
Oracle8 Spatial Cartridge

User’s Guide and Reference

Release 8.0.5

May 1998

Part No. A53264-03

 Oracle8 Spatial Cartridge User’s Guide and Reference

Part No. A53264-03

Release 8.0.5

Copyright © 1998, Oracle Corporation. All rights reserved.

Primary Author: Jeff Hebert

Contributing Author: Anna Logan

Contributors: Dan Geringer, Peter Vretanos, Jayant Sharma

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inher-
ently dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe, back
up, redundancy and other measures to ensure the safe use of such applications if the Programs are
used for such purposes, and Oracle disclaims liability for any damages caused by such use of the Pro-
grams.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free.

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is deliv-
ered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are 'commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software' and use, duplication and disclo-
sure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate III (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, SQL*Forms, SQL*Loader, SQL*Menu, SQL*Net, SQL*Plus, and SQL*Report are registered trade-
marks of Oracle Corporation. Oracle7 and Oracle8 are trademarks of Oracle Corporation.

HHCODE is a trademark of the Government of Canada.

All other products or company names are used for identification purposes only, and may be trademarks
of their respective owners.

Contents

Send Us Your Comments .. vii

Preface .. ix

1 Spatial Cartridge Concepts

1.1 Introduction to Spatial Data... 1-1
1.2 Geometric Types.. 1-2
1.3 Data Model ... 1-3
1.3.1 Element .. 1-3
1.3.2 Geometry ... 1-3
1.3.3 Layer... 1-4
1.4 Database Structures... 1-4
1.5 Indexing Methods ... 1-8
1.5.1 Tessellation of a Layer ... 1-9
1.5.2 Fixed-Size Tile Spatial Indexing... 1-11
1.5.3 Variable-Sized Tile Spatial Indexing ... 1-14
1.6 Partitioned Point Data .. 1-17

2 Loading Spatial Data

2.1 Load Model .. 2-1
2.2 Load Process... 2-2
2.2.1 Bulk Loading... 2-2
2.2.2 Transactional Insert Using SQL ... 2-4
2.2.3 Transactional Insert Using Spatial Geometry Functions.. 2-6
2.3 Index Creation ... 2-8
 iii

2.3.1 Choosing a Tessellation Algorithm ... 2-8
2.3.2 Spatial Indexing with Fixed-Size Tiles .. 2-9
2.3.3 Spatial Indexing with Variable-Sized Tiles .. 2-12

3 Querying Spatial Data

3.1 Query Model .. 3-1
3.2 Spatial Data Model.. 3-2
3.3 Spatial Query ... 3-5
3.3.1 Dynamic Query Window.. 3-6
3.3.2 Primary Filter.. 3-7
3.3.3 Secondary Filter... 3-8
3.4 Spatial Join.. 3-9

4 Partitioning Point Data

4.1 Overview .. 4-1
4.2 Partitioning Process .. 4-1
4.3 Function Details... 4-2

5 Administrative Procedures

SDO_ADMIN.POPULATE_INDEX ... 5-2

SDO_ADMIN.POPULATE_INDEX_FIXED.. 5-4

SDO_ADMIN.SDO_CODE_SIZE ... 5-7

SDO_ADMIN.UPDATE_INDEX .. 5-8

SDO_ADMIN.UPDATE_INDEX_FIXED... 5-10

SDO_ADMIN.VERIFY_LAYER .. 5-12

Partitioned Point Data Procedures ... 5-13

SDO_ADMIN.ALTER_HIGH_WATER_MARK... 5-14

SDO_ADMIN.DROP_PARTITION_INFO .. 5-15

SDO_ADMIN.PARTITION.. 5-16

SDO_ADMIN.PROPAGATE_GRANTS .. 5-18

SDO_ADMIN.REGISTER_PARTITION_INFO .. 5-19

SDO_ADMIN.REPARTITION... 5-20
 iv

SDO_ADMIN.VERIFY_PARTITIONS ... 5-22

6 Tuning Functions

SDO_TUNE.ESTIMATE_TILING_LEVEL .. 6-2

SDO_TUNE.EXTENT_OF .. 6-5

7 Geometry Functions

SDO_GEOM.ADD_NODES... 7-2

SDO_GEOM.INIT_ELEMENT .. 7-4

SDO_GEOM.INTERACT ... 7-5

SDO_GEOM.RELATE... 7-7

SDO_GEOM.VALIDATE_GEOMETRY... 7-10

8 Window Functions

SDO_WINDOW.BUILD_WINDOW .. 8-2

SDO_WINDOW.BUILD_WINDOW_FIXED... 8-4

SDO_WINDOW.CLEAN_WINDOW... 8-6

SDO_WINDOW.CLEANUP_GID .. 8-7

SDO_WINDOW.CREATE_WINDOW_LAYER ... 8-8

9 Partitioned Point Data Functions

SDO_BVALUETODIM ... 9-3

SDO_COMPARE ... 9-4

SDO_DATETODIM... 9-6

SDO_DECODE... 9-8

SDO_ENCODE .. 9-9

SDO_TO_BVALUE.. 9-10

SDO_TO_DATE... 9-11

A Sample SQL Scripts and Tuning Tips

A.1 Sample SQL Scripts ... A-1
 v

A.1.1 Scripts for Spatial Indexing... A-1
A.1.1.1 cr_spatial_index.sql Script ... A-1
A.1.1.2 crlayer.sql Script .. A-2
A.1.2 Scripts for Partitioned Point Data .. A-2
A.1.2.1 altpart.sql Script... A-3
A.1.2.2 drppart.sql Script... A-3
A.1.2.3 sdogrant.sql Script... A-3
A.2 Tuning Tips .. A-4
A.2.1 Data Modeling .. A-4
A.2.2 Understanding the Tiling Level ... A-4
A.2.3 Database Sizing... A-5
A.2.4 Tuning Point Data .. A-6
A.2.4.1 Efficient Queries for Point Data .. A-6
A.2.4.2 Efficient Schema for Point Layers ... A-7
A.2.5 Tuning Spatial Join Queries .. A-8
A.2.5.1 Using the NO_MERGE, INDEX, and USE_NL Hints.. A-8
A.2.5.2 Spatial Join Queries with Point Layers .. A-9
A.2.6 Using Customized Geometry Types .. A-11
A.2.7 Performing Secondary Filter Queries and the Redo Log....................................... A-11
A.2.8 Visualizing the Spatial Index (Drawing Tiles) .. A-11

B Data Dictionary

C Messages and Codes

Glossary
 vi

Send Us Your Comments

Oracle8 Spatial Cartridge User’s Guide and Reference, Release 8.0.5

Part No. A53264-03

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available).

You can send comments to us in the following ways

■ e-mail: nedc_doc@us.oracle.com
■ FAX: 603.897.3269. Attn: Spatial Cartridge
■ postal service:

Oracle Corporation
Oracle Spatial Cartridge Documentation
One Oracle Drive
Nashua, NH 03062
USA

If you would like a reply, please include your name, address, and telephone number.
 vii

viii

Preface

The Oracle8 Spatial Cartridge User’s Guide and Reference provides user and reference
information for Spatial Cartridge, and extensions to Oracle8 Enterprise Edition.

Spatial Cartridge requires Oracle8 Enterprise Edition. Oracle8 and Oracle8 Enter-
prise Edition have the same basic features. However, several advanced features,
such as data cartridges, are available only with the Enterprise Edition, and some of
these features are optional. For example, to use Oracle8 table partitioning, you
must have the Enterprise Edition and the Partitioning Option.

For information about the differences between Oracle8 and the Oracle8 Enterprise
Edition and the features and options that are available to you, see Getting to Know
Oracle8.

Intended Audience
This guide is intended for anyone who needs to store spatial data in a relational
database.

Note : Spatial Cartridge release 8.0.3 introduced two distinct algo-
rithms for building a spatial index: fixed-size tiling and variable-
sized tiling. Based on testing and customer feedback Oracle now
recommends using only fixed-size tiling on production systems.
Variable-sized tiling, while it has theoretical advantages in some sit-
uations, is included primarily for experimentation purposes. In the
future, Oracle may issue a technical bulletin further refining the
usage of variable-sized tiling.
 ix

Structure
This guide contains nine chapters, several appendixes, and a glossary:

Related Documents
For more information, see the following manuals:

■ Getting to Know Oracle8

■ Oracle8 Administrator’s Guide

■ Oracle8 Error Messages

■ Oracle8 Utilities

For additional information about Spatial Cartridge, including a demonstration, sev-
eral white papers, and other assorted collateral, visit the official Spatial Cartridge
web site: http://www.oracle.com/st/cartridges/spatial/

Chapter 1 Introduces spatial data concepts.

Chapter 2 Explains spatial data loading.

Chapter 3 Explains methods for querying a spatial database.

Chapter 4 Explains how to use partitioned point data.

Chapter 5 Provides the syntax and semantics for the administrative functions
and procedures.

Chapter 6 Provides the syntax and semantics for the tuning functions and
procedures.

Chapter 7 Provides the syntax and semantics for the geometric functions and
procedures.

Chapter 8 Provides the syntax and semantics for the window functions and
procedures.

Chapter 9 Provides the syntax and semantics for functions and procedures
relevant only to using partitioned point data.

Appendix A Describes sample SQL scripts and tuning tips.

Appendix B Describes the Spatial Cartridge data dictionary.

Appendix C Provides a list of error messages and conditions.

Glossary Provides definitions of terms used in this guide.
x

Conventions
In examples, an implied carriage return occurs at the end of each line, unless other-
wise noted. You must press the Return key at the end of a line of input.

The following conventions are used in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information
not directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean
that parts of the statement or command not directly related to
the example have been omitted

boldface text Boldface type in text indicates a term defined in the text, the
glossary, or in both locations.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose
one or none.

% The percent sign represents the system prompt on a UNIX
system.
xi

xii

 Spatial Cartridge Con
1

Spatial Cartridge Concepts

Oracle Spatial Cartridge is an integrated set of functions and procedures that
enables spatial data to be stored, accessed, and analyzed quickly and efficiently in
an Oracle8 database.

Spatial data represents the essential location characteristics of real or conceptual
objects as those objects relate to the real or conceptual space in which they exist.

1.1 Introduction to Spatial Data
Spatial Cartridge is designed to make the storage, retrieval, and manipulation of
spatial data easier and more natural to users such as a Geographic Information Sys-
tem (GIS). Once this data is stored in an Oracle8 relational database, it can be eas-
ily and meaningfully manipulated and retrieved as it relates to all the other data
stored in the database.

A common example of spatial data can be seen in a road map. A road map is a two-
dimensional object that contains points, lines, and polygons that can represent cit-
ies, roads, and political boundaries such as states or provinces. A road map is a
visualization of geographic information. The location of cities, roads, and political
boundaries that exist on the surface of the Earth are projected onto a two-dimen-
sional display or piece of paper, preserving the relative positions and relative dis-
tances of the rendered objects.

The data that indicates the Earth location (latitude and longitude, or height and
depth) of these rendered objects is the spatial data. When the map is rendered, this
spatial data is used to project the locations of the objects on a two-dimensional
piece of paper. A GIS is often used to store, retrieve, and render this Earth-relative
spatial data.

Other types of spatial data that can be stored using Spatial Cartridge besides GIS
data include data from computer-aided design (CAD) and computer-aided manu-
cepts 1-1

1.2 Geometric Types
facturing (CAM) systems. Instead of operating on objects on a geographic scale,
CAD/CAM systems work on a smaller scale such as for an automobile engine or
much smaller scale as for printed circuit boards.

The differences among these three systems are only in the scale of the data, not its
complexity. They might all actually involve the same number of data points. On a
geographic scale, the location of a bridge can vary by a few tenths of an inch with-
out causing any noticeable problems to the road builders. Whereas, if the diameter
of an engine’s pistons are off by a few tenths of an inch, the engine will not run. A
printed circuit board is likely to have many thousands of objects etched on its sur-
face that are no bigger than the smallest detail shown on a roadbuilder’s blueprints.

1.2 Geometric Types
Spatial Cartridge supports three geometric primitive types and geometries com-
posed of collections of these types. The three primitive types are as follows:

■ 2-D Point and Point Cluster

■ 2-D Line Strings

■ 2-D N-Point Polygons

2-D points are elements composed of two ordinates, X and Y, often corresponding
to longitude and latitude. Line strings are composed of one or more pairs of points
that define line segments. Polygons are composed of connected line strings that
form a closed ring and the interior of the polygon is implied. Figure 1–1 illustrates
the supported geometric primitive types.

Figure 1–1 Geometric Primitive Types

Self-crossing polygons are not supported although self-crossing line strings are. If a
line string crosses itself it does not become a polygon. A self-crossing line string
does not have any implied interior.

 Point
 . . .

. .
.

.

. .

.Line String Polygon
1-2 Oracle8 Spatial Cartridge User’s Guide and Reference

1.3 Data Model
1.3 Data Model
The Spatial Cartridge data model is a hierarchical structure consisting of elements,
geometries, and layers, which correspond to representations of spatial data. Lay-
ers are composed of geometries (or geometric objects), which in turn are made up
of elements.

For example, a point might represent a building location, a line string might be a
road or flight path, and a polygon could be a state, city, zoning district, or city block.

1.3.1 Element
An element is the basic building block of a geometric feature for Spatial Cartridge.
The supported spatial element types are points, line strings, and polygons. For
example, elements might model star constellations (point clusters), roads (line
strings), and county boundaries (polygons). Each coordinate in an element is stored
as an X,Y pair.

Point data1 consists of one coordinate. Line data consists of two coordinates repre-
senting a line segment of the element. Polygon data consists of coordinate pair val-
ues, one vertex pair for each line segment of the polygon. Coordinates are defined
in either a clockwise or counter-clockwise order around the polygon.

If an element spans more than one row, an incremental sequence number (starting
at zero) orders the rows.

1.3.2 Geometry
A geometry is the representation of a user’s spatial feature, modeled as an ordered
set of primitive elements. Each geometric object is required to be uniquely identi-
fied by a numeric geometry identifier (GID), associating the object with its corre-
sponding attribute set.

A complex geometric feature such as a polygon with holes would be stored as a
sequence of polygon elements. In a multi-element polygonal geometry, all subele-
ments are wholly contained within the outermost element, thus building a more
complex geometry from simpler pieces.

For example, a geometry might describe the buildable land in a town. This could be
represented as a polygon with holes where water or zoning prevents construction.

1 Point data can also be stored in a partitioned table. See Chapter 4, “Partitioning Point Data”
for details.
 Spatial Cartridge Concepts 1-3

1.4 Database Structures
1.3.3 Layer
A layer is a heterogeneous collection of geometries having the same attribute set.
For example, one layer in a GIS might include topographical features, while
another describes population density, and a third describes the network of roads
and bridges in the area (lines and points). Each layer’s geometric objects and their
associated spatial index are stored in the database in standard tables.

1.4 Database Structures
Spatial Cartridge uses four database tables to store and index spatial data. These
four tables are collectively referred to as a layer. A template SQL script is provided
to facilitate the creation of these tables. See Section A.1.1.2, “crlayer.sql Script” for
details.

Table 1–1 through Table 1–4 describe the schema of a Spatial Cartridge layer.

Table 1–1 <layername>_SDOLAYER

Table 1–2 <layername>_SDODIM table or view

Table 1–3 <layername>_SDOGEOM table or view

Table 1–4 <layername>_SDOINDEX table

The SDO_MAXCODE and SDO_GROUPCODE columns are not required for the
recommended indexing algorithm using fixed-size tiles.

SDO_ORDCNT SDO_LEVEL SDO_NUMTILES SDO_COORDSYS

<number> <number> <number> <varchar>

SDO_DIMNUM SDO_LB SDO_UB SDO_TOLERANCE SDO_DIMNAME

<number> <number> <number> <number> <varchar>

SDO_GID SDO_ESEQ SDO_ETYPE SDO_SEQ SDO_X1 SDO_Y1 ... SDO_Xn SDO_Yn

<number> <number> <number> <number> <number> <number> ... <number> <number>

SDO_GID SDO_CODE SDO_MAXCODE ** SDO_GROUPCODE ** SDO_META

<number> <raw> <raw> <raw> <raw>
1-4 Oracle8 Spatial Cartridge User’s Guide and Reference

1.4 Database Structures
The columns of each table are defined as follows:

<layername>_SDOLAYER:
■ SDO_ORDCNT- The SDO_ORDCNT column is the total number of ordi-

nates per row in the <layername>_SDOGEOM table. That is, the total num-
ber of data value columns, and not the number of points or coordinates.
SDO_ORDCNT should not be multiplied by the total number of dimen-
sions per coordinate as it is already a total.

■ SDO_LEVEL - The SDO_LEVEL column stores the number of times the
layer should be tessellated during the indexing stage. Use the
SDO_TUNE.ESTIMATE_TILING_LEVEL() procedure to determine an
appropriate tiling level for your data.

■ SDO_NUMTILES - The SDO_NUMTILES column is the number of vari-
able-sized tiles used to tessellate each object in the <layer-
name>_SDOGEOM table. This column must be set to NULL when using
fixed-size tiles.

■ SDO_COORDSYS -The SDO_COORDSYS column is optional; where you
can indicate the name of the coordinate system, using a standard such as
POSC or OGIS.

<layername>_SDODIM:
■ SDO_DIMNUM - The SDO_DIMNUM column is the dimension to which this

row refers, starting with 1 and increasing.

■ SDO_LB - The SDO_LB column is the lower bound of the ordinate in this
dimension. For example, if the dimension is latitude, the lower bound
would be -90.

■ SDO_UB - The SDO_UB column is the upper bound of the ordinate in this
dimension. For example, if the dimension is longitude, the upper bound
would be 180.

■ SDO_TOLERANCE - The SDO_TOLERANCE column is the distance two
points can be apart and still be considered the same due to round-off
errors. Tolerance must be greater than zero. If you want zero tolerance,
enter a number such as 0.00005, where the number of zeroes to the right of
the decimal point matches the precision of your data. The extra 5 will
round up to your last decimal digit.

■ SDO_DIMNAME - The SDO_DIMNAME column is used for the usual name
applied to this dimension, such as longitude, latitude, X or Y.
 Spatial Cartridge Concepts 1-5

1.4 Database Structures
<layername>_SDOGEOM:
■ SDO_GID - The SDO_GID column is a unique numeric identifier for each

geometry in a layer.

■ SDO_ESEQ - The SDO_ESEQ column enumerates each element in a geome-
try, that is, the Element SEQuence number.

■ SDO_ETYPE - The SDO_ETYPE column is the geometric primitive type of
the element. For this release of Spatial Cartridge, the valid values are
SDO_GEOM.POINT_TYPE, SDO_GEOM.LINESTRING_TYPE, or
SDO_GEOM.POLYGON_TYPE (ETYPE values 1, 2, and 3, respectively).
Setting the ETYPE to zero indicates that this element should be ignored.
See Section A.2.6 for information on ETYPE 0.

■ SDO_SEQ - The SDO_SEQ column records the order (the SEQuence num-
ber) of each row of data making up the element.

■ SDO_X1 - X value of the first coordinate.

■ SDO_Y1 - Y value of the first coordinate.

■ SDO_Xn - X value of the Nth coordinate.

■ SDO_Yn - Y value of the Nth coordinate.

<layername>_SDOINDEX:
■ SDO_GID - The SDO_GID column is a unique numeric identifier for each

geometry in a layer. This can be thought of as a foreign key back to the
<layername>_SDOGEOM table.

■ SDO_CODE- The SDO_CODE column is the bit-interleaved ID of a tile that
covers SDO_GID. The number of bytes needed for the SDO_CODE and
SDO_MAXCODE columns depends on the level used for tiling. Use the
SDO_ADMIN.SDO_CODE_SIZE() function to determine the size required
for a given layer. The maximum number of bytes possible is 255.

■ SDO_MAXCODE - The SDO_MAXCODE column describes a variable-sized
logical tile, which is the smallest tile (with the longest tile ID) in the current
quadrant. The SDO_MAXCODE column is SDO_CODE padded out one
place farther than the longest allowable code name for this index. This col-
umn is not used for fixed-size tiles.

■ SDO_GROUPCODE -The SDO_GROUPCODE column is a prefix of
SDO_CODE. It represents a variable-sized tile at level <layer-
name>_SDOLAYER.SDO_LEVEL that contains or is equal to the tile repre-
sented by SDO_CODE. This column is not used for fixed-size tiles.
1-6 Oracle8 Spatial Cartridge User’s Guide and Reference

1.4 Database Structures
■ SDO_META - The SDO_META column is not required for spatial queries. It
provides information necessary to find the bounds of a tile. See
Section A.2.8 for one possible use of this column.

Spatial Cartridge provides stored procedures that assume the existence of the layer
schema as described in this section. While layer tables may contain additional col-
umns, they are required to contain at least the columns described in this section
with the same column names and data types.

Figure 1–2 illustrates how a geometry is stored in the database using Spatial Car-
tridge. The geometry to be stored is a complex polygon with a hole in it.

Figure 1–2 Complex Polygon

<layername>_SDOLAYER

<layername>_SDODIM

SDO_ORDCNT
(number)

4

SDO_DIMNUM
(number)

SDO_LB
(number)

SDO_UB
(number)

SDO_TOLERANCE
(number)

SDO_DIMNAME
(varchar)

1 0 100 .05 X axis

2 0 100 .05 Y axis

G2 G3

G4G1

P3 P4

P5

P6

P7P8

P1

P2

Element 0

Element 1 (Hole)

Geometry 1013:
 Spatial Cartridge Concepts 1-7

1.5 Indexing Methods
<layername>_SDOGEOM

In this example, the <layername>_SDOGEOM table is shown as an eight column
table with four ordinates per row. In actual usage, Spatial Cartridge supports N-
wide1 tables. The coordinates for the outer polygon in this example could have
been loaded into a single row containing values for coordinates P1 to P8, and then
repeating P1 to close the polygon. The coordinates would be stored in the SDO_X1
and SDO_Y1 through SDO_X9 and SDO_Y9 columns.

The data in the <layername>_SDOINDEX table is described in Section 1.5, “Index-
ing Methods”.

1.5 Indexing Methods
A spatial index is considered a logical index as opposed to a physical index. The
entries in the spatial index are dependent on the location of the geometric objects
in the layer space, and are not dependent on the stored location of the data on the
disk. This means that a table containing spatial data could be moved or split and
the spatial index would not need to be rebuilt.

Spatial Cartridge release 8.03 introduced two distinct algorithms for building a spa-
tial index: fixed-size tiling and variable-sized tiling. Based on testing and customer

1 A <layername>_SDOGEOM table can have up to 255 columns. The maximum number of
data columns is 255, minus 4 for the other required spatial columns, and minus any other
user-defined columns. For polygon and line strings, storing 16 to 20 ordinates per row is sug-
gested for performance reasons, but not required.

