
Oracle8 Time Series Cartridge

User’s Guide

Release 8.0.4

November, 1997

Part No. A57501-01

Oracle8 Time Series Cartridge User’s Guide

Part No. A57501-01

Release 8.0.4

Copyright © 1997, Oracle Corporation. All rights reserved.

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inher-
ently dangerous applications. It shall be licensee’s responsibility to take all appropriate fail-safe, back
up, redundancy and other measures to ensure the safe use of such applications if the Programs are
used for such purposes, and Oracle disclaims liability for any damages caused by such use of the Pro-
grams.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free.

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is deliv-
ered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are 'commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software' and use, duplication and disclo-
sure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate III (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, SQL*Loader, and SQL*Plus are registered trademarks, and Developer/2000, Net8, Network Computing
Architecture, Oracle Forms, Oracle8, and PL/SQL are trademarks, of Oracle Corporation, Redwood City, California.
All other company or product names are used for identification purposes only and may be trademarks of their respec-
tive owners.

Contents

Send Us Your Comments ... xi

Preface... xiii

1 Introduction

1.1 Data Cartridges.. 1-1
1.2 Object Relational Technology.. 1-2
1.3 Storing and Accessing Data ... 1-2
1.4 Installing the Kit .. 1-3
1.5 Creating Public Synonyms for Time Series Packages .. 1-4
1.6 Time Series Cartridge Demos (Demonstrations) .. 1-4
1.6.1 Running the Usage Demo... 1-5
1.6.2 Usage Demo Files... 1-5
1.6.3 Tables and Views in the Usage Demo... 1-6

2 Time Series Concepts

2.1 Overview of Time Series Data ... 2-1
2.1.1 Data Generation for a Time Series ... 2-2
2.1.2 Historical Data .. 2-4
2.2 Calendars .. 2-5
2.2.1 Frequency and Precision ... 2-6
2.2.2 Calendar Datatypes ... 2-7
2.2.3 Overview of Calendar Definition .. 2-8
2.2.4 Deriving Calendar Exceptions from Time Series Data ... 2-9
 iii

2.3 Time Series Cartridge Architecture .. 2-10
2.4 Storage of Time Series Data ... 2-11
2.4.1 Flat IOT Storage .. 2-12
2.5 Interfaces to Time Series and Time Scaling Functions ... 2-12
2.5.1 Instance-Based Interface.. 2-13
2.5.2 Reference-Based Interface ... 2-15
2.6 Consistency of Time Series Data ... 2-18
2.6.1 Rules for Time Series Consistency ... 2-18
2.6.2 Enforcing Time Series Consistency with Security Views 2-18
2.6.3 Bulk Loading and Consistency... 2-20
2.7 Calendar Functions ... 2-20
2.7.1 End-User Functions.. 2-21
2.7.2 Product-Developer Functions... 2-21
2.8 Time Series Functions ... 2-23
2.8.1 Time Series Datatypes ... 2-23
2.8.2 Conventions and Semantics.. 2-24
2.8.3 Extraction, Retrieval, and Trim Functions.. 2-26
2.8.4 Shift Functions .. 2-27
2.8.5 SQL Formatting Functions .. 2-27
2.8.6 Aggregate Functions .. 2-28
2.8.7 Arithmetic Functions ... 2-28
2.8.8 Cumulative Sequence Functions.. 2-29
2.8.9 Moving Average and Sum Functions.. 2-29
2.8.10 Conversion Functions .. 2-30
2.9 Time Scaling Functions ... 2-31
2.9.1 Time Scaling on Collections.. 2-32
2.9.2 Time Scaling in the GROUP BY Clause .. 2-33

3 Time Series Usage

3.1 Using the Cartridge ... 3-1
3.1.1 Step 1: Create the Underlying Storage (Table) ... 3-1
3.1.2 Step 2: Define a Calendar .. 3-2
3.1.3 Step 3: Load Time Series Data .. 3-4
3.1.4 Step 4: Create a Security View and INSTEAD OF Triggers 3-4
3.1.5 Step 5: Create a Reference-Based View ... 3-6
 iv

3.1.6 Step 6: Validate Time Series Consistency ... 3-7
3.1.7 Step 7: Formulate Time Series Queries ... 3-7
3.2 Loading Time Series Data ... 3-9
3.2.1 Bulk Loading... 3-10
3.2.2 Incremental Loading.. 3-12
3.3 Deriving Calendar Exceptions... 3-13
3.3.1 Deriving Exceptions Using a Calendar and Table of Dates (Approach 1) 3-13
3.3.2 Deriving Exceptions Using Two Time Series Parameters (Approach 2) 3-14
3.4 Using Product-Developer Functions .. 3-16

4 Calendar Functions: Reference

CombineCals .. 4-2

DeleteExceptions ... 4-7

DisplayValCal Procedure... 4-10

EqualCals .. 4-17

GetOffset ... 4-20

InsertExceptions .. 4-23

IntersectCals ... 4-27

InvalidTimeStampsBetween.. 4-31

IsValidCal ... 4-34

IsValidDate... 4-40

NumInvalidTimeStampsBetween... 4-43

NumOffExceptions.. 4-46

NumOnExceptions .. 4-49

NumTimeStampsBetween ... 4-52

OffsetDate... 4-55

SetPrecision .. 4-58

TimeStampsBetween... 4-61

UnionCals ... 4-65

ValidateCal ... 4-69
 v

5 Time Series and Time Scaling Functions: Reference

Cavg... 5-3

Cmax.. 5-5

Cmin .. 5-7

Cprod... 5-9

Csum.. 5-11

DeriveExceptions ... 5-13

Display .. 5-15

DisplayValTS Procedure... 5-18

ExtractCal.. 5-26

ExtractDate ... 5-28

ExtractTable .. 5-30

ExtractValue ... 5-32

Fill .. 5-34

First .. 5-40

FirstN... 5-42

GetDatedElement .. 5-44

GetNthElement .. 5-46

GetSeries ... 5-48

IsValidTS... 5-51

Lag ... 5-59

Last... 5-62

LastN ... 5-64

Lead ... 5-66

Mavg.. 5-69

Msum... 5-72

Scaleup .. 5-74

ScaleupAvg... 5-76

ScaleupCount ... 5-78

ScaleupFirst .. 5-80

ScaleupLast... 5-82
 vi

ScaleupMax .. 5-84

ScaleupMin... 5-86

ScaleupSum .. 5-88

TrimSeries... 5-90

TSAdd ... 5-93

TSAvg.. 5-97

TSCount .. 5-99

TSDivide ... 5-101

TSMax ... 5-105

TSMaxN .. 5-107

TSMedian.. 5-109

TSMin .. 5-111

TSMinN... 5-113

TSMultiply.. 5-115

TSProd... 5-119

TSStdDev .. 5-121

TSSubtract... 5-123

TSSum ... 5-127

TSVariance.. 5-129

ValidateTS .. 5-131

A Error Messages
 vii

viii

Examples

2–1 Overview of Calendar Definition.. 2-8
3–1 Create a Stock Data Table... 3-1
3–2 Create a Calendar of Business Days ... 3-3
3–3 Create a Security View.. 3-4
3–4 Create an INSTEAD OF Trigger.. 3-4
3–5 Create a Reference-Based View ... 3-6
3–6 Formulate Time Series Queries ... 3-7

 ix

Figures

1–1 Tables and Views in the Time Series Usage Demo... 1-7
2–1 Data Generation in Equities Markets ... 2-3
2–2 Historical Data for Stocks... 2-4
2–3 Time Series Architecture .. 2-11
2–4 Example of ORDTNumTab Collection Type... 2-14
2–5 Relationship of Input and Output Time Series in Moving Average/Sum 2-30
2–6 Time Scaling from Daily to Monthly Frequency .. 2-31

x

Tables

1–1 Time Series Cartridge Demos .. 1-4
1–2 Time Series Cartridge Usage Demo Files ... 1-5
2–1 Frequencies .. 2-6
2–2 Precisions ... 2-7
2–3 End-User Calendar Functions.. 2-21
2–4 Product-Developer Calendar Functions .. 2-22
2–5 Extraction Functions .. 2-26
2–6 Retrieval and Trim Functions .. 2-27
2–7 Shift Functions ... 2-27
2–8 SQL Formatting Functions... 2-27
2–9 Aggregate Functions .. 2-28
2–10 Arithmetic Functions ... 2-29
2–11 Cumulative Sequence Functions.. 2-29
2–12 Moving Average and Sum Functions .. 2-30
2–13 Conversion Functions .. 2-31
2–14 Scaleup Functions for Collections .. 2-33
4–1 SetPrecision and Timestamp of 19-Sep-1997 09:09:09 .. 4-58
4–2 Errors Repaired by ValidateCal ... 4-70
5–1 Lagging a Time Series by Two Days .. 5-60
5–2 Leading a Time Series by Two Days .. 5-67

Send Us Your Comments

Oracle8 Time Series Cartridge User’s Guide, Release 8.0.4

Part No. A57501-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available).

You can send comments to us in the following ways:

■ e-mail: nedc_doc@us.oracle.com
■ fax: 603.897.3269 Attn: Data Cartridge Documentation
■ postal service:

Oracle Corporation
Data Cartridge Documentation
One Oracle Drive
Nashua, NH 03062
USA

If you would like a reply, please include your name and contact information.
 xi

xii

Preface

This manual describes how to use the Oracle8 Time Series Cartridge.

Intended Audience
This manual is intended for anyone who is interested in storing, retrieving, and
manipulating time series data in an Oracle database, including developers of spe-
cialized cartridges.

Structure
This manual contains the following chapters and appendix:

Related Documents
For information added after the production of this manual, see the README file in
the following directory:

■ ORACLE_HOME/ord/ts/admin (Solaris systems)

Chapter 1 Introduces data cartridges, object types, and the contents of the Time Series car-
tridge.

Chapter 2 Explains time series concepts and operations.

Chapter 3 Explains important procedures for using the cartridge.

Chapter 4 Provides reference information on calendar functions.

Chapter 5 Provides reference information on time series and time scaling functions.

Appendix A Lists potential errors, their causes, and user actions to correct them.
 xiii

■ ORACLE_HOME\ord80\ts\admin (Windows NT systems)

The location of the README file is platform-dependent.

For more information, see the following manuals in the Oracle8 documentation set:

■ PL/SQL User’s Guide and Reference

■ Oracle Call Interface Programmer’s Guide

■ Oracle8 Application Developer’s Guide

Conventions
In this manual, the Oracle8 Time Series Cartridge is sometimes referred to as the
Time Series cartridge.

The following conventions are also used in this manual:

Convention Meaning

 .
 .
 .

A vertical ellipsis in an example means that lines not directly related
to the example have been omitted.

. . . A horizontal ellipsis in an example means that part of the statement
or command not directly related to the example has been omitted

boldface text Boldface type in text indicates a term defined in the text.

italicized text Italic type in text indicates emphasis or a user-defined variable,
schema name, or object datatype.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.
xiv

 Introdu
1

Introduction

The Oracle8 Time Series Cartridge is an extension to Oracle8 that provides storage
and retrieval of timestamped data through object types. The cartridge is a building
block for applications rather than being an end-user application in itself. It consists
of datatypes along with related functions for managing and processing time series
data.

For example, applications can use this cartridge to process historical data derived
from financial market transactions, such as trades of stocks, bonds, and mutual
fund shares. In such applications, the functions included with the Time Series car-
tridge let you conveniently perform operations ranging from the simple to the com-
plex, such as:

■ finding the opening, closing, low, and high prices for a stock on a specific date

■ calculating monthly volumes for a stock for a specific year

■ deriving the 30-day moving average for a stock over a year

Time series applications have certain distinct requirements and some degree of
commonality. The time series datatypes accommodate the commonality and sup-
port extensions that address application-specific requirements. With this cartridge,
time series data can be managed more conveniently and efficiently than is possible
using only traditional datatypes and user-defined functions.

With the Time Series cartridge, you can use or adapt existing tables for time series
applications, or you can create new tables. You can also extend the capabilities of
the cartridge to add or modify functions and to create customized calendars.

1.1 Data Cartridges
Within the Oracle Network Computing ArchitectureTM (NCA), data cartridges facil-
itate the storage and retrieval of complex datatypes required by nontraditional
ction 1-1

Object Relational Technology
database applications, such as geographic information systems, imaging, work-
flow, document management, and digital libraries. These applications are built
using components or modules that support the capture, input, processing, analysis,
storage, retrieval, and display of the complex datatypes.

A data cartridge is the mechanism by which clients, application-specific servers,
and database servers can be easily and reliably extended. The Oracle8 Time Series
Cartridge provides support for time series domain-specific types, functions, and
interfaces. The Time Series cartridge focuses on a set of time series data representa-
tion and access mechanisms sufficient to support many applications and the devel-
opment of more specialized cartridges.

1.2 Object Relational Technology
The objects option makes Oracle8 an object-relational database management sys-
tem, which means that users can define additional kinds of data -- specifying both
the structure of the data and the ways of operating on it -- and use these types
within the relational model. This approach adds value to the data stored in a data-
base.

Oracle8 with the objects option stores structured business data in its natural form
and allows applications to retrieve it that way. For that reason it works efficiently
with applications developed using object-oriented programming techniques.

1.3 Storing and Accessing Data
The Time Series cartridge can store time series data in the database under transac-
tional control.

Once stored in the database, this data can be queried and retrieved by finding a
row in a table that contains the primary key (which includes the timestamp) using
the various alphanumeric columns (attributes) of the table. Typical queries might
include the following:

■ Select the closing price from a stock market data table where the ticker (stock
symbol) is XYZ and the date is 30-May-1997.

■ Select the 30-day moving average of stock XYZ for the month of May 1997.

Applications access and manipulate time series data using SQL or PL/SQLTM. See
the Oracle8 SQL Reference manual for information on SQL syntax.
1-2 Oracle8 Time Series Cartridge User’s Guide

Installing the Kit
1.4 Installing the Kit
The exact procedure for installing the Time Series cartridge is platform-dependent.
For more detailed information, see the README.txt file for your platform which
can be found either in $ORACLE_HOME/ord/ts/admin (UNIX systems) or
$ORACLE_HOME\ord80\ts\admin (Windows NT systems). On many platforms,
automated default installation is available using Oracle Installer; however, on some
platforms manual installation of the database objects is required.

This section describes the steps required to manually install the Time Series car-
tridge. It is intended for users who want to customize the database installation or
who simply want a better understanding of the Time Series installation process.

To use the Time Series cartridge, at least the following software components must
be installed: Oracle8 Enterprise Edition (RDBMS), PL/SQL (on platforms on which
it is a separate installation option), and the Oracle8 Time Series Cartridge. These
components can be installed all at once, or the Oracle8 Time Series Cartridge can be
added to an existing Oracle8 Enterprise Edition release 8.0.4 installation that
includes PL/SQL.

Follow these steps to perform a manual installation of the Time Series cartridge:

1. If the ORDSYS user does not already exist, decide on a password.

ORDSYS is the standard schema for Oracle-supplied cartridges, and it has spe-
cial privileges for data cartridges.

2. Create and start the database.

For detailed information about database creation and startup, see the Oracle8
Installation and Configuration Guide for your operating system, the Oracle8
Administrator’s Guide, and the Oracle8 Concepts manual.

3. Install the UTLREF package, which is needed by the Time Series cartridge:

SVRMGR> @$ORACLE_HOME/rdbms/admin/utlrefld.sql

4. If the ORDSYS account does not already exist, create it:

SVRMGR> CREATE USER ORDSYS IDENTIFIED BY <password>;

The <password> is the password you chose in step 1.

5. Set the privileges for ORDSYS user:

SVRMGR> GRANT connect,resource,create library TO ORDSYS;

6. Install the Time Series cartridge datatypes and stored procedures:
 Introduction 1-3

Creating Public Synonyms for Time Series Packages
SVRMGR> CONNECT ORDSYS/<password>
SVRMGR> @$ORACLE_HOME/ord/ts/admin/ordtinst.sql

The user group PUBLIC is granted execute privilege on all Time Series car-
tridge datatypes and packages.

1.5 Creating Public Synonyms for Time Series Packages
All Time Series cartridge packages and datatypes are installed under the ORDSYS
schema, and all users must include the ORDSYS schema name when referring to
these packages and datatypes. However, to simplify references to packages, you
can define public synonyms for the Calendar and TimeSeries packages.

To create public synonyms, run the ordtsyn.sql file supplied with the Time Series
cartridge in the admin directory. The ordtsyn.sql file creates the following public
synonyms:

CREATE PUBLIC SYNONYM TimeSeries for ORDSYS.TimeSeries;
CREATE PUBLIC SYNONYM Calendar for ORDSYS.Calendar;

1.6 Time Series Cartridge Demos (Demonstrations)
Table 1–1 shows the demos (SQL scripts and related files that demonstrate capabili-
ties) included with the Time Series cartridge. This table includes a description of
each demo and the default directory in which its files are installed. (The exact loca-
tion and directory syntax are platform-dependent.)

Table 1–1 Time Series Cartridge Demos

Description Directory

Usage demo for end users and product developers who want to
use existing cartridge feature

demo/usage

Advanced-developer demo for those who want to extend the car-
tridge features

demo/extend

OCI demo showing how to call cartridge functions using the Ora-
cle Call Interface

demo/oci

PRO*C/C++ demo showing how to call cartridge functions in
applications created using the Oracle Pro*C/C++ Precompiler

demo/proc

Developer/2000TM demo showing how to call cartridge functions
in an Oracle FormsTM application

demo/dev2k
1-4 Oracle8 Time Series Cartridge User’s Guide

Time Series Cartridge Demos (Demonstrations)
Each demo is described in a README file in its directory.

The usage demo, described in this section, is a working example of the usage of the
cartridge. The example models a historical database of stock pricing and provides
sample queries over this stock database.

The usage demo is designed to guide you through the cartridge in a step-by-step
fashion. It includes example code for creating and populating tables and calendars,
constructing security views, constructing views to synthesize the interface to time
series functions, and running some example queries.

1.6.1 Running the Usage Demo
After the cartridge has been installed, you can run the usage demo by going to the
appropriate directory (see Table 1–1) and invoking the demo.sql procedure, as fol-
lows:

% svrmgrl
SVRMGR> @demo

1.6.2 Usage Demo Files
The usage demo files include examples of bulk and incremental loading, defining
tables, calendars, and views for the time series cartridge, and running example que-
ries. These files are listed in Table 1–2.

Table 1–2 Time Series Cartridge Usage Demo Files

File Description

demo.sql Main procedure file

stockdat.ctl SQL*Loader® control file

stockdat.dat SQL*Loader data file for time series data

tables.sql DDL for tables

popcal.sql Defines calendars and populates calendar table

securevw.sql Example security view

refvw.sql Example reference-based view

queries.sql Example time series queries (SQL)

queplsql.sql Example time series queries (PL/SQL)

calqueries.sql Example calendar queries (PL/SQL)
 Introduction 1-5

Time Series Cartridge Demos (Demonstrations)
1.6.3 Tables and Views in the Usage Demo
The stock database consists of three tables:

■ stockdemo stores historical time series pricing data.

■ stockdemo_calendars stores instances of calendars.

■ stockdemo_metadata maintains mapping between time series (here, for tickers)
and calendars. This metadata table would not be needed if all tickers were asso-
ciated with a private calendar that is named by the ticker or if a single calendar
were shared by all tickers. The stockdemo_metadata table allows, for example,
five tickers to be associated with one calendar, two tickers with another calen-
dar, and so on.

To maintain time series consistency and provide a collection-based interface for
time series functions, two views are constructed using these tables.

■ stockdemo_sv is a security view. A security view should be used for any insert,
update, and delete operations to time series data.

■ stockdemo_ts is a reference-based view. A reference-based view provides an
object model of a time series, and it can be used for efficient read-only access
using Time Series cartridge functions.

The security view ensures that insert, update, and delete operations maintain a
time series that is consistent with the associated calendar. (Time series consistency
is explained in Section 2.6.) The security view and the reference-based view access
the three underlying tables. The reference-based view synthesizes references to col-
lections. (Reference-based views are explained in Section 2.5.2.)

Figure 1–1 shows the layering and interdependencies between underlying tables
and the security and reference-based views.

incload.sql Incremental load script

stockinc.ctl SQL*Loader control file for incremental load

stockinc.dat SQL*Loader data file for incremental time series data

cleanup.sql Deletes database objects created by the demo

Table 1–2 Time Series Cartridge Usage Demo Files (Cont.)

File Description
1-6 Oracle8 Time Series Cartridge User’s Guide

Time Series Cartridge Demos (Demonstrations)
Figure 1–1 Tables and Views in the Time Series Usage Demo

Calendar Table

stockdemo stockdemo_calendars stockdemo_metadata

Index−Organized
Time Series Data Table

Time Series
Metadata Table

NU−3689A−RA

Security View
(stockdemo_sv)

Reference View
(stockdemo_ts)
 Introduction 1-7

Time Series Cartridge Demos (Demonstrations)
1-8 Oracle8 Time Series Cartridge User’s Guide

 Time Series Con
2

Time Series Concepts

This chapter explains concepts related to the Oracle8 Time Series Cartridge, and it
provides information on using the cartridge. It covers the following topics:

■ overview of time series data

■ calendars

■ Time Series cartridge architecture

■ storage of time series data

■ the collection-based interface to functions

■ consistency of time series data

■ the reference-based interface

■ overviews of each major function type: calendar, time series, time scaling

■ using the Time Series cartridge

2.1 Overview of Time Series Data
A time series is a set of timestamped data entries. A time series allows a natural
association of data collected over intervals of time. For example, summaries of
stock market trading or banking transactions are typically collected daily, and are
naturally modeled with time series.

A time series can be regular or irregular, depending on how predictably data
points arrive or occur:

■ In a regular time series, the data arrives predictably at predefined intervals. For
example, daily summaries of stock market data form a regular time series, and
one such time series might be the set of trade volumes and opening, high, low,
and closing prices for stock XYZ for the year 1997.
cepts 2-1

Overview of Time Series Data
■ In an irregular time series, unpredictable bursts of data arrive at unspecified
points in time, or most timestamps cannot be characterized by a repeating pat-
tern. For example, account deposits and withdrawals from a bank automated
teller machine (ATM) form an irregular time series. An irregular time series
may have long periods with no data or short periods with bursts of data.

2.1.1 Data Generation for a Time Series
Data generation for a time series begins with individual transactions, such as trades
on a stock exchange or purchases of products. Each transaction has a timestamp
and sufficient information to identify that transaction uniquely (such as a stock
ticker or a product ID), as well as other pertinent information (such as the price and
information to identify the party initiating the purchase or sale).

Individual transaction data is typically rolled up to produce summary data for a
meaningful time period, such as a daily summary indicating the trade volume and
the opening, high, low, and closing prices for each stock traded that day. This sum-
mary data is collected to produce historical data, such as a table of all daily vol-
umes and opening, high, low, and closing prices for all stocks traded for the year
1997. For example, Figure 2–1 shows how data related to securities on a stock
exchange is generated.
2-2 Oracle8 Time Series Cartridge User’s Guide

Overview of Time Series Data
Figure 2–1 Data Generation in Equities Markets

In Figure 2–1, each trade on the stock exchange includes several items of informa-
tion, including a ticker and a price (for example, stock XYZ at 37.50). The daily sum-
mary data includes the opening, high, low, and closing prices for each ticker (for
example, for XYZ: 37.75, 38.25, 37.00, 37.625). The daily data for each ticker is
appended to the historical data for the ticker. The daily data is used for such pur-
poses as quote server applications and listing in the next day’s newspapers; the his-
torical data is used by such applications as price and volume charting and technical
analysis.

The data-collection model for historical data has the following characteristics:

■ At daily intervals, historical data is updated with daily summary data (main
update cycle).

■ At some period after the main update cycle, corrections of the daily summary
data may need to be applied.

■ Queries may be executed at any time, even during the update cycle.

■ Queries do not observe the current day's summary information until after the
main update cycle has completed.

Tick Data

Applications that use the data:

. . .

Historical Data

Stock Exchange

Daily Newspapers
Quote Servers

Charting Tools
Technical Analysis Tools

Daily Snapshot
or

Summary Data

NU−3691A−RA
 Time Series Concepts 2-3

Overview of Time Series Data
This historical data is modeled using multiple regular time series.

The Time Series cartridge and the Oracle8 utilities, with their bulk-loading capabili-
ties and transactional semantics, are well suited for the requirements of time series
data generation.

2.1.2 Historical Data
The Time Series cartridge is especially useful in dealing with historical data. This
type of data typically has relatively simple metadata but massive data storage
requirements. That is, the data attributes (columns) are relatively few and easy to
understand (such as ticker, volume, and opening, high, low, and closing prices);
however, the number of rows is enormous (for example, data for all listed stocks
for all trading days for several years). Moreover, the number of functions that users
might want to perform on the data is large: for example, finding various sums,
counts, maximum and minimum values, averages, number of trading days
between two dates, moving average, and so on.

Figure 2–2 shows an example of historical data stored in a database.

Stock market historical databases have the following general characteristics:

■ Multiple stocks, each identified by the ticker symbol, can be stored in the data-
base.

■ Each stock can have multiple attributes (ticker, tstamp, open, high, low, close, vol-
ume).

■ Each stock has one or more associated time series.

Figure 2–2 Historical Data for Stocks

Ticker Tstamp Open High Low Close Volume

XYZ 01-02-1997 21.75 22.75 21.50 22.00 352,000

XYZ 01-03-1997 22.125 22.50 21.00 21.75 530,000

XYZ 01-06-1997 21.625 22.00 21.625 21.875 490,000

...

YZA 01-02-1997 44.25 44.25 43.50 43.875 125,000

YZA 01-03-1997 43.75 44.25 43.75 44.125 97,000

YZA 01-06-1997 44.25 44.50 44.125 44.125 107,000

...
2-4 Oracle8 Time Series Cartridge User’s Guide

Calendars
■ Each time series has an associated calendar (see Section 2.2).

This kind of financial historical data is used in examples in this manual and in the
usage demo (see Section 1.6) provided with the Time Series cartridge.

2.2 Calendars
A calendar maps human-meaningful time values to underlying machine represen-
tations of time. Typically, a calendar is associated with a time series.

For example, a business day calendar can define the days of the week on which
stocks are traded. The holidays when trading does not occur are also in the calen-
dar. The following are key components of a calendar:

■ Frequency

A frequency specifies the granularity of the calendar representation. Examples
of frequencies are second, minute, hour, day, month, and year.

■ Pattern

The pattern specifies the repeating pattern of frequencies and an anchor date
that identifies the date of an occurrence of the frequency. For example, if the fre-
quency is set to day, the pattern can define which days of the week are included
in the calendar. For example, a pattern of ‘0,1,1,1,1,1,0’ over a day frequency
defines a calendar over all weekdays. If an anchor date of 01-Jun-1997 (or any
Sunday) is specified, then the 7-day pattern begins each Sunday; and Sunday
and Saturday (0) are excluded from the calendar, while Monday through Fri-
day (1) are included in the calendar.

■ Exceptions

Exceptions are timestamps that do not conform to the calendar pattern but that
are significant for the calendar definition. There are two kinds of exceptions:
off-exceptions and on-exceptions:

– An off-exception is an exception to the 1-bits in the pattern, and thus is a
timestamp to be excluded from the calendar. For example, to ensure that
Wednesday, 25-Dec-1996, is excluded from the calendar when Wednesdays
normally are included, define that date as an off-exception.

– An on-exception is an exception to the 0-bits in the pattern, and thus is a
timestamp to be included in the calendar. For example, to ensure that Satur-
day, 28-Jun-1997, is included in the calendar when Saturdays are excluded,
define that date as an on-exception.
 Time Series Concepts 2-5

Calendars
On-exceptions can also be used without a pattern, that is, when a zero pat-
tern is specified for the time series. An irregular time series can be con-
structed by defining a frequency, a zero (0) pattern, and an on-exceptions
list. In this case, the on-exceptions list defines the timestamps that consti-
tute the irregular time series. An example of such an irregular time series is
a calendar of dates for quarterly dividend payments or earnings announce-
ments.

2.2.1 Frequency and Precision
Each frequency has an associated integer code that is used in function calls.
Table 2–1 lists the supported frequencies and their integer codes.

Each frequency has an associated precision. Time Series cartridge functions require
that input timestamps be of the precision of the frequency associated with the calen-
dar. (The SetPrecision function is the exception: this function takes a frequency and
a timestamp and returns a timestamp that conforms to the associated calendar.)

A timestamp that is not consistent with the frequency is said to be imprecise. For
example, a timestamp of 09-Sep-1997 is imprecise if it is input to a function that is
dealing with a calendar whose frequency is 6 (month) or 8 (year). When you create a
calendar, all timestamps used in the calendar definition (the anchor date for the pat-
tern, the minDate and maxDate, and all off- and on-exceptions) must be precise with
respect to the frequency. For example, the calendar will not be valid if you specify a
frequency of month and an anchor date (patAnchor) of 02-Jan. (The calendar
datatypes and their attributes are presented in Section 2.2.2.)

Table 2–1 Frequencies

Frequency (Every:) Integer Code

second 1

minute 2

hour 3

day 4

month 6

year 8
2-6 Oracle8 Time Series Cartridge User’s Guide

Calendars
Table 2–2 shows the frequencies, their precision conventions, and an example
timestamp of each precision.

2.2.2 Calendar Datatypes
The Time Series cartridge provides the following calendar datatypes. (Time series
datatypes are described in Section 2.8.1.)

■ calendar (ORDTCalendar) (Sections 2.2.3 and 3.1.2 contain calendar definitions
with explanatory notes.)

CREATE TYPE ORDSYS.ORDTCalendar AS OBJECT (
 caltype INTEGER,
 name VARCHAR2(256),
 frequency INTEGER,
 pattern ORDSYS.ORDTPattern,
 minDate DATE,
 maxDate DATE,
 offExceptions ORDSYS.ORDTExceptions,
 onExceptions ORDSYS.ORDTExceptions);

■ pattern (ORDTPatternBits and ORDTPattern)

CREATE TYPE ORDSYS.ORDTPatternBits AS VARRAY(32500) OF INTEGER;

CREATE TYPE ORDSYS.ORDTPattern AS OBJECT (
 patBits ORDSYS.ORDTPatternBits,
 patAnchor DATE);

■ exception (ORDTExceptions)

Table 2–2 Precisions

Frequency (Every:) Precision Convention Example Result

second MM-DD-YYYY HH24:MI:SS 09-09-1997 09:09:09

minute MM-DD-YYYY HH24:MI:00 09-09-1997 09:09:00

hour MM-DD-YYYY HH24:00:00 09-09-1997 09:00:00

day MM-DD-YYYY 00:00:00 (midnight) 09-09-1997 00:00:00

month MM-01-YYYY 00:00:00 (midnight of
first day of month)

09-01-1997 00:00:00

year 01-01-YYYY 00:00:00 (midnight of
first day of year)

01-01-1997 00:00:00
 Time Series Concepts 2-7

Calendars
CREATE TYPE ORDSYS.ORDTExceptions AS VARRAY(32500) OF DATE;

All Time Series cartridge datatypes are installed under the ORDSYS schema, and
all users must include the ORDSYS schema name when referring to these datatypes.

2.2.3 Overview of Calendar Definition
To define a calendar, you create a table in which to store calendar definitions and
then store a row for each calendar to be defined.

The following example creates a table named stockdemo_calendars and defines a cal-
endar named BusinessDays. The BusinessDays calendar includes Mondays through
Fridays, but excludes 28-Nov-1996 and 25-Dec-1996. Explanatory notes follow the
example.

Example 2–1 Overview of Calendar Definition

CREATE TABLE stockdemo_calendars of ORDSYS.ORDTCalendar (
 name CONSTRAINT calkey PRIMARY KEY);

INSERT INTO stockdemo_calendars VALUES(
 ORDSYS.ORDTCalendar(
 0
 ’BusinessDays’,
 4,
 ORDSYS.ORDTPattern(
 ORDSYS.ORDTPatternBits(0,1,1,1,1,1,0),
 TO_DATE(’01-JAN-1995’,’DD-MON-YYYY’)),
 TO_DATE(’01-JAN-1990’,’DD-MON-YYYY’),
 TO_DATE(’01-JAN-2001’,’DD-MON-YYYY’),

 ORDSYS.ORDTExceptions(TO_DATE(’28-NOV-1996’,’DD-MON-YYYY’),
 TO_DATE(’25-DEC-1996’,’DD-MON-YYYY’)),
 ORDSYS.ORDTExceptions()
));

Notes on Example 2–1:

The stockdemo_calendars table has rows of type ORDTCalendar, which is
described in Section 2.2.2.

0 indicates that this is an exception-based calendar (the only type of calendar
currently supported).

BusinessDays is the name of this calendar.

1
2

3
4

5

6

7
8

1

2

3

2-8 Oracle8 Time Series Cartridge User’s Guide

Calendars
4 is the frequency code for day.

The calendar’s pattern consists of an excluded occurrence followed by five
included occurrences followed by an excluded occurrence (0,1,1,1,1,1,0).
Because the frequency is daily and because the anchor date (01-Jan-1995) is a
Sunday, Sundays are excluded, Mondays through Fridays are included, and
Saturdays are excluded.

The calendar begins at the start of 01-Jan-1990 and ends at the start of 01-Jan-
2001.

28-Nov-1996 and 25-Dec-1996 are off-exceptions (that is, excluded from the cal-
endar).

ORDSYS.ORDTExceptions() indicates that there are no on-exceptions (that is, no
Saturday or Sunday dates to be included in the calendar).

2.2.4 Deriving Calendar Exceptions from Time Series Data
When you want to create calendars that conform to time series data, you can use
the DeriveExceptions function to simplify the process. You can use one of two
approaches with DeriveExceptions, depending on your needs and the require-
ments for each approach:

■ The first approach uses a DeriveExceptions call with input parameters of a cal-
endar and an ORDTDateTab instance. (An ORDTDateTab instance is a collec-
tion of dates; these dates can be compared with the set of valid timestamps
implied by the calendar.) A calendar is returned with the appropriate exception
lists populated. This returned calendar is defined on the pattern and frequency
of the input calendar, and it is consistent with the timestamps of the ORDT-
DateTab instance.

■ The second approach uses a DeriveExceptions call with two time series as
input parameters. The first time series is essentially an expansion of a pattern-
only calendar. As in the first approach, a calendar is returned with the appro-
priate exception lists populated. The returned calendar is defined on the pat-
tern and frequency of the calendar of the first input time series, and it is
consistent with the timestamps of the second input time series.

Note: All exceptions (off- and on-) must be specified in ascending
sorted order.

4

5

6

7

8

 Time Series Concepts 2-9

Time Series Cartridge Architecture
While the first approach can be performed in a single step, the second approach
requires an additional step (before DeriveExceptions is called) in order to construct
the first time series.

Although the first approach is simpler in practice, the second approach has signifi-
cant performance advantages when you need to define multiple calendars that
have the same frequency and pattern but different exception lists. The first
approach is less efficient than the second approach in this case, because the internal
implementation of the first approach generates a collection of dates based on the
input calendar parameter. If you need to derive exceptions for multiple calendars
defined on the same frequency and pattern, this date-generation operation is per-
formed multiple times. You can avoid these multiple date-generation operations by
using the second approach.

Section 3.3 contains more detailed information about using each approach to deriv-
ing calendar exceptions.

2.3 Time Series Cartridge Architecture
Figure 2–3 shows the Time Series cartridge architecture. At the lowest level, a stor-
age option is required, and for the initial release this must be a flat index-organized
table (IOT). For future releases, nested IOT and VARRAY storage options are
planned. The actual cartridge consists of PL/SQL packages for calendar, time
series, and time scaling functions. In addition, a collection-based interface between
time series storage and the packaged functions is provided.
2-10 Oracle8 Time Series Cartridge User’s Guide

Storage of Time Series Data
Figure 2–3 Time Series Architecture

The rest of this chapter describes this architecture, working from bottom to top in
Figure 2–3:

■ storage of time series data

■ interfaces (instance-based and reference-based) to time series and time scaling
functions

■ calendar functions

■ time series functions

■ time scaling functions

The chapter concludes with the steps for using the Time Series cartridge.

2.4 Storage of Time Series Data
The underlying storage model must satisfy the following requirements for time
series data:

■ The data must be stored in timestamp order, because many of the analytical
functions require access to the data in this order.

■ It must be possible to couple a time series with a calendar. In general, each time
series is associated with a distinct instance of a calendar. Time series and time

Storage

Time Scaling Time Series Calendar

Time Series

Collection−Based Interface

PL/SQL Packages

Storage is flat IOT

NU−3690A−RA
 Time Series Concepts 2-11

Interfaces to Time Series and Time Scaling Functions
scaling functions generally require an input parameter that is typed to contain
both a time series and its associated calendar.

2.4.1 Flat IOT Storage
A time series is stored as multiple rows in a flat index-organized table (IOT).1 Each
row stores a ticker, a timestamp, and composite data. This storage option is shown
in Figure 2–2.

The flat IOT storage model provides efficient utilization of disk storage (for exam-
ple, the timestamp data is stored once per composite entry) and allows flexibility in
queries; however, it does require that users perform certain manual actions:

■ An object view must be defined to form the collection and to couple a time
series with a calendar (see Section 2.5.2).

■ A security view should be defined to ensure data integrity (see Section 2.6.2).

2.5 Interfaces to Time Series and Time Scaling Functions
The interfaces to the time series and time scaling functions rely on the following
aspects of the Time Series cartridge architecture:

■ Time series data is stored as relational data (in a flat IOT), one timestamp per
row.

■ Calendars are stored in object tables.

■ Time series and time scaling functions expect time series data and calendars to
be formatted as objects. A time series object is typically the first parameter to a
function.

Two basic interfaces to time series and time scaling functions are defined:

■ an instance-based object interface

In the instance-based interface, the first input parameter to a time series func-
tion is an instance of a time series (for example, ORDTNumSeries).

■ a reference-based object interface

In the reference-based interface, the first input parameter to a time series func-
tion is a reference to a time series (for example, ORDTNumSeriesIOTRef). The
reference-based interface requires that you provide enough descriptive infor-

1 A time series could be stored in a standard table; however, for performance reasons it is
highly recommended that you use an IOT rather than a standard table.
2-12 Oracle8 Time Series Cartridge User’s Guide

Interfaces to Time Series and Time Scaling Functions
mation to enable the functions to execute dynamic SQL to obtain an instance of
a time series.

The datatypes related to the instance-based and reference-based interfaces (for
example, ORDTNumSeries and ORDTNumSeriesIOTRef) are discussed in Sections
2.5.1 and 2.5.2.

Note that both types of interfaces return only instances of time series (for example,
ORDTNumSeries). Also, because nesting of time series functions is allowed (for
example, SELECT (Lead(Mavg, ...) ...)), the instance-based interface is used inter-
nally for the second and subsequent levels of nesting.

When possible, you should use the reference-based interface. Although this inter-
face may be difficult to understand initially, it offers significant performance advan-
tages over the instance-based interface. The examples in this manual emphasize the
reference-based interface.

2.5.1 Instance-Based Interface
Time series functions operate on instances of time series objects (for example, an
ORDTNumSeries). An instance of a time series object includes a name field, an
instance of a calendar, and an instance of a time series. For example, as the follow-
ing type definitions for a numeric time series show, ORDTNumTab defines a collec-
tion and ORDTNumSeries bundles a calendar instance with a collection:

CREATE TYPE ORDSYS.ORDTNumCell AS OBJECT (tstamp DATE, value NUMBER);
CREATE TYPE ORDSYS.ORDTNumTab AS TABLE OF ORDTNumCell;
CREATE TYPE ORDSYS.ORDTNumSeries AS OBJECT (
 name VARCHAR2(256),
 cal ORDTCalendar,
 series ORDTNumTab
);

For a numeric time series, the time series data is contained in the ORDTNumTab
structure. This structure is a table of a DATE column and a NUMBER column, and
is also known as a collection.

Figure 2–4 shows an example of an ORDTNumTab collection type
 Time Series Concepts 2-13

Interfaces to Time Series and Time Scaling Functions
Figure 2–4 Example of ORDTNumTab Collection Type

Functions such as Mavg (Moving Average, described in Section 2.8.9) use the
ORDTNumTab structure as the source data for performing computations, and they
use the ORDTCalendar type to enable navigation through the time series data. The
calendar-based navigation is especially useful for functions such as Mavg, which
has as input parameters the starting date (startDate) and ending date (endDate) for
which to return moving averages and an integer (k) indicating the look-back win-
dow (k denoting the number of timestamps, including the current one, over which
to compute the moving average). Calendar-based navigation is used to determine
the date that is k-1 timestamps previous to startDate.

Although time series functions operate on time series instances, they are invoked
from SQL using a REF to a time series. For a numeric time series, this type is an
ORDTNumSeriesIOTRef. (Section 2.5.2 explains the use of REFs in the reference-
based interface.) The REF contains enough information so that time series functions
can derive the instance (ORDTNumSeries) at runtime (using dynamic SQL).

The convention of defining an interface on a DATE column and a single NUMBER
column provides a uniform interface for time series functions. Because the underly-
ing IOT that stores time series data may have multiple NUMBER columns, the
view defining the REF also maps the underlying storage to conform to the two-col-
umn interface defined by the ORDTNumSeries type.

The following are the key aspects of the instance-based interface to time series func-
tions:

■ The input parameter of a time series function is a REF to a time series object
(for example, ORDTNumSeriesIOTRef).

■ Time series functions operate on time series instances (for example, ORDT-
NumSeries).

Tstamp Value

01-01-1996 22.00

01-02-1996 23.00

... ...

12-31-1996 ...
2-14 Oracle8 Time Series Cartridge User’s Guide

Interfaces to Time Series and Time Scaling Functions
■ You should use a view to construct the reference descriptor.

■ The REF couples the calendar with the time series.

■ Instances of calendars are typically stored in a table separate from time series
data.

■ It is important to ensure and maintain consistency between time series data
and the corresponding calendar. Section 2.6 discusses consistency of time series
data, including ways of ensuring consistency.

2.5.2 Reference-Based Interface
The Time Series cartridge provides a reference-based interface for time series and
time scaling functions.

This interface provides efficient performance, especially when only a portion of the
time series is accessed. The performance benefit of this interface results from the
fact that at runtime the reference-based interface materializes only those rows
within the specified date range, as opposed to materializing the entire collection of
rows from the time series.

