Studiengang & angestrebter Abschluss:

2. KLAUSUR

29.9.2014, 8:00 - 11:00

Name:	Vorname:
Geburtsdatum:	Matrikelnummer:
Übungsgruppe bei:	

Aufgabe	1	2	3	4	5	6	7	Σ
Punkte	12	8	9	10	9	10	6	64
erreichte Punkte								
Korrektur								

Hinweise:

- (i) Füllen Sie bitte das Deckblatt vollständig und lesbar aus.
- (ii) Nutzen Sie nur das beiliegende Papier. Schreiben Sie mit Kugelschreiber.
- (iii) Als Hilfsmittel ist bei der Bearbeitung der Aufgaben ein nicht programmierbarer Taschenrechner zugelassen. Beachten Sie auch die Normalverteilungstabelle auf der Rückseite der Klausur
- (iv) Schreiben Sie verständlich und in ganzen Sätzen; begründen Sie Ihre Rechnungen.
- (v) Aufgaben können auch in Teilen bearbeitet werden.

Aufgabe 1 (12 Punkte)

Sie ziehen aus einer Urne mit je fünf roten und schwarzen Kugeln nacheinander und mit Zurücklegen vier Kugeln.

- (1) Geben Sie einen Wahrscheinlichkeitsraum (Ω, \mathbb{P}) an, der die Situation beschreibt.
- (2) Geben Sie folgende Ereignisse als Teilmengen von Ω an und bestimmen Sie ihre Wahrscheinlichkeiten:
 - (a) Es werden nur Kugeln von einer Farbe gezogen.
 - (b) Es werden genau zwei rote Kugeln gezogen.
 - (c) Es wird mindestens eine schwarze Kugel gezogen.
 - (d) Es werden nie zwei gleichfarbige Kugeln hintereinander gezogen.
- (3) Sind die Ereignisse aus (a) und (d) bzw. aus (b) und (d) stochastisch unabhängig?
- (4) Berechnen Sie die Wahrscheinlichkeit des Ereignisses aus (b) für den Fall, dass das gleiche Experiment *ohne* Zurücklegen durchgeführt wird. Hinweis: In diesem Aufgabenteil müssen Sie den zugrundeliegenden Wahrscheinlichkeitsraum nicht explizit angeben.

Lösung, Aufgabe 1:

Fortsetzung der Lösung zu Aufgabe 1:

Aufgabe 2 (8 Punkte)

- (1) Eine Kommilitonin reist regelmäßig mit dem Zug nach Hause und kann dafür entweder den Nah- oder den Fernverkehr in Anspruch nehmen. Sie entscheidet sich je nach finanzieller Lage, und zwar in 70% der Fälle für den Nah- und in 30% der Fälle für den Fernverkehr.
 - Gehen Sie davon aus, dass die Züge im Nahverkehr zu 56% pünktlich sind und mit einer Wahrscheinlichkeit von 30% bis zu fünf Minuten, zu 12% 6 bis 20 Minuten und zu 2% mehr als 20 Minuten Verspätung haben.
 - Die Züge im Fernverkehr sind mit einer Wahrscheinlichkeit von 46% pünktlich und haben mit einer Wahrscheinlichkeit von 26% bis zu fünf Minuten, von 21% zwischen 6 und 20 Minuten und von 7% mehr als 20 Minuten Verspätung.
 - Ihre Kommilitonin erzählt, Sie habe auf ihrer letzten Fahrt eine Verspätung von 10 Minuten gehabt. Mit welcher Wahrscheinlichkeit war sie mit dem Nahverkehr unterwegs?
 - Gehen Sie davon aus, dass sie auf ihrer Strecke nicht umsteigen muss.
- (2) Geben Sie eine (axiomatische) Definition des Begriffes "bedingte Wahrscheinlichkeit" im Rahmen von endlichen, diskreten Wahrscheinlichkeitsräumen. Erläutern Sie, wie man "bedingte Wahrscheinlichkeiten" unter einem subjektivistischen Blickwinkel auf den Wahrscheinlichkeitsbegriff interpretiert.

Lösung, Aufgabe 2:

Fortsetzung der Lösung zu Aufgabe 2:

Aufgabe 3 (9 Punkte)

Zwei Schützen schießen so lange abwechselnd auf ein Ziel, bis der erste von ihnen trifft. Schütze 1 beginnt; die Trefferwahrscheinlichkeit pro Schuss sei für den ersten Schützen p_1 , für den zweiten p_2 . Die Zufallsvariable X beschreibe die Anzahl der insgesamt abgegebenen Schüsse.

- (1) Bestimmen Sie die Verteilung von X.
- (2) Bestimmen Sie den Erwartungswert von X für den Fall $p_1 = p_2 = p$.
- (3) Welche Bedingung(en) müssen p_1 und p_2 erfüllen, damit Schütze 1 und Schütze 2 die gleiche Siegwahrscheinlichkeit haben?

Hinweis zu (1): Geben Sie $\mathbb{P}(X=k)$ für gerades und ungerades k getrennt an.