SDO_GID
(number)

SDO_ESEQ
(number)

SDO_ETYPE
(number)

SDO_SEQ
(number)

SDO_X1
(number)

SDO_Y1
(number)

SDO_X2
(number)

SDO_Y2
(number)

1013 0 3 0 P1(X) P1(Y) P2(X) P2(Y)

1013 0 3 1 P2(X) P2(Y) P3(X) P3(Y)

1013 0 3 2 P3(X) P3(Y) P4(X) P4(Y)

1013 0 3 3 P4(X) P4(Y) P5(X) P5(Y)

1013 0 3 4 P5(X) P5(Y) P6(X) P6(Y)

1013 0 3 5 P6(X) P6(Y) P7(X) P7(Y)

1013 0 3 6 P7(X) P7(Y) P8(X) P8(Y)

1013 0 3 7 P8(X) P8(Y) P1(X) P1(Y)

1013 1 3 0 G1(X) G1(Y) G2(X) G2(Y)

1013 1 3 1 G2(X) G2(Y) G3(X) G3(Y)

1013 1 3 2 G3(X) G3(Y) G4(X) G4(Y)

1013 1 3 3 G4(X) G4(Y) G1(X) G1(Y)
1-8 Oracle8 Spatial Cartridge User’s Guide and Reference

1.5 Indexing Methods
feedback, Oracle currently recommends using only fixed-size tiling on production
systems. Variable-sized tiling, while it has theoretical advantages in some situa-
tions, is included for experimentation purposes only.

In spatial indexing, the object space (the layer where all geometric objects are
located) is subjected to a process called tessellation, which defines exclusive and
exhaustive cover tiles of every stored element. Spatial Cartridge can use either
fixed-size or variable-sized tiles to cover a geometry.

The number of tiles used to cover an element is a user-tunable parameter. Using
either smaller fixed-size tiles or more variable-sized tiles provides a better fit of the
tiles to the element. The fewer the number of tiles or the larger the tiles, the coarser
the fit.

1.5.1 Tessellation of a Layer
The process of determining which tiles cover a given element is called tessellation.
The tessellation process is a quadtree decomposition, where the object space is bro-
ken down into four equal-sized covering tiles. Successive tessellations break those
tiles down into four smaller tiles, and this process continues until the desired level
has been achieved. The results of the tessellation process on an element are stored
in the <layername>_SDOINDEX table. See Section 2.3, “Index Creation” for more
information on tessellation.

Figure 1–3 illustrates geometry 1013 tessellated to a maximum of four cover tiles.
The cover tiles are then shown stored in the <layername>_SDOINDEX table.
 Spatial Cartridge Concepts 1-9

1.5 Indexing Methods
Figure 1–3 Tessellated Figure

Only three of the four tiles generated by the first tessellation interact with the geom-
etry. Only those tiles that interact with the geometry are stored in the
<layername>_SDOINDEX table, as shown in Table 1–5. In this example, three fixed-
size tiles are used.

Table 1–5 <layername>_SDOINDEX Using Fixed-Size Tiles

SDO_GID
<number>

SDO_CODE
<raw>

1013 T0

1013 T2

1013 T3

G2 G3

G4G1

P3 P4

P5

P6

P7P8

P1

P2

T2 T3

T0

Geometry 1013:
Element 0

Element 1 (Hole)

 T1
1-10 Oracle8 Spatial Cartridge User’s Guide and Reference

1.5 Indexing Methods
All elements in a geometry are tessellated. In a multi-element polygon like 1013,
Element 1 is already covered by tile T2 from the tessellation of Element 0.

1.5.2 Fixed-Size Tile Spatial Indexing
Fixed-size tile spatial indexing is the recommended indexing method. This method
uses cover tiles of equal size to cover a geometry. Because all the tiles are the same
size, the standard SQL equality operator (=) can be used to compare tiles during a
join operation. This results in excellent performance characteristics.

If you select a small fixed-size tile to cover small geometries and then try to use the
same size tile to cover a very large geometry, a large number of tiles would be
required, thereby increasing the size of the index table. However, if the fixed-size
tile size chosen is large, so that fewer tiles are generated in the case of a large geom-
etry, then the index selectivity suffers because the large tiles do not fit the small
geometries very well. Figure 1–4 and Figure 1–5 illustrate the relationships between
tile size, selectivity, and the number of cover tiles.
 Spatial Cartridge Concepts 1-11

1.5 Indexing Methods
Using a small fixed-size tile as shown in Figure 1–4, selectivity is good, but a large
number of tiles is needed to cover large geometries. A window query would easily
identify geometries A and B, but would reject C.

Figure 1–4 Fixed-Size Tiling with Many Small Tiles

A

B

query window

C

1-12 Oracle8 Spatial Cartridge User’s Guide and Reference

1.5 Indexing Methods
Using a large fixed-size tile as shown in Figure 1–5, fewer tiles are needed to cover
the geometries, but the selectivity is poor. A window query would likely pick up all
three geometries. Any object that shares tile T1 or T2 would identify object C as a
candidate, even though the objects may be far apart, such as objects B and C are in
this figure.

Use the SDO_TUNE.ESTIMATE_TILING_LEVEL() function to determine an appro-
priate tiling level for your data set.

Figure 1–5 Fixed-Size Tiling with Fewer Large Tiles

A

B

C

T1

T2

query window
 Spatial Cartridge Concepts 1-13

1.5 Indexing Methods
1.5.3 Variable-Sized Tile Spatial Indexing

Variable-sized tile spatial indexing uses tiles of different sizes to approximate a
geometry. The user specifies the number of tiles per object that should be used to
approximate it and this governs the tiling process. As in the case of a linear
quadtree, the cover tiles depend on the size and shape of each geometry being
indexed and therefore good primary filter selectivity can be achieved. Figure 1–6
illustrates the approximation that variable-sized tiles can achieve.

Note: Variable-sized tile spatial indexing is not recommended for
production environments. It is included primarily for experimenta-
tion purposes.
1-14 Oracle8 Spatial Cartridge User’s Guide and Reference

1.5 Indexing Methods
In Figure 1–6, the variable-sized cover tiles conform closely to each geometry, result-
ing in good selectivity. The number of tiles needed to cover a geometry is con-
trolled using the SDO_NUMTILES column in the <layername>_SDOLAYER table.
See Section 2.3.3 for information on selecting appropriate values for variable-sized
tiling.

Figure 1–6 Variable-Sized Tile Spatial Indexing

A

B

C

 Spatial Cartridge Concepts 1-15

1.5 Indexing Methods
Two geometries may interact if a tile of one object is equal to, inside of, or contains
a tile of the other. Thus, the query predicate to compare tiles involves a test for
either equality or containment. This is unlike fixed-size tiling, which only requires
an equality check. Example 1–1 demonstrates this feature (“5” is an arbitrary win-
dow identifier).

Example 1–1

SELECT r.sdo_gid
FROM roads_sdoindex r,
 window_sdoindex w
WHERE w.sdo_gid = 5
 AND (r.sdo_code BETWEEN w.sdo_code AND w.sdo_maxcode OR
 w.sdo_code BETWEEN r.sdo_code AND r.sdo_maxcode);

To reduce the number of times a complex predicate needs to be applied, variable-
sized tile indexing uses a mechanism similar to spatial partitioning. To use this
mechanism, select a tiling level, called the groupcode level, that results in tiles
larger than any variable-sized tile generated for all the geometries in the layer or
data set of interest. Each tile at the specified groupcode level can be considered a
spatial partition. This reduces the size of the data set on which the complex predi-
cate is evaluated. Example 1–2 illustrates this feature.

Example 1–2

SELECT r.sdo_gid
FROM layer_sdoindex r,
 window_sdoindex w
WHERE w.sdo_gid = 5
 AND r.sdo_group_code = w.sdo_groupcode
 AND (r.sdo_code BETWEEN w.sdo_code AND w.sdo_maxcode OR
 w.sdo_code BETWEEN r.sdo_code AND r.sdo_maxcode);

In Figure 1–7, consider the domain partitioned into 16 subregions. If a join com-
pares tiles from the two objects, under normal circumstances the join operation
would process tiles from the entire domain, searching for tiles that interact. How-
ever, if you constrain the processing to common partitions, then only partitions 5
and 6 would need to be processed. This may result in substantial performance
improvements.
1-16 Oracle8 Spatial Cartridge User’s Guide and Reference

1.6 Partitioned Point Data
Figure 1–7 Spatially Partitioning Data

1.6 Partitioned Point Data
Spatial Cartridge has an enhanced spatial indexing mechanism capable of handling
very large data sets consisting of complex geometries. For applications handling
point data sets that are several tens of gigabytes or larger, further performance
gains can be achieved by using Oracle8 table partitioning features.

Table partitioning is only available with the Partitioning Option of Oracle8 Enter-
prise Edition. If the Partitioning Option is available to you, the preferred method is
to use Oracle8 table partitioning in conjunction with Spatial Cartridge spatial index-
ing (see the Oracle8 Concepts guide for a description of Oracle8 Partitioning). A tech-
nical white paper titled, “Leveraging Oracle8 Partitioning and the Spatial Cartridge for

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
 Spatial Cartridge Concepts 1-17

1.6 Partitioned Point Data
Large Point Datasets,” describing the use of partitioning and spatial indexing for
point data sets may be obtained from the Oracle corporate web site at:

http://www.oracle.com/st/cartridges/spatial/collateral

A previous release of Spatial Data Option (from which Spatial Cartridge has
evolved) utilized its own version of table partitioning instead of spatial indexing.
Chapter 4 briefly describes the old partitioning scheme for those customers with
legacy point data sets. Any references to point data partitioning in this guide (such
as the ”Partitioned Point Data Procedures” section in Chapter 5) refer to this legacy
feature. While this feature is still available in Spatial Cartridge, the preferred
approach is to use Oracle8 Partitioning Option and spatial indexing.
1-18 Oracle8 Spatial Cartridge User’s Guide and Reference

 Loading Spatia
2

Loading Spatial Data

This chapter describes how to load spatial data into a database, including storing
the data in a table and creating a spatial index for it.

2.1 Load Model
There are two steps involved in loading raw data into a spatial database such that it
can be queried efficiently:

1. Loading the data into spatial tables

2. Creating or updating the index on the spatial tables

Table 2–1 through Table 2–4 show the format of the tables needed to store and
index spatial data.

Table 2–1 <layername>_SDOLAYER

Table 2–2 <layername>_SDODIM Table or View

SDO_ORDCNT SDO_LEVEL SDO_NUMTILES SDO_COORDSYS

<number> <number> <number> <varchar>

SDO_DIMNUM SDO_LB SDO_UB SDO_TOLERANCE SDO_DIMNAME

<number> <number> <number> <number> <varchar>
l Data 2-1

2.2 Load Process
Table 2–3 <layername>_SDOGEOM Table or View

Table 2–4 <layername>_SDOINDEX Table

2.2 Load Process
The process of loading data can be classified into two categories:

■ Bulk loading of data

This process is used to load large volumes of data into the database and uses
the SQL*Loader to load the data.

■ Transactional inserts

This process is used to insert relatively small amounts of data into the database
and is analogous to the INSERT statement in SQL.

2.2.1 Bulk Loading
Bulk loading can be used to import large amounts of legacy or ASCII data into a
spatial database. Bulk loading is accomplished using the SQL*Loader1.

Example 2–1 shows the format of the raw data and control file that would be
required to load the data into the SDOGEOM table with the layer name ROADS.
You can choose any format of ASCII data as long you can write a SQL*Loader con-
trol file to load that data into the tables.

Assume that the ASCII data consists of a file with delimited columns, and separate
rows fixed by the limits of the table with the following format.

Example 2–1

geometry rows: GID, ESEQ, ETYPE, SEQ, LON1, LAT1, LON2, LAT2

1 See theOracle Server Utilities User’s Guide for information on the SQL*Loader.

SDO_GID SDO_ESEQ SDO_ETYPE SDO_SEQ SDO_X1 SDO_Y1 ... SDO_Xn SDO_Yn

<number> <number> <number> <number> <number> <number> ... <number> <number>

SDO_GID SDO_CODE SDO_MAXCODE SDO_GROUPCODE SDO_META

<number> <raw> <raw> <raw> <raw>
2-2 Oracle8 Spatial Cartridge User’s Guide and Reference

2.2 Load Process
The coordinates in the geometry rows represent the end points of line segments,
which taken together, represent a polygon. Example 2–2 shows the control file for
loading the data into the geometry table.

Example 2–2

LOAD DATA INFILE *
INTO TABLE ROADS_SDOGEOM
FIELDS TERMINATED BY WHITESPACE TRAILING NULLCOLS
(SDO_GID INTEGER EXTERNAL,
SDO_ESEQ INTEGER EXTERNAL,
SDO_ETYPE INTEGER EXTERNAL,
SDO_SEQ INTEGER EXTERNAL,
SDO_X1 FLOAT EXTERNAL,
SDO_Y1 FLOAT EXTERNAL,
SDO_X2 FLOAT EXTERNAL,
SDO_Y2 FLOAT EXTERNAL)

BEGINDATA
1 0 3 0 -122.401200 37.805200 -122.401900 37.805200
1 0 3 1 -122.401900 37.805200 -122.402400 37.805500
1 0 3 2 -122.402400 37.805500 -122.403100 37.806000
1 0 3 3 -122.403100 37.806000 -122.404400 37.806800
1 0 3 4 -122.404400 37.806800 -122.401200 37.805200
1 1 3 0 -122.405900 37.806600 -122.407549 37.806394
1 1 3 1 -122.407549 37.806394 -122.408300 37.806300
1 1 3 2 -122.408300 37.806300 -122.409100 37.806200
1 1 3 3 -122.409100 37.806200 -122.405900 37.806600
2 0 2 0 -122.410800 37.806000 -122.412300 37.805800
2 0 2 1 -122.412300 37.805800 -122.414100 37.805600
2 0 2 2 -122.414100 37.805600 -122.412300 37.805800
2 0 2 3 -122.412300 37.805800 -122.410800 37.806000
3 0 1 0 -122.567474 38.643564
3 0 1 1 -126.345345 39.345345

Note that table ROADS_SDOGEOM exists in the schema before attempting the
load.

In Example 2–3, the data resides in a single flat file and the data set consists of
point, line string, and polygon data. The data uses fixed-position columns and over-
loaded table rows.

Example 2–3

SDO_GID SDO_ESEQ SDO_ETYPE SDO_SEQ SDO_X1 SDO_Y1 SDO_X2 SDO_Y2
 Loading Spatial Data 2-3

2.2 Load Process
The corresponding control file for this format of input data would be:

LOAD DATA INFILE *
INTO TABLE NEW_SDOGEOM
(SDO_GID POSITION (1:5) INTEGER EXTERNAL,
SDO_ESEQ POSITION (7:10) INTEGER EXTERNAL,
SDO_ETYPE POSITION (12:15) INTEGER EXTERNAL,
SDO_SEQ POSITION (17:21) INTEGER EXTERNAL,
SDO_X1 POSITION (23:35) FLOAT EXTERNAL,
SDO_Y1 POSITION (37:48) FLOAT EXTERNAL,
SDO_X2 POSITION (50:62) FLOAT EXTERNAL,
SDO_Y2 POSITION (64:75) FLOAT EXTERNAL)

BEGINDATA
1 0 3 0 -122.401200 37.805200 -122.401900 37.805200
1 0 3 1 -122.401900 37.805200 -122.402400 37.805500
1 0 3 2 -122.402400 37.805500 -122.403100 37.806000
1 0 3 3 -122.403100 37.806000 -122.404400 37.806800
1 0 3 4 -122.404400 37.806800 -122.401200 37.805200
1 1 3 0 -122.405900 37.806600 -122.407549 37.806394
1 1 3 1 -122.407549 37.806394 -122.408300 37.806300
1 1 3 2 -122.408300 37.806300 -122.409100 37.806200
1 1 3 3 -122.409100 37.806200 -122.405900 37.806600
2 0 2 0 -122.410800 37.806000 -122.412300 37.805800
2 0 2 1 -122.412300 37.805800 -122.414100 37.805600
2 0 2 2 -122.414100 37.805600 -122.412300 37.805800
2 0 2 3 -122.412300 37.805800 -122.410800 37.806000
3 0 1 0 -122.567474 38.643564
3 0 1 1 -126.345345 39.345345

2.2.2 Transactional Insert Using SQL
Spatial Cartridge uses standard Oracle8 tables that can be accessed or loaded with
standard SQL syntax. Example 2–4 loads data for a geometry (GID 17) consisting
of a polygon with four sides that contains both a hole and point. Notice that the
first coordinate of the polygon (5, 20) is repeated at the end to close the polygon.

Example 2–4

INSERT INTO SAMPLE_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (17, 0, 3, 0, 5, 20, 5, 30, 10, 30, 10, 20, 5, 20);
2-4 Oracle8 Spatial Cartridge User’s Guide and Reference

2.2 Load Process
 -- hole
INSERT INTO SAMPLE_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (17, 1, 3, 0, 8, 21, 8, 24, 9, 24, 9, 21, 8, 21);

 -- point
INSERT INTO SAMPLE_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1)
 VALUES (17, 2, 1, 0, 9, 29);

The SQL INSERT statement inserts one row of data per call. In Example 2–4, the
table had enough columns to store the polygon in a single row. However, if your
table had fewer columns (or your polygon had more points), you would have to
perform mulitple inserts in order to match the table structure; the data would not
wrap automatically to the next row. To load a large geometry, repeat the SDO_GID,
SDO_ESEQ, and SDO_ETYPE, and increment the SDO_SEQ for each line as shown
in Example 2–5.

Example 2–5

INSERT INTO SAMPLE2_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (18, 0, 3, 0, 1, 15, 1, 16, 2, 17, 3, 17, 4, 18);

INSERT INTO SAMPLE2_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (18, 0, 3, 1, 4, 18, 5, 18, 6, 19, 7, 18, 6, 17);

INSERT INTO SAMPLE2_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (18, 0, 3, 2, 6, 17, 7, 16, 7, 15, 6, 14, 7, 13);

INSERT INTO SAMPLE2_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
 SDO_Y3, SDO_X4, SDO_Y4, SDO_X5, SDO_Y5)
 VALUES (18, 0, 3, 3, 7, 13, 6, 12, 5, 13, 4, 13, 3, 14);

INSERT INTO SAMPLE2_SDOGEOM (SDO_GID, SDO_ESEQ, SDO_ETYPE, SDO_SEQ,
 SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3,
SDO_Y3)
 Loading Spatial Data 2-5

2.2 Load Process
 VALUES (18, 0, 3, 4, 3, 14, 2, 14, 1, 15);

2.2.3 Transactional Insert Using Spatial Geometry Functions
Spatial Cartridge provides two functions to facilitate inserting data into spatial
tables. A benefit to using these functions is that the issue of row-wrapping when
loading elements with multiple points is handled automatically by these functions.

There are two steps to incrementally add data to the spatial tables:

1. Initialize the element that needs to be stored. Note that this process does not fill
in any coordinate information for the element. Two parameters are passed to
the SDO_GEOM.INIT_ELEMENT() function, which initializes the element:

■ Name of the layer (for example, ROADS)

■ GID that is a unique identifier for the geometry

The SDO_GEOM.INIT_ELEMENT() function returns the sequence number of
the element in the geometry. This sequence number is required as a parameter
to the SDO_GEOM.ADD_NODES() procedure.

2. Fill in the coordinate information for the element using the
SDO_GEOM.ADD_NODES() procedure. This procedure takes the following
parameters:

■ Name of the layer

■ GID

■ Sequence number of the element

■ Element type

■ List of vertices in the geometry, specified as a series of X,Y coordinate pairs

Note that you must explicitly close a polygon by repeating the coordinates
of the first vertex as the last vertex.

In Example 2–6, a simple polygon, geometry number 1234, consisting of five verti-
ces needs to be stored. The first step is to call SDO_GEOM.INIT_ELEMENT() to ini-
tialize the element.

Example 2–6

elem_value := sdo_geom.init_element(’ROADS’, 1234);

Next, call SDO_GEOM.ADD_NODES() to fill in the attributes of the polygon. The
vertices can be added in either clockwise or counter-clockwise order.
2-6 Oracle8 Spatial Cartridge User’s Guide and Reference

2.2 Load Process
sdo_geom.add_nodes(’ROADS’, 1234, elem_value, sdo_geom.polygon_type, Ax,
Ay, Bx, By, Cx, Cy, Dx, Dy, Ex, Ey, Ax, Ay);

Close the polygon by repeating the first vertex (A x,A y) as the last vertex.

In Example 2–7, assume that the geometry shown in Figure 2–1 needs to be stored.
The geometry consists of a polygon with a hole in it. Note that both calls to the
SDO_GEOM.ADD_NODES() procedure are made with the same GID (6789) because
this is a single object even though it is composed of two elements.

Figure 2–1 Polygon with a Hole

Example 2–7

val1 := sdo_geom.init_element(’PARKS’, 6789);
sdo_geom.add_nodes(’PARKS’, 6789, val1, SDO_GEOM.POLYGON_TYPE, P1 x, P1 y,
P2x, P2 y, P3 x, P3 y, P4 x, P4 y, P5 x, P5 y, P6 x, P6 y, P1 x, P1 y);
val2 := sdo_geom.init_element(’PARKS’, 6789);
sdo_geom.add_nodes(’PARKS’, 6789, val2, SDO_GEOM.POLYGON_TYPE, G1 x, G1 y,
G2x, G2 y, G3 x, G3y, G4 x, G4 y, G1 x, G1 y);

P6
P1

Geometry 6789:
P3 P4

P5P2

G1

G2 G3

G4
 Loading Spatial Data 2-7

2.3 Index Creation
2.3 Index Creation
Once data has been loaded into the spatial tables through either bulk or transac-
tional loading, a spatial index needs to be created on the tables for efficient access
to the data.

Create an Oracle8 table called <layername>_SDOINDEX as follows:

SQL> create table <layername>_SDOINDEX
 2 (
 3 SDO_GID integer,
 4 SDO_CODE raw(255)
 5);

For a bulk load, you can call the SDO_ADMIN.POPULATE_INDEX() procedure
once to tessellate the geometry table and add the generated tiles to the spatial index
table. The argument to this procedure is simply the name of the layer. The level to
which the geometry should be tessellated, and whether to use the fixed-size or vari-
able-sized tile indexing technique is determined by values in the
<layername>_SDOLAYER table.

If data is updated in or deleted from a specific geometry table, you can call
SDO_ADMIN.UPDATE_INDEX() to update the index for one SDO_GID. The argu-
ments to this procedure are the name of the layer and the SDO_GID of the desig-
nated geometry.

See Chapter 5, “Administrative Procedures” for a complete description of the
SDO_ADMIN.POPULATE_INDEX() and SDO_ADMIN.UPDATE_INDEX() proce-
dures.

2.3.1 Choosing a Tessellation Algorithm
Spatial Cartridge provides two methods for spatial indexing. Fixed-size tiling is rec-
ommended for all production applications. For advanced development applica-
tions, you may want to experiment with variable-sized tiling, which theoretically
could provide better selectivity in some data sets.

Which tessellation algorithm is used by the SDO_ADMIN.POPULATE_INDEX() and
SDO_ADMIN.UPDATE_INDEX() procedures is determined by the values of the
SDO_LAYER and SDO_NUMTILES columns in the <layername>_SDOLAYER
table as follows:

SDO_LEVEL SDO_NUMTILES Action

NULL NULL Error
2-8 Oracle8 Spatial Cartridge User’s Guide and Reference

2.3 Index Creation
2.3.2 Spatial Indexing with Fixed-Size Tiles
Oracle recommends using fixed-size cover tiles for indexing a geometry.

