS-DOS, UNIX, and VMS.

Separate Precompilations

Guidelines

You can precompile several COBOL program modules separately, then link them
into one executable program. This supports modular programming, which is
required when the functional components of a program are written and debugged
by different programmers. The individual program modules need not be written in
the same language.

The following guidelines will help you avoid some common problems.

Referencing Cursors

Cursor names are SQL identifiers, whose scope is the precompilation unit. Hence,
cursor operations cannot span precompilation units (files). That is, you cannot
declare a cursor in one file and open or fetch from it in another file. So, when doing
a separate precompilation, make sure all definitions and references to a given cur-
sor are in one file.

Specifying MAXOPENCURSORS

When you precompile the program module that connects to Oracle, specify a value
for MAXOPENCURSORS that is high enough for any of the program modules. If
you use it for another program module, MAXOPENCURSORS is ignored. Only the
value in effect for the connect is used at run time.

Using a Single SQLCA
If you want to use just one SQLCA, you must declare it globally in one of the pro-
gram modules.

Using a Single DATE_FORMAT
You must use the same format string for DATE in each program module.

Running the Pro*COBOL Precompiler 7-41



Compiling and Linking

Restrictions

All references to an explicit cursor must be in the same program file. You cannot
perform operations on a cursor that was DECLAREGJ in a different module. See
Chapter 4 for more information about cursors.

Also, any program file that contains SQL statements must have a SQLCA that is in
the scope of the local SQL statements.

Compiling and Linking
To get an executable program, you must compile the source file(s) produced by
Pro*COBOL, then link the resulting object module with any modules needed from

SQLLIB and system-specific Oracle libraries. Also, if you are embedding OCI calls,
make sure to link in the OCI runtime library (OCILIB).

The linker resolves symbolic references in the object modules. If these references
conflict, the link fails. This can happen when you try to link third party software
into a precompiled program. Not all third-party software is compatible with Ora-
cle, so you might have problems. Check with Oracle Customer Support to see if the
software is supported.

Compiling and linking are system-dependent. For example, on some systems, you
must turn off compiler optimization when compiling a host language program. For
instructions, see your system-specific Oracle manuals.

7-42 Pro*COBOL Precompiler Programmer’s Guide



8

Defining and Controlling Transactions

This chapter explains how to do transaction processing. You learn the basic tech-
niques that safeguard the consistency of your database, including how to control
whether changes to Oracle8 data are made permanent or undone. The following
topics are discussed:

=« Some Terms You Should Know

« How Transactions Guard Your Database
« How to Begin and End Transactions

« Using the COMMIT Statement

« Using the ROLLBACK Statement

« Using the SAVEPOINT Statement

» Using the RELEASE Option

« Using the SET TRANSACTION Statement
«  Overriding Default Locking

« Fetching Across Commits

« Handling Distributed Transactions

=« Guidelines

Defining and Controlling Transactions 8-1



Some Terms You Should Know

Some Terms You Should Know

Before delving into the subject of transactions, you should know the terms defined
in this section.

The jobs or tasks that Oracle8 manages are called sessions. A user session is started
when you run an application program or a tool such as Oracle Forms and connect
to Oracle8. Oracle8 allows user sessions to work “simultaneously” and share com-
puter resources. To do this, Oracle8 must control concurrence, the accessing of the
same data by many users. Without adequate concurrence controls, there might be a
loss of data integrity. That is, changes to data or structures might be made in the
wrong order.

Oracle8 uses locks to control concurrent access to data. A lock gives you temporary
ownership of a database resource such as a table or row of data. Thus, data cannot
be changed by other users until you finish with it. You need never explicitly lock a
resource, because default locking mechanisms protect Oracle8 data and structures.
However, you can request data locks on tables or rows when it is to your advantage
to override default locking. You can choose from several modes of locking such as
row share and exclusive.

A deadlock can occur when two or more users try to access the same database object.
For example, two users updating the same table might wait if each tries to update a
row currently locked by the other. Because each user is waiting for resources held
by another user, neither can continue until Oracle8 breaks the deadlock. Oracle8 sig-
nals an error to the participating transaction that had completed the least amount

of work, and the “deadlock detected while waiting for resource” Oracle8 error code
is returned to SQLCODE in the SQLCA.

When a table is being queried by one user and updated by another at the same
time, Oracle8 generates a read-consistent view of the table’s data for the query. That
is, once a query begins and as it proceeds, the data read by the query does not
change. As update activity continues, Oracle8 takes snapshots of the table’s data and
records changes in a rollback segment. Oracle8 uses information in the rollback seg-
ment to build read-consistent query results and to undo changes if necessary.

How Transactions Guard Your Database

Oracle8 is transaction oriented; that is, it uses transactions to ensure data integrity.
A transaction is a series of one or more logically related SQL statements you define
to accomplish some task. Oracle8 treats the series of SQL statements as a unit so
that all the changes brought about by the statements are either committed (made per-
manent) or rolled back (undone) at the same time. If your application program fails

8-2 Pro*COBOL Precompiler Programmer’s Guide



How to Begin and End Transactions

in the middle of a transaction, the database is automatically restored to its former
(pre-transaction) state.

The coming sections show you how to define and control transactions. Specifically,
you learn how to:

« begin and end transactions
« use the COMMIT statement to make transactions permanent

« use the SAVEPOINT statement with the ROLLBACK TO statement to undo
parts of transactions

» use the ROLLBACK statement to undo whole transactions
« specify the RELEASE option to free resources and log off the database
« use the SET TRANSACTION statement to set read-only transactions

« use the FOR UPDATE clause or LOCK TABLE statement to override default
locking

For details about the SQL statements discussed in this chapter, see the Oracle8 SQL
Reference.

How to Begin and End Transactions

You begin a transaction with the first executable SQL statement (other than CON-
NECT) in your program. When one transaction ends, the next executable SQL state-
ment automatically begins another transaction. Thus, every executable statement is
part of a transaction. Because they cannot be rolled back and need not be commit-
ted, declarative SQL statements are not considered part of a transaction.

You end a transaction in one of the following ways:

« Code a COMMIT or ROLLBACK statement, with or without the RELEASE
option. This explicitly makes permanent or undoes changes to the database.

« Code a data definition statement (ALTER, CREATE, or GRANT, for example)
that issues an automatic commit before and after executing. This implicitly
makes permanent changes to the database.

A transaction also ends when there is a system failure or your user session stops
unexpectedly because of software problems, hardware problems, or a forced inter-
rupt. Oracle8 rolls back the transaction.

Defining and Controlling Transactions 8-3



Using the COMMIT Statement

If your program fails in the middle of a transaction, Oracle8 detects the error and
rolls back the transaction. If your operating system fails, Oracle8 restores the data-
base to its former (pre-transaction) state.

Using the COMMIT Statement

You use the COMMIT statement to make changes to the database permanent. Until
changes are committed, other users cannot access the changed data; they see it as it
was before your transaction began. The COMMIT statement has no effect on the
values of host variables or on the flow of control in your program. Specifically, the
COMMIT statement

« makes permanent all changes made to the database during the current transac-
tion

« makes these changes visible to other users

« erases all savepoints (see the next section)

« releases all row and table locks, but not parse locks

« closes cursors referenced in a CURRENT OF clause or, when
MODE={ANSI | ANSI14}, closes all explicit cursors

« ends the transaction

When MODE={ANSI13| ORACLE}, explicit cursors not referenced in a CURRENT
OF clause remain open across commits. This can boost performance. For an exam-
ple, see "Fetching Across Commits" on page 8-12.

Because they are part of normal processing, COMMIT statements should be placed
inline, on the main path through your program. Before your program terminates, it
must explicitly commit pending changes. Otherwise, Oracle8 rolls them back. In

the following example, you commit your transaction and disconnect from Oracle8:

EXEC SQL COMMIT WORK RELEASE END-EXEC.
The optional keyword WORK provides ANSI compatibility. The RELEASE option

frees all Oracle8 resources (locks and cursors) held by your program and logs off
the database.

You need not follow a data definition statement with a COMMIT statement because
data definition statements issue an automatic commit before and after executing.
So, whether they succeed or fail, the prior transaction is committed.

8-4 Pro*COBOL Precompiler Programmer’s Guide



Using the ROLLBACK Statement

WITH HOLD Clause in DECLARE CURSOR Statements

Starting with Pro*COBOL 8.0, any cursor that has been declared with the clause
WITH HOLD after the word CURSOR, remains open after a COMMIT or a ROLL-
BACK. The following example shows how to use this clause:

EXEC SQL
DECLARE C1 CURSOR WITH HOLD
FOR SELECT ENAME FROM EMP
WHERE EMPNO BETWEEN 7600 AND 7700
END-EXEC.

The cursor must not be declared for UPDATE.The WITH HOLD clause is used in
DB2 to override the default, which is to close all cursors on commit. Pro*COBOL
provides this clause in order to ease migrations of applications from DB2 to

Oracle8. When MODE=ANSI, Oracle8 uses the DB2 default, but all host variables
must be declared in a Declare Section. To avoid having a Declare Section, use the
precompiler option CLOSE_ON_COMMIT described next. See DECLARE CUR-
SOR(Embedded SQL Directive) on page “DECLARE CURSOR (Embedded SQL Direc-
tive)” on page F-14.

CLOSE_ON_COMMIT Precompiler Option
The precompiler option CLOSE_ON_COMMIT is available for DB2 compatibility:

CLOSE_ON_COMMIT = YES | NO

The default is NO and this option must be entered on the command line or in a con-
figuration file. This option will only be in effect when the cursor is declared using
the WITH HOLD clause. If you specify MODE=ORACLE on the command line,
any cursors not declared with the WITH HOLD clause are closed on commit. See
"CLOSE_ON_COMMIT" on page 7-14.

Using the ROLLBACK Statement

You use the ROLLBACK statement to undo pending changes made to the database.
For example, if you make a mistake, such as deleting the wrong row from a table,
you can use ROLLBACK to restore the original data. The ROLLBACK statement
has no effect on the values of host variables or on the flow of control in your pro-
gram. Specifically, the ROLLBACK statement

« undoes all changes made to the database during the current transaction

« erases all savepoints

Defining and Controlling Transactions 8-5



Using the ROLLBACK Statement

« ends the transaction
« releases all row and table locks, but not parse locks

« closes cursors referenced in a CURRENT OF clause or, when
MODE={ANSI| ANSI14}, closes all explicit cursors

When MODE={ANSI13] ORACLE]}, explicit cursors not referenced in a CURRENT
OF clause remain open across rollbacks.

Because they are part of exception processing, ROLLBACK statements should be
placed in error handling routines, off the main path through your program. In the
following example, you roll back your transaction and disconnect from Oracle8:

EXEC SQL ROLLBACK WORK RELEASE END-EXEC.

The optional keyword WORK provides ANSI compatibility. The RELEASE option
frees all resources held by your program and logs off the database.

If a WHENEVER SQLERROR GOTO statement branches to an error handling rou-
tine that includes a ROLLBACK statement, your program might enter an infinite
loop if the rollback fails with an error. You can avoid this by coding WHENEVER
SQLERROR CONTINUE before the ROLLBACK statement.

For example, consider the following:

EXEC SQL
WHENEVER SQLERROR GOTO SQL-ERROR
END-EXEC.

DISPLAY 'Employee number? .

ACCEPT EMP-NUMBER.

DISPLAY Employee name?".

ACCEPT EMP-NAME.

EXEC SQL INSERT INTO EMP (EMPNO, ENAME)
VALUES (EMP-NUMBER, :EMP-NAME)

END-EXEC.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
DISPLAY "Processing error’.

* — exit program with an eror.
STOP RUN.

Oracle8 rolls back transactions if your program terminates abnormally.

8-6 Pro*COBOL Precompiler Programmer’s Guide



Using the SAVEPOINT Statement

Statement-Level Rollbacks

Before executing any SQL statement, Oracle8 marks an implicit savepoint (not
available to you). Then, if the statement fails, Oracle8 rolls it back automatically
and returns the applicable error code to SQLCODE in the SQLCA. For example, if
an INSERT statement causes an error by trying to insert a duplicate value in a
unique index, the statement is rolled back.

Only work started by the failed SQL statement is lost; work done before that state-
ment in the current transaction is kept. Thus, if a data definition statement fails, the
automatic commit that precedes it is not undone.

Note: Before executing a SQL statement, Oracle8 must parse it, that is, examine
it to make sure it follows syntax rules and refers to valid database objects.
Errors detected while executing a SQL statement cause a rollback, but errors
detected while parsing the statement do not.

Oracle8 can also roll back single SQL statements to break deadlocks. Oracle8 sig-
nals an error to one of the participating transactions and rolls back the current state-
ment in that transaction.

Using the SAVEPOINT Statement

You use the SAVEPOINT statement to mark and name the current point in the pro-
cessing of a transaction. Each marked point is called a savepoint. For example, the
following statement marks a savepoint named start_delete:

EXEC SQL SAVEPOINT start_delete END-EXEC.
Savepoints let you divide long transactions, giving you more control over complex
procedures. For example, if a transaction performs several functions, you can mark

a savepoint before each function. Then, if a function fails, you can easily restore the
Oracle8 data to its former state, recover, then re-execute the function.

To undo part of a transaction, you use savepoints with the ROLLBACK statement
and its TO SAVEPOINT clause. The TO SAVEPOINT clause lets you roll back to an
intermediate statement in the current transaction, so you do not have to undo all
your changes. Specifically, the ROLLBACK TO SAVEPOINT statement

« undoes changes made to the database since the specified savepoint was marked
« erases all savepoints marked after the specified savepoint

« releases all row and table locks acquired since the specified savepoint was
marked

Defining and Controlling Transactions 8-7



Using the SAVEPOINT Statement

In the example below, you access the table MAIL_LIST to insert new listings,
update old listings, and delete (a few) inactive listings. After the delete, you check
SQLERRD(3) in the SQLCA for the number of rows deleted. If the number is unex-
pectedly large, you roll back to the savepoint start_delete, undoing just the delete.

* — For each new customer

DISPLAY 'New customer number? .

ACCEPT CUST-NUMBER.

IF CUST-NUMBER =0
GO TO REV-STATUS

END-IF.

DISPLAY 'New customer name? .
ACCEPT CUST-NAME.

EXEC SQL INSERT INTO MAIL-LIST (CUSTNO, CNAME, STAT)
VALUES (:CUST-NUMBER, :CUST-NAME, 'ACTIVE).

END-EXEC.

* — For each revised status
REV-STATUS.
DISPLAY "Customer number to revise status? .
ACCEPT CUST-NUMBER.
IFCUST-NUMBER =0
GO TO SAVE-POINT
ENDAF.
DISPLAY 'New status? .
ACCEPT NEW-STATUS.
EXEC SQL UPDATE MAIL-LIST
SET STAT = :NEW-STATUS WHERE CUSTNO = :CUST-NUMBER
END-EXEC.

*— mark savepoint
SAVE-POINT.
EXEC SQL SAVEPOINT START-DELETE END-EXEC.
EXEC SQL DELETE FROM MAIL-LIST WHERE STAT ="INACTIVE'
END-EXEC.
IF SQLERRD(3) <25
*— check number of rows deleted
DISPLAY 'Number of rows deleted is’, SQLERRD(3)
ELSE
DISPLAY "Undoing deletion of ', SQLERRD(3), ' rows’
EXEC SQL
WHENEVER SQLERROR GOTO SQL-ERROR
END-EXEC
EXEC SQL
ROLLBACK TO SAVEPOINT START-DELETE

8-8 Pro*COBOL Precompiler Programmer’s Guide



Using the RELEASE Option

END-EXEC
END-IF.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL COMMIT WORK RELEASE END-EXEC.
STOP RUN.
*— exit program.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
DISPLAY "Processing error’.

* — exit program with an error.
STOP RUN.

Note that you cannot specify the RELEASE option in a ROLLBACK TO SAVE-
POINT statement.

Rolling back to a savepoint erases any savepoints marked after that savepoint. The
savepoint to which you roll back, however, is not erased. For example, if you mark
five savepoints, then roll back to the third, only the fourth and fifth are erased. A
COMMIT or ROLLBACK statement erases all savepoints.

By default, the number of active savepoints per user session is limited to 5. An
active savepoint is one that you marked since the last commit or rollback. Your Data-
base Administrator (DBA) can raise the limit by increasing the value of the Oracle8
initialization parameter SAVEPOINTS. If you give two savepoints the same name,
the earlier savepoint is erased.

Using the RELEASE Option

Oracle8 rolls back changes automatically if your program terminates abnormally.
Abnormal termination occurs when your program does not explicitly commit or
roll back work and disconnect from Oracle8 using the RELEASE option.

Normal termination occurs when your program runs its course, closes open cur-
sors, explicitly commits or rolls back work, disconnects from Oracle8, and returns
control to the user. Your program will exit gracefully if the last SQL statement it exe-
cutes is either

EXEC SQL COMMIT RELEASE END-EXEC.

or
EXEC SQL ROLLBACK RELEASE END-EXEC.

Defining and Controlling Transactions 8-9



Using the SET TRANSACTION Statement

Otherwise, locks and cursors acquired by your user session are held after program
termination until Oracle8 recognizes that the user session is no longer active. This

might cause other users in a multi-user environment to wait longer than necessary
for the locked resources.

Using the SET TRANSACTION Statement

You use the SET TRANSACTION statement to begin a read-only or read-write
transaction, or to assign your current transaction to a specified rollback segment. A
COMMIT, ROLLBACK, or data definition statement ends a read-only transaction.

Because they allow “repeatable reads,” read-only transactions are useful for run-
ning multiple queries against one or more tables while other users update the same
tables. During a read-only transaction, all queries refer to the same snapshot of the
database, providing a multi-table, multi-query, read-consistent view. Other users
can continue to query or update data as usual. An example of the SET TRANSAC-
TION statement follows:

EXEC SQL SET TRANSACTION READ ONLY END-EXEC.

The SET TRANSACTION statement must be the first SQL statement in a read-only
transaction and can appear only once in a transaction. The READ ONLY parameter
is required. Its use does not affect other transactions. Only the SELECT (without
FOR UPDATE), LOCK TABLE, SET ROLE, ALTER SESSION, ALTER SYSTEM,
COMMIT, and ROLLBACK statements are allowed in a read-only transaction.

In the example below, as a store manager, you check sales activity for the day, the
past week, and the past month by using a read-only transaction to generate a sum-
mary report. The report is unaffected by other users updating the database during
the transaction.

EXEC SQL SET TRANSACTION READ ONLY END-EXEC.
EXEC SQL SELECT SUM(SALEAMT) INTO :DAILY FROM SALES
WHERE SALEDATE = SYSDATE END-EXEC.
EXEC SQL SELECT SUM(SALEAMT) INTO :WEEKLY FROM SALES
WHERE SALEDATE > SYSDATE - 7 END-EXEC.
EXEC SQL SELECT SUM(SALEAMT) INTO :MONTHLY FROM SALES
WHERE SALEDATE > SYSDATE - 30 END-EXEC.
EXEC SQL COMMIT WORK END-EXEC.
*— simply ends the transaction since there are no changes
*— to make permanent
*— format and print report

8-10 Pro*COBOL Precompiler Programmer’s Guide



Overriding Default Locking

Overriding Default Locking

By default, Oracle8 implicitly (automatically) locks many data structures for you.
However, you can request specific data locks on rows or tables when it is to your
advantage to override default locking. Explicit locking lets you share or deny
access to a table for the duration of a transaction or ensure multi-table and multi-
query read consistency.

With the SELECT FOR UPDATE OF statement, you can explicitly lock specific rows
of a table to make sure they do not change before an update or delete is executed.
However, Oracle8 automatically obtains row-level locks at update or delete time.
So, use the FOR UPDATE OF clause only if you want to lock the rows before the
update or delete.

You can explicitly lock entire tables using the LOCK TABLE statement.

Using the FOR UPDATE OF Clause

When you DECLARE a cursor that is referenced in the CURRENT OF clause of an
UPDATE or DELETE statement, you use the FOR UPDATE OF clause to acquire
exclusive row locks. SELECT FOR UPDATE OF identifies the rows that will be
updated or deleted, then locks each row in the active set. (All rows are locked at the
open, not as they are fetched.) This is useful, for example, when you want to base
an update on the existing values in a row. You must make sure the row is not
changed by another user before your update.

The FOR UPDATE OF clause is optional. For instance, instead of

EXEC SQL DECLARE EMP-CURSOR CURSOR FOR
SELECT ENAME, JOB, SAL FROM EMP WHERE DEPTNO =20
FOR UPDATE OF SAL

END-EXEC.

you can drop the FOR UPDATE OF clause and simply code

EXEC SQL DECLARE EMP-CURSOR CURSOR FOR
SELECT ENAME, JOB, SAL FROM EMP WHERE DEPTNO =20
END-EXEC.

The CURRENT OF clause signals the precompiler to add a FOR UPDATE clause if

necessary. You use the CURRENT OF clause to refer to the latest row fetched from a
cursor. For an example, see "Using the CURRENT OF Clause" on page 5-15.

Defining and Controlling Transactions 8-11



Fetching Across Commits

Restrictions

If you use the FOR UPDATE OF clause, you cannot reference multiple tables. Also,
an explicit FOR UPDATE OF or an implicit FOR UPDATE acquires exclusive row
locks. Row locks are released when you commit or rollback (except when you roll-
back to a savepoint). If you try to fetch from a FOR UPDATE cursor after a commit,
Oracle8 generates the following error:

ORA-01002: fetch out of sequence

Using the LOCK TABLE Statement

You use the LOCK TABLE statement to lock one or more tables in a specified lock
mode. For example, the statement below locks the EMP table in row share mode.
Row share locks allow concurrent access to a table; they prevent other users from
locking the entire table for exclusive use.

EXEC SQL
LOCK TABLE EMP IN ROW SHARE MODE NOWAIT
END-EXEC.

The lock mode determines what other locks can be placed on the table. For exam-
ple, many users can acquire row share locks on a table at the same time, but only
one user at a time can acquire an exclusive lock. While one user has an exclusive

lock on a table, no other users can insert, update, or delete rows in that table. For
more information about lock modes, see the Oracle8 Application Developer’s Guide.

The optional keyword NOWAIT tells Oracle8 not to wait for a table if it has been
locked by another user. Control is immediately returned to your program, so it can
do other work before trying again to acquire the lock. (You can check SQLCODE in
the SQLCA to see if the table lock failed.) If you omit NOWAIT, Oracle8 waits until
the table is available; the wait has no set limit.

A table lock never keeps other users from querying a table, and a query never
acquires a table lock. So, a query never blocks another query or an update, and an
update never blocks a query. Only if two different transactions try to update the
same row will one transaction wait for the other to complete. Table locks are
released when your transaction issues a commit or rollback.

Fetching Across Commits

If you want to intermix commits and fetches, do not use the CURRENT OF clause.
Instead, select the rowid of each row, then use that value to identify the current row
during the update or delete. Consider the following example:

8-12 Pro*COBOL Precompiler Programmer’s Guide



Handling Distributed Transactions

EXEC SQL DECLARE EMP-CURSOR CURSOR FOR
SELECT ENAME, SAL, ROWID FROM EMP WHERE JOB ='CLERK’
END-EXEC.

EXEC SQL OPEN EMP-CURSOR END-EXEC.
EXEC SQL WHENEVER NOT FOUND GOTO. ...
PERFORM
EXEC SQL
FETCH EMP-CURSOR INTO :EMP_NAME, :SALARY, -ROW-D
END-EXEC

EXEC SQL UPDATE EMP SET SAL = :NEW-SALARY
WHERE ROWID = :ROW-D
END-EXEC
EXEC SQL COMMIT END-EXEC
END-PERFORM.

Note, however, that the fetched rows are not locked. So, you might get inconsistent
results if another user modifies a row after you read it but before you update or
delete it.

Handling Distributed Transactions

A distributed database is a single logical database comprising multiple physical data-
bases at different nodes. A distributed statement is any SQL statement that accesses a
remote node using a database link. A distributed transaction includes at least one dis-
tributed statement that updates data at multiple nodes of a distributed database. If
the update affects only one node, the transaction is non-distributed.

When you issue a commit, changes to each database affected by the distributed
transaction are made permanent. If instead you issue a rollback, all the changes are
undone. However, if a network or machine fails during the commit or rollback, the
state of the distributed transaction might be unknown or in doubt. In such cases, if
you have FORCE TRANSACTION system privileges, you can manually commit or
roll back the transaction at your local database by using the FORCE clause. The
transaction must be identified by a quoted literal containing the transaction ID,
which can be found in the data dictionary view DBA 2PC_PENDING. Some exam-
ples follow:

EXEC SQL COMMIT FORCE "22.31.83' END-EXEC.

EXEC SQL ROLLBACK FORCE '25.33.86END-EXEC.

Defining and Controlling Transactions 8-13



Guidelines

FORCE commits or rolls back only the specified transaction and does not affect
your current transaction. Note that you cannot manually roll back in-doubt transac-
tions to a savepoint.

The COMMENT clause in the COMMIT statement lets you specify a Comment to
be associated with a distributed transaction. If ever the transaction is in doubt,
Oracle8 stores the text specified by COMMENT in the data dictionary view
DBA_2PC_PENDING along with the transaction ID. The text must be a quoted lit-
eral of no more than 50 characters in length. An example follows:

EXEC SQL
COMMIT COMMENT ’In-doubt trans; notify Order Entry’
END-EXEC.

For more information about distributed transactions, see Oracle8 Concepts.

Guidelines

The following guidelines will help you avoid some common problems.

Designing Applications

When designing your application, group logically related actions together in one
transaction. A well-designed transaction includes all the steps necessary to accom-
plish a given task — no more and no less.

Data in the tables you reference must be left in a consistent state. So, the SQL state-
ments in a transaction should change the data in a consistent way. For example, a
transfer of funds between two bank accounts should include a debit to one account
and a credit to another. Both updates should either succeed or fail together. An
unrelated update, such as a new deposit to one account, should not be included in
the transaction.

Obtaining Locks

If your application programs include SQL locking statements, make sure the
Oracle8 users requesting locks have the privileges needed to obtain the locks. Your
DBA can lock any table. Other users can lock tables they own or tables for which
they have a privilege, such as ALTER, SELECT, INSERT, UPDATE, or DELETE.

8-14 Pro*COBOL Precompiler Programmer’s Guide



Guidelines

Using PL/SQL

If a PL/SQL block is part of a transaction, commits and rollbacks inside the block
affect the whole transaction. In the following example, the rollback undoes changes
made by the update and the insert:

EXEC SQL INSERT INTO EMP ...
EXEC SQL EXECUTE
BEGIN  UPDATE emp

EXCEPTION
WHEN DUP_VAL_ON_INDEX THEN
ROLLBACK;
END;
END-EXEC.

Defining and Controlling Transactions 8-15



Guidelines

8-16 Pro*COBOL Precompiler Programmer’s Guide



9

Error Handling and Diagnostics

An application program must anticipate runtime errors and attempt to recover
from them. This chapter provides an in-depth discussion of error reporting and
recovery. You learn how to handle warnings and errors using the status variables
SQLCODE, SQLSTATE, and SQLCA (SQL Communications Area), and the
WHENEVER statement. You also learn how to diagnose problems using the status
variable ORACA (Oracle Communications Area). The following topics are
discussed:

« The Need for Error Handling

« Error Handling Alternatives

« Using Status Variables when MODE={ANSI | ANSI14}
« Using the SQL Communications Area

« Using the Oracle Communications Area

Error Handling and Diagnostics 9-1



The Need for Error Handling

The Need for Error Handling

A significant part of every application program must be devoted to error handling.
The main benefit of error handling is that it allows your program to continue
operating in the presence of errors. Errors arise from design faults, coding
mistakes, hardware failures, invalid user input, and many other sources

You cannot anticipate all possible errors, but you can plan to handle certain kinds
of errors meaningful to your program. For Pro*COBOL, error handling means
detecting and recovering from SQL statement execution errors.

You can also prepare to handle warnings such as “value truncated” and status
changes such as “end of data.” It is especially important to check for error and
warning conditions after every data manipulation statement, because an INSERT,
UPDATE, or DELETE statement might fail before processing all eligible rows in a
table.

Error Handling Alternatives

Pro*COBOL supports four status variables that serve as error handling

mechanisms:

« SQLCODE

« SQLSTATE

» SQLCA (using the WHENEVER statement)
« ORACA

The precompiler MODE option governs ANSI/ISO compliance. The availability of
the SQLCODE, SQLSTATE, and SQLCA variables depends on the MODE setting.
You can declare and use the ORACA variable regardless of the MODE setting. For
more information, see "Using the Oracle Communications Area" on page 9-35.

When MODE={ORACLE ] ANSI13}, you must declare the SQLCA status variable.
SQLCODE and SQLSTATE declarations are accepted (not recommended) but are
not recognized as status variables. For more information, see "Using the SQL
Communications Area" on page 9-19.

When MODE={ANSI ] ANSI14}, you can use any one, two, or all three of the
SQLCODE, SQLSTATE, and SQLCA variables. To determine which variable (or
variable combination) is best for your application, see "Using Status Variables when
MODE={ANSI | ANSI14}" on page 9-4.

9-2 Pro*COBOL Precompiler Programmer’s Guide



Error Handling Alternatives

SQLCODE and SQLSTATE

SQLCA

With Release 1.5 of Pro*COBOL, the SQLCODE status variable was introduced as
the SQL89 standard ANSI/ZISO error reporting mechanism. The SQL92 standard
listed SQLCODE as a deprecated feature and defined a new status variable,
SQLSTATE (introduced with Release 1.6 of Pro*xCOBOL), as the preferred
ANSI/ISO error reporting mechanism.

SQLCODE stores error codes and the “not found” condition. It is retained only for
compatibility with SQL89 and is likely to be removed from future versions of the
standard.

Unlike SQLCODE, SQLSTATE stores error and warning codes and uses a
standardized coding scheme. After executing a SQL statement, the Oracle8 server
returns a status code to the SQLSTATE variable currently in scope. The status code
indicates whether a SQL statement executed successfully or raised an exception
(error or warning condition). To promote interpretability (the ability of systems to
exchange information easily), SQL92 pre-defines all the common SQL exceptions.

The SQLCA is a record-like, host-language data structure. Oracle8 updates the
SQLCA after every executable SQL statement. (SQLCA values are undefined after a
declarative statement.) By checking Oracle8 return codes stored in the SQLCA,
your program can determine the outcome of a SQL statement. This can be done in
two ways:

« implicit checking with the WHENEVER statement
« explicit checking of SQLCA variables

You can use WHENEVER statements, code explicit checks on SQLCA variables, or
do both. Generally, using WHENEVER statements is preferable because it is easier,
more portable, and ANSI-compliant.

Nested Programs

In nested programs, the included SQLCA definition provided will be declared as
global, so the declaration of SQLCA will only be required within the higher-level
program. SQLCA can change every time a new SQL statement is executed. The
SQLCA provided can always be modified to remove the global specification by the
user if the user wishes to declare additional SQLCAs in the nested programs. This
applies to SQLDA and ORACA.

Error Handling and Diagnostics 9-3



Using Status Variables when MODE={ANSI|ANSI14}

ORACA

When more information is needed about runtime errors than the SQLCA provides,
you can use the ORACA, which contains cursor statistics, SQL statement data,
option settings, and system statistics.

The ORACA is optional and can be declared regardless of the MODE setting. For
more information about the ORACA status variable, see "Using the Oracle
Communications Area" on page 9-35.

Using Status Variables when MODE={ANSI|ANSI14}

When MODE={ANSI | ANSI14}, you must declare at least one — you may declare
two or all three — of the following status variables:

. SQLCODE
. SQLSTATE
. SQLCA

You cannot declare SQLCODE if SQLCA is declared. Likewise, you cannot declare
SQLCA if SQLCODE is declared. The field in the SQLCA data structure that stores
the error code for is also called SQLCODE, so errors will occur if both status
variables are declared.

Your program can get the outcome of the most recent executable SQL statement by
checking SQLCODE and/or SQLSTATE explicitly with your own code after
executable SQL and PL/SQL statements. Your program can also check SQLCA
implicitly (with the WHENEVER SQLERROR and WHENEVER SQLWARNING
statements) or it can check the SQLCA variables explicitly.

Note: When MODE={ORACLE ] ANSI13] ANSI14}, you must declare the
SQLCA status variable. For more information, see "Using the SQL Communica-
tions Area" on page 9-19.

Some Historical Information

The treatment of status variables and variable combinations by Pro*COBOL has
evolved beginning with Release 1.5.

Release 1.5

Pro*COBOL, Release 1.5, presumed there was a status variable SQLCODE whether
or not it was declared; in fact, Pro*COBOL never noted whether SQLCODE was

9-4 Pro*COBOL Precompiler Programmer’s Guide



Using Status Variables when MODE={ANSI|ANSI14}

declared or not — it just presumed it was. SQLCA would be used as a status
variable if and only if there was an INCLUDE of the SQLCA.

Release 1.6

Beginning with Pro*COBOL, Release 1.6, the precompiler no longer presumes that
there is a SQLCODE status variable and it is not required. Pro*COBOL requires that
at least one of SQLCODE or SQLSTATE be declared.

SQLCODE is recognized as a status variable if and only if at least one of the
following criteria is satisfied:

« lItis declared with exactly the right datatype.
« Pro*COBOL finds no other status variable.

If Pro*COBOL finds a SQLSTATE declaration (of exactly the right type of course) or
finds an INCLUDE of the SQLCA, it will not presume SQLCODE is declared.

Release 1.7

Because Pro*COBOL, Release 1.5, allowed the SQLCODE variable to be declared
outside of a Declare Section while also declaring SQLCA, Pro*COBOL, Release 1.6
and greater, is presented with a compatibility problem. A new option,
ASSUME_SQLCODE={YES | NO} (default NO), was added to fix this in Release
1.6.7 and is documented as a new feature in Release 1.7.

Release 8.0

Beginning with release 8.0, the Declare Section is now optional. For details of the
ASSUME_SQLCODE option, see "ASSUME_SQLCODE" on page 7-12.

Declaring Status Variables

This section describes how to declare SQLCODE and SQLSTATE. For information
about declaring the SQLCA status variable, see "Declaring the SQLCA" on page 9-
20.

Declaring SQLCODE

SQLCODE must be declared as a 4-byte integer variable either inside or outside the
Declare Section, as shown in the following example:

*  Declare host and indicator variables.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

EXEC SQL END DECLARE SECTION END-EXEC.

Error Handling and Diagnostics 9-5



Using Status Variables when MODE={ANSI|ANSI14}

*  Declare the SQLCODE status variable.
01 SQLCODE PIC S9(9) COMP.

If declared outside the Declare Section, SQLCODE is recognized as a status variable
if and only if ASSUME_SQLCODE=YES. When
MODE={ORACLE | ANSI13] ANSI14}, declarations of the SQLCODE variable are
ignored.

Warning: Do not declare SQLCODE if SQLCA is declared. Likewise, do not
declare SQLCA if SQLCODE is declared. The status variable declared by the
SQLCA structure is also called SQLCODE, so errors will occur if both error-
reporting mechanisms are used.

After every SQL operation, Oracle8 returns a status code to the SQLCODE variable.
So, your program can learn the outcome of the most recent SQL operation by
checking SQLCODE explicitly, or implicitly with the WHENEVER statement.

When you declare SQLCODE instead of the SQLCA in a particular compilation
unit, Pro*COBOL allocates an internal SQLCA for that unit. Your host program
cannot access the internal SQLCA.

Declaring SQLSTATE

SQLSTATE must be declared as a five-character alphanumeric string, as shown in
the following example:

*  Declare the SQLSTATE status variable.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 SQLSTATE PIC X(5).
EXEC SQL END DECLARE SECTION END-EXEC.

When MODE={ORACLE] ANSI13] ANSI14}, SQLSTATE declarations are ignored.
Declaring the SQLCA is optional.

Status Variable Combinations

When MODE={ANSI | ANSI14}, the behavior of the status variables depends on the
following:

= which variables are declared
« declaration placement (inside or outside the Declare Section)
« ASSUME_SQLCODE setting

9-6 Pro*COBOL Precompiler Programmer’s Guide



Using Status Variables when MODE={ANSI|ANSI14}

Table 9-1 and Table 9-2 describe the resulting behavior of each status variable
combination when ASSUME_SQLCODE=NO and when
ASSUME_SQLCODE=YES, respectively.

For both Tables 9-1 and 9-2: when DECLARE_SECTION=NO, any declaration of a
status variable is treated as IN as far as these tables are concerned.

Do not use ASSUME_SQLCODE=YES with DECLARE_SECTION=NO.

Table 9-1 Status Variable Behavior with ASSUME_SQLCODE=NO and MODE=ANSI |
ANSI14 and DECLARE_SECTION=YES

Declare Section (IN/OUT/—) Behavior

SQLCODE | SQLSTATE | SQLCA

ouT — — SQLCODE is declared and is presumed to be a status variable.

ouT — ouT This status variable configuration is not supported.

ouT — IN This status variable configuration is not supported.

ouT ouT — SQLCODE is declared and is presumed to be a status variable,
and SQLSTATE is declared but is not recognized as a status vari-
able.

ouT ouT ouT This status variable configuration is not supported.

ouT ouT IN This status variable configuration is not supported.

ouT IN — SQLSTATE is declared as a status variable, and SQLCODE is
declared but is not recognized as a status variable.

ouT IN ouT This status variable configuration is not supported.

ouT IN IN This status variable configuration is not supported.

IN — — SQLCODE is declared as a status variable.

IN — ouT This status variable configuration is not supported.

IN — IN This status variable configuration is not supported.

IN ouT — SQLCODE is declared as a status variable, and SQLSTATE is
declared but is not recognized as a status variable.

IN ouT ouT This status variable configuration is not supported.

IN ouT IN This status variable configuration is not supported.

IN IN — SQLCODE and SQLSTATE are declared as a status variables.

IN IN ouT This status variable configuration is not supported.

IN IN IN This status variable configuration is not supported.

— — — This status variable configuration is not supported.

— — ouT SQLCA is declared as a status variable.

Error Handling and Diagnostics 9-7



Using Status Variables when MODE={ANSI|ANSI14}

Table 9-1 Status Variable Behavior with ASSUME_SQLCODE=NO and MODE=ANSI |
ANSI14 and DECLARE_SECTION=YES

Declare Section (IN/OUT/—) Behavior

SQLCODE | SQLSTATE | SQLCA

— — IN SQLCA is declared as a status host variable.

— ouT — This status variable configuration is not supported.

— ouT ouT SQLCA is declared as a status variable, and SQLSTATE is declared
but is not recognized as a status variable.

— ouT IN SQLCA is declared as a status host variable, and SQLSTATE is
declared but is not recognized as a status variable.

— IN — SQLSTATE is declared as a status variable.

— IN ouT SQLSTATE and SQLCA are declared as status variables.

— IN IN SQLSTATE and SQLCA are declared as status host variables.

Table 9-2 Status Variable Behavior with ASSUME_SQLCODE=YES and MODE=ANSI |
ANSI14 and DECLARE_SECTION=YES

Declare Section (IN/OUT/—) Behavior

SQLCODE | SQLSTATE | SQLCA

ouT — — SQLCODE is declared and is presumed to be a status variable.

ouT — ouT This status variable configuration is not supported.

ouT — IN This status variable configuration is not supported.

ouT ouT — SQLCODE is declared and is presumed to be a status variable, and
SQLSTATE is declared but is not recognized as a status variable.

ouT ouT ouT This status variable configuration is not supported.

ouT ouT IN This status variable configuration is not supported.

ouT IN — SQLSTATE is declared as a status variable, and SQLCODE is
declared and is presumed to be a status variable.

ouT IN ouT This status variable configuration is not supported.

ouT IN IN This status variable configuration is not supported.

IN — — SQLCODE is declared as a status variable.

IN — ouT This status variable configuration is not supported.

IN — IN This status variable configuration is not supported.

IN ouT — SQLCODE is declared as a status variable, and SQLSTATE is
declared but not as a status variable.

IN ouT ouT This status variable configuration is not supported.

9-8 Pro*COBOL Precompiler Programmer’s Guide




Using Status Variables when MODE={ANSI|ANSI14}

Table 9-2 Status Variable Behavior with ASSUME_SQLCODE=YES and MODE=ANSI |
ANSI14 and DECLARE_SECTION=YES

Declare Section (IN/OUT/—) Behavior
SQLCODE | SQLSTATE | SQLCA
IN ouT IN This status variable configuration is not supported.
IN IN — SQLCODE and SQLSTATE are declared as a status variables.
IN IN ouT This status variable configuration is not supported.
IN IN IN This status variable configuration is not supported.
— — — These status variable configurations are not supported. SQLCODE
. . ouT must be declared when ASSUME_SQLCODE=YES.
— — IN
— ouT —
— ouT ouT
— ouT IN
— IN ouT
— IN IN
Status Variable Values

This section describes the values for the SQLCODE and SQLSTATE status
variables. For information about the SQLCA status variable, see "Key Components
of Error Reporting" on page 9-21.

SQLCODE Values

After every SQL operation, Oracle8 returns a status code to the SQLCODE variable
currently in scope. The status code, which indicates the outcome of the SQL
operation, can be any of the following numbers:*

You can learn the outcome of the most recent SQL operation by checking
SQLCODE explicitly with your own code or implicitly with the WHENEVER
statement.

When you declare SQLCODE instead of the SQLCA in a particular precompilation
unit, Pro*xCOBOL allocates an internal SQLCA for that unit. Your host program
cannot access the internal SQLCA.

Note: When MODE={ORACLE ] ANSI13}, declarations of SQLCODE are ignored.

Error Handling and Diagnostics 9-9




Using Status Variables when MODE={ANSI|ANSI14}

SQLSTATE Values

SQLSTATE status codes consist of a two-character class code followed by a three-
character subclass code. Aside from class code 00 (successful completion), the class code
denotes a category of exceptions. Aside from subclass code 000 (not applicable), the
subclass code denotes a specific exception within that category. For example, the
SQLSTATE value 22012’ consists of class code 22 (data exception) and subclass code 012
(division by zero).

Each of the five characters in a SQLSTATE value is a digit (0..9) or an uppercase
Latin letter (A..Z). Class codes that begin with a digit in the range 0..4 or a letter in
the range A..H are reserved for predefined conditions (those defined in SQL92). All
other class codes are reserved for implementation-defined conditions. Within
predefined classes, subclass codes that begin with a digit in the range 0..4 or a letter
in the range A..H are reserved for predefined sub-conditions. All other subclass
codes are reserved for implementation-defined sub-conditions. Figure 9-1 shows
the coding scheme.

Figure 9—-1 SQLSTATE Coding Scheme
First Char in Class Code

0..4 5..9 A..H 1..Z
0..4 -:-:
[}
8
-EQ 5..9
8 o
68
%8 A..H
=3
7y}
1..Z

. Predefined D Implementation—defined

Table 9-3 shows the classes predefined by SQL92

9-10 Pro*COBOL Precompiler Programmer’s Guide



Using Status Variables when MODE={ANSI|ANSI14}

Table 9-3 Predifined Classes

Class |Condition

00 successful completion

01 warning

02 no data

07 dynamic SQL error

08 connection exception

0A feature not supported

21 cardinality violation

22 data exception

23 integrity constraint violation

24 invalid cursor state

25 invalid transaction state

26 invalid SQL statement name

27 triggered data change violation

28 invalid authorization specification

2A direct SQL syntax error or access rule violation
2B dependent privilege descriptors still exist
2C invalid character set name

2D invalid transaction termination

2E invalid connection name

33 invalid SQL descriptor name

34 invalid cursor name

35 invalid condition number

37 dynamic SQL syntax error or access rule violation
3C ambiguous cursor name

Error Handling and Diagnostics 9-11



Using Status Variables when MODE={ANSI|ANSI14}

Table 9-3 Predifined Classes

Class |Condition

3D invalid catalog name

3F invalid schema name

40 transaction rollback

42 syntax error or access rule violation
44 with check option violation

HZ remote database access

Note: The class code HZ is reserved for conditions defined in International
Standard ISO/IEC DIS 9579-2, Remote Database Access.

Table 9-4 shows how Oracle8 errors map to SQLSTATE status codes. In some cases,
several Oracle8 errors map to the status code. In other cases, no Oracle8 error maps
to the status code (so the last column is empty). Status codes in the range 60000 ..
99999 are implementation-defined.

Table 9-4 SQLSTATE Codes

Code Condition Oracle8 Error
00000 successful completion ORA-00000
01000 warning

01001 cursor operation conflict

01002 disconnect error

01003 null value eliminated in set function

01004 string data - right truncation

01005 insufficient item descriptor areas

01006 privilege not revoked

01007 privilege not granted

01008 implicit zero-bit padding

01009 search condition too long for info schema

9-12 Pro*COBOL Precompiler Programmer’s Guide



Using Status Variables when MODE={ANSI|ANSI14}

Table 9-4 SQLSTATE Codes

Code Condition Oracle8 Error

0100A query expression too long for info schema

02000 no data ORA-01095
ORA-01403

07000 dynamic SQL error

07001 using clause does not match parameter specs

07002 using clause does not match target specs

07003 cursor specification cannot be executed

07004 using clause required for dynamic parameters

07005 prepared statement not a cursor specification

07006 restricted datatype attribute violation

07007 using clause required for result fields

07008 invalid descriptor count SQL-02126

07009 invalid descriptor index

08000 connection exception

08001 SQL client unable to establish SQL connection

08002 connection name in use

08003 connection does not exist SQL-02121

08004 SQL server rejected SQL connection

08006 connection failure

08007 transaction resolution unknown

0A000 feature not supported ORA-03000 .. 03099

0A001 multiple server transactions

21000 cardinality violation ORA-01427
SQL-02112

22000 data exception

22001 string data - right truncation ORA-01401
ORA-01406

Error Handling and Diagnostics 9-13



Using Status Variables when MODE={ANSI|ANSI14}

Table 9-4 SQLSTATE Codes

Code Condition Oracle8 Error

22002 null value - no indicator parameter ORA-01405
SQL-02124

22003 numeric value out of range ORA-01426
ORA-01438
ORA-01455
ORA-01457

22005 error in assignment

22007 invalid datetime format

22008 datetime field overflow ORA-01800 .. 01899

22009 invalid time zone displacement value

22011 substring error

22012 division by zero ORA-01476

22015 interval field overflow

22018 invalid character value for cast

22019 invalid escape character ORA-00911
ORA-01425

22021 character not in repertoire

22022 indicator overflow ORA-01411

22023 invalid parameter value ORA-01025
ORA-01488
ORA-04000 .. 04019

22024 unterminated C string ORA-01479 .. 01480

22025 invalid escape sequence ORA-01424

22026 string data - length mismatch

22027 trim error

23000 integrity constraint violation ORA-00001
ORA-02290 .. 02299

9-14 Pro*COBOL Precompiler Programmer’s Guide




Using Status Variables when MODE={ANSI|ANSI14}

Table 9-4 SQLSTATE Codes

Code Condition Oracle8 Error

24000 invalid cursor state ORA-01001 .. 01003
ORA-01410
ORA-08006
SQL-02114
SQL-02117
SQL-02118
SQL-02122

25000 invalid transaction state

26000 invalid SQL statement name

27000 triggered data change violation

28000 invalid authorization specification

2A000 direct SQL syntax error or access rule viola-

tion

2B000 dependent privilege descriptors still exist

2C000 invalid character set name

2D000 invalid transaction termination

2E000 invalid connection name

33000 invalid SQL descriptor name

34000 invalid cursor name

35000 invalid condition number

37000 dynamic SQL syntax error or access rule viola-

tion

3C000 ambiguous cursor name

3D000 invalid catalog name

3F000 invalid schema name

40000 transaction rollback ORA-02091 .. 02092

40001 serialization failure

40002 integrity constraint violation

Error Handling and Diagnostics 9-15



Using Status Variables when MODE={ANSI|ANSI14}

Table 9-4 SQLSTATE Codes

Code

Condition

Oracle8 Error

40003

statement completion unknown

42000

syntax error or access rule violation

ORA-00022

ORA-00251

ORA-00900 .. 00999
ORA-01031

ORA-01490 .. 01493
ORA-01700 .. 01799
ORA-01900 .. 02099
ORA-02140 .. 02289
ORA-02420 .. 02424
ORA-02450 .. 02499
ORA-03276 .. 03299
ORA-04040 .. 04059
ORA-04070 .. 04099

44000

with check option violation

ORA-01402

60000

system errors

ORA-00370 .. 00429
ORA-00600 .. 00899
ORA-06430 .. 06449
ORA-07200 .. 07999
ORA-09700 .. 09999

61000

resource error

ORA-00018 .. 00035
ORA-00050 .. 00068
ORA-02376 .. 02399
ORA-04020 .. 04039

62000

multi-threaded server and detached process
errors

ORA-00100 .. 00120
ORA-00440 .. 00569

9-16 Pro*COBOL Precompiler Programmer’s Guide




Using Status Variables when MODE={ANSI|ANSI14}

Table 9-4 SQLSTATE Codes

Code Condition Oracle8 Error
63000 Oracle*XA and two-task interface errors ORA-00150 .. 00159
SQL-02128

ORA-02700 .. 02899
ORA-03100 .. 03199
ORA-06200 .. 06249

SQL-02128
64000 control file, database file, and redo file errors; ORA-00200 .. 00369
archival and media recovery errors ORA-01100 .. 01250
65000 PL/SQL errors ORA-06500 .. 06599
66000 SQL*Net driver errors ORA-06000 .. 06149

ORA-06250 .. 06429
ORA-06600 .. 06999
ORA-12100 .. 12299
ORA-12500 .. 12599

67000 licensing errors ORA-00430 .. 00439
69000 SQL*Connect errors ORA-00570 .. 00599

ORA-07000 .. 07199
72000 SQL execute phase errors ORA-01000 .. 01099

ORA-01400 .. 01489
ORA-01495 .. 01499
ORA-01500 .. 01699
ORA-02400 .. 02419
ORA-02425 .. 02449
ORA-04060 .. 04069
ORA-08000 .. 08190
ORA-12000 .. 12019
ORA-12300 .. 12499
ORA-12700 .. 21999

82100 out of memory (could not allocate) SQL-02100

Error Handling and Diagnostics 9-17



Using Status Variables when MODE={ANSI|ANSI14}

Table 9-4 SQLSTATE Codes

Code Condition Oracle8 Error

82101 inconsistent cursor cache: unit cursor/global SQL-02101
cursor mismatch

82102 inconsistent cursor cache: no global cursor SQL-02102
entry

82103 inconsistent cursor cache: out of range cursor SQL-02103
cache reference

82104 inconsistent host cache: no cursor cache avail- | SQL-02104
able

82105 inconsistent cursor cache: global cursor not SQL-02105
found

82106 inconsistent cursor cache: invalid Oracle8 cur- | SQL-02106
sor number

82107 program too old for runtime library SQL-02107

82108 invalid descriptor passed to runtime library SQL-02108

82109 inconsistent host cache: host reference is out SQL-02109
of range

82110 inconsistent host cache: invalid host cache SQL-02110
entry type

82111 heap consistency error SQL-02111

82112 unable to open message file SQL-02113

82113 code generation internal consistency failed SQL-02115

82114 reentrant code generator gave invalid context SQL-02116

82115 invalid hstdef argument SQL-02119

82116 first and second arguments to sqlrcn both null | SQL-02120

82117 invalid OPEN or PREPARE for this connection | SQL-02122

82118 application context not found SQL-02123

82119 connect error; can’t get error text SQL-02125

82120 precompiler/SQLLIB version mismatch. SQL-02127

82121 FETCHed number of bytes is odd SQL-02129

82122 EXEC TOOLS interface is not available SQL-02130

9-18 Pro*COBOL Precompiler Programmer’s Guide



Using the SQL Communications Area

Table 9-4 SQLSTATE Codes

Code Condition Oracle8 Error
82123 runtime context in use SQL-02131
82124 unable to allocate runtime context SQL-02131
82125 unable to initialize process for use with SQL-02133
threads
82126 invalid runtime context SQL-02134
90000 debug events ORA-10000 .. 10999
99999 catch all all others
HZ000 remote database access

Using the SQL Communications Area

Oracle8 uses the SQL Communications Area (SQLCA) to store status information
passed to your program at run time. The SQLCA is a record-like, COBOL data
structure that is a updated after each executable SQL statement, so it always reflects
the outcome of the most recent SQL operation. Its fields contain error, warning, and
status information updated by Oracle8 whenever a SQL statement is executed.To
determine that outcome, you can check variables in the SQLCA explicitly with
your own COBOL code or implicitly with the WHENEVER statement.

Note: When your application uses SQL*Net to access a combination of local
and remote databases concurrently, all the databases write to one SQLCA.
There is not a different SQLCA for each database. For more information, see "Concur-
rent Logons" on page 3-46.

When MODE={ORACLE ] ANSI13}, the SQLCA is required; if the SQLCA is not
declared, compile-time errors will occur. The SQLCA is optional when
MODE={ANSI | ANSI14}, but you cannot use the WHENEVER SQLWARNING
statement without the SQLCA. So, if you want to use the WHENEVER
SQLWARNING statement, you must declare the SQLCA.

Note: If you declare SQLCODE instead of the SQLCA in a particular compilation
unit, ProxCOBOL allocates an internal SQLCA for that unit. Your host program
cannot access the internal SQLCA.

When MODE={ANSI ] ANSI14}, you must declare either SQLSTATE (see "Declaring
SQLSTATE" on page 9-6) or SQLCODE (see "Declaring SQLCODE" on page 9-5) or
both. The SQLSTATE status variable supports the SQLSTATE status variable

Error Handling and Diagnostics 9-19



Using the SQL Communications Area

specified by the SQL92 standard. You can use the SQLSTATE status variable with
or without SQLCODE.

What's in the SQLCA?

The SQLCA contains runtime information about the execution of SQL statements,
such as Oracle8 error codes, warning flags, event information, rows-processed
count, and diagnostics.

Figure 9-2 shows all the variables in the SQLCA. However, SQLWARNZ2,
SQLWARNS5, SQLWARNSG, SQLWARNY7, and SQLEXT are not currently in use.

Figure 9-2 SQLCA Variable Declarations for Pro*COBOL

01 SQLCA.
05 SQLCAID PIC X(8).
05 SQLCABC Pl C S9(9) COMPUTATI ONAL.
05 SQLCODE Pl C S9(9) COMPUTATI ONAL.
05 SQLERRM
49 SQLERRM. PI C S9(4) COVPUTATI ONAL.
49 SQLERRMC PI C X(70)
05 SQLERRP PIC X(8).

05 SQLERRD OCCURS 6 TI MES
PI C S9(9) COMPUTATI ONAL.

05 SQLWARN.
10 SQLWARNO PIC X(1).
10 SQLWARNL PIC X(1).
10 SQLWARN2 PIC X(1).
10 SQLWARN3 PIC X(1).
10 SQLWARNA PIC X(1).
10 SQLWARNS PIC X(1).
10 SQLWARNG PIC X(1).
10 SQLWARN? PIC X(1).

05 SQLEXT PIC X(8).

Declaring the SQLCA

To declare the SQLCA, simply include it (using an EXEC SQL INCLUDE
statement) in your Pro*COBOL source file outside the Declare Section as follows:

*  Include the SQL Communications Area (SQLCA).
EXEC SQL INCLUDE SQLCA END-EXEC.

The SQLCA must be declared outside the Declare Section.

9-20 Pro*COBOL Precompiler Programmer’s Guide



Using the SQL Communications Area

Warning: Do not declare SQLCODE if SQLCA is declared. Likewise, do not
declare SQLCA if SQLCODE is declared. The status variable declared by the
SQLCA structure is also called SQLCODE, so errors will occur if both error-
reporting mechanisms are used.

When you precompile your program, the INCLUDE SQLCA statement is replaced
by several variable declarations that allow Oracle8 to communicate with the
program.

Attention: When using multi-byte NCHAR host variables, the SQLCA must be
included.

Key Components of Error Reporting

The key components of Pro*COBOL error reporting depend on several fields in the
SQLCA.

Status Codes

Every executable SQL statement returns a status code in the SQLCA variable
SQLCODE, which you can check implicitly with WHENEVER SQLERROR or
explicitly with your own COBOL code.

Warning Flags

Warning flags are returned in the SQLCA variables SQLWARNO through
SQLWARNY7, which you can check with WHENEVER SQLWARNING or with your
own COBOL code. These warning flags are useful for detecting runtime conditions
that are not considered errors by Oracle8.