The reference-based interface uses the ORDTNumSeriesIOTRef and
ORDTVarchar2SeriesIOTRef types, which include a REF to a calendar, plus several
literal values. At runtime, reference-based time series functions use these literal val-
ues to form and execute a SQL statement (using dynamic SQL) that derives an
instance of a time series that contains only the timestamps needed for this instance.
The time series function determines which timestamps are needed based on the
minDate and maxDate parameters to the function.

The ORDTNumSeriesIOTRef type is defined as follows:

CREATE TYPE ORDSYS.ORDTNumSeriesIOTRef AS OBJECT
 (
 name VARCHAR2(256),
 cal REF ORDSYS.ORDTCalendar,
 table_name VARCHAR2(256),
 tstamp_colname VARCHAR2(30),
 value_colname VARCHAR2(30),
 qualifier_colname VARCHAR2(30),

Note: In addition to numeric series, a character time series is also
provided, with the types ORDTVarchar2Series and
ORDTVarchar2SeriesIOTRef.
 Time Series Concepts 2-15

Interfaces to Time Series and Time Scaling Functions
 qualifier_value VARCHAR2(4000)
);

The attributes of the ORDTNumSeriesIOTRef type are as follows:

■ name is the name of the time series.

■ cal is a REF to the calendar.

■ table_name is the fully qualified name of the flat IOT.

■ tstamp_colname is the name of tstamp column in the flat IOT.

■ value_colname is the name of the value column in the flat IOT (for example, close
for the closing price).

■ qualifier_colname is the name of the column that identifies a time series instance
(for example, ticker).

■ qualifier_value is the value of the column that identifies a time series instance
(for example, ACME, which is the ticker for Acme Corporation).

In the Time Series cartridge usage demo, the view stockdemo_ts uses the reference-
based interface to time series functions. The stockdemo_ts view determines which
calendar should be coupled with the time series by accessing the calendar
(stockdemo_calendars) and metadata (stockdemo_metadata) tables. The pricing data is
accessed through the underlying table containing historical time series pricing data
(stockdemo). For an illustration of the relationship between the reference-based view
and the underlying tables in the Time Series cartridge usage demo, see Figure 1–1
in Chapter 1.

The stockdemo_ts view is defined as follows:

CREATE OR REPLACE VIEW stockdemo_ts(ticker,open,high,low,close,volume) AS
 SELECT meta.tickername,
 ORDSYS.ORDTNumSeriesIOTRef(
 substr(meta.tickername, 1, 230) || ’ open NumSeries’,
 Ref(cal), ’ordtdev.stockdemo’,
 ’tstamp’, ’open’, ’ticker’, meta.tickername),
 ORDSYS.ORDTNumSeriesIOTRef(
 substr(meta.tickername, 1, 230) || ’ high NumSeries’,
 Ref(cal), ’ordtdev.stockdemo’,
 ’tstamp’, ’high’, ’ticker’, meta.tickername),
 ORDSYS.ORDTNumSeriesIOTRef(
 substr(meta.tickername, 1, 230) || ’ low NumSeries’,
 Ref(cal), ’ordtdev.stockdemo’,
 ’tstamp’, ’low’, ’ticker’, meta.tickername),
 ORDSYS.ORDTNumSeriesIOTRef(
2-16 Oracle8 Time Series Cartridge User’s Guide

Interfaces to Time Series and Time Scaling Functions
 substr(meta.tickername, 1, 230) || ’ close NumSeries’,
 Ref(cal), ’ordtdev.stockdemo’,
 ’tstamp’, ’close’, ’ticker’, meta.tickername),
 ORDSYS.ORDTNumSeriesIOTRef(
 substr(meta.tickername, 1, 230) || ’ volume NumSeries’,
 Ref(cal), ’ordtdev.stockdemo’,
 ’tstamp’, ’volume’, ’ticker’, meta.tickername)
 FROM stockdemo_metadata meta, stockdemo_calendars cal
 WHERE meta.calendarname = cal.name;

Depending on which column is selected, a different literal value is applied as an
attribute of the ORDTNumSeriesIOTRef type. For example, for the following query:

SELECT ORDSYS.TimeSeries.Mavg(close,
 to_date(’02-DEC-96’,’DD-MON-YY’),
 to_date(’31-DEC-96’,’DD-MON-YY’),
 10)
FROM ORDTDEV.stockdemo_ts
WHERE ticker=’ACME’;

The literal value close is used as the value_colname column name. The other
attributes of the ORDTNumSeriesIOTRef type include the timestamp column name
(tstamp), a qualifying column name (ticker), and the actual value of the qualifying
column (meta.tickername).

The implementation of time series functions uses the information stored in the
ORDTNumSeriesIOTRef type to generate the appropriate dynamic SQL statement
at runtime. Using the preceding example, to instantiate a time series object (that is,
to convert an ORDTNumSeriesIOTRef to an ORDTNumSeries), the Mavg function
generates a query that performs the following action (with the logic shown, not the
exact syntax):

SELECT tstamp, close
FROM ordtdev.stockdemo_ts
WHERE ticker=’ACME’ and tstamp BETWEEN <a date range adjusted
 to reflect the 10-day window and the
 calendar, including any holidays>;

The Mavg function computes the moving average and returns the result as a time
series instance (ORDTNumSeries). For more information about the Mavg function,
see Section 2.8.9.
 Time Series Concepts 2-17

Consistency of Time Series Data
2.6 Consistency of Time Series Data
Most time series and time scaling functions rely on calendars that are consistent
with time series data.1 By assuming a time series is consistent with its calendar,
time series and time scaling functions can use the calendar as a basis for navigation
of time series data.

Time series consistency must be maintained; otherwise, functions might raise
exceptions or return incorrect results.

2.6.1 Rules for Time Series Consistency
For a time series to be consistent, the following must be true:

■ All timestamps are sorted in ascending sequence.

■ There are no duplicate timestamps.

■ All timestamps match the precision of the calendar.

■ No timestamps are beyond the bounds of the calendar (minDate and maxDate).

■ All timestamps conform to the pattern specification, except those listed in the
off-exceptions list or the on-exceptions list.

■ The time series data is contiguous. That is, between the smallest (earliest) and
largest (latest) timestamps in the time series, the time series data contains
timestamps for all valid calendar timestamps.

If some mechanism is not used to enforce these consistency rules, accidental or
malicious actions could destroy the integrity of the time series data. For example, a
user might delete rows from the middle of the time series, rather than being
restricted to deleting rows at the beginning and the end of the date range for the
time series.

2.6.2 Enforcing Time Series Consistency with Security Views
Enforcing time series consistency can be accomplished with a security view. A secu-
rity view is a relational view of time series data that uses INSTEAD OF triggers to
maintain time series consistency. (For an explanation of INSTEAD OF triggers, see
the Oracle8 Server Concepts manual.) The security view is intended to be used for
limited or moderate insert, update, and delete operations; it is not intended for
bulk changes to time series data.

1 An exception is the Fill function, which can be used to add pairs of timestamps and values to
make a time series consistent with the calendar.
2-18 Oracle8 Time Series Cartridge User’s Guide

Consistency of Time Series Data
The cartridge demo (see Section 1.6) includes a security view defined in the file
demo/usage/securevw.sql. This security view:

■ enables view updates to be propagated to the underlying table

■ ensures that the underlying table can only be updated using a view mecha-
nism, provided that users are granted update access to the security view and
not granted update access to the underlying table

■ ensures that update, delete, and insert operations affecting time series data are
constrained to conform to the calendar associated with the time series

■ purifies timestamps to match the precision of the calendar

2.6.2.1 Precision
Timestamps are purified to match the precision of the calendar. For example, for a
calendar with a day frequency, any hour, minute, and second values in the input
timestamp are set to zero. Only purified timestamps are inserted into a time series,
and timestamps are purified if necessary before insert and delete operations.

2.6.2.2 INSTEAD OF Triggers
INSTEAD OF triggers enforce rules on insert, delete, and update operations. These
rules maintain time series data that conforms to the associated calendar.

For insert operations, the following rules apply:

■ For an empty time series, the new timestamp must be a valid date in the calen-
dar.

■ For a non-empty time series, an insertion is allowed immediately after the last
timestamp or immediately before the first timestamp, but nowhere else.

For delete operations, the following rules apply:

■ For an empty time series, an exception is raised.

■ For a non-empty time series, only the first or last timestamp can be deleted.

For update operations, the following rules apply:

■ The timestamp must exist in the time series.

■ Updates are not allowed to the timestamp and qualifier columns (for example,
tstamp and ticker in the usage demo security view).

INSTEAD OF triggers in a security view enable you to ensure that a time series
meets the consistency requirements described in Section 2.6.1.
 Time Series Concepts 2-19

Calendar Functions
INSTEAD OF triggers allow for multiple timestamps to be inserted or deleted in a
single query, given that the group of timestamps inserted or deleted are in the
proper order. For example, a specified number of timestamps can be deleted from
the beginning of a time series by using a simple range restriction on the timestamp.
A specified number of timestamps can be inserted at the end of a time series by
using a subquery that references another table containing time series data.

2.6.3 Bulk Loading and Consistency
The SQL*Loader utility is useful for loading large amounts of data into a table. For
better performance, you should perform bulk loads on underlying tables instead of
on security views. However, after you load data into the tables, you must ensure
time series consistency by using one of the following approaches:

■ Adjust calendars to be consistent with the time series.

If you are sure that all timestamps are correct, it is safe to adjust the calendar to
be consistent with the time series. This strategy is normally appropriate when
there is a unique calendar per time series.

The DeriveExceptions function is useful for adjusting a calendar to be consis-
tent with the time series.

■ Validate that each time series is consistent with the calendar.

If you expect time series data to adhere to a predefined calendar, validating
each time series is the better approach. This approach is particularly useful if
the same calendar is used for all time series data being loaded.

The IsValidTimeSeries function can be used to check if the time series is consis-
tent with the calendar.

For better performance in the case of a shared calendar for all time series, you
may want to customize time series validation using PL/SQL. This involves
writing custom utility functions that call Time Series cartridge product-devel-
oper calendar functions (see Section 2.7.2) to test and maintain time series con-
sistency.

Section 3.2 contains additional information and examples of bulk and incremental
loading of time series data.

2.7 Calendar Functions
The Time Series cartridge provides calendar functions for querying and modifying
calendars. The calendar functions can be divided into the following categories:
2-20 Oracle8 Time Series Cartridge User’s Guide

Calendar Functions
■ End-user functions allow application developers to use the main calendar-
related features of the Time Series cartridge.

■ Product-developer functions allow developers to modify or supplement the Time
Series cartridge capabilities by creating value-added enhancements.

Reference information for all calendar functions is in Chapter 4.

2.7.1 End-User Functions
End-user functions let you use the main calendar-related features of the Time
Series cartridge. If you do not need to modify or expand the Time Series cartridge
capabilities, you probably can limit your use of calendar functions to those listed in
Table 2–3.

2.7.2 Product-Developer Functions
Product-developer functions let you modify and expand the Time Series cartridge
capabilities. For example, you could use product-developer calendar functions in
creating a new function that modified the information returned for the moving
average or that returned a net present value for a portfolio of stocks at a specified
date.

Table 2–3 End-User Calendar Functions

Function Description

 Calendar-Related Functions

EqualCals Returns 1 if the two calendars are equivalent. If a date range is
provided, tests only equivalence between the supplied dates.

IntersectCals Intersects two calendars.

UnionCals Returns the union of two calendars.

ValidateCal Validates a calendar; repairs errors where possible.

 Exception-Related Functions

InsertExceptions Inserts a list of timestamps into the appropriate exceptions
list(s).

DeleteExceptions Deletes a list of timestamps from the appropriate exceptions
list(s).
 Time Series Concepts 2-21

Calendar Functions
Table 2–4 lists the product-developer calendar functions.

For an example of using product-developer functions, see Section 3.4.

Note: It is recommended that you not modify the functions pro-
vided with the Time Series cartridge. If you want a function with a
behavior different from an existing function, create a new function
with a different name or put the function in a different package, or
do both. For example, if you work for XYZ Corporation and create
a modified moving average function, you could name the function
MavgXYZ and put it in a package named XYZPackage.

Table 2–4 Product-Developer Calendar Functions

Function Description

 Calendar-Related Functions

CombineCals Combines two calendars. Similar to IntersectCals, except
patterns must be identical.

 Exception-Related Functions

NumOffExceptions Returns the number of off-exceptions between two dates.

NumOnExceptions Returns the number of on-exceptions between two dates.

 Date and Index-Related Functions

IsValidDate Determines if a supplied date is valid.

OffsetDate Returns a date which is k dates in the future (or k in the
past if k is negative) of the supplied date.

NumInvalidTstampsBetween Returns the number of invalid timestamps between two
dates.

NumTstampsBetween Returns the number of valid timestamps between two
dates.

TstampsBetween Returns the valid timestamps between two dates.

InvalidTstampsBetween Returns the invalid timestamps between two dates.

SetPrecision Sets the precision of the input timestamp to correspond to
the input frequency.
2-22 Oracle8 Time Series Cartridge User’s Guide

Time Series Functions
2.8 Time Series Functions
Time series functions operate on a time series. A time series type is always used as
the input parameter to a time series function.

Reference information for all time series functions is in Chapter 5.

2.8.1 Time Series Datatypes
Time series functions are defined over datatypes that contain a calendar and a col-
lection. The Time Series cartridge provides the following time series datatypes.
(Calendar datatypes are described in Section 2.2.2.)

CREATE TYPE ORDSYS.ORDTNumCell AS OBJECT
 (tstamp DATE, value NUMBER);

CREATE TYPE ORDSYS.ORDTNumTab AS TABLE OF
 ORDSYS.ORDTNumCell;

CREATE TYPE ORDSYS.ORDTNumSeries AS OBJECT
 (
 name VARCHAR2(256),
 cal ORDSYS.ORDTCalendar,
 series ORDSYS.ORDTNumTab
);

CREATE TYPE ORDSYS.ORDTNumSeriesIOTRef AS OBJECT
 (
 name VARCHAR2(256),
 cal REF ORDSYS.ORDTCalendar,
 table_name VARCHAR2(256),
 tstamp_colname VARCHAR2(30),
 value_colname VARCHAR2(30),
 qualifier_colname VARCHAR2(30),
 qualifier_value VARCHAR2(4000)
);

CREATE TYPE ORDSYS.ORDTVarchar2Cell AS OBJECT
 (tstamp DATE, value VARCHAR2(4000));

CREATE TYPE ORDSYS.ORDTVarchar2Tab AS TABLE OF
 ORDSYS.ORDTVarchar2Cell;

CREATE TYPE ORDSYS.ORDTVarchar2Series AS OBJECT
 (
 Time Series Concepts 2-23

Time Series Functions
 name VARCHAR2(256),
 cal ORDSYS.ORDTCalendar,
 series ORDSYS.ORDTVarchar2Tab
);

CREATE TYPE ORDSYS.ORDTVarchar2SeriesIOTRef AS OBJECT
 (
 name VARCHAR2(256),
 cal REF ORDSYS.ORDTCalendar,
 table_name VARCHAR2(256),
 tstamp_colname VARCHAR2(30),
 value_colname VARCHAR2(30),
 qualifier_colname VARCHAR2(30),
 qualifier_value VARCHAR2(4000)
);

CREATE TYPE ORDSYS.ORDTDateTab AS TABLE OF DATE;

The preceding statements show the definition of a numeric time series and a charac-
ter time series (instance-based and reference-based interfaces), each composed of a
calendar instance and a collection. The collection (ORDTxxxTab) is defined as a
table of ORDTxxxCell (except for ORDTDateTab, which is a table of DATE). Time
Series cartridge datatypes, such as ORDTNumSeries and ORDTVarchar2Series, are
input and output parameters of time series functions.

2.8.2 Conventions and Semantics
For time series functions that accept two time series, both time series must be
defined on calendars that have the same frequency and the same pattern. The calen-
dars may have different exceptions lists and different starting and ending dates.

2.8.2.1 Semantics of Null Operands
A number of time series functions perform arithmetic, comparison, and grouping
operations. When nulls are encountered in this context, the default behavior is to
mirror SQL:

■ Group functions ignore nulls. When all values encountered are null, a null is
returned.

For example, the sum of (1, NULL, NULL, 3) returns 4. The sum of (NULL,
NULL, NULL, NULL) returns null.
2-24 Oracle8 Time Series Cartridge User’s Guide

Time Series Functions
■ Functions that operate on time series ignore nulls, but return a null if all values
encountered are null. Such functions include Mavg (Moving Average) and
Msum (Moving Sum)

For example, if there are 5 nulls in the last 30 timestamps for (and including) a
specific date, the 30-day moving average on that date is computed using only
25 values (that is, adding only the non-null values and dividing by 25). How-
ever, if all 30 dates (the date and the 29 previous dates) have nulls, the moving
average for that date is null.

■ Any arithmetic expression containing a null returns a null.

For example, 10 + NULL returns null.

■ A comparison operator that encounters a null returns a null.

For example, a GT comparison of 30-Jun-1997 and null returns null.

Note that because PL/SQL does not implement UNKNOWN, these semantics
are slightly different than the SQL treatment of comparisons with nulls. In
SQL, a comparison operator that encounters a null returns UNKNOWN, which
is like a null, except that operations on UNKNOWN return UNKNOWN.

■ Scaleup functions return a null if all timestamps for a scaling interval contain
nulls.

For example, if you are scaling up daily data from 01-Jan-1997 through 30-Jun-
1997 to monthly data, and if there are no values for the month of February, a
null is returned for February and scaled data is returned for the other months.
(Note that this behavior differs from the standard GROUP BY scaling in SQL,
in which February would be missing in the scaled results.)

Some functions allow alternate semantics in the form of an option. The reference
information for each function describes any alternate semantics options.

2.8.2.2 Semantics of Off-Exception Operands
In comparisons of two time series, it is possible that a timestamp valid for one time
series is not valid for the other time series. Operations on two time series having
similar calendars return a time series that is defined over a new calendar. This new
calendar is derived from the two input calendars, using all of the following:

■ the union of the off-exceptions

■ the intersection of the on-exceptions

■ bounded by [min(maxDate1, maxDate2), max(minDate1, minDate2)]
 Time Series Concepts 2-25

Time Series Functions
For example, assume the following two calendars:

■ Calendar 1: 01-Jan-1997 through 01-Dec-1997; daily pattern ’0,1,1,1,1,1,0’ (Mon-
day through Friday), off-exception 01-May; on-exceptions 29-Mar and 29-Jun.

■ Calendar 2: 01-Feb-1997 through 01-Jan-1998; daily pattern ’0,1,1,1,1,1,0’ (Mon-
day through Friday), off-exceptions 01-May and 14-Jul; on-exceptions 29-Jun
and 28-Sep.

The new (derived) calendar is: 01-Feb-1997 through 01-Dec-1997; daily pattern
’0,1,1,1,1,1,0’ (Monday through Friday), off-exceptions 01-May and 14-Jul; on-excep-
tion 29-Jun.

2.8.3 Extraction, Retrieval, and Trim Functions
Time series extraction, retrieval, and trim functions operate on any time series type.
Extraction functions return one or more time series rows, while retrieval and trim
functions return a time series.

Table 2–5 lists the extraction functions.

Table 2–5 Extraction Functions

Function Description

DeriveExceptions Returns a calendar populated with exceptions derived from
either a calendar and a table of dates or two time series.

ExtractCal Returns a calendar that is the same as the calendar on which the
time series is based.

ExtractDate Gets the date from an element in a time series.

ExtractTable Returns the time series table (ORDTNumTab or
ORDTVarchar2Tab) associated with a time series.

ExtractValue Gets the value stored in an element in a time series.

First Gets the first element in a time series.

GetDatedElement Gets the element of a time series at a supplied date.

GetNthElement Gets the Nth element of a time series.

Last Gets the last element in a time series.
2-26 Oracle8 Time Series Cartridge User’s Guide

Time Series Functions
Table 2–6 lists the retrieval and trim functions.

2.8.4 Shift Functions
Shift functions lead or lag a time series by a specified number of units, where units
reflects the frequency of the calendar for the time series.

2.8.5 SQL Formatting Functions
When called from a SQL SELECT expression, a time series function returns an
instance of a time series datatype, which is not displayable. The SQL formatting
functions facilitate format conversions that allow time series to be displayed.

Table 2–6 Retrieval and Trim Functions

Function Description

FirstN Gets the first n elements in a time series.

GetSeries Returns the entire time series.

LastN Gets the last n elements in a time series.

TrimSeries Returns the time series data between the supplied dates.

Table 2–7 Shift Functions

Function Description

Lead Leads a time series by the specified number of units.

Lag Lags a time series by the specified number of units.

Table 2–8 SQL Formatting Functions

Function Description

ExtractCal Given a time series, returns a calendar that is the same as the
calendar on which the time series is based.

ExtractDate Given an element in a time series, returns the date.

ExtractTable Given a time series, returns the time series table
(ORDTNumTab or ORDTVarchar2Tab) associated with the
time series.

ExtractValue Given an element in a time series, returns the value stored in it.
 Time Series Concepts 2-27

Time Series Functions
2.8.6 Aggregate Functions
Aggregate functions return scalar or ORDTNumTab values. Each aggregate func-
tion can be used in either of the following ways:

■ The function accepts a numeric time series, ORDTNumSeries, and operates on
all elements of the collection.

■ The function accepts a numeric time series, ORDTNumSeries, and a date range,
bounded by date1 and date2. The function is computed on the time series
defined by the date range.

Thus, each aggregate function is of the form:

f(ts ORTDNumSeries, [date1 DATE, date2 DATE])

2.8.7 Arithmetic Functions
Arithmetic functions accept two time series (ORDTNumSeries1,ORDTNumSeries2)
or a time series and a constant (ORDTNumSeries1, Const), and perform a pairwise
arithmetic operation on each element of the time series. This operation determines
the value of each element of the returned time series:

Table 2–9 Aggregate Functions

Function Returns

TSAvg Average (mean) of a time series

TSCount Number of elements in a time series

TSMax Maximum value of a time series

TSMaxN Specified number of top (highest) values in a time series

TSMedian Middle element of a time series

TSMin Minimum value of a times series

TSMinN Specified number of bottom (lowest) values in a time series

TSProd Product of the elements of a time series

TSStddev Standard deviation (square root of VAR)

TSSum Sum of the elements of a time series

TSVariance Variance (analogous to the SQL group function VAR)
2-28 Oracle8 Time Series Cartridge User’s Guide

Time Series Functions
Algorithm for f(ts1, ts2)
ForAll i, tsRet(i) = ts1(i) op ts2(i);

2.8.8 Cumulative Sequence Functions
Cumulative sequence functions operate on successive elements of a time series,
accumulating the result into the current element of the output time series. For
example, CSUM((1,2,3,4,5)) => (1,3,6,10,15). In this example, the result time series
(f(i)), is computed from the input time series (I(i)) as follows:

f(1) = I(1)
ForAll i > 1, f(i) = f(i - 1) + I(i)

2.8.9 Moving Average and Sum Functions
The Moving Average (Mavg) function returns a time series that contains the aver-
ages of values from each successive timestamp for a specified interval over a range
of dates. For example, the 30-day moving average for a stock is the average of the
closing price for the specified date and the 29 trading days preceding it.

Table 2–10 Arithmetic Functions

Function Description

TSAdd Time series addition

TSDivide Time series division

TSMultiply Time series multiplication

TSSubtract Time series subtraction

Table 2–11 Cumulative Sequence Functions

Function Returns

Cavg Cumulative average

Cmax Cumulative maximum

Cmin Cumulative minimum

Cprod Cumulative product

Csum Cumulative sum
 Time Series Concepts 2-29

Time Series Functions
The Moving Sum (Msum) function returns a sum of values from each successive
timestamp for a specified interval over a range of dates. For example, the 30-day
moving sum of trading volumes for a stock is the sum of the volume for the speci-
fied date and for 29 trading days preceding it.

The relationship between the input and output time series in the computation of a
moving average or sum is illustrated in Figure 2–5. The figure focuses on the com-
mon invocation of moving average or sum, where k is the number of timestamps in
the look-back window (for example, 30) and a date range (startDate and endDate) is
supplied. (For more information about the parameters, see the Mavg function
description in Chapter 5.)

Figure 2–5 Relationship of Input and Output Time Series in Moving Average/Sum

2.8.10 Conversion Functions
Conversion functions fill missing elements of a numeric time series (ORDTNum-
Series). Missing elements are those where their timestamps are defined by the cal-
endar and are in the range of the current time series, but they are not currently in
the time series.

Table 2–12 Moving Average and Sum Functions

Function Returns

Mavg Moving average

Msum Moving sum

. . .

endDatestartDate

f(x)1
NU−3692A−RA

Input Time Series

Output Time Series

 k
2-30 Oracle8 Time Series Cartridge User’s Guide

Time Scaling Functions
2.9 Time Scaling Functions
The Time Series cartridge provides functions to scale up time series data. Scaleup
functions produce summary information from finer granularity information, for
example, monthly data based on daily data. Scaleup is also known as rollup.

The relationship between the input and output time series in a scaleup operation is
illustrated in Figure 2–6, which shows a mapping when scaling from a daily fre-
quency to a monthly frequency.

Figure 2–6 Time Scaling from Daily to Monthly Frequency

Figure 2–6 shows all days in February being mapped to the month of February.
This mapping also suggests the importance of the precision of timestamps of differ-
ent frequencies. In the example shown in this figure:

■ The month timestamp for February 1997 is represented as 1-FEB-97 00:00:00.

■ The day timestamps for February 1997 are represented as 1-FEB-97 00:00:00, 2-
FEB-97 00:00:00,... 28-FEB-97 00:00:00.

Table 2–13 Conversion Functions

Function Description

Fill Fills a time series based on the calendar and fill type.

NU−3693A−RA

1−FEB−97 1−MAR−97

1 2 3 28
 Time Series Concepts 2-31

Time Scaling Functions
Two interfaces to time scaling are supported: the collection-based interface (opera-
tions on collections) and the GROUP BY interface (SQL GROUP BY clause).
Section 2.9.1 discusses the collection-based interface for time scaling, and
Section 2.9.2 discusses the GROUP BY interface.

2.9.1 Time Scaling on Collections
The scaleup functions accept as input a numeric time series and a destination calen-
dar. A numeric time series is returned, which is scaled based on the destination cal-
endar.

For example, the following statement returns the last closing prices for stock
SAMCO for the months of October, November, and December of 1996:

select * from the
 (select cast(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.ScaleupLast(
 ts.close,
 sc.calendar,
 to_date(’01-OCT-1996’,’DD-MON-YYYY’),
 to_date(’01-JAN-1997’,’DD-MON-YYYY’)
)
) as ORDSYS.ORDTNumTab)
 from ordtdev.stocks_ts ts, ordtdev.scale sc
 where ts.ticker=’SAMCO’ and
 sc.name =’MONTHLY’);

This example might produce the following output:

Note: Scaledown functions are not included in the initial release,
but they are planned for a future release. Scaledown functions gen-
erate finer-granularity information from coarser-granularity infor-
mation. For example, quarterly data can be converted to a daily
time series.

Note: You should use the collection-based interface for most time
scaling queries. Although the GROUP BY interface is useful for cer-
tain advanced queries (see Section 2.9.2), the collection-based inter-
face offers much better performance in most cases.
2-32 Oracle8 Time Series Cartridge User’s Guide

Time Scaling Functions
TSTAMP VALUE
--------- ----------
01-OCT-96 42.375
01-NOV-96 38.25
01-DEC-96 39.75
3 rows selected.

Note that each timestamp reflects the first date of the month in the calendar (follow-
ing the rules explained in Section 2.2.1), and each value in this case reflects the clos-
ing price on the last date for that month in the calendar.

Scaleup functions ignore nulls. For example, ScaleupAvg returns a time series
reflecting the average value of each scaled group of non-null values.

2.9.2 Time Scaling in the GROUP BY Clause
Time scaling in the GROUP BY clause supports statements such as the following:

SELECT sum(volume), max(high), min(low)
FROM StockTab, CalendarTab cal
WHERE ticker = ’XYZ’ AND cal.name = ’Monthly’
GROUP BY ORDSYS.TimeSeries.Scaleup(tstamp, cal)

This statement scans the daily data stored in StockTab, and sums the volume
attribute on a monthly basis. The calendar to be scaled up to is a parameter of the
Scaleup function, and is extracted from a table of calendars, CalendarTab, which is
of the form:

CREATE TABLE CalendarTab of ORDTCalendar;

Table 2–14 Scaleup Functions for Collections

Function Description

ScaleupAvg Returns the average value of each group.

ScaleupCount Returns the count of timestamps in each group.

ScaleupSum Returns the sum of each group.

ScaleupMin Returns the minimum of each group.

ScaleupMax Returns the maximum of each group.

ScaleupFirst Returns the first value of each group.

ScaleupLast Returns the last value of each group.
 Time Series Concepts 2-33

Time Scaling Functions
The Scaleup function accepts a timestamp and a calendar, and returns a timestamp.
If the input timestamp is a valid timestamp of the calendar, the input timestamp is
returned; otherwise, the closest timestamp in that calendar that precedes the input
timestamp is returned.

Only SQL aggregate functions are supported in the GROUP BY interface.
2-34 Oracle8 Time Series Cartridge User’s Guide

 Time Series U
3

Time Series Usage

This chapter explains important procedures related to using the Oracle8 Time
Series Cartridge. It covers the following topics:

■ using the cartridge (major steps)

■ loading time series data

■ deriving calendar exceptions from time series data

■ using product-developer functions

3.1 Using the Cartridge
This section provides a technical overview of using the Time Series cartridge. It pre-
sents the major steps, with examples.

For more detailed explanations of the concepts and terminology, see Chapter 2.

3.1.1 Step 1: Create the Underlying Storage (Table)
Create the table to hold the time series data. Example 3–1 shows the table definition
for a stock trading database.

Example 3–1 Create a Stock Data Table

/* Table Creation (user) */

CREATE TABLE stockdemo
 (ticker VARCHAR2(5),
 tstamp DATE,
 open NUMBER,
 high NUMBER,
 low NUMBER,

1

sage 3-1

Using the Cartridge
 close NUMBER,
 volume INTEGER,
 CONSTRAINT pk_stockdemo PRIMARY KEY (ticker, tstamp))
 ORGANIZATION INDEX;

Notes on Example 3–1:

The table is named stockdemo and has the columns for the ticker (stock symbol),
the timestamp (date on which stocks are traded), that day’s opening, high, low,
and closing prices, and the trading volume.

The constraint named pk_stockdemo defines the primary key as the ticker plus
the timestamp.

ORGANIZATION INDEX indicates that this is an index-organized table.

The CREATE TABLE statement can also include other keywords, such as
TABLESPACE and STORAGE.

3.1.2 Step 2: Define a Calendar
If the calendar does not already exist, create it by inserting its definition in a table
of calendars. If the table of calendars does not already exist, create it first.

Your calendar will be based on the system-defined datatype ORDTCalendar, which
is supplied with the cartridge. ORDTCalendar has the following definition:

/* System-Defined Calendar Datatype */

CREATE TYPE ORDSYS.ORDTCalendar AS OBJECT (
 caltype INTEGER,
 name VARCHAR2(256),
 frequency INTEGER,
 pattern ORDSYS.ORDTPattern,
 minDate DATE,
 maxDate DATE,
 offExceptions ORDSYS.ORDTExceptions,
 onExceptions ORDSYS.ORDTExceptions);

The following example creates a table named stockdemo_calendars and defines a cal-
endar named BusinessDays. The BusinessDays calendar includes Mondays through
Fridays in 1997, but excludes 04-Jul-1997 and 25-Dec-1997. Explanatory notes fol-
low the example.

2
3

1

2

3

3-2 Oracle8 Time Series Cartridge User’s Guide

Using the Cartridge
Example 3–2 Create a Calendar of Business Days

CREATE TABLE stockdemo_calendars of ORDSYS.ORDTCalendar;

INSERT INTO stockdemo_calendars
VALUES(
 ORDSYS.ORDTCalendar(
 0,
 ‘BusinessDays’,
 4,
 ORDSYS.ORDTPattern(ORDTPatternBits(0,1,1,1,1,1,0),
 (to_date(‘01-05-97’,’MM-DD-YY’))),
 to_date(‘01-01-97’,’MM-DD-YY’),
 to_date(‘01-01-98’,’MM-DD-YY’),
 ORDSYS. ORDTExceptions(to_date(‘07-04-97’,’MM-DD-YY’),
 to_date(‘12-25-97’,’MM-DD-YY’)),
 NULL));

Notes on Example 3–2:

stockdemo_calendars is a table of ORDSYS.ORDTCalendar objects. The ORDTCal-
endar datatype is described in Section 2.2.2.

0 (zero) for calendar type (caltype) indicates that this is an exception-based cal-
endar. (This is the only calendar type currently supported.)

BusinessDays is the name of this calendar.

4 is the frequency code for day.

The pattern is defined as an excluded occurrence followed by five included
occurrences followed by an excluded occurrence (0,1,1,1,1,1,0). Because the
frequency is daily and because the anchor date (05-Jan-1997) is a Sunday, Sun-
days are excluded, Mondays through Fridays are included, and Saturdays are
excluded.

The calendar begins at the start of 01-Jan-1997 and ends at the start of 01-Jan-
1998.

04-Jul-1997 and 25-Dec-1997 are off-exceptions (that is, excluded from the calen-
dar).

NULL indicates that there are no on-exceptions (that is, no Saturday or Sunday
dates to be included in the calendar).

1

2
3

4
5

6

7

8

1

2

3

4

5

6

7

8

 Time Series Usage 3-3

Using the Cartridge
3.1.3 Step 3: Load Time Series Data
Perform a bulk load of the time series data in order to populate the underlying data
storage tables. Follow the guidelines and instructions for bulk loading in
Section 3.2.

3.1.4 Step 4: Create a Security View and INSTEAD OF Triggers
Create a security view and INSTEAD OF triggers, to ensure the consistency and
integrity of time series data, as explained in Section 2.6.2.

Example 3–3 creates a security view (stockdemo_sv) to get all ticker values.

Example 3–3 Create a Security View

CREATE OR REPLACE VIEW stockdemo_sv AS SELECT * FROM stockdemo;

After you create the view, create INSTEAD OF triggers using the definitions in the
securevw.sql demo file as examples or templates. Example 3–4 creates an
INSTEAD OF trigger (stockdemo_sv_delete) that ensures the following:

■ An exception is raised if a delete operation is attempted on an empty time
series.

■ For a non-empty time series, a delete operation is allowed on either the first or
last timestamp in an existing series.

If you grant users access to the security view and deny access to the underlying
tables, you can ensure that all delete operations are checked and performed by the
trigger. (Similar INSTEAD OF triggers can be written to allow safe insert and
update operations. For more information about using INSTEAD OF triggers with
security views, see Section 2.6.2.2.)

Example 3–4 Create an INSTEAD OF Trigger

CREATE OR REPLACE TRIGGER stockdemo_sv_delete
 INSTEAD OF DELETE on stockdemo_sv
 REFERENCING old AS o
 FOR EACH row
 DECLARE
 cal ORDSYS.ORDTCalendar := NULL;
 purifieddate DATE;
 startdate DATE;
 enddate DATE;
 BEGIN
 --
3-4 Oracle8 Time Series Cartridge User’s Guide

Using the Cartridge
 -- Retrieve the calendar that maps to the stock ticker.
 --
 BEGIN
 SELECT VALUE(c) INTO cal
 FROM stockdemo_calendars c, stockdemo_metadata m
 WHERE m.tickername = :o.ticker AND c.name = m.calendarname;
 EXCEPTION
 when NO_DATA_FOUND THEN
 raise_application_error(-20000,’Could not find calendar’);
 END;
 IF cal IS null THEN
 raise_application_error(-20000, ’NULL calendar found’);
 END IF;
 --
 -- Set the precision of timestamp to correspond to the precision
 -- of the calendar.
 --
 purifieddate := ORDSYS.Calendar.SetPrecision(:o.tstamp,cal.frequency);
 --
 -- Retrieve the current startdate AND enddate for the stock ticker;
 --
 SELECT max(tstamp),min(tstamp) INTO enddate,startdate
 FROM stockdemo_sv
 WHERE ticker = :o.ticker;
 --
 -- There are three cases of deletion to consider:
 --
 -- Case 1: The table does not have any existing time series
 -- entries for the given ticker. In this case the
 -- trigger raises an exception.
 --
 -- Case 2: The tstamp is equal to the current startdate.
 -- This routine verifies this and then deletes
 -- the row.
 --
 -- Case 3: The tstamp is equal to the current enddate.
 -- This routine verifies this and then deletes the row.
 --
 -- If the time series is not empty and if the row being
 -- deleted is not the startdate or enddate, an exception
 -- is raised.
 --
 IF startdate IS null THEN
 raise_application_error(-20000,’Timeseries is empty’);
 ELSE
 Time Series Usage 3-5

Using the Cartridge
 IF (NOT ((purifieddate = startdate) or (purifieddate = enddate))) THEN
 raise_application_error(-20000, ’Timestamp date not startdate or
 enddate’);
 END IF;
 END IF;
 --
 -- Delete the row in the time series.
 --
 DELETE FROM stockdemo
 WHERE ticker = :o.ticker AND
 tstamp = purifieddate;
 END;
--
-- Next, create two other triggers: one update-specific (for
-- example, stockdemo_sv_update) and the other insert-specific
-- (for example, stockdemo_sv_insert). See the Time Series
-- cartridge usage demo for an example.
-- After creating all appropriate triggers, grant SELECT, DELETE,
-- UPDATE, and INSERT privileges on the security view to the
-- appropriate users. For example:
--
GRANT SELECT,DELETE,UPDATE,INSERT on stockdemo_sv TO ordtuser;

3.1.5 Step 5: Create a Reference-Based View
Create a reference-based view for convenient and efficient access to time series
data, as explained in Section 2.5.2.

Example 3–5 creates a reference-based view for stock price data.

Example 3–5 Create a Reference-Based View

CREATE VIEW stockdemo_ts(ticker,open,high,low,close,volume) AS
 SELECT meta.tickername,
 ORDSYS.ORDTNumSeriesIOTRef(
 substr(meta.tickername, 1, 230) || ’ open NumSeries’,
 Ref(cal), ’ORDTDEV.stockdemo’,
 ’tstamp’, ’open’, ’ticker’, meta.tickername),
 ORDSYS.ORDTNumSeriesIOTRef(
 substr(meta.tickername, 1, 230) || ’ high NumSeries’,
 Ref(cal), ’ORDTDEV.stockdemo’,
 ’tstamp’, ’high’, ’ticker’, meta.tickername),
 ORDSYS.ORDTNumSeriesIOTRef(
 substr(meta.tickername, 1, 230) || ’ low NumSeries’,
 Ref(cal), ’ORDTDEV.stockdemo’,
3-6 Oracle8 Time Series Cartridge User’s Guide

Using the Cartridge
 ’tstamp’, ’low’, ’ticker’, meta.tickername),
 ORDSYS.ORDTNumSeriesIOTRef(
 substr(meta.tickername, 1, 230) || ’ close NumSeries’,
 Ref(cal), ’ORDTDEV.stockdemo’,
 ’tstamp’, ’close’, ’ticker’, meta.tickername),
 ORDSYS.ORDTNumSeriesIOTRef(
 substr(meta.tickername, 1, 230) || ’ volume NumSeries’,
 Ref(cal), ’ORDTDEV.stockdemo’,
 ’tstamp’, ’volume’, ’ticker’, meta.tickername)
 FROM stockdemo_metadata meta, stockdemo_calendars cal
 WHERE meta.calendarname = cal.name;

The refvw.sql demo file creates a reference-based view.

3.1.6 Step 6: Validate Time Series Consistency
Choose one of the following approaches to ensuring the consistency of time series
data, using the guidelines in Section 2.6.3:

■ Adjust calendars to be consistent with the time series.

Use the DeriveExceptions function in adjusting a calendar to be consistent with
the time series. See Section 2.2.4 for more information about this approach.

■ Validate that each time series is consistent with the calendar.

Use the IsValidTS function to check that the time series is consistent with the
calendar. See the IsValidTS function reference information in Chapter 5.

3.1.7 Step 7: Formulate Time Series Queries
Formulating time series queries involves invoking time series or time scaling func-
tions, or both. Example 3–6 uses the Mavg time series function to obtain 30-day
moving averages for stock ACME, and it uses the ScaleupSum time scaling func-
tion to obtain monthly volumes for stock ACME. (The results shown in the exam-
ple reflect sample data for the cartridge usage demo.)

The queries in this step use the reference-based view (stockdemo_ts) that was cre-
ated in step 6.

Example 3–6 Formulate Time Series Queries

SELECT * FROM THE(
 SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Mavg(close,
 to_date(’11-01-96’,’MM-DD-YY’),
 Time Series Usage 3-7

Using the Cartridge
 to_date(’12-31-96’,’MM-DD-YY’),
 10))
 as ORDSYS.ORDTNumtab)
 FROM stockdemo_ts
 WHERE ticker = ’ACME’);

TSTAMP VALUE
--------- ----------
01-NOV-96
04-NOV-96
05-NOV-96
06-NOV-96
07-NOV-96
08-NOV-96
11-NOV-96
12-NOV-96
13-NOV-96
14-NOV-96 63.5
15-NOV-96 64.5
18-NOV-96 65.5
19-NOV-96 66.5
20-NOV-96 67.5
21-NOV-96 68.5
22-NOV-96 69.5
25-NOV-96 70.5
26-NOV-96 71.5
27-NOV-96 72.5
29-NOV-96 73.5
02-DEC-96 74.5
03-DEC-96 75.5
04-DEC-96 76.5
05-DEC-96 77.5
06-DEC-96 78.5
09-DEC-96 79.5
10-DEC-96 80.5
11-DEC-96 81.5
12-DEC-96 82.5
13-DEC-96 83.5
16-DEC-96 84.5
17-DEC-96 85.5
18-DEC-96 86.5
19-DEC-96 87.5
20-DEC-96 88.5
23-DEC-96 89.5
24-DEC-96 90.5
3-8 Oracle8 Time Series Cartridge User’s Guide

Loading Time Series Data
26-DEC-96 91.5
27-DEC-96 92.5
30-DEC-96 93.5
31-DEC-96 94.5
41 rows selected.

SELECT * FROM THE(
 SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.ScaleupSum(volume,value(cal)))
 as ORDSYS.ORDTNumtab)
 FROM stockdemo_ts, stockdemo_calendars cal
 WHERE ticker = ’ACME’ AND cal.name = ’MONTHLY’);

TSTAMP VALUE
--------- ----------
01-NOV-96 20000
01-DEC-96 21000
2 rows selected.

