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Summary

In the present thesis, a theory of a discrete-time branching within branching process (BwBP) in
a very general setting is developed. As a BwBP consists of two branching processes, one evolving
in the individuals of the other, it describes host-parasite populations. More precisely, consider a
cell population forming a Galton-Watson tree and proliferating parasites colonizing these cells.
The two multiplication mechanisms of cells and parasites obey some dependence structure since
cells and parasites influence each others reproduction in real biological settings.

We are interested in the long-time behavior of this process, particularly of the parasites and
their distribution among the cells. The process (Zn)n≥0, denoting the number of parasites per
generation, satisfies an extinction-explosion principle. Almost sure extinction of parasites can
be characterized in terms of the process of parasites evolving along a randomly picked cell line
through the cell tree. This latter process and its different properties determine the behavior of
the BwBP in the majority of the following results. If, on the one hand, parasites survive with
positive probability, finer asymptotics for (Zn)n≥0 and the process of contaminated cells (T ∗

n )n≥0

are shown and their exponential rate of growth are identified. Furthermore, a Kesten-Stigum-
type result is proved, giving us an equivalent condition for the normalized process of parasites to
be uniformly integrable. In the case of a high parasite multiplication, we are able to construct
an appropriate Heyde-Seneta norming for (T ∗

n )n≥0. Additionally, when picking a contaminated
cell in the far future, the distribution of the number of parasites in this cell is identified under
different setups. If, on the other hand, parasites die out eventually, the decay rate of the survival
probability is discussed, and under certain further assumptions, conditional limit theorems are
proved. In particular, the law of the number of infected cells and the parasites they contain,
conditioned upon survival of parasites up to the present time, converges to a quasi-stationary
distribution. By letting parasites be still alive in the far future, we obtain a distributional
convergence to a positive recurrent Markov chain.

One of the major tools used in the proofs of the mentioned results is the size-biased method.
The constructed size-biased process has a connection to a branching process in random envi-
ronment with immigration, whose few known theorems are extended in order to analyze the
BwBP.

In the last part of this thesis, a bifurcating, two-type (A and B) cell division host-parasite
model is studied in which cell type heredity is assumed to be unilateral, i.e. type B-cells cannot
split into A-cells, whereas the converse is possible. This causes the before established theory to
be applicable since the tree of A-cells and its parasites forms a BwBP. We study the proportion
of contaminated A- and B-cells and present conditions under which the infected A-cells become
negligible compared to all contaminated cells. Further limit theorems for the parasites and cells
of the various types are shown, including asymptotics for the proportion of infected cells with a
given number of parasites to all infected cells under various assumptions.
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Introduction

Branching models are prevalent for the stochastic description of population dynamics. During
the last century, several different branching models have been established to analyze diverse
population structures, but all these models are derived from or extensions of the classical Galton-
Watson process (GWP). This prototype branching model takes a genealogical perspective at a
population with the inherent assumption that individuals reproduce independently of each other
with the same offspring distribution. The GWP is well studied in numerous articles and the
main results as well as further references are listed in the books of Asmussen and Hering [10],
Athreya and Ney [14] and Jagers [46].

Via the parent-child relation of individuals, the GWP forms a random tree, the so-called
Galton-Watson tree (GWT). Suppose that the individuals of this GWT host smaller particles
which multiply and share their offspring to the individual’s children independently of each other.
As they describe the evolution of small particles proliferating in the individuals of a population,
that is for example host-parasite interactions over a period of time, processes of this kind are
called branching within branching processes. Based on the mentioned biological context, from
now on, we will refer to the individuals as cells and to the small particles as parasites. However,
instead of parasites, one can also suppose the small particles to be some other biological or cell
content, for example mitochondria.

In the host-parasite scenario, the cells are typically assumed to divide into two daughter
cells at the end of their lifetime. Such bifurcating cell division processes have been studied, as
one of the first, by Kimmel [50]. He modeled the situation with cells splitting after a randomly
chosen continuous lifetime and a symmetric sharing of parasites into these two daughter cells.
Bansaye [15] considered this model in discrete time and allowed asymmetric sharing of parasites.
He extended his model in [16] by adding immigration of parasites and random environments,
which means that parasites in a cell reproduce under the same but randomly chosen distribution.
In [19] the authors considered a model in continuous time and parasites evolving according to
a Feller diffusion. Moreover, the cell division rate depends on the quantity of parasites inside
the cell and asymmetric sharing of parasites into the two daughter cells is assumed. Although
asymmetric sharing of cell contents into the daughter cells seems to be a quite strange assumption
at first glance, it is in fact a fundamental biological mechanism to generate cell diversity, see Jan
and Jan [47] and Hawkins and Garriga [42]. The most convincing example in this context is the
asymmetric division of a stem cell giving rise to a copy of itself and a second daughter cell which
is coded to differentiate into cells with a particular functionality in the organism.
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2 INTRODUCTION

The above mentioned host-parasite models are restricted to a bifurcating cell division mech-
anism, determining the underlying GWT to be binary. In recent years, efforts were made to
generalize the Galton-Watson cell tree to be non-deterministic. The greatest progress in this
direction has been achieved by Delmas and Marsalle in [34] for a discrete-time model and in
cooperation with Bansaye and Tran in [18] for a continuous-time model. Both articles consider
a random splitting mechanism of cells and Markov chains operating on the resulting cell trees
under ergodic hypotheses. Besides these articles the work of Guyon [41] is worth mentioning,
who studied another discrete-time model with asymmetric sharing and ergodic suppositions.
The states of the daughter cells, in our model the number of parasites in a cell, are described
by the mentioned Markov chains and assumed to be picked asymmetrically in all of the three
listed papers. However, the considered ergodicity excludes the possibility of parasite extinction,
which is a fundamental property in our model. To the author’s best knowledge, there is no fully
elaborated theory considering a double structured branching process with a random cell tree and
a parasite multiplication mechanism which allows extinction. The major part of this thesis is
therefore devoted to the development of such a general theory in a discrete-time setting.

The extension of cell division into two daughter cells to a random splitting mechanism in
a host-parasite situation is worth treating not only for mathematical reasons as the following
discussion shows. Envision a cell biologist counting a cell population and checking their infection
status in regular time periods. The population size at these points in time is not necessarily
a power of two integer and might even be odd-numbered. This is the same situation when
considering the model of Kimmel [50] only at discrete, periodic points in time. Hence, the GWP
assumption of the underlying cell tree is justifiable. Besides cell diversity, another incentive
for asymmetric sharing of parasites to the daughter cells arises from the appearance of the so-
called cellular senescence, recently discovered even for several single-celled organisms (see [82]).
Cellular senescence is the phenomenon that after cell division one of the two daughter cells can be
recognized as the mother cell, for it accumulates age-related damage throughout its replication
phases. It eventually loses the ability for cellular mitosis, the cell death occurs. This allows for
another genealogical perspective by counting all cells spawned by a single cell during its lifetime
and interpreting them as the succeeding generation. By proceeding with each of these new cells
in the same manner, we get a Galton-Watson structure. As the infection level of the mother cell
changes during its lifetime, this may result a different number of parasites in each daughter cell.
Hence, the intended model with asymmetric sharing of parasites arises. Furthermore, a shorter
lifetime of the mother cell implies a lower number of daughter cells as well as fewer parasite
offspring, and thus it is also reasonable to link the number of daughter cells to the reproduction
law of parasites.

In the following, we outline the organization and main results of this thesis. The first chapter
is devoted to a rigorous definition of the branching within branching process (BwBP) studied
in the present work. The underlying cell tree is assumed to be a GWT, and the number of
a cell’s daughters influences the offspring distribution of an accommodated parasite as well as
the sharing of its progeny to those daughter cells. A short comparison with other branching
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models, appearing in special settings of the BwBP, is given. Three interesting processes emerge
from the BwBP: the associated branching process in random environment (ABPRE) (Z ′

n)n≥0,
describing the number of parasites in a randomly picked cell line through the cell tree, the
number of contaminated cells (T ∗

n )n≥0, counting the number of parasite infected cells, and the
process of parasites (Zn)n≥0, which describes the total number of parasites per generation. In
the second part of this first chapter, these three processes are introduced and first results are
proved. Due to the reproduction mechanism, the process of parasites does not follow a GWP
structure. Still, it obeys an extinction-explosion principle, and one of the first main results is a
complete characterization of almost certain extinction in terms of the ABPRE. Turning to the
number of contaminated cells (T ∗

n )n≥0, we obtain the almost sure convergence to infinity if the
population of parasites explodes.

The proofs of most of the remaining results concerning the BwBP are based on the size-
biased method, primarily used by Lyons et al. in their pioneering article [61]. In Chapter 2, we
construct the size-biased BwBP by picking the spine along the parasites, and we show relations
to the original BwBP. The cells containing the spinal parasites form a path through the cell
tree, and the number of parasites along this cell line behaves like a branching process in random
environment with immigration. Chapter 3 is devoted to the discussion of such processes in
different regimes, and the rare known results from [16, 49, 72] are extended, especially in the
supercritical case. These results will help us in the analysis of the BwBP.

In Chapter 4, we return to the study of the BwBP and focus on the case where parasites
survive with positive probability. Normalizing (Zn)n≥0 by its means leads to a non-negative
martingale. We obtain an equivalent condition for the martingale limit to be positive on the
set of parasite survival Surv by utilizing the size-biased method. This equivalent condition
comprises the famous (Z logZ)-condition and another one, which, roughly speaking, describes the
partitioning of parasites over the cell tree. The problem of finding the proper normalization when
the (Z logZ)-condition fails is discussed thereafter. It is shown that such a norming sequence
cannot differ much from the means. On Surv, we further determine the exponential factor in
the rate of growth of (T ∗

n )n≥0, which depends on the regimes of the ABPRE. In the case where
the ABPRE survives with positive probability a suitable Heyde-Seneta norming is constructed.
The last section of Chapter 4 is devoted to the proportion Fn(k) of contaminated cells hosting k

parasites to the total number of contaminated cells in generation n and its limit for n → ∞. This
limit highly depends on the behavior of the ABPRE. If the latter is supercritical, the number
of parasites in a contaminated cell continuously rises. If, on the other hand, the ABPRE is
strongly subcritical, we determine the limit of (Fn(k))k≥1 as n → ∞ to be a deterministic and
quasi-stationary distribution derived from the ABPRE.

In Chapter 5, we analyze the BwBP in the case where parasites die out almost surely, and
we identify decay rates of the survival probability. In particular, we give necessary and sufficient
conditions for the survival probability to decrease with the same speed as the mean number
of parasites. The final section of this chapter focuses on the case where the latter mentioned
holds true. We show that, conditioned upon survival of parasites up to the present time, the
distribution of the number of infected cells and the parasites they contain converges to a quasi-
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stationary distribution. This is an analog to the result of Yaglom for the ordinary GWP (see [14,
Chapter I.8 and I.14]). Furthermore, given that parasites are still alive in the distant future,
leads to a distributional convergence towards a positive recurrent Markov chain. The majority
of the proofs will be carried out with the help of the size-biased process.

The last chapter deals with a host-parasite bifurcating cell division process with two cell
types A and B. In this model, only unilateral cell type heredity is assumed. That is, daughter
cells of a B-cell keep the type of their mother, whereas A-cells can split into cells of both types.
Furthermore, parasites in cells having different cell types multiply with different reproduction
laws. This forms a first basic model to study coevolutionary adaptations, here due to the presence
of two different cell types. Host-parasite coevolution describes the reciprocal, adaptive genetic
change of interacting species, which results from the selective pressure each antagonist can exert
on the other one (see e.g. [57, 89]). The one-sided cell type heredity describes, inter alia, the
situation where cells somehow may change, for example by irreversible mutation, and so develop
some kind of immunity or resistance to the parasite infection. This influences the parasite
reproduction and lowers their offspring rate. By the cell type heredity assumptions, the process
of type-A cells together with its parasites forms a BwBP and the results of all previous chapters
are applicable. Hence, we mainly focus on the B-cells and their parasites. Under the premise
that infected A-cells survive with positive probability, asymptotic results for the proportion of
contaminated B-cells to all contaminated cells are given as well as for the proportion of B-cells
containing a fixed number of parasites to all infected cells of type B.

Acknowledgements. I would like to express my gratitude to my supervisor Prof. Dr.
Gerold Alsmeyer for his encouragement and helpful input throughout the compilation of this
thesis. Moreover, I am indebted to Prof. Dr. Joachim Kurtz from the Institut für Evolution und
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and Prof. Dr. Martin Dugas from the Institut für Medizinische Informatik (WWU Münster) for
the financial support during most of my doctoral studies. I would also like to thank all members
of the Institut für Mathematische Statistik (WWU Münster) and the Institut für Medizinische
Informatik (WWU Münster) for a good working atmosphere. My special thanks go to Andrea
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Notation and the Ulam-Harris tree

Throughout this thesis, we denote by N the set of natural numbers {1, 2, 3, . . . } and put N0 :=

N∪{0} as well as N0 := N0 ∪{∞}. In a classical manner, we will write P(X ) for the power set
and #X for the cardinality of a non-empty set X . For two real numbers x, y ∈ R we denote
by δxy the ordinary Kronecker delta symbol, i.e. δxy = 1 if x = y, and = 0 otherwise, and we
write x∧ y for the minimum of these two numbers. Furthermore, we write L(X) for the law of a
random variable X. As we will often deal with sequences of tuples for a denumerable index set
I, we introduce the short notation [xi, yi]i∈I for the vector with the entries (xi, yi), i ∈ I.

Throughout this thesis,
V :=

⋃
n∈N0

Nn

denotes the infinite Ulam-Harris tree with N0 = {∅} and root label ∅. To describe the lineage
of vertices in V we use the usual Ulam-Harris labeling notation. A vertex v = (v1, ..., vn) ∈ V

is understood to be the descendant vn of the descendant vn−1 of . . . of the descendant v1 of the
root ∅, and we will shortly write v1...vn. In other words, v = v1...vn describes the unique path
(or ancestral line)

∅ → v1 → · · · → v1...vn

from the root ∅ to v. With |v| we denominate the length of this path, i.e. |v| = n for v ∈ Nn,
which means that v is in the nth generation of the tree. For the set of vertices {v ∈ V : |v| = n}
and {v ∈ V : |v| ≤ n} in the nth resp. in the first n generations, we will sometimes use the
shorter notation |v| = n resp. |v| ≤ n. Furthermore, we write v|k for the ancestor of v = v1...vn

in generation k ≤ n and u < v if v is a descendant of the vertex u. Thus, v|k = v1...vk and
v|k = u for some k < n when u < v. Finally, the concatenation uv = u1...umv1...vn is identified
to be the vertex v = v1...vn in the tree rooted at u = u1...um.



Chapter 1

The branching within branching model

In this first chapter, the branching within branching model is introduced. It is a special multi-
type branching process with infinite many types and has connections to other branching models
as explained in a later subsection. We close this chapter by introducing important processes
arising from this model and proving first results.

1.1 The model

1.1.1 Description of the model

As mentioned in the Introduction, we develop in this thesis a general theory of discrete-time
branching within branching processes which describe certain genealogical host-parasite coevolu-
tions. To give an informal description of the branching within branching process (BwBP), consider
a cell population forming a standard Galton-Watson tree (GWT) T rooted in a single ancestor
(∅). Each of these cells contains proliferating parasites whose reproduction law is determined by
the number of daughter cells spawning from their host cell. Given the daughter cells, the parasites
multiply and share their offspring independently of each other to the cells in the next genera-
tion. More precisely, let ∅ contain a single parasite. First, the root cell divides into T∅ ∈ N0

daughter cells, denoted by 1, . . . , T∅. Given T∅ = t∅, the parasite in ∅ multiplies according to
the law given by (X(1,t∅), . . . , X(t∅,t∅)), where X(k,t∅) describes the offspring number going in
the kth daughter cell. These new cells together with the parasites they contain then form the
first generation of the BwBP. In the familiar Galton-Watson way, a cell v of this first generation
splits into Tv daughter cells, and a parasite in v multiplies with the law of (X(1,tv), . . . , X(tv ,tv))

if Tv = tv, independently of all other parasites and cells u �= v, |u| = 1. All descendant cells and
parasites of the first generation then form the second one which spawns the third generation in
the same manner as just described and so on.

Host-parasite coevolution is a very complex procedure in which both participants, the cells
and parasites, influence each other. Since we intend the cells to form a GWT, it is reasonable to
consider the cell division before the reproduction of parasites. Potential applications and further
motivations for the BwBP were already stated in the Introduction.

6



1.1. THE MODEL 7

For a rigorous description of the branching within branching process we fix a probability space
(Ω,F,P) assumed to be large enough to carry all random variables introduced hereafter. Let V be
the infinite Ulam-Harris tree with root ∅ as introduced in the Introduction. Let further (Tv)v∈V
be independent and identically distributed (i.i.d.) copies of the N0-valued random variable T

with distribution (pk)k≥0 and finite mean, viz. P(T = k) = pk for all k ∈ N0 and ET < ∞. This
family of random variables describes a random subtree of V in a natural way. Put T0 := {∅} as
the root and define for n ∈ N the nth generation of this random tree recursively by

Tn := {v1 . . . vn ∈ V | v1 . . . vn−1 ∈ Tn−1 and 1 ≤ vn ≤ Tv1...vn−1}.

Hence, the random variable Tv for v ∈ V can be interpreted as the offspring number of cell v and
due to the i.i.d. property of (Tv)v∈V, the union

T :=
⋃

n∈N0

Tn ⊆ V

forms a GWT with a single ancestor cell, reproduction law (pk)k≥0 and reproduction mean

ν :=
∑
k∈N

kpk = ET < ∞.