Rows-Processed Count
The number of rows processed by the most recently executed SQL statement is

returned in the SQLCA variable SQLERRD(3). For repeated FETCHes on an OPEN
cursor, SQLERRD(3) keeps a running total of the number of rows fetched.

Parse Error Offset

Before executing a SQL statement, Oracle8 must parse it; that is, examine it to make sure it
follows syntax rules and refers to valid database objects. If Oracle8 finds an error, an offset
is stored in the SQLCA variable SQLERRD(5), which you can check explicitly. The offset
specifies the character position in the SQL statement at which the parse error begins. The first
character occupies position zero. For example, if the offset is 9, the parse error begins at the
tenth character.

Error Handling and Diagnostics 9-21



Using the SQL Communications Area

If your SQL statement does not cause a parse error, Oracle8 sets SQLERRD(5) to
zero. Oracle8 also sets SQLERRD(5) to zero if a parse error begins at the first
character (which occupies position zero). So, check SQLERRD(5) only if SQLCODE
is negative, which means that an error has occurred.

Error Message Text

The error code and message for Oracle8 errors are available in the SQLCA variable
SQLERRMC. For example, you might place the following statements in an error-
handling routine:

* Handle SQL execution erors.
MOVE SQLERRMC TO ERROR-MESSAGE.
DISPLAY ERROR-MESSAGE.

At most, the first 70 characters of message text are stored. For messages longer than
70 characters, you must call the SQLGLM subroutine, which is discussed next.

SQLCA Structure

This section describes the structure of the SQLCA, its fields, and the values they
can store.

SQLCAID
This string field is initialized to “SQLCA” to identify the SQL Communications
Area.

SQLCABC
This integer field holds the length, in bytes, of the SQLCA structure.

SQLCODE

This integer field holds the status code of the most recently executed SQL
statement. The status code, which indicates the outcome of the SQL operation, can
be any of the following numbers:

0 Oracle8 executed the statement without detecting an error or exception.
>0 Oracle8 executed the statement but detected an exception. This occurs when

Oracle8 cannot find a row that meets your WHERE-clause search condition
or when a SELECT INTO or FETCH returns no rows.

9-22 Pro*COBOL Precompiler Programmer’s Guide



Using the SQL Communications Area

<0 When MODE={ANSI|ANSI14|ANSI113}, +100 is returned to SQLCODE after
an INSERT of no rows. This can happen when a subquery returns no rows to
process.

Oracle8 did not execute the statement because of a database, system,
network, or application error. Such errors can be fatal. When they occur, the
current transaction should, in most cases, be rolled back.

Negative return codes correspond to error codes listed in Oracle8 Server
Messages.

SQLERRM
This sub-record contains the following two fields:

SQLERRML This integer field holds the length of the message text stored in
SQLERRMC.
SQLERRMC This string field holds the message text for the error code stored in

SQLCODE and can store up to 70 characters. For the full text of messages
longer than 70 characters, use the SQLGLM function.

Verify SQLCODE is negative before you reference SQLERRMC. If you
reference SQLERRMC when SQLCODE is zero, you get the message text
associated with a prior SQL statement.

SQLERRP
This string field is reserved for future use.

SQLERRD

This table of binary integers has six elements. Descriptions of the fields in
SQLERRD follow:

SQLERRD(1) This field is reserved for future use.

SQLERRD(2) This field is reserved for future use.

Error Handling and Diagnostics 9-23



Using the SQL Communications Area

SQLERRD(3) This field holds the number of rows processed by the most recently
executed SQL statement. However, if the SQL statement failed, the
value of SQLERRD(3) is undefined, with one exception. If the error
occurred during a table operation, processing stops at the row that
caused the error, so SQLERRD(3) gives the number of rows processed
successfully.

The rows-processed count is zeroed after an OPEN statement and
incremented after a FETCH statement. For the EXECUTE, INSERT,
UPDATE, DELETE, and SELECT INTO statements, the count reflects
the number of rows processed successfully. The count does notinclude
rows processed by an update or delete cascade. For example, if 20 rows
are deleted because they meet WHERE-clause criteria, and 5 more rows
are deleted because they now (after the primary delete) violate column
constraints, the count is 20 not 25.

SQLERRD(4) This field is reserved for future use.

SQLERRD(5) This field holds an offset that specifies the character position at which a
parse error begins in the most recently executed SQL statement. The
first character occupies position zero.

SQLERRD(6) This field is reserved for future use.

This table of single characters has eight elements. They are used as warning flags.
Oracle8 sets a flag by assigning it a “W” (for warning) character value. The flags
warn of exceptional conditions.

For example, a warning flag is set when Oracle8 assigns a truncated column value
to an output host variable.

Note: While Figure 9-2 illustrates SQLWARN as a table, it is implemented in
Pro*COBOL as a group item with elementary PIC X items hamed SQLWARNO
through SQLWARN?. .

Descriptions of the fields in SQLWARN follow:

SQLWARN(0) This flag is set if another warning flag is set.

SQLWARN(1) This flag is set if a truncated column value was assigned to an output
host variable. This applies only to character data. Oracle8 truncates
certain numeric data without setting a warning or returning a negative
SQLCODE value.

To find out if a column value was truncated and by how much, check the
indicator variable associated with the output host variable. The (positive)
integer returned by an indicator variable is the original length of the
column value. You can increase the length of the host variable
accordingly.

9-24 Pro*COBOL Precompiler Programmer’s Guide



Using the SQL Communications Area

SQLWARN(2) This flag is set if one or more nulls were ignored in the evaluation of a
SQL group function such as AVG, COUNT, or MAX. This behavior is
expected because, except for COUNT(*), all group functions ignore
nulls. If necessary, you can use the SQL function NVL to temporarily
assign values (zeros, for example) to the null column entries.

SQLWARN(3) This flag is set if the number of columns in a query select list does not
equal the number of host variables in the INTO clause of the SELECT or
FETCH statement. The number of items returned is the lesser of the two.

SQLWARN(4) This flag is set if every row in a table was processed by an UPDATE or
DELETE statement without a WHERE clause. An update or deletion is
called unconditional if no search condition restricts the number of rows
processed. Such updates and deletions are unusual, so Oracle8 sets this
warning flag. That way, you can roll back the transaction if necessary

SQLWARN(5) This flag is set when an EXEC SQL CREATE
{PROCEDURE|FUNCTION|PACKAGE|PACKAGE BODY} statement
fails because of a PL/SQL compilation error.

SQLWARN(6) This flag is no longer in use.
SQLWARN(7) This flag is no longer in use.
SQLEXT

This string field is reserved for future use.

PL/SQL Considerations

When your Pro*COBOL program executes an embedded PL/SQL block, not all
fields in the SQLCA are set. For example, if the block fetches several rows, the rows-
processed count, SQLERRD(3), is set to 1, not the actual number of rows fetched. So, you
should rely only on the SQLCODE and SQLERRM fields in the SQLCA after executing a
PL/SQL block.

Getting the Full Text of Error Messages

The SQLCA can accommodate error messages up to 70 characters long. To get the
full text of longer (or nested) error messages, you need the SQLGLM subroutine.

If connected to Oracle8, you can call SQLGLM using the syntax
CALL "SQLGLM" USING MSG-TEXT, MAX-SIZE, MSG-LENGTH

where:

Error Handling and Diagnostics 9-25



Using the SQL Communications Area

MSG-TEXT is the field in which to store the error message. (Oracle8 blank-
pads to the end of this field.)

MAX-SIZE is an integer that specifies the maximum size of the MSG-
TEXT field in bytes.

MSG-LENGTH is an integer variable in which Oracle8 stores the actual length
of the error message.

The maximum length of an Oracle8 error message is 512 characters including the
error code, nested messages, and message inserts such as table and column names.
The maximum length of an error message returned by SQLGLM depends on the
value specified for MAX-SIZE.

The following example uses SQLGLM to get an error message of up to 200
characters in length:

WORKING-STORAGE SECTION.

* Declare variables for the SQL-ERROR subroutine call.
01 MSG-TEXT PIC X(200).
01 MAX-SIZE PIC S9(9) COMP VALUE 200.
01 MSG-LENGTH PIC S9(9) COMP.

PROCEDURE DIVISION.
MAIN.
EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.

SQL-ERROR.

* Clear the previous message text.
MOVE SPACES TO MSG-TEXT.

*  Get the full text of the ermor message.
CALL "SQLGLM" USING MSG-TEXT, MAX-SIZE, MSG-LENGTH.
DISPLAY MSG-TEXT.

In the example, SQLGLM is called only when a SQL error has occurred. Always
make sure SQLCODE is negative before calling SQLGLM. If you call SQLGLM when
SQLCODE is zero, you get the message text associated with a prior SQL statement.

Note: If your application calls SQLGLM to get message text or your Ora-
cle*Forms user exit calls SQLIEM to display a failure message, the message
length must be passed. Do not use the SQLCA variable SQLERRML,; SQLERRML is
a PIC S9(4) COMP integer while SQLGLM and SQLIEM expect a PIC S9(9) COMP inte-
ger. Instead, use another variable declared as PIC S9(9) COMP.

9-26 Pro*COBOL Precompiler Programmer’s Guide



Using the SQL Communications Area

DSNTIAR

DB2 provides an assembler routine called DSNTIAR to obtain a form of the SQLCA
that can be displayed. For users migrating to Oracle8 from DB2, Pro*COBOL
provides DSNTIAR. DSNTIAR’s implementation is a wrapper around SQLGLM.
The DSNTIAR interface is as follows

CALL ‘DSNTIAR’ USING SQLCA MESSAGE LRECL

where MESSAGE is the output message area, in VARCHAR form of size greater
than or equal to 240, and LRECL is a full word containing the length of the output
messages, between 72 and 240. The first half-word of the MESSAGE argument
contains the length of the remaining area. The possible error codes returned by
DSNTIAR are:

Table 9-5 DNSTIAR Error Codes and Their Meanings

0 successful execution

4 more data was available than could fit into the provided message
8 the logical record length (LRECL) was not between 72 and 240

12 the message area was not large enough (greater than 240)

Using the WHENEVER Statement

By default, Pro*COBOL ignores Oracle8 error and warning conditions and
continues processing, if possible. To do automatic condition checking and error
handling, you need the WHENEVER statement.

With the WHENEVER statement you can specify actions to be taken when Oracle8
detects an error, warning condition, or “not found” condition. These actions
include continuing with the next statement, PERFORMing a paragraph, branching
to a paragraph, or stopping.

You can have Oracle8 automatically check the SQLCA for any of the following
conditions.

Conditions
SQLWARNING

SQLWARNI(O) is set because Oracle8 returned a warning (one of the warning flags,
SQLWARN(1) through SQLWARN(7), is also set) or SQLCODE has a positive value

Error Handling and Diagnostics 9-27



Using the SQL Communications Area

other than +1403. For example, SQLWARN(1) is set when Oracle8 assigns a
truncated column value to an output host variable.

Declaring the SQLCA is optional when MODE={ANSI| ANSI14}. To use
WHENEVER SQLWARNING, however, you must declare the SQLCA.

SQLERROR
SQLCODE has a negative value because Oracle8 returned an error.

NOT FOUND or NOTFOUND

SQLCODE has a value of +1403 (+100 when MODE={ANSI ]| ANSI14] ANSI13}),
because Oracle8 could not find a row that meets the search condition of a WHERE
clause, or a SELECT INTO or FETCH returned no rows. When

MODE={ANSI| ANSI14 ]| ANSI13}, +100 is returned to SQLCODE after an INSERT
of no rows.

Since DB2 returns a SQLCODE value of 100 when an END-OF-FETCH condition
occurs after a SQL statement execution, Pro*COBOL 2 provides a new command
line option for explicit control over the value returned when the END-OF-FETCH
condition occurs. This option is:

END_OF_FETCH =100 | 1403 (default 1403)

The END_OF_FETCH option must be used on the command line or in a
configuration file. For more details, see "END_OF_FETCH" on page 7-19

If the user specifies MODE=ANSI in a configuration file, Pro*COBOL 2 will
implement the 100 at the END_OF_FETCH, overriding the default
END_OF_FETCH=1403. If the user specifies MODE=ANSI and
END_OF_FETCH=1403 in the configuration file, then Pro*COBOL 2 will
implement the 1403 at the END_OF_FETCH. If the user specifies MODE=ANSI in
the configuration file and END_OF_FETCH=1403 on the command line,
Pro*COBOL 2 will again implement the 1403 at the END_OF_FETCH.

When Oracle8 detects one of the preceding conditions, you can have your program take
any of the following actions.

9-28 Pro*COBOL Precompiler Programmer’s Guide



Using the SQL Communications Area

Actions

CONTINUE

Your program continues to run with the next statement if possible. This is the
default action, equivalent to not using the WHENEVER statement. You can use it to
“turn off” condition checking.

DO PERFORM

Your program transfers control to a COBOL paragraph. When the end of the
paragraph is reached, control transfers to the statement that follows the failed SQL
statement.

EXEC SQL
WHENEVER <condition> DO PERFORM <paragraph_name>
END-EXEC.

GOTO or GO TO
Your program branches to a labeled statement.

STOP
Your program stops running and uncommitted work is rolled back.

Be careful. The STOP action displays no messages before logging off Oracle8.

Using the WHENEVER Statement in COBOL
Code the WHENEVER statement using the following syntax:

EXEC SQL
WHENEVER <condition> <action>
END-EXEC.

When using the WHENEVER ... DO statement, the usual rules for PERFORMing a
paragraph apply. However, you cannot use the THRU, TIMES, UNTIL, or
VARYING clauses.

For example, the following WHENEVER ... DO statement is invalid:

PROCEDURE DIVISION.
* Invalid statement
EXEC SQL WHENEVER SQLERROR DO
PERFORM DISPLAY-ERROR THRU LOG-OFF
END-EXEC.

Error Handling and Diagnostics 9-29



Using the SQL Communications Area

DISPLAY-ERROR.

LOG-OFF.

In the following example, WHENEVER SQLERROR DO statements are used to
handle specific errors:

PROCEDURE DIVISION.
MAIN.

EXEC SQL
WHENEVER SQLERROR DO PERFORM INS-ERROR
END-EXEC.
EXEC SQL
INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
VALUES (EMP-NUMBER, :-EMP-NAME, :DEPT-NUMBER)
END-EXEC.
EXEC SQL
WHENEVER SQLERROR DO PERFORM DEL-ERROR
END-EXEC.
EXEC SQL
DELETE FROM DEPT
WHERE DEPTNO = :DEPT-NUMBER
END-EXEC.

* Error-handling paragraphs.
INS-ERROR.
*  Check for "duplicate key value" Oracle8 error
IF SQLCA.SQLCODE =-1

*  Check for "value too large" Oracle8 error
ELSE IF SQLCA.SQLCODE =-1401

ELSE
END-IF.
DEL-ERROR.
*  Check for the number of rows processed.
IF SQLCA.SQLERRD(3)=0

ELSE

9-30 Pro*COBOL Precompiler Programmer’s Guide



Using the SQL Communications Area

END-IF.

Notice how the paragraphs check variables in the SQLCA to determine a course of
action.

Scope

Because WHENEVER is a declarative statement, its scope is positional, not logical.
It tests all executable SQL statements that follow it in the source file, not in the flow
of program logic. So, code the WHENEVER statement before the first executable
SQL statement you want to test.

A WHENEVER statement stays in effect until superseded by another WHENEVER
statement checking for the same condition.

Suggestion: You can place WHENEVER statements at the beginning of each
program unit that contains SQL statements. That way, SQL statements in one
program unit will not reference WHENEVER actions in another program unit,
causing errors at compile or run time.

Careless Usage: Examples

Careless use of the WHENEVER statement can cause problems. For example, the
following code enters an infinite loop if the DELETE statement sets the NOT
FOUND condition, because no rows meet the search condition:

* Improper use of WHENEVER.
EXEC SQL
WHENEVER NOT FOUND GOTO NO-MORE
END-EXEC.
PERFORM GET-ROWS UNTIL DONE ="YES".

GET-ROWS.
EXEC SQL
FETCH EMP-CURSOR INTO :EMP-NAME, :SALARY
END-EXEC.

NO-MORE.
MOVE "YES" TO DONE.
EXEC SQL
DELETE FROM EMP WHERE EMPNO = :EMP-NUMBER
END-EXEC.

Error Handling and Diagnostics 9-31



Using the SQL Communications Area

In the next example, the NOT FOUND condition is properly handled by resetting
the GOTO target:

* Proper use of WHENEVER.
EXEC SQL WHENEVER NOT FOUND GOTO NO-MORE END-EXEC.
PERFORM GET-ROWS UNTIL DONE ="YES".

GET-ROWS.
EXEC SQL
FETCH EMP-CURSOR INTO :EMP-NAME, :SALARY
END-EXEC.

NO-MORE.
MOVE "YES" TO DONE.
EXEC SQL WHENEVER NOT FOUND GOTO NONE-FOUND END-EXEC.
EXEC SQL
DELETE FROM EMP WHERE EMPNO = :EMP-NUMBER
END-EXEC.

NONE-FOUND.

Getting the Text of SQL Statements

In many Pro*COBOL applications, it is convenient to know the text of the
statement being processed, its length, and the SQL command (such as INSERT or
SELECT) that it contains. This is especially true for applications that use dynamic
SQL.

The routine SQLGLS, which is part of the SQLLIB runtime library, returns the
following information:

« the text of the most recently parsed SQL statement
« the length of the statement
« afunction code (see Table 9-7) for the SQL command used in the statement

You can call SQLGLS after issuing a static SQL statement. With dynamic SQL
Method 1, you can call SQLGLS after the SQL statement is executed. With dynamic
SQL Method 2, 3, or 4, you can call SQLGLS after the statement is prepared.

To call SQLGLS, you use the following syntax:
CALL "SQLGLS"USING SQLSTM STMLEN SQLFC.

9-32 Pro*COBOL Precompiler Programmer’s Guide



Using the SQL Communications Area

Table 9-6 shows the host-language datatypes available for the parameters in the
SQLGLS argument list.

Table 9-6 Parameter Datatypes

Parameter Datatype
SQLSTM PIC X(n)
STMLEN PIC S9(9) COMP
SQLFC PIC S9(9) COMP

All parameters must be passed by reference. This is usually the default parameter
passing convention; you need not take special action.

The parameter SQLSTM is a blank-padded (not null-terminated) character buffer
that holds the returned text of the SQL statement. Your program must statically
declare the buffer or dynamically allocate memory for it.

The length parameter STMLEN is a four-byte integer. Before calling SQLGLS, set
this parameter to the actual size (in bytes) of the SQLSTM buffer. When SQLGLS
returns, the SQLSTM buffer contains the SQL statement text blank padded to the
length of the buffer. STMLEN returns the actual number of bytes in the returned
statement text, not counting the blank padding. However, STMLEN returns a zero
if an error occurred.

Some possible errors follow:

« No SQL statement was parsed.

« You passed an invalid parameter (for example, a negative length value).
« An internal exception occurred in SQLLIB.

The parameter SQLFC is a four-byte integer that returns the SQL function code for
the SQL command in the statement. Table 9-7  shows the function code for each
SQL command.

There are no SQL function codes for these statements:

« CONNECT
« COMMIT
« FETCH

« ROLLBACK

Error Handling and Diagnostics 9-33



Using the SQL Communications Area

« RELEASE

Table 9-7 SQL Codes

Code |SQL Function Code  $QL Function

01 CREATE TABLE 39 AUDIT

02 SET ROLE 40 NOAUDIT

03 INSERT 41 ALTER INDEX

04 SELECT 42 CREATE EXTERNAL DATA-
BASE

05 UPDATE 43 DROP EXTERNAL DATABASE

06 DROP ROLE 44 CREATE DATABASE

07 DROP VIEW 45 ALTER DATABASE

08 DROP TABLE 46 CREATE ROLLBACK SEGMENT

09 DELETE 47 ALTER ROLLBACK SEGMENT

10 CREATE VIEW 48 DROP ROLLBACK SEGMENT

11 DROP USER 49 CREATE TABLESPACE

12 CREATE ROLE 50 ALTER TABLESPACE

13 CREATE SEQUENCE 51 DROP TABLESPACE

14 ALTER SEQUENCE 52 ALTER SESSION

15 (not used) 53 ALTER USER

16 DROP SEQUENCE 54 COMMIT

17 CREATE SCHEMA 55 ROLLBACK

18 CREATE CLUSTER 56 SAVEPOINT

19 CREATE USER 57 CREATE CONTROL FILE

20 CREATE INDEX 58 ALTER TRACING

21 DROP INDEX 59 CREATE TRIGGER

22 DROP CLUSTER 60 ALTER TRIGGER

23 VALIDATE INDEX 61 DROP TRIGGER

24 CREATE PROCEDURE 62 ANALYZE TABLE

9-34 Pro*COBOL Precompiler Programmer’s Guide



Using the Oracle Communications Area

Table 9-7 SQL Codes

Code |SQL Function Code  $QL Function

25 ALTER PROCEDURE 63 ANALYZE INDEX

26 ALTER TABLE 64 ANALYZE CLUSTER

27 EXPLAIN 65 CREATE PROFILE

28 GRANT 66 DROP PROFILE

29 REVOKE 67 ALTER PROFILE

30 CREATE SYNONYM 68 DROP PROCEDURE

31 DROP SYNONYM 69 (not used)

32 ALTER SYSTEM SWITCH 70 ALTER RESOURCE COST
LOG

33 SET TRANSACTION 71 CREATE SNAPSHOT LOG

34 PL/SQL EXECUTE 72 ALTER SNAPSHOT LOG

35 LOCK TABLE 73 DROP SNAPSHOT LOG

36 (not used) 74 CREATE SNAPSHOT

37 RENAME 75 ALTER SNAPSHOT

38 COMMENT 76 DROP SNAPSHOT

Using the Oracle Communications Area

The SQLCA handles standard SQL communications. The Oracle Communications
Area (ORACA) is a similar structure that you can include in your program to
handle Oracle8-specific communications. When you need more runtime
information than the SQLCA provides, use the ORACA.

Besides helping you to diagnose problems, the ORACA lets you monitor your
program’s use of Oracle8 resources such as the SQL Statement Executor and the
cursor cache, an area of memory reserved for cursor management.

What's in the ORACA?

The ORACA contains option settings, system statistics, and extended diagnostics.
Figure 9-3 shows all the variables in the ORACA.

Error Handling and Diagnostics 9-35



Using the Oracle Communications Area

Figure 9-3 ORACA Variable Declarations for Pro*COBOL

ORACA
01 ORACA

05 ORACAI DPI C X(8).

05 ORACABCPI C S9(9) COWP.

05 ORACCHF PI C S9(9) COWP.

05 ORADBGF Pl C S9(9) COWP.

05 ORAHCHF PI C S9(9) COWP.

05 CRASTXTF PI C S9(9) CaOwP.

05 CORASTXT.
49 ORASTXTL PI C S9(4) CaOwP.
49 ORASTXTL PI C X(70)

05 CORASFNM
49 ORASFNML PI C S9(4) CaOwP.
49 CRASFNMC PI C X(70)

05 ORASLNRPI C X(8).

05 ORAHOC PIC S9(9) COWP.

05 ORAMOC PIC S9(9) COWP.

05 ORACOC PIC S9(9) COwWP.

05 ORANCR PIC S9(9) COwWP.

05 ORANPR PI C S9(9) COWP.

05 ORANEX Pl C S9(9) COWP.

Declaring the ORACA

To declare the ORACA, simply include it (using an EXEC SQL INCLUDE
statement) in your Pro*COBOL source file outside the Declare Section as follows:

*  Include the Oracle Communications Area (ORACA).
EXEC SQL INCLUDE ORACA END-EXEC.

Enabling the ORACA

To enable the ORACA, you must set the ORACA precompiler option to YES on the
command line or in a configuration file with

ORACA=YES

or inline with

EXEC Oracle OPTION (ORACA=YES) END-EXEC.

9-36 Pro*COBOL Precompiler Programmer’s Guide



Using the Oracle Communications Area

Then, you must choose appropriate runtime options by setting flags in the
ORACA. Enabling the ORACA is optional because it adds to runtime overhead.
The default setting is ORACA=NO.

Choosing Runtime Options

The ORACA includes several option flags. Setting these flags by assigning them
non-zero values allows you to:

« save the text of SQL statements
« enable DEBUG operations

« check cursor cache consistency (the cursor cache is a continuously updated area of
memory used for cursor management)

« check heap consistency (the heap is an area of memory reserved for dynamic vari-
ables)

« gather cursor statistics

The descriptions below will help you choose the options you need.

ORACA Structure

This section describes the structure of the ORACA, its fields, and the values they
can store.

ORACAID

This string field is initialized to “ORACA” to identify the Oracle Communications
Area.

ORACABC
This integer field holds the length, expressed in bytes, of the ORACA data structure.

ORACCHF

If the master DEBUG flag (ORADBGF) is set, this flag lets you check the cursor
cache for consistency before every cursor operation.

The Oracle8 runtime library does the consistency checking and might issue error
messages, which are listed in Oracle8 Error Messages. They are returned to the SQLCA
just like Oracle8 error messages.

This flag has the following settings:

Error Handling and Diagnostics 9-37



Using the Oracle Communications Area

0 Disable cache consistency checking (the default).
1 Enable cache consistency checking.
ORADBGF
This master flag lets you choose all the DEBUG options. It has the following
settings:
0 Disable all DEBUG operations (the default).
1 Enable all DEBUG operations.
ORAHCHF

If the master DEBUG flag (ORADBGF) is set, this flag tells the Oracle8 runtime
library to check the heap for consistency every time Pro*COBOL dynamically
allocates or frees memory. This is useful for detecting program bugs that upset
memory.

This flag must be set before the CONNECT command is issued and, once set,
cannot be cleared; subsequent change requests are ignored. It has the following

settings:
0 Disable all DEBUG operations (the default).
1 Enable all DEBUG operations.
ORASTXTF

This flag lets you specify when the text of the current SQL statement is saved. It has
the following settings:

0 Never save the SQL statement text (the default).

1 Save the SQL statement text on SQLERROR only.

2 Save the SQL statement text on SQLERROR or SQLWARNING.
3 Always save the SQL statement text.

9-38 Pro*COBOL Precompiler Programmer’s Guide



Using the Oracle Communications Area

The SQL statement text is saved in the ORACA sub-record named ORASTXT.

Diagnostics
The ORACA provides an enhanced set of diagnostics; the following variables help
you to locate errors quickly.

ORASTXT

This sub-record helps you find faulty SQL statements. It lets you save the text of
the last SQL statement parsed by Oracle8. It contains the following two fields:

ORASTXTL This integer field holds the length of the current SQL statement.

ORASTXTC This string field holds the text of the current SQL statement. At most, the
first 70 characters of text are saved.

Statements parsed by Pro*COBOL, such as CONNECT, FETCH, and COMMIT, are
not saved in the ORACA.

ORASFNM

This sub-record identifies the file containing the current SQL statement and so
helps you find errors when multiple files are precompiled for one application. It
contains the following two fields:

ORASFNML This integer field holds the length of the filename stored in ORASFNMC.
ORASFNMC This string field holds the filename. At most, the first 70 characters are
stored.
ORASLNR

This integer field identifies the line at (or near) which the current SQL statement
can be found.

Cursor Cache Statistics

The variables below let you gather cursor cache statistics. They are automatically
set by every COMMIT or ROLLBACK statement your program issues. Internally,
there is a set of these variables for each CONNECTed database. The current values
in the ORACA pertain to the database against which the last commit or rollback
was executed.

Error Handling and Diagnostics 9-39



Using the Oracle Communications Area

ORAHOC

This integer field records the highest value to which MAXOPENCURSORS was set
during program execution.

ORAMOC

This integer field records the maximum number of open Oracle8 cursors required
by your program. This number can be higher than ORAHOC if
MAXOPENCURSORS was set too low, which forced Pro*COBOL to extend the
cursor cache.

ORACOC

This integer field records the current number of open Oracle8 cursors required by
your program.

ORANOR

This integer field records the number of cursor cache reassignments required by
your program. This number shows the degree of “thrashing” in the cursor cache
and should be kept as low as possible.

ORANPR

This integer field records the number of SQL statement parses required by your
program.

ORANEX

This integer field records the number of SQL statement executions required by your
program. The ratio of this number to the ORANPR number should be kept as high
as possible. In other words, avoid unnecessary re-parsing. For help, see

Appendix D.

ORACA Example

The following program prompts for a department number, inserts the name and
salary of each employee in that department into one of two tables, then displays
diagnostic information from the ORACA:

IDENTIFICATION DIVISION.
PROGRAM-ID. ORACAEX.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

9-40 Pro*COBOL Precompiler Programmer’s Guide



Using the Oracle Communications Area

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

EXEC ORACLE OPTION (ORACA=YES) END-EXEC.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
OLUSERNAME  PIC X(20).
OLPASSWORD  PIC X(20).
OLEMP-NAME  PIC X(10) VARYING.
01DEPT-NUMBER  PIC S9(4) COMP.
OLSALARY  PIC S9E)V99
DISPLAY SIGN LEADING SEPARATE.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

DISPLAY "Usemame? " WITH NO ADVANCING.
ACCEPT USERNAME.
DISPLAY "Password? " WITH NO ADVANCING.
ACCEPT PASSWORD.
EXEC SQL

WHENEVER SQLERROR GOTO SQL-ERROR
END-EXEC.
EXEC SQL

CONNECT :USERNAME IDENTIFIED BY :PASSWORD
END-EXEC.
DISPLAY "Connected to Oracle”.

*— setflags inthe ORACA
*— enable debug operations
MOVE 1 TO ORADBGF-.
*— enable cursor cache consistency check
MOVE 1 TO ORACCHF.
*— always save the SQL statement
MOVE 3 TO ORASTXTF.
DISPLAY "Department number? " WITH NO ADVANCING.
ACCEPT DEPT-NUMBER.
EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT ENAME, SAL + NVL(COMM,0)
FROM EMP
WHERE DEPTNO = :DEPT-NUMBER
END-EXEC.
EXEC SQL OPEN EMPCURSOR END-EXEC.
EXEC SQL
WHENEVER NOT FOUND GOTO NO-MORE
END-EXEC.

Error Handling and Diagnostics 9-41



Using the Oracle Communications Area

LOOP.
EXEC SQL
FETCH EMPCURSOR INTO :EMP-NAME, :SALARY
END-EXEC.
IF SALARY < 2500
EXEC SQL
INSERT INTO PAY1 VALUES (EMP-NAME, :SALARY)
END-EXEC
ELSE
EXEC SQL
INSERT INTO PAY2 VALUES (EMP-NAME, :SALARY)
END-EXEC
END-IF.
GO TOLOOP.

NO-MORE.
EXEC SQL CLOSE EMPCURSOR END-EXEC.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL COMMIT WORK RELEASE END-EXEC.
DISPLAY "(NO-MORE.) Last SQL statement: ", ORASTXTC.
DISPLAY "... at or near line number: ", ORASLNR.
DISPLAY "".
DISPLAY " Cursor Cache Statistics'.
DISPLAY "
DISPLAY "Maximum value of MAXOPENCURSORS ", ORAHOC.
DISPLAY "Maximum open cursors required: ", ORAMOC.
DISPLAY "Current number of open cursors: ", ORACOC.
DISPLAY "Number of cache reassignments: ", ORANOR.
DISPLAY "Number of SQL statement parses: ", ORANPR.
DISPLAY "Number of SQL statement executions: ", ORANEX.
STOP RUN.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
DISPLAY "(SQL-ERROR.) Last SQL statement: ", ORASTXTC.
DISPLAY "... at or near ine number: ", ORASLNR.
DISPLAY "".
DISPLAY " Cursor Cache Statistics'.
DISPLAY "
DISPLAY "MAXIMUM VALUE OF MAXOPENCURSORS ", ORAHOC.
DISPLAY "Maximum open cursors required: ", ORAMOC.
DISPLAY "Current number of open cursors: ", ORACOC.
DISPLAY "Number of cache reassignments: ", ORANOR.
DISPLAY "Number of SQL statement parses: ", ORANPR.

9-42 Pro*COBOL Precompiler Programmer’s Guide



Using the Oracle Communications Area

DISPLAY "Number of SQL statement executions: ", ORANEX.
STOP RUN.

Error Handling and Diagnostics 9-43



Using the Oracle Communications Area

9-44 Pro*COBOL Precompiler Programmer’s Guide



10

Using Host Tables

This chapter looks at using tables to simplify coding and improve program perfor-
mance. You learn how to manipulate Oracle8 data using tables, how to operate on

all the elements of an table with a single SQL statement, and how to limit the num-
ber of table elements processed. Topics are:

What Is a Host Table?

Why Use Tables?

Declaring Host Tables

Using Tables in SQL Statements
Selecting into Tables

Inserting with Tables

Updating with Tables

Deleting with Tables

Using Indicator Tables

Using the FOR Clause

Using the WHERE Clause
Mimicking the CURRENT OF Clause
Using SQLERRD(3)

Sample Program 3: Fetching in Batches

Using Host Tables 10-1



What Is a Host Table?

What Is a Host Table?

An table is a set of related data items, called elements, associated with a single vari-
able name. When declared as a host variable, the table is called a host table. Like-
wise, an indicator variable declared as an table is called an indicator table. An
indicator table can be associated with any host table.

Why Use Tables?

Tables can ease programming and offer improved performance. When writing an
application, you are usually faced with the problem of storing and manipulating

large collections of data. Tables simplify the task of naming and referencing the
individual items in each collection.

Using tables can boost the performance of your application. Tables let you manipu-
late an entire collection of data items with a single SQL statement. Thus, Oracle8
communication overhead is reduced markedly, especially in a networked environ-
ment. For example, suppose you want to insert information about 300 employees
into the EMP table. Without tables your program must do 300 individual
INSERTs—one for each employee. With tables, only one INSERT need be done.

Declaring Host Tables

You declare host tables in the Data Division like simple host variables. You also
dimension (set the size of) host tables in the Data Division. In the following example,
you declare three host tables and dimension them with 50 elements:

DATADIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-REC-TABLES.
05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
05 EMP-NAME OCCURS 50 TIMES PIC X(10) VARYING.
05 SALARY OCCURS 50 TIMES PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
EXEC SQL END DECLARE SECTION END-EXEC.

10-2 Pro*COBOL Precompiler Programmer’s Guide



Selecting into Tables

Dimensioning Tables

Restrictions

The maximum dimension of a host table is 32,767 elements. If you use a host table
that exceeds the maximum, you get a “parameter out of range" runtime error. If
you use multiple host tables in a single SQL statement, their dimensions should be
the same. Otherwise, an “table size mismatch” warning message is issued at pre-
compile time. If you ignore this warning, the precompiler uses the smallest dimen-
sion for the SQL operation.

Host tables that might be referenced in a SQL statement are limited to one dimen-
sion. So, the two-dimensional table declared in the following example is invalid:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 SALARY-TABLE.
05 ROW OCCURS 25 TIMES.
10 COLUMN OCCURS 25 TIMES.
HI-LOW-SCORES PIC 9(5).
EXEC SQL END DECLARE SECTION END-EXEC.

Using Tables in SQL Statements

Pro*COBOL allows the use of host tables in data manipulation statements. You can
use host tables as input variables in the INSERT, UPDATE, and DELETE statements
and as output variables in the INTO clause of SELECT and FETCH statements.

The syntax used for host tables and simple host variables is nearly the same. One
difference is the optional FOR clause, which lets you control table processing. Also,
there are restrictions on mixing host tables and simple host variables in a SQL state-
ment.

The following sections illustrate the use of host tables in data manipulation state-
ments.

Selecting into Tables

You can use host tables as output variables in the SELECT statement. If you know
the maximum number of rows the select will return, simply dimension the host
tables with that number of elements. In the following example, you select directly
into three host tables. Knowing the select will return no more than 50 rows, you
dimension the tables with 50 elements:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

Using Host Tables 10-3



Selecting into Tables

Batch Fetches

01 EMP-REC-TABLES.

05 EMP-NUMBER OCCURS50TIMESPIC S9(4) COMP.
05EMP-NAME OCCURS 50 TIMES PIC X(10) VARYING.
05 SALARY OCCURS 50 TIMES PIC S9(6)V99

DISPLAY SIGN LEADING SEPARATE.
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL SELECT ENAME, EMPNO, SAL
INTO :EMP-NAME, .EMP-NUMBER, :SALARY
FROM EMP
WHERE SAL >1000

END-EXEC.

In this example, the SELECT statement returns up to 50 rows. If there are fewer
than 50 eligible rows or you want to retrieve only 50 rows, this method will suffice.
However, if there are more than 50 eligible rows, you cannot retrieve all of them
this way. If you re-execute the SELECT statement, it just returns the first 50 rows
again, even if more are eligible. You must either dimension a larger table or declare
a cursor for use with the FETCH statement.

If a SELECT INTO statement returns more rows than the number of elements you
dimensioned, Oracle8 issues the error message

SQL-02112: SELECT...INTO retums too many rows

unless you specify SELECT_ERROR=NO. For more information about the option
SELECT_ERROR, see "SELECT_ERROR" on page 7-34.

If you do not know the maximum number of rows a select will return, you can
declare and open a cursor, then fetch from it in “batches.” Batch fetches within a
loop let you retrieve a large number of rows with ease. Each fetch returns the next
batch of rows from the current active set. In the following example, you fetch in 20-
row batches:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-REC-TABLES.
05 EMP-NUMBER OCCURS 20 TIMES PIC S9(4) COMP.
05 EMP-NAME OCCURS 20 TIMES PIC X(10) VARYING.
05 SALARY  OCCURS 20 TIMES PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.

EXEC SQL END DECLARE SECTION END-EXEC.

10-4 Pro*COBOL Precompiler Programmer’s Guide



Selecting into Tables

EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT EMPNO, SAL FROM EMP
END-EXEC.

EXEC SQL OPEN EMPCURSOR END-EXEC.

EXEC SQL WHENEVER NOT FOUND DO PERFORM ...
LOOP.

EXEC SQL FETCH EMPCURSOR INTO :EMP-NUMBER, :SALARY END-EXEC.
*— process batch of rows

GO TO LOOP.

Number of Rows Fetched

Each fetch returns, at most, the number of rows in the table dimension. Fewer rows
are returned in the following cases:

« The end of the active set is reached. The “no data found” Oracle8 warning code
is returned to SQLCODE in the SQLCA. For example, this happens if you fetch
into an table of dimension 100 but only 20 rows are returned.

« Fewer than a full batch of rows remain to be fetched. For example, this happens
if you fetch 70 rows into an table of dimension 20 because after the third fetch,
only 10 rows remain to be fetched.

« An error is detected while processing a row. The fetch fails and the applicable
Oracle8 error code is returned to SQLCODE.

The cumulative number of rows returned can be found in the third element of
SQLERRD in the SQLCA, called SQLERRD(3) in this guide. This applies to each
open cursor. In the following example, notice how the status of each cursor is main-
tained separately:

EXEC SQL OPEN CURSOR1 END-EXEC.

EXEC SQL OPEN CURSOR2 END-EXEC.

EXEC SQL FETCH CURSOR1 INTO :TABLE-OF-20 END-EXEC.
*— now running total in SQLERRD(3) is 20

EXEC SQL FETCH CURSOR2 INTO :TABLE-OF-30 END-EXEC.
*— now running total in SQLERRD(3) is 30, not 50

EXEC SQL FETCH CURSOR1 INTO :TABLE-OF-20 END-EXEC.
*— now running total in SQLERRD(3) is 40 (20 + 20)

EXEC SQL FETCH CURSOR2 INTO :TABLE-OF-30 END-EXEC.
*— now running total in SQLERRD(3) is 60 (30 + 30)

Using Host Tables 10-5



Selecting into Tables

Restrictions

Using host tables in the WHERE clause of a SELECT statement is allowed only in a
subquery. (For an example, see "Using the WHERE Clause" on page 10-13.) Also,
you cannot mix simple host variables with host tables in the INTO clause of a

SELECT or FETCH statement; if any of the host variables is a table, all must be
tables.

Table 10-1 shows which uses of host tables are valid in a SELECT INTO statement:

Table 10-1 Host Tables Valid in SELECT INTO

INTO Clause WHERE Clause Valid?

table table no
scalar scalar yes
table scalar yes
scalar table no

Fetching Nulls

When UNSAFE_NULL=YES, if you select or fetch a null into a host table that lacks
an indicator table, no error is generated. So, when doing table selects and fetches,
always use indicator tables. That way, you can find nulls in the associated output

host table. (To learn how to find nulls and truncated values, see "Using Indicator
Variables" on page 5-3.)

When UNSAFE_NULL=NO, if you select or fetch a null into a host table that lacks
an indicator table, Oracle8 stops processing, sets SQLERRD(3) to the number of
rows processed, and issues the following error message:

ORA-01405: fetched column value is NULL

Fetching Truncated Values

When DBMS=V7 or V8, if you select or fetch a truncated column value into a host
table that lacks an indicator table, Oracle8 stops processing, sets SQLERRD(3) to
the number of rows processed, and issues the following error message:

ORA-01406: fetched column value was truncated

10-6 Pro*COBOL Precompiler Programmer’s Guide



Inserting with Tables

You can check SQLERRD(3) for the number of rows processed before the truncation
occurred. The rows-processed count includes the row that caused the truncation
error.

When MODE=ANSI, truncation is not considered an error, so Oracle8 continues
processing.

Again, when doing table selects and fetches, always use indicator tables. That way,
if Oracle8 assigns one or more truncated column values to an output host table,
you can find the original lengths of the column values in the associated indicator
table.

Inserting with Tables

You can use host tables as input variables in an INSERT statement. Just make sure
your program populates the tables with data before executing the INSERT state-
ment. If some elements in the tables are irrelevant, you can use the FOR clause to
control the number of rows inserted. See "Using the FOR Clause" on page 10-11.

An example of inserting with host tables follows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 EMP-REC-TABLES.
05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
05 EMP-NAME OCCURS 50 TIMES PIC X(10) VARYING.
05 SALARY  OCCURS 50 TIMES PIC S9(6)V99

DISPLAY SIGN LEADING SEPARATE.

EXEC SQL END DECLARE SECTION END-EXEC.

*— populate the host tables
EXEC SQL INSERT INTO EMP (ENAME, EMPNO, SAL)

VALUES (EMP-NAME, :EMP-NUMBER, :SALARY)

END-EXEC.

The cumulative number of rows inserted can be found in SQLERRD(3).

Although functionally equivalent to the following statement, the INSERT statement
in the last example is much more efficient because it issues only one call to Oracle8:

PERFORM VARYING | FROM 1 BY 1 UNTIL | = TABLE-DIMENSION.
EXEC SQL INSERT INTO EMP (ENAME, EMPNO, SAL)
VALUES (EMP-NAMET], :-EMP-NUMBERT], :SALARYT])
END_EXEC
END-PERFORM.

Using Host Tables 10-7



Updating with Tables

In this imaginary example (imaginary because host variables cannot be subscripted
in a SQL statement), you use a FOR loop to access all table elements in sequential

order.
Restrictions
Mixing simple host variables with host tables in the VALUES clause of an INSERT
statement is not allowed; if any of the host variables is a table, all must be tables.
Updating with Tables

You can also use host tables as input variables in an UPDATE statement, as the fol-
lowing example shows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-REC-TABLES.
05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
05 SALARY  OCCURS 50 TIMES PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.

EXEC SQL END DECLARE SECTION END-EXEC.
*— populate the host tables
EXEC SQL
UPDATE EMP SET SAL = :SALARY WHERE EMPNO = :EMP-NUMBER
END-EXEC.

The cumulative number of rows updated can be found in SQLERRD(3). The num-
ber does not include rows processed by an update cascade.

If some elements in the tables are irrelevant, you can use the FOR clause to limit the
number of rows updated.

The last example showed a typical update using a unique key (EMP-NUMBER).
Each table element qualified just one row for updating. In the following example,
each table element qualifies multiple rows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

05 JOB-TITLE OCCURS 10 TIMES PIC X(10) VARYING.
05 COMMISSION  OCCURS 50 TIMES PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
EXEC SQL END DECLARE SECTION END-EXEC.
*— populate the host tables
EXEC SQL
UPDATE EMP SET COMM = :COMMISSION WHERE JOB =:JOB-TITLE

10-8 Pro*COBOL Precompiler Programmer’s Guide



Deleting with Tables

END-EXEC.

Restrictions
Mixing simple host variables with host tables in the SET or WHERE clause of an
UPDATE statement is not allowed. If any of the host variables is an table, all must
be tables. Furthermore, if you use a host table in the SET clause, you must use one
in the WHERE clause. However, their dimensions and datatypes need not match.
You cannot use host tables with the CURRENT OF clause in an UPDATE statement.
For an alternative, see "Mimicking the CURRENT OF Clause" on page 10-14.
Table 10-2 shows which uses of host tables are valid in an UPDATE statement:
Table 10-2 Host Tables Valid in UPDATE
SET Clause WHERE Clause \Valid?
table table yes
scalar scalar yes
table scalar no
scalar table no

Deleting with Tables

You can also use host tables as input variables in a DELETE statement. It is like exe-
cuting the DELETE statement repeatedly using successive elements of the host
table in the WHERE clause. Thus, each execution might delete zero, one, or more
rows from the table. An example of deleting with host tables follows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.
*— populate the host table
EXEC SQL
DELETE FROM EMP WHERE EMPNO = :EMP-NUMBER
END-EXEC.

The cumulative number of rows deleted can be found in SQLERRD(3). That num-
ber does not include rows processed by a delete cascade.

Using Host Tables 10-9



Using Indicator Tables

The last example showed a typical delete using a unique key (EMP-NUMBER).
Each table element qualified just one row for deletion. In the following example,
each table element qualifies multiple rows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

05 JOB-TITLE OCCURS 10 TIMES PIC X(10) VARYING.
EXEC SQL END DECLARE SECTION END-EXEC.
*— populate the host table
EXEC SQL
DELETE FROM EMP WHERE JOB =:JOB-TITLE
END-EXEC.

Restrictions

Mixing simple host variables with host tables in the WHERE clause of a DELETE
statement is not allowed; if any of the host variables is a table, all must be tables.
Also, you cannot use host tables with the CURRENT OF clause in a DELETE state-
ment. For an alternative, see “Mimicking CURRENT OF” on "Mimicking the CUR-
RENT OF Clause" on page 10-14.

Using Indicator Tables

You use indicator tables to assign nulls to input host tables and to detect null or
truncated values in output host tables. The following example shows how to insert
with indicator tables:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-REC-VARS.
05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
05 DEPT-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
05 COMMISSION OCCURS 50 TIMES PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
* — indlicator table:
05 COMM-ND OCCURS 50 TIMES PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.
— populate the host tables
— populate the indicator table; to insert a null into
- the COMM column, assign -1 to the appropriate element in
— the indicator table
EXEC SQL
INSERT INTO EMP (EMPNO, DEPTNO, COMM)
VALUES (EMP_NUMBER, :-DEPT-NUMBER, :COMMISSION:COMM-IND)
END-EXEC.

*
*
*
*

10-10 Pro*COBOL Precompiler Programmer’s Guide



Using the FOR Clause

The dimension of the indicator table cannot be smaller than the dimension of the
host table.

Using the FOR Clause

You can use the optional FOR clause to set the number of table elements processed
by any of the following SQL statements:

« DELETE

« EXECUTE
« FETCH

« INSERT

« OPEN

« UPDATE

The FOR clause is especially useful in UPDATE, INSERT, and DELETE statements.
With these statements you might not want to use the entire table. The FOR clause
lets you limit the elements used to just the number you need, as the following
example shows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-REC-VARS.
05 EMP-NAME OCCURS 1000 TIMES PIC X(20) VARYING.
05 SALARY OCCURS 100 TIMES PIC S9(6)V99
DISPLAY SIGN LEADING SEPARATE.
01 ROWS-TO-INSERT PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.
*— populate the host tables
MOVE 25 TO ROWS-TOINSERT.
* — set FOR-clause variable
*—will process only 25 rows
EXEC SQL FOR :ROWS-TOINSERT
INSERT INTO EMP (ENAME, SAL)
VALUES (EMP-NAME, :SALARY)
END-EXEC.

The FOR clause must use an integer host variable to count table elements. For
example, the following statement is illegal:

*—ilegal
EXEC SQLFOR 25

Using Host Tables 10-11



Using the FOR Clause

Restrictions

INSERT INTO EMP (ENAME, EMPNO, SAL)
VALUES (EMP-NAME, :-EMP-NUMBER, :SALARY)
END-EXEC.

The FOR-clause variable specifies the number of table elements to be processed.
Make sure the number does not exceed the smallest table dimension. Also, the num-
ber must be positive. If it is negative or zero, no rows are processed.

Two restrictions keep FOR clause semantics clear: you cannot use the FOR clause in
a SELECT statement or with the CURRENT OF clause.

In a SELECT Statement

If you use the FOR clause in a SELECT statement, you get the following error mes-
sage:

PCC-E-0056: FOR clause not allowed on SELECT statement at ...

The FOR clause is not allowed in SELECT statements because its meaning is
unclear. Does it mean “execute this SELECT statement n times”? Or, does it mean
“execute this SELECT statement once, but return n rows”? The problem in the
former case is that each execution might return multiple rows. In the latter case, it
is better to declare a cursor and use the FOR clause in a FETCH statement, as fol-
lows:

EXEC SQL FOR :LIMIT FETCH EMPCURSOR INTO ...

With the CURRENT OF Clause
You can use the CURRENT OF clause in an UPDATE or DELETE statement to refer
to the latest row returned by a FETCH statement, as the following example shows:

EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT ENAME, SAL FROM EMP WHERE EMPNO = :EMP-NUMBER
END-EXEC.

EXEC SQL OPEN EMPCURSOR END-EXEC.
EXEC SQL FETCH emp_cursor INTO :EM-NAME, :SALARY END-EXEC.
EXEC SQL UPDATE EMP SET SAL = :NEW-SALARY

WHERE CURRENT OF EMPCURSOR
END-EXEC.

10-12 Pro*COBOL Precompiler Programmer’s Guide



Using the WHERE Clause

However, you cannot use the FOR clause with the CURRENT OF clause. The fol-
lowing statements are invalid because the only logical value of LIMIT is 1 (you can
only update or delete the current row once):

EXEC SQL FOR :LIMIT UPDA-CURSOR END-EXEC.

EXEC SQL FOR :LIMIT DELETE FROM EMP
WHERE CURRENT OF EMP-CURSOR
END-EXEC.

Using the WHERE Clause

Oracle8 treats a SQL statement containing host tables of dimension n like the same
SQL statement executed n times with n different scalar variables (the individual
table elements). The precompiler issues the following error message only when
such treatment is ambiguous:

PCC-S-0055: Array <name> not allowed as bind variable at ...
For example, assuming the declarations

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

05 MGRP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
05 JOB-TITLE OCCURS 50 TIMES PIC X(20) VARYING.
01 1 PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.

it would be ambiguous if the statement

EXEC SQL SELECT MGR INTO :MGR-NUMBER FROM EMP
WHERE JOB =:JOB-TITLE
END-EXEC.

were treated like the imaginary statement

PERFORM VARYING | FROM 1 BY 1 UNTIL =50

SELECT MGR INTO :MGR-NUMBER][] FROM EMP
WHERE JOB =:JOB_TITLE]]

END-EXEC

END-PERFORM.

because multiple rows might meet the WHERE-clause search condition, but only

one output variable is available to receive data. Therefore, an error message is
issued.

Using Host Tables 10-13



Mimicking the CURRENT OF Clause

On the other hand, it would not be ambiguous if the statement

EXEC SQL
UPDATE EMP SET MGR =:MGR_NUMBER
WHERE EMPNO IN (SELECT EMPNO FROM EMP WHERE
JOB =:JOB-TITLE)
END-EXEC.

were treated like the imaginary statement

PERFORM VARYING | FROM 1 BY 1 UNTIL [=50
UPDATE EMP SET MGR =:MGR_NUMBER]]
WHERE EMPNO IN
(SELECT EMPNO FROM EMP WHERE JOB = :JOB-TITLE[])
END-EXEC
END-PERFORM.

because there is a MGR-NUMBER in the SET clause for each row matching JOB-
TITLE in the WHERE clause, even if each JOB-TITLE matches multiple rows. All
rows matching each JOB-TITLE can be SET to the same MGR-NUMBER. So, no
error message is issued.

Mimicking the CURRENT OF Clause

You use the CURRENT OF cursor clause in a DELETE or UPDATE statement to
refer to the latest row fetched from the cursor. However, you cannot use CURRENT
OF with host tables. Instead, select the ROWID of each row, then use that value to
identify the current row during the update or delete. An example follows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
05 EMP-NAME OCCURS 25 TIMES PIC X(20) VARYING.
05 JOB-TITLE OCCURS 25 TIMES PIC X(15) VARYING.
05 OLD-TITLE OCCURS 25 TIMES PIC X(15) VARYING.
05 ROW-ID OCCURS 25 TIMES PIC X(18) VARYING.
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT ENAME, JOB, ROWID FROM EMP

END-EXEC.

EXEC SQL OPEN EMPCURSOR END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO ...

PERFORM

10-14 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 3: Fetching in Batches

EXEC SQL

FETCH EMPCURSOR

INTO :EMP-NAME, :JOB-TITLE, :ROWA
END-EXEC

EXEC SQL
DELETE FROM EMP

WHERE JOB = :OLD-TITLE AND ROWID = :ROW-ID
END-EXEC

EXEC SQL COMMIT WORK END-EXEC
END-PERFORM.

However, the fetched rows are not locked because no FOR UPDATE OF clause is

used. So, you might get inconsistent results if another user changes a row after you
read it but before you delete it.

Using SQLERRD(3)

For INSERT, UPDATE, and DELETE statements, SQLERRD(3) records the number
of rows processed.

SQLERRD(3) is also useful when an error occurs during a table operation. Process-

ing stops at the row that caused the error, so SQLERRD(3) gives the number of
rows processed successfully.

Sample Program 3: Fetching in Batches

This program logs on to Oracle8, declares and opens a cursor, fetches in batches
using host tables, and prints the results using the PRINT-IT paragraph.

IDENTIFICATION DIVISION.
PROGRAM-ID. HOST-TABLES.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 USERNAME PIC X(15) VARYING.

01 PASSWD PIC X(15) VARYING.

01 EMP-REC-TABLES.
05 EMP-NUMBER OCCURS 5 TIMES PIC S9(4) COMP.
05 EMP-NAME OCCURS 5 TIMES PIC X(10) VARYING.
05 SALARY  OCCURS 5 TIMES PIC S9(6)V99

DISPLAY SIGN LEADING SEPARATE.

Using Host Tables 10-15



Sample Program 3: Fetching in Batches

EXEC SQL VAR SALARY IS DISPLAY(8,2) END-EXEC.
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL INCLUDE SQLCA END-EXEC.
01 NUM-RET  PIC S9(9) COMP VALUE ZERO.
01 PRINTNUM  PIC S9(9) COMP VALUE ZERO.
01 COUNTER  PIC S9(9) COMP.
01 DISPLAY-VARIABLES.
05 D-EMP-NAME PIC X(10).
05 D-EMP-NUMBER PIC 9(4).
05 D-SALARY  PIC Z(4)9.99.

PROCEDURE DIVISION.

BEGIN-PGM.
EXEC SQL
WHENEVER SQLERROR DO PERFORM SQL-ERROR
END-EXEC.
PERFORM LOGON.
EXEC SQL
DECLARE C1 CURSOR FOR
SELECT EMPNO, SAL, ENAME FROM EMP
END-EXEC.
EXEC SQL
OPENC1
END-EXEC.

FETCH-LOOP.
EXEC SQL
WHENEVER NOT FOUND DO PERFORM SIGN-OFF
END-EXEC.
EXEC SQL
FETCH C1 INTO :EMP-NUMBER, :SALARY, :-EMP-NAME
END-EXEC.
SUBTRACT NUM-RET FROM SQLERRD(3) GIVING PRINT-NUM.
PERFORM PRINTAT.
MOVE SQLERRD(3) TO NUM-RET.
GO TO FETCH-LOOP.

LOGON.
MOVE "SCOTT" TO USERNAME-ARR.
MOVE 5 TO USERNAME-LEN.

MOVE 'TIGER" TO PASSWD-ARR.
MOVE 5 TO PASSWD-LEN.
EXEC SQL

10-16 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 3: Fetching in Batches

CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY "".
DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

PRINTHT.
DISPLAY "*".
DISPLAY "EMPLOYEE NUMBER SALARY EMPLOYEE NAME".
DISPLAY ™ e
PERFORM PRINT-ROWS
VARYING COUNTER FROM 1 BY 1 UNTIL COUNTER > PRINT-NUM.