3.2 Loading Time Series Data
This section describes how to use the SQL*Loader utility to perform bulk loading
and incremental loading of time series data.

To ensure the consistency of time series data during loading, you must choose one
of the approaches described in Section 2.6.3:

■ Adjust calendars to be consistent with the time series, if you are sure that all
timestamps are correct.

This strategy is normally appropriate when there is a unique calendar per time
series.

■ Validate that each time series is consistent with the calendar, if you expect time
series data to adhere to a predefined calendar.

This approach is particularly useful if the same calendar is used for all time
series data being loaded.

This section describes how to perform bulk loading using these two approaches,
and it also describes how to perform incremental loading.

The loading of time series data is usually performed under controlled circum-
stances, so it is safe to perform these loads directly to an underlying table instead of
to a security view.
 Time Series Usage 3-9

Loading Time Series Data
3.2.1 Bulk Loading
After you create an index-organized table (IOT) to hold time series data (such as for
the stockdemo demo database), you must populate the table with data. For a data-
base of stock information, you may need to load millions of rows of daily summary
information into the IOT.

SQL*Loader is recommended for loading large amounts of time series data. The fol-
lowing example shows a SQL*Loader script, with an excerpt from the sample data
(stockdat.dat) and the SQL*Loader control file (stockdat.ctl). For complete informa-
tion about SQL*Loader, see the Oracle8 Server Utilities manual.

The SQL*Loader script contains the following:

% sqlldr userid=ordtdev/ordtdev control=stockdat.ctl
 log=stockdat.log bad=stockdat.bad errors=1000

The stockdat.dat sample data file includes the following:

ACME 01-NOV-96 59.00 60.00 58.00 59.00 1000
ACME 04-NOV-96 60.00 61.00 59.00 60.00 1000
ACME 05-NOV-96 61.00 62.00 60.00 61.00 1000
 ...
The stockdat.ctl file contains the following

options (direct=true)
unrecoverable
load data
infile ’stockdat.dat’
replace
into table stockdemo
sorted indexes (StockTabx)
fields terminated by whitespace
(ticker, tstamp DATE(13) "DD-MON-YY", open, high, low, close, volume)

SQL*Loader can handle many file formats and delimiters, as documented in the
Oracle8 Utilities manual.

After the load has completed, you may want to choose one of the following
approaches for ensuring calendar consistency:

■ Adjust calendars to conform to time series data (see Section 3.2.1.1).

■ Validate that the time series conforms to the calendar (see Section 3.2.1.2).

In either case, you may need to update the exception lists of your calendars.
3-10 Oracle8 Time Series Cartridge User’s Guide

Loading Time Series Data
3.2.1.1 Adjusting Calendars to Conform to Time Series Data
Often you will want to create calendars that conform to the time series data that
you are receiving. In this case, you usually know the frequency and the pattern of a
calendar, but not the specific on- or off-exceptions. You can extract these exceptions
from the data by using the DeriveExceptions function.

3.2.1.2 Validating That the Time Series Conforms to the Calendar
Often you will want to ensure that the time series data extracted from the incoming
data conforms to a predefined calendar. To do this, insert the exceptions either
when you create the calendar or afterward with the InsertExceptions functions (or
do both, creating the calendar with some exceptions and then adding others); then
use the IsValidTimeSeries function to check that the time series is consistent with
the calendar.

You can insert exceptions when you define the calendar. For example, the follow-
ing statement specifies 28-Nov-1996 and 25-Dec-1996 as off-exceptions in the calen-
dar named BUSINESS-96:

INSERT INTO stockdemo_calendars VALUES(
 ORDSYS.ORDTCalendar(
 0,
 ’BUSINESS-96’,
 4,
 ORDSYS.ORDTPattern(
 ORDSYS.ORDTPatternBits(0,1,1,1,1,1,0),
 TO_DATE(’01-JAN-1995’,’DD-MON-YYYY’)),
 TO_DATE(’01-JAN-1990’,’DD-MON-YYYY’),
 TO_DATE(’01-JAN-2001’,’DD-MON-YYYY’),
 ORDSYS.ORDTExceptions(
 TO_DATE(’28-NOV-1996’,’DD-MON-YYYY’),
 TO_DATE(’25-DEC-1996’,’DD-MON-YYYY’)),
 ORDSYS.ORDTExceptions()
));

You can also add exceptions after the calendar is defined by using the InsertExcep-
tions function. For example, the following statement adds 01-Jan-1997, 17-Feb-1997,
and 26-May-1997 as off-exceptions:

UPDATE stockdemo_calendars cal
 SET cal = (SELECT ORDSYS.Calendar.InsertExceptions(
 VALUE(cal),
 ORDSYS.ORDTDateTab(
 to_date(’01-JAN-97’,’DD-MON-YY’),
 to_date(’17-FEB-97’,’DD-MON-YY’),
 Time Series Usage 3-11

Loading Time Series Data
 to_date(’26-MAY-97’,’DD-MON-YY’)))
 FROM dual)
WHERE cal.name = ’BUSINESS-96’;

After you have defined the calendar and populated the exception lists, you can use
the IsValidTimeSeries function to check that the time series is consistent with the
calendar.

3.2.2 Incremental Loading
After you have performed the bulk load of time series data and have started using
the Time Series cartridge, you will probably want to add data periodically. For
example, every trading day after the stock exchange closes, that day’s data for each
ticker becomes available.

As with bulk loading, incremental loading is typically done in a controlled environ-
ment. You know which timestamps will become off-exceptions, and you can explic-
itly update the exception lists of the appropriate calendars. The following example
demonstrates such an update:

UPDATE stockdemo_calendars cal
 SET cal = (SELECT ORDSYS.Calendar.InsertExceptions(
 VALUE(cal),
 to_date(’01-JAN-97’,’DD-MON-YY’))
 FROM dual)
 WHERE cal.name = ’XCORP’;

The SQL*Loader utility is recommended for performing an incremental load of
such additional data. The following example shows a SQL*Loader script, with an
excerpt from the sample daily data (stockinc.dat) and the SQL*Loader control file
(stockinc.ctl).

The SQL*Loader script contains the following:

sqlldr userid=ordtdev/ordtdev control=stockinc.ctl
 log=stockinc.log bad=stockinc.bad errors=1000

The stockinc.dat sample data file includes the following:

ACME 02-JAN-97 100.00 101.00 99.00 100.00 1000
FUNCO 02-JAN-97 25.00 25.00 25.00 25.00 2000
SAMCO 02-JAN-97 39.00 40.00 38.00 39.50 30000
 ...

The stockinc.ctl file contains the following:
3-12 Oracle8 Time Series Cartridge User’s Guide

Deriving Calendar Exceptions
load data
infile ’stockinc.dat’
append
into table stockdemo
fields terminated by whitespace
(ticker, tstamp DATE(13) "DD-MON-YY", open, high, low, close, volume)

Note the following differences in the control file for incremental loading as
opposed to bulk loading:

■ The conventional path is used instead of the direct path. That is, the control file
for incremental loading does not contain the line options (direct=true).

The conventional path is better for incremental loading because the amount of
new data (daily stock information) is small relative to the total amount of data.
For an explanation of conventional and direct paths, including situations in
which the conventional path is necessary or preferable, see the SQL*Loader
documentation in the Oracle8 Server Utilities manual.

■ The APPEND keyword is specified, so that the new data is appended to the
existing tabular data.

3.3 Deriving Calendar Exceptions
This section explains in greater detail the two approaches to deriving calendar
exceptions from time series data. These two approaches were introduced in
Section 2.2.4; see that section for information on concepts related to exceptions and
the reasons for choosing a particular approach.

3.3.1 Deriving Exceptions Using a Calendar and Table of Dates (Approach 1)
The first approach to deriving exceptions takes a calendar and an ORDTDateTab
(that is, a table of dates) as input parameters, using the following form of the func-
tion:

DeriveExceptions(cal ORDTCalendar, DateTab ORDTDateTab)

The table of dates (DateTab parameter) includes all dates in the time series, for
example, all dates on which stock XYZ traded. A calendar is returned that is
defined on the same pattern and frequency as the input calendar, and the exception
lists of the returned calendar are populated to be consistent with the time series
data in DateTab. The exception lists are updated based on finding timestamps that
are in the calendar pattern or in the table of dates, but not in both. (A timestamp is
in the calendar pattern if it is within the date range of the calendar and maps to an
on (1) bit in the pattern.)
 Time Series Usage 3-13

Deriving Calendar Exceptions
The returned calendar’s on- and off- exceptions are populated based on the calen-
dar pattern and the table of dates, as follows:

■ All timestamps that are in the calendar pattern but not in the table of dates
become off-exceptions.

For example, 04-Jul-1997 (Friday) is in the pattern of a stock trading calendar,
but it is not a date on which U.S. stocks were traded.

■ All timestamps that are in the table of dates but are not in the calendar pattern
become on-exceptions.

The following example derives the exceptions for all time series in the stockdemo
table and updates the corresponding calendars in the stockdemo_calendars table:

UPDATE stockdemo_calendars cal
 SET cal = (SELECT ORDSYS.Calendar.DeriveExceptions(
 VALUE(cal),
 CAST(multiset(
 SELECT s.tstamp
 FROM stockdemo s
 WHERE cal.name = s.ticker) AS ORDSYS.ORDTDateTab))
 FROM dual);

This approach (Approach 1) to deriving calendar exceptions has the following
requirements:

■ The input table of dates must be sorted in ascending timestamp order before
the call to the DeriveExceptions function.

■ The precision of the timestamps of the dates in the table must conform to the
frequency of the input calendar.

3.3.2 Deriving Exceptions Using Two Time Series Parameters (Approach 2)
The second approach to deriving exceptions takes two time series references as
input parameters, using the following form of the function:

DeriveExceptions(series1 ORDTNumSeriesIOTRef,

 series2 ORDTNumSeriesIOTRef)

or

DeriveExceptions(series1 ORDTVarchar2SeriesIOTRef,

 series2 ORDTVarchar2SeriesIOTRef)
3-14 Oracle8 Time Series Cartridge User’s Guide

Deriving Calendar Exceptions
This overloading of the DeriveExceptions function allows the input parameters to
be time series REFs (either two ORDTNumSeriesIOTRef parameters or two
ORDTVarchar2SeriesIOTRef parameters).

Before calling DeriveExceptions, you must construct a time series based on a refer-
ence calendar. This time series will contain all the timestamps within the date
range (minDate through maxDate) of the calendar.

The following example builds a reference time series based on a calendar named
PATTERN-ONLY. An INSERT statement populates the time series named PAT-
TERN-ONLY with the valid timestamps between the starting and ending dates of
the calendar.

INSERT INTO stocks(ticker,tstamp)
SELECT ’PATTERN-ONLY’,
 t1.c1
 FROM
 (SELECT column_value c1 FROM the
 (SELECT CAST(ORDSYS.Calendar.TimeStampsBetween(VALUE(cal),
 cal.mindate,
 cal.maxdate)
 AS ORDSYS.ORDTDateTab)
 FROM stock_calendars cal
 WHERE cal.name = ’PATTERN-ONLY’)) t1;

The insertion is made directly into the underlying table, not into the security view.
Using the underlying table is safe here because the time series is presumed to be
correct, so the mechanisms for ensuring consistency between the time series and
the calendar provided by the security view are not needed in this case.

The PATTERN-ONLY calendar should have no exceptions. If this calendar has any
exceptions, the resulting time series will have non-null exception lists, which will
cause the DeriveExceptions function to report an error.

After you create the reference time series, call the DeriveExceptions function with
the reference time series as the first parameter (series1). DeriveExceptions compares
the dates in series1 with the dates in series2, and it returns the calendar of series1
with the exceptions created as follows:

■ All timestamps that are in series1 but not in series2 become off-exceptions.

For example, if series2 contains dates on which stock XYZ traded and 04-Jul-
1997 (Friday) is not in that time series, then 04-Jul-1997 is added to the calendar
as an off-exception.

■ All timestamps that are in series2 but not in series1 become on-exceptions.
 Time Series Usage 3-15

Using Product-Developer Functions
The following example uses the reference time series created in the preceding state-
ment to update the exception lists of every other calendar in the stockdemo_calendars
table, with the exceptions for each calendar derived from the timestamps in the
associated time series. (This example assumes that each calendar maps to a time
series with the same name.)

UPDATE stockdemo_calendars cal
 SET cal = (SELECT ORDSYS.TimeSeries.DeriveExceptions(ts1.open,ts2.open)
 FROM stocks_ts ts1, stocks_ts ts2
 WHERE ts1.ticker = ’PATTERN-ONLY’ and ts2.ticker = cal.name)
WHERE cal.name <> ’PATTERN-ONLY’;

This approach (Approach 2) to deriving calendar exceptions has the following
requirements:

■ The input parameters to the DeriveExceptions function must be either two
ORDTNumSeriesIOTRef parameters or two ORDTVarchar2SeriesIOTRef
parameters. ORDTNumSeries and ORDTVarchar2Series variants are not sup-
ported for this function.

■ Calendars of the time series input parameters must have the same frequency
and pattern.

■ The first time series parameter (PATTERN-ONLY time series) must have no
exceptions.

■ The starting date (minDate) of the calendar of the second time series must be
greater (later) than or equal to the starting date of the calendar of the first time
series.

■ The ending date (maxDate) of the calendar of the second time series must be
less (earlier) than or equal to the ending date of the calendar of the first time
series.

3.4 Using Product-Developer Functions
Product-developer functions, described in Section 2.7.2, let you modify and expand
the Time Series cartridge capabilities. For example, an ISV could develop addi-
tional time series analysis functions by calling product-developer functions.

The following example shows the use of the IsValidDate, NumTstampsBetween,
and OffsetDate product-developer functions in a PL/SQL implementation of the
Lead function. The Lead function inputs a time series and a lead_date, and returns
a time series where the starting timestamp is the lead_date. (Note that to simplify
the presentation, some error checking has been omitted.)
3-16 Oracle8 Time Series Cartridge User’s Guide

Using Product-Developer Functions
create function Lead (ts ORDSYS.ORDTNumSeries, lead_date date)
 return ORDSYS.ORDTNumSeries is
i integer;
outts ORDSYS.ORDTNumSeries; /* Temporary Storage for Result */
new_tstamp date; /* Changeable version of lead_date */
last_lead_date date; /* Last timestamp of the output time series*/
first_tstamp date; /* First timestamp of
 the input time series */
last_index integer; /* Last index of the input time series */
last_tstamp date; /* Last timestamp of the input time series */
units integer; /* Number of timestamps between input and
 output time series */

ERR_LEAD_TSTAMP_BOUNDS constant integer := 20540;
ERR_LEAD_TSTAMP_BOUNDS_MSG constant varchar2(100) :=
 ’Projected lead timestamp beyond calendar bounds’;

begin
 first_tstamp :=ts.series(1).tstamp;
 last_index :=ts.series.last;
 last_tstamp :=ts.series(last_index).tstamp;

 if ORDSYS.Calendar.IsValidDate(ts.cal, lead_date) = 0 then
 Raise_Application_Error(ERR_LEAD_TSTAMP_BOUNDS,
 ERR_LEAD_TSTAMP_BOUNDS_MSG);
 end if;

 /* units is the number of timestamps between the first timestamp of
 the input time series and lead_date. */
 units := ORDSYS.Calendar.NumTimeStampsBetween(ts.cal, first_tstamp,
 lead_date);

 last_lead_date := ORDSYS.Calendar.OffsetDate(ts.cal, last_tstamp,
 units);
 if last_lead_date is null then
 Raise_Application_Error(ERR_LEAD_TSTAMP_BOUNDS,
 ERR_LEAD_TSTAMP_BOUNDS_MSG);
 end if;

 /* Instantiate output time series. */
 outts := ORDSYS.ORDTNumSeries(’Lead Result’, ts.cal, ORDSYS.ORDTNumTab());
 outts.series.extend(last_index);

 /* Assign the first timestamp of the output time series to
 first_lead_date. Copy value from input time series to output
 Time Series Usage 3-17

Using Product-Developer Functions
 time series. */
 new_tstamp := lead_date;
 outts.series(1) := ORDSYS.ORDTNumCell(new_tstamp, ts.series(1).value);

 /* Assign subsequent timestamps by calling OffsetDate with the
 previous date and an offset of 1. */
 for i in 2..outts.series.last loop
 new_tstamp := ORDSYS.Calendar.OffsetDate(ts.cal,
 outts.series(i-1).tstamp, 1);
 outts.series(i) := ORDSYS.ORDTNumCell(new_tstamp,
 ts.series(i).value);
 end loop;

 return(outts);
end;

For other examples of using product-developer functions, see the files for the
advanced-developer demo (described briefly in Table 1–1 in Section 1.6).
3-18 Oracle8 Time Series Cartridge User’s Guide

 Calendar Functions: Refe
4

Calendar Functions: Reference

The Oracle8 Time Series Cartridge library consists of the following:

■ datatypes (described in Section 2.2.2)

■ calendar functions (described in this chapter)

■ time series and time scaling functions (described in Chapter 5)

Two separate reference chapters are provided for the functions, because the func-
tions described in each are typically done at different times in the application devel-
opment cycle and by people performing different job roles:

■ Calendar functions are mainly used by product developers, such as ISVs, to
develop new time series functions and to administer and modify calendars.

■ Time Series and time scaling functions are used mainly by application develop-
ers and some end users after the associated calendar or calendars have been
defined.

Syntax notes:

■ The ORDSYS schema name and the package name must be used with the func-
tion name, although public synonyms can be created to eliminate the need for
specifying the schema name (see Section 1.4). Each function is included in a PL/
SQL package, such as Calendar or TimeSeries. The ORDSYS schema name and
the package name are included in the Format and in any examples.

■ Function calls are not case sensitive, except for any quoted literal values. For
example, the following code line excerpts are valid and semantically identical:

select CAST(TimeSeries.ExtractTable(close) AS ORDTNumTab)
select cast(TIMESERIES.extracttable(close) as ordtnumtab)
select cast(TiMeSeRiEs.eXtRaCtTaBlE(ClosE) As ordtNUMtab)
rence 4-1

CombineCals
CombineCals

Format
ORDSYS.Calendar.CombineCals(

cal1 ORDSYS.ORDTCalendar,

cal2 ORDSYS.ORDTCalendar,

[startDate DATE,

endDate DATE,]

equalFlag OUT INTEGER

) RETURN ORDSYS.ORDTCalendar;

Description
Combines two calendars. The CombineCals function is provided primarily for use
in developing functions that operate on two time series (such as the TSAdd func-
tion).

Parameters

cal1
The first calendar to be combined.

cal2
The second calendar to be combined.

startDate
Starting date for the resulting calendar. If startDate is not specified, the starting date
is the starting date for the calendars, or the higher (later) of the starting dates if
they are different.

endDate
Ending date for the resulting calendar. If endDate is not specified, the ending date is
the ending date for the calendars, or the lower (earlier) of the ending dates if they
are different.
4-2 Oracle8 Time Series Cartridge User’s Guide

CombineCals
equalFlag
Contains 1 if the input calendars are equal, and 0 if the input calendars are not
equal.

Usage
If the frequencies of the two calendars are not equal, the function returns NULL.

If the aligned patterns of the two calendars are not equal, the function returns
NULL.

If startDate is not specified, the starting date of the resulting calendar is the later of
the starting dates of the two calendars, that is, resulting minDate = max(minDate1,
minDate2).

If endDate is not specified, the ending date of the resulting calendar is the earlier of
the ending dates of the two calendars, that is, resulting maxDate = min(maxDate1,
maxDate2).

The function intersects the on-exception lists of the two calendars. For example, if
cal1 has 30-Mar and 29-Jun as on-exceptions and cal2 has 29-Jun and 28-Sep as on-
exceptions, the resulting calendar has only 29-Jun as an on-exception.

The function performs a union of the off-exceptions of the two calendars. For exam-
ple, if cal1 has 01-Jan and 04-Jul as off-exceptions and cal2 has 01-Jan and 14-Jul as
off-exceptions, the resulting calendar has 01-Jan, 04-Jul, and 14-Jul as off-exceptions.

CombineCals and IntersectCals differ as follows:

■ CombineCals requires the frequencies and the aligned patterns of the two cal-
endars to be equal, whereas IntersectCals requires only that the frequencies be
equal. However, IntersectCals does require that the patterns be of the same
length.

■ CombineCals lets you specify starting and ending dates for the resulting calen-
dar, whereas IntersectCals does not let you specify starting and ending dates.

Example
Combine two calendars (GENERIC-CAL1 and GENERIC-CAL2), then intersect the
two calendars:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
 Calendar Functions: Reference 4-3

CombineCals
tstCal1 ORDSYS.ORDTCalendar;
tstCal2 ORDSYS.ORDTCalendar;
resultCal ORDSYS.ORDTCalendar;
equalFlag INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select the calendars GENERIC-CAL1 into tstCal1
 -- and GENERIC-CAL2 into tstCal2
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal1
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;
 SELECT value(cal) INTO tstCal2
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL2’;

 -- Display the calendars tstCal1 and tstCal2.
 SELECT ORDSYS.TimeSeries.Display(tstCal1) INTO dummyVal FROM dual;
 SELECT ORDSYS.TimeSeries.Display(tstCal2) INTO dummyVal FROM dual;

 -- Combine tstCal1 and tstCal2
 resultCal := ORDSYS.Calendar.CombineCals(tstCal1, tstCal2, equalFlag);
 SELECT ORDSYS.TimeSeries.Display(resultCal, ’result of CombineCals’)
 INTO dummyVal
 FROM dual;
 DBMS_OUTPUT.PUT_LINE(’equalFlag = ’ || equalFlag);

 -- Intersect tstCal1 and tstCal2
 resultCal := ORDSYS.Calendar.IntersectCals(tstCal1, tstCal2);
 SELECT ORDSYS.TimeSeries.Display(resultCal, ’result of IntersectCals’)
 INTO dummyVal
 FROM dual;

END;
/

This example might produce the following output:

Calendar Name = GENERIC-CAL1
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
4-4 Oracle8 Time Series Cartridge User’s Guide

CombineCals
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

Calendar Name = GENERIC-CAL2
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1997 00:00:00
 patBits:
 1111100
 patAnchor = 01/08/1996 00:00:00
 onExceptions :
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 10/13/1996 00:00:00 11/10/1996 00:00:00 12/14/1996 00:00:00
 01/04/1997 00:00:00 02/09/1997 00:00:00 03/08/1997 00:00:00
 04/05/1997 00:00:00 05/11/1997 00:00:00 06/08/1997 00:00:00
 offExceptions :
 07/09/1996 00:00:00 08/05/1996 00:00:00 09/10/1996 00:00:00
 10/23/1996 00:00:00 11/19/1996 00:00:00 12/12/1996 00:00:00
 01/01/1997 00:00:00 02/12/1997 00:00:00 03/04/1997 00:00:00
 04/07/1997 00:00:00 05/05/1997 00:00:00 06/09/1997 00:00:00

result of CombineCals :

 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00 08/05/1996 00:00:00 09/10/1996 00:00:00
 10/23/1996 00:00:00 11/19/1996 00:00:00 12/12/1996 00:00:00
equalFlag = 0
 Calendar Functions: Reference 4-5

CombineCals
result of IntersectCals :

 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 1111100
 patAnchor = 01/08/1996 00:00:00
 onExceptions :
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00 08/05/1996 00:00:00 09/10/1996 00:00:00
 10/23/1996 00:00:00 11/19/1996 00:00:00 12/12/1996 00:00:00
4-6 Oracle8 Time Series Cartridge User’s Guide

DeleteExceptions
DeleteExceptions

Format
ORDSYS.Calendar.DeleteExceptions(

inputCal IN ORDSYS.ORDTCalendar,

delExcDate IN DATE

) RETURN ORDSYS.ORDTCalendar;

or

ORDSYS.Calendar.DeleteExceptions(

inputCal IN ORDSYS.ORDTCalendar,

delExcTab IN ORDSYS.ORDTDateTab

) RETURN ORDSYS.ORDTCalendar;

Description
Deletes from the specified calendar all exceptions that either match a specified date
(delExcDate) or are included in a table of dates (delExcTab), and returns the resulting
calendar.

Parameters

inputCal
The calendar from which one or more exceptions are to be deleted.

delExcDate
The date to be deleted from the exceptions of the calendar.

delExcTab
A table of dates to be deleted from the exceptions of the calendar.

Usage
If a date to be deleted is in either the on-exception list or off-exception list of the cal-
endar, the function deletes the date from the appropriate list.
 Calendar Functions: Reference 4-7

DeleteExceptions
If delExcDate is not in either the on-exception list or off-exception list of the calen-
dar, the function returns the input calendar with no changes.

For any date in delExcTab that is not in either the on-exception list or off-exception
list of the calendar, the function ignores the date. If no date in delExcTab is in either
the on-exception list or off-exception list of the calendar, the function returns the
input calendar with no changes.

Example
Delete some exceptions from a calendar:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDTab ORDSYS.ordtDateTab;
resultCal ORDSYS.ORDTCalendar;
dummyVal INTEGER;
relOffset INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Delete some exceptions in tstCal.
 tstDTab := ORDSYS.ORDTDateTab(
 ’01/21/1996’, -- ON Exception
 ’05/08/1996’, -- OFF Exception
 ’08/04/1996’, -- ON Exception
 ’07/09/1996’);-- OFF Exception
 SELECT ORDSYS.TimeSeries.Display(tstDTab, ’Input DateTab’)
 INTO dummyVal
 FROM dual;
 resultCal := ORDSYS.Calendar.DeleteExceptions(tstCal, tstDTab);
4-8 Oracle8 Time Series Cartridge User’s Guide

DeleteExceptions
 SELECT ORDSYS.TimeSeries.Display(resultCal) INTO dummyVal
 FROM dual;

END;
/

This example might produce the following output. The second display of informa-
tion about GENERIC-CAL1 does not include the deleted on-exceptions and off-
exceptions.

Calendar Name = GENERIC-CAL1
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

Input DateTab :

 01/21/1996 00:00:00 05/08/1996 00:00:00 08/04/1996 00:00:00
 07/09/1996 00:00:00

Calendar Name = GENERIC-CAL1
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 02/03/1996 00:00:00 03/24/1996 00:00:00 04/27/1996 00:00:00
 05/19/1996 00:00:00 06/23/1996 00:00:00 07/07/1996 00:00:00
 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 06/25/1996 00:00:00
 Calendar Functions: Reference 4-9

DisplayValCal Procedure
DisplayValCal Procedure

Format
ORDSYS.Calendar.DisplayValCal(

validFlag IN INTEGER,

outMessage IN VARCHAR2,

invOnExc IN ORDSYS.ORDTDateTab,

invOffExc IN ORDSYS.ORDTDateTab,

impOnExc IN ORDSYS.ORDTDateTab,

impOffExc IN ORDSYS.ORDTDateTab,

inputCal IN ORDSYS.ORDTCalendar,

mesg IN VARCHAR2

);

Description
Displays the results returned by the ValidateCal function.

Parameters

validFlag
The return value from the ValidateCal function call:

Note: DisplayValCal is a procedure, not a function. Procedures
do not return values.

Value Meaning

0 The calendar is valid. No errors were found.

1 Correctable errors were found and corrected. The resulting calendar is valid.

-1 Uncorrectable errors were found. The calendar is not valid.
4-10 Oracle8 Time Series Cartridge User’s Guide

DisplayValCal Procedure
outMessage
Message output by ValidateCal describing how the calendar was repaired (if the
return value = 1) or why the calendar could not be repaired (if the return
value = -1).

invOnExc
Table of the invalid on-exceptions found in the calendar.

invOffExc
Table of the invalid off-exceptions found in the calendar.

impOnExc
Table of the imprecise on-exceptions found in the calendar.

impOffExc
Table of the imprecise off-exceptions found in the calendar.

inputCal
The calendar returned by ValidateCal (repaired if necessary).

mesg
Optional message.

Usage
This procedure is intended to be used with the ValidateCal function. See the infor-
mation on ValidateCal in this chapter.

Example
Use the IsValidCal and ValidateCal functions and the DisplayValCal procedure
with an invalid calendar:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
outMessage varchar2(32750);
invOnExc ORDSYS.ORDTDateTab;
invOffExc ORDSYS.ORDTDateTab;
impOnExc ORDSYS.ORDTDateTab;
impOffExc ORDSYS.ORDTDateTab;
dummyval integer;
 Calendar Functions: Reference 4-11

DisplayValCal Procedure
validFlag integer;
tstCal1 ORDSYS.ORDTCalendar :=
 ORDSYS.ORDTCalendar(
 0,
 ’CALENDAR FOO’,
 4,
 ORDSYS.ORDTPattern(ORDSYS.ORDTPatternBits(1,1,1,1,1,0,0),
 TO_DATE(’01-08-1996 01:01:01’)),
 TO_DATE(’01-01-1975’),
 TO_DATE(’01-01-1999’),
 ORDSYS.ORDTExceptions(
 TO_DATE(’02-03-1969’), -- Date < minDate,
 TO_DATE(’02-14-1969’), -- Date < minDate,
 TO_DATE(’02-03-1999’), -- Date > maxDate,
 TO_DATE(’02-17-1999’), -- Date > maxDate,
 TO_DATE(’12-31-1995’), -- Maps to 0 in pattern (Sunday)
 TO_DATE(’01-13-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’02-24-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’03-30-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’02-02-1996 01:01:01’), -- Imprecise
 TO_DATE(’03-04-1996 01:01:01’), -- Imprecise
 TO_DATE(’04-05-1996 02:02:02’), -- Imprecise
 TO_DATE(’03-25-1996’), -- Valid off-exception
 TO_DATE(’01-22-1996’), -- Valid, but out of sequence
 TO_DATE(’02-12-1996’),
 TO_DATE(’04-30-1996’),
 NULL, -- Null date
 TO_DATE(’02-12-1996’), -- Duplicate date within OFFs
 NULL, -- Null date
 TO_DATE(’04-30-1996’), -- Duplicate off-exception
 NULL, -- Null date
 TO_DATE(’03-25-1996’), -- Duplicate off-exception
 TO_DATE(’01-22-1996’), -- Duplicate off-exception
 TO_DATE(’01-17-1996’), -- Added to on- and off-exceptions
 TO_DATE(’05-28-1996’), -- Added to on- and off-exceptions
 TO_DATE(’06-18-1996’), -- Added to on- and off-exceptions
 TO_DATE(’04-23-1996’), -- Added to on- and off-exceptions
 TO_DATE(’02-02-1996’),
 TO_DATE(’03-04-1996’),
 TO_DATE(’05-06-1997’)),
 ORDSYS.ORDTExceptions(
 TO_DATE(’02-08-1969’), -- Date < minDate,
 TO_DATE(’02-15-1969’), -- Date < minDate,
 TO_DATE(’02-13-1999’), -- Date > maxDate,
 TO_DATE(’02-20-1999’), -- Date > maxDate,
4-12 Oracle8 Time Series Cartridge User’s Guide

DisplayValCal Procedure
 TO_DATE(’01-03-1996’), -- Maps to 1 in pattern (Wednesday)
 TO_DATE(’02-19-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’03-18-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’05-27-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’03-23-1996 01:01:01’), -- Imprecise
 TO_DATE(’02-18-1996 01:01:01’), -- Imprecise
 TO_DATE(’05-26-1996 01:01:01’), -- Imprecise
 TO_DATE(’01-13-1996’), -- Valid on-exception
 TO_DATE(’01-14-1996’), -- Valid on-exception
 NULL, -- Null date
 NULL, -- Null date
 TO_DATE(’02-24-1996’), -- Valid on-exception
 TO_DATE(’03-23-1996’), -- Valid on-exception
 TO_DATE(’01-13-1996’), -- Duplicate on-exception
 TO_DATE(’01-14-1996’), -- Duplicate on-exception
 TO_DATE(’02-24-1996’), -- Duplicate on-exception
 TO_DATE(’03-23-1996’), -- Duplicate on-exception
 TO_DATE(’01-17-1996’), -- Added to on- and off-exceptions
 TO_DATE(’05-28-1996’), -- Added to on- and off-exceptions
 TO_DATE(’06-18-1996’), -- Added to on- and off-exceptions
 TO_DATE(’04-23-1996’), -- Added to on- and off-exceptions
 TO_DATE(’01-06-1996’), -- Valid, but out of sequence
 TO_DATE(’02-03-1996’),
 TO_DATE(’05-04-1997’))
);
BEGIN
 SELECT ORDSYS.TIMESERIES.Display(tstCal1, ’tstCal1’) INTO dummyval
 FROM dual;
 validFlag := ORDSYS.CALENDAR.IsValidCal(tstCal1);
 IF(validFlag = 0)
 THEN
 validFlag := ORDSYS.CALENDAR.ValidateCal(
 tstCal1, outMessage, invOnExc, invOffExc, impOnExc, impOffExc
);

 ORDSYS.TIMESERIES.DisplayValCal(
 validFlag,
 outMessage,
 invOnExc,
 invOffExc,
 impOnExc,
 impOffExc,
 tstCal1,
 ’Your Message’
);
 Calendar Functions: Reference 4-13

DisplayValCal Procedure
 END IF;
END;
/

This example might produce the following output:

tstCal1 :

Calendar Name = CALENDAR FOO
 Frequency = 4
 MinDate = 01/01/1975 00:00:00
 MaxDate = 01/01/1999 00:00:00
 patBits:
 1111100
 patAnchor = 01/08/1996 01:01:01
 onExceptions :
 02/08/1969 00:00:00 02/15/1969 00:00:00 02/13/1999 00:00:00
 02/20/1999 00:00:00 01/03/1996 00:00:00 02/19/1996 00:00:00
 03/18/1996 00:00:00 05/27/1996 00:00:00 03/23/1996 01:01:01
 02/18/1996 01:01:01 05/26/1996 01:01:01 01/13/1996 00:00:00
 01/14/1996 00:00:00
 02/24/1996 00:00:00 03/23/1996 00:00:00 01/13/1996 00:00:00
 01/14/1996 00:00:00 02/24/1996 00:00:00 03/23/1996 00:00:00
 01/17/1996 00:00:00 05/28/1996 00:00:00 06/18/1996 00:00:00
 04/23/1996 00:00:00 01/06/1996 00:00:00 02/03/1996 00:00:00
 05/04/1997 00:00:00
 offExceptions :
 02/03/1969 00:00:00 02/14/1969 00:00:00 02/03/1999 00:00:00
 02/17/1999 00:00:00 12/31/1995 00:00:00 01/13/1996 00:00:00
 02/24/1996 00:00:00 03/30/1996 00:00:00 02/02/1996 01:01:01
 03/04/1996 01:01:01 04/05/1996 02:02:02 03/25/1996 00:00:00
 01/22/1996 00:00:00 02/12/1996 00:00:00 04/30/1996 00:00:00
 02/12/1996 00:00:00
 04/30/1996 00:00:00 03/25/1996 00:00:00
 01/22/1996 00:00:00 01/17/1996 00:00:00 05/28/1996 00:00:00
 06/18/1996 00:00:00 04/23/1996 00:00:00 02/02/1996 00:00:00
 03/04/1996 00:00:00 05/06/1997 00:00:00

DisplayValCal Your Message:

TS-WRN: the input calendar has rectifiable errors. See the message for details

message output by validateCal:

TS-WRN: fixed precision of the pattern anchor date
4-14 Oracle8 Time Series Cartridge User’s Guide

DisplayValCal Procedure
TS-WRN: removed superfluous dates in the on exception list (refer invalidOnExc)
TS-WRN: fixed imprecise dates in the on exception list (refer impreciseOnExc)
TS-WRN: removed null dates in the on exception list
TS-WRN: sorted the on exceptions list
TS-WRN: removed duplicate dates in the on exceptions list
TS-WRN: removed superfluous dates in off exceptions list (refer invalidOffExc)
TS-WRN: fixed imprecise dates in the off exception list (refer impreciseOffExc)
TS-WRN: removed null dates in the off exception list
TS-WRN: sorted the off exceptions list
TS-WRN: removed duplicate dates in the off exceptions list
TS-WRN: the on exceptions list was trimmed between calendar minDate & maxDate
TS-WRN: the off exceptions list was trimmed between calendar minDate & maxDate

list of invalid on exceptions :

 01/03/1996 00:00:00 02/19/1996 00:00:00 03/18/1996 00:00:00
 05/27/1996 00:00:00 01/17/1996 00:00:00 05/28/1996 00:00:00
 06/18/1996 00:00:00 04/23/1996 00:00:00

list of invalid off exceptions :

 12/31/1995 00:00:00 01/13/1996 00:00:00 02/24/1996 00:00:00
 03/30/1996 00:00:00

list of imprecise on exceptions :

 03/23/1996 01:01:01 02/18/1996 01:01:01 05/26/1996 01:01:01
list of imprecise off exceptions :

 02/02/1996 01:01:01 03/04/1996 01:01:01 04/05/1996 02:02:02

the validated calendar :

Calendar Name = CALENDAR FOO
 Frequency = 4
 MinDate = 01/01/1975 00:00:00
 MaxDate = 01/01/1999 00:00:00
 patBits:
 1111100
 patAnchor = 01/08/1996 00:00:00
 onExceptions :
 01/06/1996 00:00:00 01/13/1996 00:00:00 01/14/1996 00:00:00
 02/03/1996 00:00:00 02/18/1996 00:00:00 02/24/1996 00:00:00
 03/23/1996 00:00:00 05/26/1996 00:00:00 05/04/1997 00:00:00
 offExceptions :
 Calendar Functions: Reference 4-15

DisplayValCal Procedure
 01/17/1996 00:00:00 01/22/1996 00:00:00 02/02/1996 00:00:00
 02/12/1996 00:00:00 03/04/1996 00:00:00 03/25/1996 00:00:00
 04/05/1996 00:00:00 04/23/1996 00:00:00 04/30/1996 00:00:00
 05/28/1996 00:00:00 06/18/1996 00:00:00 05/06/1997 00:00:00
4-16 Oracle8 Time Series Cartridge User’s Guide

EqualCals
EqualCals

Format
ORDSYS.Calendar.EqualCals(

cal1 ORDSYS.ORDTCalendar,

cal2 ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN BINARY_INTEGER;

Description
Checks if two calendars (completely or within a specified date range) are equal.

Parameters

cal1
The first calendar to be checked.

cal2
The second calendar to be checked.

startDate
Starting date for the checking. If startDate is not specified, the starting date is the
starting date for the calendars, or the higher (later) of the starting dates if they are
different.

endDate
Ending date for the checking. If endDate is not specified, the ending date is the end-
ing date for the calendars, or the lower (earlier) of the ending dates if they are dif-
ferent.

Usage
The function checks if the frequencies, off-exceptions, on-exceptions, and aligned
patterns are the same for the two calendars. If they are all the same, the function
returns 1; if they are not all the same, the function returns 0.
 Calendar Functions: Reference 4-17

EqualCals
The function does not require the calendars to have the same starting and ending
dates.

Example
Check if two calendars (GENERIC-CAL1 and GENERIC-CAL2) are equal:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal1 ORDSYS.ORDTCalendar;
tstCal2 ORDSYS.ORDTCalendar;
resultCal ORDSYS.ORDTCalendar;
equalFlag INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select the calendars GENERIC-CAL1 into tstCal1
 -- and GENERIC-CAL2 into tstCal2
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal1
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;
 SELECT value(cal) INTO tstCal2
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL2’;

 -- Display the calendars tstCal1 and tstCal2.
 SELECT ORDSYS.TimeSeries.Display(tstCal1) INTO dummyVal FROM dual;
 SELECT ORDSYS.TimeSeries.Display(tstCal2) INTO dummyVal FROM dual;

 -- Compare tstCal1 and tstCal2 for equality.
 DBMS_OUTPUT.NEW_LINE;
 equalFlag := ORDSYS.Calendar.EqualCals(tstCal1, tstCal2);
 DBMS_OUTPUT.PUT_LINE(’EqualCals(GENERIC-CAL1, GENERIC-CAL2) = ’ || equalFlag);

END;
/

This example might display the following output. In this example, the returned
value of 0 indicates that the calendars are not equal.

Calendar Name = GENERIC-CAL1
4-18 Oracle8 Time Series Cartridge User’s Guide

EqualCals
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

Calendar Name = GENERIC-CAL2
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1997 00:00:00
 patBits:
 1111100
 patAnchor = 01/08/1996 00:00:00
 onExceptions :
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 10/13/1996 00:00:00 11/10/1996 00:00:00 12/14/1996 00:00:00
 01/04/1997 00:00:00 02/09/1997 00:00:00 03/08/1997 00:00:00
 04/05/1997 00:00:00 05/11/1997 00:00:00 06/08/1997 00:00:00
 offExceptions :
 07/09/1996 00:00:00 08/05/1996 00:00:00 09/10/1996 00:00:00
 10/23/1996 00:00:00 11/19/1996 00:00:00 12/12/1996 00:00:00
 01/01/1997 00:00:00 02/12/1997 00:00:00 03/04/1997 00:00:00
 04/07/1997 00:00:00 05/05/1997 00:00:00 06/09/1997 00:00:00

EqualCals(GENERIC-CAL1, GENERIC-CAL2) = 0
 Calendar Functions: Reference 4-19

GetOffset
GetOffset

Format
ORDSYS.TimeSeries.GetOffset(

inputCal IN ORDSYS.ORDTCalendar,

origin_date IN DATE,

reference_date IN DATE

) RETURN INTEGER;

Description
Given a calendar, one date (origin_date), and another date (reference_date), returns
the number of timestamps that the second date is offset from the first.

Parameters

inputCal
The input calendar.

origin_date
Date from which the offset is to be computed.

reference_date
Date whose offset from origin_date is to be returned.

Usage
The function considers the frequency, pattern, and exceptions of the calendar.

The returned integer is positive if reference_date is one or more timestamps in the
future with respect to origin_date, and negative if it is in the past with respect to
origin_date. For example, assume that the calendar includes Mondays through Fri-
days, that 04-Jul-1997 (Friday) is an off-exception, and that 03-Jul-1997 (Thursday)
is the origin_date. If 10-Jul-1997 (Thursday) is the reference_date, the returned offset
is 4; if the reference_date is 01-Jul-1997 (Monday), the returned offset is -2.

If origin_date and reference_date are the same, the function returns 0 (zero).

