Alsmeyer: Markov-Ketten SS 2012, Blatt 2

Übungen

Abgabetermin: Dienstag 24.04. um 12 Uhr, Briefkasten 56

Aufgabe 5 (5 Punkte)

Es sei $(X_n)_{n\in\mathbb{N}_0}$ eine i.i.d. Folge mit

$$\mathbb{P}(X_i = 1) = p$$
 und $\mathbb{P}(X_i = -1) = 1 - p$.

für ein $p \in (0,1)$. Ferner seien $S_n = \sum_{i=0}^n X_i$ und $M_n = \max_{0 \le i \le n} S_i$. Zeigen Sie:

- (a) $(M_n S_n)_{n > 0}$ ist eine Markov-Kette. Bestimmen Sie auch die Übergangsmatrix.
- (b) $(M_n)_{n>0}$ ist keine Markov-Kette.

Aufgabe 6 (5 Punkte)

Für $\alpha, \beta \in (0,1)$ sei

$$P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}$$

die Übergangsmatrix zweier unabhängiger Markov-Ketten $(X_n)_{n\geq 0}$ und $(Y_n)_{n\geq 0}$ auf $\mathcal{S}=\{0,1\}.$

- (a) Zeigen Sie, dass $\tau := \inf\{n \geq 0 : X_n = Y_n\}$ eine Stoppzeit bzgl. $\mathcal{F}_n = \sigma(X_{0:n}, Y_{0:n}), n \geq 0$, ist.
- (b) Bestimmen Sie die Verteilung und den Erwartungswert von τ bzgl. jeder Anfangsverteilung λ der bivariaten Kette $((X_n, Y_n))_{n \geq 0}$.

Aufgabe 7 (5 Punkte)

Beweisen Sie Satz 1.28 aus der Vorlesung.

Aufgabe 8 (5 Punkte)

Eine endliche Matrix $P = (p_{ij})_{i,j \in \mathcal{S}}$ heißt doppelt stochastisch, falls $p_{ij} \in [0,1]$ für alle $i, j \in \mathcal{S}$,

$$\sum_{j\in\mathcal{S}} p_{ij} = 1 \text{ für alle } i \in \mathcal{S} \text{ und } \sum_{i\in\mathcal{S}} p_{ij} = 1 \text{ für alle } j \in \mathcal{S}.$$

Bestimmen Sie eine invariante Verteilung für P.