The fixed-size tile algorithm is expressed as a level referring to the number of tessel-
lations performed. To use fixed-size tile indexing, set the SDO_NUMTILES column
in the <layername>_SDOLAYER table to NULL and the SDO_LEVEL column to
the desired tiling level. The relationship between the tiling level and the resulting
size of the tiles is dependent on the domain of the layer.

The domain used for indexing is defined by the upper and lower boundaries of
each dimension stored in the <layername>_SDODIM table. A typical domain in a
GIS application could be -90 to 90 degrees for latitude, and -180 to 180 degrees for
longitude1, as represented in Figure 2–2.

1 The transference of the domain onto a sphere or Mercator projection is left to GIS (or other)
application programmers. Spatial Cartridge treats the domain as a conventional X by Y rect-
angle.

>= 1 NULL Fixed-size tiling

>= 1 >= 1 Indexing with variable-sized tiles. The
SDO_LEVEL column defines the partition
bucket size. The SDO_NUMTILES column
defines the number of tiles to generate per
geometry. Note: variable-sized tiling is for
experimentation purposes only.

NULL >= 1 Not supported

SDO_LEVEL SDO_NUMTILES Action
 Loading Spatial Data 2-9

2.3 Index Creation
Figure 2–2 Sample GIS Domain

If the SDO_LEVEL column is set to 1, then the tiles created by the indexing mecha-
nism are the same size as tiles at the first level of tessellation. Each tile would be
180 degrees by 90 degrees as shown in Figure 2–3.

Figure 2–3 Fixed-Size Tiling at Level 1

The formula for the number of fixed-size tiles is 4n where n is the number of tessel-
lations, stored in the SDO_LEVEL column. Figure 2–4 shows fixed-size tiling at
level 2. In this figure, each tile is 90 degrees by 45 degrees.

-180 180

90

-90

-180 0 180

90

-90

 0
2-10 Oracle8 Spatial Cartridge User’s Guide and Reference

2.3 Index Creation
Figure 2–4 Fixed-Size Tiling at Level 2

The size of a tile can be determined by applying the following formula to each
dimension:

length = (upper_bound - lower_bound) / 2 ^ sdo_level

The length refers to the length of the tile along the specified dimension. Applying
this formula to the tiling shown in Figure 2–4 yields the following sizes:

length for dimension X = (180 - (-180)) / 2̂ 2
 = (360) / 4
 = 90
length for dimension Y = (90 - (-90)) / 2̂ 2
 = (180) / 4
 = 45

Thus, at level 2 the tiles are 90x45 degrees in size. As the number of levels increases,
the tiles become smaller and smaller. Smaller tiles provide a more precise fit of the
tiles over the geometry being indexed. However, because the number of tiles gener-
ated is unbounded, you must take into account the performance implications of
using higher levels. The SDO_TUNE.ESTIMATE_TILING_LEVEL() function can
be used to determine an appropriate level for indexing with fixed-size tiles. See
Chapter 6 for a description of this procedure.

Besides the performance aspects related to selecting a fixed-size tile, tessellating the
geometry into fixed-size tiles might have benefits related to the type of data being
stored, such as using tiles sized to represent 1-acre farm plots, city blocks, or indi-
vidual pixels on a display. Data modeling is an important part any database design,
and is essential in a spatial database where the data often represents actual physical
locations.

-180 -90 0 90 180

90

-90

 0
 Loading Spatial Data 2-11

2.3 Index Creation
In Example 2–8, assume that data has been loaded into a layer called ROADS, and
you want to create a spatial index on that data.

Example 2–8

To create a spatial index, create a table ROADS_SDOINDEX and invoke the fol-
lowing procedure:

sdo_admin.populate_index(’ROADS’);

The value in the SDO_LEVEL column of the ROADS_SDOLAYER table can be
used as a tuning parameter while tessellating objects. Increasing the level
increases the number of tiles to provide a more precise fit of the tiles over the
object. See the description of the ESTIMATE_TILING_LEVEL() function in
Chapter 6 for information on estimating the tiling level in several different
ways.

After the SDO_ADMIN.POPULATE_INDEX() procedure has been called to fill
the spatial index, you should also create a concatenated index using the
SDO_CODE and SDO_GID columns. The concatenated index helps the join to
the <layername>_SDOGEOM table during a query. The SDO_GID values from
the primary filter will come from the index instead of from the table.

If a geometry with an SDO_GID 5944 has been added to the spatial tables,
update the index with the following procedure:

sdo_admin.update_index(’ROADS’, 5944);

The SDO_ADMIN.POPULATE_INDEX()and
SDO_ADMIN.UPDATE_INDEX()procedures behave differently from the CRE-
ATE INDEX statement in SQL. An implicit commit is not executed after the pro-
cedures are called. Therefore these transactions can be rolled back.

The SDO_ADMIN.POPULATE_INDEX() procedure operates as a single transac-
tion. To reduce the amount of rollback required to execute this procedure, you
can write a routine that loops and calls SDO_ADMIN.UPDATE_INDEX() . See
Section A.1.1.1, “cr_spatial_index.sql Script” for more information.

2.3.3 Spatial Indexing with Variable-Sized Tiles
Spatial indexing with variable-sized tiles is not recommended for production sys-
tems. Variable-sized tiling is included in Spatial Cartridge primarily for experimen-
tation purposes.
2-12 Oracle8 Spatial Cartridge User’s Guide and Reference

2.3 Index Creation
To use variable-sized tiling, the SDO_LEVEL and SDO_NUMTILES columns must
be set in the <layername>_SDOLAYER table.

The SDO_NUMTILES column determines the number of tiles that will be used to
cover a geometry being indexed. Typically this value is small, such as 4 or 8 tiles.
However, the larger the number of tiles, the better the tiles will fit the geometry
being covered. This increases the selectivity of the primary filter. See Section 3.3.2
and Section 3.3.3 for a discussion of primary and secondary filters.

The SDO_LEVEL column indicates the spatial partitioning level for the generated
tiles. See Section 1.5.3 for a description of the spatial partitioning utilized by Spatial
Cartridge when using variable-sized tiles.

Setting the proper SDO_LEVEL value is more art than science. One approach
would be use the SDO_TUNE.ESTIMATE_TILING_LEVEL() function to determine
an appropriate starting SDO_LEVEL value, and then compare the performance
with slightly higher or lower values.
 Loading Spatial Data 2-13

2.3 Index Creation
2-14 Oracle8 Spatial Cartridge User’s Guide and Reference

 Querying Spatia
3

Querying Spatial Data

This chapter describes how the structures of a Spatial Cartridge layer are used to
resolve spatial queries and spatial joins. For the sake of clarity, the examples all use
fixed-size tiling.

3.1 Query Model
Spatial Cartridge uses a two-tier query model to resolve spatial queries and spatial
joins. The term is used to indicate that two distinct operations are performed in
order to resolve queries. The output of both operations yields the exact result set.

The two operations are referred to as primary and secondary filter operations.

■ The primary filter permits fast selection of a small number of candidate records
to pass along to the secondary filter. The primary filter uses approximations in
order to reduce computational complexity and is considered a lower cost filter.

■ The secondary filter applies exact computational geometry to the result set of
the primary filter. These exact computations yield the final answer to a query.
The secondary filter operations are computationally more expensive, but they
are only applied to the relatively small result set from the primary filter.

Figure 3–1 illustrates the relationship between the primary and secondary filters.
l Data 3-1

3.2 Spatial Data Model
Figure 3–1 Query Model

Spatial Cartridge uses a spatial index to implement the primary filter. This is
described in detail in following sections.

A function used as a secondary filter is SDO_GEOM.RELATE(), which determines
the spatial relationship between two given geometries, such as whether they
touch, overlap, or if one is inside the other.

Spatial Cartridge does not require the use of both the primary and secondary fil-
ters. In some cases, just using the primary filter is sufficient. For example, a zoom
feature in a mapping application queries for data that overlaps a rectangle repre-
senting visible boundaries. The primary filter very quickly returns a superset of the
query. The mapping application can then apply clipping routines to display the tar-
get area.

3.2 Spatial Data Model
 An important concept in the spatial data model is that each element is represented
in the <layername>_SDOINDEX table by a set of exclusive and exhaustive tiles.
This means that the tiles fully cover the object (exhaustive) and that no tiles over-
lap each other (exclusive).

Consider the following layer containing several objects in Figure 3–2. Each object is
labeled with its SDO_GID. The relevant tiles are labeled with ‘Tn’.

Large
Input

Row
Source

SECONDARY
FILTER

PRIMARY
FILTER

Smaller
Row

Source

Exact
Result

Set

This row source
contains at least
the exact result
set and may contain
more records.
3-2 Oracle8 Spatial Cartridge User’s Guide and Reference

3.2 Spatial Data Model
Figure 3–2 Tessellated Layer with Multiple Objects

The Spatial Cartridge layer tables would have the following information stored in
them for these geometries as shown in Table 3–1, Table 3–2, and Table 3–3.

1243

1013

T1 T2 T7

T3 T4

T6T5

61

T8 T9

501

12
 Querying Spatial Data 3-3

3.2 Spatial Data Model
Table 3–1 <layername>_SDOLAYER

Table 3–2 <layername>_SDOGEOM

SDO_ORDCNT
 (number)

SDO_LEVEL
(number)

SDO_NUMTILES
(number)

4 2 NULL

SDO_GID
(number)

SDO_ESEQ
 (number)

SDO_ETYPE
 (number)

SDO_SEQ
(number)

SDO_X1
(number)

SDO_Y1
(number)

SDO_X2
(number)

SDO_Y2
(number)

1013 0 3 0 P1(X) P1(Y) P2(X) P2(Y)

1013 0 3 1 P2(X) P2(Y) P3(X) P3(Y)

1013 0 3 2 P3(X) P3(Y) P4(X) P4(Y)

1013 0 3 3 P4(X) P4(Y) P5(X) P5(Y)

1013 0 3 4 P5(X) P5(Y) P6(X) P6(Y)

1013 0 3 5 P6(X) P6(Y) P7(X) P7(Y)

1013 0 3 6 P7(X) P7(Y) P8(X) P8(Y)

1013 0 3 7 P8(X) P8(Y) P1(X) P1(Y)

1013 1 3 0 G1(X) G1(Y) G2(X) G2(Y)

1013 1 3 1 G2(X) G2(Y) G3(X) G3(Y)

1013 1 3 2 G3(X) G3(Y) G4(X) G4(Y)

1013 1 3 3 G4(X) G4(Y) G1(X) G1(Y)

501 0 3 0 A1(X) A1(Y) A2(X) A2(Y)

501 0 3 1 A2(X) A2(Y) A3(X) A3(Y)

501 0 3 2 A3(X) A3(Y) A4(X) A4(Y)

501 0 3 3 A4(X) A4(Y) A1(X) A1(Y)

1243 0 3 0 B1(X) B1(Y) B2(X) B2(Y)

1243 0 3 1 B2(X) B2(Y) B3(X) B3(Y)

1243 0 3 2 B3(X) B3(Y) B1(X) B1(Y)

12 0 2 0 D1(X) D1(Y) D2(X) D2(Y)

61 0 3 0 C1(X) C1(Y) C2(X) C2(Y)

61 0 3 1 C2(X) C2(Y) C3(X) C3(Y)

61 0 3 2 C3(X) C3(Y) C4(X) C4(Y)

61 0 3 3 C4(X) C4(Y) C5(X) C5(Y)

61 0 3 4 C5(X) C5(Y) C1(X) C1(Y)
3-4 Oracle8 Spatial Cartridge User’s Guide and Reference

3.3 Spatial Query
Table 3–3 <layername>_SDOINDEX

3.3 Spatial Query
A typical spatial query is to request all objects that lie within a defined fence or win-
dow. A query window is shown in Figure 3–3 by the dotted line box. A dynamic
query window refers to a fence that is not defined in the database, but that must be
defined and indexed prior to using it.

SDO_GID
(number)

SDO_CODE
(raw)

1013 T1

1013 T2

1013 T3

1013 T4

501 T2

501 T7

1243 T3

1243 T4

1243 T5

1243 T6

12 T3

12 T4

61 T8

61 T9
 Querying Spatial Data 3-5

3.3 Spatial Query
Figure 3–3 Tessellated Layer with a Query Window

3.3.1 Dynamic Query Window
If a query window does not already exist in the database, you must first insert it
and create an index for it. Because not all Oracle users necessarily have insert privi-

1243

12

1013

T1 T2 T7

T3 T4

T6T5

61

T8 T9

501
3-6 Oracle8 Spatial Cartridge User’s Guide and Reference

3.3 Spatial Query
leges, Spatial Cartridge includes the SDO_WINDOW PL*SQL package. See
Chapter 8, “Window Functions” for more information.

The SDO_WINDOW package is not automatically installed when you install Spa-
tial Cartridge. This allows a DBA to control the schema under which this package
operates. Choose an Oracle user who has insert privilege and compile the
SDO_WINDOW package under that user. For example, you could choose the
mdsys Oracle user:

sqlplus mdsys/password
SQL> @$ORACLE_HOME/md/admin/sdowin.sql
SQL> @$ORACLE_HOME/md/admin/prvtwin.plb

After compiling, the routines are available for use. When you call a routine in this
package, and the routine performs an INSERT operation, the insert will occur
under the mdsys schema. Note that it is not a requirement to use the mdsys
account. You can select any Oracle user with insert privileges.

If you need to perform other INSERT, UPDATE, or DELETE operations, and you
cannot guarantee that the user of your application has those privileges, you can
write your own PL*SQL package similar to the SDO_WINDOW package. You will
have to compile your package under a user with the required database privileges.

3.3.2 Primary Filter
To resolve the window query shown in Figure 3–3, build a layer for the query fence
if it is not already defined:

SQL> EXECUTE MDSYS.SDO_WINDOW.CREATE_WINDOW_LAYER (fencelayer, DIMNUM1, LB1,
UB1, TOLERANCE1, DIMNAME1, DIMNUM2, LB2, UB2, TOLERANCE2, DIMNAME2);

Next, insert the ordinates for the query fence into the layer tables:

SQL> EXECUTE DBMS_OUTPUT.PUTLINE(TO_CHAR(MDSYS.SDO_WINDOW.BUILD_WINDOW_FIXED
(comp_user, fencelayer, SDO_ETYPE, TILE_SIZE, X1, Y1, X2, Y2, X3, Y3, X4, Y4,
X1, Y1)));

Query SDO_LEVEL from the <fencelayer>_SDOLAYER table to pass the correct
TILE_SIZE to the SDO_WINDOW.BUILD_WINDOW_FIXED() procedure.

Now you can construct a query that joins the index of the query window to the
appropriate layer index and determines all elements that have these tiles in com-
mon. The following SQL query form is used:
 Querying Spatial Data 3-7

3.3 Spatial Query
SELECT DISTINCT A.SDO_GID
FROM <layer1>_SDOINDEX A, <fencelayer>_SDOINDEX B
WHERE A.SDO_CODE = B.SDO_CODE
 AND B.SDO_GID = {GID returned from SDO_WINDOW.BUILD_WINDOW_FIXED};

The result set of this query is the primary filter set. In this case, the result set is:

 { 1013,501,1243,12 }

3.3.3 Secondary Filter
The secondary filter performs exact geometry calculations of the tiles selected by
the primary filter. The following example shows the primary and secondary filters:

SELECT SDO_X1, SDO_Y1, SDO_X2, SDO_Y2, SDO_X3, SDO_Y3, SDO_X4, SDO_Y4
FROM <layer1>_SDOGEOM,
(
SELECT SDO_GID GID1
 FROM (
 SELECT DISTINCT A.SDO_GID
 FROM <layer1>_SDOINDEX A,
 <fencelayer>_SDOINDEX B
 WHERE A.SDO_CODE = B.SDO_CODE
 AND B.SDO_GID = {GID returned from SDO_WINDOW.BUILD_WINDOW_FIXED}

)
 WHERE SDO_GEOM.RELATE(’<layer1>’, GID1, ’ANYINTERACT’, ’<fence>’, 1) = ’TRUE’
)
WHERE SDO_GID = GID1;

This query would return all the geometry IDs that lie within or overlap the win-
dow. In this example, the results of the secondary filter would be:

{1243,1013}

The example in this section uses the SDO_GEOM.RELATE() secondary filter. Both
the INTERACT() and RELATE() secondary filters are overloaded functions. For bet-
ter performance, use the versions that explicitly list the coordinates of the query
window whenever possible. See Chapter 7, “Geometry Functions” for details on
using these functions.
3-8 Oracle8 Spatial Cartridge User’s Guide and Reference

3.4 Spatial Join
3.4 Spatial Join
A spatial join is the same as a regular join except that the predicate involves a spa-
tial operator. In Spatial Cartridge, a spatial join takes place between two layers; spe-
cifically, two <layername>_SDOINDEX tables are joined.

Spatial joins can be used to answer questions such as, “which highways cross
national parks?”

This query could be resolved by joining a layer that stores national park geometries
with one that stores highway geometries.Figure 3–4 illustrates how the join would
be accomplished for this example.

Figure 3–4 Spatial Join of Two Layers

The PRIMARY filter would identify pairs of park GIDs and highway GIDs that
cross in the index. The query that performs the primary filter join (assuming fixed-
size tile indexing) is as follows:

SELECT DISTINCT A.SDO_GID,B.SDO_GID
 FROM PARKS_SDOINDEX A, HIGHWAYS_SDOINDEX B
 WHERE A.SDO_CODE = B.SDO_CODE

User

Defined

Attribute

Tables

Spatial

Data

PARKS_SDOINDEX:

CODE

Structures

PARKS:

PARKS_SDODIM:

PARKS_SDOGEOM:

GID

DIM LB UB

NAME GID CAMPSITE# ...

HIGHWAYS:

HIGHWAYS_SDODIM:

ESEQ ETYPE SEQ X1

HIGHWAYS_SDOGEOM:

HIGHWAYS_SDOINDEX:

GID

NAME GID WIDTH ...

MAX CODEGID MAX

Y1 GID ESEQ ETYPE SEQ X1 Y1

TOL NAME DIM LB UB TOL NAME
 Querying Spatial Data 3-9

3.4 Spatial Join
The result set of the primary filter must be passed through the secondary filter to
get the exact set of parks/highways GID pairs that cross. The full query is shown in
the following example:

Suppose the original query had asked, “which 4-lane highways cross national
parks?” You could modify the preceding SQL statement to join back to the HIGH-
WAYS table where HIGHWAYS.WIDTH=4. This combination of spatial and rela-
tional attributes in a single query is one of the essential reasons for using Spatial
Cartridge.

SELECT DISTINCT SDO_GID
 FROM (
 SELECT /*+ index(a PARKS_SDOINDEX_SDO_CODE_INDEX)
 index(b HIGHWAYS_SDOINDEX_SDO_CODE_INDEX)
 use_nl(a b)
 no_merge */
 DISTINCT A.SDO_GID GID_A, B.SDO_CODE GID_B
 FROM PARKS_SDOINDEX A, HIGHWAYS_SDOINDEX B
 WHERE A.SDO_CODE = B.SDO_CODE
)
 WHERE SDO_GEOM.RELATE (’PARKS’, GID_A,
 ’ANYINTERACT’,
 ’HIGHWAYS’, GID_B) <> ’FALSE’;

Primary

Secondary

Filter

Filter
3-10 Oracle8 Spatial Cartridge User’s Guide and Reference

 Partitioning Point
4

Partitioning Point Data

Spatial Cartridge provides the essential functions, procedures, and scripts for using
and managing both spatially indexed data and partitioned point data. The informa-
tion in this chapter is relevant only to users utilizing table partitioning for very
large quantities of point data.

4.1 Overview
Partitioning is a technique where data is loaded into tables that automatically sub-
divide when a predefined maximum size is reached. During subdivision, data is
moved from the parent partition to the child partitions and the parent partition is
dropped. Storage parameters for child partitions are inherited from the root parti-
tion and can be changed at any time.

A partitioned table has a partition key that is an HHCODE column created by
encoding multidimensional point data using the SDO_ENCODE() function. In the
partitioning process, at each subdivision, data is subdivided into 2n partitions
where n is the number of dimensions encoded in the HHCODE column. You can
encode up to 32 dimensions using Spatial Cartridge.

4.2 Partitioning Process
This guide does not attempt to provide the information necessary for fully utilizing
table partitioning for point data. The following is a high-level description of the par-
titioning process:

1. Start with an Oracle8 table containing multidimensional point data. For exam-
ple, columns of X and Y coordinate data from a blueprint or map.

2. Create a table or view from the original Oracle8 table containing the columns
you want, plus a new HHCODE column.
 Data 4-1

4.3 Function Details
An HHCODE column is a new data type used to encode multiple dimensions
into a unique orderable value. HHCODE is not a point, but rather a bounded
cell representing an object space in as many dimensions as have been defined.
An HHCODE data type is defined as RAW(255).

3. Create the HHCODE data type by encoding multiple dimensions into a single
value using the SDO_ENCODE() function. The HHCODE data type will be
used as the partition key.

4. Register a partitioned table in the Spatial Cartridge data dictionary using the
SDO_ADMIN.REGISTER_PARTITION_INFO() procedure. This procedure
takes the name of a table, the name of the partition key column, and the maxi-
mum number of records you want stored in a partition before it subdivides.

5. Call the SDO_ADMIN.PARTITION() procedure with the name of the table or
view containing the partition key column and the tablespace in which the parti-
tions should be created. In this step, the data is partitioned based on dimen-
sions encoded in the HHCODE column.

6. If the underlying table has constraints, grants, or triggers, the owner needs to
use the SDO_ADMIN.PROPAGATE_GRANTS() procedure to set those properties
on the partitions.

7. To add more partitioned point data, load the data into a table, and call
SDO_ADMIN.PARTITION() again. The dimensions encoded in the HHCODE
column must have the same boundaries to be loaded into the existing parti-
tioned table.

8. After you have added data multiple times, or after adding or deleting a large
amount of data, there may be partitions that exceed the high-water mark or
there may be partitions that can be merged. Call the SDO_ADMIN.REPARTI-
TION() procedure to reorganize the partitioned table. Repartitioning is a com-
putation-intensive task that should be performed only when necessary.