An exception is returned if the calendar has an empty or null pattern.
4-20 Oracle8 Time Series Cartridge User’s Guide

GetOffset
Example
Return the offset of 05-Jun-1996 from 04-Mar-1996 in the GENERIC-CAL1 calendar:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;
DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
tstDate2 DATE;
result INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Get offset of 05-JUN-1996 from 04-MAR-1996.
 tstDate1 := TO_DATE(’04/03/1996’);
 tstDate2 := TO_DATE(’06/05/1996’);
 result := ORDSYS.Calendar.GetOffset(tstCal,tstDate1, tstDate2);
 DBMS_OUTPUT.PUT_LINE(’GetOffset(’ || tstDate1 ||’ , ’ || tstDate2
 || ’) = ’ || result);
END;
/

This example might produce the following output. In this example, 05-Jun-1996 is
45 timestamps later than 04-Mar-1996.

Calendar Name = GENERIC-CAL1
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 Calendar Functions: Reference 4-21

GetOffset
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

GetOffset(04/03/1996 00:00:00 , 06/05/1996 00:00:00) = 45
4-22 Oracle8 Time Series Cartridge User’s Guide

InsertExceptions
InsertExceptions

Format
ORDSYS.Calendar.InsertExceptions(

inputCal IN ORDSYS.ORDTCalendar,

newExcDate IN DATE

) RETURN ORDSYS.ORDTCalendar;

or

ORDSYS.Calendar.InsertExceptions(

inputCal IN ORDSYS.ORDTCalendar,

newExcTab IN ORDSYS.ORDTDateTab

) RETURN ORDSYS.ORDTCalendar;

Description
Inserts into the specified calendar all exceptions that either match a specified date
(newExcDate) or are included in a table of dates (newExcTab), and returns the result-
ing calendar.

Parameters

inputCal
The calendar into which one or more exceptions are to be inserted.

newExcDate
The date to be inserted as an exception in the calendar.

newExcTab
A table of dates to be inserted as exceptions in the calendar.

Usage
For each date to be inserted, the function inserts it in the appropriate list (off-excep-
tions or on-exceptions), according to the frequency and pattern of the calendar.
 Calendar Functions: Reference 4-23

InsertExceptions
If a date to be inserted is already an exception in the calendar, the function ignores
the request to insert the date.

If newExcDate or newExcTab is empty or null, or if all dates to be inserted already
exist in the calendar as exceptions, the function returns the input calendar with no
changes.

Example
Insert some exceptions into a calendar.

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDTab ORDSYS.ordtDateTab;
resultCal ORDSYS.ORDTCalendar;
dummyVal INTEGER;
relOffset INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Populate tstDTab with some on- and off-exceptions.
 tstDTab := ORDSYS.ORDTDateTab(
 ’02/10/1996’, -- ON Exception
 ’07/09/1996’, -- OFF Exception
 ’03/17/1996’, -- ON Exception
 ’04/08/1996’);-- OFF Exception
 SELECT ORDSYS.TimeSeries.Display(tstDTab, ’Input DateTab’)
 INTO dummyVal
 FROM dual;

 -- Insert some exceptions in tstCal.
4-24 Oracle8 Time Series Cartridge User’s Guide

InsertExceptions
 resultCal := ORDSYS.Calendar.InsertExceptions(tstCal, tstDTab);
 SELECT ORDSYS.TimeSeries.Display(resultCal) INTO dummyVal
 FROM dual;

END;
/

This example might produce the following output. The second display of informa-
tion about GENERIC-CAL1 includes the added on-exceptions and off-exceptions.

Calendar Name = GENERIC-CAL1
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

Input DateTab :

 02/10/1996 00:00:00 07/09/1996 00:00:00 03/17/1996 00:00:00
 04/08/1996 00:00:00

Calendar Name = GENERIC-CAL1
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 02/10/1996 00:00:00
 03/17/1996 00:00:00 03/24/1996 00:00:00 04/27/1996 00:00:00
 05/19/1996 00:00:00 06/23/1996 00:00:00 07/07/1996 00:00:00
 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 Calendar Functions: Reference 4-25

InsertExceptions
 04/04/1996 00:00:00 04/08/1996 00:00:00 05/08/1996 00:00:00
 06/25/1996 00:00:00 07/09/1996 00:00:00
4-26 Oracle8 Time Series Cartridge User’s Guide

IntersectCals
IntersectCals

Format
ORDSYS.Calendar.IntersectCals(

cal1 ORDSYS.ORDTCalendar,

cal2 ORDSYS.ORDTCalendar

) RETURN ORDSYS.ORDTCalendar;

Description
Returns the intersection of two calendars.

Parameters

cal1
The first calendar to be intersected.

cal2
The second calendar to be intersected.

Usage
The function performs an intersection of the two input calendars, as follows:

■ The starting date of the resulting calendar is the later of the starting dates of the
two calendars, that is, resulting minDate = max(minDate1, minDate2).

■ The ending date of the resulting calendar is the earlier of the ending dates of
the two calendars, that is, resulting maxDate = min(maxDate1, maxDate2).

■ The intersection of the aligned patterns is computed. For example, if both calen-
dars have a day frequency with Sunday as the first day, and if cal1 has a pattern
of ’0,1,1,1,1,1,0’ and cal2 has a pattern of ’0,0,1,1,1,1,1’, the resulting pattern is
’0,0,1,1,1,1,0’ (that is, the calendar includes only Tuesdays, Wednesdays, Thurs-
days, and Fridays).

■ The intersection of the on-exception lists of the two calendars is computed. For
example, if cal1 has 30-Mar and 29-Jun as on-exceptions and cal2 has 29-Jun
and 28-Sep as on-exceptions, the resulting calendar has only 29-Jun as an on-
exception.
 Calendar Functions: Reference 4-27

IntersectCals
■ The union of the off-exceptions of the two calendars is computed. For example,
if cal1 has 01-Jan and 04-Jul as off-exceptions and cal2 has 01-Jan and 14-Jul as
off-exceptions, the resulting calendar has 01-Jan, 04-Jul, and 14-Jul as off-excep-
tions.

If the frequencies of the two calendars are not equal, the function returns NULL.

Contrast this function with UnionCals, which performs a union of two calendars.

IntersectCals and CombineCals differ as follows:

■ CombineCals requires the frequencies and the aligned patterns of the two cal-
endars to be equal, whereas IntersectCals requires only that the frequencies be
equal. However, IntersectCals does require that the patterns be of the same
length.

■ CombineCals lets you specify starting and ending dates for the resulting calen-
dar, whereas IntersectCals does not let you specify starting and ending dates.

Example
Combine two calendars (GENERIC-CAL1 and GENERIC-CAL2), then intersect the
two calendars:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal1 ORDSYS.ORDTCalendar;
tstCal2 ORDSYS.ORDTCalendar;
resultCal ORDSYS.ORDTCalendar;
equalFlag INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select the calendars GENERIC-CAL1 into tstCal1
 -- and GENERIC-CAL2 into tstCal2
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal1
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;
 SELECT value(cal) INTO tstCal2
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL2’;
4-28 Oracle8 Time Series Cartridge User’s Guide

IntersectCals
 -- Display the calendars tstCal1 and tstCal2.
 SELECT ORDSYS.TimeSeries.Display(tstCal1) INTO dummyVal FROM dual;
 SELECT ORDSYS.TimeSeries.Display(tstCal2) INTO dummyVal FROM dual;

 -- Combine tstCal1 and tstCal2.
 resultCal := ORDSYS.Calendar.CombineCals(tstCal1, tstCal2, equalFlag);
 SELECT ORDSYS.TimeSeries.Display(resultCal, ’result of CombineCals’)
 INTO dummyVal
 FROM dual;
 DBMS_OUTPUT.PUT_LINE(’equalFlag = ’ || equalFlag);

 -- Intersect tstCal1 and tstCal2.
 resultCal := ORDSYS.Calendar.IntersectCals(tstCal1, tstCal2);
 SELECT ORDSYS.TimeSeries.Display(resultCal, ’result of IntersectCals’)
 INTO dummyVal
 FROM dual;

END;
/

This example might produce the following output:

Calendar Name = GENERIC-CAL1
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

Calendar Name = GENERIC-CAL2
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1997 00:00:00
 patBits:
 1111100
 patAnchor = 01/08/1996 00:00:00
 Calendar Functions: Reference 4-29

IntersectCals
 onExceptions :
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 10/13/1996 00:00:00 11/10/1996 00:00:00 12/14/1996 00:00:00
 01/04/1997 00:00:00 02/09/1997 00:00:00 03/08/1997 00:00:00
 04/05/1997 00:00:00 05/11/1997 00:00:00 06/08/1997 00:00:00
 offExceptions :
 07/09/1996 00:00:00 08/05/1996 00:00:00 09/10/1996 00:00:00
 10/23/1996 00:00:00 11/19/1996 00:00:00 12/12/1996 00:00:00
 01/01/1997 00:00:00 02/12/1997 00:00:00 03/04/1997 00:00:00
 04/07/1997 00:00:00 05/05/1997 00:00:00 06/09/1997 00:00:00

result of CombineCals :

 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00 08/05/1996 00:00:00 09/10/1996 00:00:00
 10/23/1996 00:00:00 11/19/1996 00:00:00 12/12/1996 00:00:00
equalFlag = 0

result of IntersectCals :

 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 1111100
 patAnchor = 01/08/1996 00:00:00
 onExceptions :
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00 08/05/1996 00:00:00 09/10/1996 00:00:00
 10/23/1996 00:00:00 11/19/1996 00:00:00 12/12/1996 00:00:00
4-30 Oracle8 Time Series Cartridge User’s Guide

InvalidTimeStampsBetween
InvalidTimeStampsBetween

Format
ORDSYS.Calendar.InvalidTimeStampsBetween(

inputCal IN ORDSYS.ORDTCalendar,

startDate IN DATE,

endDate IN DATE

) RETURN ORDSYS.ORDTDateTab;

Description
Given starting and ending input timestamps, returns a table (ORDTDateTab) con-
taining the invalid timestamps within that range according to the specified calen-
dar.

Parameters

inputCal
The calendar to be used to determine whether a timestamp is valid or invalid.

startDate
Starting date in the range to be checked for invalid timestamps.

endDate
Ending date in the range to be checked for invalid timestamps.

Usage
A timestamp is invalid if any of the following conditions is true:

■ It is outside the date range of the calendar.

■ It is an off-exception in the calendar.

■ It is imprecise (for example, a timestamp of 02-Jul-1997 if the calendar fre-
quency is month).

■ It is null.

startDate and endDate are included in the check for invalid timestamps.
 Calendar Functions: Reference 4-31

InvalidTimeStampsBetween
If there are no invalid timestamps in the date range, the function returns an empty
ORDTDateTab.

If startDate is greater (later) than endDate, an exception is raised.

Contrast this function with TimeStampsBetween, which returns a table containing
the valid timestamps in a date range.

Example
Return a table of invalid timestamps between 03-Mar-1996 and 03-Jun-1996 in the
GENERIC-CAL1 calendar:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
tstDate2 DATE;
resultDTab ORDSYS.ordtDateTab;
dummyVal INTEGER;
relOffset INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Get all the invalid timestamps between 03-MAR-1996 and 03-JUN-1996.
 tstDate1 := TO_DATE(’03/03/1996’);
 tstDate2 := TO_DATE(’06/03/1996’);
 resultDTab := ORDSYS.Calendar.InvalidTimeStampsBetween
 (tstCal, tstDate1, tstDate2);
 SELECT ORDSYS.TimeSeries.Display(resultDTab, ’InValid timestamps’)
 INTO dummyVal
 FROM dual;
4-32 Oracle8 Time Series Cartridge User’s Guide

InvalidTimeStampsBetween
END;
/

This example might produce the following output:

Calendar Name = GENERIC-CAL1
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

InValid timestamps :

 03/03/1996 00:00:00 03/05/1996 00:00:00 03/09/1996 00:00:00
 03/10/1996 00:00:00 03/16/1996 00:00:00 03/17/1996 00:00:00
 03/23/1996 00:00:00 03/30/1996 00:00:00 03/31/1996 00:00:00
 04/04/1996 00:00:00 04/06/1996 00:00:00 04/07/1996 00:00:00
 04/13/1996 00:00:00 04/14/1996 00:00:00 04/20/1996 00:00:00
 04/21/1996 00:00:00 04/28/1996 00:00:00 05/04/1996 00:00:00
 05/05/1996 00:00:00 05/08/1996 00:00:00 05/11/1996 00:00:00
 05/12/1996 00:00:00 05/18/1996 00:00:00 05/25/1996 00:00:00
 05/26/1996 00:00:00 06/01/1996 00:00:00 06/02/1996 00:00:00
 Calendar Functions: Reference 4-33

IsValidCal
IsValidCal

Format
ORDSYS.Calendar.IsValidCal(

inputCal IN ORDSYS.ORDTCalendar

) RETURN BINARY_INTEGER

Description
Returns 1 if the calendar is valid and 0 if the calendar is not valid.

Parameters

inputCal
The calendar to be checked for validity.

Usage
A calendar is invalid (not valid) if it contains any errors. This function does not cor-
rect any errors or perform any repair operations on the calendar.

Contrast this function with the ValidateCal function, which checks the validity of
the calendar and repairs any correctable errors. For detailed information on calen-
dar errors, see the information on ValidateCal in this chapter.

If the IsValidCal function returns 0, you should do the following before you
attempt to use the calendar:

1. Use the ValidateCal function to repair any correctable errors.

2. If there are any errors that ValidateCal cannot correct, correct these errors your-
self.

3. Repeat steps 1 and 2 as often as necessary until the resulting calendar is valid.

Example
Use the IsValidCal and ValidateCal functions and the DisplayValCal procedure
with an invalid calendar:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
4-34 Oracle8 Time Series Cartridge User’s Guide

IsValidCal
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
outMessage varchar2(32750);
invOnExc ORDSYS.ORDTDateTab;
invOffExc ORDSYS.ORDTDateTab;
impOnExc ORDSYS.ORDTDateTab;
impOffExc ORDSYS.ORDTDateTab;
dummyval integer;
validFlag integer;
tstCal1 ORDSYS.ORDTCalendar :=
 ORDSYS.ORDTCalendar(
 0,
 ’CALENDAR FOO’,
 4,
 ORDSYS.ORDTPattern(ORDSYS.ORDTPatternBits(1,1,1,1,1,0,0),
 TO_DATE(’01-08-1996 01:01:01’)),
 TO_DATE(’01-01-1975’),
 TO_DATE(’01-01-1999’),
 ORDSYS.ORDTExceptions(
 TO_DATE(’02-03-1969’), -- Date < minDate,
 TO_DATE(’02-14-1969’), -- Date < minDate,
 TO_DATE(’02-03-1999’), -- Date > maxDate,
 TO_DATE(’02-17-1999’), -- Date > maxDate,
 TO_DATE(’12-31-1995’), -- Maps to 0 in pattern (Sunday)
 TO_DATE(’01-13-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’02-24-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’03-30-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’02-02-1996 01:01:01’), -- Imprecise
 TO_DATE(’03-04-1996 01:01:01’), -- Imprecise
 TO_DATE(’04-05-1996 02:02:02’), -- Imprecise
 TO_DATE(’03-25-1996’), -- Valid off-exception
 TO_DATE(’01-22-1996’), -- Valid, but out of sequence
 TO_DATE(’02-12-1996’),
 TO_DATE(’04-30-1996’),
 NULL, -- Null date
 TO_DATE(’02-12-1996’), -- Duplicate date within OFFs
 NULL, -- Null date
 TO_DATE(’04-30-1996’), -- Duplicate off-exception
 NULL, -- Null date
 TO_DATE(’03-25-1996’), -- Duplicate off-exception
 TO_DATE(’01-22-1996’), -- Duplicate off-exception
 TO_DATE(’01-17-1996’), -- Added to on- and off-exceptions
 TO_DATE(’05-28-1996’), -- Added to on- and off-exceptions
 TO_DATE(’06-18-1996’), -- Added to on- and off-exceptions
 Calendar Functions: Reference 4-35

IsValidCal
 TO_DATE(’04-23-1996’), -- Added to on- and off-exceptions
 TO_DATE(’02-02-1996’),
 TO_DATE(’03-04-1996’),
 TO_DATE(’05-06-1997’)),
 ORDSYS.ORDTExceptions(
 TO_DATE(’02-08-1969’), -- Date < minDate,
 TO_DATE(’02-15-1969’), -- Date < minDate,
 TO_DATE(’02-13-1999’), -- Date > maxDate,
 TO_DATE(’02-20-1999’), -- Date > maxDate,
 TO_DATE(’01-03-1996’), -- Maps to 1 in pattern (Wednesday)
 TO_DATE(’02-19-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’03-18-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’05-27-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’03-23-1996 01:01:01’), -- Imprecise
 TO_DATE(’02-18-1996 01:01:01’), -- Imprecise
 TO_DATE(’05-26-1996 01:01:01’), -- Imprecise
 TO_DATE(’01-13-1996’), -- Valid on-exception
 TO_DATE(’01-14-1996’), -- Valid on-exception
 NULL, -- Null date
 NULL, -- Null date
 TO_DATE(’02-24-1996’), -- Valid on-exception
 TO_DATE(’03-23-1996’), -- Valid on-exception
 TO_DATE(’01-13-1996’), -- Duplicate on-exception
 TO_DATE(’01-14-1996’), -- Duplicate on-exception
 TO_DATE(’02-24-1996’), -- Duplicate on-exception
 TO_DATE(’03-23-1996’), -- Duplicate on-exception
 TO_DATE(’01-17-1996’), -- Added to on- and off-exceptions
 TO_DATE(’05-28-1996’), -- Added to on- and off-exceptions
 TO_DATE(’06-18-1996’), -- Added to on- and off-exceptions
 TO_DATE(’04-23-1996’), -- Added to on- and off-exceptions
 TO_DATE(’01-06-1996’), -- Valid, but out of sequence
 TO_DATE(’02-03-1996’),
 TO_DATE(’05-04-1997’))
);
BEGIN
 SELECT ORDSYS.TIMESERIES.Display(tstCal1, ’tstCal1’) INTO dummyval
 FROM dual;
 validFlag := ORDSYS.CALENDAR.IsValidCal(tstCal1);
 IF(validFlag = 0)
 THEN
 validFlag := ORDSYS.CALENDAR.ValidateCal(
 tstCal1, outMessage, invOnExc, invOffExc, impOnExc, impOffExc
);

 ORDSYS.TIMESERIES.DisplayValCal(
4-36 Oracle8 Time Series Cartridge User’s Guide

IsValidCal
 validFlag,
 outMessage,
 invOnExc,
 invOffExc,
 impOnExc,
 impOffExc,
 tstCal1,
 ’Your Message’
);
 END IF;
END;
/

This example might produce the following output:

tstCal1 :

Calendar Name = CALENDAR FOO
 Frequency = 4
 MinDate = 01/01/1975 00:00:00
 MaxDate = 01/01/1999 00:00:00
 patBits:
 1111100
 patAnchor = 01/08/1996 01:01:01
 onExceptions :
 02/08/1969 00:00:00 02/15/1969 00:00:00 02/13/1999 00:00:00
 02/20/1999 00:00:00 01/03/1996 00:00:00 02/19/1996 00:00:00
 03/18/1996 00:00:00 05/27/1996 00:00:00 03/23/1996 01:01:01
 02/18/1996 01:01:01 05/26/1996 01:01:01 01/13/1996 00:00:00
 01/14/1996 00:00:00
 02/24/1996 00:00:00 03/23/1996 00:00:00 01/13/1996 00:00:00
 01/14/1996 00:00:00 02/24/1996 00:00:00 03/23/1996 00:00:00
 01/17/1996 00:00:00 05/28/1996 00:00:00 06/18/1996 00:00:00
 04/23/1996 00:00:00 01/06/1996 00:00:00 02/03/1996 00:00:00
 05/04/1997 00:00:00
 offExceptions :
 02/03/1969 00:00:00 02/14/1969 00:00:00 02/03/1999 00:00:00
 02/17/1999 00:00:00 12/31/1995 00:00:00 01/13/1996 00:00:00
 02/24/1996 00:00:00 03/30/1996 00:00:00 02/02/1996 01:01:01
 03/04/1996 01:01:01 04/05/1996 02:02:02 03/25/1996 00:00:00
 01/22/1996 00:00:00 02/12/1996 00:00:00 04/30/1996 00:00:00
 02/12/1996 00:00:00
 04/30/1996 00:00:00 03/25/1996 00:00:00
 01/22/1996 00:00:00 01/17/1996 00:00:00 05/28/1996 00:00:00
 06/18/1996 00:00:00 04/23/1996 00:00:00 02/02/1996 00:00:00
 Calendar Functions: Reference 4-37

IsValidCal
 03/04/1996 00:00:00 05/06/1997 00:00:00

DisplayValCal Your Message:

TS-WRN: the input calendar has rectifiable errors. See the message for details

message output by validateCal:

TS-WRN: fixed precision of the pattern anchor date
TS-WRN: removed superfluous dates in the on exception list (refer invalidOnExc)
TS-WRN: fixed imprecise dates in the on exception list (refer impreciseOnExc)
TS-WRN: removed null dates in the on exception list
TS-WRN: sorted the on exceptions list
TS-WRN: removed duplicate dates in the on exceptions list
TS-WRN: removed superfluous dates in off exceptions list (refer invalidOffExc)
TS-WRN: fixed imprecise dates in the off exception list (refer impreciseOffExc)
TS-WRN: removed null dates in the off exception list
TS-WRN: sorted the off exceptions list
TS-WRN: removed duplicate dates in the off exceptions list
TS-WRN: the on exceptions list was trimmed between calendar minDate & maxDate
TS-WRN: the off exceptions list was trimmed between calendar minDate & maxDate

list of invalid on exceptions :

 01/03/1996 00:00:00 02/19/1996 00:00:00 03/18/1996 00:00:00
 05/27/1996 00:00:00 01/17/1996 00:00:00 05/28/1996 00:00:00
 06/18/1996 00:00:00 04/23/1996 00:00:00

list of invalid off exceptions :

 12/31/1995 00:00:00 01/13/1996 00:00:00 02/24/1996 00:00:00
 03/30/1996 00:00:00

list of imprecise on exceptions :

 03/23/1996 01:01:01 02/18/1996 01:01:01 05/26/1996 01:01:01
list of imprecise off exceptions :

 02/02/1996 01:01:01 03/04/1996 01:01:01 04/05/1996 02:02:02

the validated calendar :

Calendar Name = CALENDAR FOO
 Frequency = 4
 MinDate = 01/01/1975 00:00:00
4-38 Oracle8 Time Series Cartridge User’s Guide

IsValidCal
 MaxDate = 01/01/1999 00:00:00
 patBits:
 1111100
 patAnchor = 01/08/1996 00:00:00
 onExceptions :
 01/06/1996 00:00:00 01/13/1996 00:00:00 01/14/1996 00:00:00
 02/03/1996 00:00:00 02/18/1996 00:00:00 02/24/1996 00:00:00
 03/23/1996 00:00:00 05/26/1996 00:00:00 05/04/1997 00:00:00
 offExceptions :
 01/17/1996 00:00:00 01/22/1996 00:00:00 02/02/1996 00:00:00
 02/12/1996 00:00:00 03/04/1996 00:00:00 03/25/1996 00:00:00
 04/05/1996 00:00:00 04/23/1996 00:00:00 04/30/1996 00:00:00
 05/28/1996 00:00:00 06/18/1996 00:00:00 05/06/1997 00:00:00
 Calendar Functions: Reference 4-39

IsValidDate
IsValidDate

Format
ORDSYS.Calendar.IsValidDate(

inputCal IN ORDSYS.ORDTCalendar,

checkDate IN DATE

) RETURN BINARY_INTEGER;

Description
Checks whether an input date is valid or invalid according to the specified calendar.

Parameters

inputCal
The calendar to be used to determine whether the input timestamp is valid or
invalid.

checkDate
The timestamp to be checked for validity according to the calendar.

Usage
If checkDate is valid, the function returns 1; if checkDate is invalid, the function
returns 0.

A timestamp is invalid if any of the following conditions is true:

■ It is outside the date range of the calendar.

■ It is an off-exception in the calendar.

■ It is not sufficiently precise (for example, a timestamp of 01-Jul-1997 if the calen-
dar has a frequency of year).

■ It is null.

Example
Check if 02-Jan-1996 is a valid timestamp for a calendar (GENERIC-CAL1):

CONNECT ORDTUSER/ORDTUSER
4-40 Oracle8 Time Series Cartridge User’s Guide

IsValidDate
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;
DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
result INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Verify if 02-JAN-1996 (a Monday) is a valid date and display the result.
 tstDate1 := TO_DATE(’01/02/1996’);
 result := ORDSYS.Calendar.IsValidDate(tstCal,tstDate1);
 DBMS_OUTPUT.PUT_LINE(’IsValidDate(’ || tstDate1 || ’) = ’ || result);

END;
/

This example might produce the following output. In this example, the returned
value of 1 indicates that 02-Jan-1996 is a valid timestamp for the BUSINESS-96 cal-
endar.

Calendar Name = GENERIC-CAL1
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 Calendar Functions: Reference 4-41

IsValidDate
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

IsValidDate(01/02/1996 00:00:00) = 1
4-42 Oracle8 Time Series Cartridge User’s Guide

NumInvalidTimeStampsBetween
NumInvalidTimeStampsBetween

Format
ORDSYS.Calendar.NumInvalidTimeStampsBetween(

inputCal IN ORDSYS.ORDTCalendar,

startDate IN DATE,

endDate IN DATE

) RETURN INTEGER;

Description
Given starting and ending input timestamps, returns the number of invalid
timestamps within that range according to the specified calendar.

Parameters

inputCal
The calendar to be used to determine whether a timestamp is valid or invalid.

startDate
Starting date in the range to be checked for invalid timestamps.

endDate
Ending date in the range to be checked for invalid timestamps.

Usage
A timestamp is invalid if any of the following conditions is true:

■ It is outside the date range of the calendar.

■ It is an off-exception in the calendar.

■ It is not sufficiently precise (for example, a timestamp of 01-Jul-1997 if the calen-
dar has a frequency of year).

■ It is null.

startDate and endDate are included in the check for invalid timestamps.

If there are no invalid timestamps in the date range, the function returns 0 (zero).
 Calendar Functions: Reference 4-43

NumInvalidTimeStampsBetween
If startDate is greater (later) than endDate, an exception is raised.

Contrast this function with NumTimeStampsBetween, which returns the number
of valid timestamps in a date range.

Example
Return the number of invalid timestamps between 03-Feb-1996 and 16-May-1996 in
the GENERIC-CAL1 calendar:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
tstDate2 DATE;
result INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Get the number of invalid timestamps between 03-FEB-1996 and 16-MAY-1996.
 tstDate1 := TO_DATE(’02/03/1996’);
 tstDate2 := TO_DATE(’05/16/1996’);
 result := ORDSYS.Calendar.NumInvalidTimeStampsBetween(
 tstCal,tstDate1, tstDate2);
 DBMS_OUTPUT.PUT_LINE(’NumInvalidTimeStampsBetween(’ || tstDate1 ||’ , ’ ||
 tstDate2|| ’) = ’ || result);
END;
/

This example might produce the following output. In this example, there are 30
invalid timestamps in the specified date range.
4-44 Oracle8 Time Series Cartridge User’s Guide

NumInvalidTimeStampsBetween
Calendar Name = GENERIC-CAL1
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

NumInvalidTimeStampsBetween(02/03/1996 00:00:00 , 05/16/1996 00:00:00) = 30
 Calendar Functions: Reference 4-45

NumOffExceptions
NumOffExceptions

Format
ORDSYS.Calendar.NumOffExceptions(

inputCal IN ORDSYS.ORDTCalendar,

startDate IN DATE,

endDate IN DATE

) RETURN INTEGER;

Description
Given starting and ending input timestamps, returns the number of off-exceptions
within that range according to the specified calendar.

Parameters

inputCal
The calendar to be used in computing the number of off-exceptions.

startDate
Starting date in the range to be checked for off-exceptions.

endDate
Ending date in the range to be checked for off-exceptions.

Usage
startDate and endDate are included in the check for off-exceptions. (For an explana-
tion of off-exceptions and on-exceptions, see Section 2.2.)

If startDate is greater (later) than endDate, an exception is raised.

Example
Return the number of off-exceptions between 02-Feb-1996 and 07-Jul-1996 in the
GENERIC-CAL1 calendar:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;
4-46 Oracle8 Time Series Cartridge User’s Guide

NumOffExceptions
DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
tstDate2 DATE;
result INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Get the number of off-exceptions between 02-FEB-1996 and 07-JUL-1996.
 tstDate1 := TO_DATE(’02/02/1996’);
 tstDate2 := TO_DATE(’07/07/1996’);
 result := ORDSYS.Calendar.NumOffExceptions(tstCal,tstDate1, tstDate2);
 DBMS_OUTPUT.PUT_LINE(’NumOffExceptions(’ || tstDate1 ||’ , ’ || tstDate2
 || ’) = ’ || result);
END;
/

This example might produce the following output. As the last line of the output
indicates, there are five off-exceptions in the specified date range (02-Feb-1996
through 07-Jul-1996).

Calendar Name = GENERIC-CAL1
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 Calendar Functions: Reference 4-47

NumOffExceptions
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

NumOffExceptions(02/02/1996 00:00:00 , 07/07/1996 00:00:00) = 5
4-48 Oracle8 Time Series Cartridge User’s Guide

NumOnExceptions
NumOnExceptions

Format
ORDSYS.Calendar.NumOnExceptions(

 inputCal IN ORDSYS.ORDTCalendar,

 startDate IN DATE,

 endDate IN DATE

) RETURN INTEGER;

Description
Given starting and ending input timestamps, returns the number of on-exceptions
within that range according to the specified calendar.

Parameters

inputCal
The calendar to be used in computing the number of on-exceptions.

startDate
Starting date in the range to be checked for on-exceptions.

endDate
Ending date in the range to be checked for on-exceptions.

Usage
startDate and endDate are included in the check for on-exceptions. (For an explana-
tion of off-exceptions and on-exceptions, see Section 2.2.)

If startDate is greater (later) than endDate, an exception is raised.

Example
Return the number of on-exceptions between 02-Feb-1996 and 07-Jul-1996 in the
GENERIC-CAL1 calendar:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
 Calendar Functions: Reference 4-49

NumOnExceptions
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
tstDate2 DATE;
result INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Get the number of ON Exceptions between 02-FEB-1996 and 07-JUL-1996.
 tstDate1 := TO_DATE(’02/02/1996’);
 tstDate2 := TO_DATE(’07/07/1996’);
 result := ORDSYS.Calendar.NumOnExceptions(tstCal,tstDate1, tstDate2);
 DBMS_OUTPUT.PUT_LINE(’NumOnExceptions(’ || tstDate1 ||’ , ’ || tstDate2
 || ’) = ’ || result);
END;
/

This example might produce the following output. As the last line of the output
indicates, there are six on-exceptions in the specified date range (02-Feb-1996
through 07-Jul-1996).

Calendar Name = GENERIC-CAL1
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
4-50 Oracle8 Time Series Cartridge User’s Guide

NumOnExceptions
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

NumOnExceptions(02/02/1996 00:00:00 , 07/07/1996 00:00:00) = 6
 Calendar Functions: Reference 4-51

NumTimeStampsBetween
NumTimeStampsBetween

Format
ORDSYS.Calendar.NumTimeStampsBetween(

inputCal IN ORDSYS.ORDTCalendar,

startDate IN DATE,

endDate IN DATE

) RETURN INTEGER;

Description
Given starting and ending input timestamps, returns the number of valid
timestamps within that range according to the specified calendar.

Parameters

inputCal
The calendar to be used to determine whether a timestamp is valid or invalid.

startDate
Starting date in the range to be checked for invalid timestamps.

endDate
Ending date in the range to be checked for invalid timestamps.

Usage
A timestamp is invalid (not valid) if any of the following conditions is true:

■ It is outside the date range of the calendar.

■ It is an off-exception in the calendar.

■ It is not sufficiently precise (for example, a timestamp of 01-Jul-1997 if the calen-
dar has a frequency of year).

■ It is null.

startDate and endDate are included in the check for valid timestamps.

If there are no valid timestamps in the date range, the function returns 0 (zero).
4-52 Oracle8 Time Series Cartridge User’s Guide

NumTimeStampsBetween
If startDate is greater (later) than endDate, an exception is raised.

Contrast this function with NumInvalidTimeStampsBetween, which returns the
number of invalid timestamps in a date range.

Example
Return the number of valid timestamps between 03-Feb-1996 and 16-May-1996 in
the GENERIC-CAL1 calendar:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
tstDate2 DATE;
result INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Get the number of Valid timestamps between 03-FEB-1996 and 16-MAY-1996.
 tstDate1 := TO_DATE(’02/03/1996’);
 tstDate2 := TO_DATE(’05/16/1996’);
 result := ORDSYS.Calendar.NumTimeStampsBetween(tstCal,tstDate1, tstDate2);
 DBMS_OUTPUT.PUT_LINE(’NumTimeStampsBetween(’ || tstDate1 ||’ , ’ || tstDate2
 || ’) = ’ || result);
END;
/

This example might produce the following output. In this example, there are 74
valid timestamps in the specified date range.

Calendar Name = GENERIC-CAL1
 Calendar Functions: Reference 4-53

NumTimeStampsBetween
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

NumTimeStampsBetween(02/03/1996 00:00:00 , 05/16/1996 00:00:00) = 74
4-54 Oracle8 Time Series Cartridge User’s Guide

OffsetDate
OffsetDate

Format
ORDSYS.Calendar.OffsetDate(

inputCal IN ORDSYS.ORDTCalendar,

origin IN DATE,

relOffset IN INTEGER

) RETURN DATE;

Description
Given a reference date (origin) and an offset with respect to the origin (relOffset),
returns the timestamp corresponding to the offset input.

Parameters

inputCal
Calendar from which the date is to be returned.

origin
The date to which the offset value (relOffset) is to be applied in computing the
returned date.

relOffset
The relative offset of the returned date with respect to the origin.

Usage
The function returns the date of the timestamp at the relOffset number of
timestamps from the origin date. If relOffset is positive, the returned date is later
than origin; if relOffset is negative, the returned date is earlier than origin. If relOffset
is zero (0), the returned date is origin if origin is a valid date; however, if relOffset is
zero (0) and origin is not a valid date, the function returns NULL.

For example, assume a Monday through Friday business day calendar for 1997
with 04-Jul-1997 (Friday) defined as an off-exception, and assume that origin is 02-
Jul-1997 (Wednesday):

■ If relOffset = 2, the returned date is 07-Jul-1997 (Monday).
 Calendar Functions: Reference 4-55

OffsetDate
■ If relOffset = -2, the returned date is 30-Jun-1997 (Monday).

■ If relOffset = 0, the returned date is 02-Jul-1997 (Wednesday).

If the origin date is not in the calendar (inputCal), the next later date is used if relOff-
set is positive or zero, and the next earlier date is used if relOffset is negative. Using
the calendar in the preceding example, if origin is specified as 04-Jul-1997 and if
relOffset = 2, then 07-Jul-1997 (Monday, the next business day) is used as origin, and
the returned date is 09-Jul-1997 (Wednesday).

If the calendar pattern is empty or null, an exception is raised.

Example
Get the dates 20 timestamps later and 20 timestamps earlier than 03-Mar-1996 in
the GENERIC-CAL1 calendar:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
resultDate date;
dummyVal INTEGER;
relOffset INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Offset 03-MAR-1996 by 20.
 tstDate1 := TO_DATE(’03/03/1996’);
 relOffset := 20;
 resultDate := ORDSYS.Calendar.OffsetDate(tstCal, tstDate1, relOffset);
 DBMS_OUTPUT.PUT_LINE(’OffsetDate(’ || tstDate1 || ’ , ’ || relOffset
 || ’) = ’ || resultDate);
4-56 Oracle8 Time Series Cartridge User’s Guide

OffsetDate
 DBMS_OUTPUT.NEW_LINE;

 -- Offset 03-MAR-1996 by -20.
 tstDate1 := TO_DATE(’03/03/1996’);
 relOffset := -20;
 resultDate := ORDSYS.Calendar.OffsetDate(tstCal, tstDate1, relOffset);
 DBMS_OUTPUT.PUT_LINE(’OffsetDate(’ || tstDate1 || ’ , ’ || relOffset
 || ’) = ’ || resultDate);
 DBMS_OUTPUT.NEW_LINE;

END;
/

This example might produce the following output. In this example, 29-Mar-1996 is
20 timestamps later than 03-Mar-1996, and 05-Feb-1996 is 20 timestamps earlier
than 03-Mar-1996.

Calendar Name = GENERIC-CAL1
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

OffsetDate(03/03/1996 00:00:00 , 20) = 03/29/1996 00:00:00

OffsetDate(03/03/1996 00:00:00 , -20) = 02/05/1996 00:00:00
 Calendar Functions: Reference 4-57

SetPrecision
SetPrecision

Format
ORDSYS.Calendar.SetPrecision(

timestamp IN DATE,

frequency IN INTEGER

) RETURN DATE;

Description
Given a timestamp and a frequency, returns a timestamp that reflects the level of
precision implied by the frequency.

Parameters

timestamp
Timestamp whose precision is to be set.

frequency
Frequency to be applied in setting the precision.

Usage
The returned timestamp reflects the precision implied by the frequency, as
explained in Section 2.2.1. For example, if the input timestamp is 29-Dec-1997
12:45:00 and frequency is 6 (month), the returned timestamp is 01-Dec-1997 00:00:00.
Table 4–1 shows the frequencies, their precision conventions, and the resulting pre-
cision if an input timestamp of 19-Sep-1997 09:09:09 is supplied.

Table 4–1 SetPrecision and Timestamp of 19-Sep-1997 09:09:09

Frequency (Every:) Precision Convention Result

second MM-DD-YYYY HH24:MI:SS 09-19-1997 09:09:09

minute MM-DD-YYYY HH24:MI:00 09-19-1997 09:09:00
4-58 Oracle8 Time Series Cartridge User’s Guide

SetPrecision
If the frequency value is not valid, an exception is raised.

Example
Set the precision of an imprecise timestamp (here, a timestamp containing hour,
minute, and second values where the calendar has a day frequency):

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
resultDate date;
dummyVal INTEGER;
relOffset INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

-- Set the precision of an imprecise date.

hour MM-DD-YYYY HH24:00:00 09-19-1997 09:00:00

day MM-DD-YYYY 00:00:00
(midnight)

09-19-1997 00:00:00

month MM-01-YYYY 00:00:00
(midnight of first day of month)

09-01-1997 00:00:00

year 01-01-YYYY 00:00:00 (midnight
of first day of year)

01-01-1997 00:00:00

Table 4–1 SetPrecision and Timestamp of 19-Sep-1997 09:09:09 (Cont.)

Frequency (Every:) Precision Convention Result
 Calendar Functions: Reference 4-59

SetPrecision
 tstDate1 := TO_DATE(’03/03/1996 01:01:01’);
 resultDate := ORDSYS.Calendar.SetPrecision(tstDate1, tstCal.frequency);
 DBMS_OUTPUT.PUT_LINE(’SetPrecision(’ ||
 TO_CHAR(tstDate1) ||
 ’ , ’ || tstCal.frequency || ’) = ’ ||
 TO_CHAR(resultDate));
END;
/

This example might produce the following output. In this example, the hour,
minute, and second components of the timestamp are set to zeroes because the cal-
endar frequency is 4 (day).

Calendar Name = GENERIC-CAL1
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

SetPrecision(03/03/1996 01:01:01 , 4) = 03/03/1996 00:00:00
4-60 Oracle8 Time Series Cartridge User’s Guide

TimeStampsBetween
TimeStampsBetween

Format
ORDSYS.Calendar.TimeStampsBetween(

inputCal IN ORDSYS.ORDTCalendar,

startDate IN DATE,

endDate IN DATE

) RETURN ORDSYS.ORDTDateTab;

Description
Given starting and ending input timestamps, returns a table (ORDTDateTab) con-
taining the valid timestamps within that range according to the specified calendar.

Parameters

inputCal
The calendar to be used to determine whether a timestamp is valid or invalid.

startDate
Starting date in the range to be checked for valid timestamps.

endDate
Ending date in the range to be checked for valid timestamps.

Usage
A timestamp is invalid if any of the following conditions is true:

■ It is outside the date range of the calendar.

■ It is an off-exception in the calendar.

■ It is not sufficiently precise (for example, a timestamp of 01-Jul-1997 if the calen-
dar has a frequency of year).

■ It is null.

startDate and endDate are included in the check for valid timestamps.
 Calendar Functions: Reference 4-61

TimeStampsBetween
If there are no valid timestamps in the date range, the function returns an empty
ORDTDateTab.

If startDate is greater (later) than endDate, an exception is raised.

Contrast this function with InvalidTimeStampsBetween, which returns a table con-
taining the invalid timestamps in a date range.