Moreover, let (Tv)v∈V be a family of random variables indicating which vertices of V belong to
T, i.e. for n ∈ N0 and v ∈ V with |v| = n

Tv :=

⎧⎨⎩1 if v ∈ Tn,

0 if v /∈ Tn.
(1.1)

In particular, T∅ = 1 almost surely (a.s.). If Tv = 1, the cell v ∈ V is called alive and dead
otherwise. For a cell v = v1...vn ∈ V, we get {Tv = 1} = {v ∈ Tn} = {Tv|n−1 ≥ vn, Tv|n−1 = 1}
a.s. and so

Tv = Tv|n−1 1{Tv|n−1≥vn} = T∅

n−1∏
i=0

1{Tv|i≥vi+1} a.s. (1.2)

Furthermore,

P

⎛⎝(∑
u≥1

Tvu

)
|v|=n

= (kv)|v|=n

∣∣∣∣ (Tv)|v|=n = (tv)|v|=n

⎞⎠ = P
(
(tvTv)|v|=n = (kv)|v|=n

)
=

∏
|v|=n,tv=1

pkv
∏

|v|=n,tv=0

δ0kv

for all kv ∈ N0 and tv ∈ {0, 1} with |v| = n, where δij denotes the ordinary Kronecker delta
symbol.

We further put
Tn := #Tn =

∑
|v|=n

Tv (1.3)

for n ∈ N0 as the number of (living) cells in the nth generation. It should be clear that (Tn)n≥0 is
a standard Galton-Watson process (GWP) with reproduction law given by T and reproduction
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mean ν. For information on Galton-Watson processes, we refer to the books of Asmussen and
Hering [10], Athreya and Ney [14] and Jagers [46].

Having defined the cell division process, we now focus on the parasites. Let us denote by
Zv the number of parasites in cell v ∈ V, and we write T∗

n for the set of contaminated cells in
generation n ∈ N0 and T ∗

n for its cardinal number, i.e. for each n ∈ N0

T∗
n := {v ∈ Tn : Zv > 0} and T ∗

n = #T∗
n . (1.4)

As informally described at the beginning of this section, we postulate that parasites located in
different cells multiply independently of each other, whereas parasites living in the same cell
reproduce independently with the same law when the number of daughter cells is given. To
model this situation, let for each k ∈ N(

X
(1,k)
i,v , . . . , X

(k,k)
i,v

)
, i ∈ N, v ∈ V,

be i.i.d. copies of the Nk
0-valued random vector X(•,k) :=

(
X(1,k), . . . , X(k,k)

)
and we shortly

write X
(•,k)
i,v instead of

(
X

(1,k)
i,v , . . . , X

(k,k)
i,v

)
. Furthermore, the families

(
X

(•,k)
i,v

)
i∈N,v∈V, k ∈ N,

are assumed to be independent and independent of (Tv)v∈V. These random vectors indicate the
reproduction and sharing of the various parasites living in the cell tree. In detail, let the cell
v ∈ V have k ∈ N daughter cells. Then X

(u,k)
i,v , 1 ≤ u ≤ k, describes the number of progeny

from the ith parasite in cell v which go in daughter cell u. In particular, the sum over all entries
in X

(•,k)
i,v gives the total offspring number of this parasite. Since the families (X

(•,k)
i,v )i≥1,v∈V,

k ∈ N, are independent and each family consists of i.i.d. random variables, they fulfill all desired
requirements for the multiplication behavior of the parasites. So the number of parasites in the
cells can be defined recursively by putting Z∅ = 1 (starting with a single parasite) and

Zvu =
∑
k≥u

1{Tv=k}

Zv∑
i=1

X
(u,k)
i,v =

Zv∑
i=1

X
(u,Tv)
i,v , u ∈ N, (1.5)

where X
(u,t)
i,v = 0 a.s. if u > t, which will be a convention from now on. In particular, observe

that by definition {Tv = 0} ⊆ {Zv = 0} P-a.s. and unless mentioned otherwise, we assume the
process starts with a unique cell containing a single parasite, i.e.

T0 = 1 and Z∅ = 1 a.s.

Now, with keeping all the so far declared random variables in mind, the branching within branch-
ing process is defined as follows:

Definition 1.1. Given all the above defined random variables, we call the process BP =

(BPn)n≥0 with BPn = ((Tv, Zv))|v|=n = [Tv, Zv]|v|=n the Branching within Branching process
(BwBP) and BT = (BTn)n≥0 with BTn = [Tv, Zv]|v|≤n the Branching within Branching tree.

Figure 1.1 shows a typical realization of the first three generations of a BwBP starting with
one cell hosting one parasite. Only the living cells are displayed, i.e. the cells with Tv = 1, and



1.1. THE MODEL 9

Z∅=1

Z1=2

Z11=3

...

Z12=1

...
...

...
...

Z2=4 Z3=1

Z31=0

Z32=5

...
...

Z33=2

...
...

...

BP2

BP1

BP0

Figure 1.1: A typical realization of the first three generations of a BwBP.

in the shown realization, the first generation consists of three living cells (T1 = 3) hosting three,
four and one parasite, respectively. The second cell reproduces no daughter cells, that is T2 = 0,
and so is a leave in the cell tree. Consequently, all four parasites living in this cell produce no
offspring. The second generation then contains five cells (T2 = 5) of which four are contaminated
and one is parasite free, hence T ∗

2 = 4.

The definition of the BwBP model is kept as general as possible and therefore it comprises
the following situation with multinomial repartition of parasites. Let every parasite in each
generation multiply independently with the same distribution. After the parasite reproduction,
the cell divides into a number of descendants with respect to L(T ), and each of its containing
parasites chooses independently the ith daughter cell with probability pi(k) ∈ [0, 1] when T = k.
Thus,

k∑
u=1

X(u,k) d
= X(1,1)

for all k ∈ N, and given
∑k

u=1X
(u,k) = x, the vector (X(1,k), . . . , X(k,k)) has a multinomial

distribution with parameters x and p1(k), . . . , pk(k) ∈ [0, 1].

Since we also intend the BwBP to start with several parasites in the root cell, we introduce
for each z ∈ N0 a probability measure Pz on the measurable space (Ω,F) such that (possibly
after modifying the so far introduced random variables)

Pz(T0 = 1, Z∅ = z) = 1.

Furthermore, under Pz the (Tv)v∈V are still i.i.d. random variables with distribution (pk)k≥0,
and this family is independent of (X(•,k)

i,v )k≥1,i≥1,v∈V. As before, all X(•,k)
i,v for i, k ∈ N, v ∈ V,
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are independent of each other with

Pz

(
X

(•,k)
i,v ∈ ·

)
= P

(
X(•,k) ∈ ·

)
for each i, k ∈ N and v ∈ V. Hence, under each Pz all parasites and cells have the same
reproduction law, and the BwBP, as given in Definition 1.1, is a BwBP starting with a single
cell hosting z parasites. Moreover, the processes (Tv)v∈V and (Tn)n≥0 keep their Markov chain
resp. branching properties as their transition probability (1.2) resp. offspring distribution is
independent from the parasite behavior.

We denote by Ez, z ∈ N0, the corresponding expectation, and we omit the index in the case
of the standard starting configuration, i.e P = P1 and E = E1, respectively. We further introduce
a probability measure P� on underlying probability space under which the root cell, and thus
every other cell, is dead, i.e. P�(BT = [0, 0]v∈V) = 1 and = 0 otherwise. For later convenience,
we will sometimes write P(1,z) instead of Pz and P(0,z) instead of P� for z ∈ N0. Of course, we
will use the same corresponding notation for the expectation, viz. E(1,z) = Ez and E� = E(0,z).

We further introduce the canonical filtration (Fn)n≥0, that is F0 := σ(T∅, Z∅) and for n ≥ 1

Fn := σ
(
Tv, Zv, Tv, X

(•,k)
i,v : |v| ≤ n− 1, k ≥ 1, i ≥ 1

)
,

and let F = σ
(⋃

n≥0Fn

)
. It is obvious by definition that BP and BT are (Fn)n≥0 adapted and

F-measurable and that Fn and X
(•,Tv)
i,v are independent for all n ≥ 0, |v| ≥ n and i ≥ 1.

We define the process of parasites by

Zn :=
∑
v∈Tn

Zv, n ∈ N0,

which will be one of the main investigated processes in this thesis, see Subsection 1.2.4. For each
1 ≤ l ≤ k, we further set

μl,k := EX(l,k)

and put

γ := EZ1 =
∞∑
k=0

P(T = k)
k∑

l=1

μl,k

as the mean number of offspring parasites, which is assumed to be positive and finite, i.e.

0 < γ < ∞. (A1)

In particular, this implies the existence of all μl,k, l ≤ k, and P(T = 0) < 1. To avoid trivial
cases, we assume that

P(T = 1) < 1 and P(Z1 = 1) < 1, (A2)

for otherwise, if the first assumption fails, the cell tree would just be a cell line and (Zn)n≥0 a
standard GWP with reproduction law L(X(1,1)). If, on the other hand, the second assumption
is violated, the number of parasites in each generation is the same and thus T ∗

n = T ∗
0 a.s. for all
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n ∈ N0 or T ∗
n = Z0 eventually. To rule out the simple case where every daughter cell contains

the same number of parasites as the root cell, we further assume that

ptP(X
(u,t) �= 1) > 0 for at least one 1 ≤ u ≤ t < ∞. (A3)

We shortly mentioned at the beginning of this chapter that the BwBP can be interpreted
as a multi-type branching process (MTBP) having countably many types. In a MTBP each
individual (here cell) is marked with a type (here number of parasites) from a set of types X
(here X = N0). Multiplying independently, each individual produces offspring of various types
determined by a reproduction law depending on their own type. The case of a finite type-space,
i.e. #X < ∞, is well studied and results are transfered from the classical theory of GWPes
(see e.g. [14, Chapter V] or [46, Chapter 4] ). If, on the other hand, the state space is infinite
(countable or uncountable) a variety of behaviors can be expected based on the reproduction
mechanism of individuals. For example, letting the type-space transition have the form of a
random walk, leads to the famous branching random walk (see Subsection 1.1.3). Other MTBPes
are studied in the articles [11, 38, 48, 64, 65], just to mention a few, and we refer to Kimmel and
Axelrod [51, Chapter 7] for a series of examples of MTBPes with applications in biology. We
further mention [27] in which a MTBP in a very general setting is studied and conditions for
martingale mean convergence are derived. This model comprises the BwBP, but the conditions
given in the article are much weaker than those presented in Chapter 4 for our model. For
more articles dealing with models related to the BwBP, we refer to the references listed in the
Introduction.

1.1.2 The space of host-parasite trees

In this short subsection, we formally introduce the set of host-parasite trees and construct a
suitable σ-algebra such that BT is measurable. We thereby follow the approaches in [29,55,66].

Put S := {0, 1} × N0 and denote the set of host-parasite trees by

S := SV = {{0, 1} × N0}V ,

consisting of elements [sv, xv]v∈V. Each of these elements represents a host-parasite cell tree,
which can also be identified by a mapping tr from V to S with tr(v) = (sv, xv) for v ∈ V. Let tv
and zv be the projection on the first resp. second component of vertex v ∈ V, viz.

tv : S → {0, 1}, [sv, xv]v∈V �→ sv and zv : S → N0, [sv, xv]v∈V �→ xv.

We further define a filtration (Sn)n≥0 generated by the projections tv and zv

Sn := σ (tv, zv : |v| ≤ n) ,

and let S = σ(
⋃

n≥0 Sn). Obviously, the random host-parasite tree BP = BT = [Tv, Zv]v∈V
is S-valued and S-measurable by definition, for each (Tv, Zv) is a random vector with values
in S. Furthermore, observe that (S,S) is polish as a denumerable product of discrete spaces
(see [28, Chapter IX §6]), and its open sets form a generator of the σ-algebra S.
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Let trn and tr|n for n ∈ N0 denote the restriction of a host-parasite tree to the nth resp. the
first n generations. Formally speaking, for Sn := S|v|≤n, n ∈ N0, endowed with the canonical
σ-algebra S|n,

trn : S → S|v|=n, [sv, xv]v∈V �→ [sv, xv]|v|=n and tr|n : S → Sn, [sv, xv]v∈V �→ [sv, xv]|v|≤n,

which are of course surjective mappings and tr|n is S-S|n-measurable. Then we can describe the
nth resp. first n generations of the BwBP as follows:

BPn = trn(BT) and BTn = tr|n(BT ).

Evidently, BTn is (Sn,S|n)-measurable and for each A ∈ Sn there exists a set B ∈ S|n such that
tr|n(A) = B and

Pz(BT ∈ A) = Pz(BTn ∈ B) for all z ∈ N0 . (1.6)

Let tn, t∗n and zn for n ∈ N0 be the measurable functions counting the number of living resp.
contaminated cells and alive parasites in the nth generation. More precisely,

tn : (S,S) → (N0,P(N0)), [sv, xv]v∈V �→
∑
|v|=n

tv([sv, xv]v∈V) =
∑
|v|=n

sv,

and
t∗n : (S,S) → (N0,P(N0)), [sv, xv]v∈V �→

∑
|v|=n

sv(1− δ0xv),

as well as

zn : (S,S) → (N0,P(N0)), [sv, xv]v∈V �→
∑
|v|=n

zv([sv, xv]v∈V) tv([sv, xv]v∈V) =
∑
|v|=n

zvsv.

Hence,

Tn = tn(BT ), T ∗
n = t∗n(BT ) and Zn =

∑
|v|=n

Zv Tv = zn(BT ) P(t,z)-a.s.

for all (t, z) ∈ S.

1.1.3 Comparison to other branching models

The process of parasites generally disobeys known branching structures. However, in some setups,
it forms a standard GWP or other famous branching processes.

Galton-Watson branching process

(Tn)n≥0 is a standard GWP with reproduction law (pk)k≥0 by definition. If for all k ≥ 1

X(1,k) = · · · = X(k,k) = 1 a.s.

and Z∅ = T∅ = 1, then Zn = Tn P-a.s. for all n ≥ 0, and therefore (Zn)n≥0 is a standard GWP
starting with a single individual, reproduction law (pk)k≥0 and reproduction mean ν.
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There is another situation in which the process of parasites forms a GWP, namely when T is
t-adic for a t ∈ N. This means that T = t a.s., and thus every cell in each generation divides into
t daughter cells. So each parasite in the BwBP produces offspring according to the distribution
of X(•,t) and the cell tree structure is irrelevant for parasite multiplication. This is exactly the
situation in the model studied by Bansaye in [15] for t = 2. More precisely, we get

Zn+1 =
∑

v∈Tn+1

Zv =
∑
v∈Tn

Zv∑
i=1

t∑
u=1

X
(u,t)
i,v a.s.

for all n ≥ 0. Since the
∑t

u=1X
(u,t)
i,v , i ≥ 1, v ∈ V, are i.i.d., the offspring of the parasites is

chosen independently and with the same distribution and thus

EsZn+1 = E

( ∏
v∈Tn

Zv∏
i=1

E

(
s
∑t

u=1 X
(u,t)
i,v

∣∣Fn

))
= E

(
E

(
s
∑t

u=1 X
(u,t)

)Zn
)

= E(ϕ(s)Zn),

where ϕ(s) := EsZ1 , s ∈ [0, 1], is the generating function of Z1. This shows that (Zn)n≥0

has a Galton-Watson branching process structure with reproduction law L(∑t
u=1X

(u,t)). By
the classical theory of GWPes, it follows that (Zn)n≥0 dies out almost surely if and only if
ϕ′(1) = γ ≤ 1 (recall that P(Z1 = 1) < 1 by (A2)). As it turns out, the condition γ ≤ 1 is
still sufficient but not necessary for the process of parasites to die out almost surely in a general
BwBP setting, see Theorem 1.10. For more background information on GWPes, we refer once
again to the books [10,14,46].

Branching process in random environment

If all parasites are in the same cell in each generation, the process of parasites forms another well-
known branching process, the branching process in random environment (BPRE). This follows
from the property that the number of daughter cells determine the parasite offspring distribution.

Consider the BwBP in which at most one daughter cell has positive probability for being
contaminated. So, let 1 ≤ lk ≤ k for k ≥ 1 be the index such that X(l,k) = 0 a.s. for all l �= lk.
Without loss of generality (w.l.o.g.) we can assume that lk = 1 for all k ≥ 1. That is,

X(2,k) = · · · = X(k,k) = 0 a.s.

for all k ≥ 2, which means that only X(1,k), k ≥ 1, contributes to the total number of parasites
in the next generation. Hence, when starting with one contaminated ancestor cell, the number
of contaminated cells in each generation is at most 1, viz.

P(T ∗
n ≤ 1) = 1 for all n ≥ 0.

Furthermore, Zn = Z1∗n a.s. for each n ≥ 0, where 1∗n = 1 . . . 1 (n-times) is the left most cell in
the nth generation in V, and thus

Zn+1 =
∑
v∈T∗

n

Zv∑
i=1

∑
u≥1

X
(u,Tv)
i,v =

Zn∑
i=1

X
(1,T1∗n )
i,1∗n for n ≥ 0.
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Observe that the offspring distribution of parasites in the nth generation depends on T1∗n ,
but given the value of T1∗n , the parasites multiply independently with the same distribution.
So, (Zn)n≥0 forms a branching process in random environment with environmental sequence
(T1∗n)n≥0, which consists of i.i.d. random variables giving the offspring distribution for each
generation.

It is further remarked that in this situation the set of possible reproduction laws is count-
able and the environmental sequence consists of i.i.d. random variables, which is an essential
restriction in the setting of branching processes in random environment. In many works con-
cerning branching processes in random environment, the environmental sequence is assumed
to be stationary and ergodic taking values in the set of all probability measures on N0. See
e.g. [1–3,12,13,17,31,40,81,83–85] for a detailed description of the BPRE and its basic and more
advanced properties.