4.3 Function Details
See the following for details of the functions supporting partitioned point data:

■ Chapter 5, “Administrative Procedures”

– SDO_ADMIN.ALTER_HIGH_WATER_MARK

– SDO_ADMIN.DROP_PARTITION_INFO

– SDO_ADMIN.PARTITION

– SDO_ADMIN.PROPAGATE_GRANTS
4-2 Oracle8 Spatial Cartridge User’s Guide and Reference

4.3 Function Details
– SDO_ADMIN.REGISTER_PARTITION

– SDO_ADMIN.REPARTITION

– SDO_ADMIN.VERIFY_PARTITIONS

■ Chapter 9, “Partitioned Point Data Functions”

– SDO_BVALUETODIM

– SDO_COMPARE

– SDO_DATETODIM

– SDO_DECODE

– SDO_ENCODE

– SDO_TO_BVALUE

– SDO_TO_DATE

■ Appendix A, “Sample SQL Scripts and Tuning Tips”

– altpart.sql

– drppart.sql

– sdogrant.sql
 Partitioning Point Data 4-3

4.3 Function Details
4-4 Oracle8 Spatial Cartridge User’s Guide and Reference

 Administrative Proce
5

 Administrative Procedures

The SDO_ADMIN procedures create and maintain spatial structures in the data-
base, and are used to perform the following tasks:

■ Tessellate entries in a geometry table and place them in a spatial index table

■ Register and manipulate partitioned spatial tables (partitioned tables are used
only for large volumes of point data)

■ Verify spatial index and partitioned spatial table information

This chapter contains descriptions of the administrative procedures used for work-
ing with either spatially indexed geometric data or partitioned point data. These
data structures are mutually exclusive and the procedures only work with the struc-
ture for which they are designed.

Table 5–1 lists the administrative procedures for working with spatially indexed
geometry-based data. Table 5–2 later in this chapter lists procedures for working
with partitioned point data.

Table 5–1 Administrative Procedures for Spatially Indexed Data

Procedure Data Structure Description

SDO_ADMIN.POPULATE_INDEX Geometric objects Generates a spatial index for the geometry table
using either a set number of tiles, or a fixed-size tile.

SDO_ADMIN.SDO_CODE_SIZE Geometric objects Determines the required sizes for SDO_CODE and
SDO_MAXCODE.

SDO_ADMIN.UPDATE_INDEX Geometric objects Updates the spatial index based on changes to the
geometry table.

SDO_ADMIN.VERIFY_LAYER Geometric objects Checks for the existence of geometry and spatial
index tables.
dures 5-1

SDO_ADMIN.POPULATE_INDEX
SDO_ADMIN.POPULATE_INDEX

Purpose
This procedure tessellates a list of geometric objects created by selecting all the
entries in the geometry table that do not have corresponding entries in the spatial
index table.

This procedure can generate either fixed or variable-sized tiles depending on val-
ues stored in the <layername>_SDOLAYER table.

Syntax
SDO_ADMIN.POPULATE_INDEX (layername)

Keywords and Parameters

Usage Notes
Consider the following when using this procedure:

■ The <layername>_SDOINDEX table must be created prior to calling this proce-
dure. Use the SQL CREATE TABLE statement to create the spatial index table.

■ For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this routine.

■ This procedure generates either fixed-size or variable-sized tiles depending on
values stored in the <layername>_SDOLAYER table as follows:

layername Specifies the name of the data set layer. The layer name is used to construct
the names of the geometry and spatial index tables.
Data type is VARCHAR2.

SDO_LEVEL SDO_NUMTILES Action

NULL NULL Error

>= 1 NULL Fixed-size tiling
5-2 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_ADMIN.POPULATE_INDEX
■ If the <layername>_SDOINDEX table is empty, the procedure selects all the
geometries in the geometry table and generates index entries for them. If the
index table is not empty, the procedure determines which entries in the geome-
try table do not have index entries, and generates them.

■ SDO_ADMIN.POPULATE_INDEX() behaves similarly to the CREATE INDEX
statement in SQL. An implicit commit is executed after the procedure is called.

■ SDO_ADMIN.POPULATE_INDEX() operates as a single transaction. To reduce
the amount of rollback required to execute this procedure, you can write a rou-
tine that loops and calls SDO_ADMIN.UPDATE_INDEX() repeatedly. See
Section A.1.1.1, “cr_spatial_index.sql Script” for more information.

Example 5–1 tessellates all the geometric objects in the LAYER1_SDOGEOM table
and adds the generated tiles to the LAYER1_SDOINDEX table.

Example 5–1

SQL> EXECUTE SDO_ADMIN.POPULATE_INDEX(’layer1’);
SQL> COMMIT;

Related Topics
■ SDO_ADMIN.UPDATE_INDEX() procedure

>= 1 >= 1 Indexing with variable-sized tiles. The
SDO_LEVEL column defines the partition
bucket size. The SDO_NUMTILES column
defines the number of tiles to generate per
geometry.

Note: variable-sized tiling is for experimenta-
tion purposes only.

NULL >= 1 Not supported

SDO_LEVEL SDO_NUMTILES Action
 Administrative Procedures 5-3

SDO_ADMIN.POPULATE_INDEX_FIXED
SDO_ADMIN.POPULATE_INDEX_FIXED

Purpose
This procedure is provided for compatibility with Spatial Cartridge release 8.0.3
tables. This procedure has been replaced by enhanced features in the
SDO_ADMIN.POPULATE_INDEX() procedure, and by supporting schema changes
as shown in Section 1.4.

This procedure tessellates a list of geometric objects created by selecting all the
entries in the geometry table that do not have corresponding entries in the spatial
index table. This procedure can also tessellate all the geometric objects in a geome-
try table or view and add the tiles to the spatial index table.

Use this procedure to tessellate the geometries into fixed-size tiles.

Syntax
SDO_ADMIN.POPULATE_INDEX_FIXED (layername, tile_size, [synch_flag,] [sdo_tile_flag,]
[sdo_maxcode_flag])

Keywords and Parameters

layername Specifies the name of the data set layer. The layer name is used to con-
struct the name of the geometry and spatial index tables.
Data type is VARCHAR2.

tile_size Specifies the number of tessellations required to achieve the desired tile
size (see the Usage Notes).
Data type is INTEGER.

synch_flag Specifies whether to tessellate every geometric object in the geometry
table, or only those that do not have corresponding entries in the spatial
index table. If TRUE, only those geometric objects in the geometry table
that do not have any corresponding tiles in the spatial index table are tes-
sellated. If FALSE, all the geometric objects in the geometry table are tes-
sellated and new tiles are simply added to the spatial index table.
Default value is TRUE.
Data type is BOOLEAN.

sdo_tile_flag For internal use only. Not supported in this release.
Default value is FALSE.
5-4 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_ADMIN.POPULATE_INDEX_FIXED
Usage Notes

Consider the following when using this procedure:

■ The SQL CREATE TABLE statement is used to create the spatial index table,
<layername>_SDOINDEX, prior to calling this procedure.

■ The layer is tessellated into equal-sized tiles based on the number passed in the
tile_size parameter. The value of tile_size specifies how many times to tessel-
late the layer. See Section 2.3.2, “Spatial Indexing with Fixed-Size Tiles”.

■ For performance reasons, set the synch_flag to FALSE when the spatial index
table contains zero rows.

■ For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this routine.

■ SDO_ADMIN.POPULATE_INDEX_FIXED() behaves similarly to the CREATE
INDEX statement in SQL. An implicit commit is executed after the procedure is
called.

■ SDO_ADMIN.POPULATE_INDEX_FIXED() operates as a single transaction. To
reduce the amount of rollback required to execute this procedure, you can
write a routine that loops and calls SDO_ADMIN.UPDATE_INDEX_FIXED()
repeatedly. See Section A.1.1.1, “cr_spatial_index.sql Script” for more informa-
tion.

Example 5–2 tessellates all the geometric objects in the LAYER1_SDOGEOM table
using up to 256 (44) fixed-size tiles and adds the generated tiles to the
LAYER1_SDOINDEX table.

sdo_maxcode
_flag

Specifies whether or not the SDO_MAXCODE column is populated. If
TRUE, SDO_MAXCODE is populated. If FALSE, the column is not popu-
lated.
Default value is TRUE.
Data type is BOOLEAN.

Note: This procedure is likely to be removed in a future release of
Spatial Cartridge.
 Administrative Procedures 5-5

SDO_ADMIN.POPULATE_INDEX_FIXED
Example 5–2

SQL> EXECUTE SDO_ADMIN.POPULATE_INDEX_FIXED(’layer1’,4,FALSE,FALSE,FALSE);

Related Topics
■ SDO_ADMIN.UPDATE_INDEX_FIXED() procedure

■ SDO_TUNE.ESTIMATE_TILING_LEVEL() function
5-6 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_ADMIN.SDO_CODE_SIZE
SDO_ADMIN.SDO_CODE_SIZE

Purpose
This function determines the size that the SDO_CODE column should be in the
<layername>_SDOINDEX table.

Syntax
SDO_ADMIN.SDO_CODE_SIZE (layername)

Keywords and Parameters

Returns
This function returns the required size in bytes for the SDO_CODE column.
Data type is INTEGER.

Usage Notes
The SDO_CODE column is used to store the bit-interleaved cell ID of a tile that cov-
ers a geometry. The SDO_MAXCODE column is SDO_CODE padded out one place
farther than the longest allowable code name for the index. Both columns are
defined as RAW data types, with a maximum of 255 bytes. Use the
SDO_ADMIN.SDO_CODE_SIZE() function to fine-tune the size of the columns.

You should always set the SDO_MAXCODE column to one greater than the
SDO_CODE column.

Related Topics
None

layername Specifies the name of the data set layer.
Data type is VARCHAR2.
 Administrative Procedures 5-7

SDO_ADMIN.UPDATE_INDEX
SDO_ADMIN.UPDATE_INDEX

Purpose
This procedure tessellates a single geometric object in a geometry table or view and
adds the tiles to the spatial index table. If the object already exists and has index
entries, those entries are deleted and replaced by the newly generated tiles.

Syntax
SDO_ADMIN.UPDATE_INDEX (layername, GID)

Keywords and Parameters

Usage Notes
Considert the following when using this procedure:

■ The <layername>_SDOINDEX table must exist prior to calling this procedure.
Use the SQL CREATE TABLE statement to create the spatial index table.

■ For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this routine.

■ The values of the SDO_LEVEL and SDO_NUMTILES columns must be set in
the <layername>_SDOLAYER table before calling this procedure. This proce-
dure generates either fixed-size or variable-sized tiles depending on values
stored in the <layername>_SDOLAYER table as follows:

layername Specifies the name of the data set layer. The layer name is used to con-
struct the name of the geometry table.
Data type is VARCHAR2.

GID Specifies the geometric object identifier.
Data type is NUMBER.

SDO_LEVEL SDO_NUMTILES Action

NULL NULL Error

>= 1 NULL Fixed-size tiling
5-8 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_ADMIN.UPDATE_INDEX
■ SDO_ADMIN.UPDATE_INDEX() does not perform an implicit commit after it
executes and therefore the transaction can be rolled back.

Example 5–3 tessellates the polygon for geometry 25 and adds the generated tiles to
the LAYER1_SDOINDEX table.

Example 5–3

SQL> EXECUTE SDO_ADMIN.UPDATE_INDEX(’layer1’, 25);
SQL> COMMIT;

Related Topics
■ SDO_ADMIN.POPULATE_INDEX() procedure

>= 1 >= 1 Indexing with variable-sized tiles. The
SDO_LEVEL column defines the parti-
tion bucket size. The SDO_NUMTILES
column defines the number of tiles to
generate per geometry. Note: variable-
sized tiling is for experimentation pur-
poses only.

NULL >= 1 Not supported

SDO_LEVEL SDO_NUMTILES Action
 Administrative Procedures 5-9

SDO_ADMIN.UPDATE_INDEX_FIXED
SDO_ADMIN.UPDATE_INDEX_FIXED

Purpose
This procedure is provided for compatibility with Spatial Cartridge release 8.0.3
tables. This procedure has been replaced by enhanced features in the
SDO_ADMIN.UPDATE_INDEX() procedure, and by supporting schema changes as
shown in Section 1.4.

This procedure tessellates a single geometric object in a geometry table or view and
adds the fixed-sized tiles to the spatial index table. By default, these tiles will
replace existing ones for the same geometry; or optionally, existing tiles can be left
alone.

Syntax
SDO_ADMIN.UPDATE_INDEX_FIXED (layername, GID, tile_size, [replace_flag,] [sdo_tile_flag]
[sdo_maxcode_flag])

Keywords and Parameters

layername Specifies the name of the data set layer. The layer name is used to con-
struct the name of the geometry table.
Data type is VARCHAR2.

GID Specifies the geometric object identifier.
Data type is NUMBER.

tile_size Specifies the number of tessellations required to achieve the desired
fixed-size tiles. Each tessellation subdivides the tiles from the previ-
ous level into four smaller tiles.
Data type is INTEGER.

replace_flag Specifies whether or not to delete tiles for the GID before adding new
ones. If TRUE, tiles are deleted prior to inserting new entries into the
spatial index table. If FALSE, new tiles are simply added to the spatial
index table.
Default value is TRUE.
Data type is BOOLEAN.

sdo_tile_flag For internal use only. Not supported in this release.
Default value is FALSE.
Data type is BOOLEAN.
5-10 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_ADMIN.UPDATE_INDEX_FIXED
Usage Notes

Consider the following when using this procedure:

■ For performance reasons, set the replace_flag to FALSE when the spatial index
table contains no entries for the specified GID.

■ For performance reasons, create an index on the SDO_GID column in the
<layername>_SDOGEOM table before calling this procedure.

■ SDO_ADMIN.UPDATE_INDEX_FIXED() does not perform an implicit commit
after it executes and therefore this transaction can be rolled back.

Example 5–4 tessellates the polygon for geometry 25 and adds the generated tiles to
the LAYER1_SDOINDEX table.

Example 5–4

SQL> EXECUTE SDO_ADMIN.UPDATE_INDEX_FIXED (’layer1’,25,4,FALSE,FALSE,FALSE);

Related Topics
■ SDO_ADMIN.POPULATE_INDEX_FIXED() procedure

■ SDO_TUNE.ESTIMATE_TILING_LEVEL() function

sdo_maxcode_flag Specifies whether or not the SDO_MAXCODE column is populated. If
TRUE, SDO_MAXCODE is populated. If FALSE, the column is not
populated.
Default value is TRUE.
Data type is BOOLEAN.

Note: This procedure is likely to be removed in a future release of
Spatial Cartridge.
 Administrative Procedures 5-11

SDO_ADMIN.VERIFY_LAYER
SDO_ADMIN.VERIFY_LAYER

Purpose
This procedure checks for the existence of the geometry and spatial index tables.

Syntax
SDO_ADMIN.VERIFY_LAYER (layername,[maxtiles])

Keywords and Parameters

Usage Notes
If this procedure does not find the geometry and spatial index tables, it generates
the following error: SDO 13113 (Oracle table does not exist)

Example 5–5 verifies the LAYER1 data set layer:

Example 5–5

SQL> EXECUTE SDO_ADMIN.VERIFY_LAYER(’layer1’);

Related Topics
None

layername Specifies the name of the data set layer. The layer name is used to con-
struct the name of the geometry and spatial index tables.
Data type is VARCHAR2.

maxtiles For internal use only. Not supported in this release.
5-12 Oracle8 Spatial Cartridge User’s Guide and Reference

Partitioned Point Data Procedures
Partitioned Point Data Procedures

Table 5–2 lists the procedures that can be used with partitioned point data. These
procedures are neither required nor compatible with the geometry-based data for-
mat.

Also see Appendix A, “Sample SQL Scripts and Tuning Tips” for additional admin-
istrative tools useful for working with partitioned point data.

Table 5–2 Administrative Procedures for Partitioned Point Data

Procedure Data Structure Description

SDO_ADMIN.ALTER_HIGH_WATER_MARK Partitioned points Alters the high-water mark of a partitioned table.

SDO_ADMIN.DROP_PARTITION_INFO Partitioned points Removes a partitioned table.

SDO_ADMIN.PARTITION Partitioned points Places data into partition tables.

SDO_ADMIN.PROPAGATE_GRANTS Partitioned points Propagates the grants on the registered underlying
table to the various partitions.

SDO_ADMIN.REGISTER_PARTITION_
INFO

Partitioned points Creates a partitioned spatial table.

SDO_ADMIN.REPARTITION Partitioned points Reorganizes a table based on the sorted values of the
data contained within it.

SDO_ADMIN.VERIFY_PARTITIONS Partitioned points Checks for the existence of a table.
 Administrative Procedures 5-13

SDO_ADMIN.ALTER_HIGH_WATER_MARK
SDO_ADMIN.ALTER_HIGH_WATER_MARK

Purpose
This procedure alters the high-water mark of a partitioned spatial table. The high-
water mark defines how many records can be stored in a partition before it subdi-
vides. The table must exist and be registered in the Spatial Cartridge data dictio-
nary.

This procedure is for use only with partitioned point data.

Syntax
SDO_ADMIN.ALTER_HIGH_WATER_MARK (tablename, high_water_mark)

Keywords and Parameters

Usage Notes
None

Example 5–6 changes the high-water mark to 5000 records for the TABLE1 parti-
tioned spatial table.

Example 5–6

SQL> EXECUTE SDO_ADMIN.ALTER_HIGH_WATER_MARK(’table1’, 5000);

Related Topics
■ SDO_ADMIN.REPARTITION() procedure

■ altpart.sql sample SQL script file

tablename Specifies the name of the partitioned table.
Data type is VARCHAR2.

high_water_mark Specifies the new high-water mark for the table.
Data type is INTEGER.
5-14 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_ADMIN.DROP_PARTITION_INFO
SDO_ADMIN.DROP_PARTITION_INFO

Purpose
This procedure removes a partitioned spatial table from the Spatial Cartridge data
dictionary. The table must exist and must be registered in the Spatial Cartridge data
dictionary.

This procedure is used only with partitioned point data.

Syntax
SDO_ADMIN.DROP_PARTITION_INFO (tablename)

Keywords and Parameters

Usage Notes
This procedure does not remove the spatial table and its associated partition tables
from the user’s schema. For a description of how to remove a partitioned spatial
table from the user’s schema, see the drppart.sql sample SQL script file described
in Section A.1.2.2.

Example 5–7 removes the table1 table from the Spatial Cartridge data dictionary.

Example 5–7

SQL> EXECUTE SDO_ADMIN.DROP_PARTITION_INFO(’table1’);

Related Topics
■ drppart.sql sample SQL script file

tablename Specifies the name of the partitioned table.
Data type is VARCHAR2.
 Administrative Procedures 5-15

SDO_ADMIN.PARTITION
SDO_ADMIN.PARTITION

Purpose
This procedure places data into partition tables based on the sorted order of
encoded dimensional values.

This procedure is used only with partitioned point data.

Syntax
SDO_ADMIN.PARTITION (owner.source_table, tablename, parallel, guess , plummet_flag
[,tablespace])

Keywords and Parameters

owner.source_table Specifies the Oracle8 table or view of the table containing the partition
key column.
Data type is VARCHAR2.

tablename Specifies the name of the table to partition.
Data type is VARCHAR2.

parallel Specifies the degree of parallelism for an operation on a single
instance.
Data type is INTEGER.

guess Specifies the estimated largest common level of all the potential parti-
tions to be created from data in the source_table. The common level of
a partition is the number of levels of resolution of the common
HHCODE for the partition.
Data type is INTEGER.

plummet_flag Specifies if the common HHCODE for all the potential partitions to be
created from data in the source_table contains the maximum possible
common level. If TRUE, the common HHCODE for each potential par-
tition contains the maximum possible common level. If FALSE, the
common HHCODE for each potential partition contains the minimum
possible common level.
Default value is FALSE.
Data type is BOOLEAN.

tablespace Specifies the tablespace in which the partitions should be created.
Default is the tablespace of the underlying table.
5-16 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_ADMIN.PARTITION
Usage Notes
Consider the following when using this procedure:

■ The maximum size of the partition tables is determined by the high-water
mark of the partitioned spatial table.

■ To perform this procedure, first load the original data into an Oracle8 table
using a utility such as SQL*Loader. After the data is loaded, encode the data
using the appropriate combination of Spatial Cartridge data conversion func-
tions (see Chapter 9.) The encoded data is used as the partition key column.
The partition key column is provided as either a column in the Oracle8 table or
as a view of that table.

■ For more information on specifying the degree of parallelism, see the Oracle8
Server Tuning manual.

Example 5–8 partitions the table1 partitioned spatial table with data contained in
the source1 table.

Example 5–8

SQL> EXECUTE SDO_ADMIN.PARTITION(’source1’,’table1’,1,10,FALSE);

Related Topics
■ SDO_ADMIN.REGISTER_PARTITION_INFO() procedure
 Administrative Procedures 5-17

SDO_ADMIN.PROPAGATE_GRANTS
SDO_ADMIN.PROPAGATE_GRANTS

Purpose
This procedure is used to propagate the grants on the underlying table to the parti-
tions.

This procedure is used only with partitioned point data.

Syntax
SDO_ADMIN.PROPAGATE_GRANTS (tablename)

Keywords and Parameters

Usage Notes
This procedure is used after calls to SDO_ADMIN.PARTITION() or
SDO_ADMIN.REPARTITION() . It must be called by the owner of the partition.

This procedure must be compiled prior to use. See Section A.1.2.3, “sdogrant.sql
Script”.

Example 5–9 propagates grants from the TABLE1 partitioned spatial table.

Example 5–9

SQL> EXECUTE SDO_ADMIN.PROPAGATE_GRANTS(’TABLE1’);

Related Topics
■ SDO_ADMIN.PARTITION() procedure

■ SDO_ADMIN.REPARTITION() procedure

tablename Specifies the name of the partitioned table.
Data type is VARCHAR2.
5-18 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_ADMIN.REGISTER_PARTITION_INFO
SDO_ADMIN.REGISTER_PARTITION_INFO

Purpose
This procedure creates a partitioned spatial table entry in the Spatial Cartridge data
dictionary, and defines the partition key column and the high-water mark for the
table.

This procedure is used only with partitioned point data.

Syntax
SDO_ADMIN.REGISTER_PARTITION_INFO (tablename, column, high_water_mark)

Keywords and Parameters

Usage Notes
The SQL CREATE TABLE statement is used to create the partitioned spatial table,
with the partition key column defined as RAW(255), prior to calling this procedure.

Example 5–10 registers the TABLE1 partitioned spatial table.

Example 5–10

SQL> EXECUTE SDO_ADMIN.REGISTER_PARTITION_INFO(’table1’,
2> ’hhcolumn’, 1000);

Related Topics
■ SDO_ADMIN.PARTITION() procedure

tablename Specifies the name of the partitioned table.
Data type is VARCHAR2.

column Specifies the name of the partition key column for the table.
Data type is VARCHAR2.

high_water_mark Specifies the number of records to store in a partition before the
partition subdivides.
Data type is INTEGER.
 Administrative Procedures 5-19

SDO_ADMIN.REPARTITION
SDO_ADMIN.REPARTITION

Purpose
This procedure reorganizes a partitioned spatial table based on the sorted order of
encoded dimensional values already contained in it. The table must exist and must
be registered in the Spatial Cartridge data dictionary.

This procedure is used only with partitioned point data.

Syntax
SDO_ADMIN.REPARTITION (tablename, parallel, [tablespace])

Keywords and Parameters

Usage Notes
Consider the following when using this procedure:

■ The tablespace variable is optional. If you do not supply a tablespace name, the
partitions are created in the same tablespace as the registered partition table.

■ The maximum size of the reorganized partition tables is determined by the
high-water mark of the partitioned spatial table.