Example
Return a table of valid timestamps between 03-Mar-1996 and 03-Jun-1996 in the
GENERIC-CAL1 calendar:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
tstDate2 DATE;
resultDTab ORDSYS.ordtDateTab;
dummyVal INTEGER;
relOffset INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Get all the valid timestamps between 03-MAR-1996 and 03-JUN-1996.
 tstDate1 := TO_DATE(’03/03/1996’);
 tstDate2 := TO_DATE(’06/03/1996’);
 resultDTab := ORDSYS.Calendar.TimeStampsBetween(tstCal, tstDate1, tstDate2);
 SELECT ORDSYS.TimeSeries.Display(resultDTab, ’Valid timestamps’)
 INTO dummyVal
 FROM dual;

END;
4-62 Oracle8 Time Series Cartridge User’s Guide

TimeStampsBetween
/

This example might produce the following output:

Calendar Name = GENERIC-CAL1
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

Valid timestamps :

 03/04/1996 00:00:00 03/06/1996 00:00:00 03/07/1996 00:00:00
 03/08/1996 00:00:00 03/11/1996 00:00:00 03/12/1996 00:00:00
 03/13/1996 00:00:00 03/14/1996 00:00:00 03/15/1996 00:00:00
 03/18/1996 00:00:00 03/19/1996 00:00:00 03/20/1996 00:00:00
 03/21/1996 00:00:00 03/22/1996 00:00:00 03/24/1996 00:00:00
 03/25/1996 00:00:00 03/26/1996 00:00:00 03/27/1996 00:00:00
 03/28/1996 00:00:00 03/29/1996 00:00:00 04/01/1996 00:00:00
 04/02/1996 00:00:00 04/03/1996 00:00:00 04/05/1996 00:00:00
 04/08/1996 00:00:00 04/09/1996 00:00:00 04/10/1996 00:00:00
 04/11/1996 00:00:00 04/12/1996 00:00:00 04/15/1996 00:00:00
 04/16/1996 00:00:00 04/17/1996 00:00:00 04/18/1996 00:00:00
 04/19/1996 00:00:00 04/22/1996 00:00:00 04/23/1996 00:00:00
 04/24/1996 00:00:00 04/25/1996 00:00:00 04/26/1996 00:00:00
 04/27/1996 00:00:00 04/29/1996 00:00:00 04/30/1996 00:00:00
 05/01/1996 00:00:00 05/02/1996 00:00:00 05/03/1996 00:00:00
 05/06/1996 00:00:00 05/07/1996 00:00:00 05/09/1996 00:00:00
 05/10/1996 00:00:00 05/13/1996 00:00:00 05/14/1996 00:00:00
 05/15/1996 00:00:00 05/16/1996 00:00:00 05/17/1996 00:00:00
 05/19/1996 00:00:00 05/20/1996 00:00:00 05/21/1996 00:00:00
 05/22/1996 00:00:00 05/23/1996 00:00:00 05/24/1996 00:00:00
 05/27/1996 00:00:00 05/28/1996 00:00:00 05/29/1996 00:00:00
 05/30/1996 00:00:00 05/31/1996 00:00:00 06/03/1996 00:00:00
 Calendar Functions: Reference 4-63

TimeStampsBetween
Section 3.3.2 contains an example showing the use of TimeStampsBetween to create
a time series for use with the DeriveExceptions function.
4-64 Oracle8 Time Series Cartridge User’s Guide

UnionCals
UnionCals

Format
ORDSYS.Calendar.UnionCals(

cal1 ORDSYS.ORDTCalendar,

cal2 ORDSYS.ORDTCalendar

) RETURN ORDSYS.ORDTCalendar;

Description
Returns a calendar that is the union of two input calendars.

Parameters

cal1
The first calendar on which the union operation is to be performed.

cal2
The second calendar on which the union operation is to be performed.

Usage
The function performs a union of the two input calendars, as follows:

■ The starting date of the resulting calendar is the later of the starting dates of the
two calendars, that is, resulting minDate = max(minDate1, minDate2).

■ The ending date of the resulting calendar is the earlier of the ending dates of
the two calendars, that is, resulting maxDate = min(maxDate1, maxDate2).

■ The union of the aligned patterns is computed. For example, if both calendars
have a day frequency with Sunday as the first day, and if cal1 has a pattern of
’0,1,1,1,1,1,0’ and cal2 has a pattern of ’0,0,1,1,1,1,1’, the resulting pattern is
’0,1,1,1,1,1,1’ (that is, the calendar includes Mondays through Saturdays).

■ The union of the on-exception lists is computed. For example, if cal1 has 30-Mar
and 29-Jun as on-exceptions and cal2 has 29-Jun and 28-Sep as on-exceptions,
the resulting calendar has 30-Mar, 29-Jun, and 28-Sep on-exceptions.
 Calendar Functions: Reference 4-65

UnionCals
■ The intersection of the off-exception lists is computed. For example, if cal1 has
01-Jan and 04-Jul as off-exceptions and cal2 has 01-Jan and 14-Jul as off-excep-
tions, the resulting calendar has only 01-Jan as an off-exception.

If the frequencies of the two calendars are not equal, the function returns NULL.

Contrast this function with IntersectCals, which intersects two calendars.

Example
Perform a union of two calendars:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal1 ORDSYS.ORDTCalendar;
tstCal2 ORDSYS.ORDTCalendar;
resultCal ORDSYS.ORDTCalendar;
equalFlag INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select the calendars GENERIC-CAL1 into tstCal1
 -- and GENERIC-CAL2 into tstCal2
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal1
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;
 SELECT value(cal) INTO tstCal2
 FROM ORDTDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL2’;

 -- Display the calendars tstCal1 and tstCal2.
 SELECT ORDSYS.TimeSeries.Display(tstCal1) INTO dummyVal FROM dual;
 SELECT ORDSYS.TimeSeries.Display(tstCal2) INTO dummyVal FROM dual;

 -- Union tstCal1 and tstCal2.
 resultCal := ORDSYS.Calendar.Unioncals(tstCal1, tstCal2);
 SELECT ORDSYS.TimeSeries.Display(resultCal, ’result of UnionCals’)
 INTO dummyVal
 FROM dual;

END;
4-66 Oracle8 Time Series Cartridge User’s Guide

UnionCals
/

This example might produce the following output:

Calendar Name = GENERIC-CAL1
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

Calendar Name = GENERIC-CAL2
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1997 00:00:00
 patBits:
 1111100
 patAnchor = 01/08/1996 00:00:00
 onExceptions :
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 10/13/1996 00:00:00 11/10/1996 00:00:00 12/14/1996 00:00:00
 01/04/1997 00:00:00 02/09/1997 00:00:00 03/08/1997 00:00:00
 04/05/1997 00:00:00 05/11/1997 00:00:00 06/08/1997 00:00:00
 offExceptions :
 07/09/1996 00:00:00 08/05/1996 00:00:00 09/10/1996 00:00:00
 10/23/1996 00:00:00 11/19/1996 00:00:00 12/12/1996 00:00:00
 01/01/1997 00:00:00 02/12/1997 00:00:00 03/04/1997 00:00:00
 04/07/1997 00:00:00 05/05/1997 00:00:00 06/09/1997 00:00:00

result of UnionCals :

 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 1111100
 Calendar Functions: Reference 4-67

UnionCals
 patAnchor = 01/08/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 10/13/1996 00:00:00 11/10/1996 00:00:00 12/14/1996 00:00:00
 offExceptions :
 07/09/1996 00:00:00
4-68 Oracle8 Time Series Cartridge User’s Guide

ValidateCal
ValidateCal

Format
ORDSYS.Calendar.ValidateCal(

cal INOUT ORDSYS.ORDTCalendar,

outMessage OUT VARCHAR2,

invOnExc OUT ORDTDateTab,

invOffExc OUT ORDTDateTab,

impOnExc OUT ORDTDateTab,

impOffExc OUT ORDTDateTab

) RETURN BINARY_INTEGER;

Description
Validates a calendar and, if necessary, repairs the calendar and outputs information
related to the problems and repairs.

Parameters

cal
The calendar to be validated and (if necessary) repaired.

outMessage
Message describing how the calendar was repaired (if the return value = 1) or why
the calendar could not be repaired (if the return value = -1).

invOnExc
Table of the invalid on-exceptions found in the calendar.

invOffExc
Table of the invalid off-exceptions found in the calendar.

impOnExc
Table of the imprecise on-exceptions found in the calendar.
 Calendar Functions: Reference 4-69

ValidateCal
impOffExc
Table of the imprecise off-exceptions found in the calendar.

Usage
This function returns one of the following values:

Errors in the input calendar make it invalid. Depending on the error, it may be cor-
rectable or uncorrectable. Correctable errors are repaired by the ValidateCal func-
tion. If all errors are correctable, the resulting calendar is valid.

For a calendar to be valid, all timestamps in the off-exception and on-exception lists
must be consistent with the defined pattern for the calendar. If one or more excep-
tion timestamps are not consistent with the pattern, the calendar is invalid. For
example, if 04-Jan-1997 (Saturday) is in the off-exception list of a calendar whose
pattern includes only Mondays through Fridays as normal business days, 04-Jan-
1997 is an invalid off-exception (because as a Saturday is would normally be an
"off" day).

Imprecise exception timestamps are repaired. For an explanation of precision, see
Section 2.2.1.

Table 4–2 lists correctable errors and the repair actions taken by the ValidateCal
function:

Value Meaning

0 The calendar is valid. No errors were found.

1 Correctable errors were found and corrected. The resulting calendar is valid.

-1 Uncorrectable errors were found. The calendar is not valid.

Table 4–2 Errors Repaired by ValidateCal

Error Repair Action

Imprecise anchor date The precision is adjusted.

Character other than 1 or 0 in the pat-
tern

All pattern characters other than 0 or 1 are set to
1.

Imprecise date The precision is adjusted.

Superfluous date (for example, a regu-
lar valid date in the on-exceptions list)

The date is removed from the exceptions list.

Null date The date is removed from the calendar.
4-70 Oracle8 Time Series Cartridge User’s Guide

ValidateCal
The following errors are not correctable. The function returns -1 if one or more of
these errors are found:

■ The frequency is not valid.

■ The starting date is later than the ending date.

■ The pattern is null or empty

■ All pattern bits are empty.

■ One or more pattern bits are null.

■ The anchor date is null and the pattern is not "all ones" or "all zeroes" (for exam-
ple, a pattern of ’0,1,1,1,1,1,0’ but no anchor date specified).

If the function returns -1, you should not use the calendar until you have fixed the
errors that ValidateCal could not fix. Then use ValidateCal again, and use the calen-
dar only if the function returns 0 or 1.

You can use the DisplayValCal procedure to display the information returned by
the ValidateCal function. See the information on DisplayValCal in this chapter.

The IsValidCal function (described in this chapter) checks the validity of the calen-
dar but does not perform any repair operations.

Example
Use the IsValidCal and ValidateCal functions and the DisplayValCal procedure
with an invalid calendar:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

Unsorted dates The dates are sorted.

Duplicate dates in the on-exceptions or
off-exceptions list

Duplicates are removed; the date appears only
once in the list.

Date appearing in both the on-excep-
tions and off-exceptions lists

The date is removed from the inappropriate list,
depending on the pattern and the anchor date.

Date outside the date range of the calen-
dar

The date is removed from the exceptions list.

Table 4–2 Errors Repaired by ValidateCal (Cont.)

Error Repair Action
 Calendar Functions: Reference 4-71

ValidateCal
DECLARE
outMessage varchar2(32750);
invOnExc ORDSYS.ORDTDateTab;
invOffExc ORDSYS.ORDTDateTab;
impOnExc ORDSYS.ORDTDateTab;
impOffExc ORDSYS.ORDTDateTab;
dummyval integer;
validFlag integer;
tstCal1 ORDSYS.ORDTCalendar :=
 ORDSYS.ORDTCalendar(
 0,
 ’CALENDAR FOO’,
 4,
 ORDSYS.ORDTPattern(ORDSYS.ORDTPatternBits(1,1,1,1,1,0,0),
 TO_DATE(’01-08-1996 01:01:01’)),
 TO_DATE(’01-01-1975’),
 TO_DATE(’01-01-1999’),
 ORDSYS.ORDTExceptions(
 TO_DATE(’02-03-1969’), -- Date < minDate,
 TO_DATE(’02-14-1969’), -- Date < minDate,
 TO_DATE(’02-03-1999’), -- Date > maxDate,
 TO_DATE(’02-17-1999’), -- Date > maxDate,
 TO_DATE(’12-31-1995’), -- Maps to 0 in pattern (Sunday)
 TO_DATE(’01-13-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’02-24-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’03-30-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’02-02-1996 01:01:01’), -- Imprecise
 TO_DATE(’03-04-1996 01:01:01’), -- Imprecise
 TO_DATE(’04-05-1996 02:02:02’), -- Imprecise
 TO_DATE(’03-25-1996’), -- Valid off-exception
 TO_DATE(’01-22-1996’), -- Valid, but out of sequence
 TO_DATE(’02-12-1996’),
 TO_DATE(’04-30-1996’),
 NULL, -- Null date
 TO_DATE(’02-12-1996’), -- Duplicate date within OFFs
 NULL, -- Null date
 TO_DATE(’04-30-1996’), -- Duplicate off-exception
 NULL, -- Null date
 TO_DATE(’03-25-1996’), -- Duplicate off-exception
 TO_DATE(’01-22-1996’), -- Duplicate off-exception
 TO_DATE(’01-17-1996’), -- Added to on- and off-exceptions
 TO_DATE(’05-28-1996’), -- Added to on- and off-exceptions
 TO_DATE(’06-18-1996’), -- Added to on- and off-exceptions
 TO_DATE(’04-23-1996’), -- Added to on- and off-exceptions
 TO_DATE(’02-02-1996’),
4-72 Oracle8 Time Series Cartridge User’s Guide

ValidateCal
 TO_DATE(’03-04-1996’),
 TO_DATE(’05-06-1997’)),
 ORDSYS.ORDTExceptions(
 TO_DATE(’02-08-1969’), -- Date < minDate,
 TO_DATE(’02-15-1969’), -- Date < minDate,
 TO_DATE(’02-13-1999’), -- Date > maxDate,
 TO_DATE(’02-20-1999’), -- Date > maxDate,
 TO_DATE(’01-03-1996’), -- Maps to 1 in pattern (Wednesday)
 TO_DATE(’02-19-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’03-18-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’05-27-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’03-23-1996 01:01:01’), -- Imprecise
 TO_DATE(’02-18-1996 01:01:01’), -- Imprecise
 TO_DATE(’05-26-1996 01:01:01’), -- Imprecise
 TO_DATE(’01-13-1996’), -- Valid on-exception
 TO_DATE(’01-14-1996’), -- Valid on-exception
 NULL, -- Null date
 NULL, -- Null date
 TO_DATE(’02-24-1996’), -- Valid on-exception
 TO_DATE(’03-23-1996’), -- Valid on-exception
 TO_DATE(’01-13-1996’), -- Duplicate on-exception
 TO_DATE(’01-14-1996’), -- Duplicate on-exception
 TO_DATE(’02-24-1996’), -- Duplicate on-exception
 TO_DATE(’03-23-1996’), -- Duplicate on-exception
 TO_DATE(’01-17-1996’), -- Added to on- and off-exceptions
 TO_DATE(’05-28-1996’), -- Added to on- and off-exceptions
 TO_DATE(’06-18-1996’), -- Added to on- and off-exceptions
 TO_DATE(’04-23-1996’), -- Added to on- and off-exceptions
 TO_DATE(’01-06-1996’), -- Valid, but out of sequence
 TO_DATE(’02-03-1996’),
 TO_DATE(’05-04-1997’))
);
BEGIN
 SELECT ORDSYS.TIMESERIES.Display(tstCal1, ’tstCal1’) INTO dummyval
 FROM dual;
 validFlag := ORDSYS.CALENDAR.IsValidCal(tstCal1);
 IF(validFlag = 0)
 THEN
 validFlag := ORDSYS.CALENDAR.ValidateCal(
 tstCal1, outMessage, invOnExc, invOffExc, impOnExc, impOffExc
);

 ORDSYS.TIMESERIES.DisplayValCal(
 validFlag,
 outMessage,
 Calendar Functions: Reference 4-73

ValidateCal
 invOnExc,
 invOffExc,
 impOnExc,
 impOffExc,
 tstCal1,
 ’Your Message’
);
 END IF;
END;
/

This example might produce the following output:

tstCal1 :

Calendar Name = CALENDAR FOO
 Frequency = 4
 MinDate = 01/01/1975 00:00:00
 MaxDate = 01/01/1999 00:00:00
 patBits:
 1111100
 patAnchor = 01/08/1996 01:01:01
 onExceptions :
 02/08/1969 00:00:00 02/15/1969 00:00:00 02/13/1999 00:00:00
 02/20/1999 00:00:00 01/03/1996 00:00:00 02/19/1996 00:00:00
 03/18/1996 00:00:00 05/27/1996 00:00:00 03/23/1996 01:01:01
 02/18/1996 01:01:01 05/26/1996 01:01:01 01/13/1996 00:00:00
 01/14/1996 00:00:00
 02/24/1996 00:00:00 03/23/1996 00:00:00 01/13/1996 00:00:00
 01/14/1996 00:00:00 02/24/1996 00:00:00 03/23/1996 00:00:00
 01/17/1996 00:00:00 05/28/1996 00:00:00 06/18/1996 00:00:00
 04/23/1996 00:00:00 01/06/1996 00:00:00 02/03/1996 00:00:00
 05/04/1997 00:00:00
 offExceptions :
 02/03/1969 00:00:00 02/14/1969 00:00:00 02/03/1999 00:00:00
 02/17/1999 00:00:00 12/31/1995 00:00:00 01/13/1996 00:00:00
 02/24/1996 00:00:00 03/30/1996 00:00:00 02/02/1996 01:01:01
 03/04/1996 01:01:01 04/05/1996 02:02:02 03/25/1996 00:00:00
 01/22/1996 00:00:00 02/12/1996 00:00:00 04/30/1996 00:00:00
 02/12/1996 00:00:00
 04/30/1996 00:00:00 03/25/1996 00:00:00
 01/22/1996 00:00:00 01/17/1996 00:00:00 05/28/1996 00:00:00
 06/18/1996 00:00:00 04/23/1996 00:00:00 02/02/1996 00:00:00
 03/04/1996 00:00:00 05/06/1997 00:00:00
4-74 Oracle8 Time Series Cartridge User’s Guide

ValidateCal
DisplayValCal Your Message:

TS-WRN: the input calendar has rectifiable errors. See the message for details

message output by validateCal:

TS-WRN: fixed precision of the pattern anchor date
TS-WRN: removed superfluous dates in the on exception list (refer invalidOnExc)
TS-WRN: fixed imprecise dates in the on exception list (refer impreciseOnExc)
TS-WRN: removed null dates in the on exception list
TS-WRN: sorted the on exceptions list
TS-WRN: removed duplicate dates in the on exceptions list
TS-WRN: removed superfluous dates in off exceptions list (refer invalidOffExc)
TS-WRN: fixed imprecise dates in the off exception list (refer impreciseOffExc)
TS-WRN: removed null dates in the off exception list
TS-WRN: sorted the off exceptions list
TS-WRN: removed duplicate dates in the off exceptions list
TS-WRN: the on exceptions list was trimmed between calendar minDate & maxDate
TS-WRN: the off exceptions list was trimmed between calendar minDate & maxDate

list of invalid on exceptions :

 01/03/1996 00:00:00 02/19/1996 00:00:00 03/18/1996 00:00:00
 05/27/1996 00:00:00 01/17/1996 00:00:00 05/28/1996 00:00:00
 06/18/1996 00:00:00 04/23/1996 00:00:00

list of invalid off exceptions :

 12/31/1995 00:00:00 01/13/1996 00:00:00 02/24/1996 00:00:00
 03/30/1996 00:00:00

list of imprecise on exceptions :

 03/23/1996 01:01:01 02/18/1996 01:01:01 05/26/1996 01:01:01
list of imprecise off exceptions :

 02/02/1996 01:01:01 03/04/1996 01:01:01 04/05/1996 02:02:02

the validated calendar :

Calendar Name = CALENDAR FOO
 Frequency = 4
 MinDate = 01/01/1975 00:00:00
 MaxDate = 01/01/1999 00:00:00
 patBits:
 Calendar Functions: Reference 4-75

ValidateCal
 1111100
 patAnchor = 01/08/1996 00:00:00
 onExceptions :
 01/06/1996 00:00:00 01/13/1996 00:00:00 01/14/1996 00:00:00
 02/03/1996 00:00:00 02/18/1996 00:00:00 02/24/1996 00:00:00
 03/23/1996 00:00:00 05/26/1996 00:00:00 05/04/1997 00:00:00
 offExceptions :
 01/17/1996 00:00:00 01/22/1996 00:00:00 02/02/1996 00:00:00
 02/12/1996 00:00:00 03/04/1996 00:00:00 03/25/1996 00:00:00
 04/05/1996 00:00:00 04/23/1996 00:00:00 04/30/1996 00:00:00
 05/28/1996 00:00:00 06/18/1996 00:00:00 05/06/1997 00:00:00
4-76 Oracle8 Time Series Cartridge User’s Guide

 Time Series and Time Scaling Functions: Refe
5

Time Series and Time Scaling Functions:

Reference

The Oracle8 Time Series Cartridge library consists of:

■ datatypes (described in Section 2.2.2)

■ calendar functions (described in Chapter 4)

■ time series and time scaling functions (described in this chapter)

Two separate reference chapters are provided for the functions because the func-
tions described in each are typically done at different times in the application devel-
opment cycle and by people performing different job roles:

■ Calendar functions are mainly used by product developers, such as ISVs, to
develop new time series functions and to administer and modify calendars.

■ Time series and time scaling functions are used mainly by application develop-
ers and some end users after the associated calendar or calendars have been
defined.

Syntax notes:

■ The ORDSYS schema name and the package name must be used with the func-
tion name, although public synonyms can be created to eliminate the need for
specifying the schema name (see Section 1.4). Each function is included in a PL/
SQL package, such as Calendar or TimeSeries. The ORDSYS schema name and
the package name are included in the Format and in any examples.

■ Function calls are not case sensitive, except for any quoted literal values. For
example, the following code line excerpts are valid and semantically identical:

select CAST(TimeSeries.ExtractTable(close) AS ORDTNumTab)
select cast(TIMESERIES.extracttable(close) as ordtnumtab)
rence 5-1

select cast(TiMeSeRiEs.eXtRaCtTaBlE(ClosE) As ordtNUMtab)

■ The syntax and examples show the reference-based interface (types ORDT-
NumSeriesIOTRef and ORDTVarchar2SeriesIOTRef).

Usage note:

All time series functions accept both references and instances as parameters. (For
example, an ORDTNumSeriesIOTRef parameter could also be ORDTNumSeries.)
All time series functions return instances. Thus, if you nest functions, such as
Cmax(Cmax(...), ...), the innermost nesting accepts a reference and outputs an
instance, and any other functions in the nesting accept an instance and output an
instance.

For an explanation of the reference-based interface, see Section 2.5.2.
5-2 Oracle8 Time Series Cartridge User’s Guide

Cavg
Cavg

Format
ORDSYS.TimeSeries.Cavg(

ts ORDSYS.ORDTNumSeriesIOTRef

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, returns an ORDTNumSeries with each element containing the
cumulative average up to and including the corresponding element in the input
ORDTNumSeries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the cumulative average is to be com-
puted. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the cumulative average is to be com-
puted. If endDate is specified, startDate must also be specified.

Usage
Only non-null values are considered in computing the cumulative average.

An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ endDate is earlier than startDate.
 Time Series and Time Scaling Functions: Reference 5-3

Cavg
If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative average is computed.

Example
Return the cumulative average of the closing price of stock ACME for November
1996:

SELECT * FROM the
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Cavg(ts.close,to_date(’01-NOV-96’,’DD-MON-YY’),
 to_date(’30-NOV-96’,’DD-MON-YY’))
) AS ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-NOV-96 59
04-NOV-96 59.5
05-NOV-96 60
06-NOV-96 60.5
07-NOV-96 61
08-NOV-96 61.5
11-NOV-96 62
12-NOV-96 62.5
13-NOV-96 63
14-NOV-96 63.5
15-NOV-96 64
18-NOV-96 64.5
19-NOV-96 65
20-NOV-96 65.5
21-NOV-96 66
22-NOV-96 66.5
25-NOV-96 67
26-NOV-96 67.5
27-NOV-96 68
29-NOV-96 68.5
20 rows selected.
5-4 Oracle8 Time Series Cartridge User’s Guide

Cmax
Cmax

Format
ORDSYS.TimeSeries.Cmax(

ts ORDSYS.ORDTNumSeriesIOTRef

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, returns an ORDTNumSeries with each element containing the
cumulative maximum up to and including the corresponding element in the input
ORDTNumSeries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the cumulative maximum is to be
returned. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the cumulative maximum is to be
returned. If endDate is specified, startDate must also be specified.

Usage
Only non-null values are considered in determining the cumulative maximum.

An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ endDate is earlier than startDate.
 Time Series and Time Scaling Functions: Reference 5-5

Cmax
If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative maximum is computed.

Example
Return the cumulative maximum of the closing price of stock ACME for November
1996:

SELECT * FROM the
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Cmax(ts.close,to_date(’01-NOV-96’,’DD-MON-YY’),
 to_date(’30-NOV-96’,’DD-MON-YY’))
) AS ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’);

This example might produce the following output. (Note that this output reflects
the simplified artificial data in the usage demo database, where the closing price
rises one point each day.)

TSTAMP VALUE
--------- ----------
01-NOV-96 59
04-NOV-96 60
05-NOV-96 61
06-NOV-96 62
07-NOV-96 63
08-NOV-96 64
11-NOV-96 65
12-NOV-96 66
13-NOV-96 67
14-NOV-96 68
15-NOV-96 69
18-NOV-96 70
19-NOV-96 71
20-NOV-96 72
21-NOV-96 73
22-NOV-96 74
25-NOV-96 75
26-NOV-96 76
27-NOV-96 77
29-NOV-96 78
20 rows selected.
5-6 Oracle8 Time Series Cartridge User’s Guide

Cmin
Cmin

Format
ORDSYS.TimeSeries.Cmin(

ts ORDSYS.ORDTNumSeriesIOTRef

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, returns an ORDTNumSeries with each element containing the
cumulative minimum up to and including the corresponding element in the input
ORDTNumSeries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the cumulative minimum is to be
returned. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the cumulative minimum is to be
returned. If endDate is specified, startDate must also be specified.

Usage
Only non-null values are considered in determining the cumulative minimum.

An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ endDate is earlier than startDate.
 Time Series and Time Scaling Functions: Reference 5-7

Cmin
If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative minimum is computed.

Example
Return the cumulative minimum of the closing price of stock ACME for November
1996:

SELECT * FROM the
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Cmin(ts.close,to_date(’01-NOV-96’,’DD-MON-YY’),
 to_date(’30-NOV-96’,’DD-MON-YY’))
) AS ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’);

This example might produce the following output. (Note that this output reflects
the simplified artificial data in the usage demo database, where the closing price
rises one point each day.)

TSTAMP VALUE
--------- ----------
01-NOV-96 59
04-NOV-96 59
05-NOV-96 59
06-NOV-96 59
07-NOV-96 59
08-NOV-96 59
11-NOV-96 59
12-NOV-96 59
13-NOV-96 59
14-NOV-96 59
15-NOV-96 59
18-NOV-96 59
19-NOV-96 59
20-NOV-96 59
21-NOV-96 59
22-NOV-96 59
25-NOV-96 59
26-NOV-96 59
27-NOV-96 59
29-NOV-96 59
20 rows selected.
5-8 Oracle8 Time Series Cartridge User’s Guide

Cprod
Cprod

Format
ORDSYS.TimeSeries.Cprod(

ts ORDSYS.ORDTNumSeriesIOTRef

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, returns an ORDTNumSeries with each element containing the
cumulative product of multiplication up to and including the corresponding ele-
ment in the input ORDTNumSeries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the cumulative product is to be com-
puted. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the cumulative product is to be com-
puted. If endDate is specified, startDate must also be specified.

Usage
Only non-null values are considered in computing the cumulative product.

An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ endDate is earlier than startDate.
 Time Series and Time Scaling Functions: Reference 5-9

Cprod
If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative product is computed.

Example
Return the cumulative product of the daily volume of stock ACME for the first four
trading days of November 1996. (This example is presented merely to illustrate the
function; the results of this query have no practical value for financial analysis.)

SELECT * FROM the
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Cprod(ts.volume,to_date(’01-NOV-96’,’DD-MON-YY’),
 to_date(’06-NOV-96’,’DD-MON-YY’))
) AS ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-NOV-96 1000
04-NOV-96 1000000
05-NOV-96 1000000000
06-NOV-96 1.0000E+12
4 rows selected.
5-10 Oracle8 Time Series Cartridge User’s Guide

Csum
Csum

Format
ORDSYS.TimeSeries.Csum(

ts ORDSYS.ORDTNumSeriesIOTRef

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, returns an ORDTNumSeries with each element containing the
cumulative sum up to and including the corresponding element in the input ORDT-
NumSeries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the cumulative sum is to be com-
puted. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the cumulative sum is to be com-
puted. If endDate is specified, startDate must also be specified.

Usage
Only non-null values are considered in computing the cumulative sum.

An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ endDate is earlier than startDate.
 Time Series and Time Scaling Functions: Reference 5-11

Csum
If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative sum is computed.

Example
Return the cumulative sum of the daily volume of stock ACME for November 1996:

SELECT * FROM the
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Csum(ts.volume,to_date(’01-NOV-96’,’DD-MON-YY’),
 to_date(’30-NOV-96’,’DD-MON-YY’))
) AS ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-NOV-96 1000
04-NOV-96 2000
05-NOV-96 3000
06-NOV-96 4000
07-NOV-96 5000
08-NOV-96 6000
11-NOV-96 7000
12-NOV-96 8000
13-NOV-96 9000
14-NOV-96 10000
15-NOV-96 11000
18-NOV-96 12000
19-NOV-96 13000
20-NOV-96 14000
21-NOV-96 15000
22-NOV-96 16000
25-NOV-96 17000
26-NOV-96 18000
27-NOV-96 19000
29-NOV-96 20000
20 rows selected.
5-12 Oracle8 Time Series Cartridge User’s Guide

DeriveExceptions
DeriveExceptions

Format
Approach 1:

ORDSYS.TimeSeries.DeriveExceptions(

inputCal IN ORDSYS.ORDTCalendar,

DateTab IN ORDSYS.ORDTDateTab

) RETURN ORDSYS.ORDTCalendar;

Approach 2:

ORDSYS.TimeSeries.DeriveExceptions(

series1 ORDTNumSeriesIOTRef,

series2 ORDTNumSeriesIOTRef

) RETURN ORDSYS.ORDTCalendar;

or

ORDSYS.TimeSeries.DeriveExceptions(

series1 ORDTVarchar2SeriesIOTRef,

series2 ORDTVarchar2SeriesIOTRef

) RETURN ORDSYS.ORDTCalendar;

Description
Derives calendar exceptions from a calendar and a table of dates (Approach 1) or
from two time series (Approach 2).

Parameters

inputCal
The calendar that contains no exceptions and for which exceptions are to be
derived.
 Time Series and Time Scaling Functions: Reference 5-13

DeriveExceptions
DateTab
The table of dates that includes all dates in the time series (for example, all dates on
which stock XYZ traded).

series1
The "reference" time series that contains no exceptions and all valid timestamps
from the calendar (for example, all Monday through Friday dates within the date
range of the calendar).

series2
The time series that contains the timestamps to be used in deriving the exceptions
for the resulting calendar (for example, all dates on which stock XYZ traded).

Usage
See Section 2.2.4 for a detailed explanation of the two approaches to using this func-
tion.

Example
See Sections 3.3.1 and 3.3.2 for examples of the two approaches to using this func-
tion.
5-14 Oracle8 Time Series Cartridge User’s Guide

Display
Display

Format
ORDSYS.TimeSeries.Display(

ts ORDSYS.[see parameter description]

[,mesg VARCHAR2]

) RETURN INTEGER;

Description
Displays various information (see the description of the ts parameter) using
DBMS_OUTPUT routines.

Parameters

ts
The object to be displayed. Because the function is overloaded, this parameter can
be any of the following datatypes:

■ ORDTNumSeriesIOTRef or ORDTNumSeries

■ ORDTVarchar2SeriesIOTRef or ORDTVarcharSeries

■ ORDTNumTab

■ ORDTVarchar2Tab

■ ORDTNumCell

■ ORDTVarchar2Cell

■ ORDTDateTab

■ ORDTCalendar

■ ORDTExceptions

■ ORDTPattern

mesg
Optional message text to be included in the display heading ("Timeseries dump for
<mesg>").
 Time Series and Time Scaling Functions: Reference 5-15

Display
Usage
Use the SET SERVEROUTPUT ON statement to view the output of the Display
function. However, the default display buffer of 2000 bytes is often too small to dis-
play a large time series. In such cases you must use the ENABLE procedure of the
DBMS_OUTPUT package to specify a larger display buffer size. For example:

DBMS_OUTPUT.ENABLE(1000000);

You should use Display only for development and debugging. Specify a display
buffer larger than 2000 only when necessary, because the display buffer uses
shared system resources, and a large value might affect the performance of other
users.

Because the Display function uses DBMS_OUTPUT routines, it is subject to the limi-
tations of these routines. These limitations include the following:

■ Output cannot exceed 1 megabyte.

■ The Display function cannot be used with the OCI.

■ SQL*Plus does not support DBMS_OUTPUT in the context of a SELECT state-
ment, but it does support DBMS_OUTPUT for anonymous PL/SQL blocks.

Example
Display the output for a query that returns the 10 highest closing prices for stock
AONE for the month of January 1996:

SET SERVEROUTPUT ON
DECLARE
 tmp INTEGER;
BEGIN
SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.TSMaxN(close,10,
 to_date(’01011996’,’MMDDYYYY’),
 to_date(’01311996’,’MMDDYYYY’)))
 INTO tmp
FROM ORDTDEV.stocks_ts
WHERE ticker =’AONE’;
END;
/

This example might produce the following output:

Tab Data:

5-16 Oracle8 Time Series Cartridge User’s Guide

Display
 Date Value
 01/24/1996 00:00:00 43.9138
 01/25/1996 00:00:00 42.9925
 01/31/1996 00:00:00 42.9925
 01/26/1996 00:00:00 42.7413
 01/30/1996 00:00:00 42.7413
 01/29/1996 00:00:00 42.5738
 01/23/1996 00:00:00 41.9875
 01/22/1996 00:00:00 41.82
 01/19/1996 00:00:00 41.485
 01/18/1996 00:00:00 40.815

The preceding example works from both SQL*Plus and the Server Manager
(svrmgrl) prompt. The following version of the example works from the Server
Manager prompt but not from SQL*Plus:

SET SERVEROUTPUT ON
SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.TSMaxN(close,10,
 to_date(’01011996’,’MMDDYYYY’),
 to_date(’01311996’,’MMDDYYYY’)))
FROM ORDTDEV.stocks_ts
WHERE ticker =’AONE’;

See the TSMaxN function for an example that returns the same information, but
that uses a subquery instead of the Display function.
 Time Series and Time Scaling Functions: Reference 5-17

DisplayValTS Procedure
DisplayValTS Procedure

Format
ORDSYS.TimeSeries.DisplayValTS(

validFlag IN INTEGER,

outMessage IN VARCHAR2,

loDateTab IN ORDSYS.ORDTDateTab,

hiDateTab IN ORDSYS.ORDTDateTab,

impreciseDateTab IN ORDSYS.ORDTDateTab,

duplicateDateTab IN ORDSYS.ORDTDateTab,

extraDateTab IN ORDSYS.ORDTDateTab,

missingDateTab IN ORDSYS.ORDTDateTab,

mesg IN VARCHAR2

);

Description
Displays the results returned by the ValidateTS function.

Parameters

validFlag
The return value from the ValidateTS function.

outMessage
The diagnostic returned by the ValidateTS function.

loDateTab
A table of dates before the starting date of the calendar associated with the time
series.

Note: DisplayValTS is a procedure, not a function. Procedures do
not return values.
5-18 Oracle8 Time Series Cartridge User’s Guide

DisplayValTS Procedure
hiDateTab
A table of dates after the starting date of the calendar associated with the time
series.

impreciseDateTab
A table of the imprecise dates found in the time series.

duplicateDateTab
A table of the duplicate dates (dates that appear more than once in the time series).

extraDateTab
A table of dates that are included in the time series but that should be excluded
based on the calendar definition (for example, a Saturday timestamp that is in a
Monday-Friday calendar and that is not an on-exception).

missingDateTab
A table of dates that are excluded from the time series but that should be included
based on the calendar definition (for example, a Wednesday date that is not a holi-
day in a Monday-Friday calendar and for which there is no data). Such dates can be
considered as "holes" in the time series.

mesg
Optional message.

Usage
This procedure is intended to be used with the ValidateTS function. See the infor-
mation on ValidateTS in this chapter.

The DisplayValTS procedure uses the DBMS_OUTPUT package. See the Usage
information for the Display function for limitations relating to the use of
DBMS_OUTPUT.

Example
Use the IsValidTS and ValidateTS functions and the DisplayValTS procedure with
an invalid time series:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
 numTS ORDSYS.ORDTNumSeries;
 tempVal integer;
 Time Series and Time Scaling Functions: Reference 5-19

DisplayValTS Procedure
 retIsValid integer;
 retValTS integer;
 loDateTab ORDSYS.ORDTDateTab := NULL;
 hiDateTab ORDSYS.ORDTDateTab := NULL;
 impDateTab ORDSYS.ORDTDateTab := NULL;
 dupDateTab ORDSYS.ORDTDateTab := NULL;
 extraDateTab ORDSYS.ORDTDateTab := NULL;
 missingDateTab ORDSYS.ORDTDateTab := NULL;
 outMesg varchar2(2000);

BEGIN

 -- Set the buffer size
 DBMS_OUTPUT.ENABLE(100000);

 --
 -- NOTE: Here an instance of the time series is materialized
 -- so that it could be modified to generate an invalid time series.
 --
 SELECT ORDSYS.TIMESERIES.GetSeries(ts.open) INTO numTS
 FROM ordtdev.stockdemo_ts ts
 WHERE ts.ticker = ’ACME’;

 -- Example of validating a valid time series.
 SELECT ordsys.timeseries.display(numTS, ’A VALID TIME SERIES’) INTO tempVal
 FROM dual;
 retIsValid := ORDSYS.TIMESERIES.IsValidTS(numTS);
 retValTS := ORDSYS.TIMESERIES.ValidateTS(numTS, outMesg, loDateTab,
 hiDateTab, impDateTab, dupDateTab,
 extraDateTab, missingDateTab);
 DBMS_OUTPUT.PUT_LINE(’Value returned by IsValid = ’ || retIsValid);
 DBMS_OUTPUT.PUT_LINE(’Value returned by ValidateTS = ’ || retValTS);
 ORDSYS.TIMESERIES.DisplayValTS(retValTS, outMesg, loDateTab, hiDateTab,
 impDateTab, dupDateTab, extraDateTab, missingDateTab,
 ’Testing DisplayValTS’);
 DBMS_OUTPUT.NEW_LINE;

 -- For illustration let us first create an invalid timeseries.
 --
 -- Here we are adjusting the calendar’s minDate and maxDate to avoid
 -- getting a huge list of missing dates.
 --
 numTS.cal.minDate := TO_DATE(’10/28/1996’);
 numTS.cal.maxDate := TO_DATE(’01/05/1997’);
5-20 Oracle8 Time Series Cartridge User’s Guide

DisplayValTS Procedure
 -- Add Dates Before numTS.cal.minDate
 numTS.series(10).tstamp := numTS.cal.minDate - 1;
 numTS.series(11).tstamp := numTS.cal.minDate - 2;

 -- Add Dates Beyond numTS.cal.maxDate
 numTS.series(12).tstamp := numTS.cal.maxDate + 1;
 numTS.series(13).tstamp := numTS.cal.maxDate + 2;

 -- Add some null timestamps
 numTS.series(14).tstamp := NULL;
 numTS.series(15).tstamp := NULL;

 -- Add some imprecise dates (some are duplicated)
 numTS.series(17).tstamp := numTS.series(16).tstamp + 1/24;
 numTS.series(18).tstamp := numTS.series(16).tstamp + 15/24;

 -- Add some duplicate timestamps
 numTS.series(19).tstamp := numTS.series(18).tstamp;
 numTS.series(21).tstamp := numTS.series(20).tstamp;

 -- Add some extra dates in the middle
 numTS.series(37).tstamp := TO_DATE(’12/28/1996’);
 numTS.series(36).tstamp := TO_DATE(’12/29/1996’);

 -- Add some holes at the end
 numTS.series(numTS.series.count).tstamp := TO_DATE(’01/04/1997’);

 -- Example of validating an invalid time series.
 SELECT ordsys.timeseries.display(numTS, ’AN INVALID TIME SERIES’)
 INTO tempVal FROM dual;
 retIsValid := ORDSYS.TIMESERIES.IsValidTS(numTS);
 retValTS := ORDSYS.TIMESERIES.ValidateTS(numTS, outMesg,
 loDateTab, hiDateTab, impDateTab,
 dupDateTab, extraDateTab, missingDateTab);
 DBMS_OUTPUT.PUT_LINE(’Value returned by IsValid = ’ || retIsValid);
 DBMS_OUTPUT.PUT_LINE(’Value returned by ValidateTS = ’ || retValTS);
 ORDSYS.TIMESERIES.DisplayValTS(retValTS, outMesg, loDateTab, hiDateTab,
 impDateTab, dupDateTab, extraDateTab, missingDateTab,
 ’Testing DisplayValTS’);
END;
/

This example might produce the following output:

A VALID TIME SERIES :
 Time Series and Time Scaling Functions: Reference 5-21

DisplayValTS Procedure
Name = ACME open NumSeries
Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4
 MinDate = 01/01/1990 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/01/1996 00:00:00 59
 11/04/1996 00:00:00 60
 11/05/1996 00:00:00 61
 11/06/1996 00:00:00 62
 11/07/1996 00:00:00 63
 11/08/1996 00:00:00 64
 11/11/1996 00:00:00 65
 11/12/1996 00:00:00 66
 11/13/1996 00:00:00 67
 11/14/1996 00:00:00 68
 11/15/1996 00:00:00 69
 11/18/1996 00:00:00 70
 11/19/1996 00:00:00 71
 11/20/1996 00:00:00 72
 11/21/1996 00:00:00 73
 11/22/1996 00:00:00 74
 11/25/1996 00:00:00 75
 11/26/1996 00:00:00 76
 11/27/1996 00:00:00 77
 11/29/1996 00:00:00 78
 12/02/1996 00:00:00 79
 12/03/1996 00:00:00 80
 12/04/1996 00:00:00 81
 12/05/1996 00:00:00 82
 12/06/1996 00:00:00 83
 12/09/1996 00:00:00 84
 12/10/1996 00:00:00 85
 12/11/1996 00:00:00 86
 12/12/1996 00:00:00 87
5-22 Oracle8 Time Series Cartridge User’s Guide

DisplayValTS Procedure
 12/13/1996 00:00:00 88
 12/16/1996 00:00:00 89
 12/17/1996 00:00:00 90
 12/18/1996 00:00:00 91
 12/19/1996 00:00:00 92
 12/20/1996 00:00:00 93
 12/23/1996 00:00:00 94
 12/24/1996 00:00:00 95
 12/26/1996 00:00:00 96
 12/27/1996 00:00:00 97
 12/30/1996 00:00:00 98
 12/31/1996 00:00:00 99

Value returned by IsValid = 1
Value returned by ValidateTS = 1

DisplayValTS: Testing DisplayValTS:

TS-SUC: the input time series is a valid time series

AN INVALID TIME SERIES :

Name = ACME open NumSeries
Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4
 MinDate = 10/28/1996 00:00:00
 MaxDate = 01/05/1997 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/01/1996 00:00:00 59
 11/04/1996 00:00:00 60
 11/05/1996 00:00:00 61
 11/06/1996 00:00:00 62
 11/07/1996 00:00:00 63
 11/08/1996 00:00:00 64
 Time Series and Time Scaling Functions: Reference 5-23

DisplayValTS Procedure
 11/11/1996 00:00:00 65
 11/12/1996 00:00:00 66
 11/13/1996 00:00:00 67
 10/27/1996 00:00:00 68
 10/26/1996 00:00:00 69
 01/06/1997 00:00:00 70
 01/07/1997 00:00:00 71
 72
 73
 11/22/1996 00:00:00 74
 11/22/1996 01:00:00 75
 11/22/1996 15:00:00 76
 11/22/1996 15:00:00 77
 11/29/1996 00:00:00 78
 11/29/1996 00:00:00 79
 12/03/1996 00:00:00 80
 12/04/1996 00:00:00 81
 12/05/1996 00:00:00 82
 12/06/1996 00:00:00 83
 12/09/1996 00:00:00 84
 12/10/1996 00:00:00 85
 12/11/1996 00:00:00 86
 12/12/1996 00:00:00 87
 12/13/1996 00:00:00 88
 12/16/1996 00:00:00 89
 12/17/1996 00:00:00 90
 12/18/1996 00:00:00 91
 12/19/1996 00:00:00 92
 12/20/1996 00:00:00 93
 12/29/1996 00:00:00 94
 12/28/1996 00:00:00 95
 12/26/1996 00:00:00 96
 12/27/1996 00:00:00 97
 12/30/1996 00:00:00 98
 01/04/1997 00:00:00 99

Value returned by IsValid = 0
Value returned by ValidateTS = 0

DisplayValTS: Testing DisplayValTS:

TS-WRN: the input time series has errors. See the message for details

message output by validateTS:
5-24 Oracle8 Time Series Cartridge User’s Guide

DisplayValTS Procedure
TS-ERR: the input time series is unsorted
TS-ERR: the time series has null timestamps
TS-ERR: the time series has timestamps < calendar minDate (refer LoDateTab)
TS-ERR: the time series has timestamps > calendar maxDate (refer HiDateTab)
TS-ERR: the time series has imprecise timestamps (refer impreciseDateTab)
TS-ERR: the time series has duplicate timestamps (refer DuplicateDateTab)

list of dates < calendar minDate - lowDateTab :

 10/26/1996 00:00:00 10/27/1996 00:00:00

list of dates > calendar maxDate - hiDateTab :
 01/06/1997 00:00:00 01/07/1997 00:00:00

list of imprecise dates - impreciseDateTab :

 11/22/1996 01:00:00 11/22/1996 15:00:00

list of duplicate dates - duplicateDateTab :

 11/22/1996 15:00:00 11/29/1996 00:00:00

ExtraDateTab :

 12/28/1996 00:00:00 12/29/1996 00:00:00 01/04/1997 00:00:00

MissingDateTab :

 10/28/1996 00:00:00 10/29/1996 00:00:00 10/30/1996 00:00:00
 10/31/1996 00:00:00 11/14/1996 00:00:00 11/15/1996 00:00:00
 11/18/1996 00:00:00 11/19/1996 00:00:00 11/20/1996 00:00:00
 11/21/1996 00:00:00 11/25/1996 00:00:00 11/26/1996 00:00:00
 11/27/1996 00:00:00 12/02/1996 00:00:00 12/23/1996 00:00:00
 12/24/1996 00:00:00 12/31/1996 00:00:00 01/01/1997 00:00:00
 01/02/1997 00:00:00 01/03/1997 00:00:00
 Time Series and Time Scaling Functions: Reference 5-25

ExtractCal
ExtractCal

Format
ORDSYS.TimeSeries.ExtractCal(

ts ORDSYS.ORDTNumSeriesIOTRef

) RETURN ORDSYS.ORDTCalendar;

or

ORDSYS.TimeSeries.ExtractCal(

ts ORDSYS.ORDTVarchar2SeriesIOTRef

) RETURN ORDSYS.ORDTCalendar;

Description
Given a time series, returns a calendar that is the same as the calendar on which the
time series is based.