Weighted branching process and branching random walk

Consider a standard GWT in which each edge carries a random weight, and each individual in
the population is assigned the product of all weights along his unique path to the root. Such
a process is called a weighted branching process (WBP), firstly introduced by Rösler [73] and
treated in various articles afterwards, see for example [8, 9, 54, 55, 63, 74, 75] and the references
given there. The multiplicative structure appears in the BwBP in the degenerated case where
parasites in a cell beget the same number of descendants. For all 1 ≤ u ≤ t < ∞ let au,t ∈ N0

and further
X(u,t) = au,t P-a.s.

as well as X(u,t) = 0 a.s. if u > t. So given the number of daughter cells, every parasite in the
mother cell reproduces via a Dirac-measure. This implies

Zv =

Zv|n−1∑
i=1

X
(vn,Tv|n−1)

i,v|n−1 = Zv|n−1 · avn,Tv|n−1
= · · · =

n∏
i=1

avi,Tv|i−1
(1.7)

for v ∈ V with v = v1 . . . vn and Z∅ = 1, and thus

Zn+1 =
∑
v∈Tn

Zv∑
i=1

∑
u≥1

X
(u,Tv)
i,v =

∑
v∈Tn

Zv

∑
u≥1

au,Tv

for n ≥ 0. Since
∑

u≥1 au,Tv , v ∈ V, are i.i.d., (Zn)n≥0 forms a WBP in the exceptional case
where N0-valued weights are considered.

Taking the logarithm in (1.7) provides an additive structure along a cell line, i.e. for |v| = n

logZv =
n∑

i=1

log avi,Tv|i−1
,

and the family of point processes (Nn)n∈N0 with Nn =
∑

|v|=n δlogZv(· ∩ R) forms a branching
random walk (BRW), where the logZv (> −∞), v ∈ V, give the position of an individual on the
real line. Roughly speaking, a BRW is a GWP in which individuals are residing on R, multiply in
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an i.i.d. manner and their children are moved on the real line relative to their mother according
to a point process (here N1). Via the just described logarithmic relation, a WBP can be uniquely
associated with a BRW and vice versa. See [7, 21–24, 26, 52, 54] for properties of the BRW and
its relation to the WBP.

1.1.4 The branching property and the model with multiple root cells

Recall that T forms a GWT and that the number of parasites in each cell depends only on the
number of parasites in the mother cell (given the number of daughter cells). So, the distribution
of the daughter cells and the parasites they contain of a cell v ∈ V with |v| = n given the past
BTn depends only on (Tv, Zv), i.e.

P
(
[Tvu, Zvu]u≥1 ∈ A | BTn = [sw, xw]|w|≤n

)
= P ([Tvu, Zvu]u≥1 ∈ A | (Tv, Zv) = (sv, xv))

= P(sv ,xv)(BP1 ∈ A) =

⎧⎪⎨⎪⎩
Pxv (BP1 ∈ A) if sv = 1,

P�(BP1 ∈ A) if sv = 0,

for all [sw, xw]|w|≤n ∈ Sn and A ∈ ⊗
u∈N P(S), where the second equality holds true since the

reproduction law of cells and parasites is independent of v by definition. Applying this Markov
property successively yields the evident result that a BwBP on the subtree rooted in a cell v ∈ V

with Tv = 1 behaves as the original BwBP with Zv ancestor parasites. Additionally, the i.i.d.
property of the families (X(•,Tv)

i,v )i≥1, v ∈ V, provides that subtrees having different ancestor cells
in the same generation are independent. This forms some kind of branching property for the
BwBP, which is summarized in detail in the next proposition. To formally state this observation,
let us denote by

BT (v) := [Tvu, Zvu]u∈V (1.8)

the BwBP on the subtree rooted in cell v ∈ V.

Proposition 1.2 (Branching property). For every n ∈ N0, given BTn the host-parasite processes
(BT (v))|v|=n on the subtrees rooted in the cells of the nth generation are independent and each
BT (v) is distributed as BT under P(Tv ,Zv). More precisely,

P(t,z)

((
BT (v)

)
|v|=n

∈ · | BTn = [sw, xw]|w|≤n

)
=

( ⊗
|v|=n

Q(sv ,xv)

)
(·)

for every n ∈ N0, (t, z) ∈ S and [sw, xw]|w|≤n ∈ Sn, with Q(sv ,xv) denoting the measure of BT
under P(sv ,xv), i.e. Q(sv ,xv)(·) = P(sv ,xv)(BT ∈ ·).

The branching property particularly says that, conditioned under BTn, the process evolving
from the cells of the nth generation onwards can be interpreted as a BwBP with multiple ancestor
cells, in which every root cell starts a BwBP independent of the other ones. As a matter of course,
a BwBP starting with a dead cell, i.e. T

(i)
∅ = 0, does not contribute to the number of living cells

and parasites in the succeeding generations, and thus these BwBPes can be ignored. But since
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in each generation of a BwBP only a finite number of cells are alive, the process rooted in the
cells of generation n behaves as a BwBP starting with a finite, but multiple, number of cells. So
it is reasonable to allow the BwBP to start with several ancestor cells. Let

S := {(0, 0)} ∪
⋃
n∈N

{{n} × Nn
0} (1.9)

be the set of all possible root configurations. We write P(t,z) with (t, z) ∈ S and z = (z1, . . . , zt)

for the probability measure under which the BwBP starts with t cells having z1, . . . , zt parasites,
i.e.

P(t,z)

(
T0 = t, Z

(1)
∅ = z1, . . . , Z

(t)
∅ = zt

)
= 1,

with Z
(1)
∅ , . . . , Z

(t)
∅ denoting the number of parasites in the root cells. Let BT (1), . . . ,BT (t) be

the t ∈ N independent BwBPes starting from these root cells, and let T(i), T(i)
n , T (i)

n , Z(i)
n , T(i)

v

and Z
(i)
v be the random variables describing the obvious. In particular,

T (i)
n =

∑
|v|=n

tn(BT (i)) and Z(i)
n =

∑
|v|=n

zn(BT (i)).

Then the number of living resp. contaminated cells in the nth generation of the BwBP is

Tn :=

t∑
i=1

T (i)
n and T ∗

n :=

t∑
i=1

t∗n(BT
(i)) P(t,z)-a.s.,

and the process of parasites is the sum of all parasites in the corresponding generation, viz.

Zn :=
t∑

i=1

Z(i)
n P(t,z)-a.s.

As before, we write P� for P(0,z), z ∈ N0, and note that the new defined probability measures
are consistent with the notation of the measures P(t,z) with (t, z) ∈ S, viz. in both cases P(1,z)

denotes that we start with a living single cell hosting z parasites. We further use E(t,z), (t, z) ∈ S,
for the expectation under P(t,z) and set Pz = P(1,z) as well as Ez = E(1,z). Needless to say, we
omit the index, i.e. P = P1 and E = E1, if we start with one alive cell and one parasite, which
describes the standard configuration.

1.2 Important processes and first results

In this section, we introduce some important processes arising from the BwBP, namely the
associated branching process in random environment, the process of contaminated cells and the
process of parasites, which were curtly touched in the Introduction. Furthermore, we introduce a
Markov chain representing the set of contaminated cells and the number of parasites they contain
in each generation. A large part of the presented results in this section has been published in [6]
in the special case, where a cell has at most two daughter cells.
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1.2.1 The associated branching process in random environment

One of the first steps when dealing with the BwBP is to reveal properties of an infinite random
cell line through the cell tree T. This approach was first used by Bansaye in [15]. In his article, a
random cell line was obtained by simply picking a random path in the infinite binary Ulam-Harris
tree representing the cell population. Since in our case the cell tree is of a general Galton-Watson
structure and therefore random, we must proceed in a different manner. Here we will not pick a
path in V uniformly but according to a size-biased distribution. The resulting path can be seen
as a so-called spine in a size-biased tree. The spine cell at generation n then gives us a ”typical”
cell in the ordinary cell tree in generation n. The parasites along the thus obtained spine form a
branching process in an i.i.d. random environment and its behavior is highly related to the one
of (T ∗

n )n≥0.
Spinal trees or size-biased trees have turned out to be of great use to prove convergence

results of various branching processes. This is not different in our setup, see Chapter 2, 4 and 5.
The concept of size-biasing goes back to Lyons et al. in [61], who used it to show classical limit
theorems for the GWP. We refer to this article for a detailed construction of a spinal GWT and
to Chapter 2 for further references.

Shortly speaking, the spine in a GWT is constructed successively by picking in each generation
the next vertex in the spine uniformly from the offspring of a size-biased reproducing individual.
For the formal definition, let {(T̆n, Cn) : n ∈ N0} be a family of i.i.d. random vectors independent
of (Tv)v∈V and (X

(•,k)
i,v )k≥1,i≥1,v∈V. Thereby, each T̆n has a size-biased distribution of T , i.e. for

each n ∈ N0 and k ∈ N

P(T̆n = k) =
kpk
ν

,

and for 1 ≤ l ≤ k

P(Cn = l | T̆n = k) =
1

k
,

which means that Cn is uniformly distributed on {1, . . . , k} given T̆n = k. The spine (Vn)n≥0 is
then recursively defined by V0 = ∅ and for n ≥ 1 by

Vn := Vn−1Cn−1.

Then
∅ =: V0 → V1 → V2 → · · · → Vn → . . .

provides us with a random cell line (not picked uniformly) in V.
Figure 1.2 illustrates a typical realization of a random path through a cell tree. Only living

cells are shown, and the cells in the spine are indicated by the symbol � and all other cells by
©. In that particular realization, we have V0 = ∅, V1 = 1, V2 = 12, V3 = 122 and looking at the
number of parasites along the spine ZV0 = 1, ZV1 = 2, ZV2 = 1 and ZV3 = 3.

Concentrating now on the number of parasites along (Vn)n≥0, we get ZV0 = Z∅ and for n ≥ 0

the recursive formula

ZVn+1 =
∞∑
t=1

t∑
u=1

1{T̆n=t,Cn=u}

ZVn∑
i=1

X
(u,t)
i,Vn

=

ZVn∑
i=1

X
(Cn,T̆n)
i,Vn

.
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V0

V1

...

V2

...
V3

...
...

...
...

...
...

Figure 1.2: Typical realization of a spine in the size-biased cell tree.

Thus, given (T̆n, Cn) all parasites in generation n multiply independently with the same distri-
bution L(X(Cn,T̆n)). Since (T̆n, Cn)n≥0 are i.i.d. and independent of (X(•,k)

i,v )k≥1,i≥1,v∈V, we infer
that the process of parasites along the spine forms a branching process in random environment.
More precisely, for n ∈ N0 we calculate

E

(
sZVn+1

∣∣ [T̆k, Ck]k≥0, (ZVk
)k≤n

)
=

ZVn∏
i=1

E

(
sX

(Cn,T̆n)
i,Vn

∣∣ [T̆k, Ck]k≤n, (ZVk
)k≤n

)

=

ZVn∏
i=1

E

(
sX

(Cn,T̆n) ∣∣ [T̆k, Ck]k≤n, (ZVk
)k≤n

)
= E

(
sX

(Cn,T̂n) ∣∣ (T̆n, Cn)
)ZVn

a.s.,

where in the last equation the independence of (T̆n, Cn) and σ([T̆k, Ck]k<n, (ZVk
)k≤n) was used.

Thus, the process of parasites along the spine behaves like a branching process with an i.i.d.
environmental sequence (T̆k, Ck)n∈N0 determining the reproduction laws (see [13, 81] for the
definition of a BRPE). We summarize this observation in the following theorem.

Theorem 1.3. Let (Z ′
n)n≥0 be a BPRE with Z∅ ancestors and i.i.d. environmental sequence

Λ := (Λn)n≥0 taking values in {L(X(u,t)) | 1 ≤ u ≤ t < ∞} with

P

(
Λ0 = L(X(u,t))

)
=

pt
ν

for all 1 ≤ u ≤ t < ∞. Then (ZVn)n≥0 and (Z ′
n)n≥0 equal in law.
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Proof. Obviously Z ′
0 = Z∅ a.s. by definition. Furthermore,

P

(
Λ0 = L(X(u,t))

)
=

pt
ν

= P

(
(T̆0, C0) = (t, u)

)
for all 1 ≤ u ≤ t < ∞, and thus, the reproduction laws in each generation are chosen according
to the same distribution. Hence, (ZVn)n≥0 and (Z ′

n)n≥0 equal in law.

We call the BPRE (Z ′
n)n≥0 from the above theorem with environmental sequence Λ the

associated branching process in random environment and we will refer to it with ABPRE. For
n ∈ N and s ∈ [0, 1], let

fn(s|Λ) := E(sZ
′
n |Λ) and fn(s) := EsZ

′
n = Efn(s|Λ)

denote the quenched and annealed generating function of Z ′
n, respectively. Then the theory of

branching processes in random environment (see Subsection 1.1.3 for references) provides us with
the following facts: For each n ∈ N,

fn(s|Λ) = gΛ0 ◦ ... ◦ gΛn−1(s), gλ(s) := E(sZ
′
1 |Λ0 = λ) =

∑
n≥0

λns
n

for any distribution λ = (λn)n≥0 on N0. Moreover, the gΛn are i.i.d. with

Eg′Λ0
(1) = EZ ′

1 =
∑

1≤u≤t

pt
ν

EX(u,t) =
EZ1

ν
=

γ

ν
(< ∞), (1.10)

where we recall that γ = EZ1. As a consequence,

EZ ′
n = f ′

n(1) =

n−1∏
k=0

Eg′Λk
(1) =

(γ
ν

)n

for each n ∈ N. If the process starts with k ≥ 1 parasites in a single cell, i.e. Z∅ = k Pk-a.s.,
then

Ek(s
Z′
n |Λ) = (fn(s|Λ))k Pk-a.s. (1.11)

It is also well-known that (Z ′
n)n≥0 survives with positive probability (w.p.p.) if and only if

E log g′Λ0
(1) > 0 and E log−(1− gΛ0(0)) < ∞, (1.12)

see e.g. [13, 81] and recall that γ < ∞ is assumed by (A1). Furthermore, by (A3), there exists
1 ≤ u ≤ t < ∞ such that pt > 0 and P(X(u,t) �= 1) > 0, which ensures that Λ0 �= δ1 w.p.p. As
usual, we call the ABPRE supercritical, critical or subcritical if E log g′Λ0

(1) > 0, = 0 or < 0,
respectively. In the subcritical case there exist three sub-regimes, Eg′Λ0

(1) log g′Λ0
(1) < 0,= 0, >

0, in which the process behaves differently. They are called strongly, intermediate and weakly
subcritical. See [40] for detailed limiting results in the three cases.

The connection between the distribution of Z ′
n and the expected number of cells in generation

n with a fixed number of parasites is stated in the next result.
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Proposition 1.4. For all n, k, z ∈ N0,

Pz

(
Z ′
n = k

)
= ν−n Ez (#{v ∈ Tn : Zv = k}) , (1.13)

in particular
Pz

(
Z ′
n > 0

)
= ν−n EzT ∗

n . (1.14)

Proof. For all n, k ∈ N, vertices v = v1 . . . vn and t0 ≥ v1, . . . , tn−1 ≥ vn, we find that

E
(
sZv | T∅ = t0, . . . , Tv|n−1 = tn−1

)
= E

⎛⎝Zv|n−1∏
i=1

E

(
s
X

(vn,tn−1)

i,v|n−1

) ∣∣ T∅ = t0, . . . , Tv|n−2 = tn−2

⎞⎠
= E

(
gL(X(vn,tn−1))(s)

Zv|n−1
∣∣ T∅ = t0, . . . , Tv|n−2 = tn−2

)
= · · · = gL(X(v1,t0)) ◦ gL(X(v2,t1)) ◦ · · · ◦ gL(X(vn,tn−1))(s)

= E

(
sZ

′
n | Λ0 = L

(
X(v1,t0)

)
, . . . ,Λn−1 = L

(
X(vn,tn−1)

))
,

and thus by (1.11)

Pz(Zv = k,Tv = 1) =
∑
t0≥v1

· · ·
∑

tn−1≥vn

Pz(Zv = k, Tv|0 = t0, . . . , Tv|n−1 = tn−1)

=
∑
t0≥v1

· · ·
∑

tn−1≥vn

Pz(Tv|0 = t0, . . . , Tv|n−1 = tn−1)Pz(Zv = k | Tv|0 = t0, . . . , Tv|n−1 = tn−1)

=
∑
t0≥v1

· · ·
∑

tn−1≥vn

(
n−1∏
i=0

pti

)
Pz

(
Z ′
n = k | Λ0 = L

(
X(v1,t0)

)
, . . . ,Λn−1 = L

(
X(vn,tn−1)

))
= νn

∑
t0≥v1

· · ·
∑

tn−1≥vn

Pz

(
Z ′
n = k,Λ0 = L

(
X(v1,t0)

)
, . . . ,Λn−1 = L

(
X(vn,tn−1)

))
for all z ∈ N0. Finally, we get for each z ∈ N0

Ez (#{v ∈ Tn : Zv = k}) =
∑
|v|=n

Pz(Zv = k,Tv = 1)

= νn
∑
|v|=n

∑
t0≥v1

· · ·
∑

tn−1≥vn

Pz

(
Z ′
n = k,Λ0 = L

(
X(v1,t0)

)
, . . . ,Λn−1 = L

(
X(vn,tn−1)

))

= νn
∞∑

t0,...,tn−1=1

∑
vi≤ti−1,
i=1,...,n

Pz

(
Z ′
n = k,Λ0 = L

(
X(v1,t0)

)
, . . . ,Λn−1 = L

(
X(vn,tn−1)

))

= νnPz

(
Z ′
n = k

)
.

Summation over all k ∈ N then gives (1.14).

1.2.2 A Markov chain arising from the tree of infected cells

To know exactly which cells are alive (Tv = 1) in V is unnecessary for certain analysis, for
example when dealing only with the number of cells Tn resp. contaminated cells T ∗

n . Since T is a
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GWT and non-infected cells influence neither the future behavior of parasite multiplication nor
the partition onto the daughter cells, the behavior of the BwBP depends only on the number of
contaminated cells and the parasite number in each of them. Roughly speaking, we look at BP
generation-wise, erase the cell tree structure and ignore all “healthy” cells. In this subsection, we
introduce a process BPG that meets the afore described heuristic.