■ For more information on specifying the degree of parallelism, see the section
on "Parallel Query Option," in the Oracle8 Server documentation.

Example 5–11 repartitions the table1 partitioned spatial table.

Example 5–11

SQL> EXECUTE SDO_ADMIN.REPARTITION(’table1’, 1);

tablename Specifies the name of the partitioned table.
Data type is VARCHAR2.

parallel Specifies the degree of parallelism for an operation on a single instance.
Data type is INTEGER.

tablespace Specifies the name of the tablespace in which to create the partition.
Data type is VARCHAR2.
5-20 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_ADMIN.REPARTITION
Related Topics
■ SDO_ADMIN.ALTER_HIGH_WATER_MARK() procedure
 Administrative Procedures 5-21

SDO_ADMIN.VERIFY_PARTITIONS
SDO_ADMIN.VERIFY_PARTITIONS

Purpose
This procedure checks if the partitioned spatial table exists, if it is registered in the
Spatial Cartridge data dictionary, and if the partition key column exists as defined
in the Spatial Cartridge data dictionary.

This procedure is used only with partitioned point data.

Syntax
SDO_ADMIN.VERIFY_PARTITIONS (tablename)

Keywords and Parameters

Usage Notes
This procedure can generate the following errors depending on the results of the
verification:

■ SDO 13113 (Oracle table does not exist)

■ SDO 13108 (spatial table not found)

■ SDO 13111 (spatial table has no partition key defined)

■ SDO 13129 (HHCODE column not found)

Example 5–12 verifies the TABLE1 partitioned spatial table:

Example 5–12

SQL> EXECUTE SDO_ADMIN.VERIFY_PARTITIONS(’table1’);

Related Topics
■ SDO_ADMIN.REGISTER_PARTITION_INFO() procedure

tablename Specifies the name of the table.
Data type is VARCHAR2.
5-22 Oracle8 Spatial Cartridge User’s Guide and Reference

 Tuning Fun
6

 Tuning Functions

This chapter contains descriptions of the tuning functions and procedures shown in
Table 6–1.

Table 6–1 Tuning Functions and Procedures:

Function/Procedure Description

SDO_TUNE.ESTIMATE_TILING_
LEVEL

Determines an appropriate tiling level for
creating fixed-size index tiles.

SDO_TUNE.EXTENT_OF Determines the minimum-bounding rect-
angle of the data in a layer.
ctions 6-1

SDO_TUNE.ESTIMATE_TILING_LEVEL
SDO_TUNE.ESTIMATE_TILING_LEVEL

Purpose
This function estimates the appropriate tiling level to use when indexing with fixed-
size tiles.

Syntax
SDO_TUNE.ESTIMATE_TILING_LEVEL (layername, maxtiles, type_of_estimate)

Keywords and Parameters

Returns
The function returns an integer representing the level to use when creating a spatial
index for the specified layer.

Usage Notes
The SDO_ADMIN.POPULATE_INDEX() and SDO_ADMIN.UPDATE_INDEX() proce-
dures are used to create or update the spatial index using fixed-size or variable-

layername Specifies the name of the data set layer to exam-
ine.
Data type is VARCHAR2.

maxtiles Specifies the maximum number of tiles that can
be used to index the rectangle defined by the
type_of_estimate parameter.
Data type is INTEGER.

type_of_estimate Indicates by keyword one of three different mod-
els. Specify the type of estimate with one of the
following keywords:

• LAYER_EXTENT -- Use the rectangle defined
by your coordinate system.

• ALL_GID_EXTENT -- Use the minimum-
bounding rectangle that encompasses all the
geometric objects within the layer.

• AVG_GID_EXTENT -- Use a rectangle repre-
senting the average size of the individual
geometries within the layer. This option per-
forms the most analysis of the three types.
6-2 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_TUNE.ESTIMATE_TILING_LEVEL
sized tiles. Store the value returned by the
SDO_TUNE.ESTIMATE_TILING_LEVEL() function in the SDO_LEVEL column of
the <layername>_SDOLAYER table prior to building the spatial index.

The maxtiles parameter specifies the maximum number of tiles that should be used
to define a grid covering the rectangular extend of interest. This extent could be:

■ Defined in the <layername>_SDODIM table which defines the bounds of the
coordinate system

■ Defined by the minimum and maximum coordinates for the given data set (as
returned by the SDO_TUNE.EXTENT_OF() procedure)

■ Defined by computing the average bounds of the objects in the
<layername>_SDOGEOM table

The code shown in Example 6–1 generates a recommendation based on the extent
of the defined coordinate system (-90 to +90 latitude and -180 to +180 longitude).
This example returns a level whose tiles are not smaller than one-degree cells.

Example 6–1 Recommended Tile Level for One-Degree Lat/Lon Cells

set serveroutput on
declare
 tiling_level integer;
begin
 tiling_level := mdsys.sdo_tune.estimate_tiling_level(’WORLD_CITIES’,
 360*180, ’LAYER_EXTENT’);
 dbms_output.put_line(’VALUE is ’|| tiling_level);
end;

For many applications, however, it is more effective to call the
SDO_TUNE.ESTIMATE_TILING_LEVEL() function using the ALL_GID_EXTENT
estimate type. In Example 6–2, assume the data set consists of block groups for San
Francisco and that the <layername>_SDODIM table defines the extent to be one
that covers all of California. Because the data set is localized to a small subregion
of this extent, ALL_GID_EXTENT is the appropriate estimate type. The recom-
mended tiling level in this case will be such that at most 10,000 tiles will be
required to completely cover the extent of San Francisco block groups.

Example 6–2 Recommended Tile Level Based on the GIDs of All Geometries

set serveroutput on
declare
 tiling_level integer;
 Tuning Functions 6-3

SDO_TUNE.ESTIMATE_TILING_LEVEL
begin
 tiling_level:= mdsys.sdo_tune.estimate_tiling_level(’SF_BLOCK_GROUPS’,
 10000, ’ALL_GID_EXTENT’);
 dbms_output.put_line(’VALUE is’ ,|| tiling_level);
end;

The third type of estimate helps determine the tiling level that should be used such
that on average, the maxtiles parameter defines the number of tiles to cover the
extent of a single geometry in the layer. This estimate type requires the most com-
putation of the three because the bounding rectangle of every geometry is used in
calculating the average extent. In Example 6–3, eight tiles on average are used to
cover any block group in San Francisco.

Example 6–3 Recommended Tile Level Based on Average Extent of All Geometries

set serveroutput on
declare
 tiling_level integer;
begin
 tiling_level := mdsys.sdo_tune.estimate_tiling_level(’SF_BLOCK_GROUPS’, 8,
 ’AVG_GID_EXTENT’);
 dbms_output.put_line(’Tiling level value is ’ || tiling_level);
end;

Related Topics
■ SDO_ADMIN.POPULATE_INDEX

■ SDO_ADMIN.UPDATE_INDEX

■ SDO_TUNE.EXTENT_OF

■ Section A.2.2, “Understanding the Tiling Level”

■ Section A.2.8, “Visualizing the Spatial Index (Drawing Tiles)”
6-4 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_TUNE.EXTENT_OF
SDO_TUNE.EXTENT_OF

Purpose
This procedure determines the extent of all geometries in a layer.

Syntax
SDO_TUNE.EXTENT_OF (layername, min_X, max_X, min_Y, max_Y)

Keywords and Parameters

Returns
This procedure returns the coordinates of the minimum-bounding rectangle for all
geometric data in a layer. The data type is NUMBER for the four return values.

Usage Notes
None

Related Topics
■ SDO_TUNE.ESTIMATE_TILING_LEVEL() function

layername Specifies the name of the data set layer. The layer
name is used to construct the name of the geome-
try and spatial index tables.
Data type is VARCHAR2.

min_X Minimum X value of the bounding rectangle.
Data type is NUMBER.

max_X Maximum X value of the bounding rectangle.
Data type is NUMBER.

min_Y Minimum Y value of the bounding rectangle.
Data type is NUMBER.

max_Y Maximum Y value of the bounding rectangle.
Data type is NUMBER.
 Tuning Functions 6-5

SDO_TUNE.EXTENT_OF
6-6 Oracle8 Spatial Cartridge User’s Guide and Reference

 Geometry Fun
7

 Geometry Functions

This chapter contains descriptions of the geometric functions and procedures
shown in Table 7–1.

Table 7–1 Geometric Functions and Procedures

Function/Procedure Description

SDO_GEOM.ADD_NODES Stores points in the geometry table.

SDO_GEOM.INIT_ELEMENT Initializes space in the geometry table for a new
object.

SDO_GEOM.INTERACT Determines if two objects are disjoint.

SDO_GEOM.RELATE Determines how two objects interact.

SDO_GEOM.VALIDATE_GEOMETRY Determines if a geometry is valid.
ctions 7-1

SDO_GEOM.ADD_NODES
SDO_GEOM.ADD_NODES

Purpose
This procedure stores coordinate geometry points into the SDOGEOM table.

Syntax
SDO_GEOM.ADD_NODES (layername, SDO_GID, SDO_ESEQ, SDO_ETYPE, X-ord1,Y-
ord1[,...,X125, Y125])

Keywords and Parameters

Usage Notes
Consider the following when using this procedure:

■ Use the SQL CREATE TABLE statement to create the geometry table,
<layername>_SDOGEOM, before calling this procedure.

layername Specifies the name of the data set layer. The layer
name is used to construct the name of the geome-
try and spatial index tables.
Data type is VARCHAR2.

SDO_GID Specifies the unique geometric object identifier.
Data type is NUMBER.

SDO_ESEQ Specifies the element sequence number. The eseq
is unique within an SDO_GID.
Data type is NUMBER.

SDO_ETYPE Specifies the type of geometric element. Data type
is INTEGER, corresponding to the following con-
stants:

 1 SDO_GEOM.POINT_TYPE

 2 SDO_GEOM.LINESTRING_TYPE

 3 SDO_GEOM.POLYGON_TYPE

X ordinateN,

Y ordinateN

Specifies the X and Y values of a vertex (coordi-
nate pair) in a geometry. Up to 125 pairs may be
added in a single call.
Data type is NUMBER.
7-2 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_GEOM.ADD_NODES
■ Prior to calling this procedure, call the SDO_GEOM.INIT_ELEMENT() function
to initialize the geometry element and retrieve the element sequence number
(SDO_ESEQ).

■ Close a polygon by providing the coordinates of the first vertex as the last ver-
tex.

■ Call this procedure iteratively with the same GID to add coordinates to a geo-
metric object. You can add up to 125 coordinate pairs on each call, and there is
no limit to how many times you can add more vertices.

■ This procedure cannot be used when <layername>_SDOGEOM is a view. For
layer objects created as views, you need to explicitly insert new geometries, as
opposed to using SDO_GEOM.INIT_ELEMENT() and
SDO_GEOM.ADD_NODES().

Example 7–1 adds a polygon element for geometry 25 in the LAYER1 data set. The
polygon is a square.

Example 7–1

SQL> EXECUTE SDO_GEOM.ADD_NODES (‘LAYER1’, 25,
2> SDO_GEOM.POLYGON_TYPE,
3> 3,3, 7,3,
4> 7,7, 3,7,
5> 3,3);

Related Topics
■ SDO_GEOM.INIT_ELEMENT() function
 Geometry Functions 7-3

SDO_GEOM.INIT_ELEMENT
SDO_GEOM.INIT_ELEMENT

Purpose
This function initializes elements in the SDOINFO table or view for a new geome-
try element.

Syntax
SDO_GEOM.INIT_ELEMENT (layername, SDO_GID)

Keywords and Parameters

Returns
This function returns the next element sequence number. The data type is INTE-
GER.

Usage Notes
This function initializes the element to be stored, but does not actually insert coordi-
nates into the SDOGEOM table. The SDO_GEOM.ADD_NODES() procedure is used
to insert associated coordinate data.

For layer objects created as views, you need to explicitly insert new geometries, as
opposed to using SDO_GEOM.INIT_ELEMENT() and SDO_GEOM.ADD_NODES().

Related Topics
■ SDO_GEOM.ADD_NODES() procedure

layername Specifies the name of the data set layer. The layer
name is used to construct the name of the geome-
try and spatial index tables.
Data type is VARCHAR2.

SDO_GID Specifies the geometric object identifier.
Data type is NUMBER.
7-4 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_GEOM.INTERACT
SDO_GEOM.INTERACT

Purpose
This function determines if two geometry objects interact.

Syntax
SDO_GEOM.INTERACT (layername1, SDO_GID1, [layername2,] SDO_GID2)

SDO_GEOM.INTERACT (layername1, SDO_GID1, X_tolerance, Y_tolerance, SDO_ETYPE,
num_ordinates, X_ordinate1, Y_ordinate1 [, ..., Xn, Yn]
[,SDO_ETYPE, num_ordinates, X_ordinate1, Y_ordinate1 [,...Xn,Yn]])

Keywords and Parameters

layername1,
layername2

Specifies the name of the data set layer. The layer name is
used to construct the name of the geometry and spatial
index tables.
Data type is VARCHAR2.

SDO_GID1,
SDO_GID2

Specifies the geometric object identifier.
Data type is NUMBER.

X_tolerance,

Y_tolerance

Specifies the distance two points can be apart and still be
considered the same due to rounding errors. Tolerance
must be greater than zero. If you want zero tolerance,
enter a number such as 0.000005, where the number of
zeroes to the right of the decimal point matches the preci-
sion of your data.
Data type is NUMBER.

SDO_ETYPE Specifies the type of geometry object.
Data type is INTEGER, corresponding to the following
constants:

 1 SDO_GEOM.POINT_TYPE

 2 SDO_GEOM.LINESTRING_TYPE

 3 SDO_GEOM.POLYGON_TYPE
 Geometry Functions 7-5

SDO_GEOM.INTERACT
Returns
This function returns TRUE if the first and second objects interact with each other
and are not disjoint. The data type is VARCHAR2.

Usage Notes

Use the first form of the function to test two stored geometry objects.

Use the second form of the function to compare a stored object against a user-
defined object. You can specify up to 123 vertices for a single element geometry. If
the geometry has multiple elements, the total number of arguments passed, includ-
ing SDO_ETYPE, num_ordinates, and the list of vertex coordinates cannot exceed
250 values.

Related Topics
■ SDO_GEOM.RELATE() function

num_ordinates Specifies the number of ordinates for this element.
Data type is NUMBER.

X_ordinateN,

Y_ordinateN

Specifies the X and Y values of a vertex (coordinate pair)
in a geometry.
Data type is NUMBER.

Note: The SDO_GEOM.INTERACT() procedure has been replaced
by the SDO_GEOM.RELATE() procedure with the ANYINTERACT
keyword. This procedure may be removed in a future version of
Spatial Cartridge.
7-6 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_GEOM.RELATE
SDO_GEOM.RELATE

Purpose
This function examines two geometry objects to determine their spatial relationship.

Syntax
SDO_GEOM.RELATE (layername1, SDO_GID1, mask, [layername2,] SDO_GID2)

SDO_GEOM.RELATE (layername1, SDO_GID1, mask, X_tolerance, Y_tolerance, SDO_ETYPE,
num_ordinates, X_ordinate1, Y_ordinate1 [,...,Xn, Yn] [,SDO_ETYPE, num_ordinates, X_ordinate1,
Y_ordinate1 [,...,Xn, Yn]])

Keywords and Parameters

layername1,
layername2

Specifies the name of the data set layer. The layer
name is used to construct the name of the geome-
try and spatial index tables.
Data type is VARCHAR2.

SDO_GID1,
SDO_GID2

Specifies the geometry object identifier.
Data type is NUMBER.

mask Specifies a list of relationships to check. See the
list of keywords in the Usage Notes.

X_tolerance,

Y_tolerance

Specifies the distance two points can be apart and
still be considered the same due to rounding
errors. Tolerance must be greater than zero. If you
want zero tolerance, enter a number such as
0.000005, where the number of zeroes to the right
of the decimal point matches the precision of your
data.
Data type is NUMBER.

SDO_ETYPE Specifies the type of geometry element.
Data type is INTEGER, corresponding to the fol-
lowing constants:

 1 SDO_GEOM.POINT_TYPE

 2 SDO_GEOM.LINESTRING_TYPE

 3 SDO_GEOM.POLYGON_TYPE
 Geometry Functions 7-7

SDO_GEOM.RELATE
Returns
The SDO_GEOM.RELATE() function can return three types of answers:

1. If you pass a mask listing one or more relationships, the function returns the
names of the relationships if all of them are true. If one or more relationships
are false, the procedure returns FALSE.

2. If you pass the DETERMINE keyword in the mask, the function returns the one
relationship keyword that best matches the geometries.

3. If you pass the ANYINTERACT keyword in the mask, the function returns
TRUE if the two geometries are not disjoint. This is equivalent to the
SDO_GEOM.INTERACT() function.

The data type is VARCHAR2.

Usage Notes
Use the first form of the function to examine two stored geometry objects.

Use the second form of the function to compare a stored object against a user-
defined object. You can specify up to 123 vertices for a single-element geometry. If
the geometry has multiple elements, the total number of arguments passed, includ-
ing SDO_ETYPE, num_ordinates, and the list of vertex coordinates cannot exceed
250 values.

The following relationships can be tested:

■ ANYINTERACT - Returns TRUE if the objects are not disjoint.

■ CONTAINS - Returns TRUE if the second object is entirely within the first
object and the object boundaries do not touch.

■ COVEREDBY - Returns TRUE if the first object is entirely within the sec-
ond object and the object boundaries touch at one or more points.

■ COVERS - Returns TRUE if the second object is entirely within the first
object and the boundaries touch in one or more places.

num_ordinates Specifies the number of ordinates for this element.
Data type is NUMBER.

X_ordinateN,

Y_ordinateN

Specifies the X and Y values of a vertex (coordi-
nate pair) in a geometry.
Data type is NUMBER.
7-8 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_GEOM.RELATE
■ DISJOINT - Returns TRUE if the objects have no common boundary or inte-
rior points.

■ EQUAL - Returns TRUE if the objects share every point of their boundaries
and interior, including any holes in the objects.

■ INSIDE - Returns TRUE if the first object is entirely within the second
object and the object boundaries do not touch.

■ OVERLAPBDYDISJOINT - Returns TRUE if the objects overlap, but their
boundaries do not interact.

■ OVERLAPBDYINTERSECT - Returns TRUE if the object overlap, and their
boundaries intersect in one or more places.

■ TOUCH - Returns TRUE if the two objects share a common boundary
point, but no interior points.

Mask values can be combined using a logical OR. For example, ‘INSIDE + TOUCH’
returns TRUE if the objects pass either test.

Related Topics
■ SDO_GEOM.INTERACT() function
 Geometry Functions 7-9

SDO_GEOM.VALIDATE_GEOMETRY
SDO_GEOM.VALIDATE_GEOMETRY

Purpose
This function provides a consistency check for valid geometry types. The function
checks the representation of the geometry from the tables against the element defi-
nitions.

 Syntax
SDO_GEOM.VALIDATE_GEOMETRY (layername,SDO_GID)

Keywords and Parameters

Returns
This function returns TRUE if the geometry is valid. The data type is VARCHAR2.

Usage Notes
This function checks for the following:

■ Polygons have at least three points and must be closed

■ Line strings must have at least two points

■ When an SDO_ESEQ spans multiple rows, the last point of the previous row is
the first point on the next row

Related Topics
None

layername Specifies the name of the data set layer. The layer
name is used to construct the name of the geome-
try and spatial index tables.
Data type is VARCHAR2.

SDO_GID Specifies the geometric object identifier.
Data type is NUMBER.
7-10 Oracle8 Spatial Cartridge User’s Guide and Reference

 Window Fun
8

Window Functions

If a query window does not already exist in the database, you must first insert it
and create and index for it. The SDO_WINDOW functions are used to create tempo-
rary geometry objects to be used in comparisons with stored geometries. You can
create query windows with any number of coordinates.

Because not all Oracle users may have insert privileges, the SDO_WINDOW pack-
age is not automatically installed when you install Spatial Cartridge. This allows a
DBA to control the schema under which these functions operate. Choose an Oracle
user who has insert privilege and compile the SDO_WINDOW package under that
user. For example, you could choose the mdsys Oracle user:

% sqlplus mdsys/password
SQL> @$ORACLE_HOME/md/admin/sdowin.sql
SQL> @$ORACLE_HOME/md/admin/prvtwin.plb

 This chapter contains descriptions of the window functions listed in Table 8–1.

Table 8–1 Window Functions

Function Description

SDO_WINDOW.BUILD_WINDOW Builds a query window geometry object.

SDO_WINDOW.BUILD_WINDOW_FIXED Builds a query window using fixed-size tiles.

SDO_WINDOW.CLEAN_WINDOW Drops the tables used for a query window.

SDO_WINDOW.CLEANUP_GID Removes the query window without dropping the
tables.

SDO_WINDOW.CREATE_WINDOW_LAYER Creates the tables needed for a query window layer.
ctions 8-1

SDO_WINDOW.BUILD_WINDOW
SDO_WINDOW.BUILD_WINDOW

Purpose
This function builds the window for the query and returns an SDO_GID that serves
as a handle. The window is tessellated into variable-sized tiles.

 Syntax
SDO_WINDOW.BUILD_WINDOW(comp_name, layername, SDO_ETYPE, SDO_NUMTILES, X1, Y1,
[...Xn, Yn])

Keywords and Parameters

Returns
This function returns the SDO_GID of the new geometry. The data type is NUM-
BER.

comp_name Specifies the name of the user who compiled this
package. This user must have appropriate privi-
leges to read and write into the database.
Data type is VARCHAR2.

layername Specifies the name of the window layer into
which the coordinates will be inserted.
Data type is VARCHAR2.

SDO_ETYPE Specifies the type of geometry element.
Data type is INTEGER, corresponding to the fol-
lowing constants:

 1 SDO_GEOM.POINT_TYPE

 2 SDO_GEOM.LINESTRING_TYPE

 3 SDO_GEOM.POLYGON_TYPE

SDO_NUMTILES Value must be NULL for Spatial Cartridge release
8.0.4 and later.
Data type is NUMBER.

X ordinateN,

Y ordinateN

Specifies the X and Y values of a vertex (coordi-
nate pair) in a geometry. Up to 125 pairs may be
added in a single call.
Data type is NUMBER.
8-2 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_WINDOW.BUILD_WINDOW
Usage Notes
This function inserts the coordinates into the <layername>_SDOGEOM table, tessel-
lates the geometry (creates the index), and returns a unique SDO_GID correspond-
ing to the geometry.

You do not need special privileges to execute this function. However, the user who
compiles it does need appropriate privileges to read and write into the database.

When working with Spatial Cartridge release 8.0.3 tables, the SDO_NUMTILES
parameter indicates the number of tiles into which the window should be tessel-
lated. For release 8.0.4 and later, the function reads that information from the
<layername>_SDOLAYER table.

Related Topics
■ SDO_WINDOW.BUILD_WINDOW_FIXED() function
 Window Functions 8-3

SDO_WINDOW.BUILD_WINDOW_FIXED
SDO_WINDOW.BUILD_WINDOW_FIXED

Purpose
This function builds the window for the query and returns an SDO_GID that serves
as a handle. The window is tessellated into fixed-size tiles.