PRINT-ROWS.
MOVE EMP-NUMBER(COUNTER) TO D-EMP-NUMBER.
MOVE SALARY(COUNTER) TO D-SALARY.
DISPLAY D-EMP-NUMBER, " ", D-SALARY," ",
EMP-NAME-ARR IN EMP-NAME(COUNTER).
MOVE SPACES TO EMP-NAME-ARR IN EMP-NAME(COUNTER).

SIGN-OFF.
SUBTRACT NUM-RET FROM SQLERRD(3) GIVING PRINT-NUM.
IF (PRINT-NUM > 0) PERFORM PRINT-IT.
EXEC SQL CLOSE C1 END-EXEC.
EXEC SQL COMMIT WORK RELEASE END-EXEC.
DISPLAY "*".
DISPLAY "HAVE A GOOD DAY.".
DISPLAY "".
STOP RUN.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
DISPLAY """,

DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Using Host Tables 10-17



Sample Program 3: Fetching in Batches

10-18 Pro*COBOL Precompiler Programmer’s Guide



11

Using Dynamic SQL

This chapter shows you how to use dynamic SQL, an advanced programming tech-
nique that adds flexibility and functionality to your applications. After weighing
the advantages and disadvantages of dynamic SQL, you learn four methods—from
simple to complex—for writing programs that accept and process SQL statements
“on the fly" at run time. You learn the requirements and limitations of each method
and how to choose the right method for a given job.

Topics are:

What Is Dynamic SQL?

Advantages and Disadvantages of Dynamic SQL
When to Use Dynamic SQL

Requirements for Dynamic SQL Statements
How Dynamic SQL Statements Are Processed
Methods for Using Dynamic SQL

Using Method 1

Sample Program 6: Dynamic SQL Method 1
Using Method 2

Sample Program 7: Dynamic SQL Method 2
Using Method 3

Sample Program 8: Dynamic SQL Method 3
Using Method 4

Using the DECLARE STATEMENT Statement

Using Dynamic SQL

111



« Using Host Tables
« Using PL/SQL

11-2 Pro*COBOL Precompiler Programmer’s Guide



When to Use Dynamic SQL

What Is Dynamic SQL?

Most database applications do a specific job. For example, a simple program might
prompt the user for an employee number, then update rows in the EMP and DEPT
tables. In this case, you know the makeup of the UPDATE statement at precompile
time. That is, you know which tables might be changed, the constraints defined for
each table and column, which columns might be updated, and the datatype of each
column.

However, some applications must accept (or build) and process a variety of SQL
statements at run time. For example, a general-purpose report writer must build
different SELECT statements for the various reports it generates. In this case, the
statement’s makeup is unknown until run time. Such statements can, and probably
will, change from execution to execution. They are aptly called dynamic SQL state-
ments.

Unlike static SQL statements, dynamic SQL statements are not embedded in your
source program. Instead, they are stored in character strings input to or built by the
program at run time. They can be entered interactively or read from a file.

Advantages and Disadvantages of Dynamic SQL

Host programs that accept and process dynamically defined SQL statements are
more versatile than plain embedded SQL programs. Dynamic SQL statements can
be built interactively with input from users having little or no knowledge of SQL.

For example, your program might simply prompt users for a search condition to be
used in the WHERE clause of a SELECT, UPDATE, or DELETE statement. A more
complex program might allow users to choose from menus listing SQL operations,
table and view names, column names, and so on. Thus, dynamic SQL lets you write
highly flexible applications.

However, some dynamic queries require complex coding, the use of special data
structures, and more runtime processing. While you might not notice the added
processing time, you might find the coding difficult unless you fully understand
dynamic SQL concepts and methods.

When to Use Dynamic SQL

In practice, static SQL will meet nearly all your programming needs. Use dynamic
SQL only if you need its open-ended flexibility. Its use is suggested when one or
more of the following items is unknown at precompile time:

« text of the SQL statement (commands, clauses, and so on)

Using Dynamic SQL 11-3



Requirements for Dynamic SQL Statements

« the number of host variables
« the datatypes of host variables

« references to database objects such as columns, indexes, sequences, tables, user-
names, and views

Requirements for Dynamic SQL Statements

To represent a dynamic SQL statement, a character string must contain the text of a
valid SQL statement, but not contain the EXEC SQL clause, host-language delimit-
ers or statement terminator, or any of the following embedded SQL commands:

« CLOSE

« DECLARE
« DESCRIBE
« EXECUTE
« FETCH

= INCLUDE
= OPEN

« PREPARE

«  WHENEVER

In most cases, the character string can contain dummy host variables. They hold
places in the SQL statement for actual host variables. Because dummy host vari-
ables are just place-holders, you do not declare them and can name them anything
you like (hyphens are not allowed). For example, Oracle8 makes no distinction
between the following two strings:

'DELETE FROM EMP WHERE MGR = :MGRNUMBER AND JOB = :JOBTITLE
'DELETE FROM EMP WHERE MGR =:M AND JOB =.J

How Dynamic SQL Statements Are Processed

Typically, an application program prompts the user for the text of a SQL statement
and the values of host variables used in the statement. Then Oracle8 parses the SQL
statement. That is, Oracle8 examines the SQL statement to make sure it follows syn-
tax rules and refers to valid database objects. Parsing also involves checking data-
base access rights, reserving needed resources, and finding the optimal access path.

11-4 Pro*COBOL Precompiler Programmer’s Guide



Methods for Using Dynamic SQL

Next, Oracle8 binds the host variables to the SQL statement. That is, Oracle8 gets
the addresses of the host variables so that it can read or write their values.

Then Oracle8 executes the SQL statement. That is, Oracle8 does what the SQL state-
ment requested, such as deleting rows from a table.

The SQL statement can be executed repeatedly using new values for the host vari-
ables.

Methods for Using Dynamic SQL

Method 1

This section introduces four methods you can use to define dynamic SQL state-
ments. It briefly describes the capabilities and limitations of each method, then
offers guidelines for choosing the right method. Later sections show you how to
use the methods. Also, you can find sample host-language programs in your sup-
plement to this Guide.

The four methods are increasingly general. That is, Method 2 encompasses Method
1, Method 3 encompasses Methods 1 and 2, and so on. However, each method is
most useful for handling a certain kind of SQL statement, as Table 11-1 shows:

Table 11-1 Appropriate Method to Use

Method Kind of SQL Statement

1 non-query without input host variables

2 non-query with known number of input host variables

3 query with known number of select-list items and input host vari-
ables

4 query with unknown number of select-list items or input host vari-
ables

The term select-list item includes column names and expressions.

This method lets your program accept or build a dynamic SQL statement, then
immediately execute it using the EXECUTE IMMEDIATE command. The SQL state-
ment must not be a query (SELECT statement) and must not contain any place-
holders for input host variables. For example, the following host strings qualify:

'DELETE FROM EMP WHERE DEPTNO =20

Using Dynamic SQL 11-5



Methods for Using Dynamic SQL

'‘GRANT SELECT ON EMP TO SCOTT

With Method 1, the SQL statement is parsed every time it is executed (unless you
specify HOLD_CURSOR=YES).

Method 2

This method lets your program accept or build a dynamic SQL statement, then pro-
cess it using the PREPARE and EXECUTE commands. The SQL statement must not
be a query. The number of place-holders for input host variables and the datatypes
of the input host variables must be known at precompile time. For example, the fol-
lowing host strings fall into this category:

INSERT INTO EMP (ENAME, JOB) VALUES ((EMPNAME, :JOBTITLE)
'DELETE FROM EMP WHERE EMPNO = :EMPNUMBER'

With Method 2, the SQL statement is parsed just once (unless you specify
RELEASE_CURSOR=YES), but it can be executed many times with different values
for the host variables. SQL data definition statements such as CREATE are executed
when they are PREPAREG.

Method 3

This method lets your program accept or build a dynamic query, then process it
using the PREPARE command with the DECLARE, OPEN, FETCH, and CLOSE
cursor commands. The number of select-list items, the number of place-holders for
input host variables, and the datatypes of the input host variables must be known
at precompile time. For example, the following host strings qualify:

"SELECT DEPTNO, MIN(SAL), MAX(SAL) FROM EMP GROUP BY DEPTNO’
"SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = :DEPTNUMBER'

Method 4

This method lets your program accept or build a dynamic SQL statement, then pro-
cess it using descriptors (discussed in "Using Method 4" on page 11-25). The num-
ber of select-list items, the number of place-holders for input host variables, and the
datatypes of the input host variables can be unknown until run time. For example,
the following host strings fall into this category:

INSERT INTO EMP (<unknown>) VALUES (<unknown>)

"SELECT <unknown> FROM EMP WHERE DEPTNO =20’

11-6 Pro*COBOL Precompiler Programmer’s Guide



Methods for Using Dynamic SQL

Guidelines

Method 4 is required for dynamic SQL statements that contain an unknown num-
ber of select-list items or input host variables.

With all four methods, you must store the dynamic SQL statement in a character
string, which must be a host variable or quoted literal. When you store the SQL
statement in the string, omit the keywords EXEC SQL and the statement terminator.

With Methods 2 and 3, the number of place-holders for input host variables and the
datatypes of the input host variables must be known at precompile time.

Each succeeding method imposes fewer constraints on your application, but is
more difficult to code. As a rule, use the simplest method you can. However, if a
dynamic SQL statement will be executed repeatedly by Method 1, use Method 2
instead to avoid re-parsing for each execution.

Method 4 provides maximum flexibility, but requires complex coding and a full
understanding of dynamic SQL concepts. In general, use Method 4 only if you can-
not use Methods 1, 2, or 3. The decision logic in Figure 11-1 will help you choose
the correct method.

Avoiding Common Errors

If you use a character array to store the dynamic SQL statement, blank-pad the
array before storing the SQL statement. That way, you clear extraneous characters.
This is especially important when you reuse the array for different SQL statements.
As arule, always initialize (or re-initialize) the host string before storing the SQL
statement.

Do not null-terminate the host string. Oracle8 does not recognize the null termina-
tor as an end-of-string sentinel. Instead, Oracle8 treats it as part of the SQL state-
ment.

If you use a VARCHAR variable to store the dynamic SQL statement, make sure
the length of the VARCHAR is set (or reset) correctly before you execute the PRE-
PARE or EXECUTE IMMEDIATE statement.

EXECUTE resets the SQLWARN warning flags in the SQLCA. So, to catch mistakes
such as an unconditional update (caused by omitting a WHERE clause), check the
SQLWARN flags after executing the PREPARE statement but before executing the
EXECUTE statement.

Using Dynamic SQL 11-7



Methods for Using Dynamic SQL

Figure 11-1  Choosing the Right Method

About the SQL statement...

Does its select list
contain an unknown
number of items?

yes

Is it a query?

Does it
contain an
unknown number of
input host
variables?

Does it contain
input host
variables?

yes

. no
Does it
contain an unknown yes o
number of input e
host variables?
Will it be executed
repeatedly?
v v v

Method 1 Method 2 Method 3 Method 4

11-8 Pro*COBOL Precompiler Programmer’s Guide



Using Method 1

Using Method 1

The simplest kind of dynamic SQL statement results only in “success” or “failure”
and uses no host variables. Some examples follow:

'DELETE FROM table_name WHERE column_name = constant
'‘CREATE TABLE table_name ...

'DROP INDEX index_name’

'UPDATE table_name SET column_name = constant

'GRANT SELECT ON table_name TO usemame’

'REVOKE RESOURCE FROM usemame’

The EXECUTE IMMEDIATE Statement

Method 1 parses, then immediately executes the SQL statement using the EXE-
CUTE IMMEDIATE command. The command is followed by a character string
(host variable or literal) containing the SQL statement to be executed, which cannot
be a query.

The syntax of the EXECUTE IMMEDIATE statement follows:
EXEC SQL EXECUTE IMMEDIATE { {HOST-STRING | STRING-LITERAL }JEND-EXEC.
In the following example, you use the host variable SQL-STMT to store SQL state-
ments input by the user:
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 SQL-STMT PIC X(120);
EXEC SQL END DECLARE SECTION END-EXEC.

LOOP.
DISPLAY "Enter SQL statement:* WITH NO ADVANCING.
ACCEPT SQL-STMT END-EXEC.
*— sgl_stmt now contains the text of a SQL statement
EXEC SQL EXECUTE IMMEDIATE :SQL-STMT END-EXEC.
NEXT.

You can also use string literals, as the following example shows:

EXEC SQL
EXECUTE IMMEDIATE 'REVOKE RESOURCE FROM MILLER’
END-EXEC.

Using Dynamic SQL 11-9



Sample Program 6: Dynamic SQL Method 1

Because EXECUTE IMMEDIATE parses the input SQL statement before every exe-
cution, Method 1 is best for statements that are executed only once. Data definition
statements usually fall into this category.

An Example

The following fragment of a program prompts the user for a search condition to be
used in the WHERE clause of an UPDATE statement, then executes the statement
using Method 1:

THE RELEASE_CURSOR=YES OPTION INSTRUCTS PRO*COBOL TO
RELEASE IMPLICIT CURSORS ASSOCIATED WITH EMBEDDED SQL
STATEMENTS. THIS ENSURES THAT Oracle8 DOES NOT KEEP PARSE
LOCKS ON TABLES, SO THAT SUBSEQUENT DATA MANIPULATION
OPERATIONS ON THOSE TABLES DO NOT RESULT IN PARSE-LOCK
ERRORS.

* ok k% ok ok

EXEC ORACLE OPTION (RELEASE_CURSOR=YES) END-EXEC.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10) VALUE "SCOTT".
01 PASSWD PIC X(10) VALUE 'TIGER".
01 DYNSTMT PIC X(80).

EXEC SQL END DECLARE SECTION END-EXEC.
01 UPDATESTMT PIC X(40).
01 SEARCH-COND PIC X(40).

DISPLAY "ENTER A SEARCH CONDITION FOR STATEMENT:".
MOVE "UPDATE EMP SET COMM =500 WHERE " TO UPDATESTMT.
DISPLAY UPDATESTMT.
ACCEPT SEARCH-COND.
*Concatenate SEARCH-COND to UPDATESTMT and store result
* inDYNSTMT.
STRING UPDATESTMT DELIMITED BY SIZE
SEARCH-COND DELIMITED BY SIZE INTO DYNSTMT.
EXEC SQL EXECUTE IMMEDIATE :DYNSTMT END-EXEC.

Sample Program 6: Dynamic SQL Method 1

This program uses dynamic SQL Method 1 to create a table, insert a row, commit
the insert, then drop the table.

11-10 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 6: Dynamic SQL Method 1

IDENTIFICATION DIVISION.
PROGRAM-D. DYNSQL1.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

* INCLUDE THE ORACLE COMMUNICATIONS AREA, A STRUCTURE
* THROUGH WHICH ORACLES MAKES ADDITIONAL RUNTIME STATUS
* INFORMATION AVAILABLE TO THE PROGRAM.

EXEC SQL INCLUDE SQLCA END-EXEC.

EXEC SQL INCLUDE ORACA END-EXEC.
* THE OPTION ORACA=YES MUST BE SPECIFIED TO ENABLE USE OF
* THE ORACA.

EXEC ORACLE OPTION (ORACA=YES) END-EXEC.

THE RELEASE_CURSOR=YES OPTION INSTRUCTS PRO*COBOL TO
RELEASE IMPLICIT CURSORS ASSOCIATED WITH EMBEDDED SQL
STATEMENTS. THIS ENSURES THAT ORACLE DOES NOT KEEP
PARSE LOCKS ON TABLES, SO THAT SUBSEQUENT DATA
MANIPULATION OPERATIONS ON THOSE TABLES DO NOT RESULT
IN PARSE-LOCK ERRORS.

EXEC ORACLE OPTION (RELEASE_CURSOR=YES) END-EXEC.

E I T R N

* ALLHOST VARIABLES USED IN EMBEDDED SQL MUST APPEAR IN
* THE DECLARE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10) VALUE "SCOTT".
01 PASSWD PIC X(10) VALUE 'TIGER".
01 DYNSTMT PIC X(80) VARYING.
EXEC SQL END DECLARE SECTION END-EXEC.

* DECLARE VARIABLES NEEDED TO DISPLAY COMPUTATIONALS,
01 ORASLNRD PIC 9(9).

PROCEDURE DIVISION.
MAIN.
* BRANCH TO PARAGRAPH SQLERROR IF AN ORACLE ERROR OCCURS.
EXEC SQL
WHENEVER SQLERROR GOTO SQLERROR
END-EXEC.

*  SAVE TEXT OF CURRENT SQL STATEMENT IN THE ORACA IF AN

Using Dynamic SQL 11-11



Sample Program 6: Dynamic SQL Method 1

E I T B

ERROR OCCURS.
MOVE 1 TO ORASTXTF.

CONNECT TO ORACLE.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY "*".

DISPLAY "CONNECTED TO ORACLE.".
DISPLAY"".

EXECUTE A STRING LITERAL TO CREATE THE TABLE. HERE,
YOU GENERALLY USE A STRING VARIABLE INSTEAD OF A
LITERAL, AS IS DONE LATER IN THIS PROGRAM. BUT, YOU
CAN USE A LITERAL IF YOU WISH.
DISPLAY "CREATE TABLE DYN1 (COL1 CHAR())".
EXEC SQL

EXECUTE IMMEDIATE "CREATE TABLE DYN1 (COL1 CHAR())"
END-EXEC.

ASSIGN A SQL STATEMENT TO THE VARYING STRING DYNSTMT.
SET THE -LEN PART TO THE LENGTH OF THE -ARR PART.
MOVE "INSERT INTO DYN1 VALUES (TEST)"
TO DYNSTMT-ARR.
MOVE 36 TO DYNSTMT-LEN.
DISPLAY DYNSTMT-ARR.

EXECUTE DYNSTMT TO INSERT AROW. THE SQL STATEMENT IS
ASTRING VARIABLE WHOSE CONTENTS THE PROGRAM MAY
DETERMINE AT RUN TIME.
EXEC SQL

EXECUTE IMMEDIATE :DYNSTMT
END-EXEC.

COMMIT THE INSERT.
EXEC SQL

COMMIT WORK
END-EXEC.

CHANGE DYNSTMT AND EXECUTE IT TO DROP THE TABLE.
MOVE "DROP TABLE DYN1" TO DYNSTMT-ARR.

MOVE 19 TO DYNSTMT-LEN.

DISPLAY DYNSTMT-ARR.

EXEC SQL

11-12 Pro*COBOL Precompiler Programmer’s Guide



Using Method 2

EXECUTE IMMEDIATE :-DYNSTMT
END-EXEC.

COMMIT ANY PENDING CHANGES AND DISCONNECT FROM ORACLE.
EXEC SQL
COMMIT RELEASE
END-EXEC.
DISPLAY ",
DISPLAY "HAVE A GOOD DAY",
DISPLAY ",
STOP RUN.

SQLERROR.

*

*

*

ORACLE ERROR HANDLER. PRINT DIAGNOSTIC TEXT CONTAINING
ERROR MESSAGE, CURRENT SQL STATEMENT, AND LOCATION OF
ERROR.

DISPLAY SQLERRMC.

DISPLAY "IN, ORASTXTC.

MOVE ORASLNR TO ORASLNRD.

DISPLAY "ON LINE ", ORASLNRD, " OF ", ORASFNMC.

DISABLE ORACLE ERROR CHECKING TO AVOID AN INFINITE LOOP
SHOULD ANOTHER ERROR OCCUR WITHIN THIS PARAGRAPH.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.

ROLL BACK ANY PENDING CHANGES AND DISCONNECT FROM
ORACLE.
EXEC SQL
ROLLBACK RELEASE
END-EXEC.
STOP RUN.

Using Method 2

What Method 1 does in one step, Method 2 does in two. The dynamic SQL state-
ment, which cannot be a query, is first PREPAREd (named and parsed), then EXE-
CUTEd.

With Method 2, the SQL statement can contain place-holders for input host vari-
ables and indicator variables. You can PREPARE the SQL statement once, then EXE-
CUTE it repeatedly using different values of the host variables. Also, you need not

Using Dynamic SQL 11-13



Using Method 2

re-prepare the SQL statement after a COMMIT or ROLLBACK (unless you log off
and reconnect).

Note that you can use EXECUTE for non-queries with Method 4.
The syntax of the PREPARE statement follows:

EXEC SQL PREPARE <STATEMENT-NAME>
FROM {:<HOST-STRING> | <STRING-LITERAL>}
END-EXEC.

PREPARE parses the SQL statement and gives it a name.

STATEMENT-NAME is an identifier used by the precompiler, not a host or program
variable, and should not be declared in a COBOL statement. It simply designates
the PREPAREd statement you want to EXECUTE.

The syntax of the EXECUTE statement is

EXEC SQL
EXECUTE <STATEMENT-NAME> [USING <HOST-VARIABLE-LIST>]
END-EXEC.

where HOST-VARIABLE-LIST stands for the following syntax:
‘<HOST-VARL>[<INDICATOR1>] [, <HOST-VAR2>[<INDICATOR2>], ..]

EXECUTE executes the parsed SQL statement, using the values supplied for each
input host variable. In the following example, the input SQL statement contains the
place-holder n:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
01 DELETE-STMT PIC X(120) VALUE SPACES.

EXEC SQL END DECLARE SECTION END-EXEC.
01 WHERE-STMT  PIC X(40).
01 SEARCH-COND PIC X(40).

MOVE 'DELETE FROM EMP WHERE EMPNO =:N AND ' TO WHERE-STMT.
DISPLAY "Complete this statement's search condition:’.
DISPLAY WHERE-STMT.
ACCEPT SEARCH-COND.

*  Concatenate SEARCH-COND to WHERE-STMT and store in DELETE-STMT
STRING WHERE-STMT DELIMITED BY SIZE

11-14 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 7: Dynamic SQL Method 2

SEARCH-COND DELIMITED BY SIZE INTO
DELETE-STMT.

EXEC SQL PREPARE SQLSTMT FROM :DELETE-STMT END-EXEC.
LOOP.

DISPLAY "Enter employee number. " WITH NO ADVANCING.
ACCEPT EMP-NUMBER.
IF EMP-NUMBER =0

GO TO NEXT.

EXEC SQL EXECUTE SQLSTMT USING :EMP-NUMBER END-EXEC.
NEXT.

With Method 2, you must know the datatypes of input host variables at precompile
time. In the last example, EMP-NUMBER was declared as type PIC S9(4) COMP. It
could also have been declared as type PIC X(4) or PIC S9(4) COMP-1, because
Oracle8 supports all these datatype conversions to the NUMBER internal datatype.

The USING Clause

When the SQL statement is EXECUTEd, input host variables in the USING clause
replace corresponding place-holders in the PREPAREd dynamic SQL statement.

Every place-holder in the PREPAREd dynamic SQL statement must correspond to
a host variable in the USING clause. So, if the same place-holder appears two or
more times in the PREPAREd statement, each appearance must correspond to a
host variable in the USING clause. If one of the host variables in the USING clause
is an array, all must be arrays.

The names of the place-holders need not match the names of the host variables.
However, the order of the place-holders in the PREPAREd dynamic SQL statement
must match the order of corresponding host variables in the USING clause.

To specify nulls, you can associate indicator variables with host variables in the
USING clause. For more information, see "Using Indicator Variables" on page 5-3.

Sample Program 7: Dynamic SQL Method 2

This program uses dynamic SQL Method 2 to insert two rows into the EMP table,
then delete them.

IDENTIFICATION DIVISION.
PROGRAM-ID. DYNSQL2.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

Using Dynamic SQL 11-15



Sample Program 7: Dynamic SQL Method 2

INCLUDE THE SQL COMMUNICATIONS AREA, A STRUCTURE THROUGH
WHICH ORACLE MAKES RUNTIME STATUS INFORMATION (SUCH AS ERROR
CODES, WARNING FLAGS, AND DIAGNOSTIC TEXT) AVAILABLE TO THE
PROGRAM.

EXEC SQL INCLUDE SQLCA END-EXEC.

E I T B

* INCLUDE THE ORACLE COMMUNICATIONS AREA, A STRUCTURE THROUGH
* WHICH ORACLE MAKES ADDITIONAL RUNTIME STATUS INFORMATION
* AVAILABLE TO THE PROGRAM.

EXEC SQL INCLUDE ORACA END-EXEC.

* THE OPTION ORACA=YES MUST BE SPECIFIED TO ENABLE USE OF
* THE ORACA.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.

* ALL HOST VARIABLES USED IN EMBEDDED SQL MUST APPEAR IN THE
* DECLARE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10) VALUE "SCOTT".
01 PASSWD PIC X(10) VALUE "TIGER".
01 DYNSTMT PIC X(80) VARYING.
01 EMPNO PIC S9(4) COMPUTATIONAL VALUE 1234.
01 DEPTNO1 PIC S9(4) COMPUTATIONAL VALUE 97.
01 DEPTNO2 PIC S9(4) COMPUTATIONAL VALUE 99.
EXEC SQL END DECLARE SECTION END-EXEC.

* DECLARE VARIABLES NEEDED TO DISPLAY COMPUTATIONALS.
01 EMPNOD PIC 9(4).
01 DEPTNOID PIC9(2).
01 DEPTNO2D PIC9(2).
01 ORASLNRD PIC 9(9).

PROCEDURE DIVISION.

MAIN.
* BRANCH TO PARAGRAPH SQLERROR IF AN ORACLE ERROR OCCURS.
EXEC SQL
WHENEVER SQLERROR GOTO SQLERROR
END-EXEC.

* SAVE TEXT OF CURRENT SQL STATEMENT IN THE ORACA IF AN ERROR
* OCCURS.
MOVE 1 TO ORASTXTF.

* CONNECT TOORACLE.

11-16 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 7: Dynamic SQL Method 2

* X X X X

E I T B

*

E I R S S T B L B

EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY """,
DISPLAY "CONNECTED TO ORACLE".
DISPLAY """,

ASSIGN A SQL STATEMENT TO THE VARYING STRING DYNSTMT. BOTH

THE ARRAY AND THE LENGTH PARTS MUST BE SET PROPERLY. NOTE

THAT THE STATEMENT CONTAINS TWO HOST VARIABLE PLACEHOLDERS,

V1 AND V2, FOR WHICH ACTUAL INPUT HOST VARIABLES MUST BE

SUPPLIED AT EXECUTE TIME.

MOVE "INSERT INTO EMP (EMPNO, DEPTNO) VALUES (\V1, :V2)"
TODYNSTMT-ARR.

MOVE 49 TO DYNSTMT-LEN.

DISPLAY THE SQL STATEMENT AND ITS CURRENT INPUT HOST
VARIABLES.

DISPLAY DYNSTMT-ARR.

MOVE EMPNO TO EMPNOD.

MOVE DEPTNO1 TO DEPTNOID.

DISPLAY" V1=",EMPNOD," V2=",DEPTNOID.

THE PREPARE STATEMENT ASSOCIATES A STATEMENT NAME WITH A
STRING CONTAINING A SQL STATEMENT. THE STATEMENT NAME ISA
SQL IDENTIFIER, NOT AHOST VARIABLE, AND THEREFORE DOES NOT

APPEAR IN THE DECLARE SECTION.

ASINGLE STATEMENT NAME MAY BE PREPARED MORE THAN ONCE,
OPTIONALLY FROM A DIFFERENT STRING VARIABLE.
EXEC SQL
PREPARE S FROM :DYNSTMT
END-EXEC.

THE EXECUTE STATEMENT EXECUTES A PREPARED SQL STATEMENT
USING THE SPECIFIED INPUT HOST VARIABLES, WHICH ARE
SUBSTITUTED POSITIONALLY FOR PLACEHOLDERS IN THE PREPARED
STATEMENT. FOR EACH OCCURRENCE OF A PLACEHOLDER IN THE
STATEMENT THERE MUST BE A VARIABLE IN THE USING CLAUSE.
THATIS, IF APLACEHOLDER OCCURS MULTIPLE TIMES IN THE
STATEMENT, THE CORRESPONDING VARIABLE MUST APPEAR
MULTIPLE TIMES IN THE USING CLAUSE. THE USING CLAUSE MAY

BE OMITTED ONLY IF THE STATEMENT CONTAINS NO PLACEHOLDERS.

A SINGLE PREPARED STATEMENT MAY BE EXECUTED MORE THAN ONCE,

Using Dynamic SQL 11-17



Sample Program 7: Dynamic SQL Method 2

* OPTIONALLY USING DIFFERENT INPUT HOST VARIABLES,
EXEC SQL
EXECUTE S USING :EMPNO, :-DEPTNO1
END-EXEC.

* INCREMENT EMPNO AND DISPLAY NEW INPUT HOST VARIABLES.
ADD 1 TO EMPNO.
MOVE EMPNO TO EMPNOD.
MOVE DEPTNO2 TO DEPTNO2D.
DISPLAY" V1=",EMPNOD," V2=",DEPTNOZ2D.

* REEXECUTE S TO INSERT THE NEW VALUE OF EMPNO AND A
* DIFFERENT INPUT HOST VARIABLE, DEPTNO2. AREPREPARE IS NOT
* NECESSARY.
EXEC SQL
EXECUTE S USING :EMPNO, :DEPTNO2
END-EXEC.

* ASSIGN ANEW VALUE TO DYNSTMT.
MOVE
"DELETE FROM EMP WHERE DEPTNO =:V1 OR DEPTNO = V2"
TODYNSTMT-ARR.
MOVE 50 TO DYNSTMT-LEN.

* DISPLAY THE NEW SQL STATEMENT AND ITS CURRENT INPUT HOST
* VARIABLES.

DISPLAY DYNSTMT-ARR.

DISPLAY" V1="DEPTNOID," V2=",DEPTNO2D.

REPREPARE S FROM THE NEW DYNSTMT.

EXEC SQL

PREPARE S FROM :DYNSTMT
END-EXEC.

* EXECUTE THE NEW S TO DELETE THE TWO ROWS PREVIOUSLY INSERTED.
EXEC SQL
EXECUTE S USING :DEPTNOL, :DEPTNO2
END-EXEC.

* COMMIT ANY PENDING CHANGES AND DISCONNECT FROM ORACLE.
EXEC SQL
COMMIT RELEASE
END-EXEC.
DISPLAY ",
DISPLAY "HAVE A GOOD DAY""
DISPLAY ™",

11-18 Pro*COBOL Precompiler Programmer’s Guide



Using Method 3

STOP RUN.

SQLERROR.
* ORACLE ERROR HANDLER. PRINT DIAGNOSTIC TEXT CONTAINING ERROR
* MESSAGE, CURRENT SQL STATEMENT, AND LOCATION OF ERROR.
DISPLAY SQLERRMC.
DISPLAY "IN, ORASTXTC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY "ON LINE ", ORASLNRD, " OF ", ORASFNMC.

* DISABLE ORACLE ERROR CHECKING TO AVOID AN INFINITE LOOP
* SHOULD ANOTHER ERROR OCCUR WITHIN THIS PARAGRAPH.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.

* ROLL BACK ANY PENDING CHANGES AND DISCONNECT FROM ORACLE.
EXEC SQL
ROLLBACK RELEASE
END-EXEC.
STOP RUN.

Using Method 3

Method 3 is similar to Method 2 but combines the PREPARE statement with the
statements needed to define and manipulate a cursor. This allows your program to
accept and process queries. In fact, if the dynamic SQL statement is a query, you
must use Method 3 or 4.

For Method 3, the number of columns in the query select list and the number of
place-holders for input host variables must be known at precompile time. How-
ever, the names of database objects such as tables and columns need not be speci-
fied until run time (they cannot duplicate the names of host variables). Clauses that
limit, group, and sort query results (such as WHERE, GROUP BY, and ORDER BY)
can also be specified at run time.

With Method 3, you use the following sequence of embedded SQL statements:

EXEC SQL
PREPARE STATEMENTNAME FROM{:<HOST-STRING> | <STRING-LITERAL>

END-EXEC.

EXEC SQL DECLARE CURSORNAME CURSOR FOR STATEMENTNAME END-EXEC.

EXEC SQL OPEN CURSORNAME [USING <HOST-VARIABLE-LIST>] END-EXEC.

EXEC SQL FETCH CURSORNAME INTO <HOST-VARIABLE-LIST> END-EXEC.

Using Dynamic SQL 11-19



Using Method 3

PREPARE

DECLARE

EXEC SQL CLOSE CURSORNAME END-EXEC.

Now let us look at what each statement does.

PREPARE parses the dynamic SQL statement and gives it a name. In the following
example, PREPARE parses the query stored in the character string SELECT-STMT
and gives it the name SQLSTMT:

MOVE 'SELECT MGR, JOB FROM EMP WHERE SAL <:SALARY’
TO SELECT-STMT.
EXEC SQL PREPARE SQLSTMT FROM :SELECT-STMT END-EXEC.

Commonly, the query WHERE clause is input from a terminal at run time or is gen-
erated by the application.

The identifier SQLSTMT is not a host or program variable, but must be unique. It
designates a particular dynamic SQL statement.

DECLARE defines a cursor by giving it a name and associating it with a specific
query. The cursor declaration is local to its precompilation unit. Continuing our
example, DECLARE defines a cursor named EMP-CURSOR and associates it with
SQL-STMT, as follows:

EXEC SQL DECLARE EMPCURSOR CURSOR FOR SQLSTMT END-EXEC.

The identifiers SQLSTMT and EMPCURSOR are not host or program variables, but
must be unique. If you declare two cursors using the same statement name,
Pro*COBOL considers the two cursor names synonymous. For example, if you exe-
cute the statements

EXEC SQL PREPARE SQLSTMT FROM :SELECT-STMT END-EXEC.
EXEC SQL DECLARE EMPCURSOR FOR SQLSTMT END-EXEC.
EXEC SQL PREPARE SQLSTMT FROM :DELETE-STMT END-EXEC.
EXEC SQL DECLARE DEPCURSOR FOR SQLSTMT END-EXEC.

when you OPEN EMPCURSOR, you will process the dynamic SQL statement
stored in DELETE-STMT, not the one stored in SELECT-STMT.

11-20 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 8: Dynamic SQL Method 3

OPEN

FETCH

CLOSE

OPEN allocates an Oracle8 cursor, binds input host variables, and executes the
guery, identifying its active set. OPEN also positions the cursor on the first row in
the active set and zeroes the rows-processed count kept by the third element of
SQLERRD in the SQLCA. Input host variables in the USING clause replace corre-
sponding place-holders in the PREPAREd dynamic SQL statement.

In our example, OPEN allocates EMPCURSOR and assigns the host variable SAL-
ARY to the WHERE clause, as follows:

EXEC SQL OPEN EMPCURSOR USING :SALARY END-EXEC.

FETCH returns a row from the active set, assigns column values in the select list to
corresponding host variables in the INTO clause, and advances the cursor to the
next row. When no more rows are found, FETCH returns the “no data found”
Oracle8 error code to SQLCODE in the SQLCA.

In our example, FETCH returns a row from the active set and assigns the values of
columns MGR and JOB to host variables MGR-NUMBER and JOB-TITLE, as fol-
lows:

EXEC SQL FETCH EMPCURSOR INTO :MGR-NUMBER,:JOB-TITLE END-EXEC.

CLOSE disables the cursor. Once you CLOSE a cursor, you can no longer FETCH
from it. In our example, the CLOSE statement disables EMPCURSOR, as follows:

EXEC SQL CLOSE EMPCURSOR END-EXEC.

Sample Program 8: Dynamic SQL Method 3

This program uses dynamic SQL Method 3 to retrieve the names of all employees
in a given department from the EMP table.

IDENTIFICATION DIVISION.
PROGRAM-ID. DYNSQL3.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

* INCLUDE THE SQL COMMUNICATIONS AREA, A STRUCTURE
* THROUGH WHICH ORACLE MAKES RUNTIME STATUS INFORMATION

Using Dynamic SQL 11-21



Sample Program 8: Dynamic SQL Method 3

* (SUCH AS ERROR CODES, WARNING FLAGS, AND DIAGNOSTIC
* TEXT) AVAILABLE TO THE PROGRAM.
EXEC SQL INCLUDE SQLCA END-EXEC.

*  INCLUDE THE ORACLE COMMUNICATIONS AREA, ASTRUCTURE
*  THROUGH WHICH ORACLE MAKES ADDITIONAL RUNTIME STATUS
* INFORMATION AVAILABLE TO THE PROGRAM.

EXEC SQL INCLUDE ORACA END-EXEC.

* THE ORACA=YES OPTION MUST BE SPECIFIED TO ENABLE USE OF
* THE ORACA.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.

* ALL HOST VARIABLES USED IN EMBEDDED SQL MUST APPEAR IN
* THE DECLARE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME PIC X(10) VALUE "SCOTT".
01 PASSWD  PIC X(10) VALUE 'TIGER".
01 DYNSTMT PIC X(80) VARYING.
01 ENAME PIC X(10).
01 DEPTNO  PIC S99 COMPUTATIONAL VALUE 10.
EXEC SQL END DECLARE SECTION END-EXEC.

* DECLARE VARIABLES NEEDED TO DISPLAY COMPUTATIONALS.
01 DEPTNOD PIC9(2).
01 ENAMED PIC X(10).
01 SQLERRD3 PIC9(2).
01 ORASLNRD PIC 9(4).

PROCEDURE DIVISION.

MAIN.
* BRANCH TO PARAGRAPH SQLERROR IF AN ORACLE ERROR OCCURS.
EXEC SQL
WHENEVER SQLERROR GO TO SQLERROR
END-EXEC.

* SAVE TEXT OF CURRENT SQL STATEMENT IN THE ORACA IF AN
* ERROROCCURS.
MOVE 1 TO ORASTXTF.

* CONNECT TOORACLE.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.

11-22 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 8: Dynamic SQL Method 3

* 0% X X X

E I T B I

E I B B N

DISPLAY "*".
DISPLAY "CONNECTED TO ORACLE.".
DISPLAY "".

ASSIGN A SQL QUERY TO THE VARYING STRING DYNSTMT. BOTH

THE ARRAY AND THE LENGTH PARTS MUST BE SET PROPERLY.

NOTE THAT THE STATEMENT CONTAINS ONE HOST VARIABLE

PLACEHOLDER, V1, FOR WHICH AN ACTUAL INPUT HOST

VARIABLE MUST BE SUPPLIED AT OPEN TIME.

MOVE "SELECT ENAME FROM EMP WHERE DEPTNO = :V1'
TODYNSTMT-ARR.

MOVE 40 TO DYNSTMT-LEN.

DISPLAY THE SQL STATEMENT AND ITS CURRENT INPUT HOST
VARIABLE.

DISPLAY DYNSTMT-ARR.
MOVE DEPTNO TO DEPTNOD.
DISPLAY" V1=",DEPTNOD.
DISPLAY "*".

DISPLAY "EMPLOYEE".
DISPLAY "—".

THE PREPARE STATEMENT ASSOCIATES A STATEMENT NAME WITH
ASTRING CONTAINING A SELECT STATEMENT. THE STATEMENT
NAME, WHICH MUST BE UNIQUE, IS A SQL IDENTIFIER, NOT A
HOST VARIABLE, AND SO DOES NOT APPEAR IN THE DECLARE
SECTION.
EXEC SQL

PREPARE S FROM :DYNSTMT
END-EXEC.

THE DECLARE STATEMENT ASSOCIATES A CURSOR WITHAPREPARED
STATEMENT. THE CURSOR NAME, LIKE THE STATEMENT NAME,
DOES NOT APPEAR IN THE DECLARE SECTION.
EXEC SQL
DECLARE C CURSORFOR S
END-EXEC.

THE OPEN STATEMENT EVALUATES THE ACTIVE SET OF THE
PREPARED QUERY USING THE SPECIFIED INPUT HOST

VARIABLES, WHICH ARE SUBSTITUTED POSITIONALLY FOR
PLACEHOLDERS IN THE PREPARED QUERY. FOR EACH
OCCURRENCE OF A PLACEHOLDER IN THE STATEMENT THERE MUST
BE AVARIABLE IN THE USING CLAUSE.

Using Dynamic SQL 11-23



Sample Program 8: Dynamic SQL Method 3

* ok k% ok ok

*

THATIS, IF APLACEHOLDER OCCURS MULTIPLE TIMES IN THE
STATEMENT, THE CORRESPONDING VARIABLE MUST APPEAR
MULTIPLE TIMES IN THE USING CLAUSE. THE USING CLAUSE

MAY BE OMITTED ONLY IF THE STATEMENT CONTAINS NO
PLACEHOLDERS. OPEN PLACES THE CURSOR AT THE FIRST ROW
OF THE ACTIVE SET IN PREPARATION FOR AFETCH.

ASINGLE DECLARED CURSOR MAY BE OPENED MORE THAN ONCE,
OPTIONALLY USING DIFFERENT INPUT HOST VARIABLES.
EXEC SQL
OPEN C USING :DEPTNO
END-EXEC.

BRANCH TO PARAGRAPH NOTFOUND WHEN ALL ROWS HAVE BEEN
RETRIEVED.
EXEC SQL
WHENEVER NOT FOUND GO TO NOTFOUND
END-EXEC.

GETROWS.

E I I D

THE FETCH STATEMENT PLACES THE SELECT LIST OF THE
CURRENT ROW INTO THE VARIABLES SPECIFIED BY THE INTO
CLAUSE, THEN ADVANCES THE CURSOR TO THE NEXT ROW. IF
THERE ARE MORE SELECT-LIST FIELDS THAN OUTPUT HOST
VARIABLES, THE EXTRA FIELDS ARE NOT RETURNED.
SPECIFYING MORE OUTPUT HOST VARIABLES THAN SELECT-LIST
FIELDS RESULTS IN AN ORACLE ERROR.
EXEC SQL

FETCH C INTO :ENAME
END-EXEC.
MOVE ENAME TO ENAMED.
DISPLAY ENAVED.

LOOP UNTIL NOT FOUND CONDITION IS DETECTED.
GO TO GETROWS.

NOTFOUND.

*

*

MOVE SQLERRD(3) TO SQLERRDS.
DISPLAY ",
DISPLAY "QUERY RETURNED ", SQLERRDS, " ROW(S).".

THE CLOSE STATEMENT RELEASES RESOURCES ASSOCIATED WITH
THE CURSOR.
EXEC SQL

CLOSEC

11-24 Pro*COBOL Precompiler Programmer’s Guide



Using Method 4

END-EXEC.

COMMIT ANY PENDING CHANGES AND DISCONNECT FROM ORACLE.
EXEC SQL
COMMIT RELEASE
END-EXEC.
DISPLAY ",
DISPLAY "HAVE A GOOD DAY""
DISPLAY ™",
STOP RUN.

SQLERROR.

*

*

*

ORACLE ERROR HANDLER. PRINT DIAGNOSTIC TEXT CONTAINING
ERROR MESSAGE, CURRENT SQL STATEMENT, AND LOCATION OF
ERROR.

DISPLAY SQLERRMC.

DISPLAY "IN, ORASTXTC.

MOVE ORASLNR TO ORASLNRD.

DISPLAY "ON LINE ", ORASLNRD, " OF ", ORASFNMC.

DISABLE ORACLE ERROR CHECKING TO AVOID AN INFINITE LOOP
SHOULD ANOTHER ERROR OCCUR WITHIN THIS PARAGRAPH.
EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.

RELEASE RESOURCES ASSOCIATED WITH THE CURSOR.
EXEC SQL

CLOSEC
END-EXEC.

ROLL BACK ANY PENDING CHANGES AND DISCONNECT FROM
ORACLE.
EXEC SQL
ROLLBACK RELEASE
END-EXEC.
STOP RUN.
exit program with an error;

Using Method 4

This section only gives an overview. For details, see Chapter 12, “Using Dynamic
SQL: Advanced Concepts”.

Using Dynamic SQL 11-25



Using Method 4

There is a kind of dynamic SQL statement that your program cannot process using
Method 3. When the number of select-list items or place-holders for input host vari-
ables is unknown until run time, your program must use a descriptor. A descriptor
is an area of memory used by your program and Oracle8 to hold a complete
description of the variables in a dynamic SQL statement.

Recall that for a multi-row query, you FETCH selected column values INTO a list of
declared output host variables. If the select list is unknown, the host-variable list
cannot be established at precompile time by the INTO clause. For example, you
know the following query returns two column values:

EXEC SQL
SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = :DEPT-NUMBER
END-EXEC.

However, if you let the user define the select list, you might not know how many
column values the query will return.

Need for the SQLDA

To process this kind of dynamic query, your program must issue the DESCRIBE
SELECT LIST command and declare a data structure called the SQL Descriptor
Area (SQLDA). Because it holds descriptions of columns in the query select list,
this structure is also called a select descriptor.

Likewise, if a dynamic SQL statement contains an unknown number of place-hold-
ers for input host variables, the host-variable list cannot be established at precom-
pile time by the USING clause.

To process the dynamic SQL statement, your program must issue the DESCRIBE
BIND VARIABLES command and declare another kind of SQLDA called a hind
descriptor to hold descriptions of the place-holders for the input host variables.
(Input host variables are also called bind variables.)

If your program has more than one active SQL statement (it might have OPENed
two or more cursors, for example), each statement must have its own SQLDA(s).
However, non-concurrent cursors can reuse SQLDAs. There is no set limit on the
number of SQLDASs in a program.

The DESCRIBE Statement

DESCRIBE initializes a descriptor to hold descriptions of select-list items or input
host variables.

11-26 Pro*COBOL Precompiler Programmer’s Guide



Using Method 4

If you supply a select descriptor, the DESCRIBE SELECT LIST statement examines
each select-list item in a PREPAREd dynamic query to determine its name,
datatype, constraints, length, scale, and precision. It then stores this information in
the select descriptor.

If you supply a bind descriptor, the DESCRIBE BIND VARIABLES statement exam-
ines each place-holder in a PREPAREd dynamic SQL statement to determine its
name, length, and the datatype of its associated input host variable. It then stores
this information in the bind descriptor for your use. For example, you might use
place-holder names to prompt the user for the values of input host variables.

What Is a SQLDA?

A SQLDA is a host-program data structure that holds descriptions of select-list
items or input host variables.

Though SQLDAs differ among host languages, a generic select SQLDA contains
the following information about a query select list:

« maximum number of columns that can be DESCRIBEd
« actual number of columns found by DESCRIBE

« addresses of buffers to store column values

« lengths of column values

« datatypes of column values

« addresses of indicator-variable values

« addresses of buffers to store column names

« sizes of buffers to store column names

« current lengths of column names

A generic bind SQLDA contains the following information about the input host
variables in a SQL statement:

« maximum number of place-holders that can be DESCRIBEd
« actual number of place-holders found by DESCRIBE

« addresses of input host variables

« lengths of input host variables

« datatypes of input host variables

Using Dynamic SQL 11-27



Using Method 4

addresses of indicator variables

addresses of buffers to store place-holder names
sizes of buffers to store place-holder names

current lengths of place-holder names

addresses of buffers to store indicator-variable names
sizes of buffers to store indicator-variable names

current lengths of indicator-variable names

Implementing Method 4

With Method 4, you generally use the following sequence of embedded SQL state-
ments:

EXEC SQL
PREPARE <STATEMENT-NAME>
FROM {:<HOST-STRING> | <STRING-LITERAL>}
END-EXE
EXEC SQL
DECLARE <CURSOR-NAME> CURSOR FOR <STATEMENT-NAME>
END-EXEC.
EXEC SQL
DESCRIBE BIND VARIABLES FOR <STATEMENT-NAME>
INTO <BIND-DESCRIPTOR-NAME>
END-EXEC.
EXEC SQL
OPEN <CURSOR-NAME>
[USING DESCRIPTOR <BIND-DESCRIPTOR-NAME>]
END-EXEC.
EXEC SQL
DESCRIBE [SELECT LIST FOR] <STATEMENT-NAME>
INTO <SELECT-DESCRIPTOR-NAME>
END-EXEC.
EXEC SQL
FETCH <CURSOR-NAME>
USING DESCRIPTOR <SELECT-DESCRIPTOR-NAME>
END-EXEC.
EXEC SQL CLOSE <CURSOR-NAME> END-EXEC.

Select and bind descriptors need not work in tandem. If the number of columns in
a query select list is known, but the number of place-holders for input host vari-

11-28 Pro*COBOL Precompiler Programmer’s Guide



Using the DECLARE STATEMENT Statement

ables is unknown, you can use the Method 4 OPEN statement with the following
Method 3 FETCH statement:

EXEC SQL FETCH <EMPCURSOR> INTO :<HOST-VARIABLE-LIST> END-EXEC.
Conversely, if the number of place-holders for input host variables is known, but

the number of columns in the select list is unknown, you can use the following
Method 3 OPEN statement with the Method 4 FETCH statement:

EXEC SQL OPEN <CURSORNAME> [USING <HOST-VARIABLE-LIST>] END-EXEC.

Note that EXECUTE can be used for non-queries with Method 4.

Using the DECLARE STATEMENT Statement

With Methods 2, 3, and 4, you might need to use the statement
EXEC SQL [AT <dbname>] DECLARE <statementname> STATEMENT END-EXEC.

where dbname and statementname are identifiers used by Pro*COBOL, not host or
program variables.

DECLARE STATEMENT declares the name of a dynamic SQL statement so that the
statement can be referenced by PREPARE, EXECUTE, DECLARE CURSOR, and
DESCRIBE. It is required if you want to execute the dynamic SQL statement at a
non-default database. An example using Method 2 follows:

EXEC SQL AT <remotedb> DECLARE <sgjstmt> STATEMENT END-EXEC.
EXEC SQL PREPARE <sgftmt> FROM :<SQL-STRING> END-EXEC.
EXEC SQL EXECUTE <sqistmt> END-EXEC.

In the example, remotedb tells Oracle8 where to EXECUTE the SQL statement.

With Methods 3 and 4, DECLARE STATEMENT is also required if the DECLARE
CURSOR statement precedes the PREPARE statement, as shown in the following
example:

EXEC SQL DECLARE <sgistmt> STATEMENT END-EXEC.

EXEC SQL DECLARE <empcursor> CURSOR FOR <sqglstmt> END-EXEC.

EXEC SQL PREPARE <sqlstmt> FROM :<SQL-STRING> END-EXEC.
The usual sequence of statements is

EXEC SQL PREPARE <sglstmt> FROM :<SQL-STRING> END-EXEC.
EXEC SQL DECLARE <empcursor> CURSOR FOR <sglstmt> END-EXEC.

Using Dynamic SQL 11-29



Using Host Tables

Using Host Tables

Usage of host tables in static and dynamic SQL is similar. For example, to use input
host tables with dynamic SQL Method 2, use the syntax

EXEC SQL EXECUTE <statementname> USING :HOST-TABLE-LIST END-EXEC.
where HOST-TABLE-LIST contains one or more host tables. With Method 3, use the
following syntax:

OPEN <cursomame> USING :<HOST-TABLE-LIST> END-EXEC.

To use output host tables with Method 3, use the following syntax:
FETCH <cursomame> INTO :<HOST-TABLE-LIST> END-EXEC.
With Method 4, you must use the optional FOR clause to tell Oracle8 the size of

your input or output host table. To learn how this is done, see your host-language
supplement.

Using PL/SQL

With Method 1

With Method 2

Pro*COBOL treats a PL/SQL block like a single SQL statement. So, like a SQL state-
ment, a PL/SQL block can be stored in a string host variable or literal. When you
store the PL/SQL block in the string, omit the keywords EXEC SQL EXECUTE, the
keyword END-EXEC, and the statement terminator.

However, there are two differences in the way Pro*COBOL handles SQL and
PL/SQL:

« Pro*COBOL treats all PL/SQL host variables as input host variables whether
they serve as input or output host variables (or both) inside the PL/SQL block.

« You cannot FETCH from a PL/SQL block because it might contain any number
of SQL statements.

If the PL/SQL block contains no host variables, you can use Method 1 to EXECUTE
the PL/SQL string in the usual way.

If the PL/SQL block contains a known number of input and output host variables,
you can use Method 2 to PREPARE and EXECUTE the PL/SQL string in the usual
way.

11-30 Pro*COBOL Precompiler Programmer’s Guide



Using PL/SQL

With Method 3

With Method 4

Attention:

Caution

You must put all host variables in the USING clause. When the PL/SQL string is
EXECUTEd, host variables in the USING clause replace corresponding place-hold-
ers in the PREPARE string. Though Pro*COBOL treats all PL/SQL host variables
as input host variables, values are assigned correctly. Input (program) values are
assigned to input host variables, and output (column) values are assigned to output
host variables.

Every place-holder in the PREPAREd PL/SQL string must correspond to a host
variable in the USING clause. So, if the same place-holder appears two or more
times in the PREPAREA string, each appearance must correspond to a host variable
in the USING clause.

Methods 2 and 3 are the same except that Method 3 allows FETCHing. Since you
cannot FETCH from a PL/SQL block, use Method 2 instead.

If the PL/SQL block contains an unknown number of input or output host vari-
ables, you must use Method 4.

To use Method 4, you set up one bind descriptor for all the input and output host
variables. Executing DESCRIBE BIND VARIABLES stores information about input
and output host variables in the bind descriptor. Because Pro*COBOL treats all
PL/SQL host variables as input host variables, executing DESCRIBE SELECT LIST
has no effect.

The use of bind descriptors with Method 4 is detailed in your host-language supple-
ment.

In dynamic SQL Method 4, a host array cannot be bound to a PL/SQL procedure
with a parameter of type “table."

Do not use ANSI-style Comments (-- ...) in a PL/SQL block that will be processed
dynamically because end-of-line characters are ignored. As a result, ANSI-style
Comments extend to the end of the block, not just to the end of a line. Instead, use
C-style Comments (/* ... */).

Using Dynamic SQL 11-31



Using PL/SQL

11-32 Pro*COBOL Precompiler Programmer’s Guide



12

Using Dynamic SQL: Advanced Concepts

This chapter shows you how to implement dynamic SQL Method 4, which lets
your program accept or build dynamic SQL statements that contain a varying num-
ber of host variables. Subjects discussed include the following:

«  Meeting the Special Requirements of Method 4

» Understanding the SQL Descriptor Area (SQLDA)
« The SQLDA Variables

« Some Preliminaries

« The Basic Steps

« A Closer Look at Each Step

« Using Host Tables with Method 4

«  Sample Program 10: Dynamic SQL Method 4

Note: For a discussion of dynamic SQL Methods 1, 2, and 3, and an overview
of Method 4, see Chapter 11, “Using Dynamic SQL”

Using Dynamic SQL: Advanced Concepts 12-1



Meeting the Special Requirements of Method 4

Meeting the Special Requirements of Method 4

Before looking into the requirements of Method 4, you should feel comfortable
with the terms select-list item and place-holder. Select-list items are the columns or
expressions following the keyword SELECT in a query. For example, the following
dynamic query contains three select-list items:

SELECT ENAME, JOB, SAL + COMM FROM EMP WHERE DEPTNO =20

Place-holders are dummy bind (input) variables that hold places in a SQL statement
for actual bind variables. You do not declare place-holders and can name them anything
you like. place-holders for bind variables are most often used in the SET, VALUES, and
WHERE clauses. For example, the following dynamic SQL statements each contain two
place-holders.

INSERT INTO EMP (EMPNO, DEPTNO) VALUES (E, :D)
DELETE FROM DEPT WHERE DEPTNO =:DNUM AND LOC =:DLOC

place-holders cannot reference table or column names.

What Makes Method 4 Special?
Unlike Methods 1, 2, and 3, dynamic SQL Method 4 lets your program

« accept or build dynamic SQL statements that contain an unknown number of
select-list items or place-holders

« take explicit control over datatype conversion between Oracle8 and COBOL
types

To add this flexibility to your program, you must give the Oracle8 runtime library
additional information.

What Information Does Oracle8 Need?

The Pro*COBOL Precompiler generates calls to Oracle8 for all executable dynamic
SQL statements. If a dynamic SQL statement contains no select-list items or place-

holders, Oracle8 needs no additional information to execute the statement. The fol-
lowing DELETE statement falls into this category:

*  Dynamic SQL statement...
MOVE 'DELETE FROM EMP WHERE DEPTNO =30 TO STMT.

However, most dynamic SQL statements contain select-list items or place-holders
for bind variables, as shown in the following UPDATE statement:

12-2 Pro*COBOL Precompiler Programmer’s Guide



Meeting the Special Requirements of Method 4

*  Dynamic SQL statement with place-holders...
MOVE 'UPDATE EMP SET COMM =:C WHERE EMPNO =:E TO STMT.