Parameters

ts
The input time series.

Usage
The function returns a calendar that has the same starting and ending timestamps,
pattern, frequency, and exceptions (on- and off-) as the calendar on which the speci-
fied time series is based.

An exception is returned if the time series (ts) is null.

Example
Return a calendar that matches the one on which the time series for the ACME
ticker is based:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
5-26 Oracle8 Time Series Cartridge User’s Guide

ExtractCal
dummyval INTEGER;

BEGIN

 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.ExtractCal(ts.open), ’ExtractCal Results’) INTO dummyval
 FROM ORDTDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’;

END;
/

This example might produce the following output:

ExtractCal Results :

Calendar Name = BUSINESS-96
 Frequency = 4
 MinDate = 01/01/1990 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
 Time Series and Time Scaling Functions: Reference 5-27

ExtractDate
ExtractDate

Format
ORDSYS.TimeSeries.ExtractDate(

cell ORDSYS.ORDTNumCell

) RETURN DATE;

or

ORDSYS.TimeSeries.ExtractDate(

cell ORDSYS.ORDTVarchar2Cell

) RETURN DATE;

Description
Given an element in a time series, returns the date.

Parameters

cell
The time series element for which you want the date.

Usage
The time series element must first be identified, such as by using the GetNthEle-
ment function.

An exception is returned if the time series element (cell) is null.

Example
Return the date associated with the tenth element in a specified time series:

SELECT to_char(ORDSYS.TimeSeries.ExtractDate(
 ORDSYS.TimeSeries.GetNthElement(open, 10)),
 ’MM/DD/YYYY HH24:MI:SS’)
 FROM ORDTDEV.stocks_ts
 WHERE ticker = ’AONE’;

This example might produce the following output:
5-28 Oracle8 Time Series Cartridge User’s Guide

ExtractDate
TO_CHAR(ORDSYS.TIME

01/15/1990 00:00:00
1 row selected.
 Time Series and Time Scaling Functions: Reference 5-29

ExtractTable
ExtractTable

Format
ORDSYS.TimeSeries.ExtractTable(

ts ORDSYS.ORDTNumSeriesIOTRef

) RETURN ORDSYS.ORDTNumTab;

or

ORDSYS.TimeSeries.ExtractTable(

ts ORDSYS.ORDTVarchar2SeriesIOTRef

) RETURN ORDSYS.ORDTVarchar2Tab;

Description
Given a time series, returns the time series table (ORDTNumTab or
ORDTVarchar2Tab) associated with the time series.

Parameters

ts
The input time series.

Usage
The function returns the time series table (ORDTNumTab or ORDTVarchar2Tab)
associated with the time series.

An exception is returned if the time series (ts) is null.

Example
Return the closing prices for stock ACME:

SELECT * FROM the
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(ts.close)
 as ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’);

This example might produce the following output:
5-30 Oracle8 Time Series Cartridge User’s Guide

ExtractTable
TSTAMP VALUE
--------- ----------
01-NOV-96 59
04-NOV-96 60
05-NOV-96 61

31-DEC-96 99
41 rows selected.
 Time Series and Time Scaling Functions: Reference 5-31

ExtractValue
ExtractValue

Format
ORDSYS.TimeSeries.ExtractValue(

cell ORDSYS.ORDTNumCell

) RETURN NUMBER;

or

ORDSYS.TimeSeries.ExtractValue(

cell ORDSYS.ORDTVarchar2Celf

) RETURN VARCHAR2;

Description
Given an element in a time series, returns the value stored in it.

Parameters

cell
The time series element for which you want the value.

Usage
The time series element must first be identified, such as by using the GetNthEle-
ment function.

An exception is returned if the time series element (cell) is null.

Example
Return the value of the tenth opening price in the stocks_ts table:

SELECT ORDSYS.TimeSeries.ExtractValue(
 ORDSYS.TimeSeries.GetNthElement(open, 10))
 FROM ORDTDEV.stocks_ts
 WHERE ticker = ’AONE’;

This example might produce the following output:

ORDSYS.TIM
5-32 Oracle8 Time Series Cartridge User’s Guide

ExtractValue

 15.1875
1 row selected.
 Time Series and Time Scaling Functions: Reference 5-33

Fill
Fill

Format
ORDSYS.TimeSeries.Fill(

ts ORDSYS.ORDTNumSeriesIOTRef

[, fill_type INTEGER]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series and optionally a fill type, returns a time series in which values
for missing dates are inserted. A missing date is a date that is defined by the calen-
dar and within the time series bounds, but that is not in the current time series.

Parameters

ts
The input time series.

fill_type
One of the following integers indicating how missing values are to be filled:

■ 0 = null: Insert nulls.

■ 1 = forward repeat: Use the values from the preceding (most recent) timestamp.

■ 2 = backward repeat: Use the values from the following (next in the future)
timestamp.

If fill_type is omitted, 0 is assumed.

Usage
The function inserts timestamps and associated values for timestamps that are
included in a calendar but for which no entries exist in the time series.

The fill_type parameter lets you choose the manner in which missing values will be
defaulted. For example, assume that data for 30-Jan-1997 (Thursday) is missing
from a time series and that it should be included because this date is within the cal-
endar definition. Assume the following closing prices for stock XYZ:
5-34 Oracle8 Time Series Cartridge User’s Guide

Fill
■ 49 on 29-Jan-1997

■ 50 on 31-Jan-1997

The following table shows the closing price that would be inserted for 30-Jan-1997
with each of the fill_type parameter values:

Some potential uses for this function include:

■ deriving the price of a stock for a nontrading day

For example, you may want to compare prices for a stock that trades on several
stock exchanges, where the exchanges have different trading days.

■ converting a quarterly time series to a daily time series

For example, earnings per share (EPS) is computed quarterly, and stocks trade
daily. To compute a price-earnings (PE) ratio, earnings per share is first con-
verted to a daily time series using forward repeat. Then, the daily PE ratio is
calculated by dividing the daily price time series value by the corresponding
daily EPS time series value.

An exception is returned if the specified fill_type value is not 0, 1, or 2.

Example
Return a time series illustrating each fill_type value:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;
-- For illustrating Fill we need a timeseries with missing dates.
-- In the following example, the timeseries ’FOO’ has some missing dates
-- (07-DEC-1996 and 08-DEC-1996). Also, note that the calendar associated
-- with ’FOO’ has an ’all one’ pattern.
--
DECLARE
tstCal ORDSYS.ORDTCalendar;
ts ORDSYS.ordtnumseries :=
 ORDSYS.ordtnumseries(
 ’FOO’,

fill_type Closing Price for 30-Jan-1997

0 null

1 49

2 50
 Time Series and Time Scaling Functions: Reference 5-35

Fill
 ORDSYS.ORDTCalendar(
 0,
 ’FOO CALENDAR’,
 4,
 ORDSYS.ORDTPattern(
 ORDSYS.ORDTPatternBits(1,1,1,1,1,1,1),
 TO_DATE(’01/07/1996’)),
 TO_DATE(’01/01/1996’),
 TO_DATE(’01/01/1997’),
 ORDSYS.ORDTExceptions(),
 ORDSYS.ORDTExceptions()
),
 ORDSYS.ordtnumtab(
 ORDSYS.ordtnumcell(TO_DATE(’12/02/1996’), 1),
 ORDSYS.ordtnumcell(TO_DATE(’12/03/1996’), 2),
 ORDSYS.ordtnumcell(TO_DATE(’12/04/1996’), 3),
 ORDSYS.ordtnumcell(TO_DATE(’12/05/1996’), 4),
 ORDSYS.ordtnumcell(TO_DATE(’12/06/1996’), 5),
 ORDSYS.ordtnumcell(TO_DATE(’12/09/1996’), 6),
 ORDSYS.ordtnumcell(TO_DATE(’12/10/1996’), 7),
 ORDSYS.ordtnumcell(TO_DATE(’12/11/1996’), 8),
 ORDSYS.ordtnumcell(TO_DATE(’12/12/1996’), 9),
 ORDSYS.ordtnumcell(TO_DATE(’12/13/1996’), 10))
);

dummyval INTEGER;

BEGIN

 -- Generate a timeseries by from XCORP’s high (repeat forward).
 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.Fill(ts, 1),
 ’Fill Forward’) INTO dummyval
 FROM dual;

 -- Generate a timeseries by from XCORP’s high (repeat backward).
 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.Fill(ts, 2),
 ’Fill Backward’) INTO dummyval
 FROM dual;

 -- Generate a timeseries by from XCORP’s high (null fill).
 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.Fill(ts, 0),
 ’Null Fill’) INTO dummyval
5-36 Oracle8 Time Series Cartridge User’s Guide

Fill
 FROM dual;

END;
/

This example might produce the following output:

Fill Forward :

Calendar Data:
Calendar Name = FOO CALENDAR
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 01/01/1997 00:00:00
 patBits:
 1111111
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
Series Data:

 Date Value
 12/02/1996 00:00:00 1
 12/03/1996 00:00:00 2
 12/04/1996 00:00:00 3
 12/05/1996 00:00:00 4
 12/06/1996 00:00:00 5
 12/07/1996 00:00:00 5
 12/08/1996 00:00:00 5
 12/09/1996 00:00:00 6
 12/10/1996 00:00:00 7
 12/11/1996 00:00:00 8
 12/12/1996 00:00:00 9
 12/13/1996 00:00:00 10

Fill Backward :

Calendar Data:
Calendar Name = FOO CALENDAR
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 01/01/1997 00:00:00
 patBits:
 1111111
 Time Series and Time Scaling Functions: Reference 5-37

Fill
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
Series Data:

 Date Value
 12/02/1996 00:00:00 1
 12/03/1996 00:00:00 2
 12/04/1996 00:00:00 3
 12/05/1996 00:00:00 4
 12/06/1996 00:00:00 5
 12/07/1996 00:00:00 6
 12/08/1996 00:00:00 6
 12/09/1996 00:00:00 6
 12/10/1996 00:00:00 7
 12/11/1996 00:00:00 8
 12/12/1996 00:00:00 9
 12/13/1996 00:00:00 10

Null Fill :

Calendar Data:
Calendar Name = FOO CALENDAR
 Frequency = 4
 MinDate = 01/01/1996 00:00:00
 MaxDate = 01/01/1997 00:00:00
 patBits:
 1111111
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
Series Data:

 Date Value
 12/02/1996 00:00:00 1
 12/03/1996 00:00:00 2
 12/04/1996 00:00:00 3
 12/05/1996 00:00:00 4
 12/06/1996 00:00:00 5
 12/07/1996 00:00:00
 12/08/1996 00:00:00
 12/09/1996 00:00:00 6
 12/10/1996 00:00:00 7
 12/11/1996 00:00:00 8
5-38 Oracle8 Time Series Cartridge User’s Guide

Fill
 12/12/1996 00:00:00 9
 12/13/1996 00:00:00 10

 Time Series and Time Scaling Functions: Reference 5-39

First
First

Format
ORDSYS.TimeSeries.First(

ts ORDSYS.ORDTNumSeriesIOTRef

) RETURN ORDSYS.ORDTNumCell;

Description
Given a time series, returns the first element in it.

Parameters

ts
The input time series.

Usage
A null is returned if the time series (ts) is empty.

An exception is returned if the time series (ts) is null.

Example
Return the first timestamp and opening price for stock ACME in the stockdemo_ts
time series:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
dummyval INTEGER;

BEGIN

 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.First(ts.open), ’First Results’) INTO dummyval
 FROM ORDTDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’;

END;
5-40 Oracle8 Time Series Cartridge User’s Guide

First
/

This example might produce the following output:

First Results :

 Timestamp : 11/01/1996 00:00:00
 Value : 59
 Time Series and Time Scaling Functions: Reference 5-41

FirstN
FirstN

Format
ORDSYS.TimeSeries.FirstN(

ts ORDSYS.ORDTNumSeriesIOTRef,

NumValues NUMBER

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series and a number of elements (NumValues) to return, returns the
first NumValues elements in the time series.

Parameters

ts
The input time series.

NumValues
Number of elements from the beginning of the time series to be returned.

Usage
The function returns a time series populated with the first NumValues cells from the
input time series (ts). The calendar of the output time series is the same as that of
the input time series.

An exception is returned if the time series (ts) is null or if NumValues is zero (0) or
negative.

Example
Return the first 10 timestamps and opening prices in the time series for stock
ACME.:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
dummyval INTEGER;
5-42 Oracle8 Time Series Cartridge User’s Guide

FirstN
BEGIN

 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.FirstN(ts.open, 10), ’FirstN Results’) INTO dummyval
 FROM ORDTDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’;

END;
/

This example might produce the following output:

FirstN Results :

Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4
 MinDate = 01/01/1990 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/01/1996 00:00:00 59
 11/04/1996 00:00:00 60
 11/05/1996 00:00:00 61
 11/06/1996 00:00:00 62
 11/07/1996 00:00:00 63
 11/08/1996 00:00:00 64
 11/11/1996 00:00:00 65
 11/12/1996 00:00:00 66
 11/13/1996 00:00:00 67
 11/14/1996 00:00:00 68

 Time Series and Time Scaling Functions: Reference 5-43

GetDatedElement
GetDatedElement

Format
ORDSYS.TimeSeries.GetDatedElement (

ts ORDSYS.ORDTNumSeriesIOTRef,

target_date date

) RETURN ORDSYS.ORDTNumCell;

Description
Given a time series and a date, returns the time series element for that date.

Parameters

ts
The input time series.

target_date
Positive integer specifying the date of the element to be returned.

Usage
The function returns the cell from the input time series (ts) at the specified date
(target_date). If there is no data in ts at target_date, the function returns a null.

An exception is returned if the time series (ts) is null.

Example
Return the timestamp and opening price for 26-Nov-1996 for stock ACME:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
dummyval INTEGER;
tstDate date;

BEGIN

 -- Get the cell for 26-NOV-1996 from ACME’s open and display it
5-44 Oracle8 Time Series Cartridge User’s Guide

GetDatedElement
 tstDate := TO_DATE(’11/26/1996’);

 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.GetDatedElement(ts.open, tstDate),
 ’GetDatedElement Results’) INTO dummyval
 FROM ORDTDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’;

END;
/

This example might produce the following output:

GetDatedElement Results :

 Timestamp : 11/26/1996 00:00:00
 Value : 76
 Time Series and Time Scaling Functions: Reference 5-45

GetNthElement
GetNthElement

Format
ORDSYS.TimeSeries.GetNthElement

(ts ORDSYS.ORDTNumSeriesIOTRef,

target_index INTEGER

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumCell;

Description
Given a time series, a number (target_index), and optionally a date range, returns
the Nth element (element whose position corresponds to target_index) in the speci-
fied time series, or within the date range if one is specified.

Parameters

ts
The input time series.

target_index
Positive integer specifying the position of the element to be returned.

startDate
Starting date within the time series to which target_index is to be applied. If
target_index = 1, the function returns the element for startDate. If startDate is speci-
fied, endDate must also be specified.

endDate
Ending date within the time series to which target_index is to be applied. If endDate
is specified, startDate must also be specified.

Usage
An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.
5-46 Oracle8 Time Series Cartridge User’s Guide

GetNthElement
■ target_index is not an integer, or is zero (0) or a negative number.

■ endDate is earlier than startDate.

Example
Return the tenth opening price for stock AONE:

SELECT ORDSYS.TimeSeries.ExtractValue(
 ORDSYS.TimeSeries.GetNthElement(open, 10))
 FROM ORDTDEV.stocks_ts
 WHERE ticker = ’AONE’;

This example might produce the following output:

ORDSYS.TIM

 15.1875
1 row selected.
 Time Series and Time Scaling Functions: Reference 5-47

GetSeries
GetSeries

Format
ORDSYS.TimeSeries.GetSeries(

ts ORDSYS.ORDTNumSeriesIOTRef

) RETURN ORDSYS.ORDTNumSeries;

or

ORDSYS.TimeSeries.GetSeries(

ts ORDSYS.ORDTVarchar2SeriesIOTRef

) RETURN ORDSYS.ORDTVarchar2Series;

Description
Given a reference to a time series of references (ORDTNumSeriesIOTRef or
ORDTVarchar2SeriesIOTRef), returns a time series instance (ORDTNumSeries or
ORDTVarchar2Series).

Parameters

ts
The input time series.

Usage
The function materializes the input time series.

An exception is returned if the time series (ts) is null.

Example
Return an instance of a specified time series (opening prices for stock ACME):

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
dummyval INTEGER;

BEGIN
5-48 Oracle8 Time Series Cartridge User’s Guide

GetSeries
 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.GetSeries(ts.open), ’GetSeries Results’) INTO dummyval
 FROM ORDTDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’;

END;
/

This example might produce the following output:

GetSeries Results :

Name = ACME open NumSeries
Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4
 MinDate = 01/01/1990 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/01/1996 00:00:00 59
 11/04/1996 00:00:00 60
 11/05/1996 00:00:00 61
 11/06/1996 00:00:00 62
 11/07/1996 00:00:00 63
 11/08/1996 00:00:00 64
 11/11/1996 00:00:00 65
 11/12/1996 00:00:00 66
 11/13/1996 00:00:00 67
 11/14/1996 00:00:00 68
 11/15/1996 00:00:00 69
 11/18/1996 00:00:00 70
 11/19/1996 00:00:00 71
 11/20/1996 00:00:00 72
 11/21/1996 00:00:00 73
 11/22/1996 00:00:00 74
 11/25/1996 00:00:00 75
 Time Series and Time Scaling Functions: Reference 5-49

GetSeries
 11/26/1996 00:00:00 76
 11/27/1996 00:00:00 77
 11/29/1996 00:00:00 78
 12/02/1996 00:00:00 79
 12/03/1996 00:00:00 80
 12/04/1996 00:00:00 81
 12/05/1996 00:00:00 82
 12/06/1996 00:00:00 83
 12/09/1996 00:00:00 84
 12/10/1996 00:00:00 85
 12/11/1996 00:00:00 86
 12/12/1996 00:00:00 87
 12/13/1996 00:00:00 88
 12/16/1996 00:00:00 89
 12/17/1996 00:00:00 90
 12/18/1996 00:00:00 91
 12/19/1996 00:00:00 92
 12/20/1996 00:00:00 93
 12/23/1996 00:00:00 94
 12/24/1996 00:00:00 95
 12/26/1996 00:00:00 96
 12/27/1996 00:00:00 97
 12/30/1996 00:00:00 98
 12/31/1996 00:00:00 99

5-50 Oracle8 Time Series Cartridge User’s Guide

IsValidTS
IsValidTS

Format
ORDSYS.TimeSeries.IsValidTS(

ts IN ORDSYS.ORDTNumSeriesIOTRef

) RETURN INTEGER

or

ORDSYS.TimeSeries.IsValidTS(

ts IN ORDSYS.ORDTVarchar2SeriesIOTRef

) RETURN INTEGER

Description
Returns 1 if the time series is valid and 0 if the time series is invalid.

Parameters

ts
The input time series.

Usage
A time series is invalid if one or more of the following conditions are true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ The calendar associated with the time series is invalid.

■ The timestamps are not sorted.

■ One or more timestamps are null, imprecise, or outside the date range of the
calendar.

■ One or more timestamps are included in the time series but should be excluded
based on the calendar definition (for example, a Saturday timestamp that is in a
Monday-Friday calendar and that is not an on-exception).
 Time Series and Time Scaling Functions: Reference 5-51

IsValidTS
■ One or more timestamps are excluded from the time series but should be
included based on the calendar definition (for example, a Wednesday date that
is not a holiday in a Monday-Friday calendar and for which there is no data).
Such dates can be considered as "holes" in the time series.

Contrast this function with ValidateTS, which checks whether a time series is valid,
and if the time series is not valid, outputs a diagnostic message and tables with
timestamps that are causing the time series to be invalid.

Example
Use the IsValidTS and ValidateTS functions and the DisplayValTS procedure with
an invalid time series:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
 numTS ORDSYS.ORDTNumSeries;
 tempVal integer;
 retIsValid integer;
 retValTS integer;
 loDateTab ORDSYS.ORDTDateTab := NULL;
 hiDateTab ORDSYS.ORDTDateTab := NULL;
 impDateTab ORDSYS.ORDTDateTab := NULL;
 dupDateTab ORDSYS.ORDTDateTab := NULL;
 extraDateTab ORDSYS.ORDTDateTab := NULL;
 missingDateTab ORDSYS.ORDTDateTab := NULL;
 outMesg varchar2(2000);

BEGIN

 -- Set the buffer size
 DBMS_OUTPUT.ENABLE(100000);

 --
 -- NOTE: Here an instance of the time series is materialized
 -- so that it could be modified to generate an invalid time series.
 --
 SELECT ORDSYS.TIMESERIES.GetSeries(ts.open) INTO numTS
 FROM ordtdev.stockdemo_ts ts
 WHERE ts.ticker = ’ACME’;

 -- Example of validating a valid time series.
 SELECT ordsys.timeseries.display(numTS, ’A VALID TIME SERIES’) INTO tempVal
5-52 Oracle8 Time Series Cartridge User’s Guide

IsValidTS
 FROM dual;
 retIsValid := ORDSYS.TIMESERIES.IsValidTS(numTS);
 retValTS := ORDSYS.TIMESERIES.ValidateTS(numTS, outMesg, loDateTab,
 hiDateTab, impDateTab, dupDateTab,
 extraDateTab, missingDateTab);
 DBMS_OUTPUT.PUT_LINE(’Value returned by IsValid = ’ || retIsValid);
 DBMS_OUTPUT.PUT_LINE(’Value returned by ValidateTS = ’ || retValTS);
 ORDSYS.TIMESERIES.DisplayValTS(retValTS, outMesg, loDateTab, hiDateTab,
 impDateTab, dupDateTab, extraDateTab, missingDateTab,
 ’Testing DisplayValTS’);
 DBMS_OUTPUT.NEW_LINE;

 -- For illustration let us first create an invalid timeseries.
 --
 -- Here we are adjusting the calendar’s minDate and maxDate to avoid
 -- getting a huge list of missing dates.
 --
 numTS.cal.minDate := TO_DATE(’10/28/1996’);
 numTS.cal.maxDate := TO_DATE(’01/05/1997’);

 -- Add Dates Before numTS.cal.minDate
 numTS.series(10).tstamp := numTS.cal.minDate - 1;
 numTS.series(11).tstamp := numTS.cal.minDate - 2;

 -- Add Dates Beyond numTS.cal.maxDate
 numTS.series(12).tstamp := numTS.cal.maxDate + 1;
 numTS.series(13).tstamp := numTS.cal.maxDate + 2;

 -- Add some null timestamps
 numTS.series(14).tstamp := NULL;
 numTS.series(15).tstamp := NULL;

 -- Add some imprecise dates (some are duplicated)
 numTS.series(17).tstamp := numTS.series(16).tstamp + 1/24;
 numTS.series(18).tstamp := numTS.series(16).tstamp + 15/24;

 -- Add some duplicate timestamps
 numTS.series(19).tstamp := numTS.series(18).tstamp;
 numTS.series(21).tstamp := numTS.series(20).tstamp;

 -- Add some extra dates in the middle
 numTS.series(37).tstamp := TO_DATE(’12/28/1996’);
 numTS.series(36).tstamp := TO_DATE(’12/29/1996’);

 -- Add some holes at the end
 Time Series and Time Scaling Functions: Reference 5-53

IsValidTS
 numTS.series(numTS.series.count).tstamp := TO_DATE(’01/04/1997’);

 -- Example of validating an invalid time series.
 SELECT ordsys.timeseries.display(numTS, ’AN INVALID TIME SERIES’)
 INTO tempVal FROM dual;
 retIsValid := ORDSYS.TIMESERIES.IsValidTS(numTS);
 retValTS := ORDSYS.TIMESERIES.ValidateTS(numTS, outMesg,
 loDateTab, hiDateTab, impDateTab,
 dupDateTab, extraDateTab, missingDateTab);
 DBMS_OUTPUT.PUT_LINE(’Value returned by IsValid = ’ || retIsValid);
 DBMS_OUTPUT.PUT_LINE(’Value returned by ValidateTS = ’ || retValTS);
 ORDSYS.TIMESERIES.DisplayValTS(retValTS, outMesg, loDateTab, hiDateTab,
 impDateTab, dupDateTab, extraDateTab, missingDateTab,
 ’Testing DisplayValTS’);
END;
/

This example might produce the following output:

A VALID TIME SERIES :

Name = ACME open NumSeries
Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4
 MinDate = 01/01/1990 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/01/1996 00:00:00 59
 11/04/1996 00:00:00 60
 11/05/1996 00:00:00 61
 11/06/1996 00:00:00 62
 11/07/1996 00:00:00 63
 11/08/1996 00:00:00 64
 11/11/1996 00:00:00 65
 11/12/1996 00:00:00 66
 11/13/1996 00:00:00 67
5-54 Oracle8 Time Series Cartridge User’s Guide

IsValidTS
 11/14/1996 00:00:00 68
 11/15/1996 00:00:00 69
 11/18/1996 00:00:00 70
 11/19/1996 00:00:00 71
 11/20/1996 00:00:00 72
 11/21/1996 00:00:00 73
 11/22/1996 00:00:00 74
 11/25/1996 00:00:00 75
 11/26/1996 00:00:00 76
 11/27/1996 00:00:00 77
 11/29/1996 00:00:00 78
 12/02/1996 00:00:00 79
 12/03/1996 00:00:00 80
 12/04/1996 00:00:00 81
 12/05/1996 00:00:00 82
 12/06/1996 00:00:00 83
 12/09/1996 00:00:00 84
 12/10/1996 00:00:00 85
 12/11/1996 00:00:00 86
 12/12/1996 00:00:00 87
 12/13/1996 00:00:00 88
 12/16/1996 00:00:00 89
 12/17/1996 00:00:00 90
 12/18/1996 00:00:00 91
 12/19/1996 00:00:00 92
 12/20/1996 00:00:00 93
 12/23/1996 00:00:00 94
 12/24/1996 00:00:00 95
 12/26/1996 00:00:00 96
 12/27/1996 00:00:00 97
 12/30/1996 00:00:00 98
 12/31/1996 00:00:00 99

Value returned by IsValid = 1
Value returned by ValidateTS = 1

DisplayValTS: Testing DisplayValTS:

TS-SUC: the input time series is a valid time series

AN INVALID TIME SERIES :

Name = ACME open NumSeries
 Time Series and Time Scaling Functions: Reference 5-55

IsValidTS
Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4
 MinDate = 10/28/1996 00:00:00
 MaxDate = 01/05/1997 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/01/1996 00:00:00 59
 11/04/1996 00:00:00 60
 11/05/1996 00:00:00 61
 11/06/1996 00:00:00 62
 11/07/1996 00:00:00 63
 11/08/1996 00:00:00 64
 11/11/1996 00:00:00 65
 11/12/1996 00:00:00 66
 11/13/1996 00:00:00 67
 10/27/1996 00:00:00 68
 10/26/1996 00:00:00 69
 01/06/1997 00:00:00 70
 01/07/1997 00:00:00 71
 72
 73
 11/22/1996 00:00:00 74
 11/22/1996 01:00:00 75
 11/22/1996 15:00:00 76
 11/22/1996 15:00:00 77
 11/29/1996 00:00:00 78
 11/29/1996 00:00:00 79
 12/03/1996 00:00:00 80
 12/04/1996 00:00:00 81
 12/05/1996 00:00:00 82
 12/06/1996 00:00:00 83
 12/09/1996 00:00:00 84
 12/10/1996 00:00:00 85
 12/11/1996 00:00:00 86
 12/12/1996 00:00:00 87
 12/13/1996 00:00:00 88
 12/16/1996 00:00:00 89
5-56 Oracle8 Time Series Cartridge User’s Guide

IsValidTS
 12/17/1996 00:00:00 90
 12/18/1996 00:00:00 91
 12/19/1996 00:00:00 92
 12/20/1996 00:00:00 93
 12/29/1996 00:00:00 94
 12/28/1996 00:00:00 95
 12/26/1996 00:00:00 96
 12/27/1996 00:00:00 97
 12/30/1996 00:00:00 98
 01/04/1997 00:00:00 99

Value returned by IsValid = 0
Value returned by ValidateTS = 0

DisplayValTS: Testing DisplayValTS:

TS-WRN: the input time series has errors. See the message for details

message output by validateTS:

TS-ERR: the input time series is unsorted
TS-ERR: the time series has null timestamps
TS-ERR: the time series has timestamps < calendar minDate (refer LoDateTab)
TS-ERR: the time series has timestamps > calendar maxDate (refer HiDateTab)
TS-ERR: the time series has imprecise timestamps (refer impreciseDateTab)
TS-ERR: the time series has duplicate timestamps (refer DuplicateDateTab)

list of dates < calendar minDate - lowDateTab :

 10/26/1996 00:00:00 10/27/1996 00:00:00

list of dates > calendar maxDate - hiDateTab :
 01/06/1997 00:00:00 01/07/1997 00:00:00

list of imprecise dates - impreciseDateTab :

 11/22/1996 01:00:00 11/22/1996 15:00:00

list of duplicate dates - duplicateDateTab :

 11/22/1996 15:00:00 11/29/1996 00:00:00

ExtraDateTab :
 Time Series and Time Scaling Functions: Reference 5-57

IsValidTS
 12/28/1996 00:00:00 12/29/1996 00:00:00 01/04/1997 00:00:00

MissingDateTab :

 10/28/1996 00:00:00 10/29/1996 00:00:00 10/30/1996 00:00:00
 10/31/1996 00:00:00 11/14/1996 00:00:00 11/15/1996 00:00:00
 11/18/1996 00:00:00 11/19/1996 00:00:00 11/20/1996 00:00:00
 11/21/1996 00:00:00 11/25/1996 00:00:00 11/26/1996 00:00:00
 11/27/1996 00:00:00 12/02/1996 00:00:00 12/23/1996 00:00:00
 12/24/1996 00:00:00 12/31/1996 00:00:00 01/01/1997 00:00:00
 01/02/1997 00:00:00 01/03/1997 00:00:00
5-58 Oracle8 Time Series Cartridge User’s Guide

Lag
Lag

Format
ORDSYS.TimeSeries.Lag (

ts ORDSYS.ORDTNumSeriesIOTRef,

units INTEGER

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

or

ORDSYS.TimeSeries.Lag (

ts ORDSYS.ORDTNumSeriesIOTRef,

lead_date DATE

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a positive or negative number (units) or a date (lead_date), and
optionally a starting and ending timestamp within the time series, returns a time
series that lags or (for negative numeric values) leads the input time series by the
appropriate number of timestamps.

Parameters

ts
The input time series.

units
Integer specifying the number of timestamps by which the output time series is to
be adjusted. If units is positive, each element in the output time series is the same as
the element in the input time series for that relative position minus the units. If
 Time Series and Time Scaling Functions: Reference 5-59

Lag
units is negative, each element in the output time series is the same as the element
in the input time series for that relative position plus the units.

lead_date
The date relative to the starting date reflecting the number of timestamps by which
the output time series is to be adjusted. The function calculates the number of
timestamps between lead_date and startDate, and then uses that number as if it were
a units parameter value. (If lead_date is later than startDate, the effective units value
is positive; if lead_date is before the starting date, the effective units value is nega-
tive.)

startDate
Starting date to be used in calculating the lead or lag value; also the starting date in
the input time series for which the output time series is to be created. If startDate is
specified, endDate must also be specified.

endDate
Ending date in the input time series for which the output time series is to be cre-
ated. If endDate is specified, startDate must also be specified.

Usage
The function creates a time series whose elements reflect an input time series
adjusted by a number of timestamps. For example, using the United States stock
trading calendar for 1997, if the first timestamp in the input time series is 06-Jan-
1997 (Monday) and the units value is 2, the first timestamp in the output time
series is 02-Jan-1997 (Thursday) and its associated value (such as closing price) is
the same as that for 06-Jan-1997 in the input time series. Subsequent elements of the
output time series reflect the timestamp adjustment.

For example, assuming the United States stock trading calendar for 1997, Table 5–1
shows some time series data with a two-day lag period.

Table 5–1 Lagging a Time Series by Two Days

Input Time Series: Output Time Series:

Timestamp Closing Price Timestamp Closing Price

06-Jan-1997 49.50 02-Jan-1997 49.50

07-Jan-1997 49.25 03-Jan-1997 49.25

08-Jan-1997 50.00 06-Jan-1997 50.00

...
5-60 Oracle8 Time Series Cartridge User’s Guide

Lag
For convenience, both the Lead and Lag functions are provided.The functions oper-
ate identically, except that they interpret the sign of the units value in opposite
ways. For example, Lead with -10 for units is equivalent to Lag with 10 for units.
Moreover, because of the way the lead_date parameter is interpreted, Lead and Lag
with a lead_date operate identically.

Example
Return a time series starting with 03-Mar-1997 using closing prices from the time
series from 01-Nov-1996 through 30-Nov-1996 for stock ACME. The returned time
series has the same number of timestamps as are in the specified date range (start-
Date through endDate).

SELECT * FROM the
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Lag(ts.close,
 to_date(’03-MAR-97’,’DD-MON-YY’),
 to_date(’01-NOV-96’,’DD-MON-YY’),
 to_date(’30-NOV-96’,’DD-MON-YY’))
) AS ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
03-MAR-97 59
04-MAR-97 60
05-MAR-97 61
06-MAR-97 62
07-MAR-97 63
10-MAR-97 64

27-MAR-97 77
28-MAR-97 78
20 rows selected.
 Time Series and Time Scaling Functions: Reference 5-61

Last
Last

Format
ORDSYS.TimeSeries.Last(

ts ORDSYS.ORDTNumSeriesIOTRef

) RETURN ORDSYS.ORDTNumCell;

Description
Given a time series, returns the last element in it.

Parameters

ts
The input time series.

Usage
A null is returned if the time series (ts) is empty.

An exception is returned if the time series (ts) is null.

Example
Return the last timestamp and opening price for stock ACME in the stockdemo_ts
time series:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
dummyval INTEGER;

BEGIN

 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.Last(ts.open), ’Last Results’) INTO dummyval
 FROM ORDTDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’;

END;
5-62 Oracle8 Time Series Cartridge User’s Guide

Last
/

This example might produce the following output:

Last Results :

 Timestamp : 12/31/1996 00:00:00
 Value : 99
 Time Series and Time Scaling Functions: Reference 5-63

LastN
LastN

Format
ORDSYS.TimeSeries.LastN(

ts ORDSYS.ORDTNumSeriesIOTRef,

NumValues NUMBER

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series and a number of elements (NumValues) to return, returns the
last NumValues elements in the time series.

Parameters

ts
The input time series.

NumValues
Number of elements from the end of the time series to be returned.

Usage
The function returns a time series populated with the last NumValues cells from the
input time series (ts). The calendar of the output time series is the same as that of
the input time series.

An exception is returned if the time series (ts) is null or if NumValues is zero (0) or
negative.

Example
Return the last 10 timestamps and opening prices in the time series for stock
ACME.:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
dummyval INTEGER;
5-64 Oracle8 Time Series Cartridge User’s Guide

LastN
BEGIN

 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.LastN(ts.open, 10), ’LastN Results’) INTO dummyval
 FROM ORDTDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’;

END;
/

This example might produce the following output:

LastN Results :

Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4
 MinDate = 01/01/1990 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 12/17/1996 00:00:00 90
 12/18/1996 00:00:00 91
 12/19/1996 00:00:00 92
 12/20/1996 00:00:00 93
 12/23/1996 00:00:00 94
 12/24/1996 00:00:00 95
 12/26/1996 00:00:00 96
 12/27/1996 00:00:00 97
 12/30/1996 00:00:00 98
 12/31/1996 00:00:00 99

 Time Series and Time Scaling Functions: Reference 5-65

Lead
Lead

Format
ORDSYS.TimeSeries.Lead (

ts ORDSYS.ORDTNumSeriesIOTRef,

units INTEGER

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

or

ORDSYS.TimeSeries.Lead (

ts ORDSYS.ORDTNumSeriesIOTRef,

lead_date DATE

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a positive or negative number (units) or a date (lead_date), and
optionally a starting and ending timestamp within the time series, returns a time
series that leads or (for negative numeric values) lags the input time series by the
appropriate number of timestamps.

Parameters

ts
The input time series.

units
Integer specifying the number of timestamps by which the output time series is to
be adjusted. If units is positive, each element in the output time series is the same as
the element in the input time series for that relative position plus the units. If units
5-66 Oracle8 Time Series Cartridge User’s Guide

Lead
is negative, each element in the output time series is the same as the element in the
input time series for that relative position minus the units.

lead_date
The date relative to the starting date reflecting the number of timestamps by which
the output time series is to be adjusted. The function calculates the number of
timestamps between lead_date and startDate, and then uses that number as if it were
a units parameter value. (If lead_date is later than startDate, the effective units value
is positive; if lead_date is before startDate, the effective units value is negative.)

startDate
Starting date to be used in calculating the lead or lag value; also the starting date in
the input time series for which the output time series is to be created. If startDate is
specified, endDate must also be specified.

endDate
Ending date in the input time series for which the output time series is to be cre-
ated. If endDate is specified, startDate must also be specified.

Usage
The function creates a time series whose elements reflect an input time series
adjusted by a number of timestamps. For example, using the United States stock
trading calendar for 1997, if the first timestamp in the input time series is 02-Jan-
1997 (Thursday) and the units value is 2, the first timestamp in the output time
series is 06-Jan-1997 (Monday) and its associated value (such as closing price) is the
same as that for 02-Jan-1997 in the input time series. Subsequent elements of the
output time series reflect the timestamp adjustment.

For example, assuming the United States stock trading calendar for 1997, Table 5–2
shows some time series data with a two-day lead period:

Table 5–2 Leading a Time Series by Two Days

Input Time Series: Output Time Series:

Timestamp Closing Price Timestamp Closing Price

02-Jan-1997 49.00 06-Jan-1997 49.00

03-Jan-1997 50.00 07-Jan-1997 50.00

06-Jan-1997 49.50 08-Jan-1997 49.50

...
 Time Series and Time Scaling Functions: Reference 5-67

Lead
For convenience, both the Lead and Lag functions are provided. The functions oper-
ate identically, except that they interpret the sign of the units value in opposite
ways. For example, Lead with -10 for units is equivalent to Lag with 10 for units.
Moreover, because of the way the lead_date parameter is interpreted, Lead and Lag
with a lead_date operate identically.