 Syntax
SDO_WINDOW.BUILD_WINDOW_FIXED (comp_name, layername, SDO_ETYPE, SDO_TILESIZE,
X1, Y1, [...Xn, Yn])

Keywords and Parameters

Returns
This function returns the SDO_GID of the new geometry. Data type is NUMBER.

comp_name Specifies the name of the user who compiled this
package. This user must have appropriate privi-
leges to read and write into the database.
Data type is VARCHAR2.

layername Specifies the name of the window layer into
which the coordinates will be inserted.
Data type is VARCHAR2.

SDO_ETYPE Specifies the type of geometry element.
Data type is INTEGER, corresponding to the fol-
lowing constants:

 1 SDO_GEOM.POINT_TYPE

 2 SDO_GEOM.LINESTRING_TYPE

 3 SDO_GEOM.POLYGON_TYPE

SDO_TILESIZE Specifies the number of tessellations required to
achieve the desired fixed-size tiles.
Data type is NUMBER.

X ordinateN,

Y ordinateN

Specifies the X and Y values of a vertex (coordi-
nate pair) in a geometry. Up to 125 pairs may be
added in a single call.
Data type is NUMBER.
8-4 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_WINDOW.BUILD_WINDOW_FIXED
Usage Notes

This function inserts the coordinates into the <layername>_SDOGEOM table, tessel-
lates the geometry (creates the index), and returns a unique SDO_GID correspond-
ing to the geometry.

You do not need special privileges to execute this function. However, the user who
compiles it does need appropriate privileges to read and write into the database.

Query SDO_LEVEL from the <layername>_SDOLAYER table to pass the correct
SDO_TILE_SIZE value to this function.

Related Topics
None

Note: This procedure is likely to be replaced in a future release of
Spatial Cartridge.
 Window Functions 8-5

SDO_WINDOW.CLEAN_WINDOW
SDO_WINDOW.CLEAN_WINDOW

Purpose
This procedure removes (drops) the four tables created in the layer for the query
window.

 Syntax
SDO_WINDOW.CLEAN_WINDOW (layername);

Keywords and Parameters

Usage Notes
Typically, you would build a layer once, and then build multiple windows and per-
form multiple queries using that layer. After finishing all queries, you can execute
the SDO_WINDOW.CLEAN_WINDOW() procedure to remove the tables.

Related Topics
SDO_WINDOW.CLEANUP_GID

layername Specifies the name of the window layer that must
be removed.
Data type is VARCHAR2.
8-6 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_WINDOW.CLEANUP_GID
SDO_WINDOW.CLEANUP_GID

Purpose
This procedure removes the query window from the layer tables.

 Syntax
SDO_WINDOW.CLEANUP_GID (layername, SDO_GID);

Keywords and Parameters

Usage Notes
Typically, you would create a query layer once, and then build multiple query win-
dows and perform multiple queries using that layer. The SDO_WINDOW.
CLEANUP_GID() procedure removes a single query window from the layer. Use
this procedure to avoid the overhead of removing and re-creating the tables repeat-
edly.

After finishing all queries, you can execute the SDO_WINDOW.
CLEAN_WINDOW()procedure to remove the tables.

Related Topics
SDO_WINDOW.CLEAN_WINDOW()

layername Specifies the name of the window layer associated
with the query window.
Data type is VARCHAR2.

SDO_GID Specifies the geometric object identifier of the
query window.
Data type is NUMBER.
 Window Functions 8-7

SDO_WINDOW.CREATE_WINDOW_LAYER
SDO_WINDOW.CREATE_WINDOW_LAYER

Purpose
This procedure creates the necessary tables that constitute a layer used for defining
a query window.

 Syntax
SDO_WINDOW.CREATE_WINDOW_LAYER (layername, SDO_LEVEL, SDO_NUMTILES,
SDO_DIMNUM1, SDO_LB1, SDO_UB1, SDO_TOLERANCE1, SDO_DIMNAME1, SDO_DIMNUM2,
SDO_LB2, SDO_UB2, SDO_TOLERANCE2, SDO_DIMNAME2)

Keywords and Parameters

layername Specifies the name of the window layer to be cre-
ated. The layer name is used to construct the four
tables associated with the layer.
Data type is VARCHAR2.

SDO_LEVEL Specifies the number of times the layer should be
tessellated during the indexing phase.
Data type is INTEGER.

SDO_NUMTILES Specifies the number of tiles to generate during
indexing.
Data type is INTEGER.

SDO_DIMNUM1, SDO_DIMNUM2 Specifies the number of the dimension, starting
with 1.
Data type is NUMBER.

SDO_LB1, SDO_UB1, SDO_LB2,
SDO_UB2

Specifies the lower and upper bounds of this
dimension.
Data type is NUMBER.

SDO_TOLERANCE1,
SDO_TOLERANCE2

Specifies the allowable variance of ordinate values
within each dimension.
Data type is NUMBER.

SDO_DIMNAME1,
SDO_DIMNAME2

Specifies the name of the dimension.
Data type is VARCHAR2.
8-8 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_WINDOW.CREATE_WINDOW_LAYER
Usage Notes
Because the <layername>_SDODIM table is initialized with the dimension and the
bound information, only those queries that are in the same dimension should be
queried against this layer. If you wish to issue a query with respect to a different
dimension, you must create a new layer.

Related Topics
None
 Window Functions 8-9

SDO_WINDOW.CREATE_WINDOW_LAYER
8-10 Oracle8 Spatial Cartridge User’s Guide and Reference

 Partitioned Point Data Fun
9

Partitioned Point Data Functions

Spatial Cartridge has undergone an architectural change, beginning with the 7.3.3
release. The emphasis on partitioned tables has been replaced by the improved spa-
tial indexing features.

The functions described in this chapter are not required for creating or maintaining
a spatial database, however, they are provided for convenience in working with leg-
acy data in partitioned point data tables. They are used with SQL SELECT, INSERT,
UPDATE, and DELETE statements to perform the following:

■ Generate dimensions from bounded, hierarchical, or date data values

■ Encode and decode dimensions

■ Retrieve bounded, hierarchical, or date data values from dimensions

When using these functions in basic SQL statements, use the form:
SDO_<function>. When using the functions inside a PL/SQL block, use a period (.)
instead of the underscore.

This chapter contains descriptions of the spatial functions listed in Table 9–1.

Table 9–1 Partitioned Point Data Functions

Function Purpose

SDO_BVALUETODIM Creates a dimension from bounded data values.

SDO_COMPARE Evaluates the relationship between two objects
described by HHCODEs.

SDO_DATETODIM Creates a dimension from an Oracle DATE data
type.

SDO_DECODE Extracts a single dimension from an HHCODE.
ctions 9-1

Additional functions that support partitioned point data can be found in Chapter 5,
“Administrative Procedures” and Appendix A, “Sample SQL Scripts and Tuning
Tips”.

SDO_ENCODE Creates an HHCODE by combining dimensions to
describe an area or point.

SDO_TO_BVALUE Extracts a bounded data value from a dimension.

SDO_TO_DATE Extracts an Oracle DATE data type from a dimen-
sion.

Table 9–1 Partitioned Point Data Functions

Function Purpose
9-2 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_BVALUETODIM
SDO_BVALUETODIM

Purpose
This function creates a dimension from a bounded value, which is a value con-
tained in a set of values expressed as a lower boundary and an upper boundary.

Syntax
SDO_BVALUETODIM (value, lower_boundary, upper_boundary, decimal_scale)

Keywords and Parameters

Returns
This function returns a dimension. The data type is RAW.

Usage Notes
 Example 9–1 shows the SDO_BVALUETODIM() function.

Example 9–1

SQL> INSERT INTO sourcetable1 (SAMPLENAME,DATA_PT)
2> VALUES (’SAMPLE1’,SDO_ENCODE(SDO_BVALUETODIM(10,-100,100,7),
3> SDO_BVALUETODIM(20,-100,100,7));

Related Topics
■ SDO_ENCODE() function

■ SDO_TO_BVALUE() function

value Specifies the value for the particular dimension.
Data type is NUMBER.

lower_boundary Specifies the lower boundary of the dimension range.
Data type is NUMBER.

upper_boundary Specifies the upper boundary of the dimension range.
Data type is NUMBER.

decimal_scale Specifies the number of digits to the right of the decimal point.
Data type is NUMBER.
 Partitioned Point Data Functions 9-3

SDO_COMPARE
SDO_COMPARE

Purpose
This function evaluates the relationship between an area or point described by an
HHCODE and another HHCODE, or a range of HHCODEs expressed as an upper
bound and lower bound.

Syntax
SDO_COMPARE (hhcode_expression, {hhcode_expression |
lower_bound_HHCODE,upper_bound_HHCODE})

Keywords and Parameters

Returns
This function returns one of the following keywords:

■ ENCLOSES

■ EQUAL

■ INSIDE

■ OUTSIDE

■ OVERLAP

The data type is VARCHAR2.

Usage Notes
Example 9–2 selects all points that fall within the given multidimensional range.

hhcode_expression Specifies an expression that evaluates to an HHCODE.
Data type is RAW.

lower_bound_HHCODE Specifies the lower bound HHCODE expression.
Data type is RAW.

upper_bound_HHCODE Specifies the upper bound HHCODE expression.
Data type is RAW.
9-4 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_COMPARE
Example 9–2

SQL> SELECT SDO_GID FROMlayer1 _SDOINDEX WHERE
2> SDO_COMPARE(SDO_MAXCODE,
3> SDO_ENCODE(5,5),
4> SDO_ENCODE(25,25))=’INSIDE’;

Example 9–3 selects GIDs based on interaction between their spatial index tiles.

Example 9–3

SQL> SELECT SDO_GID FROMlayer1 _SDOINDEX A, layer2 _SDOINDEX B
2> WHERE SDO_COMPARE(A.SDO_CODE,B.SDO_CODE) != ’OUTSIDE’;

Related Topics
■ SDO_GEOM.INTERACT() function

■ SDO_GEOM.RELATE() function
 Partitioned Point Data Functions 9-5

SDO_DATETODIM
SDO_DATETODIM

Purpose
This function creates a dimension from an Oracle DATE data type. The component
number determines the level of resolution of the date in the dimension.

Syntax
SDO_DATETODIM (date [, component])

Keywords and Parameters

Returns
This function returns a dimension. The data type is RAW.

Usage Notes
You must use a valid Oracle date format string.

Example 9–4 shows the SDO_DATETODIM() function.

Example 9–4

SQL> INSERT INTO sourcetable1 (SAMPLENAME,DATA_PT)
2> VAUES(’SAMPLE1’,SDO_ENCODE(SDO_DATETODIM(TO_DATE(’19-Jul-96’),
3> SDO_BVALUETODIM(100,-1000,1000,7)));

date Specifies the calendar date.
Data type is DATE.

component Specifies the level of resolution. The component
number values are defined as follows:

1 accurate to year
2 accurate to month
3 accurate to day
4 accurate to hour
5 accurate to minute
6 accurate to second

The default value is 6.
Data type is INTEGER.
9-6 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_DATETODIM
Related Topics
■ SDO_ENCODE() function

■ SDO_TO_DATE() function
 Partitioned Point Data Functions 9-7

SDO_DECODE
SDO_DECODE

Purpose
This function extracts a single dimension from an HHCODE.

Syntax
SDO_DECODE (hhcode_expression, dimension_number)

Keywords and Parameters

Returns
This function returns a dimension. The data type is RAW.

Usage Notes
The SDO_DECODE() function is called once for each dimension to be decoded.

Example 9–5 shows the SDO_DECODE() function.

Example 9–5

SQL> SELECT
2> SDO_TO_BVALUE(SDO_DECODE(DATA_PT,1),1,6),
3> SDO_TO_BVALUE(SDO_DECODE(DATA_PT,2),-100,100),
4> SDO_TO_DATE(SDO_DECODE(DATA_PT,3))
5> FROM sourcetable1 WHERE SAMPLENAME=’SAMPLE1’;

Related Topics
■ SDO_TO_BVALUE() function

■ SDO_TO_DATE() function

hhcode_expression Specifies an expression that evaluates to an HHCODE.
Data type is RAW.

dimension_number Specifies the dimension number to extract.
Data type is INTEGER.
9-8 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_ENCODE
SDO_ENCODE

Purpose
This function combines dimensions to create the HHCODE that describes an area
or point.

Syntax
SDO_ENCODE (dimension1[,dimension2 ...])

Keywords and Parameters

Returns
This function returns an HHCODE. The data type is RAW.

Usage Notes
Consider the following when using this function:

■ When encoding dimensions, the order of the dimensions in the parameter list
must be consistent for all rows within the table.

■ This function can encode up to 32 dimensions.

Example 9–6 shows the SDO_ENCODE() function.

Example 9–6

SQL> INSERT INTO sourcetable1 (SAMPLENAME,DATA_PT)
2> VALUES (’SAMPLE1’,SDO_ENCODE(SDO_BVALUETODIM(50,-100, 100, 10),
3> SDO_BVALUETODIM(30,-100,100,10),
4> SDO_DATETODIM(TO_DATE(’05-Jul-96’),3)));

Related Topics
■ SDO_BVALUETODIM() function

■ SDO_DATETODIM() function

dimension Specifies an expression created by the SDO_BVALUETODIM or
SDO_DATETODIM functions.
Data type is RAW.
 Partitioned Point Data Functions 9-9

SDO_TO_BVALUE
SDO_TO_BVALUE

Purpose
This function returns the original bounded data value of a dimension.

Syntax
SDO_TO_BVALUE (dimension, lower_boundary, upper_boundary)

Keywords and Parameters

Returns
This function returns a bounded data value. The data type is NUMBER.

Usage Notes
This function returns a number that is the value for a dimension within the speci-
fied range. This is not necessarily the range for which the dimension was originally
created.

Example 9–7 shows the SDO_TO_BVALUE() function.

Example 9–7

SQL> SELECT (SDO_TO_BVALUE(SDO_DECODE(DATA_PT,2),-100,100)
2> FROM sourcetable1 WHERE SAMPLENAME=’SAMPLE1’;

Related Topics
■ SDO_DECODE() function

■ SDO_BVALUETODIM() function

dimension Specifies the dimension.
Data type is RAW.

lower_boundary Specifies the lower boundary of the dimension range.
Data type is NUMBER.

upper_boundary Specifies the upper boundary of the dimension range.
Data type is NUMBER.
9-10 Oracle8 Spatial Cartridge User’s Guide and Reference

SDO_TO_DATE
SDO_TO_DATE

Purpose
This function returns the original date value of a dimension.

Syntax
SDO_TO_DATE (dimension)

Keywords and Parameters

Returns
This function returns an Oracle DATE data type.

Usage Notes
Example 9–8 shows the SDO_TO_DATE() function.

Example 9–8

SQL> SELECT SDO_TO_DATE(SDO_DECODE(DATA_PT,3))
2> FROM sourcetable1 WHERE SAMPLENAME=’SAMPLE1’;

Related Topics
■ SDO_DATETODIM() function

■ SDO_DECODE() function

dimension Specifies the dimension.
Data type is RAW.
 Partitioned Point Data Functions 9-11

SDO_TO_DATE
9-12 Oracle8 Spatial Cartridge User’s Guide and Reference

 Sample SQL Scripts and Tuning
A

Sample SQL Scripts and Tuning Tips

This appendix provides supplemental information to aid in setup, maintenance,
and tuning of a spatial database. The scripts and tuning suggestions provided are
intended as guidelines that can be adapted to the specific needs of your database.

A.1 Sample SQL Scripts
Spatial Cartridge provides sample SQL script files to show how to use dynamic
SQL in a PL/SQL block to create layer tables for spatially indexed data or to admin-
ister and manipulate all the partitions of a partitioned spatial table. The scripts are
available after installation in the ORACLE_HOME/md/admin directory.

A.1.1 Scripts for Spatial Indexing
This section describes the cr_spatial_index.sql and crlayer.sql scripts.

A.1.1.1 cr_spatial_index.sql Script
The cr_spatial_index.sql script file shows an example of updating the spatial index
for a layer, and executing a commit after every 50 GIDs have been entered.

The procedures SDO_ADMIN.POPULATE_INDEX() and
SDO_ADMIN.POPULATE_INDEX_FIXED() operate as a single transaction. To
reduce the amount of rollback required to execute these procedures, you can write
a routine similar to that in cr_spatial_index.sql. This script loops and calls
SDO_ADMIN.UPDATE_INDEX_FIXED() for each GID, committing after every 50
GIDs.

-- cr_spatial_index.sql
--
-- Note: if geometries do not span more than 1 row, you can remove
-- the DISTINCT qualifier from the SELECT statement
 Tips A-1

A.1 Sample SQL Scripts
--
declare
 cursor c1 is SELECT DISTINCT sdo_gid from POLYGON_SDOGEOM;
 gid number;
 i number;
begin
 i := 0;
 for r in c1 loop
 begin
 gid:= r.sdo_gid;
 sdo_admin.update_index_fixed(’POLYGON’, gid, 15, FALSE, FALSE, FALSE);
 exception when others then
 dbms_output.put_line(’error for gid’||to_char(gid)||’: ’||SQLERRM);
 end;
 i:= i + 1;
 if i = 50 then
 commit;
 i:= 0;
 end if;
 end loop;
commit;
end;
/

When you call the SDO_ADMIN.UPDATE_INDEX_FIXED() procedure for a large
data set, you may get a "snapshot too old" error message from the Oracle server.
You can avoid this error by creating more or larger rollback segments. You can also
try to increase the number of GIDs before committing the transaction.

A.1.1.2 crlayer.sql Script
The crlayer.sql script file is a template used to create all the tables for a layer and
populate the metadata in the <layername>_SDODIM and <layer-
name>_SDOLAYER tables.

A.1.2 Scripts for Partitioned Point Data
This section describes the following scripts:

Note: The cr_spatial_index.sql script is not available in your
ORACLE_HOME/md/admin directory after installation. You
must create this script yourself.
A-2 Oracle8 Spatial Cartridge User’s Guide and Reference

A.1 Sample SQL Scripts
■ altpart.sql

■ drppart.sql

■ sdogrant.sql

Although the scripts described in this section are available, the recommended
approach is to use Oracle8 partitioning and spatial indexing.

A.1.2.1 altpart.sql Script
The altpart.sql script file shows how to use dynamic SQL in a PL/SQL procedure to
modify all partitions of a Spatial Cartridge partitioned table.

The Spatial Cartridge data dictionary view used in this SQL script requires that a
registered Spatial Cartridge partitioned table is specified. If the table is not regis-
tered, you can use the USER_TABLES view to select all the partition tables from the
user’s schema. To use the USER_TABLES view, use the following syntax:

SQL> SELECT TABLENAME FROM user_tables WHERE TABLENAME LIKE
2> ’% tablename _P%’;

A.1.2.2 drppart.sql Script
The drppart.sql script file shows how to use dynamic SQL in a PL/SQL procedure
to drop (remove) all partitions of a Spatial Cartridge partitioned table. After run-
ning this procedure, you must run the SDO_ADMIN.DROP_PARTITION_INFO()
procedure.

The Spatial Cartridge data dictionary view used in this SQL script requires that a
registered Spatial Cartridge partitioned table is specified. If the table is not regis-
tered, you can use the USER_TABLES view to select all the partition tables from the
user’s schema. To use the USER_TABLES view, use the following syntax:

SQL> SELECT TABLENAME FROM user_tables WHERE TABLENAME LIKE
2> ’% tablename _P%’;

A.1.2.3 sdogrant.sql Script
The sdogrant.sql script file contains an administrative procedure,
PROPAGATE_GRANTS(), which is used after calling the SDO_ADMIN.PARTI-
TION() or SDO_ADMIN.REPARTITION() procedures.

This procedure must first be compiled by running the sdogrant.sql file. The
PROPAGATE_GRANTS() procedure is only callable by the user who compiled it.
 Sample SQL Scripts and Tuning Tips A-3

A.2 Tuning Tips
A.2 Tuning Tips
The following information can be used as a guideline for tuning a spatial database.

A.2.1 Data Modeling
Data modeling is very important when designing a spatial database. You should
group geometries into layers based on the similarity of their attributes. Assume
your data model uses line strings to represent both roads and rivers. The attributes
of a road and the attributes of a river are different. Therefore, these geometries
should be modeled in two different layers.

In practice, however, if the user of your application will always ask to see both the
roads and rivers in a particular region (area of interest), then it may be appropriate
to model roads and rivers in the same layer with a common set of attributes.

It is equally important to understand how the data in the various layers will be que-
ried. If the user of your application is interested in querying the data based on a
relationship between the layers, then you should index the layers with the same til-
ing level. For example, a query such as, "which roads cross rivers?" can achieve bet-
ter performance if the roads and rivers layers are tiled at the same level.

It is not always critical to tile all your layers to the same level. You may find times
when you have two layers that are optimally tiled to different levels (for example
zipcode boundaries may be tiled to level 5 and and major roads may be tiled to
level 7). If you want to ask the question, give me all the major roads that intersect a
particular postal code boundary, it is not necessary to re-tile all the zipcode bound-
aries to level 7. You can move the postal code boundary of interest to a temporary
layer and just re-tile that one geometry to level 7. You can then perform the query.

A.2.2 Understanding the Tiling Level
The following example explains how tiling is used in Spatial Cartridge.

Assume you want all the roads (line strings) that overlap a county boundary (poly-
gon) in a spatial database containing 10 million roads. Ignoring Spatial Cartridge
features for a moment, in purely mathematical terms, the problem translates into
comparing all the line segments that make up each road, to the line segments and
area of the county boundary to see if there is any intersection. This geometry-to-
geometry comparison is very expensive.

Spatial Cartridge simplifies this calculation by approximating each geometry with
fixed-sized tiles. The primary filter in Spatial Cartridge translates the problem to
show all the roads that have a tile equal to a tile that approximates the polygon.
The result of this is a superset of the final answer.
A-4 Oracle8 Spatial Cartridge User’s Guide and Reference

A.2 Tuning Tips
The secondary filter (a true geometry-to-geometry comparison) can now be
applied to the candidates that returned from the Spatial Cartridge primary filter,
instead of to every road in the database.

Picking the correct tile size for fixed tiling is one of the most important factors in
attaining good performance. If the tile size you select is too small, you could end
up generating thousands of tiles per geometry. Also, the process of tiling a query
window (like the county boundary mentioned previously) may become very time
consuming.

At the same time, you do not want to choose tiles that are too big. This would
defeat the purpose of the Spatial Cartridge primary filter. If the tiles are too big,
then too many geometries are returned from the primary filter and are sent to the
more costly secondary filter.

Keep in mind that the tile size you choose should also depend on if the query win-
dow (area of interest) is already defined in the database. If the query window is
defined in the database, (that is, if the spatial tables and spatial indexes already
exist), then you should choose a smaller tile size. Assume the State layer and the
Highway layer are already defined in the database. You could perform a spatial
join query such as, "which interstate highways go through the state?" without incur-
ring the overhead of tiling because the query window is already defined in the data-
base. If, on the other hand, you are creating the query window dynamically, you
have to factor in the time it takes to define and index the query window. In this
case, you should choose a larger tile size to reduce the time it takes to define and
index the query window.