To execute a dynamic SQL statement that contains select-list items and/or place-
holders for bind variables, Oracle8 needs information about the program variables
that will hold output or input values. Specifically, Oracle8 needs the following
information:

« the number of select-list items and the number of bind variables
« the length of each select-list item and bind variable
« the datatype of each select-list item and bind variable

» the memory address of each output variable that will store the value of a select-
list item, and the address of each bind variable

For example, to write the value of a select-list item, Oracle8 needs the address of
the corresponding output variable.

Where Is the Information Stored?

All the information Oracle8 needs about select-list items or place-holders for bind
variables, except their values, is stored in a program data structure called the SQL
Descriptor Area (SQLDA).

Descriptions of select-list items are stored in a select SQLDA, and descriptions of place-
holders for bind variables are stored in a bind SQLDA.

The values of select-list items are stored in output buffers; the values of bind vari-
ables are stored in input buffers. You use the library routine SQLADR to store the
addresses of these data buffers in a select or bind SQLDA, so that Oracle8 knows
where to write output values and read input values.

How do values get stored in these data variables? Output values are FETCHed
using a cursor, and input values are filled in by your program, typically from infor-
mation entered interactively by the user.

How Is the Information Obtained?

You use the DESCRIBE statement to help get the information Oracle8 needs. The
DESCRIBE SELECT LIST statement examines each select-list item to determine its
name, datatype, constraints, length, scale, and precision, then stores this informa-
tion in the select SQLDA for your use. For example, you might use select-list names
as column headings in a printout. DESCRIBE also stores the total number of select-
list items in the SQLDA.

Using Dynamic SQL: Advanced Concepts 12-3



Understanding the SQL Descriptor Area (SQLDA)

The DESCRIBE BIND VARIABLES statement examines each place-holder to deter-
mine its name and length, then stores this information in an input buffer and bind
SQLDA for your use. For example, you might use place-holder names to prompt
the user for the values of bind variables.

Understanding the SQL Descriptor Area (SQLDA)

This section describes the SQLDA data structure in detail. You learn how to declare
it, what variables it contains, how to initialize them, and how to use them in your
program.

Purpose of the SQLDA

Method 4 is required for dynamic SQL statements that contain an unknown num-
ber of select-list items or place-holders for bind variables. To process this kind of
dynamic SQL statement, your program must explicitly declare SQLDAs, also called
descriptors. Each descriptor corresponds to a group item in your program.

A select descriptor stores descriptions of select-list items and the addresses of output buffers
that hold the names and values of select-list items.

Note: The name of a select-list item can be a column name, a column alias, or
the text of an expression such as SAL + COMM.

A bind descriptor stores descriptions of bind variables and indicator variables, and the
addresses of input buffers where the names and values of bind variables and indicator
variables are stored.

Remember, some descriptor variables contain addresses, not values. So, you must
declare data buffers to hold the values. You decide the sizes of the required input
and output buffers. Because COBOL does not support pointers, you must use the
library subroutine SQLADR to get the addresses of input and output buffers. You
learn how to call SQLADR in the section "Using SQLADR" on page 12-14.

Multiple SQLDAS

If your program has more than one active dynamic SQL statement, each statement
must have its own SQLDA(s). You can declare any number of SQLDAs with differ-
ent names. For example, you might declare three select SQLDAs named SELDSC1,
SELDSC2, and SELDSC3, so that you can FETCH from three concurrently open cur-
sors. However, non-concurrent cursors can reuse SQLDASs.

12-4 Pro*COBOL Precompiler Programmer’s Guide



Understanding the SQL Descriptor Area (SQLDA)

Declaring a SQLDA

To declare select and bind SQLDAs, you can hardcode them into your program
using the sample select and bind SQLDAs shown in Figure 12-1. You can modify
the table dimensions to suit your needs.

Note: For byte-swapped platforms, use COMP5 instead of COMP when declaring a
SQLDA.

Using Dynamic SQL: Advanced Concepts 12-5



Understanding the SQL Descriptor Area (SQLDA)

Figure 12-1  Sample Pro*COBOL SQLDA Descriptors and Data Buffers

01 SELDSC.
05 SQLDNUM Pl C S9(9) COVP.
05 SQLDFND Pl C S9(9) COVP.
05 SELDVAR OCCURS 20 TI MES.
10 SELDV PI C S9(9) COVP.
10  SELDFMT Pl C S9(9) COVP.
10  SELDVLN PI C S9(9) COVP.
10  SELDFMTL Pl C S9(4) COVP.
10 SELDVTYP Pl C S9(4) COVP.
10 SELDI Pl C S9(9) COVP.
10  SELDH-VNAME PI C S9(9) COVP.
10  SELDH-MAX—VNAVEL Pl C S9(4) COVP.
10  SELDH-CUR-VNAMEL PI C S9(4) COVP.
10  SELDI —~VNAME Pl C S9(9) COVP.
10  SELDI —MAX-VNAMEL PI C S9(4) COVP.
10  SELDI —CUR-VNAMEL PI C S9(4) COVP.
10 SELDFCLP Pl C S9(9) COVP.
10  SELDFCRCP Pl C S9(9) COVP.
01 XSELDI.
05 SEL-DI OCCURS 20 TI MES PI C S9(4) COWP.

01  XSELDI VNAME.

05 SEL-DI —-VNAME OCCURS 20 TI MES PI C X(80).
01  XSELDv.

05 SEL-DV OCCURS 20 TI MES PI C X(80) .
01 XSELDHVNAME

05 SEL-DH-VNAMVE OCCURS 20 TI MES PI C X(80).

01  XSEL—DFMI PIC X(6).
01 BNDDSC.
05  SQLDNUM Pl C S9(9) COVP.
05 SQLDFND Pl C S9(9) COVP.
05 BNDDVAR OCCURS 20 TI MES.
10  BNDDV PI C S9(9) COVP.
10  BNDDFMT Pl C S9(9) CQOWP.
10  BNDDVLN Pl C S9(9) COVP.
10  BNDDFMTL Pl C S9(4) COVP.
10  BNDDVTYP Pl C S9(4) COVP.
10  BNDDI Pl C S9(9) COVP.
10  BNDDH VNAME Pl C S9(9) COWP.
10  BNDDH-MAX—VNAMEL Pl C S9(4) COVP.
10  BNDDH-CUR-VNAMEL Pl C S9(4) COVP.
10  BNDDI —~VNAME Pl C S9(9) COVP.
10  BNDDI —MAX—VNAVEL Pl C S9(4) COWP.
10  BNDDI —CUR-VNAMEL Pl C S9(4) COWP.
10 BNDDFCLP Pl C S9(9) COVP.
10  BNDDFCRCP Pl C S9(9) COVP.
01 XBNDDI .
05 BND-DI OCCURS 20 TI NES PI C S9(4) COWP.

01  XBNDDI NANE.

05 BND-DI-VNAME ~ OCCURS 20 TI MES PI C X(80).
01  XBNDDV.

05 BND-DV OCCURS 20 TI MES PI C X(80) .
01  XBNDDHVNAVE

05 BND-DH-VNAME ~ OCCURS 20 TI MES PI C X(80) .
01  XBND-DFMT PI C X(6).

12-6 Pro*COBOL Precompiler Programmer’s Guide



Understanding the SQL Descriptor Area (SQLDA)

You might want to store the SQLDAs in files (named SELDSC and BNDDSC, for
example), then copy the files into your program with the INCLUDE statement as
follows:

EXEC SQL INCLUDE SELDSC END-EXEC.
EXEC SQL INCLUDE BNDDSC END-EXEC.

Figure 12-2 shows whether variables are set by SQLADR calls, DESCRIBE com-
mands, FETCH commands, or program assignments.

Figure 12-2  How Variables Are Set

Dynamic SQL Statement

'SELECT ENAME FROM EMP WHERE EMPNO=:NUM'

! !
select—list item (SLI) placeholder (P) for
bind variable (BV)
Select SQLDA Bind SQLDA
Set by:
SQLADR Address of SLI name buffer Address of P name buffer
SQLADR Address of SLI value buffer Address of BV value buffer
DESCRIBE Length of SLI name Length of P name
DESCRIBE Datatype of select-list item
Program Length of SLI name buffer Length of P name buffer
Program Length of BV value buffer Length of BV value buffer
Program Datatype of SLI value buffer Datatype of BV value buffer
Output Buffers Input Buffers
DESCRIBE Name of select-list item Name of placeholder
FETCH Value of select-list item Value of bind variable

Using Dynamic SQL: Advanced Concepts 12-7



The SQLDA Variables

The SQLDA Variables

This section explains the purpose and use of each variable in the SQLDA.

SQLDNUM

This variable specifies the maximum number of select-list items or place-holders
that can be DESCRIBEd. Thus, SQLDNUM determines the number of elements in
the descriptor tables.

Before issuing a DESCRIBE command, you must set this variable to the dimension
of the descriptor tables. After the DESCRIBE, you must reset it to the actual num-
ber of variables DESCRIBEd, which is stored in SQLDFND.

SQLDFND

This is the actual number of select-list items or place-holders found by the
DESCRIBE command.

SQLDFND is set by DESCRIBE. If SQLDFND is negative, the DESCRIBE command
found too many select-list items or place-holders for the size of the descriptor. For
example, if you set SQLDNUM to 10 but DESCRIBE finds 11 select-list items or
place-holders, SQLDFND is set to -11. If this happens, you cannot process the SQL
statement without reallocating the descriptor.

After the DESCRIBE, you must set SQLDNUM equal to SQLDFND.

SELDV|BNDDV

This is a table containing the addresses of data buffers that store select-list or bind-
variable values.

You must set the elements of SELDV or BNDDV using SQLADR.

Select Descriptors
The following statement

EXEC SQL FETCH ... USING DESCRIPTOR ...
directs Oracle8 to store FETCHed select-list values in the data buffers addressed by

SELDV(1) through SELDV(SQLDNUM). Thus, Oracle8 stores the Jth select-list
value in SEL-DV(J).

Bind Descriptors
You must set this table before issuing the OPEN command. The following statement

12-8 Pro*COBOL Precompiler Programmer’s Guide



The SQLDA Variables

EXEC SQL OPEN ... USING DESCRIPTOR....

directs Oracle8 to execute the dynamic SQL statement using the bind-variable val-
ues addressed by BNDDV/(1) through BNDDV(SQLDNUM). (Typically, the values
are entered by the user.) Oracle8 finds the Jth bind-variable value in BND-DV(J).

SELDFMT|BNDDFMT

This is a table containing the addresses of data buffers that store select-list or bind-
variable conversion format strings. Currently, you can use it only for COBOL
packed decimals. The format for the conversion string is PP.+SS or PP.-SS where PP
is the precision and SS is the scale. For definitions of precision and scale, see the sec-
tion "Extracting Precision and Scale" on page 12-20.

The use of format strings is optional. If you want a conversion format for the Jth
select-list item or bind variable, set SELDFMT(J) or BNDDFMT(J) using SQLADR,
then store the packed-decimal format (“07.+02” for example) in SEL-DFMT or BND-
DFMT. Otherwise, set SELDFMT(J) or BNDDFMT(J) to zero.

SELDVLN|BNDDVLN

This is a table containing the lengths of select-list or bind-variable values stored in
the data buffers.

Select Descriptors

DESCRIBE SELECT LIST sets the table of lengths to the maximum expected for
each select-list item. However, you might want to reset some lengths before issuing
a FETCH command. FETCH returns at most n characters, where n is the value of SELD-
VLN(J) before the FETCH command.

The format of the length differs among Oracle8 datatypes. For CHAR select-list
items, DESCRIBE SELECT LIST sets SELDVLN(J) to the maximum length in bytes
of the select-list item. For NUMBER select-list items, scale and precision are
returned respectively in the low and next-higher bytes of the variable. You can use
the library routine SQLPRC to extract precision and scale values from SELDVLN.
See the section "Extracting Precision and Scale" on page 12-20.

You must reset SELDVLN(J) to the required length of the data buffer before the
FETCH. For example, when coercing a NUMBER to a COBOL character string, set
SELDVLN(J) to the precision of the number plus two for the sign and decimal
point. When coercing a NUMBER to a COBOL floating point number, set SELD-
VLN(J) to the length of the appropriate floating point type on your system. For

Using Dynamic SQL: Advanced Concepts 12-9



The SQLDA Variables

more information about the lengths of coerced datatypes, see the section "Convert-
ing Data" on page 12-15.

Bind Descriptors

You must set the table of lengths before issuing the OPEN command. For example, you
can use the following statements to set the lengths of bind-variable character strings entered
by the user:

PROCEDURE DIVISION.

PERFORM GET-INPUT-VAR
VARYING JFROM 1 BY 1 UNTIL J> SQLDNUM IN BNDDSC.

GET-INPUT-VAR.
DISPLAY "Enter value of ", BND-DH-VNAME(J).
ACCEPT INPUT-STRING.
UNSTRING INPUT-STRING DELIMITED BY " "
INTO BND-DV(J) COUNT IN BNDDVLN(J).

Because Oracle8 accesses a data buffer indirectly, using the address in SELDV(J) or
BNDDV(J), it does not know the length of the value in that buffer. If you want to
change the length Oracle8 uses for the Jth select-list or bind-variable value, reset
SELDVLN(J) or BNDDVLN(J) to the length you need. Each input or output buffer
can have a different length.

SELDFMTL | BNDDFMTL

This is a table containing the lengths of select-list or bind-variable conversion for-
mat strings. Currently, you can use it only for COBOL packed decimal.

The use of format strings is optional. If you want a conversion format for the Jth
select-list item or bind variable, set SELDFMTL(J) before the FETCH or BND-
DFMTL(J) before the OPEN to the length of the packed-decimal format stored in
SEL-DFMT or BND-DFMT. Otherwise, set SELDFMTL(J) or BNDDFMTL(J) to zero.

If the value of SELDFMTL(J) or BNDDFMTL(J) is zero, SELDFMT(J) or BND-
DFMT(J) is not used.

SELDVTYP|BNDDVTYP

This is a table containing the datatype codes of select-list or bind-variable values.
These codes determine how Oracle8 data is converted when stored in the data buff-
ers addressed by elements of SELDV. This topic is covered in "Converting Data" on
page 12-15.

12-10 Pro*COBOL Precompiler Programmer’s Guide



The SQLDA Variables

Select Descriptors

DESCRIBE SELECT LIST sets the table of datatype codes to the internal datatype (for
example, VARCHAR2, CHAR, NUMBER, or DATE) of the items in the select list.

Before FETCHing, you might want to reset some datatypes because the internal for-
mat of Oracle8 datatypes can be difficult to handle. For display purposes, it is usu-
ally a good idea to coerce the datatype of select-list values to VARCHAR?2. For
calculations, you might want to coerce numbers from Oracle8 to COBOL format.
See "Coercing Datatypes" on page 12-18.

The high bit of SELDVTYP(J) is set to indicate the null/not null status of the Jth
select-list column. You must always clear this bit before issuing an OPEN or
FETCH command. You use the library routine SQLNUL to retrieve the datatype
code and clear the null/not null bit. For more information, see "Handling
Null/Not Null Datatypes" on page 12-21.

You should change the Oracle8 NUMBER internal datatype to an external datatype
compatible with that of the COBOL data buffer addressed by SELDV(J).

Bind Descriptors

DESCRIBE BIND VARIABLES sets the table of datatype codes to zeros. You must
reset the table of datatypes before issuing the OPEN command. The code repre-
sents the external (COBOL) datatype of the buffer addressed by BNDDV(J). Often,
bind-variable values are stored in character strings, so the datatype table elements
are set to 1 (the VARCHAR?2 datatype code).

To change the datatype of the Jth select-list or bind-variable value, reset SELDV-
TYP(J) or BNDDVTYP(J) to the datatype you want.

SELDI|BNDDI

This is a table containing the addresses of data buffers that store indicator-variable
values. You must set the elements of SELDI or BNDDI using SQLADR.

Select Descriptors

You must set this table before issuing the FETCH command. When Oracle8 exe-
cutes the statement

EXEC SQL FETCH ... USING DESCRIPTOR ...
if the Jth returned select-list value is null, the buffer addressed by SELDI(J) is set to -

1. Otherwise, it is set to zero (the value is not null) or a positive integer (the value
was truncated).

Using Dynamic SQL: Advanced Concepts 12-11



The SQLDA Variables

Bind Descriptors

You must initialize this table and set the associated indicator variables before issu-
ing the OPEN command. When Oracle8 executes the statement

EXEC SQL OPEN ... USING DESCRIPTOR ...

the buffer addressed by BNDDI(J) determines whether the Jth bind variable is null.
If the value of an indicator variable is -1, its associated bind variable is null.

SELDH-VNAME|BNDDH-VNAME

This is a table containing the addresses of data buffers that store select-list or place-
holder names as they appear in dynamic SQL statements. You must set the ele-
ments of SELDH-VNAME or BNDDH-VNAME using SQLADR before issuing the
DESCRIBE command.

DESCRIBE directs Oracle8 to store the name of the Jth select-list item or place-
holder in the data buffer addressed by SELDH-VNAME(J) or BNDDH-VNAME()).
Thus, Oracle8 stores the Jth select-list or place-holder name in SEL-DH-VNAME(J)
or BND-DH-VNAME()).

SELDH-MAX-VNAMEL|BNDDH-MAX-VNAMEL

This is a table containing the maximum lengths of the data buffers that store select-
list or place-holder names. The buffers are addressed by the elements of SELDH-
VNAME or BNDDH-VNAME.

You must set the elements of SELDH-MAX-VNAMEL or BNDDH-MAX-VNAMEL
before issuing the DESCRIBE command. Each select-list or place-holder name
buffer can have a different length.

SELDH-CUR-VNAMEL|BNDDH-CUR-VNAMEL

This is a table containing the actual lengths of the names of the select-list or place-
holder. DESCRIBE sets the table of actual lengths to the number of characters in
each select-list or place-holder name.

SELDI-VNAME|BNDDI-VNAME

This is a table containing the addresses of data buffers that store indicator-variable
names.

You can associate indicator-variable values with select-list items and bind variables.
However, you can associate indicator-variable names only with bind variables. So,

12-12 Pro*COBOL Precompiler Programmer’s Guide



The SQLDA Variables

you can use this table only with bind descriptors. You must set the elements of
BNDDI-VNAME using SQLADR before issuing the DESCRIBE command.

DESCRIBE BIND VARIABLES directs Oracle8 to store any indicator-variable names
in the data buffers addressed by BNDDI-VNAME(1) through BNDDI-
VNAME(SQLDNUM). Thus, Oracle8 stores the Jth indicator-variable name in BND-
DI-VNAME(Q)).

SELDI-MAX-VNAMEL|BNDDI-MAX-VNAMEL

This is a table containing the maximum lengths of the data buffers that store indica-
tor-variable names. The buffers are addressed by the elements of SELDI-VNAME
or BNDDI-VNAME.

You can associate indicator-variable names only with bind variables. So, you can
use this table only with bind descriptors.

You must set the elements BNDDI-MAX-VNAMEL(1) through BNDDI-MAX-
VNAMEL(SQLDNUM) before issuing the DESCRIBE command. Each indicator-
variable name buffer can have a different length.

SELDI-CUR-VNAMEL|BNDDI-CUR-VNAMEL

This is a table containing the actual lengths of the names of the indicator variables.
You can associate indicator-variable names only with bind variables. So, you can
use this table only with bind descriptors.

DESCRIBE BIND VARIABLES sets the table of actual lengths to the number of char-
acters in each indicator-variable name.

SELDFCLP|BNDDFCLP

This is a table reserved for future use. It must be present because Oracle8 expects
the group item SELDSC or BNDDSC to be a certain size. You must set the elements
of SELDFCLP or BNDDFCLP to zero.

SELDFCRCP|BNDDFCRCP

This is a table reserved for future use. It must be present because Oracle8 expects
the group item SELDSC or BNDDSC to be a certain size. You must set the elements
of SELDFCRCP or BNDDFCRCP to zero.

Using Dynamic SQL: Advanced Concepts 12-13



Some Preliminaries

Some Preliminaries

You need a working knowledge of the following subjects to implement dynamic
SQL Method 4:

« using the library routine SQLADR
= converting data
= coercing datatypes

« handling null/not null datatypes

Using SQLADR

You must call the library subroutine SQLADR to get the addresses of data buffers
that store input and output values. You store the addresses in a bind or select
SQLDA so that Oracle8 knows where to read bind-variable values or write select-
list values.

Call SQLADR using the syntax
CALL "SQLADR" USING BUFFER, ADDRESS.

where:

BUFFER

Is a data buffer that stores the value or name of a select-list item, bind variable, or
indicator variable.

ADDRESS
Is an integer variable that returns the address of the data buffer.

A call to SQLADR stores the address of BUFFER in ADDRESS. In the next example,
you use SQLADR to initialize the select descriptor tables SELDV, SELDH-VNAME,
and SELDI. Their elements address data buffers for select-list values, select-list
names, and indicator values.

PROCEDURE DIVISION.

PERFORM INIT-SELDSC
VARYING JFROM 1 BY 1 UNTIL J>SQLDNUM IN SELDSC.

INIT-SELDSC.
CALL "SQLADR" USING SEL-DV(J), SELDV(J).
CALL "SQLADR" USING SEL-DHVNAME(J), SELDH-VNAME(J).
CALL "SQLADR" USING SEL-DI(J), SELDI(J).

12-14 Pro*COBOL Precompiler Programmer’s Guide



Some Preliminaries

Converting Data

This section provides more detail about the datatype descriptor table. In host pro-
grams that use neither datatype equivalencing nor dynamic SQL Method 4, the con-
version between Oracle8 internal and external datatypes is determined at
precompile time. By default, Pro*COBOL assigns a specific external datatype to
each host variable. For example, Pro*COBOL assigns the INTEGER external
datatype to host variables of type PIC S9(n) COMP.

However, Method 4 lets you control data conversion and formatting. You specify
conversions by setting datatype codes in the datatype descriptor table.

Internal Datatypes

Internal datatypes specify the formats used by Oracle8 to store column values in
database tables and the formats to represent pseudocolumn values.

When you issue a DESCRIBE SELECT LIST command, Oracle8 returns the internal
datatype code for each select-list item to the SELDVTYP (datatype) descriptor

table. For example, the datatype code for the Jth select-list item is returned to SELD-
VTYP()).

Table 12-1 shows the Oracle8 internal datatypes and their codes.

Table 12-1 Internal Datatypes and Related Codes

Oracle8 Internal Datatype Code
VARCHAR?2 1
NUMBER 2
LONG 8
ROWID 11
DATE 12
RAW 23
LONG RAW 24
CHAR 96
MLSLABEL 105

Using Dynamic SQL: Advanced Concepts 12-15



Some Preliminaries

External Datatypes

External datatypes specify the formats used to store values in input and output
host variables.

The DESCRIBE BIND VARIABLES command sets the BNDDVTYP table of
datatype codes to zeros. So, you must reset the codes before issuing the OPEN com-
mand. The codes tell Oracle8 which external datatypes to expect for the various bind vari-
ables. For the Jth bind variable, reset BNDDVTYP(J) to the external datatype you want.

The following table shows the Oracle8 external datatypes and their codes, as well
as the corresponding COBOL datatypes:

Table 12-2 Oracle8 External and Related COBOL Datatypes

Name Code COBOL Datatype
VARCHAR?2 1 PIC X(n) when MODE != ANSI
NUMBER 2 PIC X(n)
INTEGER 3 PIC S9(n) COMP
PIC S9(n) COMP5
(COMPS for byte-swapped plat-
forms)
FLOAT 4 COMP-1
COMP-2
STRING (1) 5 PIC X(n)
VARNUM 6 PIC X(n)
DECIMAL 7 PIC S9(n)V9(n) COMP-3
LONG 8 PIC X(n)
VARCHAR (2) 9 PIC X(n) VARYING
PIC N(n) VARYING
ROWID 1 PIC X(n)
DATE 12 PIC X(n)
VARRAW (2) 15 PIC X(n)
RAW 23 PIC X(n)
LONG RAW 24 PIC X(n)

12-16 Pro*COBOL Precompiler Programmer’s Guide



Some Preliminaries

Table 12-2 Oracle8 External and Related COBOL Datatypes

Name Code COBOL Datatype

UNSIGNED 68 (not supported)

DISPLAY 91 PIC S9...9V9...9 DISPLAY SIGN
LEADING SEPARATE
PIC S9(n)V9(n) DISPLAY SIGN
LEADING SEPARATE

LONG VARCHAR (2) 94 PIC X(n)

LONG VARRAW (2) 95 PIC X(n)

CHARF 96 PIC X(n) when MODE = ANSI
PIC N(n) when MODE = ANSI

CHARZ (1) 97 PIC X(n)

CURSOR 102 SQL-CURSOR

MLSLABEL 106 PIC X(n)

Notes:

1. For use in an EXEC SQL VAR statement only.

2. Include the n-byte length field.

For more information about the Oracle8 datatypes and their formats, see "The

Oracle8 Datatypes" on page 4-2.

PL/SQL Datatypes

PL/SQL provides a variety of predefined scalar and composite datatypes. A scalar
type has no internal components. A composite type has internal components that can be
manipulated individually. Table 12-3 shows the predefined PL/SQL scalar datatypes and
their Oracle8 internal datatype equivalences.

Using Dynamic SQL: Advanced Concepts 12-17



Some Preliminaries

Table 12-3 PL/SQL Datatype Equivalences with Oracle8 Internal Datatypes

PL/SQL Datatype Oracle8 Internal Datatype
VARCHAR VARCHAR?2
VARCHAR?2
BINARY_INTEGER NUMBER
DEC

DECIMAL

DOUBLE PRECISION
FLOAT

INT

INTEGER

NATURAL

NUMBER

NUMERIC

POSITIVE

REAL

SMALLINT

LONG LONG
ROWID ROWID
DATE DATE

RAW RAW

LONG RAW LONG RAW
CHAR CHAR
CHARACTER
STRING
MLSLABEL MLSLABEL

Coercing Datatypes

For a select descriptor, DESCRIBE SELECT LIST can return any of the Oracle8 inter-
nal datatypes. Often, as in the case of character data, the internal datatype corre-

12-18 Pro*COBOL Precompiler Programmer’s Guide



Some Preliminaries

sponds exactly to the external datatype you want to use. However, a few internal
datatypes map to external datatypes that can be difficult to handle. So, you might
want to reset some elements in the SELDVTYP descriptor table.

For example, you might want to reset NUMBER values to FLOAT values, which
correspond to PIC S9(n)V9(n) COMP-1 values in COBOL. Oracle8 does any necessary
conversion between internal and external datatypes at FETCH time. So, be sure to reset the
datatypes after the DESCRIBE SELECT LIST but before the FETCH.

For a bind descriptor, DESCRIBE BIND VARIABLES does not return the datatypes of
bind variables, only their number and names. Therefore, you must explicitly set the BND-
DVTYP table of datatype codes to tell Oracle8 the external datatype of each bind variable.
Oracle8 does any necessary conversion between external and internal datatypes at OPEN
time.

When you reset datatype codes in the SELDVTYP or BNDDVTYP descriptor table,
you are “coercing datatypes." For example, to coerce the Jth select-list value to
VARCHARZ2, use the following statement:

*  Coerce select-ist value to VARCHAR2.
MOVE 1 TO SELDVTYP(J).

When coercing a NUMBER select-list value to VARCHAR?2 for display purposes,
you must also extract the precision and scale bytes of the value and use them to
compute a maximum display length. Then, before the FETCH, you must reset the
appropriate element of the SELDVLN (length) descriptor table to tell Oracle8 the
buffer length to use. To specify the length of the Jth select-list value, set SELD-
VLN(J) to the length you need.

For example, if DESCRIBE SELECT LIST finds that the Jth select-list item is of type
NUMBER, and you want to store the returned value in a COBOL variable declared
as PIC S9(n)V9(n) COMP-1, simply set SELDVTYP()) to 4 and SELDVLN(J) to the length
of COMP-1 numbers on your system.

Exceptions

In some cases, the internal datatypes that DESCRIBE SELECT LIST returns might
not suit your purposes. Two examples of this are DATE and NUMBER. When you
DESCRIBE a DATE select-list item, Oracle8 returns the datatype code 12 to the
SELDVTYP table. Unless you reset the code before the FETCH, the date value is
returned in its 7-byte internal format. To get the date in its default character format,
you must change the datatype code from 12 to 1 (VARCHAR?2), and increase the
SELDVLN value from 7 to 9.

Using Dynamic SQL: Advanced Concepts 12-19



Some Preliminaries

Similarly, when you DESCRIBE a NUMBER select-list item, Oracle8 returns the
datatype code 2 to the SELDVTYP table. Unless you reset the code before the
FETCH, the numeric value is returned in its internal format, which is probably not
what you want. So, change the code from 2 to 1 (VARCHAR?2), 3 (INTEGER), 4
(FLOAT), or some other appropriate datatype.

Extracting Precision and Scale

The library subroutine SQLPRC extracts precision and scale. Normally, it is used
after the DESCRIBE SELECT LIST, and its first parameter is SELDVLN(J). To call
SQLPRC, use the following syntax

CALL "SQLPRC"USING LENGTH, PRECISION, SCALE.

where:

LENGTH Is an integer variable that stores the length of an Oracle8 NUMBER value.
The scale and precision of the value are stored in the low and next-higher
bytes, respectively.

PRECISION Is an integer variable that returns the precision of the NUMBER value.
Precision is the number of significant digits. It is set to zero if the select-list
item refers to a NUMBER of unspecified size. In this case, because the size
is unspecified, assume the maximum precision, 38.

SCALE Is an integer variable that returns the scale of the NUMBER value. Scale
specifies where rounding will occur. For example, a scale of 2 means the
value is rounded to the nearest hundredth (3.456 becomes 3.46); a scale
of -3 means that the number is rounded to the nearest thousand (3.456
becomes 3000).

The following example shows how SQLPRC is used to compute maximum display
lengths for NUMBER values that will be coerced to VARCHARZ2:

WORKING-STORAGE SECTION.
01 PRECISION  PIC S9(9) COMP.
01 SCALE  PIC S9(9) COMP.
01 DISPLAY-LENGTH PIC S9(9) COMP.
01 MAX-LENGTH  PIC S9(9) COMP VALUE 80.

PROCEDURE DIVISION.

PERFORM ADJUST-LENGTH
VARYING JFROM 1 BY 1 UNTIL J>SQLDNUM IN SELDSC.
ADJUST-LENGTH.
* I datatype is NUMBER, extract precision and scale.
IF SELDVTYP(J)=2

12-20 Pro*COBOL Precompiler Programmer’s Guide



Some Preliminaries

CALL "SQLPRC" USING SELDVLN(J), PRECISION, SCALE.
MOVE 0 TO DISPLAY-LENGTH.
* Precision s setto zero if the select-listitem
* refers to a NUMBER of unspecified size. We allow for
* amaximum precision of 10.
IF SELDVTYP(J) =2 AND PRECISION =0
MOVE 10 TO DISPLAY-LENGTH.
* Allow for possible decimal point and sign.
IF SELDVTYP(J) =2 AND PRECISION >0
ADD 2 TO PRECISION
MOVE PRECISION TO DISPLAY-LENGTH.

Notice that the first parameter in the subroutine call is the Jth element in the table
of select-list lengths.

The SQLPRC procedure, defined in the SQLLIB runtime library, returns zero as the
precision and scale values for certain SQL datatypes. The SQLPR2 procedure is similar to
SQLPRC in that it has the same syntax and returns the same binary values, except for the
datatypes shown in Table 124

Table 12-4 Datatype Exceptions to the SQLPR2 Proceure

SQL Datatype Binary Precision Bipary Scale
FLOAT 126 127
FLOAT(n) n (rangeis 1 .. 126) 127
REAL 63 -127
DOUBLE PRECISION 126 -127

Handling Null/Not Null Datatypes

For every select-list column (not expression), DESCRIBE SELECT LIST returns a
null/not null indication in the datatype table of the select descriptor. If the Jth
select-list column is constrained to be not null, the high-order bit of SELDVTYP(J)
datatype variable is clear; otherwise, it is set.

Before using the datatype in an OPEN or FETCH statement, if the null status bit is
set, you must clear it. Never set the bit.

You can use the library routine SQLNUL to find out if a column allows nulls, and
to clear the datatype’s null status bit. You call SQLNUL using the syntax

Using Dynamic SQL: Advanced Concepts 12-21



The Basic Steps

CALL "SQLNUL" USING VALUE-TYPE, TYPE-CODE, NULL-STATUS.

where:
VALUE-TYPE |s a 2-byte integer variable that stores the datatype code of a select-list
column.

TYPE-CODE Is a 2-byte intger variable that returns the datatype code of the select-list
column with the high-order bit cleared.

NULL-STATUS s an integer variable that returns the null status of the select-list column. 1
means that the column allows nulls; 0 means that it does not.

The following example shows how to use SQLNUL:
WORKING-STORAGE SECTION.

*  Declare vanable for subroutine call.
01 NULL-STATUS PIC S9(9) COMP.

PROCEDURE DIVISION.
MAIN.
EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.

PERFORM HANDLE-NULLS
VARYING JFROM 1 BY 1 UNTIL J>SQLDNUM IN SELDSC.

HANDLE-NULLS.
*Find outif columnis NOT NULL, and clear high-order bit.
CALL "SQLNUL" USING SELDVTYP(J), SELDVTYP(J), NULL-STATUS.
* [fNULL-STATUS =1, nulls are allowed.

Notice that the first and second parameters in the subroutine call are the same.
Respectively, they are the datatype variable before and after its null status bit is
cleared.

The Basic Steps

Method 4 can be used to process any dynamic SQL statement. In the example in "Using
Host Tables with Method 4" on page 12-40, a query is processed so that you can see how
both input and output host variables are handled.

To process the dynamic query, our example program takes the following steps:

1. Declare a host string to hold the query text.

12-22 Pro*COBOL Precompiler Programmer’s Guide



A Closer Look at Each Step

2. Declare select and bind descriptors.

w

Set the maximum number of select-list items and place-holders that can be
DESCRIBEd.

Initialize the select and bind descriptors.

Store the query text in the host string.

PREPARE the query from the host string.

DECLARE a cursor FOR the query.

DESCRIBE the bind variables INTO the bind descriptor.

© © N o g &

Reset the number of place-holders to the number actually found by DESCRIBE.
10. Get values for the bind variables found by DESCRIBE.

11. OPEN the cursor USING the bind descriptor.

12. DESCRIBE the select list INTO the select descriptor.

13. Reset the number of select-list items to the number actually found by
DESCRIBE.

14. Reset the length and datatype of each select-list item for display purposes.

15. FETCH a row from the database INTO data buffers using the select descriptor.
16. Process the select-list values returned by FETCH.

17. CLOSE the cursor when there are no more rows to FETCH.

Note: If the dynamic SQL statement is not a query or contains a known number of
select-list items or place-holders, then some of the above steps are unnecessary.

A Closer Look at Each Step

This section discusses each step in more detail. Also, at the end of this chapter is a
full-length program illustrating Method 4. With Method 4, you use the following
sequence of embedded SQL statements:

EXEC SQL
PREPARE <statement_name>
FROM {<host_string>|<string_literal>}
END-EXEC.
EXEC SQL
DECLARE <cursor_name>CURSOR FOR <statement_name>
END-EXEC.

Using Dynamic SQL: Advanced Concepts 12-23



A Closer Look at Each Step

EXEC SQL
DESCRIBE BIND VARIABLES FOR <statement_name>
INTO <bind_descriptor_name>
END-EXEC.
EXEC SQL
OPEN <cursor_name>
[USING DESCRIPTOR <hind_descriptor_name>]
END-EXEC.
EXEC SQL
DESCRIBE [SELECT LIST FOR] <statement_name>
INTO <select_descriptor_name>
END-EXEC.
EXEC SQL
FETCH <cursor_name> USING DESCRIPTOR <select_descriptor_name>
END-EXEC.
EXEC SQL
CLOSE <cursor_name>
END-EXEC.

If the number of select-list items in a dynamic query is known, you can omit
DESCRIBE SELECT LIST and use the following Method 3 FETCH statement:

EXEC SQL FETCH <cursor_name> INTO <host variable_list>END-EXEC.

Or, if the number of place-holders for bind variables in a dynamic SQL statement is
known, you can omit DESCRIBE BIND VARIABLES and use the following Method
3 OPEN statement:

EXEC SQL OPEN <cursor_name>[USING <host variable_list>] END-EXEC.

Next, you see how these statements allow your host program to accept and process
a dynamic SQL statement using descriptors.

Note: Several figures accompany the following discussion. To avoid cluttering
the figures, it was necessary to confine descriptor tables to 3 elements and to
limit the maximum length of names and values to 5 and 10 characters, respec-
tively.

Declare a Host String

12-24

Your program needs a host variable to store the text of the dynamic SQL statement.
The host variable (SELECT-STMT in our example) must be declared as a character
string:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

Pro*COBOL Precompiler Programmer’s Guide



A Closer Look at Each Step

01 SELECT-STMT PIC X(120).
EXEC SQL END DECLARE SECTION END-EXEC.

Declare the SQLDASs

Because the query in our example might contain an unknown number of select-list
items or place-holders, you must declare select and bind descriptors. Instead of
hardcoding the SQLDASs, you use INCLUDE to copy them into your program, as
follows:

EXEC SQL INCLUDE SELDSC END-EXEC.
EXEC SQL INCLUDE BNDDSC END-EXEC.

For reference, the INCLUDEd declaration of SELDSC follows:
WORKING-STORAGE SECTION.

01 SELDSC.

05 SQLDNUM PIC S9(9) COMP.

05 SQLDFND PIC S9(9) COMP.

05 SELDVAR OCCURS 3 TIMES.
10 SELDV PIC S9(9) COMP.
10SELDFMT  PIC S9(9) COMP.
10SELDVIN  PIC S9(9) COMP.
10SELDFMTL  PIC S9(4) COMP.
10SELDVTYP  PIC S9(4) COMP.
10 SELDI PIC S9(9) COMP.
10 SELDH-VNAME  PIC S9(9) COMP.
10 SELDH-MAX-VNAMEL PIC S9(4) COMP.
10 SELDH-CUR-VNAMEL PIC S9(4) COMP.
10 SELDFVNAME  PIC S9(9) COMP.
10 SELDHVIAX-VNAMEL PIC S9(4) COMP.
10 SELDI-CUR-VNAMEL PIC S9(4) COMP.
10SELDFCLP  PIC S9(9) COMP.
10SELDFCRCP  PIC S9(9) COMP.

01 XSELDL.

05 SEL-DI  OCCURS 3 TIMES PIC S9(9) COMP.
01 XSELDIVNAME.

05 SEL-DFVNAME OCCURS 3 TIMES PIC X(5).
01 XSELDV.

05 SEL-DV  OCCURS 3 TIMES PIC X(20).
01 XSELDHVNAME.

05 SEL-DH-VNAME OCCURS 3 TIMES PIC X(5).

Using Dynamic SQL: Advanced Concepts 12-25



A Closer Look at Each Step

Set the Maximum Number to DESCRIBE

Next, you set the maximum number of select-list items or place-holders that can be
DESCRIBEA, as follows:

MOVE 3 TO SQLDNUM IN SELDSC.
MOVE 3 TO SQLDNUM IN BNDDSC.

Initialize the Descriptors

You must initialize several descriptor variables. Some require the library subroutine
SQLADR.

In our example, you store the maximum lengths of name buffers in the SELDH-
MAX-VNAMEL, BNDDH-MAX-VNAMEL, and BNDDI-MAX-VNAMEL tables,
and use SQLADR to store the addresses of value and name buffers in the SELDV,
SELDI, BNDDV, BNDDI, SELDH-VNAME, BNDDH-VNAME, and BNDDI-
VNAME tables.

PROCEDURE DIVISION.

PERFORM INIT-SELDSC

VARYING JFROM 1 BY 1 UNTIL J>SQLDNUM IN SELDSC.
PERFORM INIT-BNDDSC

VARYING JFROM 1 BY 1 UNTIL J>SQLDNUM IN BNDDSC.

INIT-SELDSC.
MOVE SPACES TO SEL-DV(J).
MOVE SPACES TO SEL-DH-VNAME(J).
MOVE 5 TO SELDH-MAX-VNAMEL(J).
CALL "SQLADR" USING SEL-DV(J), SELDV(J).
CALL "SQLADR" USING SEL-DH-VNAME(J), SELDH-VNAME(J).
CALL "SQLADR" USING SEL-DI(J), SELDI(J).

INIT-BNDDSC.
MOVE SPACES TO BND-DV(J).
MOVE SPACES TO BND-DH-VNAME(J).
MOVE SPACES TO BND-DI'VNAME(J).
MOVE 5 TO BNDDH-MAX-VNAMEL(J).
MOVE 5 TO BNDDHVIAX-VNAMEL(J).
CALL "SQLADR" USING BND-DV/(J), BNDDV(J).
CALL "SQLADR" USING BND-DH-VNAME(J), BNDDH-VNAME(J).
CALL "SQLADR" USING BND-DI(J), BNDDI(J).

12-26 Pro*COBOL Precompiler Programmer’s Guide



A Closer Look at Each Step

CALL "SQLADR" USING BND-DI'VNAME(J), BNDDI-VNAME(J).

Figure 12-3 and Figure 12-4 represent the resulting descriptors.

Using Dynamic SQL: Advanced Concepts 12-27



A Closer Look at Each Step

Figure 12-3 Initialized Select Descriptor

SELDH_MAX_VNAMEL 12345

SELDH_CUR_VNAMEL

SQLDNUM  Data Buffers
SQLDFND [] !
1[ | address of SEL-DV(1) ' For values of select-list items:
SELDV 2 address of SEL-DV(2) I
3[ | address of SEL-DV(3) '
] |
SELDVLN 2 | 1 2 3 45 6 7 8 9 10
3| ] |
1] |
SELDTYP 2 . :
3 !
1[ | address of SEL-DI(1) ' For values of indicators:
SELDI 2[ | address of SEL-DI(2) b
3| | address 0f SEL-DI(3) o
L 3 -
address of SEL-DH-VNAME(1) . For names of select-list items:
SELDH_VNAME address of SEL-DH-VNAME(2) |, 1
address of SEL-DH-VNAME(3) || 2
'3
1

W NEPE WNPEFE WDN PP
LI lefofoll T ] ]

12-28 Pro*COBOL Precompiler Programmer’s Guide



A Closer Look at Each Step

Figure 12-4  Initialized Bind Descriptor

BNDDH-MAX-VNAMEL 1 2 3 4 5

BNDDH-CUR-VNAMEL

SQLDNUM ! Data Buffers :
SQLDFND |:| ! !
1[" | address of BND-DV(L) » For values of bind variables: :

BNDDV 2| | address of BND-DV(2) : :
3| | address of BND-DV(3) : :

[ ] : :

BNDDVLN 2| '!'1 2 3 45 6 7 8 9 10 :
3| ; I

[ ] ; ;

BNDDVTYP 2 ; :
3 : :

—— , For values of indicators: \

1 address of BND-DI(1) v )

— 1 1

BNDDI 2 address of BND-DI(2) Vo )
3| | address of BND-DI(3) L g :

1[ | address of BND-DI-VNAME(1) | For names of placeholders: :

BNDDH-VNAME 2| | address of BND-DI'VNAME(2) |! 1 !
3| | addressof BND-DIVNAME(3) |! 2 !

1{5] '3 :

BNDDH-MAX-VNAMEL 2| 5 | ., 1 23 45 :
3|5 ! !

1] ; ;

BNDDH-CUR-VNAMEL 2| | : :
8 ! I

| address of BND-DI-'VNAME(L) |, For names of placeholders: :

BNDDH-VNAME || address of BND-DI-VNAME(2) || 1 :
|| address of BND-DI-VNAME(3) |! 2 !

B 3 :

B ! !

5| ' '

1 1

— \ [

W NP WODNEFE WDN P

Using Dynamic SQL: Advanced Concepts 12-29



A Closer Look at Each Step

Store the Query Text in the Host String

Continuing our example, you prompt the user for a SQL statement, then store the
input string in SELECT-STMT as follows:

DISPLAY "Enter a SELECT statement: " WITH NO ADVANCING.
ACCEPT SELECT-STMT.
We assume the user entered the following string:
SELECT ENAME, EMPNO, COMM FROM EMP WHERE COMM < :BONUS

PREPARE the Query from the Host String

PREPARE parses the SQL statement and gives it a name. In our example, PREPARE
parses the host string SELECT-STMT and gives it the name SQL-STMT, as follows:

EXEC SQL PREPARE SQL-STMT FROM :SELECT-STMT END-EXEC.

DECLARE a Cursor

DECLARE CURSOR defines a cursor by giving it a name and associating it with a
specific SELECT statement.

To declare a cursor for static queries, you use the following syntax:

EXEC SQL DECLARE cursor_name CURSOR FOR SELECT ...
To declare a cursor for dynamic queries, the statement name given to the dynamic
query by PREPARE is substituted for the static query. In our example, DECLARE

CURSOR defines a cursor named EMP-CURSOR and associates it with SQL-STMT,
as follows:

EXEC SQL DECLARE EMP-CURSOR CURSOR FOR SQL-STMT END-EXEC.
Note: You must declare a cursor for all dynamic SQL statements, not just que-

ries. With non-queries, OPENing the cursor executes the dynamic SQL state-
ment.

DESCRIBE the Bind Variables

DESCRIBE BIND VARIABLES puts descriptions of bind variables into a bind
descriptor. In our example, DESCRIBE readies BNDDSC as follows:

EXEC SQL
DESCRIBE BIND VARIABLES FOR SQL-STMT
INTO BNDDSC

12-30 Pro*COBOL Precompiler Programmer’s Guide



A Closer Look at Each Step

END-EXEC.

Note that BNDDSC must not be prefixed with a colon.

The DESCRIBE BIND VARIABLES statement must follow the PREPARE statement
but precede the OPEN statement.

Figure 12-5 shows the bind descriptor in our example after the DESCRIBE. Notice
that DESCRIBE has set SQLDFND to the actual number of place-holders found in
the processed SQL statement.

Using Dynamic SQL: Advanced Concepts 12-31



A Closer Look at Each Step

Figure 12-5  Bind Descriptor after the DESCRIBE

SOLDNUM 3 " Data Buffers
;
SQLDFND — set by DESCRIBE !
1[ | address of BND-DV(1) \ For values of bind variables
BNDDV 2[ | address of BND-DV(2) :
3| | address of BND-DV(3) :
1] :
BNDDVLN 2| '!'1 2 3 45 6 7 8 9 10
3| ;
1[ o] :
BNDDVTYP 2| 0] set by DESCRIBE !
3o} !
—— , For values of indicators:
1 address of BND-DI(1) VT
BNDDI 2| | address of BND-DI(2) : N
3[ | address of BND-DI(3) ! N
| 3]
1] ] address OF BND-DH-VNAME(1) |. For names of placeholders:
BNDDH-VNAME 2[ | address OF BND-DH-VNAME(2) |! 1[B]O[NJU[ S| set by DESCRIBE
3[ | address OF BND-DH-VNAME(3) L2
1[5 ] 13
BNDDH-MAX-VNAMEL 2|5 | , 1 23 45
3|5 !
1[5] !
BNDDH-CUR-VNAMEL 2| O | set by DESCRIBE :
3|0 !
1[ ] address of BND-DI-VNAME(L) . For names of indicators:
BNDDH—VNAME 2| | address of BND-DI-VNAME(2) : 1
3] | address of BND-DI-VNAME(3) L2
15| .3
BNDDH-MAX-VNAMEL 2| 5 1 2.3 45
3|5 ;
1[0] !
BNDDH-CUR-VNAMEL 2| O | set by DESCRIBE :
3|0 !

12-32 Pro*COBOL Precompiler Programmer’s Guide



A Closer Look at Each Step

Reset Number of place-holders

Next, you must reset the maximum number of place-holders to the number actu-
ally found by DESCRIBE, as follows;

IF SQLDFND INBNDDSC <0

DISPLAY "Too many bind variables"

GOTO ROLL-BACK
ELSE

MOVE SQLDFND IN BNDDSC TO SQLDNUM IN BNDDSC
END-IF.

Get Values for Bind Variables

Your program must get values for the bind variables in the SQL statement. How
the program gets the values is up to you. For example, they can be hardcoded, read
from a file, or entered interactively.

In our example, a value must be assigned to the bind variable that replaces the
place-holder BONUS in the query WHERE clause. Prompt the user for the value,
then process it, as follows:

PROCEDURE DIVISION.

PERFORM GET-INPUT-VAR
VARYING JFROM 1 BY 1 UNTIL J>SQLDNUM IN BNDDSC.

GET-INPUT-VAR.

* Replace the 0 DESCRIBEd into the datatype table
* with a 1 to avoid an "invalid datatype™ Oracle error.
MOVE 1 TO BNDDVTYP(J).
* Getvalue of bind variable.
DISPLAY "Enter value of ", BND-DH-VNAME(J).
ACCEPT INPUT-STRING.
UNSTRING INPUT-STRING DELIMITEDBY " "
INTO BND-DV(J) COUNT IN BNDDVLN(J).

Assuming that the user supplied a value of 625 for BONUS, the next table shows
the resulting bind descriptor.

Using Dynamic SQL: Advanced Concepts 12-33



A Closer Look at Each Step

Figure 12—-6  Bind Descriptor after Assigning Values

BNDDH-MAX-VNAMEL 1 2 3 45

BNDDH-CUR-VNAMEL

W NEFE WNEFE WON B

SQLDNUM — reset by program , Data Buffers
SQLDFND
1[ ] address of BND-DV(1) For values of bind variables:
BNDDV 2|7 | address of BND-DV(2) 6|25
3| | address of BND-DV(3)
1[3] — set by program
BNDDVLN 2| ] 12 3 456 7 8 910
N
1[1] — reset by program
BNDDVTYP 2[0]
310
— For values of indicators:
1 . address of BND-DI(1) 1701 set by program
BNDDI 2 address of BND-DI(2) N
3[ | address of BND-DI(3) N
[ ] address of BND-DH-VNAME(1) For names of placeholders:
BNDDH-VNAME || address of BND-DH-VNAME(2) |! 1[BJO[NJU[S
| address of BND-DH-VNAME(@3) |' 2
5| 3
5]
5
(5]
(0]
0

address of BND-DI-VNAME(1) For names of indicators:
BNDDH-VNAME address of BND-DI-VNAME(2) 1
address of BND-DI-VNAME(3) 2
3

BNDDH-MAX-VNAMEL

BNDDH-CUR-VNAMEL

W N PP WNPEFE WDN P

EERERE

12-34 Pro*COBOL Precompiler Programmer’s Guide



A Closer Look at Each Step

OPEN the Cursor

The OPEN statement for dynamic queries is similar to the one for static queries,
except the cursor is associated with a bind descriptor. Values determined at run
time and stored in buffers addressed by elements of the bind descriptor tables are
used to evaluate the SQL statement. With queries, the values are also used to iden-
tify the active set.

In our example, OPEN associates EMP-CURSOR with BNDDSC as follows:

EXEC SQL
OPEN EMP-CUR USING DESCRIPTOR BNDDSC
END-EXEC.

Remember, BNDDSC must not be prefixed with a colon.

Then, OPEN executes the SQL statement. With queries, OPEN also identifies the
active set and positions the cursor at the first row.

DESCRIBE the Select List

If the dynamic SQL statement is a query, the DESCRIBE SELECT LIST statement
must follow the OPEN statement but precede the FETCH statement.

DESCRIBE SELECT LIST puts descriptions of select-list items into a select descrip-
tor. In our example, DESCRIBE readies SELDSC as follows:

EXEC SQL
DESCRIBE SELECT LIST FOR SQL-STMT INTO SELDSC
END-EXEC.

Accessing the Oracle8 data dictionary, DESCRIBE sets the length and datatype of
each select-list value.

Figure 12-7 shows the select descriptor in our example after the DESCRIBE. Notice
that DESCRIBE has set SQLDFND to the actual number of items found in the query
select list. If the SQL statement is not a query, SQLDFND is set to zero.

Also notice that the NUMBER lengths are not usable yet. For columns defined as
NUMBER, you must use the library subroutine SQLPRC to extract precision and
scale. See the section "Coercing Datatypes" on page 12-18.

Using Dynamic SQL: Advanced Concepts 12-35



A Closer Look at Each Step

Figure 12-7  Select Descriptor after the DESCRIBE

SQLDNUM . Data Buffers :
SQLDFND —__ set by DESCRIBE ! !
1[ | address of SEL-DV(1) 1 For values of select-list items: !

1 1

SELDV 2 address of SEL-DV(2) ! !
3| | address of SEL-DV(3) | |

1[10] =] ! !

SELDVLN 2| # | set by DESCRIBE »1 23456780910 .
3# | . ' !

L — # = binary number I )

1]1 ! :

SELDTYP 2[2] set by DESCRIBE | '
3[2 | | |

1[ | address of SEL-DI(1) | For values of indicators :

SELDI 2| | address of SEL-DI(2) V] :
3[ | address of SEL-DI(3) v2 | !

3] |

1[ | address of SEL-DH-VNAME(L) |+ For names of select-list items: :

SELDH_VNAME 2 address of SEL-DH-VNAME(2) | 1[E[ N[ A[M] E :
3 | addressof SEL-DH-VNAME@) | 2[E[ M| P| N] O :

1{5 | 3| C|O|M[M |

SELDH_MAX_VNAMEL 2[5 v 1 2 3 45 |
3[5 : \_'_1 :

1[5 ' set by DESCRIBE -

— 1 1

SELDH_CUR_VNAMEL 2[5 set by DESCRIBE . |
3|4 : :

Reset Number of Select-List ltems

Next, you must reset the maximum number of select-list items to the number actu-
ally found by DESCRIBE, as follows:

MOVE SQLDFND IN SELDSC TO SQLDNUM IN SELDSC.

12-36 Pro*COBOL Precompiler Programmer’s Guide



A Closer Look at Each Step

Reset Length/Datatype of Each Select-List Item

In our example, before fetching the select-list values, you reset some elements in
the length and datatype tables for display purposes.

PROCEDURE DIVISION.

PERFORM COERCE-COLUMN-TYPE
VARYING JFROM 1 BY 1 UNTIL J>SQLDNUM IN SELDSC.

COERCE-COLUMN-TYPE.
* Clear NULL bit
CALL "SQLNUL" USING SELDVTYP(J), SELDVTYP(J), NULL-STATUS.

* |f datatype is DATE, lengthen to 9 characters.
IF SELDVTYP(J) =12
MOVE 9 TO SELDVLN(Q).

*  If datatype is NUMBER, extract precision and scale.
MOVE 0 TO DISPLAY-LENGTH.
IF SELDVTYP(J) =2 AND PRECISION =0
MOVE 10 TO DISPLAY-LENGTH.
IF SELDVTYP(J) =2 AND PRECISION >0
ADD 2 TO PRECISION
MOVE PRECISION TO DISPLAY-LENGTH.
IF SELDVTYPQJ)=2
IF DISPLAY-LENGTH > MAX-LENGTH
DISPLAY "Column value too large for data buffer."
GO TO END-PROGRAM
ELSE
MOVE DISPLAY-LENGTH TO SELDVLN(QJ).

*  Coerce datatypes to VARCHAR2.
MOVE 1 TO SELDVTYP(J).

Figure 12-8 shows the resulting select descriptor. Notice that the NUMBER lengths
are now usable and that all the datatypes are VARCHAR?2. The lengths in SELD-
VLN(2) and SELDVLN(3) are 6 and 9 because we increased the DESCRIBEd
lengths of 4 and 7 by 2 to allow for a possible sign and decimal point.

Using Dynamic SQL: Advanced Concepts 12-37



A Closer Look at Each Step

Figure 12-8  Select Descriptor before the FETCH

1 1
SQLDNUM 3 [ — reset by program Data Buffers
Q y prog : :
1
SQLDFND 3 '
; |
1 | | address of SEL-DV(1) ; For values of select-list items: !
SELDV 2 address of SEL-DV(2) ! :
3 address of SEL-DV(3) ' !
— 1
1|10 : :
SELDVLN 2[6 ] reset by program w1 2 3 456 7 8 910 !
—— 1
3|6 1 !
—— —— # = binary number ' '
1 1 ] ]
—— 1 1
SELDTYP 2(1 reset by program ' !
— 1
311 1 !
E— — 1 1
1[ ] addressof SEL-DI(1) . For values of indicators: :
SELDI 2[ | address of SEL-DI(2) b !
3 address 0f SEL-DI(3) V2 :
o v 3 | |
1 I 1
F— 1
1 address of SEL-DH-VNAME(1) \ For names of select-list items: !
1
SELDH_VNAME 2 address of SEL-DH-VNAME(2) |+ 1[E[N[A[M[E .
3 address of SEL-DH-VNAME(3) . 2[E[M[P][N]O :
1[5  3[c[o[mM[m :
1 1 1
SELDH_MAX_VNAMEL 2|5 1 2.3 45 |
= | [
3|5 : \
— | '
115 1 !
= 1 1 1
SELDH_CUR_VNAMEL 2(5 ' '
1 | |
34 : |
E— e o o et e e e e et e e e e == |

FETCH Rows from the Active Set

FETCH returns a row from the active set, stores select-list values in the data buff-
ers, and advances the cursor to the next row in the active set. If there are no more
rows, FETCH sets SQLCODE in the SQLCA, the SQLCODE variable, or the SQL-
STATE variable to the “no data found” Oracle8 error code. In the following exam-
ple, FETCH returns the values of columns ENAME, EMPNO, and COMM to
SELDSC:

12-38 Pro*COBOL Precompiler Programmer’s Guide



A Closer Look at Each Step

EXEC SQL
FETCH EMP-CURSOR USING DESCRIPTOR SELDSC
END-EXEC.