Example
Return a time series starting with 03-Mar-1997 using closing prices from the time
series from 01-Nov-1996 through 30-Nov-1996 for stock ACME. The returned time
series has the same number of timestamps as are in the specified date range (start-
Date through endDate).

SELECT * FROM the
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Lead(ts.close,
 to_date(’03-MAR-97’,’DD-MON-YY’),
 to_date(’01-NOV-96’,’DD-MON-YY’),
 to_date(’30-NOV-96’,’DD-MON-YY’))
) AS ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
03-MAR-97 59
04-MAR-97 60
05-MAR-97 61
06-MAR-97 62
07-MAR-97 63
10-MAR-97 64

27-MAR-97 77
28-MAR-97 78
20 rows selected.
5-68 Oracle8 Time Series Cartridge User’s Guide

Mavg
Mavg

Format
ORDSYS.TimeSeries.Mavg(

ts ORDSYS.ORDTNumSeriesIOTRef,

[startDate DATE, endDate DATE,]

k INTEGER

) RETURN ORDSYS.ORDTNumSeries;

Description
Given an input ORDTNumSeries, returns a moving average for the time series, or
for the date range if one is specified. Each value in the returned time series is the
average of the value for the current timestamp plus the value for each of the previ-
ous specified number of timestamps minus one.

For example, a 30-day moving average of closing prices for a stock on any given
date is the average of that day’s closing price and the 29 preceding closing prices.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which to return moving averages. If start-
Date is specified, endDate must also be specified.

endDate
Ending date within the time series for which to return moving averages. If endDate
is specified, startDate must also be specified.

k
Positive integer specifying the look-back window (number of timestamps, includ-
ing the current one, over which to compute the moving average).
 Time Series and Time Scaling Functions: Reference 5-69

Mavg
Usage
The returned time series has nulls for any entry where there are not k-1 timestamps
preceding it in the calendar. For example, if a stock trading calendar for 1997 starts
on 02-Jan-1997, the series of 5-day moving averages of the closing price for a stock
for the year has nulls for the closing price for the first four timestamps (02-Jan, 03-
Jan, 06-Jan, and 07-Jan), because there are insufficient timestamps for computing
the average.

Any nulls in the entries for the k timestamps are ignored, as explained in
Section 2.8.2.1.

An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ endDate is earlier than startDate.

Example
Return a table of 10-day moving average values of the closing price for stock
ACME for the month of December 1996:

SELECT * FROM the
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Mavg(ts.close,to_date(’02-DEC-96’,’DD-MON-YY’),
 to_date(’31-DEC-96’,’DD-MON-YY’),10)
) AS ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
02-DEC-96 74.5
03-DEC-96 75.5
04-DEC-96 76.5
05-DEC-96 77.5
06-DEC-96 78.5
09-DEC-96 79.5
10-DEC-96 80.5
11-DEC-96 81.5
12-DEC-96 82.5
13-DEC-96 83.5
5-70 Oracle8 Time Series Cartridge User’s Guide

Mavg
16-DEC-96 84.5
17-DEC-96 85.5
18-DEC-96 86.5
19-DEC-96 87.5
20-DEC-96 88.5
23-DEC-96 89.5
24-DEC-96 90.5
26-DEC-96 91.5
27-DEC-96 92.5
30-DEC-96 93.5
31-DEC-96 94.5
21 rows selected.
SVRMGR>
 Time Series and Time Scaling Functions: Reference 5-71

Msum
Msum

Format
ORDSYS.TimeSeries.Msum(

ts ORDSYS.ORDTNumSeriesIOTRef,

[startDate DATE, endDate DATE,]

k INTEGER

) RETURN ORDSYS.ORDTNumSeries;

Description
Given an input ORDTNumSeries, returns a moving sum for the time series, or for
the date range if one is specified. Each value in the returned time series is the sum
of the value for the current timestamp plus the value for each of the previous speci-
fied number of timestamps minus one.

For example, a 30-day moving sum for a stock’s daily trading volume on any given
date is the sum of that day’s volume and the 29 preceding daily volumes.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which to return moving sums. If startDate is
specified, endDate must also be specified.

endDate
Ending date within the time series for which to return moving sums. If endDate is
specified, startDate must also be specified.

k
Positive integer specifying the look-back window (number of timestamps, includ-
ing the current one, over which to compute the moving sum).
5-72 Oracle8 Time Series Cartridge User’s Guide

Msum
Usage
The returned time series has nulls for any entry where there are not k-1 timestamps
preceding it in the calendar. For example, if a stock trading calendar for 1997 starts
on 02-Jan-1997, the series of 5-day moving sums of the trading volume for a stock
for the year has nulls for the volume for the first four timestamps (02-Jan, 03-Jan, 06-
Jan, and 07-Jan), because there are insufficient timestamps for computing the sum.

Any nulls in the entries for the k timestamps are ignored, as explained in
Section 2.8.2.1.

An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ endDate is earlier than startDate.

Example
Return a table of 30-day moving sum values of trading volume for stock AONE for
1996:

SELECT * FROM THE(
 SELECT CAST(ORDTS.Extract(ORDTS.MSUM(volume,
 to_date(‘01-01-96’,’MM-DD-YY’),
 to_date(‘12-31-96’,’MM-DD-YY’),
 30)) AS ORDTNumTab)
 FROM StockTabView
 WHERE ticker = ‘AONE’);
 Time Series and Time Scaling Functions: Reference 5-73

Scaleup
Scaleup

Format
ORDSYS.TimeSeries.Scaleup(

inDate DATE,

calendar ORDSYS.ORDTCalendar

) RETURN DATE;

Description
Given an input ORDTCalendar and a date, returns a scaled date.

Parameters

inDate
The date to be used for scaling.

calendar
The calendar to be used for scaling the date.

Usage
For an explanation of concepts related to time scaling, see Section 2.9.

This function is used in a SQL GROUP BY clause for scaling of dates.

An exception is returned if inDate or calendar is null.

Example
For all tickers accessible through the stockdemo_sv view (ACME, FUNCO, SAMCO,
and XCORP), scale daily data to monthly summary data for the summed volume
and average closing price.

--
-- Scaleup - Group By interface
-- For all tickers in stockdemo, scale daily data to monthly
-- summary data, reporting summed volumes and average closes.
--
SELECT ticker, ORDSYS.TimeSeries.Scaleup(sv.tstamp,
value(cal)),sum(volume),avg(close)
5-74 Oracle8 Time Series Cartridge User’s Guide

Scaleup
 FROM ORDTDEV.stockdemo_sv sv, ordtdev.stockdemo_calendars cal
 WHERE cal.name = ’MONTHLY’
 GROUP BY ticker,ORDSYS.TimeSeries.Scaleup(sv.tstamp, value(cal));

This example might produce the following output:

TICKE ORDSYS.OR SUM(VOLUME AVG(CLOSE)
----- --------- ---------- ----------
ACME 01-NOV-96 20000 68.5
ACME 01-DEC-96 21000 89
FUNCO 01-NOV-96 20000 23.823
FUNCO 01-DEC-96 21000 23.8257143
SAMCO 01-NOV-96 10207000 39.83125
SAMCO 01-DEC-96 3719450 38.2738095
XCORP 01-OCT-96 10270250 79.1458333
XCORP 01-NOV-96 100243350 84.6973684
XCORP 01-DEC-96 141838350 91.9572368
9 rows selected.
 Time Series and Time Scaling Functions: Reference 5-75

ScaleupAvg
ScaleupAvg

Format
ORDSYS.TimeSeries.ScaleupAvg(

ts ORDSYS.ORDTNumSeriesIOTRef,

calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the average value of each scaled group
of non-null values.

Parameters

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

Usage
An exception is returned for any of the following conditions:

■ The input time series, the calendar on which the input time series in based, or
the specified calendar is null.
5-76 Oracle8 Time Series Cartridge User’s Guide

ScaleupAvg
■ The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

Nulls are ignored in computing the average for each group of values.

For an explanation of concepts related to time scaling, see Section 2.9.

Example
Return the average closing prices for stock SAMCO for each month for the entire
time series:

SELECT * FROM THE
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.ScaleupAvg(
 ts.close,
 sc.calendar
)
) AS ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stocks_ts ts, ordtdev.scale sc
 WHERE ts.ticker=’SAMCO’ and
 sc.name =’MONTHLY’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-JAN-90 29.7074045
01-FEB-90 29.0477211
01-MAR-90 30.7003091
 .
 .
 .
01-OCT-96 42.7717391
01-NOV-96 39.83125
01-DEC-96 38.2738095
84 rows selected.
 Time Series and Time Scaling Functions: Reference 5-77

ScaleupCount
ScaleupCount

Format
ORDSYS.TimeSeries.ScaleupCount(

ts ORDSYS.ORDTNumSeriesIOTRef,

calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the count of non-null timestamps in
each scaled group.

Parameters

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

Usage
An exception is returned for any of the following conditions:

■ The input time series, the calendar on which the input time series in based, or
the specified calendar is null.
5-78 Oracle8 Time Series Cartridge User’s Guide

ScaleupCount
■ The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

Nulls are ignored in computing the count for each group of values.

For an explanation of concepts related to time scaling, see Section 2.9.

Example
Return the quarterly count of daily closing prices for stock SAMCO for the period
01-June-1996 through 31-December 1996:

SELECT * FROM THE
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.ScaleupCount(
 ts.close,
 sc.calendar,
 to_date(’01-JUL-1996’,’DD-MON-YYYY’),
 to_date(’31-DEC-1996’,’DD-MON-YYYY’)
)
) AS ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stocks_ts ts, ordtdev.scale sc
 WHERE ts.ticker=’SAMCO’ and
 sc.name =’QUARTERLY’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-JUL-96 64
01-OCT-96 64
2 rows selected.
 Time Series and Time Scaling Functions: Reference 5-79

ScaleupFirst
ScaleupFirst

Format
ORDSYS.TimeSeries.ScaleupFirst(

ts ORDSYS.ORDTNumSeriesIOTRef,

calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the first non-null value of each scaled
group of values.

Parameters

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

Usage
An exception is returned for any of the following conditions:

■ The input time series, the calendar on which the input time series in based, or
the specified calendar is null.
5-80 Oracle8 Time Series Cartridge User’s Guide

ScaleupFirst
■ The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

For an explanation of concepts related to time scaling, see Section 2.9.

Example
Return the first closing prices for stock SAMCO for the months of October, Novem-
ber, and December of 1996:

SELECT * FROM THE
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.ScaleupFirst(
 ts.close,
 sc.calendar,
 to_date(’01-OCT-1996’,’DD-MON-YYYY’),
 to_date(’01-JAN-1997’,’DD-MON-YYYY’)
)
) AS ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stocks_ts ts, ordtdev.scale sc
 WHERE ts.ticker=’SAMCO’ and
 sc.name =’MONTHLY’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-OCT-96 42.75
01-NOV-96 41.875
01-DEC-96 38.125
3 rows selected.
 Time Series and Time Scaling Functions: Reference 5-81

ScaleupLast
ScaleupLast

Format
ORDSYS.TimeSeries.ScaleupLast(

ts ORDSYS.ORDTNumSeriesIOTRef,

calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the last non-null value of each scaled
group of values.

Parameters

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

Usage
An exception is returned for any of the following conditions:

■ The input time series, the calendar on which the input time series in based, or
the specified calendar is null.
5-82 Oracle8 Time Series Cartridge User’s Guide

ScaleupLast
■ The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

For an explanation of concepts related to time scaling, see Section 2.9.

Example
Return the last closing prices for stock SAMCO for the months of October, Novem-
ber, and December of 1996:

SELECT * FROM THE
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.ScaleupLast(
 ts.close,
 sc.calendar,
 to_date(’01-OCT-1996’,’DD-MON-YYYY’),
 to_date(’01-JAN-1997’,’DD-MON-YYYY’)
)
) AS ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stocks_ts ts, ordtdev.scale sc
 WHERE ts.ticker=’SAMCO’ and
 sc.name =’MONTHLY’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-OCT-96 42.375
01-NOV-96 38.25
01-DEC-96 39.75
3 rows selected.

Note that each timestamp reflects the first date of the month in the calendar (follow-
ing the rules explained in Section 2.2.1), and each value in this case reflects the clos-
ing price on the last date for that month in the calendar.
 Time Series and Time Scaling Functions: Reference 5-83

ScaleupMax
ScaleupMax

Format
ORDSYS.TimeSeries.ScaleupMax(

ts ORDSYS.ORDTNumSeriesIOTRef,

calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the maximum value of each scaled
group of values.

Parameters

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

Usage
An exception is returned for any of the following conditions:

■ The input time series, the calendar on which the input time series in based, or
the specified calendar is null.
5-84 Oracle8 Time Series Cartridge User’s Guide

ScaleupMax
■ The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

For an explanation of concepts related to time scaling, see Section 2.9.

Example
Return the highest (maximum) closing prices for stock SAMCO for each month in
the entire time series:

SELECT * FROM THE
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.ScaleupMax(
 ts.close,
 sc.calendar
)
) AS ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stocks_ts ts, ordtdev.scale sc
 WHERE ts.ticker=’SAMCO’ and
 sc.name =’MONTHLY’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-JAN-90 31.2813
01-FEB-90 29.7813
01-MAR-90 31.1875
01-APR-90 31.5938
01-MAY-90 32.875
01-JUN-90 33.7813
01-JUL-90 34.6875
01-AUG-90 31.875

01-OCT-96 43.375
01-NOV-96 43.75
01-DEC-96 39.75
84 rows selected.
 Time Series and Time Scaling Functions: Reference 5-85

ScaleupMin
ScaleupMin

Format
ORDSYS.TimeSeries.ScaleupMin(

ts ORDSYS.ORDTNumSeriesIOTRef,

calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the minimum value of each scaled
group of values.

Parameters

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

Usage
An exception is returned for any of the following conditions:

■ The input time series, the calendar on which the input time series in based, or
the specified calendar is null.
5-86 Oracle8 Time Series Cartridge User’s Guide

ScaleupMin
■ The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

For an explanation of concepts related to time scaling, see Section 2.9.

Example
Return the lowest (minimum) closing prices for stock SAMCO for each month in
the entire time series:

SELECT * FROM THE
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.ScaleupMin(
 ts.close,
 sc.calendar
)
) AS ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stocks_ts ts, ordtdev.scale sc
 WHERE ts.ticker=’SAMCO’ and
 sc.name =’MONTHLY’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-JAN-90 27.6875
01-FEB-90 28.2813
01-MAR-90 30.0938
01-APR-90 30.1875
01-MAY-90 30.7813
01-JUN-90 32.0938
01-JUL-90 32.2813
01-AUG-90 28.5938

01-OCT-96 42
01-NOV-96 37.375
01-DEC-96 37.875
84 rows selected.
 Time Series and Time Scaling Functions: Reference 5-87

ScaleupSum
ScaleupSum

Format
ORDSYS.TimeSeries.ScaleupSum(

ts ORDSYS.ORDTNumSeriesIOTRef,

calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the sum of each scaled group of values.

Parameters

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

Usage
An exception is returned for any of the following conditions:

■ The input time series, the calendar on which the input time series in based, or
the specified calendar is null.

■ The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).
5-88 Oracle8 Time Series Cartridge User’s Guide

ScaleupSum
For an explanation of concepts related to time scaling, see Section 2.9.

Example
Return the sum of the daily trade volume for stock SAMCO for each month in the
entire time series:

SELECT * FROM THE
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.ScaleupSum(
 ts.volume,
 sc.calendar
)
) AS ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stocks_ts ts, ordtdev.scale sc
 WHERE ts.ticker=’SAMCO’ and
 sc.name =’MONTHLY’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-JAN-90 3117750
01-FEB-90 2036500
01-MAR-90 1424375
01-APR-90 981500
01-MAY-90 1348875
01-JUN-90 1395875
01-JUL-90 1088125
01-AUG-90 1503000

01-OCT-96 1615350
01-NOV-96 10207000
01-DEC-96 3719450
84 rows selected.
 Time Series and Time Scaling Functions: Reference 5-89

TrimSeries
TrimSeries

Format
ORDSYS.TimeSeries.TrimSeries(ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

or

ORDSYS.TimeSeries.TrimSeries(ts ORDSYS.ORDTVarchar2SeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTVarchar2Series;

Description
Given an input ORDT series, returns an ORDT series of the same type with all data
outside of the given date range removed. The calendar of the returned series will
be the same as that of the original series.

Parameters

ts
The input time series.

startDate
Starting date within the time series. If startDate is specified, endDate must also be
specified.

endDate
Ending date within the time series. If endDate is specified, startDate must also be
specified.

Usage
An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.
5-90 Oracle8 Time Series Cartridge User’s Guide

TrimSeries
■ endDate is earlier than startDate.

Example
Return the opening prices for stock AONE for dates in the calendar from 01-Dec-
1996 through 31-Dec-1996:

SET SERVEROUTPUT ON
DECLARE
 tmp INTEGER;
 tstDate1 DATE;
 tstDate2 DATE;
BEGIN
-- Set tstDate values
 tstDate1 := TO_DATE(’12/01/1996 00:00:00’,’MM/DD/YYYY HH24:MI:SS’);
 tstDate2 := TO_DATE(’12/31/1996 00:00:00’,’MM/DD/YYYY HH24:MI:SS’);
 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.TrimSeries(open, tstDate1, tstDate2))
 INTO tmp
 FROM ORDTDEV.stocks_ts
 WHERE ticker = ’AONE’;
END;
/

This statement might produce the following output:

Calendar Data:
Calendar Name = AONE
 Frequency = 4
 MinDate = 01-JAN-80
 MaxDate = 01-JAN-01
 patBits:
 0111110
 patAnchor = 06-APR-97
 onExceptions :
 offExceptions :
 19-FEB-90 13-APR-90 28-MAY-90
 04-JUL-90 03-SEP-90 22-NOV-90
 25-DEC-90 01-JAN-91 18-FEB-91
 29-MAR-91 27-MAY-91 04-JUL-91
 02-SEP-91 28-NOV-91 25-DEC-91
 01-JAN-92 17-FEB-92 17-APR-92
 25-MAY-92 03-JUL-92 07-SEP-92
 26-NOV-92 25-DEC-92 01-JAN-93
 15-FEB-93 09-APR-93 31-MAY-93
 05-JUL-93 06-SEP-93 25-NOV-93
 Time Series and Time Scaling Functions: Reference 5-91

TrimSeries
 24-DEC-93 21-FEB-94 01-APR-94
 27-APR-94 30-MAY-94 04-JUL-94
 05-SEP-94 24-NOV-94 26-DEC-94
 02-JAN-95 20-FEB-95 14-APR-95
 29-MAY-95 04-JUL-95 04-SEP-95
 23-NOV-95 25-DEC-95 01-JAN-96
 19-FEB-96 05-APR-96 27-MAY-96
 04-JUL-96 02-SEP-96 17-OCT-96
 28-NOV-96 25-DEC-96 27-DEC-96
Series Data:

 Date Value
 02-DEC-96 59.875
 03-DEC-96 60.875
 04-DEC-96 60.625
 05-DEC-96 57.75
 06-DEC-96 56.5
 09-DEC-96 57
 10-DEC-96 60.875
 11-DEC-96 59.625
 12-DEC-96 59.75
 13-DEC-96 54.875
 16-DEC-96 55.625
 17-DEC-96 53.25
 18-DEC-96 54.375
 19-DEC-96 53.875
 20-DEC-96 53.375
 23-DEC-96 54.375
 24-DEC-96 53.5
 26-DEC-96 54.375
 30-DEC-96 54.125
 31-DEC-96 52.875

5-92 Oracle8 Time Series Cartridge User’s Guide

TSAdd
TSAdd

Format
ORDSYS.TimeSeries.TSAdd (

ts1 ORDSYS.ORDTNumSeriesIOTRef,

ts2 ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

or

ORDSYS.TimeSeries.TSAdd (

ts1 ORDSYS.ORDTNumSeriesIOTRef,

k NUMBER

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given two input time series or a time series and a constant, and optionally starting
and ending dates, returns a time series that reflects the addition of the first two
parameters.

Parameters

ts1
The time series (or first time series) whose elements are to be added either to corre-
sponding elements in the second time series or to a constant.

ts2
The time series whose elements are to be added to corresponding elements in the
first time series.

k
A constant to be added to corresponding elements in the first time series.
 Time Series and Time Scaling Functions: Reference 5-93

TSAdd
startDate
Starting date within the time series for which the addition is to be performed. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the addition is to be performed. If end-
Date is specified, startDate must also be specified.

Usage
The function performs a pairwise addition operation on each element of the time
series. This operation determines the value of each element of the returned time
series. For example:

■ If two time series contain daily trade volumes for two stocks, each element of
the returned time series contains the sum of the trade volumes for the two
stocks for that day.

■ If a time series (ts1) contains closing prices for a stock and if a constant (k) of 1
is specified, each element of the returned time series contains the closing price
of ts1 incremented by 1.

If ts1 and ts2 are specified, the function returns a time series whose calendar is the
result of using the CombineCals function on the calendars associated with these
two time series.

An exception is returned if any of the following conditions is true:

■ An input time series is null.

■ An input time series does not have an associated calendar.

■ The calendars associated with ts1 and ts2 do not have the same frequency and
aligned pattern.

■ endDate is earlier than startDate.

Example
Add the high price for stock ACME and the low price for stock FUNCO for each
trading day from 14-Nov-1996 through 14-Dec-1996:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
5-94 Oracle8 Time Series Cartridge User’s Guide

TSAdd
tstCal ORDSYS.ORDTCalendar;
startDate date;
endDate date;
dummyval INTEGER;

BEGIN

 startDate := TO_DATE(’11/14/1996’);
 endDate := TO_DATE(’12/14/1996’);
 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.TSAdd(ts1.high, ts2.low, startDate, endDate),
 ’TSAdd Results’) INTO dummyval
 FROM ORDTDEV.stockdemo_ts ts1, ORDTDEV.stockdemo_ts ts2
 WHERE ts1.ticker=’ACME’ and ts2.ticker=’FUNCO’;

END;
/

This example might produce the following output:

TSAdd Results :

Calendar Data:
 Frequency = 4
 MinDate = 01/01/1990 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/14/1996 00:00:00 92.87
 11/15/1996 00:00:00 93.84
 11/18/1996 00:00:00 94.87
 11/19/1996 00:00:00 95.85
 11/20/1996 00:00:00 96.82
 11/21/1996 00:00:00 97.84
 11/22/1996 00:00:00 98.85
 11/25/1996 00:00:00 99.81
 11/26/1996 00:00:00 100.78
 11/27/1996 00:00:00 101.71
 Time Series and Time Scaling Functions: Reference 5-95

TSAdd
 11/29/1996 00:00:00 102.75
 12/02/1996 00:00:00 103.88
 12/03/1996 00:00:00 105.03
 12/04/1996 00:00:00 106.02
 12/05/1996 00:00:00 107.13
 12/06/1996 00:00:00 107.75
 12/09/1996 00:00:00 108.77
 12/10/1996 00:00:00 109.8
 12/11/1996 00:00:00 110.5
 12/12/1996 00:00:00 111.41
 12/13/1996 00:00:00 112.4

5-96 Oracle8 Time Series Cartridge User’s Guide

TSAvg
TSAvg

Format
ORDSYS.TimeSeries.TSAvg (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the average of all non-null time series entries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the average is to be calculated. If start-
Date is specified, endDate must also be specified.

endDate
Ending date within the time series for which the average is to be calculated. If end-
Date is specified, startDate must also be specified.

Usage
An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ endDate is earlier than startDate.

Example
Return the average, variance, and standard deviation of the closing price of stock
ACME:
 Time Series and Time Scaling Functions: Reference 5-97

TSAvg
--
-- Compute various aggregate statistics.
--
SELECT ORDSYS.TimeSeries.TSAvg(close), ORDSYS.TimeSeries.TSVariance(close),
ORDSYS.TimeSeries.TSStdDev(close)
 FROM ORDTDEV.stockdemo_ts
 WHERE ticker=’ACME’;

This example might produce the following output:

ORDSYS.ORD ORDSYS.ORD ORDSYS.ORD
---------- ---------- ----------
 79 143.5 11.9791486

1 row selected.
5-98 Oracle8 Time Series Cartridge User’s Guide

TSCount
TSCount

Format
ORDSYS.TimeSeries.TSCount (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the count of all non-null time series entries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the count is to be calculated. If start-
Date is specified, endDate must also be specified.

endDate
Ending date within the time series for which the count is to be calculated. If end-
Date is specified, startDate must also be specified.

Usage
Nulls are ignored in computing the count.

An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ endDate is earlier than startDate.
 Time Series and Time Scaling Functions: Reference 5-99

TSCount
Example
Return the total number of daily closing prices for stock AONE for the month of
January 1990:

SELECT ORDSYS.TimeSeries.TSCount(close,
 to_date(’01/01/1990 00:00:00’,
 ’MM/DD/YYYY HH24:MI:SS’),
 to_date(’01/31/1990 23:59:59’,
 ’MM/DD/YYYY HH24:MI:SS’)) TSCount
 FROM ORDTDEV.Stocks_TS
 WHERE ticker=’AONE’;

This example might produce the following output:

TSCOUNT

 22
1 row selected.
5-100 Oracle8 Time Series Cartridge User’s Guide

TSDivide
TSDivide

Format
ORDSYS.TimeSeries.TSDivide (

ts1 ORDSYS.ORDTNumSeriesIOTRef,

ts2 ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

or

ORDSYS.TimeSeries.TSDivide (

ts1 ORDSYS.ORDTNumSeriesIOTRef,

k NUMBER

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given two input time series or a time series and a constant, and optionally starting
and ending dates, returns a time series that reflects the division of the first parame-
ter by the second parameter.

Parameters

ts1
The time series (or first time series) whose elements are to be divided by either the
corresponding elements in the second time series or a constant.

ts2
The time series whose elements are to be divided into corresponding elements in
the first time series.

k
A constant to be divided into corresponding elements in the first time series.
 Time Series and Time Scaling Functions: Reference 5-101

TSDivide
startDate
Starting date within the time series for which the division is to be performed. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the division is to be performed. If end-
Date is specified, startDate must also be specified.

Usage
The function performs a pairwise division operation on each element of the time
series (or first time series) by the corresponding element in the second time series
or by a constant. This operation determines the value of each element of the
returned time series. For example:

■ If two time series contain daily trade volumes for two stocks, each element of
the returned time series contains the result of dividing the volume in the first
time series by the volume in the second time series for that day.

■ If a time series (ts1) contains closing prices for a stock and if a constant (k) of 2
is specified, each element of the returned time series contains the closing price
of ts1 divided by 2.

If ts1 and ts2 are specified, the function returns a time series whose calendar is the
result of using the CombineCals function on the calendars associated with these
two time series.

An exception is returned if any of the following conditions is true:

■ An input time series is null.

■ An input time series does not have an associated calendar.

■ The calendars associated with ts1 and ts2 do not have the same frequency and
aligned pattern.

■ endDate is earlier than startDate.

Example
Divide the high price for stock ACME by the low price for stock FUNCO for each
trading day from 14-Nov-1996 through 14-Dec-1996:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;
5-102 Oracle8 Time Series Cartridge User’s Guide

TSDivide
DECLARE
tstCal ORDSYS.ORDTCalendar;
startDate date;
endDate date;
dummyval INTEGER;

BEGIN

 startDate := TO_DATE(’11/14/1996’);
 endDate := TO_DATE(’12/14/1996’);
 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.TSDivide(ts1.high, ts2.low, startDate, endDate),
 ’TSDivide Results’) INTO dummyval
 FROM ORDTDEV.stockdemo_ts ts1, ORDTDEV.stockdemo_ts ts2
 WHERE ts1.ticker=’ACME’ and ts2.ticker=’FUNCO’;

END;
/

This example might produce the following output:

TSDivide Results :

Calendar Data:
 Frequency = 4
 MinDate = 01/01/1990 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/14/1996 00:00:00 2.89065772936740678676162547130289065773
 11/15/1996 00:00:00 2.93624161073825503355704697986577181208
 11/18/1996 00:00:00 2.97444490992878089652283200670297444491
 11/19/1996 00:00:00 3.01886792452830188679245283018867924528
 11/20/1996 00:00:00 3.0646515533165407220822837951301427372
 11/21/1996 00:00:00 3.10402684563758389261744966442953020134
 11/22/1996 00:00:00 3.1446540880503144654088050314465408805
 11/25/1996 00:00:00 3.19193616127677446451070978580428391432
 11/26/1996 00:00:00 3.23801513877207737594617325483599663583
 Time Series and Time Scaling Functions: Reference 5-103

TSDivide
 11/27/1996 00:00:00 3.28975115984816533108393083087304934627
 11/29/1996 00:00:00 3.32631578947368421052631578947368421053
 12/02/1996 00:00:00 3.35008375209380234505862646566164154104
 12/03/1996 00:00:00 3.37078651685393258426966292134831460674
 12/04/1996 00:00:00 3.41382181515403830141548709408825978351
 12/05/1996 00:00:00 3.43970161624533775383340240364691255698
 12/06/1996 00:00:00 3.53684210526315789473684210526315789474
 12/09/1996 00:00:00 3.57593605384938998737904922170803533866
 12/10/1996 00:00:00 3.61344537815126050420168067226890756303
 12/11/1996 00:00:00 3.70212765957446808510638297872340425532
 12/12/1996 00:00:00 3.75907731738573259290901324220418624519
 12/13/1996 00:00:00 3.8034188034188034188034188034188034188

5-104 Oracle8 Time Series Cartridge User’s Guide

TSMax
TSMax

Format
ORDSYS.TimeSeries.TSMax (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the highest (maximum) of all non-null time series
entries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the maximum is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the maximum is to be calculated. If
endDate is specified, startDate must also be specified.

Usage
An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ endDate is earlier than startDate.

Example
Return the highest closing price for stock AONE for the month of January 1990:
 Time Series and Time Scaling Functions: Reference 5-105

TSMax
SELECT ORDSYS.TimeSeries.TSMax(close,
 to_date(’01/01/1990 00:00:00’,
 ’MM/DD/YYYY HH24:MI:SS’),
 to_date(’01/31/1990 23:59:59’,
 ’MM/DD/YYYY HH24:MI:SS’)) TSMax
 FROM ORDTDEV.Stocks_TS
 WHERE ticker=’AONE’;

This example might produce the following output:

TSMAX

 16.3914
1 row selected.
5-106 Oracle8 Time Series Cartridge User’s Guide

TSMaxN
TSMaxN

Format
ORDSYS.TimeSeries.TSMaxN (

ts ORDSYS.ORDTNumSeriesIOTRef,

NumValues INTEGER,

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumTab;

Description
Given an input ORDTNumSeries, a number of values to return, and optionally
starting and ending dates, returns an ORDTNumTab with the specified number
(NumValues) of the top (highest) values.

Parameters

ts
The input time series.

NumValues
Number of values to return.

startDate
Starting date within the time series for which the top values are to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the top values are to be calculated. If
endDate is specified, startDate must also be specified.

Usage
An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.
 Time Series and Time Scaling Functions: Reference 5-107

TSMaxN
■ endDate is earlier than startDate.

■ NumValues is zero (0) or negative.

Example
Return the 10 highest closing prices for stock AONE for the month of January 1996:

SELECT * FROM THE(SELECT CAST(
 ORDSYS.TimeSeries.TSMaxN(close, 10,
 to_date(’01011996’,’MMDDYYYY’),
 to_date(’01311996’,’MMDDYYYY’))
 as ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stocks_ts
 WHERE ticker =’AONE’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
24-JAN-96 43.9138
25-JAN-96 42.9925
31-JAN-96 42.9925
26-JAN-96 42.7413
30-JAN-96 42.7413
29-JAN-96 42.5738
23-JAN-96 41.9875
22-JAN-96 41.82
19-JAN-96 41.485
18-JAN-96 40.815
10 rows selected.
5-108 Oracle8 Time Series Cartridge User’s Guide

TSMedian
TSMedian

Format
ORDSYS.TimeSeries.TSMedian (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the median of all non-null time series entries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the median is to be calculated. If start-
Date is specified, endDate must also be specified.

endDate
Ending date within the time series for which the median is to be calculated. If end-
Date is specified, startDate must also be specified.

Usage
An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ endDate is earlier than startDate.

Example
Return the median closing price for stock AONE for the month of January 1990:

SELECT ORDSYS.TimeSeries.TSMedian(close,
 Time Series and Time Scaling Functions: Reference 5-109

TSMedian
 to_date(’01/01/1990 00:00:00’,
 ’MM/DD/YYYY HH24:MI:SS’),
 to_date(’01/31/1990 23:59:59’,
 ’MM/DD/YYYY HH24:MI:SS’)) TSMedian
 FROM ORDTDEV.Stocks_TS
 WHERE ticker=’AONE’;

This example might produce the following output:

TSMEDIAN

 15.4649
1 row selected.
5-110 Oracle8 Time Series Cartridge User’s Guide

TSMin
TSMin

Format
ORDSYS.TimeSeries.TSMin (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the lowest (minimum) of all non-null time series entries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the minimum is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the minimum is to be calculated. If
endDate is specified, startDate must also be specified.

Usage
An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ endDate is earlier than startDate.

Example
Return the lowest closing price for stock AONE for the month of January 1990:

SELECT ORDSYS.TimeSeries.TSMin(close,
 Time Series and Time Scaling Functions: Reference 5-111

TSMin
 to_date(’01/01/1990 00:00:00’,
 ’MM/DD/YYYY HH24:MI:SS’),
 to_date(’01/31/1990 23:59:59’,
 ’MM/DD/YYYY HH24:MI:SS’)) TSMin
 FROM ORDTDEV.Stocks_TS
 WHERE ticker=’AONE’;

This example might produce the following output:

TSMIN

 15.1038
1 row selected.
5-112 Oracle8 Time Series Cartridge User’s Guide

TSMinN
TSMinN

Format
ORDSYS.TimeSeries.TSMinN (

ts ORDSYS.ORDTNumSeriesIOTRef,

NumValues INTEGER,

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumTab;

Description
Given an input ORDTNumSeries, a number of values to return, and optionally
starting and ending dates, returns an ORDTNumTab with the specified number
(NumValues) of the bottom (lowest) values.

Parameters

ts
The input time series.

NumValues
Number of values to return.

startDate
Starting date within the time series for which the bottom values are to be calcu-
lated. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the bottom values are to be calculated.
If endDate is specified, startDate must also be specified.

Usage
An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.
 Time Series and Time Scaling Functions: Reference 5-113

TSMinN
■ endDate is earlier than startDate.

■ NumValues is zero (0) or negative.

Example
Return the 10 lowest closing prices for stock AONE for the month of January 1996:

SELECT * FROM THE(SELECT CAST(
 ORDSYS.TimeSeries.TSMinN(close, 10,
 to_date(’01011996’,’MMDDYYYY’),
 to_date(’01311996’,’MMDDYYYY’))
 as ORDSYS.ORDTNumTab)
 FROM ORDTDEV.stocks_ts
 WHERE ticker =’AONE’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
15-JAN-96 37.8
09-JAN-96 37.9675
04-JAN-96 38.3025
10-JAN-96 38.47
03-JAN-96 38.6375
16-JAN-96 38.9725
11-JAN-96 39.0563
08-JAN-96 39.3075
12-JAN-96 39.5588
17-JAN-96 39.6425
10 rows selected.
5-114 Oracle8 Time Series Cartridge User’s Guide

TSMultiply
TSMultiply

Format
ORDSYS.TimeSeries.TSMultiply (

ts1 ORDSYS.ORDTNumSeriesIOTRef,

ts2 ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

or

ORDSYS.TimeSeries.TSMultiply (

ts1 ORDSYS.ORDTNumSeriesIOTRef,

k NUMBER

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given two input time series or a time series and a constant, and optionally starting
and ending dates, returns a time series that reflects the multiplication of the first
parameter by the second parameter.

Parameters

ts1
The time series (or first time series) whose elements are to be multiplied by either
the corresponding elements in the second time series or a constant.

ts2
The time series whose elements are to be multiplied by corresponding elements in
the first time series.

k
A constant to be multiplied by corresponding elements in the first time series.
 Time Series and Time Scaling Functions: Reference 5-115

TSMultiply
startDate
Starting date within the time series for which the multiplication is to be performed.
If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the multiplication is to be performed.
If endDate is specified, startDate must also be specified.

Usage
The function performs a pairwise multiplication operation on each element of the
time series (or first time series) by the corresponding element in the second time
series or by a constant. This operation determines the value of each element of the
returned time series. For example:

■ If two time series contain daily trade volumes for two stocks, each element of
the returned time series contains the result of multiplying the volume in the
first time series by the volume in the second time series for that day.

■ If a time series (ts1) contains closing prices for a stock and if a constant (k) of 2
is specified, each element of the returned time series contains the closing price
of ts1 multiplied by 2.

If ts1 and ts2 are specified, the function returns a time series whose calendar is the
result of using the CombineCals function on the calendars associated with these
two time series.

An exception is returned if any of the following conditions is true:

■ An input time series is null.

■ An input time series does not have an associated calendar.

■ The calendars associated with ts1 and ts2 do not have the same frequency and
aligned pattern.

■ endDate is earlier than startDate.

Example
Multiply the high price for stock ACME by the low price for stock FUNCO for each
trading day from 14-Nov-1996 through 14-Dec-1996:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;
5-116 Oracle8 Time Series Cartridge User’s Guide

TSMultiply
DECLARE
tstCal ORDSYS.ORDTCalendar;
startDate date;
endDate date;
dummyval INTEGER;

BEGIN

 startDate := TO_DATE(’11/14/1996’);
 endDate := TO_DATE(’12/14/1996’);
 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.TSMultiply(ts1.high, ts2.low, startDate, endDate),
 ’TSMultiply Results’) INTO dummyval
 FROM ORDTDEV.stockdemo_ts ts1, ORDTDEV.stockdemo_ts ts2
 WHERE ts1.ticker=’ACME’ and ts2.ticker=’FUNCO’;

END;
/

This example might produce the following output:

TSMultiply Results :

Calendar Data:
 Frequency = 4
 MinDate = 01/01/1990 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/14/1996 00:00:00 1647.03
 11/15/1996 00:00:00 1668.8
 11/18/1996 00:00:00 1694.77
 11/19/1996 00:00:00 1717.2
 11/20/1996 00:00:00 1738.86
 11/21/1996 00:00:00 1764.16
 11/22/1996 00:00:00 1788.75
 11/25/1996 00:00:00 1809.56
 11/26/1996 00:00:00 1831.06
 Time Series and Time Scaling Functions: Reference 5-117

TSMultiply
 11/27/1996 00:00:00 1849.38
 11/29/1996 00:00:00 1876.25
 12/02/1996 00:00:00 1910.4
 12/03/1996 00:00:00 1946.43
 12/04/1996 00:00:00 1969.64
 12/05/1996 00:00:00 2002.79
 12/06/1996 00:00:00 1995
 12/09/1996 00:00:00 2020.45
 12/10/1996 00:00:00 2046.8
 12/11/1996 00:00:00 2044.5
 12/12/1996 00:00:00 2060.08
 12/13/1996 00:00:00 2082.6

5-118 Oracle8 Time Series Cartridge User’s Guide

TSProd
TSProd

Format
ORDSYS.TimeSeries.TSProd (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the product (result of multiplication) of all non-null
time series entries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the product is to be calculated. If start-
Date is specified, endDate must also be specified.

endDate
Ending date within the time series for which the product is to be calculated. If end-
Date is specified, startDate must also be specified.

Usage
An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ endDate is earlier than startDate.
 Time Series and Time Scaling Functions: Reference 5-119

TSProd
Example
Return the product resulting from multiplying the daily closing prices for stock
AONE for the month of January 1990. (This example is not very plausible, but is
presented merely to illustrate the syntax.)

SELECT ORDSYS.TimeSeries.TSProd(close,
 to_date(’01/01/1990 00:00:00’,
 ’MM/DD/YYYY HH24:MI:SS’),
 to_date(’01/31/1990 23:59:59’,
 ’MM/DD/YYYY HH24:MI:SS’)) TSProd
 FROM ORDTDEV.Stocks_TS
 WHERE ticker=’AONE’;

This example might produce the following output:

TSPROD

1.7126E+26
1 row selected.
5-120 Oracle8 Time Series Cartridge User’s Guide

TSStdDev
TSStdDev

Format
ORDSYS.TimeSeries.TSStdDev (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the standard deviation of all non-null time series
entries. (This function returns a value that is the square root of the value returned
by the TSVar function.)

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the standard deviation is to be calcu-
lated. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the standard deviation is to be calcu-
lated. If endDate is specified, startDate must also be specified.

Usage
If the date range refers to a time series with fewer than two timestamps, a null is
returned.

An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ endDate is earlier than startDate.
 Time Series and Time Scaling Functions: Reference 5-121

TSStdDev
Example
Return the average, variance, and standard deviation of the closing price of stock
ACME:

--
-- Compute various aggregate statistics.
--
SELECT ORDSYS.TimeSeries.TSAvg(close), ORDSYS.TimeSeries.TSVariance(close),
ORDSYS.TimeSeries.TSStdDev(close)
 FROM ORDTDEV.stockdemo_ts
 WHERE ticker=’ACME’;

This example might produce the following output:

ORDSYS.ORD ORDSYS.ORD ORDSYS.ORD
---------- ---------- ----------
 79 143.5 11.9791486

1 row selected.
5-122 Oracle8 Time Series Cartridge User’s Guide

TSSubtract
TSSubtract

Format
ORDSYS.TimeSeries.TSSubtract (

ts1 ORDSYS.ORDTNumSeriesIOTRef,

ts2 ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

or

ORDSYS.TimeSeries.TSSubtract (

ts1 ORDSYS.ORDTNumSeriesIOTRef,

k NUMBER

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given two input time series or a time series and a constant, and optionally starting
and ending dates, returns a time series that reflects the subtraction of the second
parameter from the first parameter.

Parameters

ts1
The time series (or first time series) whose elements are to be decreased either by
corresponding elements in the second time series or by a constant.

ts2
The time series whose elements are to be subtracted from corresponding elements
in the first time series.

k
A constant to be subtracted from corresponding elements in the first time series.
 Time Series and Time Scaling Functions: Reference 5-123

TSSubtract
startDate
Starting date within the time series for which the subtraction is to be performed. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the subtraction is to be performed. If
endDate is specified, startDate must also be specified.