Hinweis zu (2): Versuchen Sie auch dann einen Ansatz für Aufgabenteil (2) zu finden, wenn Sie sich bei Aufgabenteil (1) unsicher sind; Sie können hier auf Ihr Vorwissen zurückgreifen.

Lösung, Aufgabe 3:

Fortsetzung der Lösung zu Aufgabe 3:

Aufgabe 4 (10 Punkte)

Sei (Ω,\mathbb{P}) ein diskreter Wahrscheinlichkeitsraum. Es seien $A,B,C\subseteq\Omega$ mit $0<\mathbb{P}(B\cap C)<1.$

Zeigen oder widerlegen Sie:

(1)
$$\mathbb{P}(A \cap B|C) = \mathbb{P}(A|C)\mathbb{P}(B|C) \Leftrightarrow \mathbb{P}(A|C) = \mathbb{P}(A|B \cap C)$$

(2)
$$\mathbb{P}(A|C) = \mathbb{P}(A|B\cap C) \Rightarrow A \text{ und } B \text{ sind stochastisch unabhängig}.$$

Lösung, Aufgabe 4:

Fortsetzung der Lösung zu Aufgabe 4:

Aufgabe 5 (9 Punkte)

Die Zufallsvariablen X_1 und X_2 seien unabhängig und identisch verteilt mit

$$\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = \frac{1}{2},$$

i = 1, 2.

Wir definieren die beiden Zufallsgrößen U und V durch

$$U = X_1 + X_2$$

und

$$V = X_1 \cdot X_2.$$

- (1) Bestimmen Sie die Verteilungen von U und V.
- (2) Sind U und V unkorreliert? Sind sie unabhängig?

Lösung, Aufgabe 5:

Fortsetzung der Lösung zu Aufgabe 5:

Aufgabe 6 (10 Punkte)

Sie machen mit einer Schulklasse von n=30 Schülerinnen und Schülern einen Wettbewerb im Teebeutelweitwurf. Jede Schülerin und jeder Schüler wirft genau einmal. Erfahrungsgemäß werden dabei Weiten zwischen 0 und 10 Metern erreicht, wobei wir in dieser Aufgabe vereinfachend davon ausgehen, dass die Wurfweiten (in Metern) unabhängig und identisch gleichverteilt auf dem Intervall [0,10] sind. Es bezeichne X_1,\ldots,X_n die erreichten Wurfweiten. Wir wollen nun analysieren, wie der Teebeutelweitwurfrekord Ihrer Klasse verteilt ist.

Sei dazu

$$M_n := \max(X_1, \ldots, X_n)$$

das Maximum der n Wurfweiten.

(1) Nennen Sie zunächst die Verteilungsfunktion von X_1 und zeigen Sie dann, dass die Verteilungsfunktion F von M_n gegeben ist durch

$$F \colon \mathbb{R} \to [0, 1], \ x \mapsto \begin{cases} 0 & \text{für } x \le 0\\ \frac{x^n}{10^n} & \text{für } 0 \le x \le 10\\ 1 & \text{für } x \ge 10. \end{cases}$$

Hinweis: Drücken Sie dazu das Ereignis $\{M_n \leq x\}$ für $x \in \mathbb{R}$ durch die Ereignisse $\{X_i \leq x\}, i = 1, \ldots, n$, aus.

- (2) Mit welcher Wahrscheinlichkeit liegt der Teebeutelweitwurfrekord Ihrer Klasse bei mehr als 9 Metern?
- (3) Bestimmen Sie eine Dichte der Verteilung von M_n .
- (4) Bestimmen Sie den Erwartungswert von M_n .

Lösung, Aufgabe 6:

Fortsetzung der Lösung zu Aufgabe 6:

Aufgabe 7 (6 Punkte)

Das Gewicht einer Schokoladentafel soll 100 g betragen. Um zu testen, ob die Abfüllmaschine einer Firma richtig eingestellt ist, prüfen wir das Gewicht von 10 Tafeln.

Wir wissen, dass das Gewicht einer Tafel einer $\mathcal{N}(\mu, \sigma^2)$ -Verteilung genügt, wobei $\sigma^2 = 1$ bekannt und $\mu \in \mathbb{R}$ unbekannt sei.

Konstruieren Sie einen Test zur Hypothese $\mu=100$, der zum Niveau $\alpha=0,01$ prüft, ob die Maschine richtig eingestellt ist. Geben Sie auch den Parameterraum Θ , Hypothese und Alternative als Teilmengen von Θ , einen Stichprobenraum und eine parametrisierte Familie von Wahrscheinlichkeitsmaßen an.

Lösung, Aufgabe 7:

Fortsetzung der Lösung zu Aufgabe 7:

Standardnormalverteilungstabelle, Angegeben sind Werte $P(X \leq x)$ für $X \sim \mathcal{N}(0,1)$

$x \mid$	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0, 2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0, 7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0, 8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1, 1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1, 2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2, 1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2, 2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3, 1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3, 2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3, 3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3, 4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998
3, 5	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998
3,6	0,9998	0,9998	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,7	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,8	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,9	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000