For a formal definition of this process, we first denote by

S∗ := {(s, (z1, . . . , zs)) ∈ S | 1 ≤ z1 ≤ z2 ≤ · · · ≤ zs} (1.15)

the set of configurations of contaminated cells in a generation and put S∗
0 := {(0, 0)} ∪ S∗. For

each n ∈ N0 denote by χn the measurable mapping which maps a vector of host-parasite trees
(τ (1), . . . , τ (k)), k ∈ N, to a vector providing the total number of contaminated cells over all trees
in the nth generation and a vector having non-decreasing entries giving the number of parasites
in them. That is, with t(k) :=

∑k
i=1 t

∗
n(τ

(i)) for a vector (τ (1), . . . , τ (k)),

χn :

( ⋃
k≥1

Sk, σ
( ⋃

k≥1

Sk
))

→ (S∗
0 ,P(S∗

0)) , (τ (i))1≤i≤k �→

⎧⎪⎨⎪⎩
(t, z) if t := t(k) > 0,

(0, 0) if t = 0,
(1.16)

where z = (z1, . . . , zt) is the t-dimensional vector of increasing entires zj = zvj (τ
(ij)), 1 ≤ j ≤ t,

for distinct tuples (i1, v1), . . . , (it, vt) ∈ {1, . . . , k} × {|v| = n}, denoting the number of parasites
in the alive cells over all trees in generation n, i.e. tvj (τ

(ij)) zvj (τ
(ij)) > 0 for each 1 ≤ j ≤ t and

z1 ≤ z2 ≤ · · · ≤ zt. In particular, t gives the number of contaminated cells in the nth generation.
We define the process BPG = (BPGn)n≥0 generation-wise by

BPGn := χn(BT ), n ∈ N0 .

So BPGn = (s, (z1, . . . , zs)) means that the nth generation of BT has s infected cells containing
z1, . . . , zs parasites.

As each cell and its parasites multiply independently of all other cells and their parasites in
the same generation, the exact positions of the infected cells in a generation are unimportant
for the number of contaminated cells in the next generation and the number of parasites they
contain. So, for each n ∈ N0 and [s

(i)
v , x

(i)
v ]|v|=n,i∈N ∈ χ−1((s, x)), (s, x) ∈ S∗

0 , we obtain

P

(
BPGn+1 ∈ · | BPn = [s(i)v , x(i)v ]|v|=n,i∈N

)
= P(s,x) (BPG1 ∈ ·)

by utilizing the branching property (see Proposition 1.2). Consequently, BPG is a Markov chain
with state space S∗

0 and transition probabilities

p((s, x), (t, z)) := P(s,x)(BPG1 = (t, z)) = P(s,x)

(
BP1 ∈ χ−1

1 ((t, z))
)

(1.17)

for (s, x), (t, z) ∈ S∗
0 . We note this in the following proposition.

Proposition 1.5. The process BPG is a homogeneous Markov chain with state space S∗
0 and

transition probabilities defined by (1.17). Moreover, all states in S∗ are transient.
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Proof. We have already seen in the discussion above the proposition that BPG is a homogeneous
Markov chain with state space S∗

0 and transition probabilities given by (1.17). So, it is left to
prove that all states in S∗ are transient. First, we point out that for each z ∈ N0

{Z1 = 0} = {T∅ = 0} ∪
⋃
t∈N

{
T∅ = t,

z∑
i=1

t∑
u=1

X
(u,t)
i,∅ = 0

}
Pz-a.s.

So if P(Z1 = 0) > 0, then P(T = 0) > 0 or there exists a t ≥ 1 such that P(T = t)P(
∑t

u=1X
(u,t) =

0) > 0, hence,

Pz(Z1 = 0) ≥

⎧⎨⎩P(T = 0) if P(T = 0) > 0,∑∞
t=1 P(T = t)P

(∑t
u=1X

(u,t) = 0
)z if P(T = 0) = 0,

⎫⎬⎭ > 0

for all z ∈ N0. Using the branching property, this implies for each (s, x) ∈ S∗ with x =

(x1, . . . , xs)

P(s,x)(BPGn �= (s, x) for all n ≥ 1) ≥

⎧⎪⎨⎪⎩
P(s,x)(Z1 = 0) if P(Z1 = 0) > 0,

1− P(s,x)(Z1 =
∑s

i=1 xi) if P(Z1 = 0) = 0,

⎫⎪⎬⎪⎭
≥

⎧⎪⎨⎪⎩
∏s

i=1 Pxi(Z1 = 0) if P(Z1 = 0) > 0,

1−∏s
i=1 Pxi(Z1 = xi) if P(Z1 = 0) = 0,

⎫⎪⎬⎪⎭ > 0,

where Pz(Z1 = z) < 1 for all z ≥ 1 by (A2). Thus, (s, x) ∈ S∗ is a transient state.

As an immediate consequence of the above proposition, we deduce the extinction-explosion
principle saying that the population of parasites either dies out or tends to infinity.

Corollary 1.6 (Extinction-explosion principle). The parasite population of a BwBP either ex-
tincts or explodes, i.e. for all (t, z) ∈ S

P(t,z)(Zn → 0) + P(t,z)(Zn → ∞) = 1.

Proof. Since non-infected root cells have no effect on parasite survival, we can assume without
the loss of generality that (t, z) ∈ S∗. But the transience of all states in S∗ for the process BPG
implies

lim
n→∞

P(t,z)(1 ≤ Zn ≤ K) ≤ lim
n→∞

K∑
s=1

∑
x∈{1,..,K}s

P(t,z)(BPGn = (s, x)) = 0

for all K ∈ N.

We denote by
Ext := {Zn → 0} and Surv := Extc = {Zn → ∞}

the set of extinction and survival of parasites, respectively. Furthermore, we put for (t, z) ∈ S

P∗
(t,z) := P(t,z)(·| Surv) and E∗

(t,z) := E(t,z)(·| Surv),
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and in consistency of our notation, we write P∗
z and E∗

z, z ∈ N, for the corresponding probability
measures Pz and expectations Ez conditioned under Surv. To round up these definitions, we put
P∗ := P∗

1 and E∗ := E∗
1.

As a final thought in this subsection, we find for all (t, z) ∈ S∗ by utilizing the branching
property

P(t,z)(Zn = 0) =

t∏
i=1

Pzi(Zn = 0),

and thus P(t,z)(Ext) = 1 if and only if Pzi(Ext) = 1 for all 1 ≤ i ≤ t. Now, let the BwBP start
with a unique cell and z ∈ N parasites, and let Zn,i denote the descendants of parasite i in the nth

generation. Since {(X(•,k)
i,v )k≥1 : i ≥ 1, v ∈ V} is an i.i.d. family and the cell tree is independent

of the parasites, Zn,i, 1 ≤ i ≤ t, are i.i.d. given the cell tree T. That is, for a tree τ ⊆ V with
one root cell and A = ×z

i=1Ai ⊆ Nz
0

Pz(Zn ∈ A|T = τ) =
z∏

i=1

P(Zn,i ∈ Ai|T = τ),

and thus for all z ∈ N

Pz(Ext) = 1 iff P(Ext) = 1. (1.18)

1.2.3 The process of contaminated cells

We proceed to the statement of results for the process of contaminated cells (T ∗
n )n≥0 and its

asymptotic behavior. Since the extinction-explosion principle holds for the process of parasites
(Zn)n≥0 (see Corollary 1.6), a natural question arising is the following: In the case of non-
extinction of the parasite population, are these parasites concentrated in only a finite number
of cells or do they spread over the whole cell tree. In other words, does T ∗

n tend to infinity
for n → ∞ if Zn does? This would lead to an extinction-explosion principle for the process of
contaminated cells, i.e. for (t, z) ∈ S

P(t,z)(T ∗
n → 0) + P(t,z)(T ∗

n → ∞) = 1.

It turns out that this is in fact true besides some degenerated cases. Due to the branching
property (Proposition 1.2), it is enough to consider a single root cell. Hence, we just prove the
above relation under the measures Pz, z ∈ N.

Theorem 1.7. Let P(Surv) > 0 and z ∈ N.

(a) If P2(T ∗
1 ≥ 2) > 0, then Pz(T ∗

n → ∞ | Surv) = 1.

(b) If P2(T ∗
1 ≥ 2) = 0, then Pz(T ∗

n = 1 ∀ n ≥ 0 | Surv) = 1.

Proof. Let z ∈ N. We first prove the easier case (b) and note that

P2(T ∗
1 ≥ 2) ≥ ptP2(X

(u,t)
1,∅ > 0, X

(v,t)
2,∅ > 0) = ptP(X

(u,t) > 0)P(X(v,t) > 0)
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for all t ≥ 1 and 1 ≤ u < v ≤ t. Thus, for all t ≥ 1 with pt > 0 there exists at most one
1 ≤ u ≤ t such that P(X(u,t) > 0) > 0. Consequently, Pz(T ∗

n ≤ 1 ∀ n ≥ 0) = 1. But since
Surv = {T ∗

n ≥ 1 ∀ n ≥ 0} Pz-a.s., (b) is proved.
The proof of (a) is a bit more complicated and uses the Markov chain BPG introduced in

Subsection 1.2.2 to show that (T ∗
n )n≥0 visits each t ≥ 1 only finitely often. If this holds true, we

can conclude that for all t ≥ 1

Pz(1 ≤ T ∗
n ≤ t infinitely often) = 0

and thus the extinction-explosion principle for (T ∗
n )n≥0. But since Ext = {T ∗

n → 0} Pz-a.s., (a)
follows.

So after these preliminaries, it is left to prove that T ∗
n = t for at most finitely many n ∈ N,

for each t ≥ 1. To verify this, we define

At := {(t, (z1, . . . , zt)) ∈ S∗ | zt ≥ 2} ⊆ Nt

for t ≥ 1 and note that for n ≥ 0

{T ∗
n = t} = {BPGn ∈ At} ∪ {BPGn = (t, (1, . . . , 1)︸ ︷︷ ︸

t-times

)} Pz-a.s.

Since (t, (1, . . . , 1)) ∈ S∗ is transient by Proposition 1.5, we get

Pz(T ∗
n = t infinitely often) = Pz(BPGn ∈ At infinitely often),

and it remains to prove that the Markov chain BPG visits the set At only finitely often with
probability 1. For (t, x) ∈ At with x = (x1, . . . , xt), we get by using the branching property

P(t,x) (BPGn /∈ At for all n ≥ 1) ≥ P(t,x) (T ∗
n > t for all n ≥ 1)

≥ Pxt (T ∗
1 ≥ 2)P(Surv)2

t−1∏
i=1

Pxi (T ∗
1 ≥ 1)P(Surv)

≥ P2 (T ∗
1 ≥ 2)P (T ∗

1 ≥ 1)t−1
P(Surv)t+1 > 0

due to our assumptions in (a). It is remarked that the established lower bound does not depend
on the special choice of (t, x) anymore. Let τ0 = 0 and for n ≥ 0

τn+1 := inf {k > τn | BPGk ∈ At}

be the successive entry times of BPG into the set At. Then the inequality just achieved above
and the strong Markov property of BPG imply the existence of a constant c < 1 such that for
all (t, x) ∈ At and n ≥ 0

Pz (τn+1 − τn < ∞|BPGτn = (t, x), τn < ∞) = P(t,x) (τ1 < ∞) ≤ c < 1.

Using this inequality and iteration, we conclude for n ≥ 1

Pz(τn < ∞) =
∑

(t,x)∈At

Pz(BPGτn−1 = (t, x), τn − τn−1 < ∞, τn−1 < ∞)
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=
∑

(t,x)∈At

Pz(τn − τn−1 < ∞|BPGτn−1 = (t, x), τn−1 < ∞)Pz(BPGτn−1 = (t, x), τn−1 < ∞)

≤ cPz(τn−1 < ∞)

≤ cn−1Pz(τ1 < ∞)

≤ cn−1

and finally

Pz (BPGn ∈ At infinitely often) = Pz (τn < ∞ for all n ≥ 1) = Pz

⎛⎝⋂
n≥1

{τn < ∞}

⎞⎠
= lim

n→∞
Pz(τn < ∞) ≤ lim

n→∞
cn−1 = 0.

The next result provides us with a geometric rate at which the number of contaminated cells
tends to infinity.

Theorem 1.8. (ν−nT ∗
n )n≥0 is a non-negative supermartingale with respect to (Fn)n≥0 under

each Pz, z ∈ N0, and therefore almost surely convergent to an integrable random variable L as
n → ∞. Furthermore, for z ∈ N,

(a) L = 0 Pz-a.s. if and only if one of the following conditions hold true:

(i) ν ≤ 1

(ii) ET log T = ∞
(iii) E log g′Λ0

(1) ≤ 0 or E log−(1− gΛ0(0)) = ∞.

In particular, Pz(L = 0) = 1 for z ∈ N if and only if P(L = 0) = 1.

(b) Pz(L = 0) < 1 implies {L = 0} = Ext Pz-a.s.

Proof. Let z ∈ N. That (ν−nT ∗
n )n≥0 forms a supermartingale follows by an easy calculation. For

n ≥ 0, we get

Ez

(
T ∗
n+1 | Fn

)
=

∑
v∈T∗

n

Ez

(
Tv∑
u=1

1{Zvu>0}
∣∣ Fn

)

≤
∑
v∈T∗

n

Ez

(
Tv

∣∣ Fn

)
=

∑
v∈T∗

n

E (Tv)

= νT ∗
n Pz-a.s.,

where in the penultimate equation we used the independence of Tv and (Fk)k≤n for every v ∈ Tn.
This confirms the supermartingale property as well as the integrability. The adaptivity is obvious.
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Thus (ν−nT ∗
n )n≥0 forms a non-negative supermartingale and therefore almost sure convergence

to an integrable random variable L is ensured.
If ν > 1 and ET log T < ∞, the supermartingale (ν−nT ∗

n )n≥0 is even uniformly integrable.
This follows, since the obvious majorant (ν−nTn)n≥0 is a normalized supercritical GWP having
the (Z logZ)-condition of the Kesten-Stigum theorem fulfilled (see [14, Section I.10]). Conse-
quently,

EzL = lim
n→∞

Ez

(T ∗
n

νn

)
= lim

n→∞
Pz(Z

′
n > 0), (1.19)

where the last equality follows from (1.14) in Proposition 1.4. Now (1.12) implies that in this
case L = 0 Pz-a.s. if and only if condition (iii) holds true. If, on the other hand, ET log T = ∞,
Fatou’s lemma and the theorem of Kesten and Stigum imply

EzL ≤ lim inf
n→∞

Ez

(T ∗
n

νn

)
≤ lim inf

n→∞
E

(Tn
νn

)
= 0,

and if ν ≤ 1, then T ∗
n ≤ Tn = 0 eventually. In both cases we obtain L = 0 Pz-a.s. Since the

conditions (i)−(iii) do not depend on z ∈ N, it follows Pz(L = 0) = 1 if and only if P(L = 0) = 1,
which completes the proof of (a).

(b) First, we note the obvious property that for each x, y ∈ N0 with x ≤ y and k ∈ N0

Px(T ∗
n ≥ k) ≤ Py(T ∗

n ≥ k) for each n ∈ N0 . (1.20)

Defining τn = inf{m ∈ N : T ∗
m ≥ n}, we find that for z ∈ N and all n ∈ N

Pz(L = 0) ≤ Pz(L = 0|τn < ∞) + Pz(τn = ∞)

= Pz

⎛⎝ 1

ντn

∑
v∈T∗

τn

ν−(m−τn)t∗m(BT (v))
m→∞−−−−→ 0

∣∣∣∣ τn < ∞

⎞⎠+ Pz(τn = ∞)

≤ Pz

⎛⎝T ∗
τn⋂

k=1

{T ∗
m,k/ν

m → 0}
∣∣∣∣τn < ∞

⎞⎠+ Pz(τn = ∞)

≤ P

(
n⋂

k=1

{T ∗
m,k/ν

m → 0}
)

+ Pz(τn = ∞)

≤ P(L = 0)n + Pz(τn = ∞),

where t∗m(BT (v)) =
∑

|u|=n Tvu 1{Zvu>0} is the number of contaminated cells in the mth gener-
ation of the subtree rooted in cell v ∈ T∗

n, and the T ∗
m,k, k ≥ 1, are independent copies of T ∗

m

starting with one ancestor cell hosting one parasite. Since P(L = 0) < 1, Theorem 1.7 implies

Pz(L = 0) ≤ lim
n→∞

Pz(τn = ∞) = Pz

(
sup
n≥1

T ∗
n < ∞

)
= Pz(Ext),

which in combination with Ext ⊆ {L = 0} Pz-a.s. proves the assertion.



1.2. IMPORTANT PROCESSES AND FIRST RESULTS 27

At last, we look at the situation of almost sure extinction of parasites when starting with
multiple ancestor cells. We show the auxiliary result that in this case only one subtree of an
ancestor cell contributes to the total number of contaminated cells in a generation.

Lemma 1.9. Let P(Ext) = 1. Then for all (s, z) ∈ S∗

lim
n→∞

P(s,z)

(
∃ 1 ≤ i < j ≤ s s.t. min{t∗n(BT (i)), t∗n(BT

(j))} > 0

∣∣∣∣ s∑
k=1

t∗n(BT
(k)) > 0

)
= 0,

where BT (1), . . . ,BT (s) denote the s independent BwBP starting from the root cells.

Proof. Let (s, z) ∈ S∗ with z = (z1, . . . , zs). First, we note that for all n ≥ 0

P(s,z)

(
s∑

k=1

t∗n(BT
(k)) > 0

)
≥ Pzs (T ∗

n > 0) .

Thanks to the branching property of BT and (1.20), we conclude for n ≥ 0

P(s,z)

(
∃ 1 ≤ i < j ≤ s s.t. min{t∗n(BT (i)), t∗n(BT

(j))} > 0
)

≤
∑

1≤i<j≤s

P(s,z)

(
t∗n(BT

(i)) > 0, t∗n(BT
(j)) > 0

)
=

∑
1≤i<j≤s

Pzi (T ∗
n > 0)Pzj (T ∗

n > 0)

≤ s2Pzs (T ∗
n > 0)2 ,

where it is recalled that the elements in z are increasing. This now yields

P(s,z)

(
∃ 1 ≤ i < j ≤ s s.t. min{t∗n(BT (i)), t∗n(BT

(j))} > 0

∣∣∣∣ s∑
k=1

t∗n(BT
(k)) > 0

)

=
P(s,z)

(
∃ 1 ≤ i < j ≤ s s.t. min{t∗n(BT (i)), t∗n(BT

(j))} > 0
)

P(s,z)

(∑s
k=1 t

∗
n(BT

(k)) > 0
)

≤ s2 Pzs (T ∗
n > 0)

→ 0 as n → ∞.