Usage
The function performs a pairwise subtraction operation on each element of ts1,
decreasing it by either the corresponding element in ts2 or by k. This operation
determines the value of each element of the returned time series. For example:

■ If two time series contain daily trade volumes for two stocks, each element of
the returned time series contains the result of subtracting the ts2 volume from
the ts1 volume for that day.

■ If a time series (ts1) contains closing prices for a stock and if a constant (k) of 1
is specified, each element of the returned time series contains the closing price
of ts1 decreased by 1.

If ts1 and ts2 are specified, the function returns a time series whose calendar is the
result of using the CombineCals function on the calendars associated with these
two time series.

An exception is returned if any of the following conditions is true:

■ An input time series is null.

■ An input time series does not have an associated calendar.

■ The calendars associated with ts1 and ts2 do not have the same frequency and
aligned pattern.

■ endDate is earlier than startDate.

Example
Subtract the low price for stock FUNCO from the high price for stock ACME for
each trading day from 14-Nov-1996 through 14-Dec-1996:

CONNECT ORDTUSER/ORDTUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
5-124 Oracle8 Time Series Cartridge User’s Guide

TSSubtract
tstCal ORDSYS.ORDTCalendar;
startDate date;
endDate date;
dummyval INTEGER;

BEGIN

 startDate := TO_DATE(’11/14/1996’);
 endDate := TO_DATE(’12/14/1996’);
 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.TSSubtract(ts1.high, ts2.low, startDate, endDate),
 ’TSSubtract Results’) INTO dummyval
 FROM ORDTDEV.stockdemo_ts ts1, ORDTDEV.stockdemo_ts ts2
 WHERE ts1.ticker=’ACME’ and ts2.ticker=’FUNCO’;

END;
/

This example might produce the following output:

TSSubtract Results :

Calendar Data:
 Frequency = 4
 MinDate = 01/01/1990 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/14/1996 00:00:00 45.13
 11/15/1996 00:00:00 46.16
 11/18/1996 00:00:00 47.13
 11/19/1996 00:00:00 48.15
 11/20/1996 00:00:00 49.18
 11/21/1996 00:00:00 50.16
 11/22/1996 00:00:00 51.15
 11/25/1996 00:00:00 52.19
 11/26/1996 00:00:00 53.22
 11/27/1996 00:00:00 54.29
 Time Series and Time Scaling Functions: Reference 5-125

TSSubtract
 11/29/1996 00:00:00 55.25
 12/02/1996 00:00:00 56.12
 12/03/1996 00:00:00 56.97
 12/04/1996 00:00:00 57.98
 12/05/1996 00:00:00 58.87
 12/06/1996 00:00:00 60.25
 12/09/1996 00:00:00 61.23
 12/10/1996 00:00:00 62.2
 12/11/1996 00:00:00 63.5
 12/12/1996 00:00:00 64.59
 12/13/1996 00:00:00 65.6

5-126 Oracle8 Time Series Cartridge User’s Guide

TSSum
TSSum

Format
ORDSYS.TimeSeries.TSSum (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the sum of all non-null time series entries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the sum is to be calculated. If start-
Date is specified, endDate must also be specified.

endDate
Ending date within the time series for which the sum is to be calculated. If endDate
is specified, startDate must also be specified.

Usage
An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ endDate is earlier than startDate.

Example
Return the sum of the daily trading volumes for stock AONE for the month of Janu-
ary 1990 (that is, the total AONE volume for the month):
 Time Series and Time Scaling Functions: Reference 5-127

TSSum
SELECT ORDSYS.TimeSeries.TSSum(volume,
 to_date(’01/01/1990 00:00:00’,
 ’MM/DD/YYYY HH24:MI:SS’),
 to_date(’01/31/1990 23:59:59’,
 ’MM/DD/YYYY HH24:MI:SS’)) TSSum
 FROM ORDTDEV.Stocks_TS
 WHERE ticker=’AONE’;

This example might produce the following output:

TSSUM

 104434900
1 row selected.
5-128 Oracle8 Time Series Cartridge User’s Guide

TSVariance
TSVariance

Format
ORDSYS.TimeSeries.TSVariance (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the variance of all non-null time series entries. (This
function is analogous to the SQL group function VAR.)

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the variance is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the variance is to be calculated. If end-
Date is specified, startDate must also be specified.

Usage
If the date range refers to a time series with fewer than two timestamps, a null is
returned.

An exception is returned if any of the following conditions is true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ endDate is earlier than startDate.
 Time Series and Time Scaling Functions: Reference 5-129

TSVariance
Example
Return the average, variance, and standard deviation of the closing price of stock
ACME:

--
-- Compute various aggregate statistics.
--
SELECT ORDSYS.TimeSeries.TSAvg(close), ORDSYS.TimeSeries.TSVariance(close),
ORDSYS.TimeSeries.TSStdDev(close)
 FROM ORDTDEV.stockdemo_ts
 WHERE ticker=’ACME’;

This example might produce the following output:

ORDSYS.ORD ORDSYS.ORD ORDSYS.ORD
---------- ---------- ----------
 79 143.5 11.9791486

1 row selected.
5-130 Oracle8 Time Series Cartridge User’s Guide

ValidateTS
ValidateTS

Format
ORDSYS.TimeSeries.ValidateTS(

ts IN ORDSYS.ORDTNumSeriesIOTRef,

outMesg OUT VARCHAR2,

loDateTab OUT ORDSYS.ORDTDateTab,

hiDateTab OUT ORDSYS.ORDTDateTab,

impreciseDateTab OUT ORDSYS.ORDTDateTab,

duplicateDateTab OUT ORDSYS.ORDTDateTab,

extraDateTab OUT ORDSYS.ORDTDateTab,

missingDateTab OUT ORDSYS.ORDTDateTab

) RETURN INTEGER;

or

ORDSYS.TimeSeries.ValidateTS(

ts IN ORDSYS.ORDTVarchar2SeriesIOTRef,

outMesg OUT VARCHAR2,

loDateTab OUT ORDSYS.ORDTDateTab,

hiDateTab OUT ORDSYS.ORDTDateTab,

impreciseDateTab OUT ORDSYS.ORDTDateTab,

duplicateDateTab OUT ORDSYS.ORDTDateTab,

extraDateTab OUT ORDSYS.ORDTDateTab,

missingDateTab OUT ORDSYS.ORDTDateTab

) RETURN INTEGER;
 Time Series and Time Scaling Functions: Reference 5-131

ValidateTS
Description
Checks whether a time series is valid, and if the time series is not valid, outputs a
diagnostic message and tables with timestamps that are causing the time series to
be invalid.

Parameters

ts
The time series to be checked for validity.

outMesg
If the time series is invalid (if the return value = 0), contains a diagnostic message
describing any problems.

loDateTab
A table of dates before the starting date of the calendar associated with the time
series.

hiDateTab
A table of dates after the ending date of the calendar associated with the calendar.

impreciseDateTab
A table of the imprecise timestamps found in the time series.

duplicateDateTab
A table of the duplicate timestamps found in the time series.

extraDateTab
A table of dates that are included in the time series but that should be excluded
based on the calendar definition (for example, a Saturday timestamp that is in a
Monday-Friday calendar and that is not an on-exception).

missingDateTab
A table of dates that are excluded from the time series but that should be included
based on the calendar definition (for example, a Wednesday date that is not a holi-
day in a Monday-Friday calendar and for which there is no data). Such dates can be
considered as "holes" in the time series.
5-132 Oracle8 Time Series Cartridge User’s Guide

ValidateTS
Usage
The function returns one of the following values:

A time series is invalid if one or more of the following conditions are true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ The calendar associated with the time series is invalid.

■ The timestamps are not sorted.

■ One or more timestamps are null, imprecise, or outside the date range of the
calendar.

■ One or more timestamps are included in the time series but should be excluded
based on the calendar definition (for example, a Saturday timestamp that is in a
Monday-Friday calendar and that is not an on-exception).

■ One or more timestamps are excluded from the time series but should be
included based on the calendar definition (for example, a Wednesday date that
is not a holiday in a Monday-Friday calendar and for which there is no data).
Such dates can be considered as "holes" in the time series.

Contrast this function with IsValidTS, which simply checks whether a time series is
valid.

You can use the DisplayValTS procedure (documented in this chapter) to display
the information returned by the ValidateTS function.

The ValidateTS function cannot be called from SQL. It must be called from PL/SQL
because of the OUT parameters.

Example
Use the IsValidTS and ValidateTS functions and the DisplayValTS procedure with
an invalid time series:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

Value Meaning

1 The time series is valid. No errors were found.

0 The time series in invalid.
 Time Series and Time Scaling Functions: Reference 5-133

ValidateTS
DECLARE
 numTS ORDSYS.ORDTNumSeries;
 tempVal integer;
 retIsValid integer;
 retValTS integer;
 loDateTab ORDSYS.ORDTDateTab := NULL;
 hiDateTab ORDSYS.ORDTDateTab := NULL;
 impDateTab ORDSYS.ORDTDateTab := NULL;
 dupDateTab ORDSYS.ORDTDateTab := NULL;
 extraDateTab ORDSYS.ORDTDateTab := NULL;
 missingDateTab ORDSYS.ORDTDateTab := NULL;
 outMesg varchar2(2000);

BEGIN

 -- Set the buffer size
 DBMS_OUTPUT.ENABLE(100000);

 --
 -- NOTE: Here an instance of the time series is materialized
 -- so that it could be modified to generate an invalid time series.
 --
 SELECT ORDSYS.TIMESERIES.GetSeries(ts.open) INTO numTS
 FROM ordtdev.stockdemo_ts ts
 WHERE ts.ticker = ’ACME’;

 -- Example of validating a valid time series.
 SELECT ordsys.timeseries.display(numTS, ’A VALID TIME SERIES’) INTO tempVal
 FROM dual;
 retIsValid := ORDSYS.TIMESERIES.IsValidTS(numTS);
 retValTS := ORDSYS.TIMESERIES.ValidateTS(numTS, outMesg, loDateTab,
 hiDateTab, impDateTab, dupDateTab,
 extraDateTab, missingDateTab);
 DBMS_OUTPUT.PUT_LINE(’Value returned by IsValid = ’ || retIsValid);
 DBMS_OUTPUT.PUT_LINE(’Value returned by ValidateTS = ’ || retValTS);
 ORDSYS.TIMESERIES.DisplayValTS(retValTS, outMesg, loDateTab, hiDateTab,
 impDateTab, dupDateTab, extraDateTab, missingDateTab,
 ’Testing DisplayValTS’);
 DBMS_OUTPUT.NEW_LINE;

 -- For illustration let us first create an invalid timeseries.
 --
 -- Here we are adjusting the calendar’s minDate and maxDate to avoid
 -- getting a huge list of missing dates.
 --
5-134 Oracle8 Time Series Cartridge User’s Guide

ValidateTS
 numTS.cal.minDate := TO_DATE(’10/28/1996’);
 numTS.cal.maxDate := TO_DATE(’01/05/1997’);

 -- Add Dates Before numTS.cal.minDate
 numTS.series(10).tstamp := numTS.cal.minDate - 1;
 numTS.series(11).tstamp := numTS.cal.minDate - 2;

 -- Add Dates Beyond numTS.cal.maxDate
 numTS.series(12).tstamp := numTS.cal.maxDate + 1;
 numTS.series(13).tstamp := numTS.cal.maxDate + 2;

 -- Add some null timestamps
 numTS.series(14).tstamp := NULL;
 numTS.series(15).tstamp := NULL;

 -- Add some imprecise dates (some are duplicated)
 numTS.series(17).tstamp := numTS.series(16).tstamp + 1/24;
 numTS.series(18).tstamp := numTS.series(16).tstamp + 15/24;

 -- Add some duplicate timestamps
 numTS.series(19).tstamp := numTS.series(18).tstamp;
 numTS.series(21).tstamp := numTS.series(20).tstamp;

 -- Add some extra dates in the middle
 numTS.series(37).tstamp := TO_DATE(’12/28/1996’);
 numTS.series(36).tstamp := TO_DATE(’12/29/1996’);

 -- Add some holes at the end
 numTS.series(numTS.series.count).tstamp := TO_DATE(’01/04/1997’);

 -- Example of validating an invalid time series.
 SELECT ordsys.timeseries.display(numTS, ’AN INVALID TIME SERIES’)
 INTO tempVal FROM dual;
 retIsValid := ORDSYS.TIMESERIES.IsValidTS(numTS);
 retValTS := ORDSYS.TIMESERIES.ValidateTS(numTS, outMesg,
 loDateTab, hiDateTab, impDateTab,
 dupDateTab, extraDateTab, missingDateTab);
 DBMS_OUTPUT.PUT_LINE(’Value returned by IsValid = ’ || retIsValid);
 DBMS_OUTPUT.PUT_LINE(’Value returned by ValidateTS = ’ || retValTS);
 ORDSYS.TIMESERIES.DisplayValTS(retValTS, outMesg, loDateTab, hiDateTab,
 impDateTab, dupDateTab, extraDateTab, missingDateTab,
 ’Testing DisplayValTS’);
END;
/

 Time Series and Time Scaling Functions: Reference 5-135

ValidateTS
This example might produce the following output:

A VALID TIME SERIES :

Name = ACME open NumSeries
Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4
 MinDate = 01/01/1990 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/01/1996 00:00:00 59
 11/04/1996 00:00:00 60
 11/05/1996 00:00:00 61
 11/06/1996 00:00:00 62
 11/07/1996 00:00:00 63
 11/08/1996 00:00:00 64
 11/11/1996 00:00:00 65
 11/12/1996 00:00:00 66
 11/13/1996 00:00:00 67
 11/14/1996 00:00:00 68
 11/15/1996 00:00:00 69
 11/18/1996 00:00:00 70
 11/19/1996 00:00:00 71
 11/20/1996 00:00:00 72
 11/21/1996 00:00:00 73
 11/22/1996 00:00:00 74
 11/25/1996 00:00:00 75
 11/26/1996 00:00:00 76
 11/27/1996 00:00:00 77
 11/29/1996 00:00:00 78
 12/02/1996 00:00:00 79
 12/03/1996 00:00:00 80
 12/04/1996 00:00:00 81
 12/05/1996 00:00:00 82
 12/06/1996 00:00:00 83
 12/09/1996 00:00:00 84
5-136 Oracle8 Time Series Cartridge User’s Guide

ValidateTS
 12/10/1996 00:00:00 85
 12/11/1996 00:00:00 86
 12/12/1996 00:00:00 87
 12/13/1996 00:00:00 88
 12/16/1996 00:00:00 89
 12/17/1996 00:00:00 90
 12/18/1996 00:00:00 91
 12/19/1996 00:00:00 92
 12/20/1996 00:00:00 93
 12/23/1996 00:00:00 94
 12/24/1996 00:00:00 95
 12/26/1996 00:00:00 96
 12/27/1996 00:00:00 97
 12/30/1996 00:00:00 98
 12/31/1996 00:00:00 99

Value returned by IsValid = 1
Value returned by ValidateTS = 1

DisplayValTS: Testing DisplayValTS:

TS-SUC: the input time series is a valid time series

AN INVALID TIME SERIES :

Name = ACME open NumSeries
Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4
 MinDate = 10/28/1996 00:00:00
 MaxDate = 01/05/1997 00:00:00
 patBits:
 0111110
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/01/1996 00:00:00 59
 11/04/1996 00:00:00 60
 11/05/1996 00:00:00 61
 Time Series and Time Scaling Functions: Reference 5-137

ValidateTS
 11/06/1996 00:00:00 62
 11/07/1996 00:00:00 63
 11/08/1996 00:00:00 64
 11/11/1996 00:00:00 65
 11/12/1996 00:00:00 66
 11/13/1996 00:00:00 67
 10/27/1996 00:00:00 68
 10/26/1996 00:00:00 69
 01/06/1997 00:00:00 70
 01/07/1997 00:00:00 71
 72
 73
 11/22/1996 00:00:00 74
 11/22/1996 01:00:00 75
 11/22/1996 15:00:00 76
 11/22/1996 15:00:00 77
 11/29/1996 00:00:00 78
 11/29/1996 00:00:00 79
 12/03/1996 00:00:00 80
 12/04/1996 00:00:00 81
 12/05/1996 00:00:00 82
 12/06/1996 00:00:00 83
 12/09/1996 00:00:00 84
 12/10/1996 00:00:00 85
 12/11/1996 00:00:00 86
 12/12/1996 00:00:00 87
 12/13/1996 00:00:00 88
 12/16/1996 00:00:00 89
 12/17/1996 00:00:00 90
 12/18/1996 00:00:00 91
 12/19/1996 00:00:00 92
 12/20/1996 00:00:00 93
 12/29/1996 00:00:00 94
 12/28/1996 00:00:00 95
 12/26/1996 00:00:00 96
 12/27/1996 00:00:00 97
 12/30/1996 00:00:00 98
 01/04/1997 00:00:00 99

Value returned by IsValid = 0
Value returned by ValidateTS = 0

DisplayValTS: Testing DisplayValTS:
5-138 Oracle8 Time Series Cartridge User’s Guide

ValidateTS
TS-WRN: the input time series has errors. See the message for details

message output by validateTS:

TS-ERR: the input time series is unsorted
TS-ERR: the time series has null timestamps
TS-ERR: the time series has timestamps < calendar minDate (refer LoDateTab)
TS-ERR: the time series has timestamps > calendar maxDate (refer HiDateTab)
TS-ERR: the time series has imprecise timestamps (refer impreciseDateTab)
TS-ERR: the time series has duplicate timestamps (refer DuplicateDateTab)

list of dates < calendar minDate - lowDateTab :

 10/26/1996 00:00:00 10/27/1996 00:00:00

list of dates > calendar maxDate - hiDateTab :
 01/06/1997 00:00:00 01/07/1997 00:00:00

list of imprecise dates - impreciseDateTab :

 11/22/1996 01:00:00 11/22/1996 15:00:00

list of duplicate dates - duplicateDateTab :

 11/22/1996 15:00:00 11/29/1996 00:00:00

ExtraDateTab :

 12/28/1996 00:00:00 12/29/1996 00:00:00 01/04/1997 00:00:00

MissingDateTab :

 10/28/1996 00:00:00 10/29/1996 00:00:00 10/30/1996 00:00:00
 10/31/1996 00:00:00 11/14/1996 00:00:00 11/15/1996 00:00:00
 11/18/1996 00:00:00 11/19/1996 00:00:00 11/20/1996 00:00:00
 11/21/1996 00:00:00 11/25/1996 00:00:00 11/26/1996 00:00:00
 11/27/1996 00:00:00 12/02/1996 00:00:00 12/23/1996 00:00:00
 12/24/1996 00:00:00 12/31/1996 00:00:00 01/01/1997 00:00:00
 01/02/1997 00:00:00 01/03/1997 00:00:00
 Time Series and Time Scaling Functions: Reference 5-139

ValidateTS
5-140 Oracle8 Time Series Cartridge User’s Guide

 Error Messa
A

 Error Messages

This appendix lists the Time Series cartridge error messages, including the cause
and recommended user action for each.

TS-00500, "internal error"
Cause: This is the generic internal error number for Time Series exceptions.
This indicates that a process has encountered an exceptional condition.

Action: Report as a bug.

TS-00501, "the input patterns are not of the same length"
Cause: The input calendars have patterns of different lengths. For example,
’0,1,1,1,1,1,0’ and ’0,1,1,1,1,0’ were specified.

Action: Use calendars with patterns of the same length.

TS-00503, "patanchor can be null only if patbits.count=1 or all patbits are the
same"
Cause: Pattern anchor was null, and pattern was not acceptable for a null pat-
anchor. The anchor can be null only when using all-zero or all-one pattern bits.

Action: Supply a pattern anchor date, or adjust the pattern bits.

TS-00504, "illegal validflag parameter was passed to DisplayValCal/Display-
ValTS"
Cause: DisplayValCal or DisplayValTS was called with invalid parameters.

Action: Only call DisplayValCal and DisplayValTS with the output of Vali-
dateCal or ValidateTS, respectively.

TS-00505, "illegal outmessage parameter was passed to DisplayValCal/Display-
ValTS"
Cause: DisplayValCal or DisplayValTS was called with invalid parameters.

Action: Only call DisplayValCal and DisplayValTS with the output of Vali-
dateCal or ValidateTS, respectively.
ges A-1

Error Messages
TS-00506, "the calendar pattern is null"
Cause: The Time Series Cartridge encountered a calendar having a null pat-
tern.

Action: Ensure that all calendars have a non-null pattern.

TS-00507, "the calendar has an imprecise mindate or maxdate"
Cause: The Time Series Cartridge encountered a calendar having an imprecise
mindate or maxdate.

Action: Ensure that all calendar mindates and maxdates are precise.

TS-00510, "datetab has dates outside the bounds of the calendar"
Cause: DeriveExceptions encountered dates outside of the input calendar’s
mindate/maxdate.

Action: Adjust mindate/maxdate or remove extraneous dates from the input
DateTab.

TS-00511, "calendar pattern bits array is either empty or null"
Cause: The Time Series Cartridge encountered a calendar with an empty or
null array of pattern bits.

Action: Update the calendar to include a valid array of pattern bits.

TS-00512, "invalid frequency value - valid frequencies are: 1,2,3,4,6,8"
Cause: The Time Series Cartridge has encountered a calendar with an unsup-
ported frequency.

Action: Restrict all calendars to frequencies: 1,2,3,4,6,8.

TS-00513, "the input dates are in the wrong order"
Cause: The date range provided was in reverse order.

Action: When specifying a date range, always list the earlier date first.

TS-00514, "calendar pattern has an imprecise anchor date"
Cause: The Time Series Cartridge has encountered a calendar with an anchor
having the wrong precision.

Action: Adjust the precision of the anchor to match the calendars frequency.

TS-00515, "input date is less than calendar mindate"
Cause: The Time Series Cartridge has encountered a date less than mindate.
A-2 Oracle8 Time Series Cartridge User’s Guide

Error Messages
Action: Ensure that all input dates are within the mindate-maxdate range of
the calendar.

TS-00516, "input date is greater than calendar maxdate"
Cause: The Time Series Cartridge has encountered a date greater than max-
date.

Action: Ensure that all input dates are within the mindate-maxdate range of
the calendar.

TS-00519, "the series attribute of the time series type is null"
Cause: The Time Series Cartridge has encountered a null series within a time
series.

Action: Ensure that all time series have a non-null series component.

TS-00520, "the input calendar is null"
Cause: The Time Series Cartridge has encountered a null calendar.

Action: Ensure that all calendars are non-null.

TS-00522, "error scaling date to calendar"
Cause: Input date cannot be scaled to given calendar.

Action: Ensure that the given calendar is valid and that the calendar’s mindate
and maxdate encompass all potential timestamp values.

TS-00523, "the input date is null"
Cause: Scaleup has encountered a null date. No scaling semantics are defined
for a null date.

Action: Ensure that all input to Scaleup is non-null.

TS-00525, "the input time series is null"
Cause: The Time Series Cartridge has encountered a null time series.

Action: Ensure that all time series are not atomically null.

TS-00526, "the input time series has a null calendar"
Cause: The Time Series Cartridge has encountered a null calendar within a
time series.

Action: Ensure that all time series include valid (non-null) calendars.

TS-00527, "error scaling up to the target calendar frequency"
 Error Messages A-3

Error Messages
Cause: Scaleup encountered a target calendar of finer frequency than that of
the input time series’ calendar.

Action: Scaleup requires a target calendar of equal or coarser frequency.

TS-00528, "calendar has a null mindate or a null maxdate"
Cause: The Time Series Cartridge has encountered a calendar with a null mind-
ate or maxdate.

Action: Ensure that all calendars have a valid mindate and maxdate.

TS-00529, "calendar mindate is greater than its maxdate"
Cause: The Time Series Cartridge has encountered a calendar with mindate >
maxdate.

Action: Ensure that all calendars have a valid mindate <= maxdate.

TS-00530, "series indexes must be greater than 0"
Cause: GetNthElement encountered an index less than 1.

Action: Use indexes greater than 0.

TS-00531, "the input time series has a null calendar reference"
Cause: The Time Series Cartridge has encountered a time series with a null cal-
endar reference.

Action: Ensure that all calendar references are valid.

TS-00532, "unable to DEREF calendar referenced by time series"
Cause: The Time Series Cartridge was unable to dereference a calendar refer-
ence.

Action: Verify that the user executing the query has select privileges for the
calendar table storing the object, and that the correct calendar has been refer-
enced by the time series ref.

TS-00533, "the time series has data beyond its calendar mindate/maxdate"
Cause: The Time Series Cartridge has encountered a time series with data
beyond mindate/maxdate.

Action: Ensure that all timestamps in a time series are within the calendar’s
mindate/maxdate.

TS-00534, "the number of rows requested must be a positive integer"
Cause: The requested number of rows was less than 0.

Action: Use a positive number to specify the number of rows requested.
A-4 Oracle8 Time Series Cartridge User’s Guide

Error Messages
TS-00535, "the time series ref has a null table_name parameter"
Cause: The Time Series Cartridge has encountered a time series ref having a
null table_name.

Action: Ensure that all time series refs include a valid table name.

TS-00536, "the time series ref has a null tstamp_colname parameter"
Cause: The Time Series Cartridge has encountered a time series ref having a
null tstamp_colname.

Action: Ensure that all time series refs include a valid timestamp column
name.

TS-00537, "the time series ref has a null value_colname parameter"
Cause: The Time Series Cartridge has encountered a time series ref having a
null value_colname.

Action: Ensure that all time series refs include a valid value column name.

TS-00538, "the time series ref has a null qualifier_colname parameter"
Cause: The Time Series Cartridge has encountered a time series ref having a
null qualifier_colname.

Action: Ensure that all time series refs include a valid qualifier column name.

TS-00539, "the time series ref has a null qualifier_value parameter"
Cause: The Time Series Cartridge has encountered a time series ref having a
null qualifier_value.

Action: Ensure that all time series refs include a valid qualifier value.

TS-00540, "the projected lead timestamp is beyond the calendar mindate/max-
date"
Cause: The given parameters result in timestamps outside of mindate/max-
date.

Action: Adjust the lead timestamp or lead units to remain within calendar min-
date/maxdate, or extend the mindate/maxdate.

TS-00541, "the projected lag timestamp is beyond the calendar mindate/maxdate"
Cause: The given parameters result in timestamps outside of mindate/max-
date.

Action: Adjust the lag timestamp or lag units to remain within calendar mind-
ate/maxdate, or extend the mindate/maxdate.
 Error Messages A-5

Error Messages
TS-00542, "the window size for mavg/msum must be >= 1"
Cause: Window size parameter passed to moving average/sum was not
greater than 0.

Action: Use a window size parameter greater than or equal to 1.

TS-00547, "the input fill type is invalid"
Cause: Fill has been called with a filltype less than 0 or greater than 2.

Action: Use a valid filltype: 0, 1, or 2.

TS-00551, "error parsing the SQL statement with the time series ref"
Cause: The SQL statement constructed from the time series ref was invalid.

Action: Verify the validity of the time series ref:

• Verify the validity of all components of the time series ref.

• No spaces or invalid punctuation may appear in table or column names.

• The user must have select privileges on the table referenced.

• The table name must be qualified with its schema name.

TS-00552, "error executing the SQL statement with the time series ref"
Cause: The SQL statement constructed from the time series ref was invalid.

Action: Verify the validity of the time series ref:

• Verify the validity of all components of the time series ref.

• No spaces or invalid punctuation may appear in table or column names.

• The user must have select privileges on the table referenced.

• The table name must be qualified with its schema name.

TS-00553, "divide by zero error"
Cause: An attempt was made to divide by zero with TSDivide.

Action: When dividing by a constant, ensure that the constant is non-zero.

TS-00554, "the input calendar patterns are not equal"
Cause: DeriveExceptions requires the reference time series' calendar to have
the same pattern as the time series being processed.

Action: Ensure that DeriveExceptions is called only with time series having
the same pattern.
A-6 Oracle8 Time Series Cartridge User’s Guide

Error Messages
TS-00555, "the input calendar frequencies are not equal"
Cause: DeriveExceptions requires the reference time series’ calendar to have
the same frequency as the time series being processed.

Action: Ensure that DeriveExceptions is called only with time series having
the same frequency.

TS-00556, "mindate of the ref calendar exceeds the mindate of the target calendar"
Cause: DeriveExceptions encountered a reference time series’ calendar having
a mindate greater than that of the target time series’ calendar.

Action: Ensure that DeriveExceptions is called only with appropriate time
series.

TS-00557, "maxdate of the target calendar exceeds the maxdate of the ref calendar"
Cause: DeriveExceptions encountered a reference time series’ calendar having
a maxdate less than that of the target time series’ calendar.

Action: Ensure that DeriveExceptions is called only with appropriate time
series.

TS-00558, "the target calendar should have empty on/off exception lists"
Cause: DeriveExceptions encountered a target time series’ calendar having
non-empty exception lists.

Action: Ensure that DeriveExceptions is called only with target time series
having empty exception lists.

TS-00559, "the caltype field in the calendar has an illegal value"
Cause: The Time Series Cartridge encountered a calendar with an invalid cal-
endar type.

Action: Ensure that all calendars have valid calendar type value. Valid calen-
dar types are: (Exception-driven calendars = 0)
 Error Messages A-7

Error Messages
A-8 Oracle8 Time Series Cartridge User’s Guide

Index

A
addition

TSAdd function, 5-93
TSSum function, 5-127

advanced-developer demo, 1-4
aggregate functions, 2-28
architecture

Time Series cartridge, 2-10
arithmetic functions, 2-28
average

TSAvg function, 5-97
average, moving

Mavg function, 2-29, 5-69

B
bottom values

TSMinN function, 5-113
bulk loading of time series data, 3-10

consistency, 2-20, 3-10

C
calendar, 2-5

datatypes, 2-7
defining, 2-8
exceptions, 2-5
frequency, 2-6
pattern, 2-5
precision, 2-7
validating, 4-34, 4-69

calendar functions, 2-20, 4-1
Cavg function, 5-3

Cmax function, 5-5
Cmin function, 5-7
collection-based interface, 2-13
CombineCals function, 4-2
consistency of time series data

approaches, 2-20, 3-10
conventional path (SQL*Loader), 3-13
conversion functions, 2-30
count

TSCount function, 5-99
Cprod function, 5-9
cumulative sequence functions, 2-29

D
data cartridge

definition, 1-1
datatypes

calendar, 2-7
time series, 2-23

defining
calendar, 2-8

DeleteExceptions function, 4-7
demos of Time Series cartridge

advanced-developer, 1-4
Developer/2000, 1-4
OCI, 1-4
PRO*C/C++, 1-4
usage, 1-4

DeriveExceptions function, 2-9, 5-13
Developer/2000 demo, 1-4
direct path (SQL*Loader), 3-13
Display function, 5-15
DisplayValCal procedure, 4-10
 Index-1

DisplayValTS procedure, 5-18
division

TSDivide function, 5-101

E
EqualCals function, 4-17
error messages, A-1
exceptions, 2-5

deriving, 2-9
ExtractCal function, 5-26
ExtractDate function, 5-28
extraction functions, 2-26
ExtractTable function, 5-30
ExtractValue function, 5-32

F
Fill function, 5-34
First function, 5-40
FirstN function, 5-42
frequency, 2-6
functions

calendar, 2-20, 4-1
Cavg, 5-3
Cmax, 5-5
Cmin, 5-7
CombineCals, 4-2
Cprod, 5-9
DeleteExceptions, 4-7
DeriveExceptions, 2-9, 5-13
Display, 5-15
DisplayValCal procedure, 4-10
DisplayValTS procedure, 5-18
EqualCals, 4-17
ExtractCal, 5-26
ExtractDate, 5-28
ExtractTable, 5-30
ExtractValue, 5-32
Fill, 5-34
First, 5-40
FirstN, 5-42
GetDatedElement, 5-44
GetNthElement, 5-46
GetOffset, 4-20

GetSeries, 5-48
InsertExceptions, 4-23
IntersectCals, 4-27
InvalidTimeStampsBetween, 4-31
IsValidCal, 4-34
IsValidDate, 4-40
IsValidTS, 5-51
Lag, 5-59
Last, 5-62
LastN, 5-64
Lead, 5-66
Mavg, 5-69
Msum, 5-72
NumInvalidTimeStampsBetween, 4-43
NumOffExceptions, 4-46
NumOnExceptions, 4-49
NumTimeStampsBetween, 4-52
OffsetDate, 4-55
Scaleup, 5-74
ScaleupAvg, 5-76
ScaleupCount, 5-78
ScaleupFirst, 5-80
ScaleupLast, 5-82
ScaleupMax, 5-84
ScaleupMin, 5-86
ScaleupSum, 5-88
SetPrecision, 4-58
time scaling, 2-31, 5-1
time series, 2-23, 5-1
TimeStampsBetween, 4-61
TrimSeries, 5-90
TSAdd, 5-93
TSAvg, 5-97
TSCount, 5-99
TSDivide, 5-101
TSMax, 5-105
TSMaxN, 5-107
TSMedian, 5-109
TSMin, 5-111
TSMinN, 5-113
TSMultiply, 5-115
TSProd, 5-119
TSStdDev, 5-121
TSSubtract, 5-123
TSSum, 5-127
Index-2

TSVariance, 5-129
UnionCals, 4-65
VallidateCal, 4-69
VallidateTS, 5-131

G
GetDatedElement function, 5-44
GetNthElement function, 5-46
GetOffset function, 4-20
GetSeries function, 5-48

H
highest values

TSMaxN, 5-107

I
incremental loading of time series data, 3-12
InsertExceptions function, 4-23
installation of the cartridge, 1-3
instance-based interface, 2-13
INSTEAD OF triggers, 3-4
IntersectCals function, 4-27
InvalidTimeStampsBetween function, 4-31
irregular time series, 2-2, 2-6
IsValidCal function, 4-34
IsValidDate function, 4-40
IsValidTS function, 5-51

K
kit installation, 1-3

L
Lag function, 5-59
Last function, 5-62
LastN function, 5-64
Lead function, 5-66
loading

time series data, 3-9
lowest values

TSMinN, 5-113

M
Mavg function, 2-29, 5-69
maximum

TSMax function, 5-105
median

TSMedian function, 5-109
messages

error, A-1
metadata for usage demo, 1-6, 2-16
minimum

TSMin function, 5-111
moving average

Mavg function, 2-29, 5-69
moving sum

Msum function, 2-29, 5-72
Msum function, 2-29, 5-72
multiplication

TSMultiply function, 5-115
TSProd function, 5-119

N
null operand semantics, 2-24
NumInvalidTimeStampsBetween function, 4-43
NumOffExceptions function, 4-46
NumOnExceptions function, 4-49
NumTimeStampsBetween function, 4-52

O
object relational technology, 1-2
OCI demo, 1-4
off-exception, 2-5

semantics, 2-25
OffsetDate function, 4-55
on-exception, 2-5
Oracle Forms demo (Developer/2000), 1-4
ORDSYS schema, 1-4
ORDTCalendar datatype, 2-7
ORDTDateTab datatype, 2-24
ORDTExceptions datatype, 2-7
ORDTNumCell datatype, 2-23
ORDTNumSeries datatype, 2-23
ORDTNumSeriesIOTRef datatype, 2-23
ORDTNumSeriesIOTRef type, 2-15
 Index-3

ORDTNumTab datatype, 2-23
ORDTPattern datatype, 2-7
ORDTPatternBits datatype, 2-7
ordtsyn.sql (public synonyms), 1-4
ORDTVarchar2Cell datatype, 2-23
ORDTVarchar2Series datatype, 2-23
ORDTVarchar2SeriesIOTRef datatype, 2-24
ORDTVarchar2Tab datatype, 2-23

P
package names

public synonyms for, 1-4
pattern, 2-5
precision, 2-7

purified timestamps, 2-19
PRO*C/C++ demo, 1-4
procedures

DisplayValCal, 4-10
DisplayValTS, 5-18

product
TSAvg function, 5-119

public synonyms for package names, 1-4
purified timestamps, 2-19

R
reference-based interface, 2-15
reference-based view, 1-6, 2-16
regular time series, 2-1

S
Scaleup function, 5-74
ScaleupAvg function, 5-76
ScaleupCount function, 5-78
ScaleupFirst function, 5-80
ScaleupLast function, 5-82
ScaleupMax function, 5-84
ScaleupMin function, 5-86
ScaleupSum function, 5-88
security view, 1-6, 2-16, 3-4
semantics

null operands, 2-24
off-exception operands, 2-25

server output, setting, 5-16
SET SERVEROUTPUT ON statement, 5-16
SetPrecision function, 4-58
shift functions, 2-27
SQL formatting functions, 2-27
SQL*Loader utility, 3-9

bulk loading, 3-10
conventional and direct paths, 3-13
incremental loading, 3-12

standard deviation
TSStdDev function, 5-121

stockdemo_metadata table, 1-6, 2-16
stockdemo_sv security view, 1-6, 2-16
stockdemo_ts reference-based view, 1-6, 2-16
subtraction

TSSubtract function, 5-123
sum

TSSum function, 5-127
sum, moving

Msum function, 2-29, 5-72
synonyms

public (package names), 1-4

T
time scaling functions, 2-31, 5-1
time series

cartridge architecture, 2-10
data storage, 2-11
datatypes, 2-23
irregular, 2-2, 2-6
regular, 2-1
validating, 3-11, 5-51, 5-131

time series functions, 2-23, 5-1
TimeStampsBetween function, 4-61
top values

TSMax function, 5-107
trim functions, 2-26
TrimSeries function, 5-90
TSAdd function, 5-93
TSAvg function, 5-97
TSCount function, 5-99
TSDivide function, 5-101
TSMax function, 5-105
TSMaxN function, 5-107
Index-4

TSMedian function, 5-109
TSMin function, 5-111
TSMinN function, 5-113
TSMultiply function, 5-115
TSProd function, 5-119
TSStdDev function, 5-121
TSSubtract function, 5-123
TSSum function, 5-127
TSVariance function, 5-129

U
UnionCals function, 4-65
usage demo, 1-4

files, 1-5
tables and views, 1-6, 2-16

V
ValidateCal function, 4-69
ValidateTS function, 5-131
validating

calendar, 4-34, 4-69
time series, 3-11, 5-51, 5-131

variance
TSVariance function, 5-129
 Index-5

Index-6

	Contents
	Send Us Your Comments
	Preface
	1 Introduction
	1.1� Data Cartridges
	1.2� Object Relational Technology
	1.3� Storing and Accessing Data
	1.4� Installing the Kit
	1.5� Creating Public Synonyms for Time Series Pack...
	1.6� Time Series Cartridge Demos (Demonstrations)
	1.6.1� Running the Usage Demo
	1.6.2� Usage Demo Files
	1.6.3� Tables and Views in the Usage Demo

	2 Time Series Concepts
	2.1� Overview of Time Series Data
	2.1.1� Data Generation for a Time Series
	2.1.2� Historical Data

	2.2� Calendars
	2.2.1� Frequency and Precision
	2.2.2� Calendar Datatypes
	2.2.3� Overview of Calendar Definition
	2.2.4� Deriving Calendar Exceptions from Time Seri...

	2.3� Time Series Cartridge Architecture
	2.4� Storage of Time Series Data
	2.4.1� Flat IOT Storage

	2.5� Interfaces to Time Series and Time Scaling Fu...
	2.5.1� Instance-Based Interface
	2.5.2� Reference-Based Interface

	2.6� Consistency of Time Series Data
	2.6.1� Rules for Time Series Consistency
	2.6.2� Enforcing Time Series Consistency with Secu...
	2.6.3� Bulk Loading and Consistency

	2.7� Calendar Functions
	2.7.1� End-User Functions
	2.7.2� Product-Developer Functions

	2.8� Time Series Functions
	2.8.1� Time Series Datatypes
	2.8.2� Conventions and Semantics
	2.8.3� Extraction, Retrieval, and Trim Functions
	2.8.4� Shift Functions
	2.8.5� SQL Formatting Functions
	2.8.6� Aggregate Functions
	2.8.7� Arithmetic Functions
	2.8.8� Cumulative Sequence Functions
	2.8.9� Moving Average and Sum Functions
	2.8.10� Conversion Functions

	2.9� Time Scaling Functions
	2.9.1� Time Scaling on Collections
	2.9.2� Time Scaling in the GROUP BY Clause

	3 Time Series Usage
	3.1� Using the Cartridge
	3.1.1� Step 1: Create the Underlying Storage (Tabl...
	3.1.2� Step 2: Define a Calendar
	3.1.3� Step 3: Load Time Series Data
	3.1.4� Step 4: Create a Security View and INSTEAD ...
	3.1.5� Step 5: Create a Reference-Based View
	3.1.6� Step 6: Validate Time Series Consistency
	3.1.7� Step 7: Formulate Time Series Queries

	3.2� Loading Time Series Data
	3.2.1� Bulk Loading
	3.2.2� Incremental Loading

	3.3� Deriving Calendar Exceptions
	3.3.1� Deriving Exceptions Using a Calendar and Ta...
	3.3.2� Deriving Exceptions Using Two Time Series P...

	3.4� Using Product-Developer Functions

	4 Calendar Functions: Reference
	CombineCals
	DeleteExceptions
	DisplayValCal Procedure
	EqualCals
	GetOffset
	InsertExceptions
	IntersectCals
	InvalidTimeStampsBetween
	IsValidCal
	IsValidDate
	NumInvalidTimeStampsBetween
	NumOffExceptions
	NumOnExceptions
	NumTimeStampsBetween
	OffsetDate
	SetPrecision
	TimeStampsBetween
	UnionCals
	ValidateCal

	5 Time Series and Time Scaling Functions: Referenc...
	Cavg
	Cmax
	Cmin
	Cprod
	Csum
	DeriveExceptions
	Display
	DisplayValTS Procedure
	ExtractCal
	ExtractDate
	ExtractTable
	ExtractValue
	Fill
	First
	FirstN
	GetDatedElement
	GetNthElement
	GetSeries
	IsValidTS
	Lag
	Last
	LastN
	Lead
	Mavg
	Msum
	Scaleup
	ScaleupAvg
	ScaleupCount
	ScaleupFirst
	ScaleupLast
	ScaleupMax
	ScaleupMin
	ScaleupSum
	TrimSeries
	TSAdd
	TSAvg
	TSCount
	TSDivide
	TSMax
	TSMaxN
	TSMedian
	TSMin
	TSMinN
	TSMultiply
	TSProd
	TSStdDev
	TSSubtract
	TSSum
	TSVariance
	ValidateTS

	A Error Messages
	Index