Figure 12-9 shows the select descriptor in our example after the FETCH. Notice
that Oracle8 has stored the select-list and indicator values in the data buffers
addressed by the elements of SELDV and SELDI.

For output buffers of datatype 1, Oracle8, using the lengths stored in SELDVLN,
left-justifies CHAR or VARCHAR? data, and right-justifies NUMBER data.

The value “MARTIN” was retrieved from a VARCHAR2(10) column in the EMP
table. Using the length in SELDVLN(1), Oracle8 left-justifies the value in a 10-byte
field, filling the buffer.

The value 7654 was retrieved from a NUMBER(4) column and coerced to “7654.”
However, the length in SELDVLN(2) was increased by two to allow for a possible
sign and decimal point, so Oracle8 right-justifies the value in a 6-byte field.

The value 482.50 was retrieved from a NUMBER(7,2) column and coerced to
“482.50.” Again, the length in SELDVLN(3) was increased by two, so Oracle8 right-
justifies the value in a 9-byte field.

Get and Process Select-List Values

After the FETCH, your program can process the select-list values returned by
FETCH. In our example, values for columns ENAME, EMPNO, and COMM are
processed.

CLOSE the Cursor

CLOSE disables the cursor. In our example, CLOSE disables EMP-CURSOR as fol-
lows:

EXEC SQL CLOSE EMP-CURSOR END-EXEC.

Using Dynamic SQL: Advanced Concepts 12-39



Using Host Tables with Method 4

Figure 12-9  Select Descriptor after the FETCH

SQLDNUM . Data Buffers :
SQLDFND ! !
1[ | address of SEL-DV(1) ' For values of select-list items: '

1 1

SELDV 2 address of SEL-DV(2) ! MIA[R[T|I]|N !
3| | address of SEL-DV(3) | 716]5]4 |

1Mo : 4[8l2[.|5[0 .

SELDVLN 26 ] /1 2 3 456 7 8 9 10
3[9] . | .

e | Set by FETCH |

SELDTYP 2[1] | !
3[1 | | |

1[ | address of SEL-DI(1) | For values of indicators: :

SELDI 2[ | address of SEL-DI(2) '1[0] !
3 address of SEL-DI(3) 120 Set by FETCH :

. 310 :

1[ | address of SEL-DH-VNAME(1) . For names of select-list items: '

SELDH_VNAME 2 address of SEL-DH-VNAME(2) | 1[E[N[A[M] E :
3| | address of SEL-DH-VNAME(3) | 2[E|[M|P|N] O :

1[5 ] } 3[C[ o[ MM :

SELDH_MAX_VNAMEL 2[5 | . 1 23 45 .
3(5 : :

1[5 | . |

- 1 1

SELDH_CUR_VNAMEL 2|5 | ' '
3|4 : :

Using Host Tables with Method 4

To use input or output host tables with Method 4, you must use the optional FOR
clause to tell Oracle8 the size of your host table. For more information about the
FOR clause, see Chapter 10, “Using Host Tables”.

Set descriptor entries for the Jth select-list item or bind variable, but instead of
addressing a single data buffer, SELDVLN(J) or BNDDVLN(J) addresses a table of

12-40 Pro*COBOL Precompiler Programmer’s Guide



Using Host Tables with Method 4

data buffers. Then use a FOR clause in the EXECUTE or FETCH statement, as
appropriate, to tell Oracle8 the number of table elements you want to process.

This procedure is necessary, because Oracle8 has no other way of knowing the size
of your host table.

In the example below, two input host tables are used to insert 8 pairs of values of
EMPNO and DEPTNO into the table EMP. Note that EXECUTE can be used for
non-queries with Method 4.

IDENTIFICATION DIVISION.
PROGRAM-ID. DYN4INS.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.
01 BNDDSC.
02 SQLDNUM PIC S9(9) COMP VALUE 2.
02 SQLDFND PIC S9(9) COMP.
02 BNDDVAR OCCURS 2 TIMES.
03 BNDDV PIC S9(9) COMP.
03 BNDDFMT PIC S9(9) COMP.
03 BNDDVLN PIC S9(9) COMP.
03 BNDDFMTL PIC S9(4) COMP.
03BNDDVTYP PIC S9(4) COMP.
03 BNDDI PIC S9(9) COMP.
03 BNDDH-VNAME  PIC S9(9) COMP.
03 BNDDH-MAX-VNAMEL PIC S9(4) COMP.
03 BNDDH-CUR-VNAMEL PIC S9(4) COMP.
03BNDDI'VNAME  PIC S9(9) COMP.
03 BNDDI-MAX-VNAMEL PIC S9(4) COMP.
03 BNDDI-CUR-VNAMEL PIC S9(4) COMP.
03 BNDDFCLP PIC S9(9) COMP.
03BNDDFCRCP  PIC S9(9) COMP.
01 XBNDDI.
03 BND-DI OCCURS 2 TIMES PIC S9(4) COMP.
01 XBNDDIVNAME.
03 BND-DFVNAME ~ OCCURS 2 TIMES PIC X(80).
01 XBNDDV.
* Since you know what the SQL statement will be, you can set
* up atwo-dimensional table with a maximum of 2 columns and
* 8rows. Each element can be up to 10 characters long. (You
* can alter these values according to your needs.)
03 BND-COLUMN OCCURS 2 TIMES.
05 BND-ELEMENT OCCURS 8 TIMES PIC X(10).
01 XBNDDHVNAME.
03 BND-DH-VNAME ~ OCCURS 2 TIMES PIC X(80).

Using Dynamic SQL: Advanced Concepts 12-41



Using Host Tables with Method 4

01 COLUMN-INDEX PIC 999.
01 ROW-INDEX PIC 999.
01 DUMMY-INTEGER PIC 9999.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME  PIC X(20).
01 PASSWD PIC X(20).
01 DYN-STATEMENT PIC X(80).
01 NUMBER-OF-ROWS PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
START-MAIN.

EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.

MOVE "SCOTT" TO USERNAME.
MOVE '"TIGER" TO PASSWD.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY "Connected to Oracle".

*  Initialize bind and select descriptors.
PERFORM INIT-BNDDSC THRU INIT-BNDDSC-EXIT
VARYING COLUMN-INDEX FROM 1BY 1
UNTIL COLUMN-INDEX >2.

* Setup the SQL statement.
MOVE SPACES TO DYN-STATEMENT.
MOVE "INSERT INTO EMP(EMPNO, DEPTNO) VALUES(:EMPNO,:DEPTNO)"
TODYN-STATEMENT.
DISPLAY DYN-STATEMENT.

*  Prepare the SQL statement.
EXEC SQL
PREPARE S1 FROM :DYN-STATEMENT
END-EXEC.

*  Describe the bind variables.
EXEC SQL
DESCRIBE BIND VARIABLES FOR S1 INTO BNDDSC
END-EXEC.

12-42 Pro*COBOL Precompiler Programmer’s Guide



Using Host Tables with Method 4

PERFORM Z-BIND-TYPE THRU Z-BIND-TYPE-EXIT
VARYING COLUMN-INDEXFROM 1BY 1
UNTIL COLUMN-INDEX > 2.

IF SQLDFND INBNDDSC <0
DISPLAY "TOO MANY BIND VARIABLES."
GO TO SQL-ERROR
ELSE
DISPLAY "BIND VARS ="WITH NO ADVANCING
MOVE SQLDFND IN BNDDSC TO DUMMY-INTEGER
DISPLAY DUMMY-INTEGER
MOVE SQLDFND IN BNDDSC TO SQLDNUM IN BNDDSC.

MOVE 8 TO NUMBER-OF-ROWS.

PERFORM GET-ALL-VALUES THRU GET-ALL-VALUES-EXIT
VARYING ROW-NDEXFROM 1BY 1
UNTIL ROW-INDEX > NUMBER-OF-ROWS.

*  Execute the SQL statement.
EXEC SQL FOR :NUMBER-OF-ROWS
EXECUTE S1 USING DESCRIPTOR BNDDSC
END-EXEC.

DISPLAY "INSERTED " WITH NO ADVANCING.
MOVE SQLERRD(3) TO DUMMY-INTEGER.
DISPLAY DUMMY-INTEGER WITH NO ADVANCING.
DISPLAY "ROWS"".

GO TOEND-SQL.

SQL-ERROR.

* Display any SQL error message and code.
DISPLAY SQLERRMC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
STOP RUN.

END-SQL.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL COMMIT WORK RELEASE END-EXEC.

STOP RUN.

INIT-BNDDSC.
*  Start of COBOL PERFORM procedures, initilize the bind
* descriptor.
MOVE 80 TO BNDDH-MAX-VNAMEL(COLUMN-INDEX).
CALL "SQLADR" USING

Using Dynamic SQL: Advanced Concepts 12-43



Using Host Tables with Method 4

BND-DH-VNAME(COLUMN-NDEX)
BNDDH-VNAME(COLUMN-NDEX).

MOVE 80 TO BNDDHVIAX-VNAMEL(COLUMN-INDEX).

CALL "SQLADR" USING
BND-DHVNAME(COLUMN-INDEX)
BNDDVNAME (COLUMN-NDEX).

MOVE 10 TO BNDDVLN(COLUMN-INDEX).

CALL "SQLADR" USING
BND-ELEMENT(COLUMN-INDEX,1)
BNDDV(COLUMN-NDEX).

MOVE ZERO TO BNDDICOLUMN-INDEX).

CALL "SQLADR" USING
BND-DI(COLUMN-INDEX)
BNDDI(COLUMN-INDEX).

MOVE ZERO TO BNDDFMT(COLUMN-NDEX).

MOVE ZERO TO BNDDFMTL(COLUMN-INDEX).

MOVE ZERO TO BNDDFCLP(COLUMN-NDEX).

MOVE ZERO TO BNDDFCRCP(COLUMN-INDEX).

INIT-BNDDSC-EXIT.

EXIT.

Z-BIND-TYPE.
*  Replace the 0s DESCRIBEd into the datatype table with 1s to
* avoid an "invalid datatype" Oracle eror.

MOVE 1 TO BNDDVTYP(COLUMN-INDEX).

Z-BIND-TYPE-EXIT.
EXIT.

GET-ALL-VALUES.
* Getthe bind variables for each row.
DISPLAY "ENTER VALUES FOR ROW NUMBER " ROW-INDEX.
PERFORM GET-BIND-VARS
VARYING COLUMN-INDEX FROM 1BY 1
UNTIL COLUMN-INDEX > SQLDFND IN BNDDSC.
GET-ALL-VALUES-EXIT.
EXIT.

GET-BIND-VARS.
*  Getthe value of each bind variable.
DISPLAY" ENTER VALUE FOR ", BND-DH-VNAME(COLUMN-INDEX)
WITH NO ADVANCING.
ACCEPT BND-ELEMENT(COLUMN-INDEX,ROW-INDEX).
GET-BIND-VARS-EXIT.
EXIT.

12-44 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 10: Dynamic SQL Method 4

Sample Program 10: Dynamic SQL Method 4

This program shows the basic steps required to use dynamic SQL Method 4. After
logging on to Oracle8, the program prompts the user for a SQL statement, PRE-
PAREs the statement, DECLARES a cursor, checks for any bind variables using
DESCRIBE BIND, OPENSs the cursor, and DESCRIBEs any select-list variables. If
the input SQL statement is a query, the program FETCHes each row of data, then
CLOSEs the cursor.

IDENTIFICATION DIVISION.

PROGRAM-D. DYNSQL4.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 BNDDSC.
02 SQLDNUM PIC S9(9) COMP VALUE 20.
02 SQLDFND PIC S9(9) COMP.
02 BNDDVAR OCCURS 20 TIVES.

03 BNDDV PIC S9(9) COMP.

03 BNDDFMT  PIC S9(9) COMP.

03 BNDDVLN  PIC S9(9) COMP.

03 BNDDFMTL  PIC S9(4) COMP.

03 BNDDVTYP  PIC S9(4) COMP.

03 BNDDI PIC S9(9) COMP.

03 BNDDHVNAME  PIC S9(9) COMP.

03 BNDDH-MAX-VNAMEL PIC S9(4) COMP.

03 BNDDH-CUR-VNAMEL PIC S9(4) COMP.

03 BNDDFVNAME  PIC S9(9) COMP.

03 BNDDHVAX-VNAMEL PIC S9(4) COMP.

03 BNDD-CUR-VNAMEL PIC S9(4) COMP.

03 BNDDFCLP  PIC S9(9) COMP.

03 BNDDFCRCP  PIC S9(9) COMP.
01 XBNDDI.

03 BND-DI  OCCURS 20 TIMES PIC S9(4) COMP.
01 XBNDDIVNAME.

03 BND-DFVNAME ~ OCCURS 20 TIMES PIC X(80).
01 XBNDDV.

03 BND-DV  OCCURS 20 TIMES PIC X(80).
01 XBNDDHVNAME.

03 BND-DHVNAME ~ OCCURS 20 TIMES PIC X(80).

01 SELDSC.
02 SQLDNUM PIC S9(9) COMP VALUE 20.
02 SQLDFND PIC S9(9) COMP.

Using Dynamic SQL: Advanced Concepts 12-45



Sample Program 10: Dynamic SQL Method 4

02 SELDVAR OCCURS 20 TIMES.

03 SELDV  PICS9(9) COMP.

03 SELDFMT  PIC S9(9) COMP.

03 SELDVLN  PIC S9(9) COMP.

03 SELDFMTL  PIC S9(4) COMP.

03 SELDVTYP  PIC S9(4) COMP.

03 SELDI PIC S9(9) COMP.

03 SELDH-VNAME  PIC S9(9) COMP.

03 SELDH-MAX-VNAMEL PIC S9(4) COMP.

03 SELDH-CUR-VNAMEL PIC S9(4) COMP.

03 SELDWNAME  PIC S9(9) COMP.

03 SELDHVIAX-VNAMEL PIC S9(4) COMP.

03 SELDI-CUR-VNAMEL PIC S9(4) COMP.

03 SELDFCLP  PIC S9(9) COMP.

03 SELDFCRCP  PIC S9(9) COMP.
01 XSELDI.

03 SELDI  OCCURS 20 TIMES PIC S9(4) COMP.
01 XSELDIVNAME.

03 SEL-DFNAME ~ OCCURS 20 TIMES PIC X(80).
01 XSELDV.

03 SELDV  OCCURS 20 TIMES PIC X(80).
01 XSELDHVNAVME.

03 SEL-DH-VNAME  OCCURS 20 TIMES PIC X(80).

01 TABLEANDEX PIC9(3).
01 VAR-COUNT PIC 9(2).
01 ROW-COUNT PIC 9(4).

01 NO-MORE-DATA PIC X(1) VALUE "N".

01 NULLS-ALLOWED PIC S9(9) COMP.

01 PRECISION PIC S9(9) COMP.

01 SCALE PIC S9(9) COMP.

01 DISPLAY-LENGTH  PIC S9(9) COMP.

01 MAX-LENGTH PIC S9(9) COMP VALUE 80.
01 COLUMN-NAME PIC X(30).

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 USERNAME  PIC X(20).
0L PASSWD  PICX(20).
01 DYN-STATEMENT  PIC X(80).
EXEC SQL END DECLARE SECTION END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.
PROCEDURE DIVISION.
START-MAIN.
EXEC SQL
WHENEVER SQLERROR GOTO SQL-ERROR
END-EXEC.

12-46 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 10: Dynamic SQL Method 4

DISPLAY "USERNAME: "WITH NO ADVANCING.
ACCEPT USERNAME.
DISPLAY "PASSWORD: "WITH NO ADVANCING.
ACCEPT PASSWD.
EXEC SQL
CONNECT :USERNAME IDENTIFIED BY :PASSWD
END-EXEC.
DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME.

* INITIALIZE THE BIND AND SELECT DESCRIPTORS.
PERFORM INIT-BNDDSC
VARYING TABLE-INDEXFROM 1BY 1
UNTIL TABLE-INDEX > 20.
PERFORM INIT-SELDSC
VARYING TABLE-INDEXFROM 1BY 1
UNTIL TABLE-INDEX > 20.

* GET ASQL STATEMENT FROM THE OPERATOR.
DISPLAY "ENTER SQL STATEMENT WITHOUT TERMINATOR:".
DISPLAY ">"WITH NO ADVANCING.
ACCEPT DYN-STATEMENT.
DISPLAY """,

*  PREPARE THE SQL STATEMENT AND DECLARE A CURSOR.
EXEC SQL
PREPARE S1 FROM :DYN-STATEMENT
END-EXEC.
EXEC SQL
DECLARE C1 CURSOR FOR S1
END-EXEC.

*  DESCRIBE ANY BIND VARIABLES.
EXEC SQL
DESCRIBE BIND VARIABLES FOR S1 INTO BNDDSC
END-EXEC.
IF SQLDFND IN BNDDSC <0
DISPLAY "TOO MANY BIND VARIABLES"
GO TOEND-SQL
ELSE
DISPLAY "NUMBER OF BIND VARIABLES: "WITH NO ADVANCING
MOVE SQLDFND IN BNDDSC TO VAR-COUNT
DISPLAY VAR-COUNT
MOVE SQLDFND IN BNDDSC TO SQLDNUM IN BNDDSC
END-F.
*  REPLACE THE 0S DESCRIBED INTO THE DATATYPE FIELDS OF THE BIND

Using Dynamic SQL: Advanced Concepts 12-47



Sample Program 10: Dynamic SQL Method 4

* DESCRIPTOR WITH 1S TO AVOID AN ORACLE "INVALID DATATYPE"
* ERROR.
MOVE 1 TO TABLE-INDEX.
FIX-BIND-TYPE.
MOVE 1 TO BNDDVTYP(TABLE-INDEX).
ADD 1 TO TABLE-INDEX.
IF TABLEAINDEX <=20
GO TO FIX-BIND-TYPE.

* LET THE USER FILL IN THE BIND VARIABLES.
IF SQLDFND IN BNDDSC =0
GO TO DESCRIBE-TEMS.
MOVE 1 TO TABLE-INDEX.
GET-BIND-VAR.
DISPLAY "ENTER VALUE FOR ", BND-DH-VNAME(TABLE-INDEX).
ACCEPT BND-DV(TABLE-INDEX).
ADD 1 TO TABLE-INDEX.
IF TABLE-INDEX <= SQLDFND IN BNDDSC
GO TO GET-BIND-VAR.

DESCRIBE-TEMS.
*  OPEN THE CURSOR AND DESCRIBE THE SELECT-LIST ITEMS.
EXEC SQL
OPEN C1 USING DESCRIPTOR BNDDSC
END-EXEC.
EXEC SQL
DESCRIBE SELECT LIST FOR S1INTO SELDSC
END-EXEC.

IF SQLDFND IN SELDSC <0
DISPLAY "TOO MANY SELECT-LIST ITEMS."
GO TO END-SQL
ELSE
DISPLAY "NUMBER OF SELECT-LIST ITEMS: "
WITH NO ADVANCING
MOVE SQLDFND IN SELDSC TO VAR-COUNT
DISPLAY VAR-COUNT
DISPLAY "*
MOVE SQLDFND IN SELDSC TO SQLDNUM IN SELDSC
END-IF.

* COERCE THE DATATYPE OF ALL SELECT-LIST ITEMS TO VARCHAR2.
IF SOLDNUM IN SELDSC >0
PERFORM COERCE-COLUMN-TYPE
VARYING TABLE-INDEXFROM 1BY 1

12-48 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 10: Dynamic SQL Method 4

*

UNTIL TABLE-INDEX > SQLDNUM IN SELDSC
DISPLAY "*".

FETCH EACH ROW AND PRINT EACH SELECT-LIST VALUE.

IF SQLDNUM IN SELDSC >0

PERFORM FETCH-ROWS UNTIL NO-MORE-DATA="Y".

DISPLA

DISPLAY "NUMBER OF ROWS PROCESSED: " WITH NO ADVANCING.

MOVE SQLERRD(3) TO ROW-COUNT.
DISPLAY ROW-COUNT.

CLEAN UP AND TERMINATE.
EXEC SQL

CLOSEC1
END-EXEC.
EXEC SQL

COMMIT WORK RELEASE
END-EXEC.
DISPLAY "".
DISPLAY "HAVE A GOOD DAY,
DISPLAY "".
STOPRUN.

SQL-ERROR.

*

DISPLAY ORACLE ERROR MESSAGE AND CODE.
DISPLAY "*".
DISPLAY SQLERRMC.

END-SQL.

*

EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

PERFORMED SUBROUTINES BEGIN HERE:

INIT-BNDDSC.

*

INITIALIZE THE BIND DESCRIPTOR.
MOVE SPACES TO BND-DH-VNAME(TABLE-INDEX).
MOVE 80 TO BNDDH-MAX-VNAMEL(TABLE-INDEX).
CALL "SQLADR" USING
BND-DH-VNAME(TABLE-INDEX)

Using Dynamic SQL: Advanced Concepts 12-49



Sample Program 10: Dynamic SQL Method 4

BNDDH-VNAME(TABLE-INDEX).
MOVE SPACES TO BND-DFVNAME(TABLE-INDEX).
MOVE 80 TO BNDDHVIAX-VNAMEL(TABLE-INDEX).
CALL "SQLADR" USING

BND-DVNAME(TABLE-INDEX)

BNDDIVNAME (TABLE-INDEX).
MOVE SPACES TO BND-DV(TABLE-INDEX).
MOVE 80 TO BNDDVLN(TABLE-INDEX).
CALL "SQLADR" USING

BND-DV(TABLE-INDEX)

BNDDV(TABLE-INDEX).
MOVE ZERO TO BND-DI(TABLE-INDEX).
CALL "SQLADR" USING

BND-DI(TABLE-INDEX)

BNDDI(TABLE-INDEX).
MOVE ZERO TO BNDDFMT(TABLE-INDEX).
MOVE ZERO TO BNDDFMTL(TABLE-INDEX).
MOVE ZERO TO BNDDFCLP(TABLE-INDEX).
MOVE ZERO TO BNDDFCRCP(TABLE-INDEX).
EXIT.

INIT-SELDSC.
*  INITIALIZE THE SELECT DESCRIPTOR.
MOVE SPACES TO SEL-DH-VNAME(TABLE-INDEX).
MOVE 80 TO SELDH-MAX-VNAMEL(TABLE-INDEX).
CALL "SQLADR" USING
SEL-DHVNAME(TABLE-INDEX)
SELDH-VNAME(TABLE-INDEX).
MOVE SPACES TO SEL-DVNAME(TABLE-INDEX).
MOVE 80 TO SELDHVIAX-VNAMEL(TABLE-INDEX).
CALL "SQLADR" USING
SEL-DFVNAME(TABLE-INDEX)
SELDFVNAME (TABLE-INDEX).
MOVE SPACES TO SEL-DV(TABLE-INDEX).
MOVE 80 TO SELDVLN(TABLE-INDEX).
CALL "SQLADR" USING
SEL-DV(TABLE-INDEX)
SELDV(TABLE-INDEX).
MOVE ZERO TO SEL-DI(TABLE-INDEX).
CALL "SQLADR" USING
SEL-DI(TABLE-INDEX)
SELDI(TABLE-INDEX).
MOVE ZERO TO SELDFMT(TABLE-INDEX).
MOVE ZERO TO SELDFMTL(TABLE-INDEX).
MOVE ZERO TO SELDFCLP(TABLE-INDEX).

12-50 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 10: Dynamic SQL Method 4

MOVE ZERO TO SELDFCRCP(TABLE-INDEX).
EXIT.

COERCE-COLUMN-TYPE.
*  COERCE SELECT-LIST DATATYPES TO VARCHAR?.
CALL "SQLNUL" USING
SELDVTYP(TABLE-INDEX)
SELDVTYP(TABLE-INDEX)
NULLS-ALLOWED.

* IF DATATYPE IS DATE, LENGTHEN TO 9 CHARACTERS.
IF SELDVTYP(TABLE-INDEX) =12
MOVE 9 TO SELDVLN(TABLE-INDEX).

* |F DATATYPE ISNUMBER, SET LENGTH TO PRECISION.
IF SELDVTYP(TABLE-ANDEX) =2
CALL "SQLPRC" USING SELDVLN(TABLE-INDEX) PRECISION SCALE.
MOVE 0 TO DISPLAY-LENGTH.
IF SELDVTYP(TABLE-INDEX) =2 AND PRECISION =0
MOVE 40 TO DISPLAY-LENGTH.
IF SELDVTYP(TABLE-INDEX) =2 AND PRECISION >0
ADD 2 TO PRECISION
MOVE PRECISION TO DISPLAY-LENGTH.
IF SELDVTYP(TABLE-INDEX) =2
IF DISPLAY-LENGTH > MAX-LENGTH
DISPLAY "COLUMN VALUE TOO LARGE FOR DATA BUFFER "
GO TO END-SQL
ELSE
MOVE DISPLAY-LENGTH TO SELDVLN(TABLE-INDEX).

* COERCE DATATYPES TO VARCHAR?2.
MOVE 1 TO SELDVTYP(TABLE-INDEX).

* DISPLAY COLUMN HEADING.
MOVE SEL-DH-VNAME(TABLE-INDEX) TO COLUMN-NAME.
DISPLAY COLUMN-NAME(1:SELDVLN(TABLE-INDEX)), " "
WITH NO ADVANCING.
EXIT.

FETCH-ROWS.
* FETCHAROW AND PRINT THE SELECT-LIST VALUE.
EXEC SQL
FETCH C1 USING DESCRIPTOR SELDSC
END-EXEC.
IF SQLCODENOT =0

Using Dynamic SQL: Advanced Concepts 12-51



Sample Program 10: Dynamic SQL Method 4

MOVE "Y" TO NO-MORE-DATA.
IF SQLCODE =0
PERFORM PRINT-COLUMN-VALUES
VARYING TABLE-INDEXFROM 1BY 1
UNTIL TABLE-INDEX > SQLDNUM IN SELDSC
DISPLAY "".

PRINT-COLUMN-VALUES.
*  PRINT ASELECT-LIST VALUE.
DISPLAY SEL-DV(TABLE-INDEX)(L:SELDVLN(TABLE-INDEX)), ""
WITH NO ADVANCING.

12-52 Pro*COBOL Precompiler Programmer’s Guide



13

Writing User EXits

This chapter focuses on writing user exits for your SQL*Forms and Oracle Forms
applications. First, you learn the EXEC IAF statements that allow a SQL*Forms
application to interface with user exits. Then, you learn how to write and link a
SQL*Forms user exit. You also learn how to use EXEC TOOLS statements with Ora-
cle Forms. (SQL*Forms does not support EXEC TOOLS.) That way, you can use
EXEC IAF statements to enhance your existing applications and EXEC TOOLS
statements to build new applications.

Use EXEC TOOLS rather than the obsolescent EXEC IAF in any new applications.
The following topics are covered:

= What Is a User Exit?

«  Why Write a User Exit?

« Developing a User Exit

«  Writing a User Exit

« Calling a User Exit

» Passing Parameters to a User Exit

« Returning Values to a Form

« Sample Program 5: Oracle Forms User Exit
« Precompiling and Compiling a User Exit

« Using the GENXTB Utility

» Linking a User Exit into SQL*Forms

« Guidelines for SQL*Forms User EXits

Writing User Exits  13-1



« EXEC TOOLS Statements

This chapter is supplemental. For more information about user exits, see the Oracle
Forms Designer’s Reference, the Oracle Forms Reference Manual, Vol. 2, and your sys-
tem-specific Oracle manuals.

13-2 Pro*COBOL Precompiler Programmer’s Guide



What Is a User Exit?

What Is a User Exit?

A user exit is a host-language subroutine written by you and called by SQL*Forms
to do special-purpose processing. You can embed SQL commands and PL/SQL
blocks in your user exit, then precompile it as you would a host program.

When called by a SQL*Forms trigger, the user exit runs, then returns a status code
to SQL*Forms (refer to Figure 13-1). Your user exit can display messages on the
SQL*Forms status line, get and put field values, manipulate Oracle8 data, do high-
speed computations and table lookups—even log on to different databases.

Figure 13-1 SQL*Forms Communicating with a User Exit

SQL*Forms

Values
User Exit
—

P | Message Line

Status Code

v

Oracle8 Server

Writing User Exits  13-3



Why Write a User Exit?

Why Write a User Exit?

SQL*Forms Version 3 allows you to use PL/SQL blocks in triggers. So, in most
cases, instead of calling a user exit, you can use the procedural power of PL/SQL. If
the need arises, you can call user exits from a PL/SQL block with the USER_EXIT
function.

User exits are harder to write and implement than SQL, PL/SQL, or SQL*Forms
commands. So, you will probably use them only to do processing that is beyond
the scope of SQL, PL/SQL, and SQL*Forms. Some common uses follow:

= operations more quickly or easily performed in third generation languages like
C and FORTRAN (for example, numeric integration)

« controlling real time devices or processes (for example, issuing a sequence of
instructions to a printer or graphics device)

« data manipulations that need extended procedural capabilities (for example,
recursive sorting)

« special file /0 operations

Developing a User Exit

This section outlines the way to develop a SQL*Forms user exit; later sections go
into more detail. For information about EXEC TOOLS statements, which are avail-
able with Oracle Forms, see "EXEC TOOLS Statements" on page 13-14.

To incorporate a user exit into a form, you take the following steps:
1. Write the user exit in a supported host language.

2. Precompile the source code.

3. Compile the modified source code.

4. Use the GENXTB utility to create a database table, IAPXTB.

5

Use the GENXTB form in SQL*Forms to insert your user exit information into
the database table.

6. Use the GENXTB utility to read the information from the table and create an
IAPXIT source module. Then, compile the source module.

7. Create a new IAP (the SQL*Forms component that runs a form) by linking the
standard AP object modules, your user exit object module, and the IAPXIT
object module created in step 6.

8. Inthe form, define a trigger to call the user exit.

13-4 Pro*COBOL Precompiler Programmer’s Guide



Writing a User Exit

9. Instruct operators to use the new IAP when running the form. This is unneces-
sary if the new IAP replaces the standard one. For details, see your system-spe-
cific Oracle manuals.

Writing a User Exit
You can use the following kinds of statements to write your SQL*Forms user exit:
« host-language
. EXECSQL
« EXEC ORACLE
« EXECIAF GET
« EXECIAFPUT

This section focuses on the EXEC IAF GET and PUT statements, which let you pass
values between SQL*Forms and a user exit.

Requirements for Variables

The variables used in EXEC IAF statements must correspond to field names used in
the form definition. If a field reference is ambiguous because you did not specify a
block name, you get an error. An invalid or ambiguous reference to a form field
generates an error.

Host variables must be named in the user exit Declare Section and must be prefixed
with a colon (:) in EXEC IAF statements.

Note: Indicator variables are not allowed in EXEC IAF GET and PUT state-
ments.

The IAF GET Statement

This statement allows your user exit to “get” values from fields on a form and
assign them to host variables. The user exit can then use the values in calculations,
data manipulations, updates, and so on. The syntax of the GET statement follows:

EXEC IAF GET field_namel, field_name2, ...
INTO :host_variablel, :host variable2, ... END-EXEC.

where field_name can be any of the following SQL*Forms variables:
« field
« Dblock.field

Writing User Exits  13-5



Writing a User Exit

« system variable
« global variable

« host variable (prefixed with a colon) containing the value of a field, block.field,
system variable, or global variable

If field_name is not qualified, it must be unique.

The following example shows how a user exit GETs a field value and assigns it to a
host variable:

EXEC |AF GET employee job INTO :NEW-JOB END-EXEC.

All field values are character strings. If it can, GET converts a field value to the
datatype of the corresponding host variable. If an illegal or unsupported datatype
conversion is attempted, an error is generated.

In the last example, a constant is used to specify block.field. You can also use a host
string to specify block and field names, as follows:

MOVE "employee.job" TO BLKFLD.
EXEC IAF GET :BLKFLD INTO :NEW-JOB END-EXEC.

Unless the field is unique, the host string must contain the full block.field reference
with intervening period. For example, the following usage is invalid:

MOVE "employee" TO BLK.
MOVE "job" TOFLD.
EXEC IAF GET :BLK.:FLD INTO :NEW-JOB END-EXEC.

You can mix explicit and stored field names in a GET statement field list, but not in
a single field reference. For example, the following usage is invalid:

MOVE "job" TOFLD.
EXEC IAF GET employee.:FLD INTO :NEW-JOB END-EXEC.

The IAF PUT Statement

This statement allows your user exit to “put” the values of constants and host vari-
ables into fields on a form. Thus, the user exit can display on the SQL*Forms screen
any value or message you like. The syntax of the PUT statement follows:

EXEC |AF PUT field_namel, field_name2, ...
VALUES (:host_variablel, :host_variable2, ...) END-EXEC.

where field_name can be any of the following SQL*Forms variables:

13-6 Pro*COBOL Precompiler Programmer’s Guide



Calling a User Exit

« field

« block.field

« system variable
« global variable

« host variable (prefixed with a colon) containing the value of a field, block.field,
system variable, or global variable

The following example shows how a user exit PUTs the values of a numeric con-
stant, string constant, and host variable into fields on a form:

EXEC IAF PUT employee.number, employee.name, employee.job
VALUES (7934, MILLER’, :NEW-JOB) END-EXEC.
Like GET, PUT lets you use a host string to specify block and field names, as fol-
lows:
MOVE "employee.job" TO BLKFLD.
EXEC IAF PUT :BLKFLD VALUES (NEW-JOB) END-EXEC.

On character-mode terminals, a value PUT into a field is displayed when the user
exit returns, rather than when the assignment is made, provided the field is on the
current display page. On block-mode terminals, the value is displayed the next
time a field is read from the device.

If a user exit changes the value of a field several times, only the last change takes
effect.

Calling a User Exit

You call a user exit from a SQL*Forms trigger using a packaged procedure named
USER_EXIT (supplied with SQL*Forms). The syntax you use is

USER _EXIT(user_exit_string [, error_string]);
where user_exit_string contains the name of the user exit plus optional parameters
and error_string contains an error message issued by SQL*Forms if the user exit

fails. For example, the following trigger command calls a user exit named
LOOKUP:

USER_EXIT(LOOKUP);

Notice that the user exit string is enclosed by single (not double) quotes.

Writing User Exits  13-7



Passing Parameters to a User Exit

Passing Parameters to a User Exit

When you call a user exit, SQL*Forms passes it the following parameters automati-
cally:

However, the user exit string allows you to pass additional parameters to the user
exit. For example, the following trigger command passes two parameters and an
error message to the user exit LOOKUP:

USER_EXIT(LOOKUP 2025 A, "Lookup failed);

You can use this feature to pass field hames to the user exit, as the following exam-
ple shows:

USER_EXIT(CONCAT firstname, lastname, address));

However, it is up to the user exit, not SQL*Forms, to parse the user exit string.

Returning Values to a Form

When a user exit returns control to SQL*Forms, it must also return a code indicat-
ing whether it succeeded, failed, or suffered a fatal error. The return code is an inte-
ger constant generated by precompiler (see the next section). The three results have
the following meanings:

If a user exit changes the value of a field, then returns a failure or fatal error code,
SQL*Forms does not discard the change. Nor does SQL*Forms discard changes when the
Reverse Return Code swiitch is set and a success code is returned.

The IAP Constants

The precompiler generates three symbolic constants for use as return codes. They
are prefixed with IAP. For example, the three constants might be IAPSUCC, IAP-
FAIL, and IAPFTL.

Using the SQLIEM Function

By calling the function SQLIEM, your user exit can specify an error message that
SQL*Forms will display on the message line if the trigger step fails or on the Dis-
play Error screen if the step causes a fatal error. The specified message replaces any
message defined for the step.

The syntax of the SQLIEM function call is:
CALL "SQLIEM"USING ERROR-MESSAGE ERROR-MESSAGE-LEN.

13-8 Pro*COBOL Precompiler Programmer’s Guide



Sample Program 5: Oracle Forms User Exit

where ERROR-MESSAGE and ERROR-MESSAGE-LEN are character and integer vari-
ables, respectively. The Oracle Precompilers generate the appropriate external function dec-
laration for you. You pass both parameters by reference; that is, you pass their addresses,

not their values. SQLIEM is a SQL*Forms function; it cannot be called from other Oracle
tools.

Using WHENEVER

You can use the WHENEVER statement in an exit to detect invalid datatype conver-
sions (SQLERROR), truncated values PUT into form fields (SQLWARNING), and
gueries that return no rows (NOT FOUND).

Sample Program 5: Oracle Forms User Exit

This user exit concatenates form fields. To call the user exit from a Oracle Forms
trigger, use the syntax

<user_exit>(CONCAT <field1>, <field2>, ..., <result_field>);

where user_exit is a packaged procedure supplied with Oracle Forms and CONCAT
is the name of the user exit. A sample CONCAT form invokes the user exit.

IDENTIFICATION DIVISION.
PROGRAM-D. CONCAT.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 FIELD-NAME PIC X(80) VARYING.
01 FELDVALUE  PIC X(80) VARYING.
01 RESULT PIC X(800) VARYING.
EXEC SQL END DECLARE SECTION END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.
01 EXIT-MESSAGE ~ PIC X(80).
01 EXIT-MESSAGE-LEN  PIC S9(9) COMP.
01 RTN-CODE PIC S9(9) COMP.
77 INDX PIC S9(4) COMP.
01 DONE-FLAG PIC X.
83 DONE VALUE'Y'.
01 PTR PIC S9(4) COMP.
01 WS-CMD-LINE.
05 WS-CMD-LINE-Y  PIC X(80).
05 WS-CMD-LINE-X  REDEFINES WS-CMD-LINE-Y
01 WS-FIELD-NAME-AREA.

Writing User Exits  13-9



Sample Program 5: Oracle Forms User Exit

05 WS-FIELD-NAME  PIC X(80).

05 WS-FIELD-NAME-X REDEFINES WS-HELD-NAME
PIC X OCCURS 80.

05 WS-HELD-NAME-LEN PIC S9(4) COMP.

LINKAGE SECTION.
01 CMD-LINE PIC X(80).
01 CMD-LINELEN  PIC S9(9) COMP.
01 ERR-MSG PIC X(80).
01 ERR-MSGLEN  PIC S9(9) COMP.
01 IN-QUERY PIC S9(9) COMP.

01 RETURN-VALUE PIC S9(9) COMP.

PROCEDURE DIVISION USING CMD-LINE, CMD-LINE-LEN,
ERR-MSG, ERR-MSG-LEN,
IN-QUERY, RETURN-VALUE.

MAIN.
MOVE 1 TOPTR.
MOVE SPACE TO RESULT-ARR.
MOVE ZERO TO RESULT-LEN.
MOVE SPACE TO DONE-FLAG.
MOVE 7 TO INDX.
MOVE CMD-LINE TO WS-CMD-LINE-Y.
PERFORM CMD-LINE-PARSE UNTIL DONE.
EXEC SQL
WHENEVER SQLERROR GOTO SQL-ERROR
END-EXEC.
MOVE WS-FIELD-NAME TO FIELD-NAME-ARR.
MOVE WS-FIELD-NAME-LEN TO FIELD-NAME-LEN.
EXEC IAF
PUT :FIELD-NAME VALUES(RESULT)
END-EXEC.
MOVE SQL-APXIT-SUCCESS TO RTN-CODE.
EXIT PROGRAM GIVING RTN-CODE.

CMD-LINE-PARSE.
MOVE ZERO TO WS-FIELD-NAME-LEN.
MOVE SPACES TO WS-FIELD-NAME.
MOVE SPACES TO FIELD-NAME-ARR.
MOVE ZERO TO FIELD-NAME-LEN.
PERFORM GET-FIELD-NAME

13-10 Pro*COBOL Precompiler Programmer’s Guide



Precompiling and Compiling a User Exit

UNTIL WS-CMD-LINE-X(INDX) =", OR DONE.
IF WS-CMD-LINE-X(INDX) =",
MOVE SPACES TO FIELD-NAME-ARR
MOVE WS-FIELD-NAME TO FIELD-NAME-ARR
MOVE WS-FELD-NAME-LEN TO FIELD-NAME-LEN
MOVE SPACES TO FIELD-VALUE-ARR
EXEC IAF
GET :FIELD-NAME INTO :FIELD-VALUE
END-EXEC
STRING FIELD-VALUE-ARR
DELIMITED BY SPACE
INTO RESULT-ARR
WITHPOINTER PTR
ADD FELD-VALUE-LEN TO RESULT-LEN
ADD 1 TOINDX.

GET-FIELD-NAME.
IF WS-CMD-LINE-X(INDX) NOT EQUAL SPACE
ADD 1 TO WS-FIELD-NAME-LEN
MOVE WS-CMD-LINE-X(INDX) TO
WS-FHELD-NAME-X(WS-FIELD-NAME-LEN).
ADD 1 TOINDX.
IF INDX > CMD-LINE-LEN MOVE Y’ TO DONE-FLAG.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE SQLERRMC TO EXIT-MESSAGE.
MOVE SQLERRML TO EXIT-MESSAGE-LEN.
CALL "SQLIEM" USING EXIT-MESSAGE EXIT-MESSAGE-LEN.
MOVE SQL-APXIT-FAILURE TO RTN-CODE.
EXIT PROGRAM.

Precompiling and Compiling a User Exit

User exits are precompiled like stand-alone host programs. Refer to Chapter 7,
“Running the Pro*COBOL Precompiler”.

For instructions on compiling a user exit, see your system-specific Oracle manuals.

Writing User Exits  13-11



Using the GENXTB Utility

Using the GENXTB Utility

The IAP program table IAPXTB in module IAPXIT contains an entry for each user
exit linked into IAP. IAPXTB tells IAP the name, location, and host language of
each user exit. When you add a new user exit to IAP, you must add a correspond-
ing entry to IAPXTB.

IAPXTB is derived from a database table, also named IAPXTB. You can modify the
database table by running the GENXTB form on the operating system command
line, as follows:

RUNFORM GENXTB usemame/password

A form is displayed that allows you to enter the following information for each
user exit you define:

« exit name

« host-language code (COBOL or C)

« date created

« date last modified

« Comments

After modifying the IAPXTB database table, use the GENXTB utility to read the
table and create an Assembler or C source program that defines the module IAPXIT
and the IAPXTB program table it contains. The source language used depends on
your operating system. The syntax you use to run the GENXTB utility is

GENXTB usemame/password outfile

where outfile is the name you give the Assembler or source program that GENXTB creates.

Linking a User Exit into SQL*Forms

Before running a form that calls a user exit, you must link the user exit into IAP.
The user exit can be linked into your standard version of IAP or into a special ver-
sion for those forms that call the exit.

To produce a new executable copy of IAP, link your user exit object module, the
standard IAP modules, the IAPXIT module, and any modules needed from the Ora-
cle and host-language link libraries. The details of linking are system-dependent, so
check your system-specific Oracle manuals.

13-12 Pro*COBOL Precompiler Programmer’s Guide



Guidelines for SQL*Forms User Exits

Guidelines for SQL*Forms User Exits

The guidelines in this section will help you avoid some common pitfalls.

Naming the Exit

The name of your user exit cannot be an Oracle reserved word. Also avoid using
names that conflict with the names of SQL*Forms commands, function codes, and
externally defined names used by SQL*Formes.

SQL*Forms converts the name of a user exit to upper case before searching for the
exit. Therefore, the exit name must be in upper case in your source code if your
host language is case-sensitive.

The name of the user exit entry point in the source code becomes the name of the
user exit itself. The exit name must be a valid file name for your host language and
operating system.

Connecting to Oracle

User exits communicate with Oracle8 via the connection made by SQL*Formes.
However, a user exit can establish additional connections to any database via
SQL*Net. For more information, see "Concurrent Logons" on page 3-46.

Issuing I/0 Calls

SQL*Forms 1/0 routines might conflict with host-language printer 1/0 routines. If
they do, your user exit will be unable to issue printer 170 calls. File 1/0 is sup-
ported but screen 1/0 is not.

Using Host Variables

Restrictions on the use of host variables in a stand-alone program also apply to
user exits. Host variables must be named in the user exit Declare Section and must
be prefixed with a colon in EXEC SQL and EXEC IAF statements. However, the use
of host arrays is not allowed in EXEC |AF statements.

Updating Tables

Generally, a user exit should not UPDATE database tables associated with a form.
For example, suppose an operator updates a record in the SQL*Forms work space,
then a user exit UPDATEs the corresponding row in the associated database table.
When the transaction is COMMITted, the record in the SQL*Forms work space is
applied to the table, overwriting the user exit UPDATE.

Writing User Exits  13-13



EXEC TOOLS Statements

Issuing Commands

Avoid issuing a COMMIT or ROLLBACK command from your user exit because
Oracle8 will commit or roll back work begun by the SQL*Forms operator, not just
work done by the user exit. Instead, issue the COMMIT or ROLLBACK from the
SQL*Forms trigger. This also applies to data definition commands (such as ALTER
and CREATE) because they issue an implicit COMMIT before and after executing.

EXEC TOOLS Statements

EXEC TOOLS statements support the basic Oracle Toolset (Oracle Forms, Oracle
Reports, and Oracle Graphics) by providing a generic way to handle get, set, and
exception call-backs from user exits. The following discussion focuses on Oracle

Forms but the same concepts apply to Oracle Reports and Oracle Graphics.

Besides EXEC SQL, EXEC ORACLE, and host language statements, you can use the
following EXEC TOOLS statements to write an Oracle Forms user exit:

« SET
« GET
= MESSAGE

The EXEC TOOLS GET and SET statements replace the EXEC IAF GET and PUT
statements used with SQL*Forms. Unlike IAF GET and PUT, TOOLS GET and SET
accept indicator variables. The EXEC TOOLS MESSAGE statement replaces the
message-handling function SQLIEM. The EXEC TOOLS SET CONTEXT and GET
CONTEXT statements are new and not available with SQL*Forms, Version 3.

Note: COBOL does not have a pointer datatype, so you cannot use the SET
CONTEXT and GET CONTEXT statements in a Pro*COBOL program.

EXEC TOOLS SET

The EXEC TOOLS SET statement passes values from your user exit to Oracle
Forms. Specifically, it assigns the values of host variables and constants to Oracle
Forms variables and items. The values are displayed after the user exit returns con-
trol to the form.

To code the EXEC TOOLS SET statement, you use the syntax

EXEC TOOLS SET form_variable], ...]
VALUES ({host_variable[:indicator] | constant]], ...])
END-EXEC.

13-14 Pro*COBOL Precompiler Programmer’s Guide



EXEC TOOLS Statements

where form_variable is an Oracle Forms field, parameter, system variable, or global vari-

able, or a host variable (prefixed with a colon) containing the name of one of the foregoing
items.

In the following Pro*xCOBOL example, your user exit passes an employee name
(with optional indicator) to Oracle Forms:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 ENAME PIC X(20) VARYING.

01 ENAMEAND PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.

MOVE "MILLER" TO ENAME-ARR.

MOVE 6 TO ENAME-LEN.

MOVE ZERO TO ENAME-IND.

EXEC TOOLS SET emp.ename VALUES (ENAME:ENAME-IND) END-EXEC.

In this example, emp.ename is an Oracle Forms block field.

EXEC TOOLS GET

The EXEC TOOLS GET statement passes values from Oracle Forms to your user
exit. Specifically, it assigns the values of Oracle Forms variables and items to host

variables. As soon as the values are passed, the user exit can use them for any pur-
pose.

To code the EXEC TOOLS GET statement, you use the syntax
EXEC TOOLS GET form_variable], ..]
INTO :host_variable[:indicator][, ...] END-EXEC.
where form_variable is an Oracle Forms field, parameter, system variable, or global vari-
able, or a host variable containing the name of one of the foregoing items.

In the following example, Oracle Forms passes an employee name from the
block.field emp.ename to your user exit;

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 ENAME PIC X(20) VARYING.
EXEC SQL END DECLARE SECTION END-EXEC.

EXEC TOOLS GET emp.ename INTO :ENAME END-EXEC.

Writing User Exits  13-15



EXEC TOOLS Statements

EXEC TOOLS MESSAGE

The EXEC TOOLS MESSAGE statement passes a message from your user exit to

Oracle Forms. The message is displayed on the Oracle Forms message line after the
user exit returns control to the form.

To code the EXEC TOOLS MESSAGE statement, you use the syntax
EXEC TOOLS MESSAGE message_text [severity code] END-EXEC.
where message_text is a quoted string or a character host variable, and the optional

severity _code is an integer constant or host variable. The MESSAGE statement does not
accept indicator variables.

In the following Pro*COBOL example, your user exit passes an error message and
severity code to Oracle Forms:

EXEC TOOLS MESSAGE "Bad field name! Please reenter.” 15
END-EXEC.

13-16 Pro*COBOL Precompiler Programmer’s Guide



A

New Features

This appendix looks at the improvements and new features offered by the Oracle
Pro*COBOL Precompiler, Release 8.0. Each is briefly described, and a reference to
the more complete description in the chapters is provided.

These topics are presented:
« DB2 Compatibility Features

=« Other New Features

New Features A-1



DB2 Compatibility Features

DB2 Compatibility Features

These new features in Pro*COBOL 8.0 help you when migrating applications from
DB2 to Oracle8, but all users of Pro*xCOBOL should review them.

Optional DECLARE SECTION

Use of the BEGIN DECLARE SECTION and END DECLARE SECTION statements
is now optional when DECLARE_SECTION=NO (the default). If used, the
DECLARE statements must be properly paired within the same
WORKING-STORAGE SECTION or other COBOL declaration unit.

The form of the precompiler option is:
DECLARE._SECTION={YES | NO (defaul)}

which must be used on the command-line or in a configuration file. This option is a
micro option with respect to the MODE option (a micro option controls only one
behavior; a macro option controls several behaviors) and is subject to the general
rule: macro options have precedence over micro options when, and only when, the
macro level is at a higher level than the micro option. The levels are, in descending
precedence:

« In-line

« Command line

« User configuration file

« System configuration file
« Default

This option allows the user to specify MODE=ORACLE together with
DECLARE_SECTION=YES to get the same effect that previous releases provided
when using MODE=ORACLE alone (only variables declared inside the DECLARE
statements are allowed as host variables.) For further details, see
"DECLARE_SECTION" on page 7-17. For further discussion of precedence of this
option, and a table showing how macro option values set micro option values, see
"Macro and Micro Options" on page 7-4.

Support of Additional Datatypes

The computational usage datatype COMP-4 (COMPUTATIONAL-4) is treated as a
binary datatype. The IBM-implemented computational data type, COMP-4 (also
represented as COMPUTATIONAL-4, will be treated as a binary datatype.

A-2 Pro*COBOL Precompiler Programmer’s Guide



DB2 Compatibility Features

Display usage datatypes now supported are:

«  Over-Punch (ZONED-DECIMAL). This is the default signed numeric for the
COBOL language. Digits are held in ASCII or EBCDIC format in radix 10, with
one digit per byte of computer storage. The sign is held in the high order nibble
of one of the bytes. It is called overpunch because the sign is "punched-over"
the digit in either the first or last byte. The default sign position will be over the
trailing byte. PIC S9(n)V9(m) TRAILING or PIC S9(n)V9(m) LEADING is used
to specify the overpunch.

« Display-1 Multibyte type (PIC G). This datatype is equivalent to PIC N and is
used for multibyte characters.

See "Host Variables" on page 3-12.

Support of Group Items as Host Variables

Pro*COBOL now allows the use of group items in embedded SQL statements. The
host group items can be referenced in the INTO clause of a SELECT or a FETCH
statement, and in the VALUES list of an INSERT statement. When a group item is
used as a host variable, only the group name is used in the SQL statement. For
more details see "Group Items as Host Variables" on page 3-20.

Implicit Form of VARCHAR Group ltems

The declaration of COBOL groups that are recognized as VARCHAR are of the
following format:

nn <identifier-1>
49 <identifier-2> PIC S9(4) <integer declaration>.
49 <identifier-3> PIC X(nc).

where the level, nn, is in the range 01 to 48, the length, nc, is in the range 1 to 65533,
and PIC G or PIC N can be used instead of PIC X.

The VARCHAR=YES command line option must be specified for Pro*xCOBOL to
recognize the extended form of the VARCHAR group items. Otherwise, any
declarations in the above format will be interpreted as regular group items. For
more details, see "Referencing VARCHAR Variables" on page 3-38.

Explicit Control Over the END_OF_FETCH SQLCODE Number

DB2 returns a SQLCODE value of 100 when an end-of-fetch condition occurs. To
provide explicit control over the value returned by Oracle, the following option is
available:

New Features A-3



DB2 Compatibility Features

END_OF FETCH={100| 1403 (defaul}

This option must be used on the command line or in a configuration file. For more
details see "END_OF _FETCH" on page 7-19.

Support of the WITH HOLD Clause in the DECLARE CURSOR Statement

DB2 closes all cursors on commit, by default. This can be overridden on a cursor
(which has been declared as for update) by using the WITH HOLD clause in the
declaration of the cursor. Any cursor with the WITH HOLD clause will remain
open after a commit or a rollback. The DB2 default occurs when MODE=ANSI, but
then all host variables must be declared in a declare section. See "Declaring a
Cursor" on page 5-11.

New Precompiler Option CLOSE_ON_COMMIT
A new precompiler option is provided:
CLOSE_ON_COMMIT={YES | NO (defautt}

This option must be used on the command line or in a configuration file. It will
only have an effect when a cursor is not coded using the WITH HOLD clause, since
that will override both the new option and the existing behavior which is
associated with MODE option. For more details, see "CLOSE_ON_COMMIT" on
page 7-14

Support for DSNTIAR

DB2 provides a routine DSNTIAR to obtain a form of the SQLCA that can be
displayed. Pro*COBOL now provides DSNTIAR. The interface is:

CALL "DSNTIAR" USING SQLCA MESSAGE LRECL.
where SQLCA is a SQL communication area, MESSAGE is the output message
area, in VARCHAR form of size greater than or equal to 240, and LRECL is a

full-word containing the length of the output messages, between 72 and 240. For
more details, see "DSNTIAR" on page 9-27.

Date String Format Precompiler Option

For compatibility with DB2, Pro*COBOL now provides the following precompiler
option to specify date strings:

DATE_FORMAT={ISO | USA | EUR | JIS| LOCAL |’ fmt * (default LOCAL)}

A-4 Pro*COBOL Precompiler Programmer’s Guide



Other New Features

The DATE_FORMAT option must be used on the command line or in a
configuration file. The date strings are shown in the following table:

Table A-1 Formats for Date Strings

Format Name Abbreviation Date Format
International Standards Organization ISO yyyy-mm-dd
USA standard USA mm/dd/yyyy
European standard EUR dd.mm.yyyy
Japanese Industrial Standard JIS yyyy-mm-dd
installation-defined LOCAL Any installa-
tion-defined form.

‘fmt’ is a date format model, such as 'Month dd, yyyy’. See the Oracle8 SQL
Reference for the list of date format model elements. For more details, see
"DATE_FORMAT" on page 7-15.

Any Terminator Allowed after END-EXEC

A SQL statement now can be terminated by a comma, a period or another COBOL
statement. For more details, see "Sentence Terminator” on page 3-8.

Other New Features

New Name for Configuration File

The configuration file is now called pchcfg.cfg, instead of pccob.cfg. See
"Configuration Files" on page 7-6.

Support of Other Additional Datatypes

The computational usage datatype PACKED-DECIMAL is treated as COMP-3
datatype for ANSI compatibility.

The datatype SCALED DISPLAY (PIC 9(n) and PIC S9(n)) is supported. Digits are
held in ASCII or EBCDIC format in radix 10, with one digit per byte of computer
storage. If present, the sign is held in a separate byte (designated by the phrase

SIGN SEPARATE). The position is trailing, the default, or may be specified using
the SIGN TRAILING clause.