1.2.4 The process of parasites

We continue by turning to the process of parasites (Zn)n≥0, and this subsection is devoted to the
derivation of first results. We will begin proving a full characterization of almost sure extinction
of parasites, which is the main result in this subsection. Thereafter we concentrate on the
normalized process (γ−nZn)n≥0, which forms a non-negative martingale, and give conditions for
L2-boundedness. Finer results, including an equivalent condition for the mean convergence, are
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later presented in Chapter 4. Referring to the branching property it is enough to consider the
process starting with one root cell, i.e. under the measures (Pz)z≥0.

Recalling that (Zn)n≥0 satisfies the extinction-explosion principle (see Corollary 1.6), a nat-
ural problem in hand is under which conditions almost sure extinction occurs. Compared to the
standard GWP, which dies out almost surely if and only if the reproduction mean is less or equal
to 1 (see [14, Section I.5]), (Zn)n≥0 has a slightly different behavior. Although EZn = γn is the
nth power of the reproduction mean (see Proposition 1.12), as in the standard Galton-Watson
case, we find that γ > 1 is not sufficient for parasites to survive. To see that, consider the case
where sharing of parasites into daughter cells is highly unequal. In this situation, there are only
a few cells containing most of the parasites. If one of this “highly” infected cells dies, a large
number of parasites disappears and so the probability of extinction is high in every generation.
This becomes especially evident in the setting when only one daughter cell can be contaminated,
i.e. P2(T ∗

1 ≥ 2) = 0. Hence, a condition warranting some kind of equal sharing must be in force
too for parasites to survive w.p.p.

The next theorem gives us a full characterization of almost sure extinction. By (1.18) it is
enough to concentrate on the process starting with one root cell hosting one parasite.

Theorem 1.10.

(a) If P2(T ∗
1 ≥ 2) = 0, then P(Ext) = 1 if and only if

E (logE (Z1|T0)) ≤ 0 or E log− P (Z1 > 0 | T0) = ∞.

(b) If P2(T ∗
1 ≥ 2) > 0, then the following statements are equivalent:

(i) P(Ext) = 1

(ii) ET ∗
n ≤ 1 for all n ∈ N0

(iii) supn∈N0
ET ∗

n < ∞
(iv) ν ≤ 1, or

ν > 1, E log g′Λ0
(1) < 0 and inf

0≤θ≤1
Eg′Λ0

(1)θ ≤ 1

ν
.

Remark 1.11. Let us point out the following useful facts about subcritical branching processes
in random environment, that is E log g′Λ0

(1) < 0, before proceeding to the proof of the theorem.
We take the subcriticality in this remark as granted. We first note that, if Eg′Λ0

(1) log g′Λ0
(1) ≤ 0,

the convexity of θ �→ Eg′Λ0
(1)θ implies that

Eg′Λ0
(1) = inf

0≤θ≤1
Eg′Λ0

(1)θ.

Under the assumptions

P(Z ′
1 ≤ C) = 1 and P

(
0 < g′Λ0

(1) < ε
)
= 0 (AsGe)

for suitable constants C > 0 and ε > 0, Geiger et al. [40, Theorems 1.1–1.3] showed that

P(Z ′
n > 0) � cn−κ

(
inf

0≤θ≤1
Eg′Λ0

(1)θ
)n

as n → ∞ (1.21)
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for some c ∈ (0,∞), where

κ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if Eg′Λ0

(1) log g′Λ0
(1) < 0 (strongly subcritical case),

1/2 if Eg′Λ0
(1) log g′Λ0

(1) = 0 (intermediately subcritical case),

3/2 if Eg′Λ0
(1) log g′Λ0

(1) > 0 (weakly subcritical case).

The condition (AsGe) can be strongly weakened for the asymptotic relation of the survival
probability in (1.21) to hold true, see for example [40,86]. But (AsGe) is enough for our purposes.

A combination of (1.14) and (1.21) provides us with the asymptotic relation

ET ∗
n � cn−κνn

(
inf

0≤θ≤1
Eg′Λ0

(1)θ
)n

as n → ∞, (1.22)

in particular (with (AsGe) still in force)

inf
0≤θ≤1

Eg′Λ0
(1)θ ≤ 1

ν
if sup

n≥1
ET ∗

n < ∞. (1.23)

Proof. (a) If P2(T ∗
n ≥ 2) = 0, we have seen in the proof of Theorem 1.7 that for all t ≥ 1 with

pt > 0 there exists at most one 1 ≤ u ≤ t such that P(X(u,t) > 0) > 0. This implies that (Zn)n≥0

is a branching process in an i.i.d. random environment (see Subsection 1.1.3) and thus dies out
almost surely if and only if E(logE(Z1|T0)) ≤ 0 or E log− P(Z1 > 0 | T0) = ∞ (see e.g. [81]).

Let us now focus on (b) and assume P2(T ∗
1 ≥ 2) > 0.

“(i) ⇒ (ii)” (by contraposition) Fix m ∈ N such that E (T ∗
m) > 1 and consider a supercritical

GWP (Sn)n≥0 with S0 = 1 and offspring distribution

P(S1 = k) = P(T ∗
m = k), k ∈ N0 .

Obviously,
P(Sn > k) ≤ P(T ∗

nm > k)

for all k, n ∈ N0, hence
lim
n→∞

P(T ∗
nm > 0) ≥ lim

n→∞
P(Sn > 0) > 0,

i.e. parasites survive w.p.p.

“(ii) ⇒ (iii)” Here is nothing to prove.

“(iii) ⇒ (i)” Recall that lim infn→∞ T ∗
n = ∞ a.s. on Surv by Theorem 1.7. Thus, if

supn≥0 ET ∗
n < ∞, Fatou’s lemma implies

∞ > lim inf
n→∞

ET ∗
n ≥ E

(
lim inf
n→∞

T ∗
n

)
,

giving P(Surv) = 0.

“(iv) ⇒ (i), (ii)” If ν ≤ 1, then ET ∗
n ≤ ETn = νn ≤ 1 for all n ∈ N. So let us consider the

situation when
ν > 1, E log g′Λ0

(1) < 0 and inf
0≤θ≤1

Eg′Λ0
(1)θ ≤ 1

ν
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is valid. By (1.14),

ET ∗
n = νnP(Z ′

n > 0)

for all n ∈ N. We have to distinguish three cases:

Case A. Eg′Λ0
(1) log g′Λ0

(1) ≤ 0. By what has been pointed out in the above remark, we
then infer

γ

ν
= Eg′Λ0

(1) = inf
0≤θ≤1

Eg′Λ0
(1)θ ≤ 1

ν

and thus γ ≤ 1, which in turn entails

ET ∗
n ≤ EZn = γn ≤ 1

for all n ∈ N as required.

Case B. Eg′Λ1
(1) log g′Λ1

(1) > 0 and (AsGe). Then, by (1.21),

P(Z ′
n > 0) � cn−3/2

(
inf

0≤θ≤1
Eg′Λ1

(1)θ
)n

as n → ∞

holds true for a suitable constant c ∈ (0,∞) and therefore, using Fatou’s lemma,

0 = lim
n→∞

νnP(Z ′
n > 0) = lim inf

n→∞
ET ∗

n ≥ E

(
lim inf
n→∞

T ∗
n

)
.

Consequently, P(Surv) = 0 since infn≥0 T ∗
n ≥ 1 a.s. on Surv.

Case C. Eg′Λ1
(1) log g′Λ1

(1) > 0. Using contraposition, suppose that supn∈N ET ∗
n > 1. Fix

any vector α = (α(u,t))1≤u≤t<∞ of distributions on N0 satisfying

α(u,t)
x ≤ P

(
X(u,t) = x

)
for x ≥ 1

and u, t as stated, hence

α
(u,t)
0 ≥ P

(
X(u,t) = 0

)
and

∑
x≥n

α(u,t)
x ≤ P

(
X(u,t) ≥ n

)
for each n ≥ 0. Possibly after enlarging the underlying probability space, we can then construct
a BwBP BP(α) = [Tv, Zα,v]v∈V coupled with and of the same kind as BP such that

P

(
X

(u,t)
α,i,v = x

)
= α(u,t)

x and X
(u,t)
α,i,v ≤ X

(u,t)
i,v a.s.

for each 1 ≤ u ≤ t < ∞, v ∈ V, i ≥ 1 and x ≥ 1. Then Zα,v ≤ Zv a.s. for all v ∈ V and since the
choice of α has no affect on the cell splitting process, we have να = ν > 1 and thus for θ ∈ [0, 1]

Eg′α,Λ0
(1)θ = E

(
E(Z ′

α,1|Λ0)
θ
)

=
∑

1≤u≤t<∞

pt
ν

(
EX(u,t)

α

)θ

≤
∑

1≤u≤t<∞

pt
ν
μθ
u,t ≤ Eg′Λ0

(1)θ (1.24)
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where να, Z ′
α,n, X(u,t)

α and gα,Λ0 have the obvious meaning. It is recalled that μu,t = EX(u,t).
With a similar calculation as in (1.24), we establish

E log g′α,Λ0
(1) ≤ E log g′Λ0

(1) < 0. (1.25)

For N ∈ N let α(N) = (α(u,t)(N))1≤u≤t<∞ be the vector specified by

α(u)
x (N) :=

⎧⎨⎩P
(
X(u,t) = x

)
if 1 ≤ x ≤ N,

0 if x > N,

if μu,t ≥ 1/N , and α
(u,t)
0 = 1 if μu,t < 1/N . Then BP(α(N)) satisfies the condition (AsGe) and

we can fix N ∈ N such that supn∈N ET ∗
α(N),n > 1, because T ∗

α(N),n ↑ T ∗
n as N → ∞. Then, by

what has already been proved under Case B in combination with (1.24), (1.25) and να(N) > 1,
we infer

inf
0≤θ≤1

Eg′Λ0
(1)θ ≥ inf

0≤θ≤1
Eg′α(N),Λ0

(1)θ >
1

ν
. (1.26)

and thus violation of (iv).

“(ii) ⇒ (iv)” Suppose that ET ∗
n ≤ 1 for all n ∈ N0 and further ν > 1 which, by (1.14),

entails limn→∞ P(Z ′
n > 0) = 0 and thus E log g′Λ0

(1) ≤ 0 or E log−(1 − gΛ0(0)) = ∞. We must
show that E log g′Λ0

(1) < 0 and inf0≤θ≤1 Eg
′
Λ0
(1)θ ≤ ν−1. But given E log g′Λ0

(1) < 0, the second
condition follows from (1.23) if (AsGe) is valid. With E log g′Λ0

(1) < 0 still be in force, suppose
the contrary, i.e. inf0≤θ≤1 Eg

′
Λ0
(1)θ > ν−1. Then we can find a N ≥ 1 and construct a suitable

“α(N)-coupling” as described under Case C above, such that

inf
0≤θ≤1

Eg′Λ0
(1)θ ≥ inf

0≤θ≤1
Eg′α(N),Λ0

(1)θ >
1

ν
.

Since (AsGe) is fulfilled by BP(α(N)), we get

sup
n∈N

ET ∗
n ≥ sup

n∈N
ET ∗

α(N),n > 1

by referring to (1.25) and by what has already be established for a BwBP with a subcritical
ABPRE, i.e. E log g′Λ0

(1) < 0. Thus we get the statement under the circumstance that the
ABPRE is subcritical and Assumption (AsGe) is invalid.

Hence, it remains to rule out that E log g′Λ0
(1) ≥ 0. Assuming the latter, we find with the

help of Jensen’s inequality that

inf
0≤θ≤1

logEg′Λ0
(1)θ ≥ inf

0≤θ≤1
θE log g′Λ0

(1) ≥ 0

or, equivalently,

inf
0≤θ≤1

Eg′Λ0
(1)θ ≥ 1 >

1

ν

(which implies inf0≤θ≤1 Eg
′
Λ0
(1)θ = 1). Use once more a suitable “α-coupling” (α is not necessary

to be of the α(N) structure) and fix α in such a way that

1 = inf
0≤θ≤1

Eg′Λ0
(1)θ > inf

0≤θ≤1
Eg′α,Λ0

(1)θ >
1

ν
,
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which implies subcriticality of the ABPRE (Z ′
α,n)n≥0 by taking the logarithm and using Jensen’s

inequality. As above, we thus arrive at the contradiction

sup
n∈N

ET ∗
n ≥ sup

n∈N
ET ∗

α,n > 1

by using the already established results for a BwBP with a subcritical ABPRE. This completes
the proof of (b).

After having proved characteristics for almost certain extinction, we turn to the mean nor-
malized process (γ−nZn)n≥0. As mentioned at the beginning of this subsection, this process is a
martingale. We will state this in the next proposition.

Proposition 1.12. The process Wn := γ−nZn, n ≥ 0, is a non-negative martingale with respect
to (Fn)n≥0 under each Pz, z ∈ N0, and therefore converges almost surely to an integrable random
variable W . In particular EzZn = zγn for all n ≥ 0.

Proof. The adaptivity is clear by the definition of (Fn)n≥0. For n, z ∈ N0 we calculate

Ez (Zn+1 | Fn) =
∑
v∈Tn

Zv∑
i=1

Ez

(
Tv∑
u=1

X
(u,Tv)
i,v

∣∣ Fn

)
=

∑
v∈Tn

Zv∑
i=1

Ez

(
Tv∑
u=1

X
(u,Tv)
i,v

)

=
∑
v∈Tn

Zv∑
i=1

E (Z1) = γZn Pz-a.s.,

where in the second equation the independence of
∑Tv

u=1X
(u,Tv)
i,v and (Fk)k≤n and in the third

equation the fact that
∑Tv

u=1X
(u,Tv)
i,v is independent of z and distributed as Z1 (under P) for all

v ∈ V was used. This states the martingale property as well as the integrability since EzZn = zγn

by iteration. The convergence then follows from the martingale convergence theorem.

After having confirmed the martingale property of (Wn)n≥0, we wonder under which condi-
tions the almost sure limit W of this martingale is positive w.p.p. and when (Wn)n≥0 is uniformly
integrable. Since (Wn)n≥0 is a martingale by Proposition 1.12 this is the case, when the process
is L2-bounded, i.e. supn≥0 EW

2
n < ∞, by standard martingale theory. In this context it is

worthwhile to calculate the variance of Zn, which may be done in a straightforward but tedious
computation. We therefore just state the variance in the next lemma and give the proof and the
exact constants in the variance formula in Appendix A.

Lemma 1.13. Let σ2 := VarZ1 < ∞. Then for n ≥ 1

VarZn = σ2γn−1
n−1∑
k=0

γk + c
γ2(n−1)

γ̃

n−1∑
k=0

(
γ̃γ−2

)k k−1∑
j=0

(
γ

γ̃

)j

for a constant 0 ≤ c < ∞ and γ̃ := ν Eg′Λ0
(1)2 =

∑∞
t=1 pt

∑t
u=1 μ

2
u,t.
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It is immediately deduced from the lemma that the martingale (Wn)n≥0 is L2-bounded if and
only if

σ2 < ∞, γ > 1 and γ̃ ≤ γ2. (1.27)

Hence, parasites survive w.p.p. and EW = 1 by standard martingale theory if these three
conditions in (1.27) are fulfilled. This particularly implies P(W > 0) > 0 which is equivalent to
Pz(W > 0) > 0 for each z ∈ N, i.e. for z ∈ N

Pz(W = 0) = 1 iff P(W = 0) = 1, (1.28)

by a similar argumentation as the one given to prove (1.18).

Theorem 1.14. Assuming P(Surv) > 0 and thus particularly γ > 1, the following assertions
hold true:

(a) (Wn)n≥0 is L2-bounded if and only if σ2 < ∞ and γ̃ ≤ γ2. In this case (Wn)n≥0 is
uniformly integrable and P(W > 0) > 0 as well as EW = 1.

(b) If Pz(W = 0) < 1 for z ∈ N, then Ext = {W = 0} Pz-a.s.

Proof. (a) As pointed out above this theorem, (Wn)n≥0 is a L2-bounded martingale if and only
if σ2 < ∞ and γ̃ ≤ γ2 and thus uniformly integrable. It therefore converges in L1 to its limit W
satisfying EW = 1 as well as P(W > 0) > 0.

(b) follows in the same manner as Theorem 1.8(b). Let τn = inf{m ∈ N | T ∗
m ≥ n}. Then we

get the following inequality

Pz(W = 0) ≤ Pz(W = 0 | τn < ∞) + Pz(τn = ∞)

≤ Pz

⎛⎝T ∗
τn⋃

k=1

{Zm,k/γ
m → 0} | τn < ∞

⎞⎠+ Pz(τn = ∞)

≤
n∏

k=1

P(Zm,k/γ
m → 0) + Pz(τn = ∞)

= P(W = 0)n + Pz(τn = ∞),

where Zm,k are i.i.d. and distributed as Zm when starting with one parasite in a single cell.
Because of P(W = 0) < 1 (by the considerations above the theorem) and Theorem 1.7 it follows

Pz(W = 0) ≤ lim
n→∞

Pz(τn = ∞) = Pz(T ∗
n is bounded) = Pz(Ext).

Since Ext ⊆ {W = 0} Pz-a.s. the theorem is proved.

