Übungen

Abgabetermin: Dienstag 08.05. um 12 Uhr, Briefkasten 56

Aufgabe 13 (5 Punkte)

Gegeben sei die Übergangsmatrix auf $S = \{1, ..., 8\}$

Zeichnen Sie den zugehörigen Übergangsgraphen und bestimmen Sie die Kommunikationsklassen, die Periode jedes Zustandes und die Menge der stationären Verteilungen.

Aufgabe 14 (5 Punkte)

Gegeben sei eine diskrete Markov-Kette $(M_n)_{n\in\mathbb{N}_0}$ auf \mathcal{S} mit Übergangsmatrix P. Für $A\subseteq\mathcal{S}$ sei $\tau:=\inf\{n\geq 0:M_n\in A\}$. Angenommen, es existiert ein $N\in\mathbb{N}$ und ein $\alpha\in(0,1)$ mit $P^N(j,A)\geq\alpha$ für alle $j\in A^c$. Zeigen Sie:

- (a) Für alle $k \in \mathbb{N}$ und $i \in \mathcal{S}$ gilt $\mathbb{P}_i(\tau > kN) \leq (1 \alpha)^k$. Folgern Sie $\mathbb{E}_i \tau \leq \frac{N}{\alpha}$ für alle $i \in \mathcal{S}$. Insbesondere ist $\tau < \infty$ \mathbb{P}_i -f.s.
- (b) Für alle u > 0 und $i \in \mathcal{S}$ gilt $\mathbb{P}_i(\tau > u) \leq (1 \alpha)^{-1}(1 \alpha)^{u/N}$. Folgern Sie $\mathbb{E}_i e^{t\tau} < \infty$ für jedes $t < -\frac{1}{N} \log(1 \alpha)$ und $i \in \mathcal{S}$.

Aufgabe 15 (5 Punkte)

Es sei M_n die Anzahl von sich bewegenden Teilchen in einem festen Volumen. Wir nehmen an, dass im Zeitschritt $n\mapsto n+1$ jedes Teilchen mit Wahrscheinlichkeit $p\in(0,1)$ das Volumen verlässt und eine $\operatorname{Poi}(\lambda)$ -verteilte Anzahl neuer Teilchen von außen hinzukommt. Alle auftretenden Teilchenbewegungen seien dabei unabhängig voneinander. Zeigen Sie: $(M_n)_{n\in\mathbb{N}_0}$ ist eine irreduzible Markov-Kette auf \mathbb{N}_0 mit Übergangswahrscheinlichkeiten

$$p_{ij} = e^{-\lambda} \sum_{k=0}^{i \wedge j} {i \choose k} (1-p)^k p^{i-k} \frac{\lambda^{j-k}}{(j-k)!}$$

und stationärer Verteilung $\pi = \text{Poi}\left(\frac{\lambda}{p}\right)$.

Bitte wenden!

Alsmeyer: Markov-Ketten

SS 2012, Blatt 4

Aufgabe 16 (5 Punkte)

Gegeben sei eine zufällige Anzahl $N \in \mathbb{N}$ stochastisch unabhängiger Markov-Ketten $(M^{(m)})_{1 \leq m \leq N}$ auf einem endlichen Zustandsraum \mathcal{S} und mit Übergangsmatrix P. Für $j \in \mathcal{S}$ sei $A_n(j)$ die Anzahl der Ketten, die sich zum Zeitpunkt n im Zustand $j \in \mathcal{S}$ befinden. Zeigen Sie für $A_n := (A_n(j))_{j \in \mathcal{S}}$

- (a) $(A_n)_{n\in\mathbb{N}_0}$ ist eine Markov-Kette auf $(\mathbb{N}_0)^{\mathcal{S}}$.
- (b) Für alle $n \in \mathbb{N}$ sind die Zufallsgrößen $A_n(i), i \in \mathcal{S}$, stochastisch unabhängig.
- (c) Ist π stationär für P, so ist $\lambda = \bigotimes_{i \in \mathcal{S}} \operatorname{Poi}(\pi_i)$ stationär für $(A_n)_{n \in \mathbb{N}_0}$.

Hinweis: Betrachten Sie die Anzahl $A_n(i,j)$ der Ketten, die zum Zeitpunkt n von i nach j springen. Untersuchen Sie $(A_1(i,j))_{j\in\mathcal{S}}$ bei festem i auf Unabhängigkeit und zeigen Sie $\mathbb{P}^{A_1(i,j)}_{\lambda} = \operatorname{Poi}(\lambda_{ij})$ für geeignete λ_{ij} .