New Features A-5



Other New Features

Support of Nested Programs

Pro*COBOL now allows nested programs with embedded SQL within a single
source file. Nested programs cannot be recursive. All level 01 items which are
marked as global in a containing program and are valid host variables at the
containing program level are usable as valid host variables in any programs
directly or indirectly contained by the containing program. For more details, see
"Nested Programs" on page 3-22.

Support for REDEFINES and FILLER

The REDEFINES clause can be used to redefine group items. For more details, see
"REDEFINES Clause" on page 3-7

The word FILLER is now allowed in host variable declarations. For more details,
see "FILLER is Allowed" on page 3-9

New Precompiler Option PICX

The default datatype for PIC X variables is changed from VARCHAR2 to CHARF.
A new precompiler option provides backwards compatibility:

PICX={VARCHAR2 | CHARF (default)}

This option is allowed only on the command line or in a configuration file. The new
default behavior is consistent with the normal COBOL move behavior.

For more details, see "PICX" on page 7-32.

Optional CONVBUFSZ Clause in VAR Statement

This clause specifies an optional buffer used for conversion between character sets.
For more details, see "CONVBUFSZ Clause in VAR Statement” on page 4-23.

Improved Error Reporting

Errors are now associated with the proper line in any list file or in any terminal
output. "Invalid host variable" errors state why the given COBOL variable is
invalid for use in embedded SQL.

Changing Password When Connecting

The executable embedded SQL statement, CONNECT, has a new optional, final
clause which allows you to change the password:

A-6 Pro*COBOL Precompiler Programmer’s Guide



Other New Features

EXEC SQL CONNECT ... [ALTER AUTHORIZATION :new_password] END-EXEC.

See "Changing Passwords at Runtime" on page 3-55 and the connect statement
entry on page F-12.

New Features A-7



Other New Features

A-8 Pro*COBOL Precompiler Programmer’s Guide



B

Operating System Dependencies

Some details of Pro*COBOL programming vary from one system to another. This
appendix is a collection of all system-specific issues regarding Pro*COBOL. Refer-
ences are provided, where applicable, to other sources in your document set.

Operating System Dependencies B-1



System-Specific References in this Manual

System-Specific References in this Manual

The references in this section appear in Chapter 3, “Writing a Pro*COBOL Pro-
gram” using similar order and headings.

COBOL Versions

Host Variables

The Pro*COBOL Precompiler supports the standard implementation of COBOL for
your operating system (usually COBOL-85 or COBOL-74). Some platforms may
support both COBOL implementations. Check your Oracle system-specific docu-
mentation.

How you declare and name host variables depends on which COBOL compiler you
use. Check your COBOL user’s guide for details about declaring and naming host
variables.

Declaring

Declare host variables according to COBOL rules, specifying a COBOL datatype
supported by Oracle. Table 3-2, “Host Variable Declarations” shows the COBOL
datatypes and pseudotypes you can specify. However, your COBOL implementa-
tion might not include all of them.

Naming

Host variable names must consist only of letters, digits, and hyphens, and must
begin with a letter. They can be any length, but only the first 30 characters are sig-
nificant. Your compiler might allow a different maximum length.

INCLUDE Statements

You can INCLUDE any file. When you precompile your Pro*COBOL program, each
EXEC SQL INCLUDE statement is replaced by a copy of the file named in the state-
ment.

If your system uses file extensions but you do not specify one, the Pro*COBOL Pre-
compiler assumes the default extension for source files (usually COB). The default
extension is system-dependent. Check your Oracle system-specific documentation.

If your system uses directories, you can set a directory path for INCLUDEGA files by
specifying the precompiler option INCLUDE=path. You must use INCLUDE to
specify a directory path for nonstandard files unless they are stored in the current

B-2 Pro*COBOL Precompiler Programmer’s Guide



System-Specific References in this Manual

directory. The syntax for specifying a directory path is system-specific. Check your
Oracle system-specific documentation.

MAXLITERAL Default

With the MAXLITERAL precompiler option you can specify the maximum length
of string literals generated by the precompiler, so that compiler limits are not
exceeded. The MAXLITERAL default value is 256, but you might have to specify a
lower value.

For example, if your COBOL compiler cannot handle string literals longer than 132
characters, specify "MAXLITERAL=132." Check your COBOL compiler user’s
guide. For more information about the MAXLITERAL option, see Chapter 7, “Run-
ning the Pro*xCOBOL Precompiler”

PIC N Clause for Multi-byte NLS Characters

Some COBOL compilers may not support the use of the PIC N or PIC G clause for
declaring multi-byte NLS character variables. Check your COBOL user’s guide
before writing source code that uses these clauses to declare multi-byte NLS charac-
ter variables.

Operating System Dependencies B-3



System-Specific References in this Manual

B-4 Pro*COBOL Precompiler Programmer’s Guide



C

Oracle8 Reserved Words, Keywords, and
Namespaces

This appendix lists words that have a special meaning to Oracle8. Each word plays
a specific role in the context in which it appears. For example, in an INSERT state-
ment, the reserved word INTO introduces the tables to which rows will be added.
But, in a FETCH or SELECT statement, the reserved word INTO introduces the out-
put host variables to which column values will be assigned.

Topics are:
« Oracle8 Reserved Words and Keywords

» Oracle8 Reserved Namespaces

Oracle8 Reserved Words, Keywords, and Namespaces C-1



Oracle8 Reserved Words and Keywords

Oracle8 Reserved Words and Keywords

| &
> [ <
( +
] ) |
/ * N
@ ACCESS
ACCOUNT ACTIVATE ADD
ADMIN ADVISE AFTER
ALL ALL_ROWS ALLOCATE
ALTER ANALYZE AND
ANY ARCHIVE ARCHIVELOG
ARRAY AS ASC
AT AUDIT AUTHENTICATED
AUTHORIZATION AUTOEXTEND AUTOMATIC
BACKUP BECOME BEFORE
BEGIN BETWEEN BFILE
BITMAP BLOB BLOCK
BODY BY CACHE
CACHE_INSTANCES CANCEL CASCADE
CAST CFILE CHAINED
CHANGE CHAR CHAR_CS
CHARACTER CHECK CHECKPOINT

C-2 Pro*COBOL Precompiler Programmer’s Guide




Oracle8 Reserved Words and Keywords

CHOOSE CHUNK CLEAR

CLOB CLONE CLOSE
CLOSE_CACHED_OPEN_CURSORS CLUSTER COALESCE
COLUMN COLUMNS COMMENT
COMMIT COMMITTED COMPATIBILITY
COMPILE COMPLETE COMPOSITE_LIMIT
COMPRESS COMPUTE CONNECT
CONNECT_TIME CONSTRAINT CONSTRAINTS
CONTENTS CONTINUE CONTROLFILE
CONVERT COST CPU_PER_CALL
CPU_PER_SESSION CREATE CURRENT
CURRENT_SCHEMA CURRENT_USER CURSOR
CYCLE DANGLING DATABASE
DATAFILE DATAFILES DATAOBINO
DATE DBA DBHIGH
DBLOW DBMAC DEALLOCATE
DEBUG DEC DECIMAL
DECLARE DEFAULT DEFERRABLE
DEFERRED DEGREE DELETE

DEREF DESC DIRECTORY
DISABLE DISCONNECT DISMOUNT
DISTINCT DISTRIBUTED DML

DOUBLE DROP DUMP

EACH ELSE ENABLE

END ENFORCE ENTRY

Oracle8 Reserved Words, Keywords, and Namespaces C-3




Oracle8 Reserved Words and Keywords

ESCAPE ESTIMATE EVENTS
EXCEPT EXCEPTIONS EXCHANGE
EXCLUDING EXCLUSIVE EXECUTE
EXISTS EXPIRE EXPLAIN
EXTENT EXTENTS EXTERNALLY
FAILED_LOGIN_ATTEMPTS FALSE FAST

FILE FIRST_ROWS FLAGGER
FLOAT FLOB FLUSH

FOR FORCE FOREIGN
FREELIST FREELISTS FROM

FULL FUNCTION

GLOBAL GLOBALLY GLOBAL_NAME
GRANT GROUP GROUPS

HASH HASHKEYS HAVING
HEADER HEAP IDENTIFIED
IDGENERATORS IDLE_TIME IF

IMMEDIATE IN INCLUDING
INCREMENT INDEX INDEXED
INDEXES INDICATOR IND_PARTITION
INITIAL INITIALLY INITRANS
INSERT INSTANCE INSTANCES
INSTEAD INT INTEGER
INTERMEDIATE INTERSECT INTO

IS ISOLATION ISOLATION_LEVEL
KEEP KEY KILL

C-4 Pro*COBOL Precompiler Programmer’s Guide




Oracle8 Reserved Words and Keywords

LABEL LAYER LESS

LEVEL LIBRARY LIKE

LIMIT LINK LIST

LOB LOCAL LOCK

LOCKED LOG LOGFILE
LOGGING LOGICAL_READS_PER_CALL LOGICAL_READS_PER_SESSION
LONG MANAGE MASTER

MAX MAXARCHLOGS MAXDATAFILES
MAXEXTENTS MAXINSTANCES MAXLOGFILES
MAXLOGHISTORY MAXLOGMEMBERS MAXSIZE
MAXTRANS MAXVALUE MIN

MEMBER MINIMUM MINEXTENTS
MINUS MINVALUE MLSLABEL
MLS_LABEL_FORMAT MODE MODIFY
MOUNT MOVE MTS_DISPATCHERS
MULTISET NATIONAL NCHAR
NCHAR_CS NCLOB NEEDED
NESTED NETWORK NEW

NEXT NOARCHIVELOG NOAUDIT
NOCACHE NOCOMPRESS NOCYCLE
NOFORCE NOLOGGING NOMAXVALUE
NOMINVALUE NONE NOORDER
NOOVERRIDE NOPARALLEL NORESETLOGS
NOREVERSE NORMAL NOSORT

NOT NOTHING NOWAIT

Oracle8 Reserved Words, Keywords, and Namespaces C-5




Oracle8 Reserved Words and Keywords

NULL NUMBER NUMERIC
NVARCHAR?2 OBIJECT OBINO
OBJNO_REUSE OF OFF

OFFLINE OID OIDINDEX

OoLD ON ONLINE

ONLY OPCODE OPEN

OPTIMAL OPTIMIZER_GOAL OPTION

OR ORDER ORGANIZATION
OSLABEL OVERFLOW OWN

PACKAGE PARALLEL PARTITION
PASSWORD PASSWORD_GRACE_TIME PASSWORD_LIFE_TIME

PASSWORD_LOCK_TIME

PASSWORD_REUSE_MAX

PASSWORD_REUSE_TIME

PASSWORD_VERIFY_FUNCTION PCTFREE PCTINCREASE
PCTTHRESHOLD PCTUSED PCTVERSION
PERCENT PERMANENT PLAN
PLSQL_DEBUG POST_TRANSACTION PRECISION
PRESERVE PRIMARY PRIOR
PRIVATE PRIVATE_SGA PRIVILEGE
PRIVILEGES PROCEDURE PROFILE
PUBLIC PURGE QUEUE
QUOTA RANGE RAW

RBA READ READUP
REAL REBUILD RECOVER
RECOVERABLE RECOVERY REF
REFERENCES REFERENCING REFRESH

C-6 Pro*COBOL Precompiler Programmer’s Guide




Oracle8 Reserved Words and Keywords

RENAME REPLACE RESET

RESETLOGS RESIZE RESOURCE

RESTRICTED RETURN RETURNING

REUSE REVERSE REVOKE

ROLE ROLES ROLLBACK

ROW ROWID ROWNUM

ROWS RULE SAMPLE

SAVEPOINT SB4 SCAN_INSTANCES

SCHEMA SCN SCOPE

SD_ALL SD_INHIBIT SD_SHOW

SEGMENT SEG_BLOCK SEG_FILE

SELECT SEQUENCE SERIALIZABLE

SESSION SESSION_CACHED_CURSORS | SESSIONS_PER_USER

SET SHARE SHARED

SHARED_POOL SHRINK SIZE

SKIP SKIP_UNUSABLE_INDEXES SMALLINT

SNAPSHOT SOME SORT

SPECIFICATION SPLIT SQL_TRACE

STANDBY START STATEMENT _ID

STATISTICS STOP STORAGE

STORE STRUCTURE SUCCESSFUL

SWITCH SYS_OP_ENFORCE_NOT_NULL | SYS_OP_NTCIMG$
$

SYNONYM SYSDATE SYSDBA

SYSOPER SYSTEM TABLE

Oracle8 Reserved Words, Keywords, and Namespaces C-7




Oracle8 Reserved Namespaces

TABLES TABLESPACE TABLESPACE_NO
TABNO TEMPORARY THAN

THE THEN THREAD
TIMESTAMP TIME TO

TOPLEVEL TRACE TRACING
TRANSACTION TRANSITIONAL TRIGGER
TRIGGERS TRUE TRUNCATE

X TYPE UB2

UBA uiD UNARCHIVED
UNDO UNION UNIQUE
UNLIMITED UNLOCK UNRECOVERABLE
UNTIL UNUSABLE UNUSED
UPDATABLE UPDATE USAGE

USE USER USING
VALIDATE VALIDATION VALUE

VALUES VARCHAR VARCHAR?2
VARYING VIEW WHEN
WHENEVER WHERE WITH

WITHOUT WORK WRITE
WRITEDOWN WRITEUP XID

Oracle8 Reserved Namespaces

Table C-1 contains a list of namespaces that are reserved by Oracle8. The initial
characters of function names in Oracle8 libraries are restricted to the character
strings in this list. Because of potential name conflicts, use function names that do
not begin with these characters.

C-8 Pro*COBOL Precompiler Programmer’s Guide



Oracle8 Reserved Namespaces

For example, the SQL*Net Transparent Network Service functions all begin with
the characters “NS,” so you need to avoid writing functions whose names begin
with ”NS.”

Table C—1 Oracle8 Reserved Namespaces

Namespace Library

(@] OCI functions

S function names from SQLLIB and system-dependent libraries

XA external functions for XA applications only

GEN Internal functions
KP

NA
NC
ND
NL
NM
NR
NS
NT
NZ
TTC
UPI

Oracle8 Reserved Words, Keywords, and Namespaces C-9



Oracle8 Reserved Namespaces

C-10 Pro*COBOL Precompiler Programmer’s Guide



D

Performance Tuning

This appendix shows you some simple, easy-to-apply methods for improving the
performance of your applications. Using these methods, you can often reduce pro-
cessing time by 25% or more. Topics are:

What Causes Poor Performance?

How Can Performance be Improved?
Using Host Tables

Using Embedded PL/SQL

Optimizing SQL Statements

Using Indexes

Taking Advantage of Row-Level Locking

Eliminating Unnecessary Parsing

Performance Tuning D-1



What Causes Poor Performance?

What Causes Poor Performance?

One cause of poor performance is high Oracle communication overhead. Oracle8
must process SQL statements one at a time. Thus, each statement results in another
call to Oracle8 and higher overhead. In a networked environment, SQL statements
must be sent over the network, adding to network traffic. Heavy network traffic
can slow down your application significantly.

Another cause of poor performance is inefficient SQL statements. Because SQL is so
flexible, you can get the same result with two different statements, but one state-
ment might be less efficient. For example, the following two SELECT statements
return the same rows (the name and number of every department having at least
one employee):

EXEC SQL SELECT DNAME, DEPTNO

FROM DEPT

WHERE DEPTNO IN (SELECT DEPTNO FROM EMP)
END-EXEC.

EXEC SQL SELECT DNAME, DEPTNO

FROM DEPT

WHERE EXISTS

(SELECT DEPTNO FROM EMP WHERE DEPT.DEPTNO = EMP.DEPTNO)
END-EXEC.

However, the first statement is slower because it does a time-consuming full scan of
the EMP table for every department number in the DEPT table. Even if the
DEPTNO column in EMP is indexed, the index is not used because the subquery
lacks a WHERE clause naming DEPTNO.

A third cause of poor performance is unnecessary parsing and binding. Recall that
before executing a SQL statement, Oracle8 must parse and bind it. Parsing means
examining the SQL statement to make sure it follows syntax rules and refers to
valid database objects. Binding means associating host variables in the SQL state-
ment with their addresses so that Oracle8 can read or write their values.

Many applications manage cursors poorly. This results in unnecessary parsing and
binding, which adds noticeably to processing overhead.

How Can Performance be Improved?

If you are unhappy with the performance of your precompiled programs, there are
several ways you can reduce overhead.

D-2 Pro*COBOL Precompiler Programmer’s Guide



Using Embedded PL/SQL

You can greatly reduce Oracle communication overhead, especially in networked
environments, by

« using host arrays

« using embedded PL/SQL

You can reduce processing overhead—sometimes dramatically—by
« optimizing SQL statements

« using indexes

« taking advantage of row-level locking

« eliminating unnecessary parsing

The following sections look at each of these ways to cut overhead.

Using Host Tables

Host tables can boost performance because they let you manipulate an entire collec-
tion of data with a single SQL statement. For example, suppose you want to insert
salaries for 300 employees into the EMP table. Without tables your program must
do 300 individual inserts—one for each employee. With arrays, only one INSERT is
necessary. Consider the following statement:

EXEC SQL INSERT INTO EMP (SAL) VALUES (:SALARY) END-EXEC.

If SALARY is a simple host variable, Oracle8 executes the INSERT statement once,
inserting a single row into the EMP table. In that row, the SAL column has the
value of SALARY. To insert 300 rows this way, you must execute the INSERT state-
ment 300 times.

However, if SALARY is a host table of size 300, Oracle8 inserts all 300 rows into the
EMP table at once. In each row, the SAL column has the value of an element in the
SALARY table.

For more information, see Chapter 10, “Using Host Tables”

Using Embedded PL/SQL

As Figure E-1 shows, if your application is database-intensive, you can use control
structures to group SQL statements in a PL/SQL block, then send the entire block
to Oracle8. This can drastically reduce communication between your application
and Oracle8.

Performance Tuning D-3



Using Embedded PL/SQL

Also, you can use PL/SQL subprograms to reduce calls from your application to
Oracle8. For example, to execute ten individual SQL statements, ten calls are
required, but to execute a subprogram containing ten SQL statements, only one call
is required.

Unlike anonymous blocks, PL/SQL subprograms can be compiled separately and
stored in an Oracle8 database. When called, they are passed to the PL/SQL engine imme-
diately. Moreover, only one copy of a subprogram need be loaded into memory for execu-
tion by multiple users.

Figure D-1 PL/SQL Boosts Performance

PL/SQL Increases Performance
Especially in Networked Environments

SQL >
— SQL
Application ®_’ Other DBMSs
SQL — >
——o—
Application 'Oracle8
with PL/SQL
Oracle8
Application with PL/SQL

and Stored
Procedures

PL/SQL can also cooperate with Oracle8 application development tools such as
Oracle Forms and Oracle Reports. By adding procedural processing power to these
tools, PL/SQL boosts performance. Using PL/SQL, a tool can do any computation
quickly and efficiently without calling on Oracle8. This saves time and reduces net-
work traffic. For more information, see Chapter 6, “Using Embedded PL/SQL” and
the PL/SQL User’s Guide and Reference.

D-4 Pro*COBOL Precompiler Programmer’s Guide



Optimizing SQL Statements

Optimizing SQL Statements

Optimizer Hints

For every SQL statement, the Oracle8 optimizer generates an execution plan, which is

a series of steps that Oracle8 takes to execute the statement. These steps are determined by
rules given in the Oracle8 Application Developer’s Guide. Following these rules will help you
write optimal SQL statements.

For every SQL statement, the Oracle8 optimizer generates an execution plan, which is
a series of steps that Oracle8 takes to execute the statement. In some cases, you can suggest
to Oracle8 the way to optimize a SQL statement. These suggestions, called hints, let you
influence decisions made by the optimizer.

Hints are not directives; they merely help the optimizer do its job. Some hints limit
the scope of information used to optimize a SQL statement, while others suggest
overall strategies. You can use hints to specify the

« optimization approach for a SQL statement
= access path for each referenced table
« join order for ajoin

« method used to join tables

Giving Hints

You give hints to the optimizer by placing them in a C-style Comment immediately
after the verb in a SELECT, UPDATE, or DELETE statement. You can choose
rule-based or cost-based optimization. With cost-based optimization, hints help
maximize throughput or response time. In the following example, the ALL_ROWS
hint helps maximize query throughput:

EXEC SQL SELECT /+ ALL_ROWS (cost-based) */ EMPNO, ENAME, SAL
INTO :EMP-NUMBER, :-EMP-NAME, :SALARY
FROM EMP
WHERE DEPTNO = :DEPT-NUMBER

END-EXEC.

The plus sign (+), which must immediately follow the Comment opener, indicates
that the Comment contains one or more hints. Notice that the Comment can con-
tain remarks as well as hints.

For more information about optimizer hints, see the Oracle8 Application Developer’s
Guide.

Performance Tuning D-5



Using Indexes

Trace Facility

You can use the SQL trace facility and the EXPLAIN PLAN statement to identify
SQL statements that might be slowing down your application. The trace facility
generates statistics for every SQL statement executed by Oracle8. From these statis-
tics, you can determine which statements take the most time to process. Then, you
can concentrate your tuning efforts on those statements.

The EXPLAIN PLAN statement shows the execution plan for each SQL statement
in your application. You can use the execution plan to identify inefficient SQL state-
ments.

For instructions on using these tools and analyzing their output, see the Oracle8
Application Developer’s Guide.

Using Indexes

Using rowids, an index associates each distinct value in a table column with the rows con-
taining that value. An index is created with the CREATE INDEX statement. For details, see
the Oracle8 SQL Reference.

You can use indexes to boost the performance of queries that return less than 15%
of the rows in a table. A query that returns 15% or more of the rows in a table is exe-
cuted faster by a full scan, that is, by reading all rows sequentially. Any query that names
an indexed column in its WHERE clause can use the index. For guidelines that help you
choose which columns to index, see the Oracle8 Application Developer’s Guide.

Taking Advantage of Row-Level Locking

By default, Oracle8 locks data at the row level rather than the table level. Row-level
locking allows multiple users to access different rows in the same table concur-
rently. The resulting performance gain is significant.

You can specify table-level locking, but it lessens the effectiveness of the transaction
processing option. For more information about table locking, see “Using the LOCK
TABLE Statement” on "Using the LOCK TABLE Statement" on page 8-12.

Applications that do online transaction processing benefit most from row-level lock-
ing. If your application relies on table-level locking, modify it to take advantage of
row-level locking. In general, avoid explicit table-level locking.

D-6 Pro*COBOL Precompiler Programmer’s Guide



Eliminating Unnecessary Parsing

Eliminating Unnecessary Parsing

Eliminating unnecessary parsing requires correct handling of cursors and selective
use of the following cursor management options:

«  MAXOPENCURSORS
« HOLD_CURSOR
« RELEASE_CURSOR

These options affect implicit and explicit cursors, the cursor cache, and private SQL
areas.

Note: You can use the ORACA to get cursor cache statistics. See "Using the Ora-
cle Communications Area" on page 9-35.

Handling Explicit Cursors

Recall that there are two types of cursors: implicit and explicit (see "Private SQL
Areas, Cursors, and Active Sets" on page 2-8). Oracle8 implicitly declares a cursor
for all data definition and data manipulation statements. However, for queries that
return more than one row, you must explicitly declare a cursor (or use host tables).
You use the DECLARE CURSOR statement to declare an explicit cursor. How you
handle the opening and closing of explicit cursors affects performance.

If you need to reevaluate the active set, simply reopen the cursor. The OPEN state-
ment will use any new host-variable values. You can save processing time if you do
not close the cursor first.

Note: To make performance tuning easier, the precompiler lets you reopen an
already open cursor. However, this is an Oracle8 extension to the ANSI/ZISO
embedded SQL standard. So, when MODE=ANSI, you must close a cursor
before reopening it.

Only CLOSE a cursor when you want to free the resources (memory and locks)
acquired by OPENIing the cursor. For example, your program should close all cur-
sors before exiting.

Cursor Control
In general, there are three ways to control an explicitly declared cursor:

=« use the DECLARE, OPEN, and CLOSE statements
« use the PREPARE, DECLARE, OPEN, and CLOSE statements
=« COMMIT closes the cursor when MODE=ANSI

Performance Tuning D-7



Eliminating Unnecessary Parsing

With the first way, beware of unnecessary parsing. The OPEN statement does the
parsing, but only if the parsed statement is unavailable because the cursor was
closed or never opened. Your program should declare the cursor, re-open it every
time the value of a host variable changes, and close it only when the SQL statement
is no longer needed.

With the second way (dynamic SQL Methods 3 and 4), the PREPARE statement
does the parsing, and the parsed statement is available until a CLOSE statement is
executed. Your program should prepare the SQL statement and declare the cursor,
re-open the cursor every time the value of a host variable changes, re-prepare the
SQL statement and re-open the cursor if the SQL statement changes, and close the
cursor only when the SQL statement is no longer needed.

When possible, avoid placing OPEN and CLOSE statements in a loop; this is a
potential cause of unnecessary re-parsing of the SQL statement. In the next exam-
ple, both the OPEN and CLOSE statements are inside the outer loop. When
MODE=ANS], the CLOSE statement must be positioned as shown, because ANSI requires
a cursor to be closed before being re-opened.

EXEC SQL DECLARE EMP-CURSOR CURSOR FOR
SELECT ENAME, SAL FROM EMP
WHERE SAL > :SALARY
AND SAL <=:SALARY + 1000
END-EXEC.
MOVE 0 TO SALARY.
TOP.
EXEC SQL OPEN EMP-CURSOR END-EXEC.
LOOP.
EXEC SQL FETCH EMP-CURSORINTO.....

IF SQLCODE=0
GO TOLOOP
ELSE
ADD 1000 TO SALARY
END-IF.
EXEC SQL CLOSE EMP-CURSOR END-EXEC.
IF SALARY <5000
GOTOTOP.

With MODE=ORACLE, however, a CLOSE statement can execute without the cur-
sor being OPENed. By placing the CLOSE statement outside the outer loop, you can
avoid possible re-parsing at each iteration of the OPEN statement.

TOP.
EXEC SQL OPEN EMP-CURSOR END-EXEC.

D-8 Pro*COBOL Precompiler Programmer’s Guide



Eliminating Unnecessary Parsing

LOOP.
EXEC SQL FETCH EMP-CURSORIINTO ...

IF SQLCODE =0
GO TOLOOP
ELSE
ADD 1000 TO SALARY
END-IF.
IF SALARY <5000
GOTOTOP.
EXEC SQL CLOSE EMP-CURSOR END-EXEC.

Using the Cursor Management Options

A SQL statement need be parsed only once unless you change its makeup. For
example, you change the makeup of a query by adding a column to its select list or
WHERE clause. The HOLD_CURSOR, RELEASE_CURSOR, and MAXOPENCUR-
SORS options give you some control over how Oracle8 manages the parsing and
re-parsing of SQL statements. Declaring an explicit cursor gives you maximum con-
trol over parsing.

Private SQL Areas and Cursor Cache

When a data manipulation statement is executed, its associated cursor is linked to
an entry in the cursor cache. The cursor cache is a continuously updated area of
memory used for cursor management. The cursor cache entry is in turn linked to a
private SQL area.

The private SQL area, a work area created dynamically at run time by Oracle8, con-
tains the parsed SQL statement, the addresses of host variables, and other informa-
tion needed to process the statement. An explicit cursor lets you name a SQL
statement, access the information in its private SQL area, and, to some extent, con-
trol its processing.

Figure D-2 represents the cursor cache after your program has done an insert and a
delete.

Performance Tuning D-9



Eliminating Unnecessary Parsing

Figure D-2  Cursors Linked via the Cursor Cache

Cursor Cache

EXEC SQL INSERT ... ¢=——p E(1) <4—p Context Area
Cursor
EXEC SQL DELETE ... &—» E(2) <4—— Context Area
Cursor
E(MAXOPENCURSORS)

Resource Use

The maximum number of open cursors per user session is set by the Oracle8 initial-
ization parameter OPEN_CURSORS.

MAXOPENCURSORS specifies the initial size of the cursor cache. If a new cursor is
needed and there are no free cache entries, Oracle8 tries to reuse an entry. Its success
depends on the values of HOLD_CURSOR and RELEASE_CURSOR and, for explicit cur-
sors, on the status of the cursor itself.

If the value of MAXOPENCURSORS is less than the number of cache entries actu-
ally needed, Oracle8 uses the first cache entry marked as reusable. For example,
suppose the cache entry E(1) for an INSERT statement is marked as reusable, and the
number of cache entries already equals MAXOPENCURSORS. If the program executes a
new statement, cache entry E(1) and its private SQL area might be reassigned to the new
statement. To re-execute the INSERT statement, Oracle8 would have to re-parse it and reas-
sign another cache entry.

Oracle8 allocates an additional cache entry if it cannot find one to reuse. For exam-
ple, if MAXOPENCURSORS=8 and all eight entries are active, a ninth is created. If
necessary, Oracle8 keeps allocating additional cache entries until it runs out of
memory or reaches the limit set by OPEN_CURSORS. This dynamic allocation
adds to processing overhead.

Thus, specifying a low value for MAXOPENCURSORS saves memory but causes
potentially expensive dynamic allocations and de-allocations of new cache entries.

D-10 Pro*COBOL Precompiler Programmer’s Guide



Eliminating Unnecessary Parsing

Specifying a high value for MAXOPENCURSORS assures speedy execution but
uses more memory.

Infrequent Execution

Sometimes, the link between an infrequently executed SQL statement and its private
SQL area should be temporary.

When HOLD_CURSOR=NO (the default), after Oracle8 executes the SQL state-
ment and the cursor is closed, the precompiler marks the link between the cursor
and cursor cache as reusable. The link is reused as soon as the cursor cache entry to
which it points is needed for another SQL statement. This frees memory allocated
to the private SQL area and releases parse locks. However, because a prepared cur-
sor must remain active, its link is maintained even when HOLD CURSOR=NO.

When RELEASE_CURSOR=YES, after Oracle8 executes the SQL statement and the
cursor is closed, the private SQL area is automatically freed and the parsed state-
ment lost. This might be necessary if, for example, MAXOPENCURSORS is set low
at your site to conserve memory.

If a data manipulation statement precedes a data definition statement and they ref-
erence the same tables, specify RELEASE_CURSOR=YES for the data manipulation
statement. This avoids a conflict between the parse lock obtained by the data
manipulation statement and the exclusive lock required by the data definition state-
ment.

When RELEASE_CURSOR=YES, the link between the private SQL area and the
cache entry is immediately removed and the private SQL area freed. Even if you
specify HOLD CURSOR=YES, Oracle8 must still reallocate memory for a private
SQL area and re-parse the SQL statement before executing it because
RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES.

Nonetheless, when RELEASE_CURSOR=YES, the re-parse might not require extra
processing because Oracle8 caches the parsed representations of SQL statements
and PL/SQL blocks in its Shared SQL Cache. Even if its cursor is closed, the parsed repre-
sentation remains available until it is aged out of the cache.

Frequent Execution

The links between a frequently executed SQL statement and its private SQL area should
be maintained, because the private SQL area contains all the information needed to exe-
cute the statement. Maintaining access to this information makes subsequent execution of
the statement much faster.

Performance Tuning D-11



Eliminating Unnecessary Parsing

When HOLD_CURSOR=YES, the link between the cursor and cursor cache is main-
tained after Oracle8 executes the SQL statement. Thus, the parsed statement and
allocated memory remain available. This is useful for SQL statements that you
want to keep active because it avoids unnecessary re-parsing.

When HOLD_CURSOR=YES and RELEASE_CURSOR=NO (the default), the link
between the cache entry and the private SQL area is maintained after Oracle8 exe-
cutes the SQL statement and is not reused unless the number of open cursors

exceeds the value of MAXOPENCURSORS. This is useful for SQL statements that

are executed often because the parsed statement and allocated memory remain
available.

Attention:

Using the defaults, HOLD CURSOR=YES and RELEASE_CURSOR=NO, after exe-
cuting a SQL statement with an earlier Oracle version, its parsed representation
remains available. With Oracle8, under similar conditions, the parsed representa-
tion remains available only until it is aged out of the Shared SQL Cache. Normally,
this is not a problem, but you might get unexpected results if the definition of a ref-
erenced object changes before the SQL statement is re-parsed.

Parameter Interactions

Table D-1 shows how HOLD_CURSOR and RELEASE_CURSOR interact. Notice
that HOLD_CURSOR=NO overrides RELEASE_CURSOR=NO and that
RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES.

Table D-1 HOLD CURSOR and RELEASE CURSOR Interactions

HOLD_CURSOR RELEASE_CURSOR Links are ...

NO NO marked as reusable
YES NO maintained

NO YES removed immediately
YES YES removed immediately

D-12 Pro*COBOL Precompiler Programmer’s Guide



E

Syntactic and Semantic Checking

By checking the syntax and semantics of embedded SQL statements and PL/SQL
blocks, the Oracle Precompilers help you quickly find and fix coding mistakes. This
appendix shows you how to use the SQLCHECK option to control the type and
extent of checking.

Topics are:

«  What Is Syntactic and Semantic Checking?

« Controlling the Type and Extent of Checking
« Specifying SQLCHECK=SEMANTICS

Syntactic and Semantic Checking E-1



What Is Syntactic and Semantic Checking?

What Is Syntactic and Semantic Checking?

Rules of syntax specify how language elements are sequenced to form valid state-
ments. Thus, syntactic checking verifies that keywords, object names, operators,
delimiters, and so on are placed correctly in your SQL statement. For example, the
following embedded SQL statements contain syntax errors:

*— misspelled keyword WHERE
EXEC SQL DELETE FROM EMP WERE DEPTNO =20 END-EXEC.
*— missing parentheses around column names COMM and SAL
EXEC SQL
INSERT INTO EMP COMM, SAL VALUES (NULL, 1500)
END-EXEC.

Rules of semantics specify how valid external references are made. Thus, semantic
checking verifies that references to database objects and host variables are valid and
that host-variable datatypes are correct. For example, the following embedded SQL
statements contain semantic errors:

* — nonexistent table, EMPP
EXEC SQL DELETE FROM EMPP WHERE DEPTNO =20 END-EXEC.
* — undeclared host variable, EMP-NAME
EXEC SQL SELECT * FROM EMP WHERE ENAME = :EMP-NAME END-EXEC.

The rules of SQL syntax and semantics are defined in the Oracle8 SQL Reference.

Controlling the Type and Extent of Checking

You control the type and extent of checking by specifying the SQLCHECK option
on the command line. With SQLCHECK, the type of checking can be syntactic,
semantic, or both. The extent of checking can include data manipulation statements
and PL/SQL blocks. However, SQLCHECK cannot check dynamic SQL statements
because they are not defined fully until run time.

You can specify the following values for SQLCHECK:
« SEMANTICS|FULL
=« SYNTAX|LIMITED |NONE

The values SEMANTICS and FULL are equivalent, as are the values SYNTAX and
LIMITED. The default value is SYNTAX.

E-2 Pro*COBOL Precompiler Programmer’s Guide



Specifying SQLCHECK=SEMANTICS

Specifying SQLCHECK=SEMANTICS

When SQLCHECK=SEMANTICS, the precompiler checks the syntax and semantics
of

« data manipulation statements such as INSERT and UPDATE
« PL/SQL blocks

However, the precompiler checks only the syntax of remote data manipulation
statements (those using the AT db_name clause).

The precompiler gets the information for a semantic check from embedded
DECLARE TABLE statements or, if you specify the option USERID, by connecting
to Oracle8 and accessing the data dictionary. You need not connect to Oracle8 if
every table referenced in a data manipulation statement or PL/SQL block is
defined in a DECLARE TABLE statement.

If you connect to Oracle8 but some information cannot be found in the data dictio-
nary, you must use DECLARE TABLE statements to supply the missing informa-
tion. A DECLARE TABLE definition overrides a data dictionary definition if they
conflict.

When checking data manipulation statements, the precompiler uses the Oracle8 set
of syntax rules found in the Oracle8 SQL Reference but uses a stricter set of semantic
rules. As a result, existing applications written for earlier versions of Oracle might
not precompile successfully when SQLCHECK=SEMANTICS.

Specify SQLCHECK=SEMANTICS when precompiling new programs. If you
embed PL/SQL blocks in a host program, you must specify SQLCHECK=SEMAN-
TICS.

Enabling a Semantic Check

When SQLCHECK=SEMANTICS, the precompiler can get information needed for
a semantic check in either of the following ways:

« connect to Oracle and access the data dictionary
« use embedded DECLARE TABLE statements

Connecting to Oracle

To do a semantic check, the precompiler can connect to an Oracle8 database that
maintains definitions of tables and views referenced in your host program. After
connecting to Oracle8, the precompiler accesses the data dictionary for needed

Syntactic and Semantic Checking E-3



Specifying SQLCHECK=SEMANTICS

information. The data dictionary stores table and column names, table and column
constraints, column lengths, column datatypes, and so on.

If some of the needed information cannot be found in the data dictionary (because
your program refers to a table not yet created, for example), you must supply the
missing information using the DECLARE TABLE statement.

To connect to Oracle8, specify the option USERID on the command line, using the
syntax

USERID=usemame/password

where username and password comprise a valid Oracle8 userid. If you omit the pass-
word, you are prompted for it. If, instead of a username and password, you specify

USERID=/

the precompiler tries to connect to Oracle8 automatically with the userid

<prefix><usemame>

where prefix is the value of the Oracle8 initialization parameter
OS_AUTHENT_PREFIX (the default value is OPS$) and username is your operating
system user or task name.

If you try connecting to Oracle8 but cannot (for example, if the database is unavail-
able), the precompiler stops processing and issues an error message. If you omit the
option USERID, the precompiler must get needed information from embedded
DECLARE TABLE statements.

Using DECLARE TABLE

The precompiler can do a semantic check without connecting to Oracle8. To do the
check, the precompiler must get information about tables and views from embed-
ded DECLARE TABLE statements. Thus, every table referenced in a data manipula-
tion statement or PL/SQL block must be defined in a DECLARE TABLE statement.

The syntax of the DECLARE TABLE statement is

EXEC SQL DECLARE table_name TABLE
(col_name col_datatype [DEFAULT expr] [NULLINOT NULL], ...)
END-EXEC.

where expr is any expression that can be used as a default column value in the CRE-
ATE TABLE statement. col_datatype is an Oracle column declaration. Only integers
can be used, not expressions. See "DECLARE TABLE (Oracle Embedded SQL Direc-
tive)" on page F-20.

E-4 Pro*COBOL Precompiler Programmer’s Guide



Specifying SQLCHECK=SEMANTICS

If you use DECLARE TABLE to define a database table that already exists, the pre-
compiler uses your definition, ignoring the one in the data dictionary.

Syntactic and Semantic Checking E-5



Specifying SQLCHECK=SEMANTICS

E-6 Pro*COBOL Precompiler Programmer’s Guide



-

Embedded SQL Commands and
Precompiler Directives

This appendix contains descriptions of both SQL92 embedded SQL commands and
directives as well as the Oracle8 embedded SQL extensions. These commands and

directives are prefaced in your source code with the keywords, EXEC SQL.

Note: Only statements which differ in syntax from non-embedded SQL are

described in this appendix. For details of the non-embedded SQL statements, see
the Oracle8 SQL Reference.

This appendix contains the following sections:

Summary of Precompiler Directives and Embedded SQL Commands
About The Command Descriptions

How to Read Syntax Diagrams

ALLOCATE (Executable Embedded SQL Extension)
CLOSE (Executable Embedded SQL)

COMMIT (Executable Embedded SQL)

CONNECT (Executable Embedded SQL Extension)
DECLARE CURSOR (Embedded SQL Directive)
DECLARE DATABASE (Oracle Embedded SQL Directive)
DECLARE STATEMENT (Embedded SQL Directive)
DECLARE TABLE (Oracle Embedded SQL Directive)
DELETE (Executable Embedded SQL)

DESCRIBE (Executable Embedded SQL)

Embedded SQL Commands and Precompiler Directives F-1



« DESCRIBE (Executable Embedded SQL)

« EXECUTE ... END-EXEC (Executable Embedded SQL Extension)
« EXECUTE (Executable Embedded SQL)

« EXECUTE IMMEDIATE (Executable Embedded SQL)
« FETCH (Executable Embedded SQL)

« FETCH (Executable Embedded SQL)

« INSERT (Executable Embedded SQL)

« OPEN (Executable Embedded SQL)

« PREPARE (Executable Embedded SQL)

« ROLLBACK (Executable Embedded SQL)

« SAVEPOINT (Executable Embedded SQL)

« SELECT (Executable Embedded SQL)

« UPDATE (Executable Embedded SQL)

« VAR (Oracle Embedded SQL Directive)

«  WHENEVER (Embedded SQL Directive)

F-2 Pro*COBOL Precompiler Programmer’s Guide



Summary of Precompiler Directives and Embedded SQL Commands

Summary of Precompiler Directives and Embedded SQL Commands

Embedded SQL commands place DDL, DML, and Transaction Control statements
within a procedural language program. Embedded SQL is supported by the Oracle
Precompilers. Table F-1 provides a functional summary of the embedded SQL com-
mands and directives.

The type column in Table F-1 is displayed in the format, source/type, where:

source

is either SQL92 standard SQL (S) or an Oracle extension (O)

is either an executable (E) statement or a directive (D)

Table F-1  Precompiler Directives and Embedded SQL Commands and Clauses

EXEC SQL Statement Type Purpose

ALLOCATE O/E To allocate memory for a cursor variable.

CLOSE S/E To disable a cursor, releasing the resources it holds.

COMMIT S/E To end the current transaction, making all database change perma-
nent (optionally frees resources and disconnects from the database)

CONNECT O/E To log on to an Oracle8 instance.

DECLARE CURSOR S/D To declare a cursor, associating it with a query.

DECLARE DATABASE O/D | To declare an identifier for a non-default database to be accessed in
subsequent embedded SQL statements.

DECLARE STATEMENT S/D To assign a SQL variable name to a SQL statement.

DECLARE TABLE o/D To declare the table structure for semantic checking of embedded
SQL statements by the Oracle Precompiler.

DELETE S/E To remove rows from a table or from a view’s base table.

DESCRIBE S/E To initialize a descriptor, a structure holding host variable descrip-
tions.

EXECUTE..END-EXEC O/E To execute an anonymous PL/SQL block.

EXECUTE S/E To execute a prepared dynamic SQL statement.

EXECUTE IMMEDIATE S/E To prepare and execute a SQL statement with no host variables.

FETCH S/E To retrieve rows selected by a query.

Embedded SQL Commands and Precompiler Directives F-3



About The Command Descriptions

Table F-1  Precompiler Directives and Embedded SQL Commands and Clauses

EXEC SQL Statement Type Purpose

INSERT S/E To add rows to a table or to a view’s base table.

OPEN S/E To execute the query associated with a cursor.

PREPARE S/E To parse a dynamic SQL statement.

ROLLBACK S/E To end the current transaction, discard all changes in the current

transaction, and release all locks (optionally release resources and
disconnect from the database).

SAVEPOINT S/E To identify a point in a transaction to which you can later roll back.

SELECT S/E To retrieve data from one or more tables, views, or snapshots, assign-

ing the selected values to host variables.

UPDATE S/E To change existing values in a table or in a view’s base table.

VAR o/D To override the default datatype and assign a specific Oracle8 exter-

nal datatype to a host variable.

WHENEVER S/D To specify handling for error and warning conditions.

About The Command Descriptions

The directives, commands, and clauses appear alphabetically. The description of
each contains the following sections:

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes
Examples

Related Topics

describes the basic uses of the command.

lists privileges you must have and steps that you must take before
using the command. Unless otherwise noted, most commands
also require that the database be open by your instance.

shows the keywords and parameters of the command.

describes the purpose of each keyword and parameter.

discusses how and when to use the command.
shows example statements of the command.

lists related commandes, clauses, and sections of this manual.

F-4 Pro*COBOL Precompiler Programmer’s Guide




How to Read Syntax Diagrams

How to Read Syntax Diagrams

Syntax diagrams are used to illustrate embedded SQL syntax. They are drawings
that depict valid syntax.

Trace each diagram from left to right, in the direction shown by the arrows.

Commands and other keywords appear in UPPER CASE inside rectangles. Type
them exactly as shown in the rectangles. Parameters appear in lower case inside
ovals. Variables are used for the parameters. Operators, delimiters, and terminators
appear inside circles.

If the syntax diagram has more than one path, you can choose any path to travel.

If you have the choice of more than one keyword, operator, or parameter, your
options appear in a vertical list. In the following example, you can travel down the
vertical line as far as you like, then continue along any horizontal line:

NOT FOUND

—>| EXEC SQL |—>| WHENEVER SQLERROR

SQLWARNING

According to the diagram, all of the following statements are valid:

EXEC SQL WHENEVER NOT FOUND. ...
EXEC SQL WHENEVER SQLERROR....
EXEC SQL WHENEVER SQLWARNING ...

Statement Terminator

In all Pro*COBOL EXEC SQL diagrams, each statement is understood to end with
the token END-EXEC.

Required Keywords and Parameters

Required keywords and parameters can appear singly or in a vertical list of alterna-
tives. Single required keywords and parameters appear on the main path, that is,
on the horizontal line you are currently traveling. In the following example, cursor
is a required parameter:

Embedded SQL Commands and Precompiler Directives F-5



How to Read Syntax Diagrams

—>| EXEC SQL |->| CLOSE |->(cursor)—

If there is a cursor named EMPCURSOR, then, according to the diagram, the follow-
ing statement is valid:

EXEC SQL CLOSE EMPCURSOR END-EXEC.

If any of the keywords or parameters in a vertical list appears on the main path,
one of them is required. That is, you must choose one of the keywords or parame-
ters, but not necessarily the one that appears on the main path. In the following
example, you must choose one of the four actions:

Optional Keywords and Parameters
If keywords and parameters appear in a vertical list above the main path, they are
optional. In the following example, instead of traveling down a vertical line, you
can continue along the main path:

Ao
e| EXEC SQL ROLLBACK

If there is a database named oracle2, then, according to the diagram, all of the fol-
lowing statements are valid:

EXEC SQL ROLLBACK END-EXEC.
EXEC SQL ROLLBACK WORK END-EXEC.
EXEC SQL AT ORACLE2 ROLLBACK END-EXEC.

F-6 Pro*COBOL Precompiler Programmer’s Guide



How to Read Syntax Diagrams

Syntax Loops

Loops let you repeat the syntax within them as many times as you like. In the fol-
lowing example, column_name is inside a loop. So, after choosing one column name,
you can go back repeatedly to choose another.

—>| EXE SQL |->| SELECT }»—gm INTO |»@—

If DEBIT, CREDIT, and BALANCE are column names, then, according to the dia-
gram, all of the following statements are valid:

EXEC SQL SELECT DEBIT INTO.....
EXEC SQL SELECT CREDIT, BALANCE INTO. ...
EXEC SQL SELECT DEBIT, CREDIT, BALANCE INTO ...

Multi-part Diagrams

Read a multi-part diagram as if all the main paths were joined end-to-end. The fol-
lowing example is a two-part diagram:

—>| EXEC SQL |->| PREPARE Kstatement_name)»

O )
FROM H
o

According to the diagram, the following statement is valid:

EXEC SQL PREPARE sglstatement FROM :SQL-STRING END-EXEC.

Database Objects

The names of Oracle identifiers, such as tables and columns, must not exceed 30
characters in length. The first character must be a letter, but the rest can be any com-
bination of letters, numerals, dollar signs ($), pound signs (#), and underscores ().

Embedded SQL Commands and Precompiler Directives F-7



ALLOCATE (Executable Embedded SQL Extension)

However, if an Oracle identifier is enclosed by quotation marks (), it can contain
any combination of legal characters, including spaces but excluding quotation
marks.

Oracle identifiers are not case-sensitive except when enclosed by quotation marks.

ALLOCATE (Executable Embedded SQL Extension)

Purpose
To allocate a cursor variable to be referenced in a PL/SQL block.

Prerequistes
A cursor variable (see Chapter 6, “Using Embedded PL/SQL”) of type SQL-CUR-

SOR must be declared before allocating memory for the cursor variable.

Syntax

—{ EXEC_SQL |5 ALLOCATE |—>@—><cursor_variable)—>

Keywords and Parameters

cursor_variable is the cursor variable to be allocated.

Usage Notes

Whereas a cursor is static, a cursor variable is dynamic because it is not tied to a
specific query. You can open a cursor variable for any type-compatible query.

For more information on this command, see PL/SQL User’s Guide and Reference and
Oracle8 SQL Reference.

Example
This partial example illustrates the use of the ALLOCATE command in a
Pro*COBOL embedded SQL program:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 EMP-CUR  SQL-CURSOR.

F-8 Pro*COBOL Precompiler Programmer’s Guide



CLOSE (Executable Embedded SQL)

01 EMP-REC.

EXEC SQL END DECLARE SECTION END-EXEC.
EXEC SQL ALLOCATE :EMP-CUR END-EXEC.

Related Topics
CLOSE (Executable Embedded SQL)

EXECUTE (Executable Embedded SQL)
FETCH (Executable Embedded SQL)

CLOSE (Executable Embedded SQL)

Purpose
To disable a cursor, freeing the resources acquired by opening the cursor, and releas-
ing parse locks.

Prerequisites
The cursor or cursor variable must be open and MODE=ANSI.

Syntax

—>| EXEC SQL |->| CLOSE
O

Keywords and Parameters

cursor is a cursor to be closed.

cusor_variable is a cursor variable to be closed.

Usage Notes

Rows cannot be fetched from a closed cursor. A cursor need not be closed to be
reopened. The HOLD_CURSOR and RELEASE_CURSOR precompiler options alter
the effect of the CLOSE command. For information on these options, see Chapter 7.

Embedded SQL Commands and Precompiler Directives F-9



COMMIT (Executable Embedded SQL)

Example
This example illustrates the use of the CLOSE command:

EXEC SQL CLOSE EMP-CUR END-EXEC.

Related Topics
PREPARE (Executable Embedded SQL)

DECLARE CURSOR (Embedded SQL Directive)
OPEN (Executable Embedded SQL)

COMMIT (Executable Embedded SQL)

Purpose

To end your current transaction, making permanent all its changes to the database
and optionally freeing all resources and disconnecting from the Oracle8 Server.

Prerequisites
To commit your current transaction, no privileges are necessary.

To manually commit a distributed in-doubt transaction that you originally commit-
ted, you must have FORCE TRANSACTION system privilege. To manually com-
mit a distributed in-doubt transaction that was originally committed by another
user, you must have FORCE ANY TRANSACTION system privilege.

If you are using Trusted Oracle in DBMS MAC mode, you can only commit an
in-doubt transaction if your DBMS label matches the label the transaction’s label
and the creation label of the user who originally committed the transaction or if
you satisfy one of the following criteria:

« If the transaction’s label or the user’s creation label is higher than your DBMS
label, you must have READUP and WRITEUP system privileges.

« If the transaction’s label or the user’s creation label is lower than your DBMS
label, you must have WRITEDOWN system privilege.

« If the transaction’s label or the user’s creation label is not comparable with
your DBMS label, you must have READUP, WRITEUP, and WRITEDOWN sys-
tem privileges.

F-10 Pro*COBOL Precompiler Programmer’s Guide



COMMIT (Executable Embedded SQL)

Syntax

O

e| EXEC SQL >|| COMMIT |—>

[oomient L(O-(@0)-()
O
o HOH @A

Keyword and Parameters

AT identifies the database to which the COMMIT statement is issued. The
database can be identified by either:

dbname is a database identifier declared in a previous DECLARE
DATABASE statement.

:host_variable is a host variable whose value is a previously declared
db_name.

If you omit this clause, Oracle8 issues the statement to your default database.

WORK is supported only for compliance with standard SQL. The statements
COMMIT and COMMIT WORK are equivalent.

COMMENT specifies a comment to be associated with the current transaction. The 'text
is a quoted literal of up to 50 characters that Oracle8 stores in the data
dictionary view DBA_2PC_PENDING along with the transaction ID if the
transaction becomes in-doubt.

RELEASE frees all resources and disconnects the application from the Oracle8 Server.

FORCE manually commits an in-doubt distributed transaction. The transaction is
identified by the 'text containing its local or global transaction ID. To find the
IDs of such transactions, query the data dictionary view
DBA_2PC_PENDING. You can also use the optional integer to explicitly
assign the transaction a system change number (SCN). If you omit the
integer, the transaction is committed using the current SCN.

Embedded SQL Commands and Precompiler Directives F-11



CONNECT (Executable Embedded SQL Extension)

Usage Notes

Always explicitly commit or rollback the last transaction in your program by using
the COMMIT or ROLLBACK command and the RELEASE option. Oracle8 automat-
ically rolls back changes if the program terminates abnormally.

The COMMIT command has no effect on host variables or on the flow of control in
the program. For more information on this command, see "Using the COMMIT
Statement" on page 8-4.

Example
This example illustrates the use of the embedded SQL COMMIT command:

EXEC SQL AT SALESDB COMMIT RELEASE END-EXEC.

Related Topics
ROLLBACK (Executable Embedded SQL)

SAVEPOINT (Executable Embedded SQL)

CONNECT (Executable Embedded SQL Extension)

Purpose
To logon to an Oracle8 database.

Prerequisites

You must have CREATE SESSION system privilege in the specified database.

If you are using Trusted Oracle in DBMS MAC mode, your operating system label
must dominate both your creation label and the label at which you were granted

CREATE SESSION system privilege. Your operating system label must also fall
between the operating system equivalents of DBHIGH and DBLOW, inclusive.

If you are using Trusted Oracle in OS MAC mode, your operating system label
must match the label of the database to which you are connecting.

F-12 Pro*COBOL Precompiler Programmer’s Guide



CONNECT (Executable Embedded SQL Extension)

Syntax

—>| EXEC SQL |->| CONNECT °

IDENTIFIED BY |9©—><passw0rd>)_>

)

user_password

[a| USING F@{dbstringh

f_)l ALTER AUTHORIZATION F@{new_passwordh

Keyword and Parameters

:user
:password

:user_password

AT

USING

specifies your username and password separately.

is a single host variable containing the Oracle8 username and
password seperated by a slash (/).

To allow Oracle8 to verify your connection through your operating
system, specify “/" as the :user_password value. To allow Oracle8 to
verify your connection through your operating system, specify “/" as
the :user_password value.

identifies the database to which the connection is made. The
database can be identified by either:

db_name is a database identifier declared in a previous
DECLARE DATABASE statement.

:host_variable is a host variable whose value is a previously
declared db_name.

specifies the SQL*Net database specification string used to connect
to a non-default database. If you omit this clause, you are connected
to your default database.

Embedded SQL Commands and Precompiler Directives F-13



DECLARE CURSOR (Embedded SQL Directive)

ALTER Change password to the following string.
AUTHORIZATION

‘new_password New password string.

Usage Notes
A program can have multiple connections, but can only connect once

to your default database. For more information on this command, see "Embedding
OCI (Oracle Call Interface) Calls" on page 4-34.

Example
The following example illustrate the use of CONNECT:

EXEC SQL CONNECT :USERNAME
IDENTIFIED BY :PASSWORD
END-EXEC.

You can also use this statement in which the value of :userid is the value of :user-
name and :password separated by a “/" such as 'SCOTT/TIGER’:

EXEC SQL CONNECT :USERID END-EXEC.

Related Topics
COMMIT (Executable Embedded SQL)

DECLARE DATABASE (Oracle Embedded SQL Directive)
ROLLBACK (Executable Embedded SQL)

DECLARE CURSOR (Embedded SQL Directive)

Purpose

To declare a cursor, giving it a name and associating it with a SQL statement or a
PL/SQL block.

Prerequisites

If you associate the cursor with an identifier for a SQL statement or PL/SQL block,
you must have declared this identifier in a previous DECLARE STATEMENT state-
ment.

F-14 Pro*COBOL Precompiler Programmer’s Guide



DECLARE CURSOR (Embedded SQL Directive)

Syntax

YYCD)

—>| EXEC SQL

SELECT |e(command

WITH HOLD
—>| DECLARE |{cursor}>| CURSOR FOR

statement_name

| J
| i

block_name

Keywords and Parameters

AT

cursor

WITH HOLD

SELECT command

Statement_name
block_name

i dentifies the database on which the cursor is declared. The database
can be identified by either:

db_name is a database identifier declared in a previous
DECLARE DATABASE statement.

:host_variable is a host variable whose value is a previously
declared db_name.