It is remarked that no further conditions despite survival of parasites w.p.p. and P(W =

0) < 1 are assumed in part (b) of the above theorem. In particular, (Wn)n≥0 does not need to
be L2-bounded or uniformly integrable for now. However, we will see later in Section 4.1 that
P(W = 0) < 1 can only be true if and only if (Wn)n≥0 is uniformly integrable. Furthermore,
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as in many other branching processes, L2-boundedness is a too strict condition for uniform
integrability. In the standard Galton-Watson case this leads to the famous theorem from Kesten
and Stigum [14, Chapter I.10, Theorem 1] and in Theorem 4.6 we will state a similar result for the
BwBP. But before proving the mentioned theorem we need to introduce a different kind of size-
biased process, which is done in the next chapter, and some asymptotic properties of branching
processes in random environment with immigration, which will be introduced in Chapter 3.



Chapter 2

The size-biased process

As mentioned at the beginning of Subsection 1.2.1, the method of size-biasing is a very powerful
tool to prove limit results of various branching processes. This technique uses a change of measure
on the set of (marked) trees to construct size-biased trees, in which a randomly picked line of
descendants occurs, the spine. Transferring properties of the original to the size-biased process
then makes it possible to show results with purely probabilistic arguments. The concept goes
back to Lyons et al. [61], who used it to prove classical limit theorems for the simple GWP. It is
worth mentioning that Waymire and Williams [87] developed a similar construction in a different
scenery simultaneously with, and independently of Lyons et al.

The publication of this method led to a couple of articles, see e.g. [11, 27, 55, 56, 60, 67, 68],
in which Kesten-Stigum-type theorems for branching processes in various settings were deduced
by using adjusted versions of the new size-biasing technique. Furthermore, subcritical branching
processes were studied in [2, 58] with the help of this method. Let us further mention that a
slightly different construction was used by Geiger [39] to prove classical limit results for critical
and subcritical GWPes.

Unlike the size-biased construction used in Subsection 1.2.1 to derive the ABPRE, which was
just concentrated on the cell process, we here introduce a size-biased process B̂P of the whole
BwBP by picking the spine along the parasites and not the cells. This approach gives us a
connection between B̂P and a branching process in random environment with immigration, and
with the help of these two processes, we will analyze the BwBP in the later Chapters 4 and 5.
For similar size-biased constructions see [27,54,55].

2.1 Construction of the size-biased process

We assume throughout this chapter that the BwBP starts with at least one parasite. Let us first
consider the case when starting with a single ancestor cell. For a formal description of the
size-biased process B̂P, let us consider the random vector

(
X̂(•,T̂ ), T̂ , Ĉ

)
, where T̂ and Ĉ are N0-

valued and X̂(•,T̂ ) := (X(1,T̂ ), . . . , X(T̂ ,T̂ )) is a vector of the random length T̂ . The distribution
of these random variables is the same under each Pz, z ∈ N, and supposed to fulfill the following:

35
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For all t ≥ 1

P

(
T̂ = t

)
= P (T = t)

∑t
u=1 μu,t

γ
(2.1)

and for x = (x1, . . . , xt) ∈ Nt
0

P

(
X̂(•,T̂ ) = x | T̂ = t

)
=

∑t
u=1 xu∑t
u=1 μu,t

P

(
X(•,t) = x

)
. (2.2)

Furthermore, for all t ∈ N, x = (x1, . . . , xt) ∈ Nt
0 and 1 ≤ k ≤ ∑t

u=1 x
(u,t)

P

(
Ĉ = k | X̂(•,T̂ ) = x, T̂ = t

)
=

1∑t
u=1 x

(u,t)
, (2.3)

hence, Ĉ is uniformly distributed on {1, . . . ,∑t
u=1 xu} given X̂(•,T̂ ) = x and T̂ = t. In particular,

P

(
X̂(•,T̂ ) = x, T̂ = t, Ĉ = k

)
=

pt
γ
P

(
X(•,t) = x

)
.

The random vector X̂(•,T̂ ) can be seen as a partition of the line of natural numbers into several
finite random sections

{
1, . . . , X̂(1,T̂ )

}
,

{
1 + X̂(1,T̂ ), . . . ,

2∑
u=1

X̂(u,T̂ )

}
, . . . ,

⎧⎨⎩1 +
T̂−1∑
u=1

X̂(u,T̂ ),
T̂∑

u=1

X̂(u,T̂ )

⎫⎬⎭ ,

and we therefore put

Û :=
T̂∑

u=1

1{Ĉ ≤∑u
i=1 X

(i,T̂ )}

as the random variable indicating in which of these random sections Ĉ is located, i.e. Û = u

given that T̂ = t, X̂(•,t) = (x1, . . . , xt) and
∑u−1

i=1 xi < Ĉ ≤ ∑u
i=1 xi.

Let (
X̂(•,T̂n)

n , T̂n, Ĉn

)
, n ∈ N0,

be i.i.d. copies of
(
X̂(•,T̂ ), T̂ , Ĉ

)
independent of (X

(•,k)
i,v )k≥1,i≥1,v∈V and (Tv)v∈V. Let further

Ĉ−1 be independent of all other random variables and uniformly distributed on the number of
ancestor parasites, i.e. for z ∈ N

Pz(Ĉ−1 = y) =
1

z
for each y ∈ {1, . . . , z}.

These random variables give us a random path through the parasites in the following way: As
described above Ĉ−1 picks a parasite uniformly from all ancestor parasites which we call the
spinal root parasite. The root cell then multiplies according to T̂0 with distribution (2.1). Given
T̂0 = t, the spine parasite produces an offspring given by X̂

(•,t)
0 from which a parasite is chosen

uniformly by Ĉ0 to be the spine parasite in the first generation. All other parasites in the root
cell, however, reproduce according to the ordinary law L(X(•,t)). Now, the cell containing the
marked parasite chosen by Ĉ0, multiplies according to T̂1, and the spinal parasite produces an
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V̂0

V̂1

...

V̂2

...
V̂3

...
...

...
...

...
...

Figure 2.1: A typical realization of a size-biased BwBP

offspring given by X
(•,T̂1)
1 from which the next spinal parasite is picked by Ĉ1, and all other

parasites in this cell multiply with distribution L(X(•,T̂1)), given T̂1. This routine is repeated in
the next generation and so on. This procedure gives us a random cell line (V̂n)n≥0 through the
cell tree indicating the cells which host the spine parasite. That is, V̂0 := ∅ and

V̂n+1 := V̂nÛn

for n ≥ 0, where Ûn denotes the daughter cell containing the next generation spinal parasite.
Since the

(
X̂

(•,T̂n)
n , T̂n, Ĉn

)
, n ∈ N0, are i.i.d., so are the Ûn, n ∈ N0, and distributed as Û .

All parasites and cells not in the spine keep their known behavior. Thus, following the
definitions in (1.1) and (1.5), we set T̂∅ = 1 as well as Ẑ∅ = Z∅. Furthermore, we put for v ∈ V

with |v| = n and u ∈ N

T̂vu :=

⎧⎪⎨⎪⎩
1{u≤T̂n} if v = V̂n,

1{u≤Tv} if v �= V̂n,

and

Ẑvu :=

⎧⎪⎨⎪⎩
∑Ẑv−1

i=1 X
(u,T̂n)
i,v + X̂

(u,T̂n)
n if v = V̂n,∑Ẑv

i=1X
(u,Tv)
i,v if v �= V̂n.

Then the size-biased branching within branching process B̂P := (B̂Pn)n≥0 is given by B̂Pn :=

[T̂v, Ẑv]|v|=n for n ∈ N0. Let further B̂T := (B̂Tn)n≥0 with B̂Tn = [T̂v, Ẑv]|v|≤n denote the
size-biased branching within branching tree and T̂, T̂n, T̂v as well as Ẑn and Ŵn the obvious, that
is the analogous variables in B̂T to the ones in BT.
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Figure 2.1 above illustrates a realization of a size-biased branching within branching process.
Spinal parasites are symboled by � and cells hosting these parasites by �. As in all figures,
“non-spinal parasites” and usual cells are denoted by • and ©, respectively. The spine of the
parasites is indicated by the bended edges. So in this particular realization we have V̂0 = ∅,
V̂1 = 1, V̂2 = 12, V̂3 = 122 and ẐV̂0

= 1, ẐV̂1
= 2, ẐV̂2

= 1, ẐV̂3
= 3.

Taking a close look, the definition of the size-biased BwBP yields for a vertex v ∈ V of the
nth generation

T̂v =

⎧⎪⎨⎪⎩
T̂n if v = V̂n,

Tv if v �= V̂n,

where T̂v denotes the number of daughter cells of cell v. Moreover, we obtain that by the definition
of B̂P and particularly the i.i.d. properties of the spinal random vectors (X̂

(•,T̂n)
n , T̂n, Ĉn), n ∈

N0, the size-biased BwBP also features a branching property. Furthermore, since “non-spinal
cells” multiply as in the original BwBP, subtrees spawning from such cells behave like BT.
Recapitulating, let B̂T

(v)
= [T̂vu, Ẑvu]u∈V be the subtree of cell v ∈ V, then for all n ∈ N0,

[sw, xw]|w|≤n ∈ Sn and V̂n = v̂ we get

Pz

((
B̂T

(v)
)

|v|=n

∈ ·
∣∣ B̂Tn = [sw, xw]|w|≤n, V̂ = v̂

)
=

( ⊗
|v|=n

Q̂(sv ,xv)

)
(·)

with Q̂(sv ,xv) = Q(sv ,xv) denoting the measure of BT under P(sv ,xv) if v �= v̂, and Q̂(1,xv̂) denoting
the measure of B̂T under Pxv̂

, i.e. Q(sv ,xv)(·) = P(sv ,xv)(BT ∈ ·) and Q̂(1,xv̂)(·) = Pxv̂
(B̂T ∈ ·)

(see Proposition 1.2 for comparison).

This size-biased BwBP B̂T can be easily extended to a size-biased process starting with
multiple root cells. For that purpose, recall that S defined in (1.9) gives the configurations of the
ancestor generation and P(t,z), (t, z) ∈ S, the measures under which BT starts with configuration
(t, z). The spine through BT is then constructed by picking a root parasite at random, which
particularly gives the ancestor spine cell, and the process starting from this cell behaves like B̂T
independent of processes starting from the other cells. However, the other BwBPes evolve in the
same manner as BT. More precisely, let Ĉ−1 be a random variable choosing a parasite uniformly
from the ancestor parasites, i.e.

P(t,z)(Ĉ−1 = y) =
1∑t

u=1 zu

for (t, z) = (t, (z1, . . . , zt)) ∈ S with zt > 0 and y ∈ {1, . . . ,∑t
u=1 zu}. Then for (t, z) =

(t, (z1, . . . , zt)) ∈ S the size-biased BwBP B̂T given Ĉ−1 = y with
∑u−1

i=1 zi < y ≤ ∑u
i=1 zi has

the distribution

P(t,z)

(
B̂T ∈ · | Ĉ−1 = y

)
=

( t⊗
i=1

Q̂(1,zi)

)
(·),

where Q̂1,zu(·) = Pzu(B̂T ∈ ·) and Q̂(1,zv)(·) = Q(1,zv)(·) = Pzv(BT ∈ ·) for v �= u.
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2.2 Auxiliary results

In this section, we give helpful results for the size-biased BwBP and present the relation be-
tween B̂T and the original process BT. Our investigations will end by a dichotomy between the
martingale limit W and its analog Ŵ in B̂P.

The offspring distribution of parasites in a spinal cell V̂n, n ≥ 0, is quite different from those
in regular cells, for in this case not only the spinal parasite reproduces progeny with a different
reproduction law, but also all other parasites in that cell. This is due to the fact that daughter
cells are spawned according to the law given by T̂ , which in particular fulfills T̂ ≥ 1 a.s., although
P(T = 0) > 0 might be possible. The next lemma provides us with some useful probabilities and
especially states the reproduction distribution of a spinal cell and the parasites it contains.

Lemma 2.1. Let n ∈ N0.

(a) For all v ∈ V such that |v| = n and u ∈ N

P

(
V̂n+1 = vu | V̂n = v

)
= P

(
V̂1 = u

)
= P

(
Û = u

)
=

∑
t≥1 ptμu,t

γ
.

(b) For all t ∈ N, u ≤ t and x = (x1, . . . , xt) ∈ Nt
0

P

(
T̂n = t, Ûn = u, X̂(•,t)

n = x
)

=
ptxu
γ

P

(
X(•,t) = x

)
.

In particular
P

(
T̂n = t, Ûn = u

)
=

ptμu,t

γ

as well as
P

(
X̂(•,t)

n = x | T̂n = t, Ûn = u
)

=
xu
μu,t

P(X(•,t) = x).

(c) For all t ∈ N, v ≤ t, (zu)1≤u≤t ∈ Nt
0 and z ∈ N

Pz

(
(Ẑu)1≤u≤t = (zu)1≤u≤t, T̂0 = t, Û0 = v

)
=

ptzv
zγ

Pz ((Zu)1≤u≤t = (zu)1≤u≤t) .

In particular,

Pz

(
(Ẑu)1≤u≤t = (zu)1≤u≤t, T̂0 = t

)
=

pt
∑t

u=1 zu
zγ

Pz ((Zu)1≤u≤t = (zu)1≤u≤t) .

Proof. (a) Since the Ûn, n ≥ 0, are i.i.d. and distributed as V̂1, we get from the branching
property

P

(
V̂n+1 = vu | V̂n = v

)
= P

(
Ûn = u

)
= P

(
V̂1 = u

)
and further

P

(
V̂1 = u

)
=

∑
s≥u

∞∑
x1,...,xs=1

∑u
i=1 xi∑

k=
∑u−1

i=1 xi+1

P

(
X̂

(1,s)
0 = x1, . . . , X̂

(s,s)
0 = xs, T̂0 = u, Ĉ0 = k

)



40 CHAPTER 2. THE SIZE-BIASED PROCESS

=
∑
s≥u

∞∑
x1,...,xs=1

∑u
i=1 xi∑

k=
∑u−1

i=1 xi+1

ps
γ
P

(
X(1,s) = x1, . . . , X

(s,s) = xs

)

=
∑
s≥u

ps
γ

∞∑
x1,...,xs=1

xuP
(
X(1,s) = x1, . . . , X

(s,s) = xs

)
=

1

γ

∑
s≥u

psEX
(u,s).

(b) follows with a similar calculation as in (a). For t ∈ N, u ≤ t and x = (x1, . . . , xt) ∈ Nt
0,

obtain that

P

(
X̂(•,t)

n = x, T̂n = t, Ûn = u
)

=

∑u
i=1 xi∑

k=
∑u−1

i=1 xi+1

P

(
X̂(•,t)

n = x, T̂n = t, Ĉn = k
)

=
ptxu
γ

P

(
X(•,t) = x

)
.

The second equation then follows by summation over all x and the third by dividing the two just
discovered relations.

(c) Let t ∈ N, v ≤ t, (zu)1≤u≤t ∈ Nt
0 and z ∈ N. Then due to the independence of X̂(•,T̂0)

and (X
(•,k)
i,v )k≥1,i≥1,v∈V

Pz

(
(Ẑu)1≤u≤t = (zu)1≤u≤t, T̂0 = t, Û0 = v

)
= Pz

⎛⎝(
z−1∑
i=1

X
(u,t)
i,∅ + X̂

(u,t)
0

)
1≤u≤t

= (zu)1≤u≤t, T̂0 = t, Û0 = v

⎞⎠
=

∑
xu≤zu

P

(
X̂

(•,t)
0 = (x1, . . . , xt), T̂0 = t, Û0 = v

)
P

⎛⎝(
z−1∑
i=1

X
(u,t)
i,∅

)
1≤u≤t

= (zu − xu)1≤u≤t

⎞⎠
=

pt
γ

∑
xu≤zu

xvP
(
X(•,t) = (x1, . . . , xt)

)
P

⎛⎝(
z−1∑
i=1

X
(u,t)
i,∅

)
1≤u≤t

= (zu − xu)1≤u≤t

⎞⎠
=

pt
γ

∑
xu≤zu

xvP

⎛⎝(
z∑

i=1

X
(u,t)
i,∅

)
1≤u≤t

= (zu)1≤u≤t,
(
X

(u,t)
z,∅

)
1≤u≤t

= (xu)1≤u≤t

⎞⎠
=

pt
γ
E

⎛⎝X
(v,t)
z,∅

∣∣∣∣
(

z∑
i=1

X
(u,t)
i,∅

)
1≤u≤t

= (zu)1≤u≤t

⎞⎠Pz ((Zu)1≤u≤t = (zu)1≤u≤t) .

Because a random walk (Sn)n≥0 with S0 = 0 and i.i.d. increments (Xn)n≥1 satisfies E(X1|Sn) =

Sn/n a.s., we conclude for our above equation

Pz

(
(Ẑu)1≤u≤t = (zu)1≤u≤t, T̂0 = t, Û0 = v

)
=

ptzv
γz

Pz ((Zu)1≤u≤t = (zu)1≤u≤t) .

Summation over |v| = 1 completes the proof of (c).
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Before proceeding to the lemma comparing the distributions of the size-biased and original
BwBP, recall from Subsection 1.1.2 that (S,S) denotes the space of host parasite trees and Sn ⊆ S
is the σ-algebra generated by the projections on the first n levels of the trees. Furthermore,
(Sn,S|n) for n ∈ N0 denotes the space of the finite host-parasite trees up to generation n. In
particular, B̂T and B̂Tn are S and S|n-measurable, respectively. Furthermore, the mapping
zn : S → N0 describes the number of parasites in the nth generation of a host-parasite tree,
thence Ẑn = zn(B̂T) for each n ∈ N0.

For each x ∈ N, we define the measures

Q̂x(·) := Px

(
B̂T ∈ ·

)
and Qx(·) := Px (BT ∈ ·) (2.4)

on (S,S), and the subsequent lemma provides us with a relation between Q̂x and Qx. As a
matter of fact, size biasing has the effect that for each n ∈ N0 the restricted probability measure
Q̂x|Sn

is dominated by Qx|Sn
. The corresponding Radon-Nikodym densities can be determined

as the mappings

wn : S → [0,∞), wn(τ) =
1

γn
zn(τ) (2.5)

for n ∈ N0. We further put w := lim supn→∞wn. Thus wn is Sn-measurable by definition and
we have the representations

Wn = wn ◦BTn and Ŵn = wn ◦ B̂Tn.