Oracle recommends running the SDO_TUNE.ESTIMATE_TILING_LEVEL() func-
tion on your data set to get an initial tiling level estimate. This may not be your
final answer, but it will be a good level to start your analysis. In general, it is also
recommended that you take a random sample of your data and check the query
performance at different levels of tiling. This would give an indication of what is
the best tiling level for the total data set.

A.2.3 Database Sizing
Properly choosing rollback segments and tablespaces are important for getting
good performance from Spatial Cartridge. Therefore, it is very important to read
the Oracle8 Administrator’s Guide and understand the concepts of tablespaces and
rollbacks.

Here are some general guidelines to consider:

■ Always make sure that you have enough rollback space to run the
SDO_ADMIN.POPULATE_INDEX_FIXED() procedure. To reduce rollback seg-
 Sample SQL Scripts and Tuning Tips A-5

A.2 Tuning Tips
ment size, run the SDO_ADMIN.UPDATE_INDEX_FIXED() procedure in a loop
(see Section A.1.1.1).

■ Create separate tablespaces for Data Layers, Indexes, and Rollback Segments.

■ Properly define initial extents, next extents, and pctincrease for data layer
tables.

■ Define the initial extent as small as possible when you create the <layer-
name>_SDOLAYER and the <layername>_SDODIM tables. These tables con-
tain a few rows each and a small initial extent will reduce the amount of
wasted space.

■ Use the SDO_ADMIN.VALIDATE_GEOMETRY() procedure to ensure correct-
ness of geometries in the data sets. Entering incorrect data may lead to unex-
pected behavior in index creation and in the SDO_GEOM.RELATE() functions.

■ Always build a B-tree index on the SDO_GID column of the <layer-
name>_SDOGEOM table before attempting to call the
SDO_ADMIN.POPULATE_INDEX_FIXED(),
SDO_ADMIN.UPDATE_INDEX_FIXED(), SDO_ADMIN.POPULATE_INDEX(),
or SDO_ADMIN.UPDATE_INDEX() procedure.

■ For fixed-size tiling, always build a B-tree index on the SDO_CODE column of
the <layername>_SDOINDEX table before trying any queries using this table.

■ Always build a B-tree index on the SDO_GID column of the <layername>_
SDOINDEX table if individual SDO_GIDs will be used as query windows for
other Spatial Cartridge layers.

■ Visualizing the indexing tiles, as described in Section A.2.8, can lead to a
greater understanding of the tuning process with respect to the size of the tiles.

■ For variable-sized tiling, always build a B-tree index on the
SDO_GROUPCODE column of the <layername>_SDOINDEX table before try-
ing any queries using this table.

A.2.4 Tuning Point Data
Point data, unlike line and polygon data, has the unique characteristic of containing
one tile per point. This section describes how to improve the performance of que-
ries on point data.

A.2.4.1 Efficient Queries for Point Data
When querying point data with a rectangular query window, you can take advan-
tage of the nature of these geometries to improve performance.
A-6 Oracle8 Spatial Cartridge User’s Guide and Reference

A.2 Tuning Tips
A rectangle can be defined by its lower-left and upper-right coordinates (Xmin,
Ymin and Xmax, Ymax). A point has a single set of coordinates (Px, Py). When
your area-of-interest is a rectangle, instead of using the SDO_GEOM.RELATE()func-
tion in the secondary filter, you can use simple SQL comparison operators as fol-
lows:

SELECT sdo_gid, sdo_x1, sdo_y1
FROM cities_sdogeom,
 (SELECT a.sdo_gid gid1
 FROM cities_sdoindex a,
 window_sdoindex b
 WHERE b.sdo_gid = [area of interest id]
 AND a.sdo_code = b.sdo_code)
 WHERE sdo_gid = gid1
 AND sdo_x1 BETWEEN Xmin AND Xmax
 AND sdo_y1 BETWEEN Ymin AND Ymax ;

The DISTINCT clause is not necessary in the primary filter of the query because a
point contains only a single tile in the spatial index.

A.2.4.2 Efficient Schema for Point Layers
Because a point is always referenced by only one tile in a spatial index, for addi-
tional performance, you can place the columns normally found in the <layer-
name>_SDOINDEX table in the <layername>_SDOGEOM table. This will save
you the cost of joining the <layername>_SDOINDEX and <layer-
name>_SDOGEOM tables.

You still need to create an updatable view for the <layername>_SDOINDEX table
that selects the appropriate columns from the <layername>_SDOGEOM table. This
is because functions such as SDO_ADMIN.UPDATE_INDEX_FIXED() and
SDO_ADMIN.POPULATE_INDEX_FIXED() expect a <layername>_SDOINDEX
table to exist. Create the view using "instead of" triggers for insert, delete, and
update such that the appropriate columns in the <layername>_SDO_GEOM table
are updated. The following example shows how to use "instead of" triggers:

CREATE OR REPLACE TRIGGER mytrig INSTEAD OF INSERT ON points_sdoindex
 REFERENCING new AS n
 FOR EACH ROW
 BEGIN
 UPDATE points_sdogeom SET points_sdogeom.sdo_code = :n.sdo_gid;
 END;
CREATE OR REPLACE TRIGGER mydeltrig INSTEAD OF DELETE ON points_sdoindex
 REFERENCING old AS n
 FOR EACH ROW
 Sample SQL Scripts and Tuning Tips A-7

A.2 Tuning Tips
 BEGIN
 UPDATE points_sdogeom SET points_sdogeom.sdo_code = NULL
 WHERE points_sdogeom.sdo_gid = :n.sdo_gid;
 END;

The following example shows a window query of a layer containing point data
when the window layer contains one rectangle:

SELECT sdo_gid, sdo_x1, sdo_y1
FROM points_sdogeom a,
 window_sdoindex b
WHERE b.sdo_gid = [area of interest id]
 AND a.sdo_code = b.sdo_code)
 AND sdo_x1 BETWEEN Xmin AND Xmax
 AND sdo_y1 BETWEEN Ymin AND Ymax;

A.2.5 Tuning Spatial Join Queries
There are some helpful hints you can place in your spatial join queries to improve
performance. The remainder of this section describes some of the hints you can
use. For more information on hints, see the Oracle8 Tuning manual.

A.2.5.1 Using the NO_MERGE, INDEX, and USE_NL Hints
A spatial join takes place between two layers. When the two layers being joined
are line or polygon layers, the spatial join query contains two DISTINCT clauses:
one in the inner SELECT clause and the other in the outer SELECT clause. The
Oracle optimizer ignores the inner DISTINCT clause to save on the cost of sorting.
However, if the inner DISTINCT clause is ignored, the secondary filter gets
called many more times than it needs to be. This can have a significant impact on
performance because the secondary filter is an expensive operation. Use the
NO_MERGE hint to prevent the optimizer from ignoring the inner DISTINCT
clause.

In a spatial join, all the tiles from one layer are compared to all the tiles from
another layer. The Oracle server performs a full table scan on one <layer-
name>_SDOINDEX table, (preferably the smaller of the two), and an index lookup
on the other <layername>_SDOINDEX table. Use the INDEX and USE_NL hints to
force the optimizer to perform the full table scan on the smaller of the two <layer-
name>_SDOINDEX tables being compared.

 The following example shows a spatial join between line (road) and polygon
(county) data. The query answers the question, "which counties intersect major
roads?"
A-8 Oracle8 Spatial Cartridge User’s Guide and Reference

A.2 Tuning Tips
SELECT /*+ cost
 ordered use_nl(COUNTY_sdogeom)
 index (COUNTY_sdogeom NAME_OF_SDO_GID_INDEX)
 */
 COUNTY_sdogeom.SDO_GID,
 COUNTY_sdogeom.SDO_ESEQ,
 COUNTY_sdogeom.SDO_SEQ,
 COUNTY_sdogeom.SDO_X1,COUNTY_sdogeom.SDO_Y1,
 COUNTY_sdogeom.SDO_X2,COUNTY_sdogeom.SDO_Y2,
 COUNTY_sdogeom.SDO_X3,COUNTY_sdogeom.SDO_Y3,
 COUNTY_sdogeom.SDO_X4,COUNTY_sdogeom.SDO_Y4,
 COUNTY_sdogeom.SDO_X5,COUNTY_sdogeom.SDO_Y5,
 COUNTY_sdogeom.SDO_X6,COUNTY_sdogeom.SDO_Y6,
 COUNTY_sdogeom.SDO_X7,COUNTY_sdogeom.SDO_Y7,
 COUNTY_sdogeom.SDO_X8,COUNTY_sdogeom.SDO_Y8
FROM (SELECT DISTINCT gid_a gid1
 FROM (SELECT /*+ index (a NAME_OF_SDO_CODE_INDEX)

index (b NAME_OF_SDO_CODE_INDEX)
use_nl (a b)
no_merge */

 DISTINCT a.sdo_gid gid_a,
 b.sdo_gid gid_b
 FROM COUNTY_SDOINDEX a,
 MAJOR_ROAD_SDOINDEX b
 WHERE a.sdo_code = b.sdo_code)
 WHERE sdo_geom.relate('COUNTY', gid_a, 'ANYINTERACT',
 'MAJOR_ROAD',gid_b) <> 'FALSE'),
 COUNTY_sdogeom
WHERE COUNTY_sdogeom.sdo_gid = gid1;

A.2.5.2 Spatial Join Queries with Point Layers
The following example shows a spatial join between line (road) and point (street
address) data. The query answers the question, "which addresses are on a major
road?"

SELECT /*+ cost
 ordered use_nl (STREET_ADDRESS_sdogeom)
 index (STREET_ADDRESS_sdogeom NAME_OF_SDO_GID_INDEX)
 */
 STREET_ADDRESS_sdogeom.SDO_GID,
 STREET_ADDRESS_sdogeom.SDO_X1,
 STREET_ADDRESS_sdogeom.SDO_Y1
FROM (SELECT DISTINCT gid_a gid1
 FROM (SELECT /*+ index (a NAME_OF_SDO_CODE_INDEX)
 index (b NAME_OF_SDO_CODE_INDEX)
 Sample SQL Scripts and Tuning Tips A-9

A.2 Tuning Tips
 use_nl (a b) */
 a.sdo_gid gid_a,
 b.sdo_gid gid_b
 FROM STREET_ADDRESS_SDOINDEX a,
 MAJOR_ROAD_SDOINDEX b
 WHERE a.sdo_code = b.sdo_code)
 WHERE sdo_geom.relate('STREET_ADDRESS', gid_a, 'ANYINTERACT',
 'MAJOR_ROAD',gid_b) <> 'FALSE'),
 COUNTY_sdogeom
WHERE COUNTY_sdogeom.sdo_gid = gid1;

The inner DISTINCT clause is not necessary for spatial joins where one of the lay-
ers contains point data. Therefore, the NO_MERGE hint is not necessary. This is
because points contain only one tile in the spatial index.

The following example shows a spatial join between polygon (county) and point
(street address) data. The query generates a report that displays how many
addresses are associated with each county.

If you can assume that each street address is associated with a single county, you
can significantly speed up this query. Because points contain only a single tile in
the spatial index, any street address tile that matches only one county tile in the pri-
mary filter does not need to go through the expensive secondary filter.

SELECT county_gid, count(street_gid)
FROM (SELECT poly.sdo_gid county_gid, street.sdo_gid street_gid
 FROM STREET_ADDRESS_sdoindex street,
 (SELECT sdo_code county_sdo_code,
 count(sdo_gid) interacts
 FROM CENSUS_COUNTY_sdoindex
 GROUP by sdo_code
) counts,
 CENSUS_COUNTY_sdoindex poly
 WHERE street.sdo_code = counts.county_sdo_code
 AND poly.sdo_code = street.sdo_code
 AND (counts.interacts = 1
 OR
 sdo_geom.relate('STREET_ADDRESS', street.sdo_gid,
 'ANYINTERACT',
 'CENSUS_COUNTY',poly.sdo_gid) <> 'FALSE'
)
)
GROUP BY county_gid;
A-10 Oracle8 Spatial Cartridge User’s Guide and Reference

A.2 Tuning Tips
A.2.6 Using Customized Geometry Types
Spatial Cartridge supports three geometry types: points, lines, and polygons. If
your data contains another type, such as a circle or arc, then you must choose the
supported type that best approximates your desired type. For example, a circle can
be defined as a multi-sided polygon. Obviously, the more coordinates in the ele-
ment, the better the approximation will be.

Although customized types are not supported, you do not have to lose your knowl-
edge of the type. After storing the approximated element, create another element in
that geometry with ETYPE=0. Spatial Cartridge ignores elements of ETYPE=0. You
can then write your own routines to handle your specialized geometry type.

A.2.7 Performing Secondary Filter Queries and the Redo Log
When the Oracle server processes SQL statements that require sorting, such as state-
ments containing an ORDER BY or DISTINCT clause, the Oracle server stores the
result set in a temporary storage area. The result set is then sorted. If the
SORT_AREA_SIZE is insufficient for holding the result set in memory, then some
data may be written to disk and an entry is written in the redo log.

The RELATE() and INTERACT() secondary filters issue SQL statements internally
that contain DISTINCT and ORDER BY clauses. If the SORT_AREA_SIZE initializa-
tion parameter is too small for processing the secondary filters, then some sorting
may occur on disk, which causes entries to be written in the redo log. This may
affect performance. For better performance, increase the SORT_AREA_SIZE param-
eter to force sorting to occur in memory.

A.2.8 Visualizing the Spatial Index (Drawing Tiles)
To select an appropriate tiling level, it may help to visualize the tiles covering your
geometries. Through visualization, you can determine how many tiles are used for
each object, the size of the tiles, and how well the edges of your geometry are cov-
ered. The basic algorithm is:

1. Select the edges of the tiles represented by the index entries.

2. Plot the tiles on a two-dimensional grid.

3. Plot your geometries on the same grid.

The Spatial Cartridge spatial index is represented internally as a linear quadtree.
The structure used to represent the linear quadtree is composed of two compo-
nents: a data component and a metadata component. The data component of the
 Sample SQL Scripts and Tuning Tips A-11

A.2 Tuning Tips
linear quadtree is stored in the SDO_CODE column, and the metadata component
is stored in the SDO_META column.

The SDO_META column is not required for spatial queries. However, by combin-
ing the SDO_META column with the SDO_CODE column, the tiles of any geome-
try or of the entire data set can be decoded. This capability allows the tiles to be
visualized.

Two Spatial Cartridge internal functions have been made visible in order to
describe the tiles. These functions were part of a previous release of Oracle Spatial
Data Option, and are currently reserved for internal use only. The functions are not
recommended for general use, except for this visualization example. Use the follow-
ing syntax for the internal functions:

hhcellbndry (sdo_code || sdo_meta, sdo_dimnum, sdo_lb, sdo_ub,
 hhlength(sdo_code || sdo_meta) {’MIN’ | ’MAX’})

In the following examples, the dimension boundaries were assumed to be -180 to
180, and -90 and 90. The dimensional information is stored in the <layer-
name>_SDODIM table.

If you used SDO_ADMIN.UPDATE_INDEX_FIXED() or
SDO_ADMIN.POPULATE_INDEX_FIXED() to generate your spatial index, replace
"sdo_code || sdo_meta" with sdo_tile in the SQL statements that follow.

The following SQL query can be used to decode all the index entries in a
<layername>_SDOINDEX table. The example returns the coordinates of the
lower-left and upper-right corners of each tile.

SELECT hhcellbndry (sdo_code || sdo_meta, 1, -180.000000000, 180.000000000,
 hhlength (sdo_code || sdo_meta), 'MIN') min_x,
 hhcellbndry (sdo_code || sdo_meta, 1, -180.000000000, 180.000000000,
 hhlength (sdo_code || sdo_meta), 'MAX') max_x,
 hhcellbndry (sdo_code || sdo_meta, 2, -90.000000000, 90.000000000,
 hhlength (sdo_code || sdo_meta), 'MIN') min_y,
 hhcellbndry (sdo_code || sdo_meta, 2, -90.000000000, 90.000000000,
 hhlength (sdo_code || sdo_meta), 'MAX') max_y
FROM (SELECT DISTINCT sdo_code, sdo_meta FROM <layername>_sdoindex);

The following SQL query can be used to decode the index entries for a specific
geometry stored in a <layername>_SDOINDEX table:

SELECT hhcellbndry (sdo_code || sdo_meta, 1, -180.000000000, 180.000000000,
 hhlength (sdo_code || sdo_meta), 'MIN') min_x,
 hhcellbndry (sdo_code || sdo_meta, 1, -180.000000000, 180.000000000,
 hhlength (sdo_code || sdo_meta), 'MAX') max_x,
A-12 Oracle8 Spatial Cartridge User’s Guide and Reference

A.2 Tuning Tips
 hhcellbndry (sdo_code || sdo_meta, 2, -90.000000000, 90.000000000,
 hhlength (sdo_code || sdo_meta), 'MIN') min_y,
 hhcellbndry (sdo_code || sdo_meta, 2, -90.000000000, 90.000000000,
 hhlength (sdo_code || sdo_meta), 'MAX') max_y
FROM <layername>_sdoindex
WHERE sdo_gid = <geometry id>;
 Sample SQL Scripts and Tuning Tips A-13

A.2 Tuning Tips
A-14 Oracle8 Spatial Cartridge User’s Guide and Reference

 Data Dicti
B

Data Dictionary

The Spatial Cartridge data dictionary is a set of tables owned by the database user
mdsys. An extension to the Oracle8 data dictionary, it automatically maintains
information about spatial tables, columns, and partitions. The Spatial Cartridge
data dictionary is created during the installation process. All nonspatial attribute
information is maintained in the Oracle8 data dictionary.

The Spatial Cartridge data dictionary has public views that provide extensive infor-
mation about spatial tables. This appendix contains descriptions of the views that
are available.

The following views are publicly available:

■ ALL_MD_COLUMNS

■ ALL_MD_DIMENSIONS

■ ALL_MD_EXCEPTIONS

■ ALL_MD_LOADER_ERRORS

■ ALL_MD_PARTITIONS

■ ALL_MD_TABLES

■ ALL_MD_TABLESPACES

■ DBA_MD_COLUMNS

Note: Only the partitioned point routines use the Spatial Car-
tridge data dictionary.
onary B-1

■ DBA_MD_DIMENSIONS

■ DBA_MD_EXCEPTIONS

■ DBA_MD_LOADER_ERRORS

■ DBA_MD_PARTITIONS

■ DBA_MD_TABLES

■ DBA_MD_TABLESPACES

■ USER_MD_COLUMNS

■ USER_MD_DIMENSIONS

■ USER_MD_EXCEPTIONS

■ USER_MD_LOADER_ERRORS

■ USER_MD_PARTITIONS

■ USER_MD_TABLES

■ USER_MD_TABLESPACES

ALL_MD_COLUMNS
 Returns a list of all columns that are part of spatial tables.

WARNING: Do not delete or modify any of the tables in the
mdsys account. This corrupts the Spatial Cartridge data dictio-
nary.

Column Description

OWNER owner of the object

MD_TABLE_NAME name of the spatial table

COLUMN_NAME name of the column

DATA_TYPE data type of the column

DATA_LENGTH length of the column in bytes

DATA_PRECISION scale for NUMBER data type, binary precision for
FLOAT data type, and NULL for all other data types

DATA_SCALE digits to right of decimal point in an HHCODE or a number
B-2 Oracle8 Spatial Cartridge User’s Guide and Reference

ALL_MD_DIMENSIONS
Returns a list of all dimensions that are part of HHCODE columns.

NDIM number of dimensions in the HHCODE column (It is NULL for
all other data types.)

MAX_LEVEL maximum number of levels in the column

NULLABLE indicates if column allows NULL values

PARTITION_KEY indicates if column is the partition key column; only one is
allowed per partitioned table

COLUMN_ID sequence number of the column as created

DEFAULT_LENGTH length of the default value for the column

NUM_DISTINCT number of distinct values in each column of the table

LOW_VALUE lowest value for tables with three or fewer rows (It is the sec-
ond-lowest value in the column for tables with more than three
rows.)

HIGH_VALUE highest value for tables with three or fewer rows (It is the sec-
ond-highest value in the column for tables with more than three
rows.)

Column Description

OWNER owner of the object

MD_TABLE_NAME name of the spatial table

COLUMN_NAME name of the column

DIMENSION_NAME name of the dimension

DIMENSION_NUMBER dimension number

LOWER_BOUND lower boundary of the dimension range

UPPER_BOUND upper boundary of the dimension range

SCALE scale of the dimension

RECURSION_LEVEL number of levels encoded in the HHCODE

Column Description
 Data Dictionary B-3

ALL_MD_EXCEPTIONS
Contains information about spatial tables that should be removed (dropped) as a
result of some failed operation, such as a failed load.

ALL_MD_LOADER_ERRORS
 Contains the current status of a file that was loaded into a table using SD*Loader.

ALL_MD_PARTITIONS
 Returns a list of all the partitioned tables that are part of a user-accessible spatial
table.

Column Description

OWNER owner of the object

NAME object name

OPERATION operation during which the failure occurred

CCHH common code HHCODE

Column Description

OWNER owner of the object

MD_TABLE_NAME spatial table name

FILENAME SLF file name

ROWS_LOADED number of rows loaded before failure

Column Description

OWNER owner of the object

MD_TABLE_NAME name of the spatial table

PARTITION_TABLE_NAME name of the partitioned table

CLASS class of partition: NODE or LEAF

COMMON_LEVEL number of levels of resolution of the common HHCODE for the
partition

COMMON_HHCODE common HHCODE substring for the partition

OFFLINE_STATUS status of partition: ONLINE or OFFLINE
B-4 Oracle8 Spatial Cartridge User’s Guide and Reference

 ALL_MD_TABLES
Returns a list of all the user-accessible spatial tables.

ALL_MD_TABLESPACES
Returns a list of all tablespaces used by spatial tables.

DBA_MD_COLUMNS
 Returns a list of all columns that are part of Spatial Cartridge tables.

ARCHIVE_DATE date of last archive

Column Description

OWNER owner of the table

MD_TABLE_NAME name of the spatial table

CLASS class of table: PARTITIONED or NON-PARTITIONED

PTAB_SEQ number of last partitioned table created

HIGH_WATER_MARK maximum number of rows that can be inserted into a parti-
tioned table

OFFLINE_PATH complete path name to directory where the table is archived

COUNT_MODE count mode for estimating number of rows in a partition: ESTI-
MATE or EXACT

Column Description

OWNER owner of the object

MD_TABLE_NAME name of the spatial table

TABLESPACE_NAME name of tablespace

SEQUENCE sequence number

STATUS status of tablespace: ACTIVE or INACTIVE

Column Description

OWNER owner of the object

Column Description
 Data Dictionary B-5

DBA_MD_DIMENSIONS
Returns a list of all dimensions that are a part of spatial tables.

MD_TABLE_NAME name of the spatial table

COLUMN_NAME name of the column

DATA_TYPE data type of the column

DATA_LENGTH length of the column in bytes

DATA_PRECISION scale for NUMBER data type, binary precision for FLOAT data
type, and NULL for all other data types

DATA_SCALE digits to right of decimal point in an HHCODE or a number

NDIM number of dimensions in the HHCODE column (It is NULL for
all other data types.)