If you omit this clause, Oracle8 declares the cursor on your default
database.

is the name of the cursor to be declared.

cursor remains open after a COMMIT or a ROLLBACK. The cursor must
not be declared for UPDATE.

is a SELECT statement to be associated with the cursor. The following
statement cannot contain an INTO clause.

identifies a SQL statement or PL/SQL block to be associated with the

cursor. The statement_name or block_name must be previously
declared in a DECLARE STATEMENT statement.

Embedded SQL Commands and Precompiler Directives F-15



DECLARE CURSOR (Embedded SQL Directive)

Usage Notes

You must declare a cursor before referencing it in other embedded SQL statements.
The scope of a cursor declaration is global within its precompilation unit and the
name of each cursor must be unique in its scope. You cannot declare two cursors
with the same name in a single precompilation unit.

You can reference the cursor in the WHERE clause of an UPDATE or DELETE state-
ment using the CURRENT OF syntax, provided that the cursor has been opened
with an OPEN statement and positioned on a row with a FETCH statement. For
more information on this command, see .

Example
This example illustrates the use of a DECLARE CURSOR statement:

EXEC SQL DECLARE EMPCURSOR CURSOR
FOR SELECT ENAME, EMPNO, JOB, SAL
FROM EMP
WHERE DEPTNO =:DEPTNO
FOR UPDATE OF SAL

END-EXEC.

Related Topics
CLOSE (Executable Embedded SQL)

DECLARE DATABASE (Oracle Embedded SQL Directive)
DECLARE STATEMENT (Embedded SQL Directive)
DELETE (Executable Embedded SQL)

FETCH (Executable Embedded SQL)

OPEN (Executable Embedded SQL)

PREPARE (Executable Embedded SQL)

SELECT (Executable Embedded SQL)

UPDATE (Executable Embedded SQL)

F-16 Pro*COBOL Precompiler Programmer’s Guide



DECLARE DATABASE (Oracle Embedded SQL Directive)

DECLARE DATABASE (Oracle Embedded SQL Directive)

Purpose

To declare an identifier for a non-default database to be accessed in subsequent
embedded SQL statements.

Prerequisites
You must have access to a username on the non-default database.

Syntax

—>| EXEC SQL |—>| DECLARE |e(db_name>9| DATABASE |—

Keywords and Parameters

db_name is the identifier established for the non-default database.

Usage Notes

You declare a db_name for a non-default database so that other embedded SQL state-
ments can refer to that database using the AT clause. Before issuing a CONNECT
statement with an AT clause, you must declare a db_name for the non-default data-
base with a DECLARE DATABASE statement.

For more information on this command, see "Explicit Logons" on page 3-47.

Example
This example illustrates the use of a DECLARE DATABASE directive:

EXEC SQL DECLARE ORACLE3 DATABASE END-EXEC.

Related Topics
COMMIT (Executable Embedded SQL)

CONNECT (Executable Embedded SQL Extension)
DECLARE CURSOR (Embedded SQL Directive)
DECLARE STATEMENT (Embedded SQL Directive)

Embedded SQL Commands and Precompiler Directives F-17



DECLARE STATEMENT (Embedded SQL Directive)

DELETE (Executable Embedded SQL)

EXECUTE (Executable Embedded SQL)

EXECUTE IMMEDIATE (Executable Embedded SQL)
INSERT (Executable Embedded SQL)

SELECT (Executable Embedded SQL)

UPDATE (Executable Embedded SQL)

DECLARE STATEMENT (Embedded SQL Directive)

Purpose

To declare an identifier for a SQL statement or PL/SQL block to be used in other
embedded SQL statements.

Prerequisites
None.

Syntax

db_name
O

—>| EXEC SQL

DECLARE H STATEMENT

Keywords and Parameters

AT identifies the database on which the SQL statement or PL/SQL block is
declared. The database can be identified by either:

db_name is a database identifier declared in a previous
DECLARE DATABASE statement.

F-18 Pro*COBOL Precompiler Programmer’s Guide



DECLARE STATEMENT (Embedded SQL Directive)

:host_variable is a host variable whose value is a previously
declared db_name.

If you omit this clause, Oracle8 declares the SQL statement or PL/SQL
block on your default database.

statement_name is the declared identifier for the statement.

block_name PL/SQL block

Usage Notes

You must declare an identifier for a SQL statement or PL/SQL block with a
DECLARE STATEMENT statement only if a DECLARE CURSOR statement refer-
encing the identifier appears physically (not logically) in the embedded SQL pro-
gram before the PREPARE statement that parses the statement or block and
associates it with its identifier.

The scope of a statement declaration is global within its precompilation unit, like a
cursor declaration. For more information on this command, see "DECLARE" on
page 11-20.

Example |
This example illustrates the use of the DECLARE STATEMENT statement:

EXEC SQL AT REMOTEDB
DECLARE MYSTATEMENT STATEMENT
END-EXEC.
EXEC SQL PREPARE MYSTATEMENT FROM :MY-STRING
END-EXEC.
EXEC SQL EXECUTE MYSTATEMENT END-EXEC.

Example Il

In this example from a Pro*COBOL embedded SQL program, the DECLARE
STATEMENT statement is required because the DECLARE CURSOR statement pre-
cedes the PREPARE statement:

EXEC SQL DECLARE MYSTATEMENT STATEMENT END-EXEC.
EXEC SQL DECLARE EMPCURSOR CURSOR FOR MYSTATEMENT END-EXEC.
EXEC SQL PREPARE MYSTATEMENT FROM :MY-STRING END-EXEC.

Embedded SQL Commands and Precompiler Directives F-19



DECLARE TABLE (Oracle Embedded SQL Directive)

Related Topics
CLOSE (Executable Embedded SQL)

DECLARE DATABASE (Oracle Embedded SQL Directive)
FETCH (Executable Embedded SQL)

PREPARE (Executable Embedded SQL)

OPEN (Executable Embedded SQL)

DECLARE TABLE (Oracle Embedded SQL Directive)

Purpose

To define the structure of a table or view, including each column’s datatype, default
value, and NULL or NOT NULL specification for semantic checking by the precom-
piler when option SQLCHECK=SEMANTICS (or FULL).

Prerequisites
None.

Syntax

—>| EXEC SQL |->| DECLARE

M
N
)

WITH DEFAULT

NOT NULL

column datatype

F-20 Pro*COBOL Precompiler Programmer’s Guide



DELETE (Executable Embedded SQL)

Keywords and Parameters

table is the name of the declared table.

column is a column of the table.

datatype is the datatype of a column. For information on Oracle8 datatypes, see
Chapter 4.

DEFAULT specifies the default value of a column.

NULL specifies that a column can contain nulls.

NOT NULL specifies that a column cannot contain nulls.

WITH DEFAULT is supported for compatibility with the IBM DB2 database.

Usage Notes

Datatypes can only use integers (not expressions) for length, precision, scale. For
more information on using this command, see “Specifying SQLCHECK=SEMAN-
TICS” on page E-3.

Example
The following statement declares the PARTS table with the PARTNO, BIN, and
QTY columns:

EXEC SQL DECLARE PARTS TABLE
(PARTNO NUMBER NOT NULL,
BIN NUMBER,

QTY NUMBER)

END-EXEC.

Related Topics
None.

DELETE (Executable Embedded SQL)

Purpose
To remove rows from a table or from a view’s base table.

Embedded SQL Commands and Precompiler Directives F-21



DELETE (Executable Embedded SQL)

Prerequisites

For you to delete rows from a table, the table must be in your own schema or you
must have DELETE privilege on the table.

For you to delete rows from the base table of a view, the owner of the schema con-
taining the view must have DELETE privilege on the base table. Also, if the view is
in a schema other than your own, you must be granted DELETE privilege on the
view.

The DELETE ANY TABLE system privilege also allows you to delete rows from
any table or any view’s base table.

If you are using Trusted Oracle in DBMS MAC mode, your DBMS label must domi-
nate the creation label of the table or view or you must meet one of the following
criteria:

« If the creation label of the table or view is higher than your DBMS label, you
must have READUP and WRITEUP system privileges.

« If the creation label of your table or view is not comparable to your DBMS
label, you must have READUP, WRITEUP, and WRITEDOWN system privi-
leges.

In addition, for each row to be deleted, your DBMS label must match the row’s
label or you must meet one of the following criteria:

« Ifthe row’s label is higher than your DBMS label, you must have READUP and
WRITEUP system privileges.

« Ifthe row’s label is lower than your DBMS label, you must have WRITEDOWN
system privilege.

« If the row label is not comparable to your DBMS label, you must have
READUP, WRITEUP, and WRITEDOWN system privileges.

F-22 Pro*COBOL Precompiler Programmer’s Guide



DELETE (Executable Embedded SQL)

Syntax

YYCD)

f—)| FOR P@{host_integeh

—>| EXEC SQL

subquery

GO (),

PARTITION |->®->(part_name

—
DELETE

alias

CURRENT OF |—><cursor

Keywords and Parameters

AT

FOR :host_integer

schema

table view

identifies the database to which the DELETE statement is ssued. The
database can be identified by either:

db_name is a database identifier declared in a previous
DECLARE DATABASE statement.

:host_variable is a host variable whose value is a previously
declared db_name.

If you omit this clause, the DELETE statement is issued to your default
database.

limits the number of times the statement is executed if the WHERE
clause contains array host variables. If you omit this clause, Oracle8
executes the statement once for each component of the smallest array.

is the schema containing the table or view. If you omit schema, Oracle8
assumes the table or view is in your own schema.

is the name of a table from which the rows are to be deleted. If you
specify view, Oracle8 deletes rows from the view's base table.

Embedded SQL Commands and Precompiler Directives F-23



DELETE (Executable Embedded SQL)

dblink is the complete or partial name of a database link to a remote database
where the table or view is located. For information on referring to
database links, see Chapter 2 of the Oracle8 SQL Reference. You can
only delete rows from a remote table or view if you are using Oracle8 with
the distributed option.

If you omit dblink, Oracle8 assumes that the table or view is located on
the local database.

part_name name of partition in the table

alias is an alias assigned to the table. Aliases are generally used in DELETE
statements with correlated queries.

WHERE specifies which rows are deleted:

condition deletes only rows that satisfy

the condition. This condition can contain host
variables and optional indicator variables. See the
syntax description of condition in the Oracle8 SQL
Reference.

CURRENT OF deletes only the row most

recently fetched by the cursor. The cursor cannot be
associated with a SELECT statement that performs
a join, unless its FOR UPDATE clause specifically
locks only one table.

If you omit this clause entirely, Oracle8 deletes all rows from the table or
view.

Usage Notes

The host variables in the WHERE clause must be either all scalars or all arrays. If
they are scalars, Oracle8 executes the DELETE statement only once. If they are
arrays, Oracle8 executes the statement once for each set of array components. Each
execution may delete zero, one, or multiple rows.

Array host variables in the WHERE clause can have different sizes. In this case, the
number of times Oracle8 executes the statement is determined by the smaller of the
following values:

« the size of the smallest array
« the value of the :host_integer in the optional FOR clause

If no rows satisfy the condition, no rows are deleted and the SQLCODE returns a
NOT_FOUND condition.

F-24 Pro*COBOL Precompiler Programmer’s Guide



DELETE (Executable Embedded SQL)

The cumulative number of rows deleted is returned through the SQLCA. If the
WHERE clause contains array host variables, this value reflects the total number of
rows deleted for all components of the array processed by the DELETE statement.

If no rows satisfy the condition, Oracle8 returns an error through the SQLCODE of
the SQLCA. If you omit the WHERE clause, Oracle8 raises a warning flag in the
fifth component of SQLWARN in the SQLCA. For more information on this com-
mand and the SQLCA, see "Using the SQL Communications Area" on page 9-19.

You can use comments in a DELETE statement to pass instructions, or hints, to the
Oracle8 optimizer. The optimizer uses hints to choose an execution plan for the
statement. For more information on hints, see Oracle8 Tuning.

Example

This example illustrates the use of the DELETE statement within a Pro*COBOL
embedded SQL program:

EXEC SQL DELETE FROM EMP
WHERE DEPTNO =:DEPTNO
AND JOB=:JOB
END-EXEC.
EXEC SQL DECLARE EMPCURSOR CURSOR
FOR SELECT EMPNO, COMM
FROM EMP
END-EXEC.
EXEC SQL OPEN EMPCURSOR END-EXEC.
EXEC SQL FETCH EMPCURSOR
INTO :EMP-NUMBER, :COMMISSION
END-EXEC.
EXEC SQL DELETE FROM EMP
WHERE CURRENT OF EMPCURSOR
END-EXEC.

Related Topics
DECLARE DATABASE (Oracle Embedded SQL Directive)

DECLARE STATEMENT (Embedded SQL Directive)

Embedded SQL Commands and Precompiler Directives F-25



DESCRIBE (Executable Embedded SQL)

DESCRIBE (Executable Embedded SQL)

Purpose

To initialize a descriptor to hold descriptions of host variables for a dynamic SQL
statement or PL/SQL block.

Prerequisites
You must have prepared the SQL statement or PL/SQL block in a previous embed-
ded SQL PREPARE statement.

Syntax

BIND VARIABLES FOR

SELECT LIST FOR

—>| EXEC SQL |->| DESCRIBE }

statement_name

i

block_name

Keywords and Parameters

BIND VARIABLES initializes the descriptor to hold information about the input variables for
the SQL statement or PL/SQL block.

SELECT LIST initializes the descriptor to hold information about the select list of a
SELECT statement.

The default is SELECT LIST FOR.

statement_name identifies a SQL statement or PL/SQL block previously prepared with a
block_name PREPARE statement.
descriptor is the name of the descriptor to be initialized.

Usage Notes

You must issue a DESCRIBE statement before manipulating the bind or select
descriptor within an embedded SQL program.

F-26 Pro*COBOL Precompiler Programmer’s Guide



EXECUTE ... END-EXEC (Executable Embedded SQL Extension)

EXECUTE ...

You cannot describe both input variables and output variables into the same
descriptor.

The number of variables found by a DESCRIBE statement is the total number of
placeholders in the prepare SQL statement or PL/SQL block, rather than the total
number of uniquely named placeholders. For more information on this command,
see "The DESCRIBE Statement" on page 11-26.

Example

This example illustrates the use of the DESCRIBE statement in a Pro*COBOL
embedded SQL program:

EXEC SQL PREPARE MYSTATEMENT FROM :MY-STRING END-EXEC.
EXEC SQL DECLARE EMPCURSOR
FOR SELECT EMPNO, ENAME, SAL, COMM
FROM EMP
WHERE DEPTNO = :DEPT-NUMBER
END-EXEC.
EXEC SQL DESCRIBE BIND VARIABLES FOR MYSTATEMENT
INTO BINDDESCRIPTOR
END-EXEC.
EXEC SQL OPEN EMPCURSOR
USING BINDDESCRIPTOR
END-EXEC.
EXEC SQL DESCRIBE SELECT LIST FOR MY-STATEMENT
INTO SELECTDESCRIPTOR
END-EXEC.
EXEC SQL FETCH EMPCURSOR
INTO SELECTDESCRIPTOR
END-EXEC.

Related Topics
PREPARE (Executable Embedded SQL)

END-EXEC (Executable Embedded SQL Extension)

Purpose
To embed an anonymous PL/SQL block into an Oracle Pro*COBOL program.

Embedded SQL Commands and Precompiler Directives F-27



EXECUTE ... END-EXEC (Executable Embedded SQL Extension)

Prerequisites
None.

Syntax

@D
-host_variable
—>| EXEC SQL ‘ } EXECUTE |{pl/sq|_b|ock)->| END-EXEC |—

Keywords and Parameters

AT identifies the database on which the PL/SQL block is executed. The database
can be identified by either:

db_name is a database identifier declared in a previous DECLARE
DATABASE statement.

:host_variable is a host variable whose value is a previously declared
db_name.

If you omit this clause, the PL/SQL block is executed on your default
database.

pl/sql_block For information on PL/SQL, including how to write PL/SQL blocks, see the
PL/SQL User’s Guide and Reference.

END-EXEC must appear after the embedded PL/SQL block. The keyword END-EXEC
must be followed by the statement terminator for COBOL, ".".

Usage Notes

Since the Oracle Precompilers treat an embedded PL/SQL block like a single
embedded SQL statement, you can embed a PL/SQL block anywhere in an Oracle
Precompiler program that you can embed a SQL statement. For more information
on embedding PL/SQL blocks in Oracle Precompiler programs, see Chapter 6,
“Using Embedded PL/SQL”.

Example

Placing this EXECUTE statement in an Oracle Precompiler program embeds a
PL/SQL block in the program:

EXEC SQL EXECUTE

F-28 Pro*COBOL Precompiler Programmer’s Guide



EXECUTE (Executable Embedded SQL)

BEGIN
SELECT ENAME, JOB, SAL
INTO :EMP-NAME:IND-NAME, :JOB-TITLE, :SALARY
FROM EMP
WHERE EMPNO =:EMP-NUMBER,
IF :EEMP-NAME:IND-NAME IS NULL
THEN RAISE NAME-MISSING;
ENDIF,
END;
END-EXEC.

Related Topics
EXECUTE IMMEDIATE (Executable Embedded SQL)

EXECUTE (Executable Embedded SQL)

Purpose

To execute a DELETE, INSERT, or UPDATE statement or a PL/SQL block that has
been previously prepared with an embedded SQL PREPARE statement.

Prerequisites
You must first prepare the SQL statement or PL/SQL block with an embedded SQL
PREPARE statement.

Syntax

FOR host_integeh
A OL I

EXECUTE |—>Cstatement_id>—>

—>| EXEC SQL

DESCRIPTOR |—><descriptor)

M)
N\
; :

host_variable

Embedded SQL Commands and Precompiler Directives F-29



EXECUTE IMMEDIATE (Executable Embedded SQL)

Keywords and Parameters

FOR :host_integer limits the number of times the statement is executed when the USING
clause contains array host variables If you omit this clause, Oracle8
executes the statement once for each component of the smallest array.

statement_id is a precompiler identifier associated with the SQL statement or PL/SQL
block to be executed. Use the embedded SQL PREPARE command to
associate the precompiler identifier with the statement or PL/SQL block.

USING specifies a list of host variables with optional indicator variables that

Oracle8 substitutes as input variables into the statement to be executed.
The host and indicator variables must be either all scalars or all arrays.

Usage Note
For more information on this command, see Chapter 11, “Using Dynamic SQL”.

Example
This example illustrates the use of the EXECUTE statement in a Pro*COBOL
embedded SQL program:

EXEC SQL PREPARE MY-STATEMENT FROM MY-STRING END-EXEC.
EXEC SQL EXECUTE MY-STATEMENT USING :MY-VAR END-EXEC.

Related Topics
DECLARE DATABASE (Oracle Embedded SQL Directive)

PREPARE (Executable Embedded SQL)

EXECUTE IMMEDIATE (Executable Embedded SQL)

Purpose
To prepare and execute a DELETE, INSERT, or UPDATE statement or a PL/SQL
block containing no host variables.

Prerequisites
None.

F-30 Pro*COBOL Precompiler Programmer’s Guide



EXECUTE IMMEDIATE (Executable Embedded SQL)

Syntax

O

—>| EXEC SQL

ﬁl EXECUTE IMMEDIATE

OH(sisi)
@0

Keywords and Parameters

AT identifies the database on which the SQL statement or PL/SQL block is
executed. The database can be identified by either:
db_name is a database identifier declared in a previous DECLARE
DATABASE statement.
:host_variable is a host variable whose value is a previously declared
db_name.

If you omit this clause, the statement or block is executed on your default

database.

:host_string is a host variable whose value is the SQL statement or PL/SQL block to be
executed.

text is a quoted text literal containing the SQL statement or PL/SQL block to be
executed.

The SQL statement can only be a DELETE, INSERT, or UPDATE statement.

Usage Notes

When you issue an EXECUTE IMMEDIATE statement, Oracle8 parses the specified
SQL statement or PL/SQL block, checking for errors, and executes it. If any errors
are encountered, they are returned in the SQLCODE component of the SQLCA.

For more information on this command, see "The EXECUTE IMMEDIATE State-
ment" on page 11-9.

Example
This example illustrates the use of the EXECUTE IMMEDIATE statement:

EXEC SQL

Embedded SQL Commands and Precompiler Directives F-31



FETCH (Executable Embedded SQL)

EXECUTE IMMEDIATE 'DELETE FROM EMP WHERE EMPNO = 9460’
END-EXEC.

Related Topics
PREPARE (Executable Embedded SQL)

EXECUTE (Executable Embedded SQL)

FETCH (Executable Embedded SQL)

Purpose
To retrieve one or more rows returned by a query, assigning the select list values to
host variables.

Prerequisites
You must first open the cursor with an the OPEN statement.

Syntax

f—)| FOR F@{host_integerh
EXEC SQL FETCH
(e ] oY)

USING DESCRIPTOR |{descriptor)

()
N\
INDICATOR
; :

host_variable

Keywords and Parameters

FOR :host_integer limits the number of rows fetched if you are using array host variables. If
you omit this clause, Oracle8 fetches enough rows to fill the smallest
array.

F-32 Pro*COBOL Precompiler Programmer’s Guide



FETCH (Executable Embedded SQL)

cursor is a cursor that is declared by a DECLARE CURSOR statement. The
FETCH statement returns one of the rows selected by the query
associated with the cursor.

:cursor_variable is a cursor variable is allocated an ALLOCATE statement. The FETCH
statement returns one of the rows selected by the query associated with
the cursor variable.

INTO specifies a list of host variables and optional indicator variables into
which data is fetched. These host variables and indicator variables must
be declared within the program.

USING specifies the descriptor referenced in a previous DESCRIBE statement.
Only use this clause with dynamic embedded SQL, method 4. Also, the
USING clause does not apply when a cursor variable is used.

Usage Notes

The FETCH statement reads the rows of the active set and names the output vari-
ables which contain the results. Indicator values are set to -1 if their associated host
variable is null. The first FETCH statement for a cursor also sorts the rows of the
active set, if necessary.

The number of rows retrieved is specified by the size of the output host variables
and the value specified in the FOR clause. The host variables to receive the data
must be either all scalars or all arrays. If they are scalars, Oracle8 fetches only one
row. If they are arrays, Oracle8 fetches enough rows to fill the arrays.

Array host variables can have different sizes. In this case, the number of rows
Oracle8 fetches is determined by the smaller of the following values:

« the size of the smallest array
« the value of the :host_integer in the optional FOR clause

Of course, the number of rows fetched can be further limited by the number of
rows that actually satisfy the query.

If a FETCH statement does not retrieve all rows returned by the query, the cursor is
positioned on the next returned row. When the last row returned by the query has
been retrieved, the next FETCH statement results in an error code returned in the
SQLCODE element of the SQLCA.

Note that the FETCH command does not contain an AT clause. You must specify
the database accessed by the cursor in the DECLARE CURSOR statement.

You can only move forward through the active set with FETCH statements. If you
want to revisit any of the previously fetched rows, you must reopen the cursor and
fetch each row in turn. If you want to change the active set, you must assign new
values to the input host variables in the cursor’s query and reopen the cursor.

Embedded SQL Commands and Precompiler Directives F-33



INSERT (Executable Embedded SQL)

Example
This example illustrates the FETCH command in a Pro*COBOL embedded SQL pro-
gram:

EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT JOB, SAL FROM EMP WHERE DEPTNO =30
END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO ...

LOOP.
EXEC SQL FETCH EMPCURSOR INTO :JOB-TITLEL, :SALARY1 END-EXEC.
EXEC SQL FETCH EMPCURSOR INTO :JOB-TITLE2, :SALARY2 END-EXEC.

GO TOLOORP.

Related Topics
PREPARE (Executable Embedded SQL)

DECLARE CURSOR (Embedded SQL Directive)
OPEN (Executable Embedded SQL)
CLOSE (Executable Embedded SQL)

INSERT (Executable Embedded SQL)

Purpose
To add rows to a table or to a view’s base table.

Prerequisites

For you to insert rows into a table, the table must be in your own schema or you
must have INSERT privilege on the table.

For you to insert rows into the base table of a view, the owner of the schema con-
taining the view must have INSERT privilege on the base table. Also, if the view is
in a schema other than your own, you must have INSERT privilege on the view.

The INSERT ANY TABLE system privilege also allows you to insert rows into any
table or any view’s base table.

If you are using Trusted Oracle in DBMS MAC mode, your DBMS label must match
the creation label of the table or view:

F-34 Pro*COBOL Precompiler Programmer’s Guide



INSERT (Executable Embedded SQL)

« If the creation label of the table or view is higher than your DBMS label, you
must have WRITEUP system privileges.

« If the creation label of the table or view is lower than your DBMS label, you
must have WRITEDOWN system privilege.

« If the creation label of your table or view is not comparable to your DBMS
label, you must have WRITEUP and WRITEDOWN system privileges.

Syntax

—>| EXEC SQL

subquery

db_link

PARTITION F@»Cpan_name)—)@JW

schema .

H| INSERT INTO
[
OlCIDI0

Keywords and Parameters

AT identifies the database on which the INSERT statement is executed.
The database can be identified by either:

db_name is a database identifier declared in a previous
DECLARE DATABASE statement.

:host_variable is a host variable whose value is a previously
declared db_name

If you omit this clause, the INSERT statement is executed on your
default database.

Embedded SQL Commands and Precompiler Directives F-35



INSERT (Executable Embedded SQL)

FOR :host_integer limits the number of times the statement is executed if the VALUES
clause contains array host variables. If you omit this clause, Oracle8
executes the statement once for each component in the smallest
array.

schema is the schema containing the table or view. If you omit schema,
Oracle8 assumes the table or view is in your own schema.

table view is the name of the table into which rows are to be inserted. If you
specify view, Oracle8 inserts rows into the view's base table.

db_link is a complete or partial name of a database link to a remote database
where the table or view is located. For information on referring to
database links, see the Oracle8 SQL Reference. You can only insert
rows into a remote table or view if you are using Oracle8 with the
distributed option.

If you omit dblink, Oracle8 assumes that the table or view is on the
local database.

part_name name of partition in the table

column is a column of the table or view. In the inserted row, each column in
this list is assigned a value from the VALUES clause or the query.

If you omit one of the table’s columns from this list, the column’s value
for the inserted row is the column’s default value as specified when the
table was created. If you omit the column list altogether, the VALUES
clause or query must specify values for all columns in the table.

VALUES specifies a row of values to be inserted into the table or view. See the
syntax description of exprin the Oracle8 SQL Reference Note that the
expressions can be host variables with optional indicator variables.
You must specify an expression in the VALUES clause for each
column in the column list.

subquery is a subquery that returns rows that are inserted into the table. The
select list of this subquery must have the same number of columns as
the column list of the INSERT statement. For the syntax description of
a subquery, see “SELECT” in the Oracle8 SQL Reference.

Usage Notes

Any host variables that appear in the WHERE clause must be either all scalars or

all arrays. If they are scalars, Oracle8 executes the INSERT statement once. If they
are arrays, Oracle8 executes the INSERT statement once for each set of array compo-
nents, inserting one row each time.

Array host variables in the WHERE clause can have different sizes. In this case, the
number of times Oracle8 executes the statement is determined by the smaller of the
following values:

« size of the smallest array

F-36 Pro*COBOL Precompiler Programmer’s Guide



OPEN (Executable Embedded SQL)

« the value of the :host_integer in the optional FOR clause.

For more information on this command, see "The Basic SQL Statements" on page
5-7.

Example |
This example illustrates the use of the embedded SQL INSERT command:
EXEC SQL
INSERT INTO EMP (ENAME, EMPNO, SAL)

VALUES (ENAME, EEMPNO, :SAL)
END-EXEC.

Example Il
This example shows an embedded SQL INSERT command with a subquery:
EXEC SQL
INSERT INTO NEWEMP (ENAME, EMPNO, SAL)
SELECT ENAME, EMPNO, SAL FROM EMP

WHERE DEPTNO = :DEPTNO
END-EXEC.

Related Topics
DECLARE DATABASE (Oracle Embedded SQL Directive)

OPEN (Executable Embedded SQL)

Purpose

To open a cursor, evaluating the associated query and substituting the host variable
names supplied by the USING clause into the WHERE clause of the query.

Prerequisites

You must declare the cursor with a DECLARE CURSOR embedded SQL statement
before opening it.

Embedded SQL Commands and Precompiler Directives F-37



OPEN (Executable Embedded SQL)

Syntax

—{ EXEC SQL |3 OPEN | cursor >

DESCRIPTOR |->(descriptor)

host_variable

I
N\

INDICATOR
f : indicator_variable

Keywords and Parameters

cursor

USING
:host_variable

DESCRIPTOR

Usage Notes

is the cursor to be opened.

specifies the host variables to be substituted into the WHERE clause of the
associated query.

specifies a host variable with an optional indicator variable to be substituted
into the statement associated with the cursor.

specifies a descriptor that describes the host variables to be substituted
into the WHERE clause of the associated query. The descriptor must be
initialized in a previous DESCRIBE statement.

The substitution is based on position. The host variable names specified in
this statement can be different from the variable names in the associated

query.

The OPEN command defines the active set of rows and initializes the cursor just
before the first row of the active set. The values of the host variables at the time of
the OPEN are substituted in the statement. This command does not actually
retrieve rows; rows are retrieved by the FETCH command.

Once you have opened a cursor, its input host variables are not reexamined until
you reopen the cursor. To change any input host variables and therefore the active
set, you must reopen the cursor.

All cursors in a program are in a closed state when the program is initiated or
when they have been explicitly closed using the CLOSE command.

F-38 Pro*COBOL Precompiler Programmer’s Guide



PREPARE (Executable Embedded SQL)

You can reopen a cursor without first closing it. For more information on this com-
mand, see "Opening a Cursor" on page 5-12.

Example
This example illustrates the use of the OPEN command in a Pro*COBOL embedded
SQL program:

EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT ENAME, EMPNO, JOB, SAL
FROM EMP
WHERE DEPTNO =:DEPTNO

END-EXEC.

EXEC SQL OPEN EMPCURSOR END-EXEC.

Related Topics
PREPARE (Executable Embedded SQL)

DECLARE CURSOR (Embedded SQL Directive)
FETCH (Executable Embedded SQL)
CLOSE (Executable Embedded SQL)

PREPARE (Executable Embedded SQL)

Purpose

To parse a SQL statement or PL/SQL block specified by a host variable and associ-
ate it with an identifier.

Prerequisites
None.

Syntax

O GED)
OE0

—>| EXEC SQL |—>| PREPARE |—><statement_id)—>| FROM

Embedded SQL Commands and Precompiler Directives F-39



PREPARE (Executable Embedded SQL)

Usage Notes

Keywords and Parameters

statement_id is the identifier to be associated with the prepared SQL statement or
PL/SQL block. If this identifier was previously assigned to another
statement or block, the prior assignment is superseded.

:host_string is a host variable whose value is the text of a SQL statement or
PL/SQL block to be prepared.

text is a string literal containing a SQL statement or PL/SQL block to be
prepared.
select_command is a SELECT command.

Any variables that appear in the :host_string or text are placeholders. The actual
host variable names are assigned in the USING clause of the OPEN command
(input host variables) or in the INTO clause of the FETCH command (output host
variables).

A SQL statement is prepared only once, but can be executed any number of times.

Example

This example illustrates the use of a PREPARE statement in a Pro*COBOL embed-
ded SQL program:

EXEC SQL PREPARE MYSTATEMENT FROM :MY-STRING END-EXEC.
EXEC SQL EXECUTE MYSTATEMENT END-EXEC.

Related Topics
DECLARE CURSOR (Embedded SQL Directive)

OPEN (Executable Embedded SQL)
FETCH (Executable Embedded SQL)
CLOSE (Executable Embedded SQL)

F-40 Pro*COBOL Precompiler Programmer’s Guide



ROLLBACK (Executable Embedded SQL)

ROLLBACK (Executable Embedded SQL)

Purpose

To undo work done in the current transaction. You can also use this command to
manually undo the work done by an in-doubt distributed transaction.

Prerequisites
To roll back your current transaction, no privileges are necessary.

To manually roll back an in-doubt distributed transaction that you originally com-

mitted, you must have FORCE TRANSACTION system privilege. To manually roll
back an in-doubt distributed transaction originally committed by another user, you
must have FORCE ANY TRANSACTION system privilege.

Syntax

O

—>| EXEC SQL

savepoint

WORK RELEASE
—)| ROLLBACK

Keywords and Parameters

WORK is optional and is provided for ANSI compatibility.

TO rolls back the current transaction to the specified savepoint. If you omit this
clause, the ROLLBACK statement rolls back the entire transaction.

Embedded SQL Commands and Precompiler Directives F-41



ROLLBACK (Executable Embedded SQL)

FORCE manually rolls back an in-doubt distributed transaction. The transaction is
identified by the text containing its local or global transaction ID. To find the
IDs of such transactions, query the data dictionary view
DBA_2PC_PENDING.

ROLLBACK statements with the FORCE clause are not supported in PL/SQL.

RELEASE frees all resources and disconnects the application from the Oracle8 Server.
The RELEASE clause is not allowed with SAVEPOINT and FORCE clauses.

Usage Notes

A transaction (or a logical unit of work) is a sequence of SQL statements that
Oracle8 treats as a single unit. A transaction begins with the first executable SQL
statement after a COMMIT, ROLLBACK or connection to the database. A transac-
tion ends with a COMMIT statement, a ROLLBACK statement, or disconnection
(intentional or unintentional) from the database. Note that Oracle8 issues an
implicit COMMIT statement before and after processing any Data Definition Lan-
guage statement.

Using the ROLLBACK command without the TO SAVEPOINT clause performs the
following operations:

« ends the transaction

« undoes all changes in the current transaction
« erases all savepoints in the transaction

« releases the transaction’s locks

Using the ROLLBACK command with the TO SAVEPOINT clause performs the fol-
lowing operations:

« rolls back just the portion of the transaction after the savepoint.

« loses all savepoints created after that savepoint. Note that the named savepoint
is retained, so you can roll back to the same savepoint multiple times. Prior
savepoints are also retained.

« releases all table and row locks acquired since the savepoint. Note that other
transactions that have requested access to rows locked after the savepoint must
continue to wait until the transaction is committed or rolled back. Other trans-
actions that have not already requested the rows can request and access the
rows immediately.

It is recommended that you explicitly end transactions in application programs
using either a COMMIT or ROLLBACK statement. If you do not explicitly commit

F-42 Pro*COBOL Precompiler Programmer’s Guide



ROLLBACK (Executable Embedded SQL)

the transaction and the program terminates abnormally, Oracle8 rolls back the last
uncommitted transaction.

Example |
The following statement rolls back your entire current transaction:

EXEC SQL ROLLBACK END-EXEC.

Example Il
The following statement rolls back your current transaction to savepoint SP5:

EXEC SQL ROLLBACK TO SAVEPOINT SP5 END-EXEC.

Distributed Transactions

Oracle8 with the distributed option allows you to perform distributed transactions,
or transactions that modify data on multiple databases. To commit or roll back a
distributed transaction, you need only issue a COMMIT or ROLLBACK statement
as you would any other transaction.

If there is a network failure during the commit process for a distributed transaction,
the state of the transaction may be unknown, or in-doubt. After consultation with
the administrators of the other databases involved in the transaction, you may
decide to manually commit or roll back the transaction on your local database. You
can manually roll back the transaction on your local database by issuing a ROLL-
BACK statement with the FORCE clause.

For more information on when to roll back in-doubt transactions, see Oracle8 Dis-
tributed Database Systems.

You cannot manually roll back an in-doubt transaction to a savepoint.

A ROLLBACK statement with a FORCE clause only rolls back the specified transac-
tion. Such a statement does not affect your current transaction.

Example Il
The following statement manually rolls back an in-doubt distributed transaction:

EXEC SQL ROLLBACK WORK FORCE '25.32.87' END-EXEC.

Related Topics
COMMIT (Executable Embedded SQL)

SAVEPOINT (Executable Embedded SQL)

Embedded SQL Commands and Precompiler Directives F-43



SAVEPOINT (Executable Embedded SQL)

SAVEPOINT (Executable Embedded SQL)

Purpose
To identify a point in a transaction to which you can later roll back.

Prerequisites
None.

Syntax

Oy
J N
—>| EXEC SQL 5| SAVEPOINT |{savepomt)-

Keywords and Parameters

AT identifies the database on which the savepoint is created. The database can
be identified by either:

db_name is a database identifier declared in a previous
DECLARE DATABASE statement.

:host_variable is a host variable whose value is a previously declared
db_name.

If you omit this clause, the savepoint is created on your default database.
savepoint is the name of the savepoint to be created.
Usage Notes

For more information on this command, see "Using the SAVEPOINT Statement" on
page 8-7.

Example
This example illustrates the use of the embedded SQL SAVEPOINT command:

EXEC SQL SAVEPOINT SAVE3 END-EXEC.

Related Topics
COMMIT (Executable Embedded SQL)

F-44 Pro*COBOL Precompiler Programmer’s Guide



SELECT (Executable Embedded SQL)

ROLLBACK (Executable Embedded SQL)

SELECT (Executable Embedded SQL)

Purpose

To retrieve data from one or more tables, views, or snapshots, assigning the
selected values to host variables.

Prerequisites

For you to select data from a table or snapshot, the table or snapshot must be in
your own schema or you must have SELECT privilege on the table or snapshot.

For you to select rows from the base tables of a view, the owner of the schema con-
taining the view must have SELECT privilege on the base tables. Also, if the view is
in a schema other than your own, you must have SELECT privilege on the view.

The SELECT ANY TABLE system privilege also allows you to select data from any
table or any snapshot or any view’s base table.

If you are using Trusted Oracle in DBMS MAC mode, your DBMS label must domi-
nate the creation label of each queried table, view, or snapshot or you must have
READUP system privileges.

Embedded SQL Commands and Precompiler Directives F-45



SELECT (Executable Embedded SQL)

Syntax

D)

I N
_>| EXEC SQL | SELECT |—>Cselect_llst>—>

(M)
Y
/ :

host_variable

FROM table_list

f_)| START WITH |—>(conditionh
I .
I CONNECT BY |a(cond|t|on>\
f_)l WHERE Kconditionh f_)| START WITH Kconditionh
CONNECT BY |->(condition)

f_)l HAVING Kconditionh

SELECT |—><command

WITH READONLY

WITH CHECK OPTION

F-46 Pro*COBOL Precompiler Programmer’s Guide



SELECT (Executable Embedded SQL)

ORDER BY
ECET RS b

O
|
OF column NOWAIT
ﬁ FOR UPDATE

D

Embedded SQL Commands and Precompiler Directives F-47



SELECT (Executable Embedded SQL)

Keywords and Parameters
All other keywords and parameters are identical to the non-embedded SQL

AT identifies the database to which the SELECT statement is issued. The
database can be identified by either:

db_name is a database identifier declared in a previous
DECLARE DATABASE statement.

:host_variable is a host variable whose value is a previously
declared db_name.

If you omit this clause, the SELECT statement is issued to your default
database.

select_list identical to the non-embedded SELECT command except that a host
variables can be used in place of literals.

INTO specifies output host variables and optional indicator variables to receive the
data returned by the SELECT statement. Note that these variables must be
either all scalars or all arrays, but arrays need not have the same size.

WHERE restricts the rows returned to those for which the condition is TRUE. See the
syntax description of condition in the Oracle8 SQL Reference. The condition
can contain host variables, but cannot contain indicator variables. These host
variables can be either scalars or arrays.

SELECT command.

Usage Notes

If no rows meet the WHERE clause condition, no rows are retrieved and Oracle8
returns an error code through the SQLCODE component of the SQLCA.

You can use comments in a SELECT statement to pass instructions, or hints, to the
Oracle8 optimizer. The optimizer uses hints to choose an execution plan for the
statement. For more information on hints, see Oracle8 Tuning.

Example
This example illustrates the use of the embedded SQL SELECT command:

EXEC SQL SELECT ENAME, SAL + 100, JOB
INTO :ENAME, :SAL, :JOB
FROM EMP
WHERE EMPNO =:EMPNO

END-EXEC.

F-48 Pro*COBOL Precompiler Programmer’s Guide



UPDATE (Executable Embedded SQL)

Related Topics
DECLARE DATABASE (Oracle Embedded SQL Directive)

DECLARE CURSOR (Embedded SQL Directive)
EXECUTE (Executable Embedded SQL)

FETCH (Executable Embedded SQL)

PREPARE (Executable Embedded SQL)

UPDATE (Executable Embedded SQL)

Purpose
To change existing values in a table or in a view’s base table.

Prerequisites

For you to update values in a table or snapshot, the table must be in your own
schema or you must have UPDATE privilege on the table.

For you to update values in the base table of a view, the owner of the schema con-
taining the view must have UPDATE privilege on the base table. Also, if the view is
in a schema other than your own, you must have UPDATE privilege on the view.

The UPDATE ANY TABLE system privilege also allows you to update values in
any table or any view’s base table.

If you are using Trusted Oracle in DBMS MAC mode, your DBMS label must match
the creation label of the table or view:

« If the creation label of the table or view is higher than your DBMS label, you
must have READUP and WRITEUP system privileges

« If the creation label of the table or view is lower than your DBMS label, you
must have WRITEDOWN system privilege.

« If the creation label of your table or view is not comparable to your DBMS
label, you must have READUP, WRITEUP, and WRITEDOWN system privi-
leges.

Embedded SQL Commands and Precompiler Directives F-49



UPDATE (Executable Embedded SQL)

Syntax

() ros v

ﬂ FOR F@-)Chost_integerh

%| EXEC SQL

subquery

db_link

PARTITION F@{part_name)a@JT

@O (@),

%| UPDATE

Keywords and Parameters

AT identifies the database to which the UPDATE statement is issued. The
database can be identified by either:

dbname is a database identifier declared in a previous
DECLARE DATABASE statement.

:host_variable is a host variable whose value is a previously
declared dbname.

If you omit this clause, the UPDATE statement is issued to your default
database.

F-50 Pro*COBOL Precompiler Programmer’s Guide



UPDATE (Executable Embedded SQL)

FOR :host _integer

schema

table view

dblink

part_name

alias

column

expr

subquery 1

subquery 2

WHERE

limits the number of times the UPDATE statement is executed if the SET
and WHERE clauses contain array host variables. If you omit this
clause, Oracle8 executes the statement once for each component of the
smallest array.

is the schema containing the table or view. If you omit schema, Oracle8
assumes the table or view is in your own schema.

is the name of the table to be updated. If you specify view, Oracle8
updates the view's base table.

is a complete or partial name of a database link to a remote database
where the table or view is located. For information on referring to
database links, see the Oracle8 SQL Reference. You can only use a
database link to update a remote table or view if you are using Oracle8
with the distributed option.

name of partition in the table

is a name used to reference the table, view, or subquery elsewhere in
the statement.

is the name of a column of the table or view that is to be updated. If you
omit a column of the table from the SET clause, that column’s value
remains unchanged.

is the new value assigned to the corresponding column. This expression
can contain host variables and optional indicator variables. See the
syntax of exprin the Oracle8 SQL Reference.

is a subquery that returns new values that are assigned to the
corresponding columns. For the syntax of a subquery, see “SELECT” in
the Oracle8 SQL Reference.

is a subquery that return a new value that is assigned to the
corresponding column. For the syntax of a subquery, see “SELECT” in
the Oracle8 SQL Reference.

specifies which rows of the table or view are updated:

condition updates only rows for which this condition is
true. This condition can contain host variables
and optional indicator variables. See the
syntax of condition in the Oracle8 SQL
Reference.

CURRENT OF updates only the row most recently fetched by
the cursor. The cursor cannot be associated
with a SELECT statement that performs a join
unless its FOR UPDATE clause explicitly locks
only one table.

If you omit this clause entirely, Oracle8 updates all rows of the table or
view.

Embedded SQL Commands and Precompiler Directives F-51



UPDATE (Executable Embedded SQL)

Usage Notes
Host variables in the SET and WHERE clauses must be either all

scalars or all arrays. If they are scalars, Oracle8 executes the UPDATE statement
only once. If they are arrays, Oracle8 executes the statement once for each set of
array components. Each execution may update zero, one, or multiple rows.

Array host variables can have different sizes. In this case, the number of times
Oracle8 executes the statement is determined by the smaller

of the following values:
« the size of the smallest array
« the value of the :host_integer in the optional FOR clause

The cumulative number of rows updated is returned through the third element of
the SQLERRD component of the SQLCA. When arrays are used as input host vari-
ables, this count reflects the total number of updates for all components of the array
processed in the UPDATE statement. If no rows satisfy the condition, no rows are
updated and Oracle8 returns an error message through the SQLCODE element of

the SQLCA. If you omit the WHERE clause, all rows are updated and Oracle8
raises a warning flag in the fifth component of the SQLWARN element of the
SQLCA.

You can use comments in an UPDATE statement to pass instructions, or hints, to
the Oracle8 optimizer. The optimizer uses hints to choose an execution plan for the
statement. For more information on hints, see Oracle8 Tuning.

For more information on this command, see "The Basic SQL Statements" on page
5-7 andChapter 8, “Defining and Controlling Transactions”.

Examples

The following examples illustrate the use of the embedded SQL UPDATE com-
mand:

EXEC SQL UPDATE EMP
SET SAL =:SAL, COMM =:COMM INDICATOR :COMM-IND
WHERE ENAME = :ENAME

END-EXEC.

EXEC SQL UPDATE EMP
SET (SAL, COMM) =
(SELECT AVG(SAL)*1.1, AVG(COMM)*1.1
FROM EMP)

F-52 Pro*COBOL Precompiler Programmer’s Guide



VAR (Oracle Embedded SQL Directive)

WHERE ENAME ="JONES'
END-EXEC.

Related Topics
DECLARE DATABASE (Oracle Embedded SQL Directive)

VAR (Oracle Embedded SQL Directive)

Purpose

To perform host variable equivalencing, or to assign a specific Oracle8 external
datatype to an individual host variable, overriding the default datatype assign-
ment. There is an optional clause, CONVBUFSZ , that specifies the size of a buffer
for character set conversion.

Prerequisites
The host variable must be previously declared in the embedded SQL program.

Syntax

—>| EXEC SQL |->| VAR |—><host_variable)—>

EOE

IS

[comaursz jrL—(DxE0)

a

Keywords and Parameters

host_variable is the host variable to be assigned an Oracle8 external datatype.

Embedded SQL Commands and Precompiler Directives F-53



VAR (Oracle Embedded SQL Directive)

dtyp is an Oracle8 external datatype recognized by the Oracle Precompilers (not
an Oracle8 internal datatype). The datatype may include a length, precision,
or scale. This external datatype is assigned to the host_variable. For a list of
external datatypes, see "External Datatypes" on page 4-9..

size is the size in bytes of a buffer in the Oracle8 runtime library used to perform
conversion between character sets of the host_variable

Usage Notes

Host variable equivalencing is one kind of datatype equivalencing. Datatype equiv-
alencing is useful for any of the following purposes:

« to automatically null-terminate a character host variable
« to store program data as binary data in the database
« to override default datatype conversion

For more information about Oracle datatypes, see "External Datatypes” on page 4-9
and "Sample Program 4: Datatype Equivalencing” on page 5-19.

Example
This example equivalences the host variable DEPT_NAME to

the datatype STRING and the host variable BUFFER to the
datatype RAW/(200):

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

61 DEPT-NAME PIC X(15).
* — default datatype is CHAR

EXEC SQL VAR DEPT-NAME IS STRING END-EXEC.
*—resetto STRING

01 BUFFER-VAR.
05BUFFER PIC X(200).
* — default datatype is CHAR
EXEC SQL VAR BUFFER IS RAW(200) END-EXEC.
* — refer to RAW

EXEC SQL END DECLARE SECTION END-EXEC.

Related Topics
None.

F-54 Pro*COBOL Precompiler Programmer’s Guide



WHENEVER (Embedded SQL Directive)

WHENEVER (Embedded SQL Directive)

Purpose
To specify the action to be taken when an error or warning results from executing
an embedded SQL program.

Prerequisites
None.

Syntax

H@
| DO PERFORM |(label)

e

—>| EXEC SQL |->| WHENEVER

Keywords and Parameters

NOT FOUND | identifies any exception condition that returns an error code of +1403 to
NOTFOUND SQLCODE (or a +100 code when MODE=ANSI).
SQLERROR identifies a condition that results in a negative return code.

SQLWARNING identifies a non-fatal warning condition.

CONTINUE indicates that the program should progress to the next statement.

GOTO | GO TO indicates that the program should branch to the statement named by /abel.
STOP stops program execution.

DO PERFORM indicates that the program should perform a routine at label.

The WHENEVER command allows your program to transfer control to an error
handling routine in the event an embedded SQL statement results in an error or
warning.

Embedded SQL Commands and Precompiler Directives F-55



WHENEVER (Embedded SQL Directive)

The scope of a WHENEVER statement is positional, rather than logical. A WHEN-
EVER statement applies to all embedded SQL statements that textually follow it in
the source file, not in the flow of the program logic. A WHENEVER statement
remains in effect until it is superseded by another WHENEVER statement checking
for the same condition.

For more information on this command, see Chapter 8, “Defining and Controlling
Transactions”. Do not confuse the WHENEVER embedded SQL command with the
WHENEVER SQL*Plus command.

Example
The following example illustrates the use of the WHENEVER command in a
Pro*COBOL embedded SQL program:

EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
DISPLAY "ORACLE ERROR DETECTED.".
EXEC SQL ROLLBACK RELEASE END-EXEC.
STOP RUN.