As a consequence of the following lemma, the question of uniform integrability of (Wn)n≥0 is
transfered into the one of almost sure finiteness of Ŵ . This forms the final part of the lemma
and utilizes a measure theoretic result due to Durrett [36].

Lemma 2.2.

(a) For all n ∈ N0, [tv, zv]|v|≤n ∈ Sn, u ∈ V with |u| = n and x ∈ N

Px

(
B̂Tn = [tv, zv]|v|≤n, V̂n = u

)
=

zu
γnx

Px

(
BTn = [tv, zv]|v|≤n

)
.

(b) For all x ∈ N, n ∈ N0 and A ∈ Sn

Q̂x(A) =
1

x
Ex

(
Wn 1{BT∈A}

)
=

∫
A

wn(τ)

x
Qx(dτ).

In particular, Q̂x|Sn
� Qx|Sn

for all n ∈ N0.

(c) We have the dichotomy

(i) Px(Ŵ < ∞) = 1 ⇔ ExW = x,

(ii) Px(Ŵ = ∞) = 1 ⇔ Px(W = 0) = 1.
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Proof. Fix x ∈ N. (a) In the case n = 0 the statement is obviously true by the definitions of the
random variables. Let n ∈ N and u = u′un for a vertex u′ with |u′| = n − 1 and un ∈ N. Then
by induction, the branching property and Lemma 2.1 we get for each [tv, zv]|v|≤n ∈ Sn

Px

(
B̂Tn = [tv, zv]|v|≤n, V̂n = u

)
= Px

(
B̂Tn−1 = [tv, zv]|v|≤n−1, V̂n−1 = u′

)
· Px

(
[T̂v, Ẑv]|v|=n = [tv, zv]|v|=n, V̂n = u

∣∣ B̂Tn−1 = [tv, zv]|v|≤n−1, V̂n−1 = u′
)

=
zu′

γn−1x
Px

(
BTn−1 = [tv, zv]|v|≤n−1

) ∏
|v|=n−1,v 	=u′

P(tv ,zv) ([Tv′ , Zv′ ]v′∈N = [tvv′ , zvv′ ]v′∈N)

· Pzu′

(
[T̂v′ , Ẑv′ ]v′∈N = [tu′v′ , zu′v′ ]v′∈N, V̂1 = un

)
=

zu′

γn−1x
Px

(
BTn−1 = [tv, zv]|v|≤n−1

) ∏
|v|=n−1,v 	=u′

P(tv ,zv) (BP1 = [tvv′ , zvv′ ]v′∈N)

· zu
zu′γ

Pzu′ (BP1 = [tu′v′ , zu′v′ ]v′∈N)

=
zu
γnx

Px

(
BTn = [tv, zv]|v|≤n

)
(b) Summation over all u with |u| = n in (a) yields for all [tv, zv]|v|≤n ∈ Sn

Px

(
B̂Tn = [tv, zv]|v|≤n

)
=

∑
|u|=n zu

γnx
Px

(
BTn = [tv, zv]|v|≤n

)
.

Thus, by an appeal to (1.6) we infer for all A ∈ Sn

Q̂x(A) = Px(B̂T ∈ A) = Px(B̂Tn ∈ tr|n(A))

=

∫
tr|n(A)

Px

(
B̂Tn ∈ d[tv, zv]|v|≤n

)
=

∫
tr|n(A)

∑
|u|=n zu

γnx
Px

(
BTn ∈ d[tv, zv]|v|≤n

)
=

∫
A

∑
|u|=n zu

γnx
Px (BT ∈ d[tv, zv]v∈V)

=

∫
A

wn

x
dQx =

1

x
Ex

(
Wn 1{BT∈A}

)
.

(c) Part (b) and [36, Theorem 5.3.3] imply for all A ∈ S

Q̂x(A) =

∫
A

w

x
dQx + Q̂x (A ∩ {w = ∞}) ,

which leads to
1

x
ExW =

∫
S

w

x
dQx = 1− Q̂x (w = ∞) .

This ensures the dichotomy stated in (c).
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Remark 2.3. (a) Lemma 2.2(b) can be easily extended by applying measurable functions on
B̂T and BT. So let h : (S,S) → (X,X ) be a measurable function, B ∈ X such that
h−1(B) ∈ Sn for a n ∈ N0. Then

P

(
h(B̂T ) ∈ B

)
= P

(
B̂T ∈ h−1(B)

)
= E

(
Wn 1{BT∈h−1(B)}

)
= E

(
Wn 1{h(BT)∈B}

)
for a Sn-X -measurable function h.

(b) The change of measure relation in Lemma 2.2(b) is not restricted to Px, x ∈ N, and can be
formulated in the same manner and proved for a BwBP with multiple ancestor cells and
parasites. That is, for n ∈ N0 and (t, z) ∈ S with zt > 0

P(t,z)

(
B̂T ∈ A

)
=

1∑z
i=1 zi

E(t,z)

(
Wn 1{BT∈A}

)
for A ∈ St

n.

This follows directly from the branching property and Lemma 2.2. Let (t, z) ∈ S with
z = (z1, . . . , zt) and zt > 0. Then for all A(i) ∈ S, 1 ≤ i ≤ t we get

P(t,z)

(
B̂T ∈ ×t

i=1A
(i)

)
=

1∑z
i=1 zi

t∑
j=1

zjPzj

(
B̂T ∈ A(j)

) ∏
j 	=k≤t

Pzk

(
BT ∈ A(k)

)

=
1∑z
i=1 zi

t∑
j=1

Ezj

(
Wn 1{BT∈A(j)}

) ∏
j 	=k≤t

Pzk

(
BT ∈ A(k)

)

=
1∑z
i=1 zi

t∑
j=1

E(t,z)

(
W (j)

n 1{BT∈×t
i=1A

(j)}
)

=
1∑z
i=1 zi

E(t,z)

(
Wn 1{BT∈×t

i=1A
(j)}

)
.

Of course, the remarks made in (a) also apply for the multiple rooted BwBP.

(c) Is h real valued and additionally non-negative or bounded, it can be integrated with respect
to Q̂ and the resulting integral is

E

(
h(B̂T )

)
= E (Wnh(BT )) .

Putting h(·) = log(w1(·)), then h is S1-B[0,∞)-measurable and we deduce

E

(
h(B̂T )

)
= E log Ŵ1 = E (W1 logW1) .

Hence, the (Z logZ)-condition, that is EZ1 logZ1 < ∞, is transfered to an integrability
condition in the size-biased process, namely E log Ẑ1 < ∞.

2.3 Connection to a branching process in random environment
with immigration

The size-biased process has a connection to a branching process with an immigrational com-
ponent. More precisely, the parasite process along the spinal cells behaves like a branching
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process in random environment with immigration (BPREI). Because of this connection, we will
use the next chapter to specify such a branching process and prove limiting results. Shortly
speaking, the individuals of a BPREI behave as the ones in a BPRE, but in each generation
new individuals immigrate into the population. The randomly picked immigration component
and offspring distribution of each generation are dependent and are given by the environmental
sequence. However, at this point we would like to skip a detailed description of a BPREI and
refer to Chapter 3 for a precise definition and bibliographical references.

To verify the just mentioned behavior of the process of parasites along the spinal cells
(ẐV̂n

)n≥0, we take a look at its recursive formula. For n ≥ 0 we find that

ẐV̂n+1
=

ẐV̂n−1
−1∑

i=1

X
(Ûn,T̂n)

i,V̂n
+ X̂(Ûn,T̂n)

n . (2.6)

Thus, all but one parasite in a spinal cell multiply with the same distribution while the last
one, the spinal parasite, produces offspring according to a size-biased law. Imagine the spinal
parasite to be outside the cell. Then all remaining ẐV̂n

− 1 parasites in the cell reproduce with
the same offspring distribution and the progeny from the spinal parasite immigrates into cell
V̂n+1 of the next generation. All offspring combined forms the new parasite population hosted
in the spinal cell. By repeating the same procedure just described for all generations, namely
assuming the spinal parasite to proliferate outside the cell and its children to immigrate into the
next generation cell, it is justifiable to claim a branching behavior in random environment with
immigration of (ẐV̂n

)n≥0.

Theorem 2.4. Let (Ẑ ′
n)n≥0 be a BPREI with an i.i.d. environmental sequence Δ = (Δn)n≥0

taking values in {L((X(u,t), X̂(u,t) − 1)|(Û , T̂ ) = (u, t)) : 1 ≤ u ≤ t < ∞} such that

P

(
Δ0 = L

(
(X(u,t), X̂(u,t) − 1)|(Û , T̂ ) = (u, t)

))
=

ptμu,t

γ

for all 1 ≤ u ≤ t < ∞. Then the distribution of the process (ẐV̂n
− 1)n≥0 starting with z ∈ N

parasites equals the law of the BPREI (Ẑ ′
n)n≥0 starting with the same number of individuals.

Proof. Let z ∈ N. Obviously, the assertion holds for n = 0 since both processes start with the
same number of ancestors. By the definition of (Ẑ ′

n)n≥0, Equation (3.2) in the next chapter
yields

Ez

(
sẐ

′
n+1

∣∣ Ẑ ′
n = y,Δn = L

(
(X(u,t), X̂(u,t) − 1)|(Û , T̂ ) = (u, t)

))
= E

(
sX

(u,t)
)y

E

(
sX̂

(u,t)−1
∣∣ (Û , T̂ ) = (u, t)

)
for all n, y ∈ N0 and 1 ≤ u ≤ t < ∞. But (2.6) and the i.i.d. assumption of the engaged random
variables imply

Ez

(
s
ẐV̂n+1

−1 ∣∣ ẐV̂n
− 1 = y, (Ûn, T̂n) = (u, t)

)
= Ez

(
s
∑y

i=1 X
(u,t)
i,∅ +X̂

(u,t)
n −1

∣∣ (Ûn, T̂n) = (u, t)

)
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= E

(
sX

(u,t)
)y

E

(
sX̂

(u,t)−1
∣∣ (Û , T̂ ) = (u, t)

)
for all 1 ≤ u ≤ t < ∞, and thus

Ez

(
s
ẐV̂n+1

−1 ∣∣ ẐV̂n
− 1 = y

)
= Ez

(
sẐ

′
n+1

∣∣ Ẑ ′
n = y

)
for all n ∈ N0 and y ∈ N0. Since the process of parasites along a cell line is Markovian, we infer
by induction

Pz

(
ẐV̂1

− 1 = y1, . . . , ẐV̂n
− 1 = yn

)
= Pz

(
ẐV̂1

− 1 = y1, . . . , ẐV̂n−1
− 1 = yn−1

)
P

(
ẐV̂n

− 1 = yn | ẐV̂n−1
− 1 = yn−1

)
= Pz

(
Ẑ ′
1 = y1, . . . , Ẑ

′
n−1 = yn−1

)
P

(
Ẑ ′
n = yn | Ẑ ′

n−1 = yn−1

)
= Pz

(
Ẑ ′
1 = y1, . . . , Ẑ

′
n = yn

)
for all n ∈ N and y1, . . . , yn ∈ N0, which finishes the proof.

We call a BPREI (Ẑ ′
n)n≥0 with an i.i.d. environmental sequence Δ as introduced in the previ-

ous theorem an associated branching process in random environment with immigration (ABPREI)
and denote by

ĝΔn(s) =
∑
u≤t

E

(
sX

(u,t)
)
1{Δn=L((X(u,t),X̂(u,t)−1)|(Û ,T̂ )=(u,t))}

the generating function of the first marginal distribution given by Δn. In the context of a branch-
ing process in random environment without immigration, we categorize the behavior of the
ABPREI and thus of (ẐV̂n

− 1)n≥0 in three different cases depending on the reproduction law
of the parasites in the spinal cells. We call this process supercritical, critical or subcritical if
E log ĝ′Δ0

(1) > 0,= 0 or < 0, respectively.

Remark 2.5. There is a highly connection in the behavior between the ABPRE and the
ABPREI. Namely, if μu,t �= 1 for at least one 1 ≤ u ≤ t < ∞ satisfying pt > 0, then

ABPREI

⎧⎪⎪⎪⎨⎪⎪⎪⎩
subcritical,

critical,

supercritical,

iff ABPRE

⎧⎪⎪⎪⎨⎪⎪⎪⎩
strongly subcritical,

intermediate subcritical,

weakly subcritical or non-subcritical.

This can be easily seen by exploiting the equation

E log ĝ′Δ0
(1) =

∑
1≤u≤t<∞

ptμu,t

γ
logμu,t =

ν

γ
Eg′Λ0

(1) log g′Λ0
(1), (2.7)

which can be derived from Subsection 1.2.1 and the definition of the generating function gΛ0(s).
Since the function x �→ x log x is strictly convex and g′Λ0

(1) �= 1 w.p.p., Jensen’s inequality
provides

Eg′Λ0
(1) log g′Λ0

(1) > Eg′Λ0
(1) logEg′Λ0

(1) > Eg′Λ0
(1)E log g′Λ0

(1),

and in combination with (2.7) the assertion follows.



Chapter 3

The branching process in random
environment with immigration

At the end of the previous chapter, we have seen in Theorem 2.4 that the process of parasites along
the spinal cell line (ẐV̂n

)n≥0 can be interpreted as a branching process in a random environment
with immigration. Since the behavior of (ẐV̂n

)n≥0 will play a crucial role in our further analysis,
we dedicate this chapter to the formal introduction and study of the branching process in random
environment with immigration (BPREI). In contrast to the BPRE (see Subsection 1.1.3) an
immigration component is added in the BPREI model. This means that in each generation
new individuals may immigrate into the population according to a law which depends on the
environmental sequence.

Galton-Watson processes with immigration but without random environment have been al-
ready studied in various articles. See [43, 44, 69, 70, 78–80] for the most important results, and
we refer to the books [10,62] for probabilistic proofs. Key [49] and Roitershtein [72] then added
random environments and considered a multi-type setting, and they proved limiting results in
the subcritical case. Recently, Bansaye in [16] showed theorems for the single-type process in ran-
dom environment with immigration for all three (supercritical, critical and subcritical) regimes.
However, the results stated in the mentioned articles are not sufficient for our later analysis, and
thus we need to formulate finer results resp. present some new findings in the different regimes,
especially in the supercritical case.

3.1 The model

The environmental sequence U = (Un)n≥0 consists of i.i.d. random variables taking values in the
set

M =

⎧⎨⎩(pij)i,j≥0 ∈ [0, 1]N
2
0

∣∣∣∣ ∑
i,j≥0

pij = 1,
∑
i≥0

i
∑
j≥0

pij < ∞

⎫⎬⎭
of probability measures on N2

0 such that the first marginal has finite mean. M is endowed with
the σ-algebra M generated by the usual topology induced by the metric of the total variation

46
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distance. We denote by pij(Un) the random probability of (i, j) ∈ N2
0 of the probability measure

given by Un, n ∈ N0. Furthermore, we write

pi�(Un) :=
∞∑
j=1

pij(Un) and p�j(Un) :=
∞∑
i=1

pij(Un)

for the marginal probabilities of the elementary events i, j ∈ N0.
Let (Xi,n)i≥1,n≥0 and (ξn)n≥0 be N0-valued random variables all independent conditioned

under U with the following distributions: For all i ∈ N, n ∈ N0 and x, z ∈ N0

P (Xi,n = x | U) = px�(Un) and P (ξn = z | U) = p�z(Un) a.s.

The branching process in random environment with immigration (BPREI) (Zn)n≥0 with envi-
ronmental sequence U is then defined as Z0 = 0 a.s. and for n ∈ N0 recursively

Zn+1 =

Zn∑
i=1

Xi,n + ξn. (3.1)

Here, the (Xi,n)i≥1,n≥0 describe the offspring of the individuals at generation n and the sequence
(ξn)n≥0 gives the number of individuals entering the population in the several generations. Both,
the reproduction law of the population and the one of the immigrational component, are picked
at random and may therefore differ in each generation. Since the (Xi,n)i≥1,n≥0 and (ξn)n≥0

are independent conditioned under the i.i.d. sequence U , we infer the independence of Zn and
(Xi,m, ξm)m≥n for all n ≥ 0. This in turn ensures the Markov property for (Zn)n≥0.

Let g1,Un(s) and g2,Un(s) for s ∈ [0, 1] and n ∈ N0 be the generating functions of the marginal
distributions of Un, i.e. for a distribution p̄ = (pij)i,j≥0 ∈ M

g1,p̄(s) =
∞∑
i=0

si
∞∑
j=0

pij = E
(
sX1,n |Un = p̄

)
and g2,p̄(s) =

∞∑
j=0

sj
∞∑
i=0

pij = E

(
sξn |Un = p̄

)
.

With this notation, the generating function of Zn+1, n ∈ N0, can be represented by

E
(
sZn+1

∣∣ Z0, . . . , Zn,U
)

= E
(
sZn+1

∣∣ Zn,Un

)
= g2,Un(s)g1,Un(s)

Zn a.s. (3.2)

under usage of the recursive formula (3.1) and the independence assumptions made in this model.
We further denote by

μUn := g′1,Un
(1) = E (X1,n | Un)

the mean of the first marginal distribution of Un. As in the branching in random environment
without immigration setting, we consider three different cases, namely the supercritical case
(E logμU0 > 0), the critical case (E logμU0 = 0) and the subcritical case (E logμU0 < 0). Before
stating asymptotic results in each of the three regimes, we explore (Zn)n≥0 as a Markov chain.

Throughout this chapter, we assume that immigration is actual possible, i.e.

P (ξ0 > 0) > 0,
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as otherwise we are in the well-known BPRE case without immigration.
Since we intend to start the process with multiple ancestors, we denote by Px, x ∈ N0, the

measure under which the BPREI has x initial individuals, i.e. Px(Z0 = x) = 1. If we start with
0 ancestors, which is our usual setting, we write P instead of P0. Of course, the behavior of all
random variables introduced in this section remains the same under each of these probability
measures.