MAX_LEVEL maximum number of levels in the column

NULLABLE indicates if column allows NULL values

PARTITION_KEY indicates if column is the partition key column; only one is
allowed per partitioned table

COLUMN_ID sequence number of the column as created

DEFAULT_LENGTH length of the default value for the column

NUM_DISTINCT number of distinct values in each column of the table

LOW_VALUE lowest value for tables with three or fewer rows (It is the sec-
ond-lowest value in the column for tables with more than three
rows.)

HIGH_VALUE highest value for tables with three or fewer rows (It is the sec-
ond-highest value in the column for tables with more than three
rows.)

Column Description

OWNER owner of the object

MD_TABLE_NAME name of the spatial table

COLUMN_NAME name of the column

DIMENSION_NAME name of the dimension

Column Description
B-6 Oracle8 Spatial Cartridge User’s Guide and Reference

DBA_MD_EXCEPTIONS
Contains information about spatial tables that should be removed (dropped) as a
result of some failed operation, such as a failed load.

DBA_MD_LOADER_ERRORS
Contains the current status of a file that was loaded into a table using SD*Loader.

DBA_MD_PARTITIONS
Returns a list of all the partitioned tables.

DIMENSION_NUMBER dimension number

LOWER_BOUND lower boundary of the dimension range

UPPER_BOUND upper boundary of the dimension range

SCALE scale of the dimension

RECURSION_LEVEL number of levels encoded in the HHCODE

Column Description

OWNER owner of the object

NAME object name

OPERATION operation during which the failure occurred

CCHH common code HHCODE

Column Description

OWNER owner of the table where the error occurred

MD_TABLE_NAME spatial table name

FILENAME SLF file name

ROWS_LOADED number of rows loaded before failure

Column Description

OWNER owner of the object

MD_TABLE_NAME name of the spatial table

Column Description
 Data Dictionary B-7

DBA_MD_TABLES
Returns a list of all the spatial tables.

DBA_MD_TABLESPACES
Returns a list of all tablespaces used by spatial tables.

PARTITION_TABLE_NAME name of the partitioned table

CLASS class of partition: NODE or LEAF

COMMON_LEVEL number of levels of resolution of the common HHCODE for the
partition

COMMON_HHCODE common HHCODE substring for the partition

OFFLINE_STATUS status of partition: ONLINE or OFFLINE

ARCHIVE_DATE date of last archive

Column Description

OWNER owner of the table

MD_TABLE_NAME name of the spatial table

CLASS class of table: PARTITIONED or NON-PARTITIONED

PTAB_SEQ number of last partitioned table created

HIGH_WATER_MARK maximum number of rows that can be inserted into a parti-
tioned table

OFFLINE_PATH complete path name to directory where the table is archived

COUNT_MODE count mode for estimating number of rows in a partition: ESTI-
MATE or EXACT

Column Description

OWNER owner of the object

MD_TABLE_NAME name of the spatial table

TABLESPACE_NAME name of tablespace

SEQUENCE sequence number

STATUS status of tablespace: ACTIVE or INACTIVE

Column Description
B-8 Oracle8 Spatial Cartridge User’s Guide and Reference

USER_MD_COLUMNS
Returns a list of all the HHCODE columns that are part of tables owned by the user.

USER_MD_DIMENSIONS
Returns a list of all dimensions that are part of HHCODE columns owned by the
user.

Column Description

MD_TABLE_NAME name of the spatial table

COLUMN_NAME name of the spatial table

DATA_TYPE data type of the column

DATA_LENGTH length of the column in bytes

DATA_PRECISION scale for NUMBER data type, binary precision for
FLOAT data type, and NULL for all other data types

DATA_SCALE digits to right of the decimal point in an HHCODE or a number

NDIM number of dimensions in the HHCODE column (It is NULL for
all other data types.)

MAX_LEVEL maximum number of levels in the column

NULLABLE indicates if column allows NULL values

PARTITION_KEY indicates if column is the partition key column; only one
allowed per partitioned table

COLUMN_ID sequence number of the column as created

DEFAULT_LENGTH length of the default value for the column

NUM_DISTINCT number of distinct values in each column of the table

LOW_VALUE lowest value for tables with three or fewer rows (It is the sec-
ond-lowest value in the column for tables with more than three
rows.)

HIGH_VALUE highest value for tables with three or fewer rows (It is the sec-
ond-highest value in the column for tables with more than three
rows.)

Column Description

MD_TABLE_NAME name of the spatial table
 Data Dictionary B-9

USER_MD_EXCEPTIONS
Contains information about spatial tables that should be removed (dropped) as a
result of some failed operation, such as a failed load.

USER_MD_LOADER_ERRORS
Contains the current status of a file that was loaded into a table using SD*Loader.

USER_MD_PARTITIONS
Returns a list of all the partitioned tables that are part of spatial tables owned by
the user.

COLUMN_NAME name of the column

DIMENSION_NAME name of the dimension

DIMENSION_NUMBER dimension number

LOWER_BOUND lower boundary of dimension range

UPPER_BOUND upper boundary of dimension range

SCALE scale of the dimension

RECURSION_LEVEL number of levels encoded in the HHCODE

Column Description

NAME object name

OPERATION operation during which the failure occurred

CCHH common code HHCODE

Column Description

MD_TABLE_NAME spatial table name

FILENAME SLF file name

ROWS_LOADED number of rows loaded before failure

Column Description

MD_TABLE_NAME name of the spatial table

Column Description
B-10 Oracle8 Spatial Cartridge User’s Guide and Reference

USER_MD_TABLES
 Returns a list of all the spatial tables owned by the user.

USER_MD_TABLESPACES
 Returns a list of all tablespaces used by spatial tables.

PARTITION_TABLE_NAME name of the partition

CLASS class of partition: NODE or LEAF

COMMON_LEVEL number of levels of resolution of the common HHCODE
for the partition

COMMON_HHCODE common HHCODE substring for the partition

OFFLINE_STATUS status of partition: ONLINE or OFFLINE

ARCHIVE_DATE date of last archive

Column Description

MD_TABLE_NAME name of the spatial table

CLASS class of table: PARTITIONED or NON-PARTITIONED

PTAB_SEQ number of last sequence created

HIGH_WATER_MARK maximum number of rows that can be inserted into
a partitioned table

OFFLINE_PATH complete path name to directory where the table is archived

COUNT_MODE count mode for estimating number of rows in a partition:
ESTIMATE or EXACT

Column Description

MD_TABLE_NAME name of the spatial table

TABLESPACE_NAME name of tablespace

SEQUENCE sequence number

STATUS status of the tablespace: ACTIVE or INACTIVE

Column Description
 Data Dictionary B-11

B-12 Oracle8 Spatial Cartridge User’s Guide and Reference

 Messages and C
C

Messages and Codes

MDSQL-00001: partition is OFFLINE
Cause: An MDSQL operation was attempted on a partition that is OFFLINE.

Action: Restore the partition and try the operation again.

MDSQL-00002: PK is out of bounds
Cause: The partition key for the record being inserted belongs in another
partition.

Action: Insert the record into the correct partition. The correct partition can be
identified using the GET_PARTITION_NAME() function.

MDSQL-00003: updates that move the PK are not supported
Cause: The update of the partition key would result in the record belonging
to another partition.

Action: Use the MD_DML.MOVE_RECORD() procedure to update the parti-
tion key and move the record to the correct partition.

Additional error messages are documented in the Oracle8 Error Messages manual in
the range of 13000 to 13199.
odes C-1

C-2 Oracle8 Spatial Cartridge User’s Guide and Reference

Glossary

area

An extent or region of dimensional space.

attribute

Descriptive information characterizing a geographical feature such as a point, line,
or area.

attribute data

Nondimensional data that provides additional descriptive information about multi-
dimensional data, for example a class or feature such as a bridge or a road.

boundary

1. The lower or upper extent of the range of a dimension, expressed by a numeric
value.

2. The line representing the outline of a polygon.

Cartesian coordinate system

A coordinate system in which the location of a point in n-dimensional space is
defined by distances from the point to the reference plane. Distances are measured
parallel to the planes intersecting a given reference plane.

contain

To describe a geometric relationship where one object encompasses another and the
inner object does not touch any boundaries of the outer. The outer object contains
the inner object. See also inside.
Glossary-1

coordinate

A set of values uniquely defining a point in an n-dimensional coordinate system.

coordinate system

A reference system for the unique definition for the location of a point in n-dimen-
sional space.

cover

To describe a geometric relationship in which one object encompasses another and
the inner object touches the boundary of the outer object in one or more places.

data dictionary

A repository of information about data. A data dictionary stores relational informa-
tion on all the objects in a database.

decompose

To separate or resolve into constituent parts or elements, or into simpler com-
pounds.

dimensional data

Data that has one or more dimensional components and is described by multiple
values.

disjoint

A geometric relationship where two objects do not interact in any way. Two disjoint
objects do not share any element or piece of their geometry.

equal

A geometric relationship in which two objects are considered to represent the same
geometric figure. The two objects must be composed of the same number of points,
however, the ordering of the points defining the two objects’ geometries may differ
(clockwise or counter-clockwise).

extent

A rectangle bounding a map, the size of which is determined by the minimum and
maximum map coordinates.

feature

An object in a spatial database with a distinct set of characteristics.
Glossary-2

geographically referenced data

See spatiotemporal data.

georeferenced data

See spatiotemporal data.

geographical information system

A computerized database management system used for the capture, conversion,
storage, retrieval, analysis, and display of spatial data.

GIS

See geographical information system.

grid

A data structure composed of points located at the nodes of an imaginary grid. The
spacing of the nodes is constant in both the horizontal and vertical directions.

HHCODE

A data type representing the intersection point of multiple dimensions. It encodes
these multiple dimensions into a unique, linear value. The HHCODEs are used for
both spatial indexing and partitioned point data.

high-water mark

Expressed in number of records and associated with Spatial Cartridge partitioned
table structure, it defines the maximum number of records to store in a table before
decomposing another level. The high-water mark determines the maximum size of
a partition within the Spatial Cartridge table. Partitioned tables are an alternative to
spatial indexing.

hole

A polygon can include subelements that negate sections of its interior. For example,
consider a polygon representing a map of a buildable land with an inner polygon
(a hole) representing where a lake is located.

homogeneous

Spatial data of one feature type such as points, lines, or regions.
 Glossary-3

hyperspatial data

In mathematics, any space comprising more than the three standard x, y, and z
dimensions, also referred to as multidimensional data.

index

Identifier that is not part of a database and used to access stored information.

inside

To describe a geometric relationship where one object is surrounded by a larger
object and the inner object does not touch the boundary of the outer. The smaller
object is inside the larger. See also contain.

key

A field in a database used to obtain access to stored information.

keyword

Synonym for reserved word.

latitude

North/South position of a point on the Earth defined as the angle between the nor-
mal to the Earth’s surface at that point and the plane of the equator.

line

A geometric object represented by a series of points, or inferred as existing between
two coordinate points.

longitude

East/West position of a point on the Earth defined as the angle between the plane
of a reference meridian and the plane of a meridian passing through an arbitrary
point.

multidimensional data

See hyperspatial data.

partition

1. The spatial table that contains data only for a unique bounded n-dimensional
space.

2. The process of grouping data into partitions that maintain the dimensional
organization of the data.
Glossary-4

partition key column

The primary HHCODE column that is used to dimensionally partition the data.
One HHCODE data type column must be identified as the partition key for the
table to be registered as partitionable in the Spatial Cartridge data dictionary. There
can only be one partition key per spatial table. Note that this is only used for parti-
tioned point data, and not spatially indexed data.

partitioned table

The spatial logical table structure that contains one or more partitions. Use parti-
tioned tables only if you are dealing with a very large amount of point data (over
50 GB).

polygon

A class of spatial objects having a nonzero area and perimeter, and representing a
closed boundary region of uniform characteristics.

proximity

A measure of inter-object distance.

query

A set of conditions or questions that form the basis for the retrieval of information
from a database.

query window

Area within which the retrieval of spatial information and related attributes is per-
formed.

RDBMS

See Relational Database Management System.

recursion

A process, function, or routine that executes continuously until a specified condi-
tion is met.

region

An extent or area of multidimensional space.
 Glossary-5

Relational Database Management System (RDBMS)

A computer program designed to store and retrieve shared data. In a relational sys-
tem, data is stored in tables consisting of one or more rows, each containing the
same set of columns. Oracle8 is a relational database management system. Other
types of database systems are called hierarchical or network database systems.

resolution

The number of subdivision levels of data.

scale

1. The number of digits to the right of the decimal point in a number representing
the level of resolution of an HHCODE.

2. The ratio of the distance on a map, photograph, or image to the corresponding
image on the ground, all expressed in the same units.

SD*Converter

A utility used with previous versions of Spatial Data Option to prepare data for
loading into spatial tables. Loading is now accomplished through SQL*Loader.

SLF

See Spatial Load Format.

sort

The operation of arranging a set of items according to a key that determines the
sequence and precedence of items.

spatial

A generic term used to reference the mathematical concept of n-dimensional data.

spatial data

Data that is referenced by its location in n-dimensional space. The position of spa-
tial data is described by multiple values. See also hyperspatial data.

spatial database

A database containing information indexed by location.

spatial data model

A model of how objects are located on a spatial context.
Glossary-6

Spatial Cartridge data dictionary

An extension of the Oracle8 data dictionary. It keeps track of the number of parti-
tions created in a spatial table. The Spatial Cartridge data dictionary is owned by
user mdsys. The data dictionary is used only by the partitioned point routines.

spatial data structures

A class of data structures designed to store spatial information and facilitate its
manipulation.

Spatial Load Format (SLF)

The format used to load data into spatial tables in a previous version of Spatial
Data Option. Loading is now accomplished with the standard SQL*Loader.

spatial query

A query that includes criteria for which selected features must meet location condi-
tions.

spatiotemporal data

Data that contains time and/or location components as one of its dimensions, also
referred to as geographically referenced data or georeferenced data.

SQL*Loader

A utility to load formatted data into spatial tables.

tessellation

The process of covering a geometry with rectangular tiles without gaps or overlaps.

tiling

See tessellation.

touch

To describe a geometric relationship where two objects share a common point on
their boundaries, but their interiors do not intersect.
 Glossary-7

Glossary-8

Index
A
ADD_NODES 7-2
administrative procedures 5-1
ALTER_HIGH_WATER_MARK 5-14
altering partitions A-3
altpart.sql A-3
ANYINTERACT 7-8
arcs A-11
area Glossary-1
attribute Glossary-1

B
boundary Glossary-1
bounded data 9-10
bounded value 9-3
BUILD_WINDOW 8-2
BUILD_WINDOW_FIXED 8-4
bulk loading 2-2

C
Cartesian Glossary-1
circles A-11
CLEAN_WINDOW 8-6
CLEANUP_GID 8-7
consistency check 7-10
CONTAINS 7-8, Glossary-1
control file 2-2
coordinate Glossary-2
coordinate system 7-2, Glossary-2
COVEREDBY 7-8
COVERS 7-8, Glossary-2

cr_spatial_index.sql A-1
CREATE_WINDOW_LAYER 8-8
creating layer tables A-2
crlayer.sql A-2

D
data Glossary-2
data dictionary B-1
data model 1-3
DATE data type 9-6, 9-11
decompose Glossary-2
dimensional Glossary-2
disjoint 7-6, 7-9, Glossary-2
DROP_PARTITION_INFO 5-15
dropping partitions A-3
drppart.sql A-3
dynamic query window 3-5

E
element 1-3
ENCLOSES 9-4
encoding dimensions 9-9
EQUAL 7-9, 9-4, Glossary-2
error messages C-1
ESTIMATE_TILING_LEVEL 6-2
extent 6-5, Glossary-2
EXTENT_OF 6-5
extracting a dimension 9-8

F
feature Glossary-2
Index-1

filter 3-7
fixed-size tiles 2-9, 5-4, 5-10

G
Geographical Information System Glossary-3
geometric objects 1-3
geometric primitive 1-2
georeferenced Glossary-3
GIS 1-1, Glossary-3
grants 5-18, A-3
grid Glossary-3

H
HHCODE Glossary-3
high water mark 5-14, Glossary-3
hole in a polygon 2-7, Glossary-3
homogeneous Glossary-3
hyperspatial Glossary-4

I
index 5-2, 5-4, 5-8, 5-10, Glossary-4
index creation 2-8
INIT_ELEMENT 7-4
inserting spatial data 2-4
INSIDE 7-9, 9-4
INTERACT 7-5
interaction 7-8

K
key Glossary-4
keyword Glossary-4

L
latitude Glossary-4
layer 1-4, A-2
line Glossary-4
line data 1-3
loading process 2-2
location 1-1
longitude Glossary-4

M
minimum bounding rectangle 6-5

O
OUTSIDE 9-4
OVERLAP 9-4
OVERLAPBDYDISJOINT 7-9
OVERLAPBDYINTERSECT 7-9

P
partition 5-16, Glossary-4, Glossary-5
partition key 4-1
partitioned table 4-1, 5-15, 5-16, 5-19, A-3,

Glossary-5
partitioned tables 1-17
PL/SQL 9-1
plotting tiles A-11
point data 1-3, 4-1
polygon Glossary-5
polygon data 1-3
POPULATE_INDEX 5-2
POPULATE_INDEX_FIXED 5-4
primary filter 3-7
primitive 1-2
PROPAGATE_GRANTS 5-18
proximity Glossary-5

Q
query Glossary-5
query window 3-5, Glossary-5

R
RDBMS Glossary-5, Glossary-6
recursion Glossary-5
region Glossary-5
REGISTER_PARTITION_INFO 5-19
RELATE 7-7
REPARTITION 5-20
resolution Glossary-6
 Index-2

S
scale Glossary-6
schema 1-4
SD*Converter Glossary-6
SD*Loader Glossary-7
SDO_BVALUETODIM 9-3
SDO_CODE_SIZE 5-7
SDO_COMPARE 9-4
SDO_DATETODIM 9-6
SDO_DECODE 9-8
SDO_ENCODE 9-9
SDO_TO_BVALUE 9-10
SDO_TO_DATE 9-11
sdogrant.sql A-3
secondary filter 3-8
server partitioning 4-1
SLF Glossary-6
sort Glossary-6
Spatial Glossary-7
spatial Glossary-6, Glossary-7
spatial data model Glossary-6
spatial database Glossary-6
spatial index 1-8, 2-8, 5-8, 5-10
spatial join 3-9
Spatial Load Format Glossary-7
spatial query 3-5, Glossary-7
spatiotemporal Glossary-7
SQL script A-1, A-2
SQL*Loader 2-2

T
table partitioning 1-17, 4-1
tessellation 1-9, 2-8, 5-2, 5-4, 5-8, 5-10,

Glossary-7
tile 1-9, 3-2
tiling 5-10, 6-2, A-4, Glossary-7
TOUCH 7-9, Glossary-7
transactional insert 2-4
two-tier query 3-1

U
UPDATE_INDEX 5-8
UPDATE_INDEX_FIXED 5-10

V
VALIDATE_GEOMETRY 7-10
VERIFY_LAYER 5-12
VERIFY_PARTITIONS 5-22
visualizing tiles A-11
 Index-3

	Send Us Your Comments
	Preface
	1 Spatial Cartridge Concepts
	1.1� Introduction to Spatial Data
	1.2� Geometric Types
	1.3� Data Model
	1.3.1� Element
	1.3.2� Geometry
	1.3.3� Layer

	1.4� Database Structures
	1.5� Indexing Methods
	1.5.1� Tessellation of a Layer
	1.5.2� Fixed-Size Tile Spatial Indexing
	1.5.3� Variable-Sized Tile Spatial Indexing

	1.6� Partitioned Point Data

	2 Loading Spatial Data
	2.1� Load Model
	2.2� Load Process
	2.2.1� Bulk Loading
	2.2.2� Transactional Insert Using SQL
	2.2.3� Transactional Insert Using Spatial Geometry...

	2.3� Index Creation
	2.3.1� Choosing a Tessellation Algorithm
	2.3.2� Spatial Indexing with Fixed-Size Tiles
	2.3.3� Spatial Indexing with Variable-Sized Tiles

	3 Querying Spatial Data
	3.1� Query Model
	3.2� Spatial Data Model
	3.3� Spatial Query
	3.3.1� Dynamic Query Window
	3.3.2� Primary Filter
	3.3.3� Secondary Filter

	3.4� Spatial Join

	4 Partitioning Point Data
	4.1� Overview
	4.2� Partitioning Process
	4.3� Function Details

	5 Administrative Procedures
	SDO_ADMIN.POPULATE_INDEX
	SDO_ADMIN.POPULATE_INDEX_FIXED
	SDO_ADMIN.SDO_CODE_SIZE
	SDO_ADMIN.UPDATE_INDEX
	SDO_ADMIN.UPDATE_INDEX_FIXED
	SDO_ADMIN.VERIFY_LAYER
	Partitioned Point Data Procedures
	SDO_ADMIN.ALTER_HIGH_WATER_MARK
	SDO_ADMIN.DROP_PARTITION_INFO
	SDO_ADMIN.PARTITION
	SDO_ADMIN.PROPAGATE_GRANTS
	SDO_ADMIN.REGISTER_PARTITION_INFO
	SDO_ADMIN.REPARTITION
	SDO_ADMIN.VERIFY_PARTITIONS

	6 Tuning Functions
	SDO_TUNE.ESTIMATE_TILING_LEVEL
	SDO_TUNE.EXTENT_OF

	7 Geometry Functions
	SDO_GEOM.ADD_NODES
	SDO_GEOM.INIT_ELEMENT
	SDO_GEOM.INTERACT
	SDO_GEOM.RELATE
	SDO_GEOM.VALIDATE_GEOMETRY

	8 Window Functions
	SDO_WINDOW.BUILD_WINDOW
	SDO_WINDOW.BUILD_WINDOW_FIXED
	SDO_WINDOW.CLEAN_WINDOW
	SDO_WINDOW.CLEANUP_GID
	SDO_WINDOW.CREATE_WINDOW_LAYER

	9� Partitioned Point Data Functions
	SDO_BVALUETODIM
	SDO_COMPARE
	SDO_DATETODIM
	SDO_DECODE
	SDO_ENCODE
	SDO_TO_BVALUE
	SDO_TO_DATE

	A Sample SQL Scripts and Tuning Tips
	A.1� Sample SQL Scripts
	A.1.1� Scripts for Spatial Indexing
	A.1.2� Scripts for Partitioned Point Data

	A.2� Tuning Tips
	A.2.1� Data Modeling
	A.2.2� Understanding the Tiling Level
	A.2.3� Database Sizing
	A.2.4� Tuning Point Data
	A.2.5� Tuning Spatial Join Queries
	A.2.6� Using Customized Geometry Types
	A.2.7� Performing Secondary Filter Queries and the...
	A.2.8� Visualizing the Spatial Index (Drawing Tile...

	B Data Dictionary
	C Messages and Codes
	Glossary
	Index