Related Topics
None

F-56 Pro*COBOL Precompiler Programmer’s Guide



A

abbreviations, 3-2
abnormal termination
automatic rollback, F-12
active set, 5-11
changing, 5-13
definition, 2-8
when empty, 5-14
ALLOCATE command, F-8
ALLOCATE statement, 6-31
allocating
cursors, F-8
allocating cursor variables, 6-31
ANSI/ISO SQL
compliance, xxix
extensions, 7-20
application development process, 2-10
array, 2-7,10-2
elements, 10-2
operations, 2-7
array fetch, 10-4
ARRAYLEN statement, 6-16
ASACC, 7-12
ASACC option, 7-12
ASSUME_SQLCODE option, 7-12
AT clause
CONNECT statement, 3-49
DECLARE CURSOR statement, 3-50
DECLARE STATEMENT statement, 3-51
EXECUTE IMMEDIATE statement, 3-51
of COMMIT command, F-11
of CONNECT command, F-13
of DECLARE CURSOR command, F-15

Index

of DECLARE STATEMENT command, F-18
of EXECUTE command, F-28
of EXECUTE IMMEDIATE command, F-31
of INSERT command, F-36
of SAVEPOINT command, F-45
of SELECT command, F-49
of UPDATE command, F-51
restrictions, 3-50
AUTO_CONNECT option, 7-13
instead of CONNECT statement, 3-45
automatic logon, 3-44, 3-47

B

batch fetch, 10-4

example, 10-4

number of rows returned, 10-5
bind descriptor, 12-4

information in, 11-27
bind SQLDA, 12-3
bind variable, 11-26
binding, 11-5
BNDDFCLP variable (SQLDA), 12-13
BNDDFCRCP variable (SQLDA), 12-13
BNDDFMT variable (SQLDA), 12-9
BNDDH-CUR-VNAMEL variable (SQLDA), 12-12
BNDDH-MAX-VNAMEL variable (SQLDA), 12-12
BNDDH-VNAME variable (SQLDA), 12-12
BNDDI variable (SQLDA), 12-11
BNDDI-CUR-VNAMEL variable (SQLDA), 12-13
BNDDI-MAX-VNAMEL variable (SQLDA), 12-13
BNDDI-VNAME variable (SQLDA), 12-13
BNDDV variable (SQLDA), 12-8
BNDDVLN variable (SQLDA), 12-9

Index-1



BNDDVTYP variable (SQLDA), 12-10

C

callback, user exit, 13-14
CHAR column
maximum width, 4-3
CHAR datatype
external, 4-10
internal, 4-3
character host variables
as output variables, 3-41
handling, 3-39
server handling, 3-41
types, 3-39
character sets
multi-byte, 4-32
character strings
multibyte, 4-32
CHARF datatype
external, 4-10
CHARF datatype specifier, 4-25
using in TYPE statement, 4-25
using in VAR statement, 4-25
child cursor, 6-19
CLOSE command, F-9
examples, F-10
CLOSE statement, 5-14, 6-34
example, 5-14
in dynamic SQL Method 4, 12-39

CLOSE_ON_COMMIT precompiler option,

closing

cursors, F-9
COBOL datatypes, 3-13
COBOL-74 restrictions, 3-8
code page, 4-32
coding area

for paragraph names, 3-7
coding conventions, 3-2
column list, 5-9
column, ROWLABEL, 4-8
Comment, 11-31
COMMENT clause

of COMMIT command, F-11
Comments

Index-2

ANSI SQL-style, 3-3

C-style, 3-3

embedded SQL statements, 3-3
commit, 8-3

automatic, 8-3

explicit versus implicit, 8-3
COMMIT command, F-10

ending a transaction, F-43

examples, F-12
COMMIT statement, 8-4

effects, 8-4

example, 8-4

RELEASE option, 8-4

using in a PL/SQL block, 8-15

where to place, 8-4
committing

transactions, F-10
communicating over a network, 3-47
compilation, 7-42
compliance, ANSI/ZISO, xxix
composite type, 12-18
concurrency, 8-2
concurrent logon, 3-46
conditional precompilation, 7-39

defining symbols, 7-40

example, 7-40
CONFIG option, 7-14, 7-15, 7-17, 7-32
configuration file

system versus user, 7-15
CONNECT command, F-12

examples, F-14
CONNECT statement

ALTER AUTHORIZATION clause,

AT clause, 3-49

enabling a semantic check, E-4

logging on to Oracle, 3-43

placement, 3-43

requirements, 3-43

USING clause, 3-49

when not required, 3-45
connecting to Oracle, 3-43

automatically, 3-44

concurrently, 3-46

example of, 3-43

via SQL*Net, 3-46

3-55



connection
concurrent, 3-51
default versus non-default, 3-47
implicit, 3-53
naming, 3-48
continuation lines
syntax, 3-4
CONTINUE action, 9-29
CONTINUE option
of WHENEVER command, F-56
CONVBUFSZ clause in VAR statement, 4-23
CREATE PROCEDURE statement, 6-21
creating
savepoints, F-45
CURRENT OF clause, 5-15
example, 5-15
mimicking with ROWID, 8-12, 10-14
of embedded SQL DELETE command, F-24
of embedded SQL UPDATE command, F-52
restrictions, 5-15
current row, 2-8
CURRVAL pseudocolumn, 4-7
cursor, 5-11
analogy, 2-8
association with query, 5-11
child, 6-19
declaring, 5-11
effects on performance, D-7
explicit versus implicit, 2-8
naming, 5-12
parent, 6-19
reopening, 5-13,5-14
restricted scope of, 7-42
restrictions, 5-12
scope, 5-12
using for multirow queries, 5-11
using more than one, 5-12
when closed automatically, 5-14
cursor cache, 6-19, 9-37
gathering statistics about, 9-39
purpose, 9-35, D-9
cursor variable, 6-30, F-8
closing, 6-34
fetching from, 6-33
cursor variables

advantages, 6-29
allocating, 6-31
declaring, 6-30
error conditions, 6-35
heap memory usage, 6-31
opening
anonymous block, 6-33
stored procedure, 6-31
restrictions, 6-34
scope, 6-31
cursors
allocating, F-8
closing, F-9
fetching rows from, F-32
opening, F-38

D

data definition danguage (DDL)
description, 5-2
data description language (DDL)
embedded, 3-6
data integrity, 8-2
data lock, 8-2
Data Manipulation Language (DML), 5-7
database link
creating a synonym, 3-54
defining, 3-53
database links
using in DELETE command, F-24
using in INSERT command, F-37
using in UPDATE command, F-52
datatype
internal versus external, 2-7
datatype conversion
between internal and external types, 4-18
datatype equivalencing, 2-8
advantages, 4-20
example, 4-23
guidelines, 4-26
datatypes
COBOL, 3-13
coercing NUMBER to VARCHAR2, 12-19
conversions, 4-17
dealing with Oracle internal, 12-19

Index-3



descriptor codes, 12-19

equivalencing
description, 4-20
example, 4-23

internal, 12-15

need to coerce, 12-19

PL/SQL equivalents, 12-18

when to reset, 12-19

DATE datatype

converting, 4-19

default format, 4-19

default value, 4-3

external, 4-11

internal, 4-3

internal format, 4-11

DATE String Format, explicit control over, 4-19

DATE_FORMAT precompiler option, 7-15
DBMS option, 7-16
DDL, 3-6
DDL (data definition language), 5-2
deadlock, 8-2
effect on transactions, 8-7
how broken, 8-7
DECIMAL datatype, 4-12
declaration
cursor, 5-11
host array, 10-2
host variable, 2-14
indicator variable, 2-15
declarative SQL statement, 2-3
using in transactions, 8-3
DECLARE CURSOR command, F-14
examples, F-16
DECLARE CURSOR statement
AT clause, 3-50
in dynamic SQL Method 4, 12-30
DECLARE DATABASE directive, F-17
Declare Section
example, 3-10
using more than one, 3-10
declare section
allowable statements, 3-9
COBOL datatypes supported, 3-13
defining usernames and passwords, 3-43
purpose, 3-9

Index-4

requirements, 3-9
rules for defining, 3-9
DECLARE statement, 5-11
example, 5-11
using in dynamic SQL Method 3, 11-20
where to place, 5-12
DECLARE STATEMENT command, F-18
examples, F-19
scope of, F-19
DECLARE STATEMENT statement
AT clause, 3-51
example, 11-29
using in dynamic SQL, 11-29
when required, 11-29
DECLARE TABLE command, F-20
examples, F-21
DECLARE TABLE statement
need for with AT clause, 3-50
using with the SQLCHECK option, E-4
DECLARE_SECTION, 7-17
DECLARE_SECTION precompiler option,
declaring
cursor variables, 6-30
host tables, 3-33
host variables, 3-13
indicator variables, 3-30
ORACA, 9-36
SQLCA, 9-20
SQLDA, 12-7
VARCHAR variables, 3-36
default
error handling, 9-27
setting of FORMAT option, 3-2
setting of LITDELIM option, 3-4, 7-25
setting of ORACA option, 9-37
default connection, 3-47
default database, 3-47
DEFINE option, 7-18
DELETE command, F-21
embedded SQL examples, F-25
DELETE statement, 5-10
example, 5-10
using host arrays, 10-9
WHERE clause, 5-10
DEPENDING ON clause, 3-33

717



DEPT table, 2-15
DESCRIBE BIND VARIABLES statement
in dynamic SQL Method 4, 12-30
DESCRIBE command, F-26
example, F-27
use with PREPARE command, F-26
DESCRIBE SELECT LIST statement
in dynamic SQL Method 4, 12-35
DESCRIBE statement
using in dynamic SQL Method 4, 11-26
descriptor, 11-26
naming, F-26
descriptors
bind descriptor, 12-4
purpose, 12-4
select descriptor, 12-4
SQLADR subroutine, 12-3
dimension of host tables, 3-33
directory, 2-12
current, 2-12
path for INCLUDE files, 2-12
directory path
INCLUDE files, 3-11
DISPLAY datatype, 4-12
distributed processing, 3-46
distributed transactions, F-44
DML (Data Manipulation Language), 5-7
DNSTIAR error codes, 9-27
DO action, 9-29
DO option
of WHENEVER command, F-56
DSNTIAR routine, 9-27
DTP model, 4-36
dummy host variable, 11-4
dynamic PL/SQL, 11-30
dynamic SQL
advantages and disadvantages, 11-3
choosing the right method, 11-7
guidelines, 11-7
overview, 2-6,11-3
restrictions, 3-6
using PL/SQL, 6-29
using the AT clause, 3-51
when useful, 11-3
dynamic SQL Method 1

commands, 11-5
description, 11-9
example, 11-10
requirements, 11-5
using EXECUTE IMMEDIATE, 11-9
using PL/SQL, 11-30
dynamic SQL Method 2
commands, 11-6
description, 11-14
requirements, 11-6
using PL/SQL, 11-30
using the DECLARE STATEMENT
statement, 11-29
using the EXECUTE statement, 11-14
using the PREPARE statement, 11-14
dynamic SQL Method 3
commands, 11-6
compared to Method 2, 11-19
requirements, 11-6
using PL/SQL, 11-31
using the DECLARE statement, 11-20
using the DECLARE STATEMENT
statement, 11-29
using the FETCH statement, 11-21
using the OPEN statement, 11-21
using the PREPARE statement, 11-20
dynamic SQL Method 4
CLOSE statement, 12-39
DECLARE CURSOR statement, 12-30
DESCRIBE statement, 12-30, 12-35
external datatypes, 12-16
FETCH statement, 12-38
internal datatypes, 12-15
OPEN statement, 12-35
PREPARE statement, 12-30
prerequisites, 12-14
purpose of descriptors, 12-4
requirements, 11-6, 12-2
sequence of statements used, 12-23
SQLDA, 12-4
steps for, 12-22
using descriptors, 11-26
using PL/SQL, 11-31
using the DECLARE STATEMENT
statement, 11-29

Index-5



using the DESCRIBE statement, 11-26
using the FOR clause, 11-30
using the SQLDA, 11-26
when needed, 11-26

dynamic SQL statement, 11-3
binding of host variables, 11-5
how processed, 11-4
requirements, 11-4
using host arrays, 11-30
using placeholders, 11-4
versus static SQL statement, 11-3

E

embedded DDL, 3-6
embedded PL/SQL
advantages, 6-2
cursor FOR loop, 6-3
example, 6-7,6-8
host variables, 4-29
indicator variables, 4-30
multi-byte NLS features, 4-29
need for SQLCHECK option, 6-7
need for USERID option, 6-7
overview, 2-6
package, 6-4
PL/SQL table, 6-5
requirements, 4-29
subprogram, 6-3
support for SQL, 2-6
user-defined record, 6-5
using %TYPE, 6-2
using the VARCHAR pseudotype, 6-10
using to improve performance, D-3
VARCHAR variables, 4-29
where allowed, 4-29, 6-6
embedded SQL
ALLOCATE command, F-8
CLOSE command, F-9
COMMIT command, F-10
CONNECT command, F-12
DECLARE CURSOR command, F-14
DECLARE STATEMENT command, F-18
DECLARE TABLE command, F-20
DELETE command, F-21

Index-6

DESCRIBE command, F-26
EXECUTE command, F-27,F-29
EXECUTE IMMEDIATE command, F-31
FETCH command, F-32
INSERT command, F-35
key concepts, 2-2
OPEN command, F-38
PREPARE command, F-40
SAVEPOINT command, F-45
SELECT command, F-46
UPDATE command, F-50
VAR command, F-54
versus interactive SQL, 2-5
when touse, 1-3
WHENEVER command, F-56
embedded SQL statement
mixing with host-language statements, 2-5
syntax, 2-5
embedded SQL statements
associating paragraph names with, 3-7
Comments, 3-3
continuing from one line to the next, 3-3
figurative constants, 3-5
referencing host tables, 3-34
referencing host variables, 3-19
referencing indicator variables, 3-30
requirements, 3-4
syntax, 3-4
terminator, 3-8
embedding
PL/SQL blocks in Oracle7 precompiler
programs, F-27
EMP table, 2-15
encoding scheme, 4-32
END, 7-19
END_OF_FETCH, 7-19
END_OF_FETCH precompiler option, 7-19
Entry SQL, Xxx
equivalencing
host variable equivalencing, F-54
equivalencing datatypes, 4-20
error conditions
cursor variable, 6-35
error detection
error reporting, F-57



error handling
alternatives, 9-2
benefits, 9-2
default, 9-27
overview, 2-9
using status variables
SQLCA, 9-3,9-19
SQLCODE, 9-3,9-5
SQLSTATE, 9-3
using the ROLLBACK statement, 8-6
using the SQLGLS function, 9-32
error message text
SQLGLM subroutine, 9-25
error messages
maximum length, 9-26
error reporting
error message text, 9-22
key components of, 9-21
parse error offset, 9-21
rows-processed count, 9-21
status codes, 9-21
warning flags, 9-21
WHENEVER command, F-57
ERRORS option, 7-19
exception, PL/SQL, 6-12
EXEC ORACLE DEFINE statement, 7-39
EXEC ORACLE ELSE statement, 7-39
EXEC ORACLE ENDIF statement, 7-39
EXEC ORACLE IFDEF statement, 7-39
EXEC ORACLE IFNDEF statement, 7-39
EXEC ORACLE statement
scope of, 7-8
syntax for, 7-7
uses for, 7-8
using to enter options inline, 7-7
EXEC SQL clause, 2-5,3-4
EXEC TOOLS statement, 13-14
GET, 13-15
MESSAGE, 13-16
SET, 13-14
EXECUTE command, F-27,F-29
examples, F-28, F-30
EXECUTE IMMEDIATE command, F-31
examples, F-32
EXECUTE IMMEDIATE statement

AT clause, 3-51

using in dynamic SQL Method 1, 11-9
EXECUTE optional keyword of ARRAYLEN

statement, 6-17
EXECUTE statement

using in dynamic SQL Method 2, 11-14
execution plan, D-5
EXPLAIN PLAN statement

using to improve performance, D-6
explicit logon, 3-47

multiple, 3-51

single, 3-48
external datatype

CHAR, 4-10

CHARF, 4-10

DATE, 4-11

DECIMAL, 4-12

definition, 2-7

DISPLAY, 4-12

FLOAT, 4-12

INTEGER, 4-12

LONG, 4-12

LONG RAW, 4-12

LONG VARCHAR, 4-13

LONG VARRAW, 4-13

NUMBER, 4-13

parameters, 4-22

RAW, 4-14

ROWID, 4-14

STRING, 4-15

UNSIGNED, 4-16

VARCHAR, 4-16

VARCHAR?2, 4-16

VARNUM, 4-17

VARRAW, 4-17
external datatypes

dynamic SQL Method 4, 12-16

general, 4-9

F

FETCH command, F-32

examples, F-34

used after OPEN command, F-39
FETCH statement, 5-13, 5-14, 6-33

Index-7



cursor variable, 6-34
example, 5-13
in dynamic SQL Method 4, 12-38
INTO clause, 5-13
using in dynamic SQL Method 3, 11-21
fetch, batch, 10-4
fetching
rows from cursors, F-32
figurative constants
embedded SQL statements, 3-5
file extension
for INCLUDE files, 3-11
FILLER allowed, 3-9
FIPS option, 7-20
flags, 9-21
FLOAT datatype, 4-12
FOR clause, 10-11
example, 10-11
of embedded SQL EXECUTE command, F-30
of embedded SQL INSERT command, F-36
restrictions, 10-12
using with host arrays, 10-11
FOR UPDATE OF clause, 8-11
FORCE clause
of COMMIT command, F-12
of ROLLBACK command, F-43
format mask, 4-19
FORMAT option, 7-21
purpose, 3-2
forward reference, 5-12
full scan, D-6

G

GENXTB form
running, 13-12
GOTO action, 9-29
GOTO option
of WHENEVER command, F-56
group items
allowed as host variables, 3-20
implicit VARCHAR, 3-37
guidelines
datatype equivalencing, 4-26
dynamic SQL, 11-7

Index-8

host variable, 2-15

separate precompilation, 7-41
transaction, 8-14

user exit, 13-13

H

heap, 9-37
heap memory
allocating cursor variables, 6-31
hint, optimizer, D-5
hints
in DELETE statements, F-25
in SELECT statements, F-49
in UPDATE statements, F-53
HOLD_CURSOR option, 7-22
of ORACLE Precompilers, F-10
using to improve performance, D-12
what it affects, D-7
host array, 10-2
advantages, 10-2
declaring, 10-2
dimensioning, 10-2
maximum size, 10-3
referencing, 10-3
restrictions, 10-6, 10-8, 10-9, 10-10
using in dynamic SQL statements, 11-30
using in the DELETE statement, 10-9
using in the INSERT statement, 10-7
using in the SELECT statement, 10-3
using in the UPDATE statement, 10-8
using in the WHERE clause, 10-13
using the FOR clause, 10-11
using to improve performance, D-3
host language, 2-2
HOST option, 7-23
host program, 2-2
host tables
declaring, 3-33
dimensioning, 3-33
multi-dimensional, 3-33
referencing, 3-34
restrictions, 3-33
support for, 3-18
variable-length, 3-33



host variable, 5-2
assigning a value, 2-6
declaring, 2-14
dummy, 11-4
guidelines, 2-15
input versus output, 5-2
naming, 2-14
overview, 2-6
referencing, 2-14
requirements, 2-7
using in EXEC TOOLS statements, 13-14
using in PL/SQL, 6-7
using in user exit, 13-5
where allowed, 2-7

host variables
declaring, 3-2,3-9, 3-13
definition, 3-5
host variable equivalencing, F-54
in EXECUTE command, F-30
in OPEN command, F-39
initializing, 3-18
naming, 3-20, 3-22
referencing, 3-19
restrictions, 3-5, 3-22
with PL/SQL, 4-29

hyphenation
of host variable names, 3-5

IAF GET statement
example, 13-6
specifying block and field names, 13-6
using in user exit, 13-5
IAF PUT statement
example, 13-7
specifying block and field names, 13-7
using in user exit, 13-6
IAP, 13-12
identifiers, ORACLE
how to form, F-7
implicit logon, 3-53
multiple, 3-54
single, 3-53
IN OUT parameter mode, 6-4

IN parameter mode, 6-4
INAME option, 7-23
when a file extension is required, 7-2
INCLUDE file, 2-12
INCLUDE option, 7-24
INCLUDE statement, 2-12
case-sensitive operating systems, 3-12
declaring the ORACA, 9-36
declaring the SQLCA, 9-20
declaring the SQLDA, 12-7
effect of, 3-11
index
using to improve performance, D-6
indicator array, 10-2
indicator tables
example, 3-35
purpose, 3-35
indicator variable, 5-3
association with host variable, 5-3
declaring, 2-15
interpreting value, 5-3
referencing, 2-15
using in PL/SQL, 6-11
using to detect truncated values, 5-4
using to handle nulls, 5-4,5-5
using to test for nulls, 5-6
indicator variables
association with host variables, 3-30
declaring, 3-2,3-30
function, 3-30
nulls, 4-30
referencing, 3-30
required size, 3-30
truncated values, 4-30
used with multi-byte character strings,
with PL/SQL, 4-30
in-doubt transaction, 8-13
input host variable
restrictions, 5-2
where allowed, 5-2
INSERT command, F-35
embedded SQL examples, F-37
INSERT statement, 5-9
column list, 5-9
example, 5-9

4-33

Index-9



INTO clause, 5-9
using host arrays, 10-7
VALUES clause, 5-9
inserting
rows into tables and views, F-35
INTEGER datatype, 4-12
interface
native, 4-36
XA, 4-36
internal datatype
CHAR, 4-3
DATE, 4-3
definition, 2-7
LONG, 4-3
LONG RAW, 4-4
MLSLABEL, 4-4
NUMBER, 4-4
RAW, 4-5
ROWID, 4-5
VARCHAR2, 4-5
internal datatypes
dynamic SQL Method 4, 12-15
general, 4-2
INTO clause, 5-2,6-33
FETCH statement, 5-13
INSERT statement, 5-9
of FETCH command, F-33
of SELECT command, F-49
SELECT statement, 5-8
IRECLEN option, 7-24
IS NULL operator
for testing null values, 3-6

J

Julian date, 4-3

L

language support, 1-3
LDA, 4-34

LEVEL pseudocolumn, 4-7
link, database, 3-53
linking, 7-42

LITDELIM option, 3-4,7-25

Index-10

purpose, 7-25
LNAME option, 7-26
location transparency, 3-54
lock
released by ROLLBACK statement,
LOCK TABLE statement, 8-12
example, 8-12

F-43

using the NOWAIT parameter, 8-12

locking, 8-2,8-11
explicit versus implicit, 8-11
modes, 8-2
overriding default, 8-11
privileges needed, 8-14
using the FOR UPDATE OF clause,
using the LOCK TABLE statement,
logging on
requirements, 3-43
logon
automatic, 3-44
concurrent, 3-46
explicit, 3-47
Logon Data Area (LDA), 4-34
LONG column
maximum width, 4-3
LONG datatype
compared with CHAR, 4-3
external, 4-12
internal, 4-3
restrictions, 4-4
where allowed, 4-4
LONG RAW column
maximum width, 4-4
LONG RAW datatype
compared with LONG, 4-4
converting, 4-27
external, 4-12
internal, 4-4
restrictions, 4-4
LONG VARCHAR datatype, 4-13
LONG VARRAW datatype, 4-13
LRECLEN option, 7-26
LTYPE option, 7-27

8-11
8-12



M

MAXLITERAL option, 7-27
MAXOPENCURSORS option, 7-28
using for separate precompilation, 7-41
what it affects, D-7
message text, 9-22
MLSLABEL datatype
internal, 4-4
MODE option, 7-29
effects of, 3-39
status variables, 9-2
mode, parameter, 6-4
monitor, transaction processing, 4-35
multi-byte character sets, 4-32
multi-byte NLS features
datatypes, 3-6
with PL/SQL, 4-29

N

namespaces
reserved by Oracle, C-8
naming
host variables, 3-5
of database objects, F-7
select-list items, 12-4
naming conventions
cursor, 5-12
default database, 3-47
host variable, 2-14
SQL*Forms user exit, 13-13
national language support (NLS), 4-30
native interface, 4-36
nested programs
sample, 3-24
support for, 3-23
Net8
connecting using, 3-44
function of, 3-47
network
communicating over, 3-47
protocols, 3-47
reducing traffic, D-4
NEXTVAL pseudocolumn, 4-7

nibble, 4-27
NIST
compliance, xxix
NLS (national language support), 4-30
multi-byte character strings, 4-32
NLS parameter
NLS_CURRENCY, 4-31
NLS_DATE_FORMAT, 4-31
NLS_DATE_LANGUAGE, 4-31
NLS_ISO_CURRENCY, 4-31
NLS_LANG, 4-31
NLS_LANGUAGE, 4-31
NLS_NUMERIC_CHARACTERS, 4-31
NLS_SORT, 4-31
NLS_TERRITORY, 4-31
NLS_LOCAL
precompiler option, 7-30
node
definition of, 3-47
NOT FOUND condition, 9-28
of WHENEVER command, F-56
NOWAIT parameter, 8-12
using in LOCK TABLE statement, 8-12
null
definition, 2-7
detecting, 5-4
hardcoding, 5-4
inserting, 5-4
restrictions, 5-6
retrieving, 5-5
testing for, 5-6
nulls
handling
in dynamic SQL Method 4, 12-21
indicator variables, 4-30
meaning in SQL (NVL function), 3-6
SQLNUL subroutine, 12-21
null-terminated string, 4-15
NUMBER datatype
external, 4-13
internal, 4-4

using the SQLPRC subroutine with, 12-20

NVL function
for retrieving null values, 3-6

Index-11



O

OocClI
declaring LDA, 4-34
embedding calls, 4-34

ONAME option, 7-30

OPEN command, F-38
examples, F-40

OPEN statement, 5-12
example, 5-12
in dynamic SQL Method 4, 12-35
using in dynamic SQL Method 3, 11-21

OPEN_CURSORS parameter, 6-20

opening
cursors, F-38

opening a cursor variable, 6-31

operators
relational, 3-8

optimizer hint, D-5

options
precompiler, 7-3

ORACA, 94
declaring, 9-36
enabling, 9-36
example, 9-40
fields, 9-37
gathering cursor cache statistics, 9-39
ORACABC field, 9-37
ORACAID field, 9-37
ORACCHF flag, 9-37
ORACOC field, 9-40
ORADBGF flag, 9-38
ORAHCHF flag, 9-38
ORAHOC field, 9-40
ORAMOC field, 9-40
ORANEX field, 9-40
ORANOR field, 9-40
ORANPR field, 9-40
ORASFNMC field, 9-39
ORASFNML field, 9-39
ORASLNR field, 9-39
ORASTXTC field, 9-39
ORASTXTF flag, 9-38
ORASTXTL field, 9-39
precompiler option, 9-37

Index-12

purpose, 9-4,9-35

structure of, 9-37
ORACA option, 7-31
ORACABC field, 9-37
ORACAID field, 9-37
ORACCHF flag, 9-37
Oracle Call Interface, 4-34
Oracle Communications Area

ORACA, 9-35
Oracle datatypes, 2-7
Oracle Forms

using EXEC TOOLS statements,
ORACLE identifiers

how to form, F-7
Oracle namespaces, C-8
Oracle Open Gateway

using ROWID datatype, 4-15
Oracle Precompilers

advantages, 1-3

function, 1-2

language support, 1-3

NLS support, 4-32

running, 7-1

using PL/SQL, 6-6

using with OCI, 4-34
Oracle Toolset, 13-14
ORACOC

in ORACA, 9-40
ORACOC field, 9-40
ORADBGF flag, 9-38
ORAHCHF flag, 9-38
ORAHOC field, 9-40
ORAMOC field, 9-40
ORANEX

in ORACA, 9-40
ORANEX field, 9-40
ORANOR field, 9-40
ORANPR field, 9-40
ORASFNM, in ORACA, 9-39
ORASFNMC field, 9-39
ORASFNML field, 9-39
ORASLNR

in ORACA, 9-39
ORASLNR field, 9-39
ORASTXTC field, 9-39

13-14



ORASTXTF flag, 9-38
ORASTXTL field, 9-39
ORECLEN option, 7-31
OUT parameter mode, 6-4
output host variable, 5-2

P

PAGELEN option, 7-32

paragraph names
associating with SQL statements, 3-7
coding area for, 3-7

parameter mode, 6-4

parent cursor, 6-19

parse, 11-4

parse error offset, 9-21

parsing dynamic statements
PREPARE command, F-40

password
defining, 3-43
hardcoding, 3-43
passwords

changing at runtime, 3-55
passwords, changing at runtime, 3-55
performance

improving, D-3

reasons for poor, D-2
PICX, 7-32

new default, 3-39
PICX precompiler option, 7-32
PL/SQL, 1-4

, 9-25

advantages, 1-4

cursor FOR loop, 6-3

datatype equivalents, 12-18

embedded, 4-29

exception, 6-12

integration with server, 6-2

opening a cursor variable

anonymous block, 6-33
stored procedure, 6-31

package, 6-4

relationship with SQL, 1-4

subprogram, 6-3

user-defined record, 6-5

PL/SQL blocks
embedded in Oracle7 precompiler programs,
27
PL/SQL table, 6-5
supported datatype conversions, 6-15
placeholder
duplicate, 11-15,11-31
naming, 11-15
using in dynamic SQL statements, 11-4
plan, execution, D-5
precision, 4-4
precompilation, 7-3
conditional, 7-39
separate, 7-41
precompilation unit, 7-9
precompiler, 1-2
precompiler command
optional arguments of, 7-3
required arguments, 7-2
precompiler directives
EXEC SQL DECLARE DATABASE, F-17
precompiler options
abbreviating name, 7-4
ASACC, 7-12
ASSUME_SQLCODE, 7-12
AUTO_CONNECT, 3-45,7-13
CLOSE_ON_COMMIT, 7-14
CONFIG, 7-14,7-15,7-17,7-32
DATE_FORMAT, 7-15
DBMS, 7-16
DECLARE_SECTION, 7-17
DEFINE, 7-18
displaying, 7-4,7-9
END_OF_FETCH, 7-19
entering, 7-7
entering inline, 7-7
entering on the command line, 7-7
ERRORS, 7-19
FIPS, 7-20
FORMAT, 7-21
HOLD_CURSOR, 7-22
HOST, 7-23
INAME, 7-23
INCLUDE, 7-24
IRECLEN, 7-24

Index-13



LITDELIM, 3-4,7-25
LNAME, 7-26
LRECLEN, 7-26
LTYPE, 7-27
macro and micro, 7-4
MAXLITERAL, 7-27
MAXOPENCURSORS, 7-28
MODE, 3-39, 7-29,9-2,9-4
NLS_LOCAL, 7-30
ONAME, 7-30
ORACA, 7-31,9-37
ORECLEN, 7-31
PAGELEN, 7-32
PICX, 7-32
precedence, 7-4
RELEASE_CURSOR, 7-33
respecifying, 7-9
scope of, 7-9
SELECT_ERROR, 7-34
specifying, 7-3,7-7
SQLCHECK, 7-35
syntax for, 7-7
UNSAFE_NULL, 7-37
USERID, 7-38
VARCHAR, 7-38
XREF, 7-39
preface
Send Us Your Comments, xXi
PREPARE command, F-40
examples, F-41
PREPARE statement
effect on data definition statements, 11-6
in dynamic SQL Method 4, 12-30
using in dynamic SQL, 11-14,11-20
private SQL area
association with cursors, 2-8
opening, 2-8
purpose, D-9
Program Global Area (PGA), 6-19
program termination, 8-9
programming guidelines, 3-2
programming language support, 1-3
pseudocolumn, 4-6
CURRVAL, 4-7
LEVEL, 4-7

Index-14

NEXTVAL, 4-7

ROWID, 4-8

ROWNUM, 4-8
pseudotype, VARCHAR, 2-14

Q

query, 5-7
association with cursor, 5-11
multirow, 5-7
single-row versus multirow, 5-8

R

RAW column

maximum width, 4-5
RAW datatype

compared with CHAR, 4-5

converting, 4-27

external, 4-14

internal, 4-5

restrictions, 4-5
RAWTOHEX function, 4-27
read consistency, 8-2
READ ONLY parameter

using in SET TRANSACTION, 8-10
read-only transaction, 8-10

ending, 8-10

example, 8-10
record, user-defined, 6-5
REDEFINES clause

purpose, 3-7

restrictions, 3-7
reference

host array, 10-3

host variable, 2-14

indicator variable, 2-15
reference cursor, 6-29
referencing

host tables, 3-34

host variables, 3-19

indicator variables, 3-30

VARCHAR variables, 3-38
relational operators, 3-8
RELEASE option, 8-4,8-9



COMMIT statement, 8-4
omitting, 8-10
restrictions, 8-9
ROLLBACK statement, 8-6
RELEASE_CURSOR option, 7-33
of ORACLE Precompilers, F-10
using to improve performance, D-12
what it affects, D-7
remote database
declaration of, F-17
resource manager, 4-35
restrictions
AT clause, 3-50
COBOL-74, 3-8
CURRENT OF clause, 5-15
cursor declaration, 5-12
cursor variables, 6-34
dynamic SQL, 3-6
FOR clause, 10-12
host array, 10-6, 10-8, 10-9, 10-10
host tables, 3-33
host variables, 3-22
naming, 3-5
referencing, 3-22
input host variable, 5-2
LONG datatype, 4-4
LONG RAW datatype, 4-4
RAW datatype, 4-5
REDEFINES clause, 3-7
RELEASE option, 8-9
separate precompilation, 7-41
SET TRANSACTION statement, 8-10
SQLCHECK option, E-2
SQLGLM subroutine, 9-26
SQLIEM subroutine, 9-26
TO SAVEPOINT clause, 8-9
retrieving rows from a table
embedded SQL, F-46
return code, 13-8
roll back
to a savepoint, F-45
to the same savepoint multiple times, F-43
rollback
automatic, 8-6
purpose, 8-3

statement-level, 8-7
ROLLBACK command, F-42
ending a transaction, F-43
examples, F-44
rollback segment, 8-2
ROLLBACK statement, 8-5
effects, 8-5
example, 8-6
RELEASE option, 8-6
TO SAVEPOINT clause, 8-5
using in a PL/SQL block, 8-15
using in error-handling routines, 8-6
where to place, 8-6
rolling back
transactions, F-42
row lock
acquiring with FOR UPDATE OF, 8-11
using to improve performance, D-6
when acquired, 8-12
when released, 8-12
ROWID datatype
external, 4-14
internal, 4-5
ROWID pseudocolumn, 4-8
using to mimic CURRENT OF, 8-12, 10-14
ROWLABEL column, 4-8
ROWNUM pseudocolumn, 4-8
rows
fetching from cursors, F-32
inserting into tables and views, F-35
updating, F-50
rows-processed count, 9-21

S

sample database table
DEPT table, 2-15
EMP table, 2-15
sample programs
calling a stored procedure, 6-24
cursor operations, 5-17
cursor variables
PL/SQL source, 6-35
Pro*COBOL source, 6-36
datatype equivalencing, 5-19

Index-15



dynamic SQL Method 1,
dynamic SQL Method 2,
dynamic SQL Method 3,
dynamic SQL Method 4,
fetching in batches, 10-15
Oracle Forms user exit, 13-9
simple query, 2-17
savepoint, 8-7
when erased, 8-9
SAVEPOINT command, F-45
examples, F-45
SAVEPOINT statement, 8-7
example, 8-7
savepoints
creating, F-45
SAVEPOINTS parameter, 8-9
scalar type, 12-18
Scale
using SQLPRC to extract, 4-22
scale, 4-4
definition of, 4-22
when negative, 4-22
scope
cursor variables, 6-31
of DECLARE STATEMENT command, F-19
of precompiler options, 7-9
of the EXEC ORACLE statement, 7-8
WHENEVER statement, 9-31
search condition, 5-10
using in the WHERE clause, 5-10
SELDFCLP variable (SQLDA), 12-13
SELDFCRCP variable (SQLDA), 12-13
SELDFMT variable (SQLDA), 12-9
SELDH-CUR-VNAMEL variable (SQLDA), 12-12
SELDH-MAX-VNAMEL variable (SQLDA), 12-12
SELDH-VNAME variable (SQLDA), 12-12
SELDI variable (SQLDA), 12-11
SELDI-CUR-VNAMEL variable (SQLDA), 12-13
SELDI-MAX-VNAMEL variable (SQLDA), 12-13
SELDI-VNAME variable (SQLDA), 12-13
SELDV variable (SQLDA), 12-8
SELDVLN variable (SQLDA), 12-9
SELDVTYP variable (SQLDA), 12-10
SELECT command, F-46
embedded SQL examples, F-49

11-10
11-15
11-21
12-45

Index-16

select descriptor, 12-4
information in, 11-27
select list, 5-8
select SQLDA
purpose of, 12-3
SELECT statement, 5-8
available clauses, 5-9
example, 5-8
INTO clause, 5-8
using host arrays, 10-3
SELECT_ERROR option,
select-list items
naming, 12-4
semantic checking, E-2
enabling, E-3
using the SQLCHECK option, E-2
Send Us Your Comments
boilerplate, xxi
separate precompilation
guidelines, 7-41
restrictions, 7-41
session, 8-2
sessions
beginning, F-12
SET clause, 5-10
using a subquery, 5-10
SET TRANSACTION statement, 8-10
example, 8-10
READ ONLY parameter, 8-10
restrictions, 8-10
snapshot, 8-2
SQL
summary of commands, F-3
SQL codes
returned by SQLGLS function, 9-33
SQL Communications Area, 2-14
SQL Descriptor Area, 11-26, 12-4
SQL standards conformance, Xxxix
SQL statement
controlling transactions, 8-3
optimizing to improve performance,
static versus dynamic, 2-6
using to control a cursor, 5-8, 5-11
using to manipulate Oracle data, 5-7
SQL*Connect

5-8,7-34

D-5



using ROWID datatype, 4-15
SQL*Forms
IAP constants, 13-8
returning values to, 13-8
user exit, 13-3
SQL*Net
concurrent logons, 3-46
connection syntax, 3-47
using to connect to Oracle, 3-46
SQL*Plus, 1-4
SQL_CURSOR, F-8
SQL92
conformance, Xxxix
minimum requirement, Xxx
SQLADR subroutine
example, 12-26
parameters, 12-14
storing buffer addresses, 12-3
syntax, 12-14
SQLCA, 9-3
components set for a PL/SQL block, 9-25
fields, 9-22
interaction with Oracle, 2-14
overview, 2-9
SQLCABC field, 9-22
SQLCAID field, 9-22
SQLCODE field, 9-22
SQLERRD(3) field, 9-24
SQLERRD(5) field, 9-24
SQLERRMC field, 9-23
SQLERRML field, 9-23
SQLWARN(4) flag, 9-25
SQLWARN(5) flag, 9-25
using in separate precompilations, 7-41
using with SQL*Net, 9-19
SQLCA status variable
data structure, 9-20
declaring, 9-20
effect of MODE option, 9-4
explicit versus implicit checking, 9-3
purpose, 9-19
SQLCABC field, 9-22
SQLCAID field, 9-22
SQLCHECK option, 7-35
restrictions, E-2

using the DECLARE TABLE statement, E-4
using to check syntax/semantics, E-1

SQLCODE

declaring, 9-5

SQLCODE field, 9-22

interpreting its value, 9-22

SQLCODE status variable

declaring, 9-5

description, 9-3

effect of MODE option, 9-4
SQL92 deprecated feature, 9-3
usage, 9-4

SQLCODE variable

interpreting values of, 9-9

SQLDA, 11-26,11-27

bind versus select, 11-27

BNDDFCLP variable, 12-13
BNDDFCRCP variable, 12-13
BNDDFMT variable, 12-9
BNDDH-CUR-VNAMEL variable, 12-12
BNDDH-MAX-VNAMEL variable, 12-12
BNDDH-VNAME variable, 12-12
BNDDI variable, 12-11
BNDDI-CUR-VNAMEL variable, 12-13
BNDDI-MAX-VNAMEL variable, 12-13
BNDDI-VNAME variable, 12-13
BNDDV variable, 12-8

BNDDVLN variable, 12-9
BNDDVTYP variable, 12-10

declaring, 12-7

example, 12-7

information stored in, 11-27

purpose, 12-4

SELDFCLP variable, 12-13
SELDFCRCP variable, 12-13

SELDFMT variable, 12-9
SELDH-CUR-VNAMEL variable, 12-12
SELDH-MAX-VNAMEL variable, 12-12
SELDH-VNAME variable, 12-12
SELDI variable, 12-11
SELDI-CUR-VNAMEL variable, 12-13
SELDI-MAX-VNAMEL variable, 12-13
SELDI-VNAME variable, 12-13

SELDV variable, 12-8

SELDVLN variable, 12-9

Index-17



SELDVTYP variable, 12-10 purpose, 12-20

SQLADR subroutine, 12-14 syntax, 12-20
SQLDFND variable, 12-8 SQLSTATE
SQLDNUM variable, 12-8 declaring, 9-6
structure, 12-8 SQLSTATE status variable
SQLDFND variable (SQLDA), 12-8 class code, 9-10
SQLDNUM variable (SQLDA), 12-8 coding scheme, 9-10
SQLERRD(3) field, 9-24 effect of MODE option, 9-4
using with batch fetch, 10-5 interpreting values, 9-10
SQLERRD(3) variable, 9-21 predefined classes, 9-11
SQLERRD(5) field, 9-24 predefined status codes and conditions, 9-12
SQLERRMC field, 9-23 subclass code, 9-10
SQLERRMC variable, 9-22 usage, 9-4
SQLERRML field, 9-23 SQLSTM parameter, 9-33
SQLERROR SQLSTM routine, 9-33
WHENEVER command condition, F-56 SQLWARN(4) flag, 9-25
SQLERROR condition, 9-28 SQLWARN(5) flag, 9-25
SQLFC parameter, 9-33 SQLWARNING
SQLGLM subroutine WHENEVER command condition, F-56
example, 9-26 SQLWARNING condition, 9-28
parameters, 9-25 statement-level rollback, 8-7
purpose, 9-25 breaking deadlocks, 8-7
restrictions, 9-26 status codes for error reporting, 9-21
syntax, 9-25 STMLEN parameter, 9-33
SQLGLS function STOP action, 9-29
parameters, 9-33 STOP option
SQL codes returned by, 9-33 of WHENEVER command, F-56
syntax, 9-32 stored procedure
using to obtain SQL text, 9-32 opening a cursor, 6-31, 6-35
SQLGLS routine, 9-32, 9-33 sample programs, 6-24, 6-35
SQLIEM function stored subprogram, 6-21
replacement for, 13-14 calling, 6-23
using in user exit, 13-8 creating, 6-21
SQLIEM subroutine packaged versus standalone, 6-21
restrictions, 9-26 stored versus inline, D-4
SQLLDA routine, 4-34 using to improve performance, D-4
SQLNUL subroutine STRING datatype, 4-15
example, 12-22 string literals
parameters, 12-21 continuing to the next line, 3-4
purpose, 12-21 subprogram, PL/SQL, 6-3,6-21
syntax, 12-21 subquery, 5-9
SQLPR2 subroutine, 12-21 example, 5-9,5-10
SQLPRC subroutine using in the SET clause, 5-10
example, 12-20 using in the VALUES clause, 5-9
parameters, 12-20 syntactic checking, E-2

Index-18



syntax
continuation lines, 3-4
embedded SQL statements, 3-4
SQLADR subroutine, 12-14
SQLGLM subroutine, 9-25
SQLNUL subroutine, 12-21
SQLPRC, 12-20
syntax diagram
description of, F-5
how to read, F-5
how to use, F-5
symbols used in, F-5
syntax, embedded SQL, 2-5
SYSDATE function, 4-8
system failure
effect on transactions, 8-3
System Global Area (SGA), 6-21

T

table lock
acquiring with LOCK TABLE, 8-12
exclusive, 8-12
row share, 8-12
when released, 8-12
tables
inserting rows into, F-35
updating rows in, F-50

terminator for embedded SQL statements,

TO SAVEPOINT clause, 8-7

restrictions, 8-9

using in ROLLBACK statement, 8-7
trace facility

using to improve performance, D-6
transaction, 8-3

contents, 2-8, 8-3

guidelines, 8-14

how to begin, 8-3

how to end, 8-3

in-doubt, 8-13

making permanent, 8-4

subdividing with savepoints, 8-7

undoing, 8-5

undoing parts of, 8-8

when rolled back automatically, 8-4, 8-6

transaction processing

overview, 2-8

statements used, 2-9
transaction, read-only, 8-10
transactions

committing, F-10

distributed, F-44

rolling back, F-42
truncated value, 6-12

detecting, 5-4
truncated values

indicator variables, 4-30
truncation error

when generated, 5-6
Trusted Oracle7, 12-18
tuning, performance, D-2
TYPE statement

using the CHARF datatype specifier,

U

4-25

UID function, 4-8
unconditional delete, 9-25
undo a transaction, F-42
UNSAFE_NULL option, 7-37
UNSIGNED datatype, 4-16
UPDATE command, F-50
embedded SQL examples, F-53
UPDATE statement, 5-10
example, 5-10
SET clause, 5-10
using host arrays, 10-8
updating
rows in tables and views, F-50
user exit, 13-3

calling from a SQL*Forms trigger, 13-7

common uses, 13-4

guidelines, 13-13

linking into IAP, 13-12

meaning of codes returned by, 13-8
naming, 13-13

passing parameters, 13-8
requirements for variables, 13-5
running the GENXTB form, 13-12
statements allowed in, 13-5

Index-19



steps in developing, 13-4
using EXEC IAF statements, 13-5
using EXEC TOOLS statements, 13-14
using the WHENEVER statement, 13-9
USER function, 4-8
user session, 8-2
user-defined record, 6-5
USERID option, 7-38
using with the SQLCHECK option, E-4
username

defining, 3-43
hardcoding, 3-43
USING clause

CONNECT statement, 3-49
of FETCH command, F-33
of OPEN command, F-39
using in the EXECUTE statement, 11-15
using indicator variables, 11-15
using dbstring
SQL*Net database id specification, F-14

\%

VALUE clause

initializing host variables, 3-18
VALUES clause

INSERT statement, 5-9

of embedded SQL INSERT command, F-37

of INSERT command, F-37

using a subquery, 5-9
VAR command, F-54

examples, F-55
VAR statement

CONVBUFSZ clause, 4-23

syntax for, 4-21

using the CHARF datatype specifier, 4-25
VARCHAR

precompiler option, 7-38
VARCHAR datatype, 4-16
VARCHAR precompiler option, 7-38
VARCHAR pseudotype, 2-14

maximum length, 2-14

using with PL/SQL, 6-10
VARCHAR variables

advantages, 3-42

Index-20

as input variables, 3-42
as output variables, 3-42
declaring, 3-36
implicit group items, 3-37
length element, 3-37
maximum length, 3-36
referencing, 3-38
server handling, 3-42
string element, 3-37
structure, 3-36
versus fixed-length strings, 3-42
with PL/SQL, 4-29
VARCHAR?2 column
maximum width, 4-5

VARCHAR?2 datatype
external, 4-16
internal, 4-5

variable, 2-6
VARNUM datatype, 4-17
example of output value, 4-26
VARRAW datatype, 4-17
VARYING keyword
versus VARYING phrase, 3-36
views
inserting rows into, F-35
updating rows in, F-50

W

warning flags for error reporting, 9-21
WHENEVER command, F-56
examples, F-57
WHENEVER Statement, 9-27
WHENEVER statement
CONTINUE action, 9-29
DO action, 9-29
example, 9-30
GOTO action, 9-29
NOT FOUND condition, 9-28
overview, 2-9
purpose, 9-27
scope, 9-31
SQLERROR condition, 9-28
SQLWARNING condition, 9-28
STOP action, 9-29



syntax, 9-29

using to check SQLCA automatically,
WHENEVER statement, careless usage,
WHENEVER statement, scope of, 9-31

WHERE clause, 5-10

DELETE statement, 5-10

of DELETE command, F-24

of UPDATE command, F-52

search condition, 5-10

SELECT statement, 5-8

UPDATE statement, 5-10

using host arrays, 10-13
WHERE CURRENT OF clause, 5-15
WORK option

of COMMIT command, F-11

of ROLLBACK command, F-42

X

X/Open application, 4-35
XA interface, 4-36
XREF option, 7-39

Index-21



Index-22



	Contents
	Send Us Your Comments
	Preface
	1 Introduction
	What Is Pro*COBOL?
	Language Alternatives

	Why Use the Pro*COBOL Precompiler?
	Why Use SQL?
	Why Use PL/SQL?
	What Does Pro*COBOL Offer?

	2 Learning the Basics
	Key Concepts of Embedded SQL Programming
	Embedded SQL Statements
	Embedded SQL Syntax
	Static versus Dynamic SQL Statements
	Embedded PL/SQL Blocks
	Host and Indicator Variables
	Oracle Datatypes
	Tables
	Datatype Equivalencing
	Private SQL Areas, Cursors, and Active Sets
	Transactions
	Errors and Warnings

	Steps in Developing an Embedded SQL Application
	The Format of SQL Statements
	INCLUDE Statements
	The SQLCA
	Oracle8 Datatypes
	Declaring and Referencing Host Variables
	VARCHAR Variables
	Host Variable Guidelines

	Declaring and Referencing Indicator Variables
	Sample Tables
	Sample Data

	A Program Example 1: Simple Query

	3 Writing a Pro*COBOL Program
	Programming Guidelines
	Abbreviations
	Case-insensitivity
	COBOL Versions
	Coding Area
	Commas
	Comments
	Continuation Lines
	Delimiters
	Embedded SQL Syntax
	Figurative Constants
	File Length
	Host Variable Names
	Hyphenated Names
	Level Numbers
	MAXLITERAL Default
	Multi-Byte (NCHAR) Datatypes
	When NLS_LOCAL=YES
	Nulls
	Paragraph Names
	REDEFINES Clause
	Relational Operators
	Sentence Terminator
	FILLER is Allowed

	Required Declarations and SQL Statements
	Declare Section is Optional
	Precompiler Option DECLARE_SECTION
	Using the INCLUDE Statement
	Caution
	Error Handling

	Host Variables
	Declaring Host Variables
	Referencing Host Variables

	Nested Programs
	Support for Nested Programs
	Sample Nested Program

	Indicator Variables
	Declaring Indicator Variables
	Referencing Indicator Variables

	Host Tables
	Declaring Host Tables
	Referencing Host Tables
	Using Indicator Tables

	VARCHAR Variables
	Declaring VARCHAR Variables
	Implicit VARCHAR Group Items
	Referencing VARCHAR Variables

	Handling Character Data
	New Default for PIC X
	Effects of the PICX Option
	Fixed-Length Character Variables
	Restrictions When NLS_LOCAL=YES
	Variable-Length Variables

	Connecting to Oracle
	Connecting Using Net8
	Automatic Logons

	Concurrent Logons
	Some Preliminaries
	Default Databases and Connections
	Explicit Logons
	Implicit Logons

	Changing Passwords at Runtime
	Using the Connect Syntax


	4 Advanced Pro*COBOL Programs
	The Oracle8 Datatypes
	Internal Datatypes
	External Datatypes

	Datatype Conversion
	Explicit Control Over DATE String Format
	Datatype Equivalencing
	Why Equivalence Datatypes?
	Host Variable Equivalencing
	Using the CHARF Datatype Specifier
	Guidelines
	RAW and LONG RAW Values

	Embedding PL/SQL
	Host Variables
	VARCHAR Variables
	Multi-Byte NCHAR Features When NLS_LOCAL=YES
	Indicator Variables
	SQLCHECK

	National Language Support
	Multi-Byte NLS Character Sets
	Character Strings in Embedded SQL
	Embedded DDL
	Blank Padding
	Indicator Variables

	Embedding OCI (Oracle Call Interface) Calls
	Setting Up the LDA
	Remote and Multiple Connections

	Developing X/Open Applications
	Oracle-Specific Issues


	5 Using Embedded SQL
	Using Host Variables
	Output versus Input Host Variables

	Using Indicator Variables
	Input Variables
	Output Variables
	Inserting Nulls
	Handling Returned Nulls
	Fetching Nulls
	Testing for Nulls
	Fetching Truncated Values

	The Basic SQL Statements
	Selecting Rows
	Inserting Rows
	Using Subqueries
	Updating Rows
	Deleting Rows
	Using the WHERE Clause

	Cursors
	Declaring a Cursor
	Opening a Cursor
	Fetching from a Cursor
	Closing a Cursor
	Using the CURRENT OF Clause
	Restrictions
	A Typical Sequence of Statements

	Sample Program 2: Cursor Operations
	Sample Program 4: Datatype Equivalencing

	6 Using Embedded PL/SQL
	Advantages of PL/SQL
	Better Performance
	Integration with Oracle8
	Cursor FOR Loops
	Subprograms
	Packages
	PL/SQL Tables
	User-defined Records

	Embedding PL/SQL Blocks
	Using Host Variables
	An Example
	A More Complex Example
	VARCHAR Pseudotype

	Using Indicator Variables
	Handling Nulls
	Handling Truncated Values

	Using Host Tables
	ARRAYLEN Statement
	Optional Keyword EXECUTE

	Using Cursors
	An Alternative

	Stored Subprograms
	Creating Stored Subprograms
	Calling a Stored Subprogram

	Sample Program 9: Calling a Stored Procedure
	Getting Information about Stored Subprograms

	Using Dynamic PL/SQL
	Subprograms Restriction

	Cursor Variables
	Declaring a Cursor Variable
	Allocating a Cursor Variable
	Opening a Cursor Variable
	Fetching from a Cursor Variable
	Closing a Cursor Variable
	Restrictions
	Error Conditions
	Sample Programs


	7 Running the Pro*COBOL Precompiler
	The Pro*COBOL Command
	What Occurs during Precompilation?
	Precompiler Options
	Precedence of Option Values
	Macro and Micro Options
	Case Sensitivity
	Configuration Files

	Entering Options
	On the Command Line
	Inline

	Scope of Options
	Quick Reference
	Using Pro*COBOL Options
	ASACC
	ASSUME_SQLCODE
	AUTO_CONNECT
	CLOSE_ON_COMMIT
	CONFIG
	DATE_FORMAT
	DBMS
	DECLARE_SECTION
	DEFINE
	END_OF_FETCH
	ERRORS
	FIPS
	FORMAT
	HOLD_CURSOR
	HOST
	INAME
	INCLUDE
	IRECLEN
	LITDELIM
	LNAME
	LRECLEN
	LTYPE
	MAXLITERAL
	MAXOPENCURSORS
	MODE
	NLS_LOCAL
	ONAME
	ORACA
	ORECLEN
	PAGELEN
	PICX
	RELEASE_CURSOR
	SELECT_ERROR
	SQLCHECK
	UNSAFE_NULL
	USERID
	VARCHAR
	XREF

	Conditional Precompilations
	An Example
	Defining Symbols

	Separate Precompilations
	Guidelines
	Restrictions

	Compiling and Linking

	8 Defining and Controlling Transactions
	Some Terms You Should Know
	How Transactions Guard Your Database
	How to Begin and End Transactions
	Using the COMMIT Statement
	WITH HOLD Clause in DECLARE CURSOR Statements
	CLOSE_ON_COMMIT Precompiler Option

	Using the ROLLBACK Statement
	Statement-Level Rollbacks

	Using the SAVEPOINT Statement
	Using the RELEASE Option
	Using the SET TRANSACTION Statement
	Overriding Default Locking
	Using the FOR UPDATE OF Clause
	Using the LOCK TABLE Statement

	Fetching Across Commits
	Handling Distributed Transactions
	Guidelines
	Designing Applications
	Obtaining Locks
	Using PL/SQL


	9 Error Handling and Diagnostics
	The Need for Error Handling
	Error Handling Alternatives
	SQLCODE and SQLSTATE
	SQLCA
	ORACA

	Using Status Variables when MODE={ANSI|ANSI14}
	Some Historical Information
	Declaring Status Variables
	Status Variable Combinations
	Status Variable Values

	Using the SQL Communications Area
	What’s in the SQLCA?
	Declaring the SQLCA
	Key Components of Error Reporting
	SQLCA Structure
	PL/SQL Considerations
	Getting the Full Text of Error Messages
	DSNTIAR
	Using the WHENEVER Statement
	Using the WHENEVER Statement in COBOL
	Getting the Text of SQL Statements

	Using the Oracle Communications Area
	What’s in the ORACA?
	Declaring the ORACA
	Enabling the ORACA
	Choosing Runtime Options
	ORACA Structure
	ORACA Example


	10 Using Host Tables
	What Is a Host Table?
	Why Use Tables?
	Declaring Host Tables
	Dimensioning Tables
	Restrictions

	Using Tables in SQL Statements
	Selecting into Tables
	Batch Fetches
	Number of Rows Fetched
	Restrictions
	Fetching Nulls
	Fetching Truncated Values

	Inserting with Tables
	Restrictions

	Updating with Tables
	Restrictions

	Deleting with Tables
	Restrictions

	Using Indicator Tables
	Using the FOR Clause
	Restrictions

	Using the WHERE Clause
	Mimicking the CURRENT OF Clause
	Using SQLERRD(3)
	Sample Program 3: Fetching in Batches

	11 Using Dynamic SQL
	What Is Dynamic SQL?
	Advantages and Disadvantages of Dynamic SQL
	When to Use Dynamic SQL
	Requirements for Dynamic SQL Statements
	How Dynamic SQL Statements Are Processed
	Methods for Using Dynamic SQL
	Method 1
	Method 2
	Method 3
	Method 4
	Guidelines

	Using Method 1
	The EXECUTE IMMEDIATE Statement
	An Example

	Sample Program 6: Dynamic SQL Method 1
	Using Method 2
	The USING Clause

	Sample Program 7: Dynamic SQL Method 2
	Using Method 3
	PREPARE
	DECLARE
	OPEN
	FETCH
	CLOSE

	Sample Program 8: Dynamic SQL Method 3
	Using Method 4
	Need for the SQLDA
	The DESCRIBE Statement
	What Is a SQLDA?
	Implementing Method 4

	Using the DECLARE STATEMENT Statement
	Using Host Tables
	Using PL/SQL
	With Method 1
	With Method 2
	With Method 3
	With Method 4
	Attention: �
	Caution


	12 Using Dynamic SQL: Advanced Concepts
	Meeting the Special Requirements of Method 4
	What Makes Method 4 Special?
	What Information Does Oracle8 Need?
	Where Is the Information Stored?
	How Is the Information Obtained?

	Understanding the SQL Descriptor Area (SQLDA)
	Purpose of the SQLDA
	Multiple SQLDAs
	Declaring a SQLDA

	The SQLDA Variables
	Some Preliminaries
	Using SQLADR
	Converting Data
	Coercing Datatypes
	Handling Null/Not Null Datatypes

	The Basic Steps
	A Closer Look at Each Step
	Declare a Host String
	Declare the SQLDAs
	Set the Maximum Number to DESCRIBE
	Initialize the Descriptors
	Store the Query Text in the Host String
	PREPARE the Query from the Host String
	DECLARE a Cursor
	DESCRIBE the Bind Variables
	Reset Number of place-holders
	Get Values for Bind Variables
	OPEN the Cursor
	DESCRIBE the Select List
	Reset Number of Select-List Items
	Reset Length/Datatype of Each Select-List Item
	FETCH Rows from the Active Set
	Get and Process Select-List Values
	CLOSE the Cursor

	Using Host Tables with Method 4
	Sample Program 10: Dynamic SQL Method 4

	13 Writing User Exits
	What Is a User Exit?
	Why Write a User Exit?
	Developing a User Exit
	Writing a User Exit
	Requirements for Variables
	The IAF GET Statement
	The IAF PUT Statement

	Calling a User Exit
	Passing Parameters to a User Exit
	Returning Values to a Form
	The IAP Constants
	Using the SQLIEM Function
	Using WHENEVER

	Sample Program 5: Oracle Forms User Exit
	Precompiling and Compiling a User Exit
	Using the GENXTB Utility
	Linking a User Exit into SQL*Forms
	Guidelines for SQL*Forms User Exits
	Naming the Exit
	Connecting to Oracle
	Issuing I/O Calls
	Using Host Variables
	Updating Tables
	Issuing Commands

	EXEC TOOLS Statements
	EXEC TOOLS SET
	EXEC TOOLS GET
	EXEC TOOLS MESSAGE


	A New Features
	DB2 Compatibility Features
	Optional DECLARE SECTION
	Support of Additional Datatypes
	Support of Group Items as Host Variables
	Implicit Form of VARCHAR Group Items
	Explicit Control Over the END_OF_FETCH SQLCODE Num...
	Support of the WITH HOLD Clause in the DECLARE CUR...
	New Precompiler Option CLOSE_ON_COMMIT
	Support for DSNTIAR
	Date String Format Precompiler Option
	Any Terminator Allowed after END-EXEC

	Other New Features
	New Name for Configuration File
	Support of Other Additional Datatypes
	Support of Nested Programs
	Support for REDEFINES and FILLER
	New Precompiler Option PICX
	Optional CONVBUFSZ Clause in VAR Statement
	Improved Error Reporting
	Changing Password When Connecting


	B Operating System Dependencies
	System-Specific References in this Manual
	COBOL Versions
	Host Variables
	INCLUDE Statements
	MAXLITERAL Default
	PIC N Clause for Multi-byte NLS Characters


	C Oracle8 Reserved Words, Keywords, and Namespac...
	Oracle8 Reserved Words and Keywords
	Oracle8 Reserved Namespaces

	D Performance Tuning
	What Causes Poor Performance?
	How Can Performance be Improved?
	Using Host Tables
	Using Embedded PL/SQL
	Optimizing SQL Statements
	Optimizer Hints
	Trace Facility

	Using Indexes
	Taking Advantage of Row-Level Locking
	Eliminating Unnecessary Parsing
	Handling Explicit Cursors
	Using the Cursor Management Options


	E Syntactic and Semantic Checking
	What Is Syntactic and Semantic Checking?
	Controlling the Type and Extent of Checking
	Specifying SQLCHECK=SEMANTICS
	Enabling a Semantic Check


	F Embedded SQL Commands and Precompiler Directiv...
	Summary of Precompiler Directives and Embedded SQL...
	About The Command Descriptions
	How to Read Syntax Diagrams
	Statement Terminator
	Required Keywords and Parameters
	Optional Keywords and Parameters
	Syntax Loops
	Multi-part Diagrams
	Database Objects

	ALLOCATE (Executable Embedded SQL Extension)
	CLOSE (Executable Embedded SQL)
	COMMIT (Executable Embedded SQL)
	CONNECT (Executable Embedded SQL Extension)
	DECLARE CURSOR (Embedded SQL Directive)
	DECLARE DATABASE (Oracle Embedded SQL Directive)
	DECLARE STATEMENT (Embedded SQL Directive)
	DECLARE TABLE (Oracle Embedded SQL Directive)
	DELETE (Executable Embedded SQL)
	DESCRIBE (Executable Embedded SQL)
	EXECUTE ... END-EXEC (Executable Embedded SQL Exte...
	EXECUTE (Executable Embedded SQL)
	EXECUTE IMMEDIATE (Executable Embedded SQL)
	FETCH (Executable Embedded SQL)
	INSERT (Executable Embedded SQL)
	OPEN (Executable Embedded SQL)
	PREPARE (Executable Embedded SQL)
	Usage Notes

	ROLLBACK (Executable Embedded SQL)
	SAVEPOINT (Executable Embedded SQL)
	SELECT (Executable Embedded SQL)
	UPDATE (Executable Embedded SQL)
	VAR (Oracle Embedded SQL Directive)
	WHENEVER (Embedded SQL Directive)

	Index