3.2 The BPREI as a Markov chain

As already pointed out in Section 3.1, (Zn)n≥0 forms a Markov chain with state space N0 under
each Px ,x ∈ N0, since the reproduction laws and independence assumptions persist. Since the
environmental sequence is assumed to be i.i.d., the BPREI is further homogeneous with transition
probabilities

p(x, z) := P(Z1 = z | Z0 = x) = Px(Z1 = z), x, z ∈ N0 .

It is well-known that the branching process with immigration is a Markov chain and that
there exists an irreducible, aperiodic subset of the state space, which is hit by the process with
probability 1 (see for example [71,88]). We show that the same holds true when adding a random
environment. For this purpose, we introduce some notation. Put

κ := inf {z ∈ N0 | P(X1,0 = 0, ξ0 = z) > 0}

with κ := ∞ if the set is empty. For i ∈ N0, let

Ci := {j ∈ N0 | ex. n ∈ N0 such that Pi(Zn = j) > 0}

be the set of states that can be reached from i.

Lemma 3.1. Let P(ξ0 = 0) < 1 and P(X1,0 = 0) > 0. Then κ ∈ Ci for all i ∈ N0 and Cκ is
irreducible, aperiodic and hit by Zn eventually, i.e. Px(Zn /∈ Cκ ∀ n ≥ 1) = 0 for all x ∈ N0.

Proof. Let i ∈ N0. Because of P(X1,0 = 0) > 0, we find that P(X1,0 = 0, ξ0 = κ) > 0 for a
κ < ∞ and, recalling the conditional independence of Xi,0, i ∈ N, and ξ0, we establish

0 < P(X1,0 = 0, ξ0 = κ) = E (P(X1,0 = 0, ξ0 = κ|U)) = E (p0�(U0)p�κ(U0)) .

Hence, p0�(U0)p�κ(U0) > 0 as well as p0�(U0) > 0 and p�κ(U0) > 0 w.p.p.
For each i ∈ N0 we get from the conditional independence and the above observations

Pi(Z1 = κ) = P

⎛⎝ i∑
j=1

Xj,0 + ξ0 = κ

⎞⎠ ≥ P

⎛⎝ i∑
j=1

Xj,0 = 0, ξ0 = κ

⎞⎠
= E

⎛⎝P

⎛⎝ i∑
j=1

Xj,0 = 0, ξ0 = κ

∣∣∣∣ U
⎞⎠⎞⎠ = E

(
p�κ(U0)p0�(U0)

i
)

> 0 (3.3)
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and thus κ ∈ Ci. If i ∈ Cκ, by definition Pκ(Zn = i) > 0 for a n ∈ N and due to the above
calculation we get Pi(Z1 = κ) > 0, implying irreducibility of Cκ. Setting i = κ in the above
inequality yields the aperiodicity of κ and thus of Cκ.

So it is left to prove that the BPREI hits Cκ with probability 1. For that purpose, we first
note that Cκ = Cκ′ for each κ′ ∈ N0 with P(p0κ′(U0) > 0) > 0. This can be seen by an analogous
calculation as in (3.3):

Pκ(Z1 = κ′) ≥ P

⎛⎝ κ∑
j=1

Xj,0 = 0, ξ0 = κ′

⎞⎠ = E (p�κ′(U0)p0�(U0)
κ) ≥ E

(
p0κ′(U0)

κ+1
)

> 0.

Assume now that there exists a constant c > 0 such that

inf
x∈N0

Px(Z1 ∈ Cκ) ≥ c > 0. (3.4)

Then the Markov property and iteration yield for all x ∈ N0 and n ∈ N0

Px(Zn /∈ Cκ) = Px(Z1 /∈ Cκ, . . . , Zn /∈ Cκ)

=
∑

z1,...,zn−1 /∈Cκ

Px(Z1 = z1, . . . , Zn−1 = zn−1, Zn /∈ Cκ)

=
∑

z1,...,zn−1 /∈Cκ

Px(Z1 = z1, . . . , Zn−1 = zn−1)Pzn−1(Z1 /∈ Cκ)

≤ (1− c)Px(Z1 /∈ Cκ, . . . , Zn−1 /∈ Cκ) ≤ . . . ≤ (1− c)n.

Now, the Borel-Cantelli lemma provides Px(Zn /∈ Cκ infinitely often) = 0 and the statement is
proved.

Thus, it is left to verify (3.4) for a suitable constant c > 0. If P(p0�(U0) = 1) > 0, then for
all x ∈ N0

Px(Z1 ∈ Cκ) ≥ P

(
x∑

i=1

Xi,0 = 0, ξ0 ∈ Cκ

)
≥ P (p0�(U0) = 1) > 0,

where we recall that Cκ = Cκ′ if P(p0κ′(U0) > 0) > 0. If, on the other hand, P(p0�(U0) = 1) = 0,
and thus particularly p00(U0) < 1 a.s., we find that

P(p0�(U0)p�κ′(U0)pk�(U0) > 0) > 0

for suitable κ′ ≥ 1 and k ≥ 1. Since Cκ = Cκ′ , we can assume w.l.o.g. that κ′ = κ. Following
the transformations in the Inequality (3.3), we establish for each z ∈ N0

Pzk+κ(Z1 = (z + 1)k + κ) ≥ E

⎛⎝P

⎛⎝X1,0 = ... = Xz+1,0 = k,
zk+κ∑
j=z+2

Xj,0 = 0, ξ0 = κ

∣∣∣∣ U
⎞⎠⎞⎠

≥ E

(
pk�(U0)

z+1p0�(U0)
z(k−1)+κ−1p�κ(U0)

)
> 0.
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This particularly implies κ+ kN0 ⊆ Cκ, since (z+1)k+ κ can be reached from the state zk+ κ

for all z ∈ N0. Fix a x ∈ N0. If x ≤ κ, then by (3.3)

Px(Z1 ∈ Cκ) ≥ Px(Z1 = κ) ≥ E (p�κ(U0)p0�(U0)
x) ≥ E (p�κ(U0)p0�(U0)

κ) > 0.

If otherwise x > κ, there exists a z ∈ N0 such that zk + κ ≤ x < (z + 1)k + κ. But this implies

Px(Z1 ∈ Cκ) ≥ P

(
κ+zk∑
i=1

Xi,0 + ξ0 ∈ Cκ,

x∑
i=κ+zk+1

Xi,0 = 0

)
= P

(
x∑

i=κ+zk+1

Xi,0 = 0

)

≥ P

(
k∑

i=1

Xi,0 = 0

)
= E(p0�(U0)

k) > 0,

where in the first equation the fact that κ+ zk ∈ Cκ and the irreducibility of Cκ was used. Thus
(3.4) holds true in all cases and the lemma is proved.

By classical Markov theory and the above lemma, we obtain conditions for convergence to a
stationary distribution (see for example [5, Chapter 2 and Theorem 2.33]).

Corollary 3.2. Let P(ξ0 > 0) > 0, P(X1,0 = 0) > 0 and set τ := inf {n ∈ N | Zn = κ}. Then
for n → ∞:

(a) If Pκ(τ < ∞) < 1, then Zn → ∞ Px-a.s. for all x ∈ N0

(b) If Eκτ = ∞, then Zn
Px−→ ∞ for all x ∈ N0.

(c) If Eκτ < ∞, then Zn
d−→ Z∞ for a finite random variable Z∞ independent of the number of

ancestors.

Let us now analyze the three above mentioned cases (supercritical, critical, subcritical) sep-
arately and specify asymptotic behavior.

3.3 The supercritical regime

In the supercritical regime, that is when E logμU0 > 0, the multiplication of individuals is high.
This causes the convergence to infinity of (Zn)n≥0 and thus transience or null-recurrence of the
set Cκ.

Theorem 3.3. Let E logμU0 > 0 and E log−(1 − g1,U0(0)) < ∞. Then Zn → ∞ Px-a.s. for all
x ∈ N0 as n → ∞.

Proof. It is enough to prove almost sure convergence for x = 0. A coupling argument then
provides the assertion for all x ∈ N0. Let (Z̄n)n≥0 be the BPRE starting with a single ancestor,
environmental sequence U and no immigration. Since E logμU0 > 0 and E log−(1−g1,U0(0)) < ∞,
this process is supercritical and consequently P1(Z̄n → ∞) > 0 (see [81]). We define the following
stopping times

σ0 := inf{n ≥ 0 | ξn > 0}
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and for i ≥ 0

τi := inf
{
n > σi | Z̄n−σi(i) = 0

}
and σi+1 := inf {n > τi | ξn > 0} ,

where (Z̄n−σi(i))n≥σi denotes the progeny process of the first immigrant of generation σi. Defin-
ing

Yn :=

∞∑
i=0

Z̄n−σi(i)1{σi≤n<τi} (3.5)

for n ≥ 0, it follows immediately that Yn ≤ Zn P-a.s. for all n ∈ N0. By the Markov property for
each i the process (Z̄n−σi(i))n≥σi behaves like (Z̄n)n≥0 and thus survives w.p.p. Furthermore,
the Markov property provides that the increments σi+1 + τi+1 − (σi + τi) are i.i.d. and since the
offspring of a parasite survives w.p.p. the Borel-Cantelli lemma gives

P (σi + τi < ∞ infinitely often) = 0.

But this implies P(Yn → ∞) = 1 and thus the same holds true for Zn.

We can find a more precise asymptotic behavior of the BPREI in the supercritical regime
which depends on the immigrational component. If the number of immigrants is small, that
is E log+ ξ0 < ∞, the normalized BPREI converges almost surely to a finite random variable,
whereas no proper geometric normalization can be found, if the immigration rate is high, i.e.
E log+ ξ0 = ∞. These are analogs to the results found by Seneta in [79, 80] for the process
without random environment. To prove the mentioned assertions, we follow the proof given by
Asmussen an Hering in [10] in the case without random environment. For this purpose, we need
the following lemma about non-negative i.i.d. sequences of random variables.

Lemma 3.4 (Lemma 1.1 in [61]). Let (Xn)n≥0 be a sequence of i.i.d. and non-negative random
variables. Then almost surely

lim sup
n→∞

Xn

n
=

⎧⎪⎨⎪⎩
0 if EX0 < ∞,

∞ if EX0 = ∞.

Proof. The assertion follows with an easy Borel-Cantelli argument.

Theorem 3.5. Let E logμU0 > 0 (and μU0 < ∞ a.s.).

(a) If E log+ ξ0 < ∞, then for every x ∈ N0 there exists a finite random variable Z∞ such that

lim
n→∞

Zn∏n−1
i=0 μUi

= Z∞ Px-a.s.

Furthermore,

Px(Z∞ > 0) = 1 ⇔ Px(Z∞ > 0) > 0 ⇔ E((X1,0 log
+X1,0)/μU0) < ∞.

(b) If E log+ ξ0 = ∞, then lim supn→∞ c−nZn = ∞ Px-a.s. for every x ∈ N0 and c ∈ (0,∞).
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Proof. (a) Let x ∈ N0 and define for n ∈ N0 the filtration

Fn := σ(Z0, Z1, . . . , Zn, (ξk)k≥0,U),

which in particular means that F0 = σ((ξk)k≥0,U). We show that ((
∏n−1

i=0 μUi)
−1Zn)n≥0 is

a L1-bounded submartingale when conditioned under F0. Then the martingale convergence
theorem provides the convergence assertion. First, note that this process is (Fn)n≥0-adapted.
Furthermore, we establish for n ∈ N0

Ex(Zn+1|Fn) =

Zn∑
i=1

E(Xi,n|Fn) + ξn ≥
Zn∑
i=1

E(Xi,n|U) = ZnμUn Px-a.s.

and

Ex(Zn+1|F0) = Ex (E(Zn+1|Fn)|F0)

= Ex

(
Zn∑
i=1

E(Xi,n|Fn) + ξn

∣∣∣∣F0

)
= Ex(Zn|F0)μUn + ξn Px-a.s.

Hence by iteration, we get

Ex

(
Zn+1∏n
i=0 μUi

∣∣∣∣F0

)
= Ex

(
Zn∏n−1

i=0 μUi

∣∣∣∣F0

)
+

ξn∏n
i=0 μUi

= x+
n∑

k=0

ξk∏k
i=0 μUi

(3.6)

≤ x+
∞∑
k=0

ξk∏k
i=0 μUi

≤ x+
∞∑
k=0

exp

(
log+ ξk −

k∑
i=0

logμUi

)

= x+
∞∑
k=0

exp

(
1

k + 1
log+ ξk −

1

k + 1

k∑
i=0

logμUi

)k+1

Px-a.s. (3.7)

for each n ∈ N0. Since (ξn)n≥0 and (μUn)n≥0 are i.i.d. families and E log+ ξ0 < ∞, Lemma 3.4
and the strong law of large numbers yield

lim sup
k→∞

(
1

k + 1
log+ ξk −

1

k + 1

k∑
i=0

logμUi

)
= −E logμU0 < 0 Px-a.s.

and thus almost sure finiteness of the sum in (3.7). Therefore, ((
∏n−1

i=0 μUi)
−1Zn)n≥0 is a sub-

martingale and L1-bounded conditioned under F0, and the convergence statement in (a) follows.

So it remains to prove the characterization of non-degeneracy of Z∞ and note that it is
enough to consider the case when x = 0. As in the proof of Theorem 3.3, we denote by (Z̄n)n≥0

the BPRE starting with a single ancestor, environmental sequence U and no immigration. Now
[85, Theorem 2] yields that (Z̄n/EZ̄n)n≥0 conditioned under U converges to a limit W̄ P1-a.s.
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for n → ∞, which is non-degenerated, i.e. q(U) := P1(W̄ = 0|U) < 1 a.s., if and only if
E((X1,0 log

+X1,0)/μU0) < ∞. So, we have to verify the implications

P(Z∞ > 0) > 0 ⇒ P(q(U) < 1) > 0 ⇒ P(Z∞ > 0) = 1. (3.8)

We show the first implication by contraposition and assume that q(U) = 1 a.s. Note that

Zn
d
=

n∑
k=0

ξk∑
i=1

Zk(i), (3.9)

where the random variables (Zk(i))i,k∈N are independent conditioned under U , and Zk(i) has the
generating function gUk−1

◦ · · · ◦ gU0 for k ∈ N and id if k = 0 (see [49]). In particular, Zk(i) is
distributed as Z̄k due to the i.i.d. environmental sequence and thus

Zn−k(i)∏n−1
j=0 μUj

=
1∏n−1

j=n−k μUj

Zn−k(i)∏n−k−1
j=0 μUj

→ 0 a.s.

as n → ∞ for each i ∈ N and all k ∈ N, by recalling that q(U) = 1 a.s. Furthermore, obtain that
Zk(i) is independent of the sequence (Uk+1,Uk+2, . . . ) for each k by definition. From this, (3.9)
and the already in this proof deduced convergence results, we then infer

Zn∏n−1
j=0 μUj

d
=

n∑
k=n−K+1

ξk∑
i=1

Zk(i)∏n−1
j=0 μUj

+
1∏n−1

j=n−K μUj

n−K∑
k=0

ξk∑
i=1

Zk(i)∏n−K−1
j=0 μUj

d→ Z∞∏K
j=1 μU ′

j

for each K ∈ N, where (μU ′
1
, . . . , μU ′

K
) is a copy of (μU0 , . . . , μUK−1

) and independent of Z∞.
Hence,

Z∞
d
=

Z∞∏K
j=1 μU ′

j

for all K ∈ N, and since Z∞ < ∞ and
∏K

j=1 μU ′
j
= exp(

∑K
j=1 logμU ′

j
) → ∞ a.s. as K → ∞ by

the law of large numbers, this yields Z∞ = 0 a.s.
For the second implication in (3.8) let now be P(q(U) < 1) > 0. This in particular implies

Z̄n → ∞ w.p.p. Following the proof of Theorem 3.3, this deduces Zn → ∞ P-a.s. Fix ε > 0 and
choose η > 0 such that

P1(q(U) < 1− η) ≥ 1− ε.

For each k ∈ N, we find that

P(Z∞ = 0 | Zk,U) = P

(
lim
n→∞

Zn∏n−1
i=0 μUi

= 0

∣∣∣∣ Zk,U
)

≤ P

⎛⎝ lim
n→∞

Zk∑
j=1

Z̄n(j)∏n−1
i=k μUi

= 0

∣∣∣∣ Zk,U

⎞⎠
= P1 (W = 0 | (Ui)i≥k)

Zk a.s.
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where Z̄n(j) describes the offspring in generation n stemming from the jth individual in genera-
tion k and thus behaves like the BPRE Z̄n. Since the population of the BPREI explodes almost
surely and U consists of i.i.d. random variables, we finally conclude

P(Z∞ = 0) ≤ E
(
q((Ui)i≥k)

Zk
)

≤ E
(
(1− η)Zk

)
+ ε → ε as k → ∞.

Now, (a) is proved because ε > 0 is arbitrary.
(b) Let c > 0. By (3.1) it follows that Zn+1 ≥ ξn P-a.s. for all n ≥ 0. Since E log+ ξ0 = ∞,

Lemma 3.4 implies

lim sup
n→∞

Zn

cn
≥ lim sup

n→∞

ξn
cn

= lim sup
n→∞

(
1

c
exp

(
log ξn
n

))n

= ∞ P-a.s.

By a coupling argument, the assertion follows for all x ∈ N0.

Remark 3.6. The supercriticality or almost sure finiteness of μU0 was not needed in the proof
of (b) in the above theorem. Thus, this statement holds true in the critical and subcritical case
too, as long as E log+ ξ0 = ∞.

In the situation of a classical GWP with immigration (and no random environment) the
limit Z∞ is non-degenerated if and only if EZ logZ < ∞ is valid. This was proved by Seneta
in [79] and follows also directly from the above theorem. In a subsequent article [80], Seneta
showed the existence of a norming sequence for the GWP with immigration to converge to a non-
degenerated limit if EZ logZ = ∞. The next theorem states that a suitable norming sequence for
the BPREI cannot differ much from the mean normalization and thus the population explodes
at an exponential rate on the set of survival.

Theorem 3.7. Let E logμU0 > 0, E log+ ξ0 < ∞ and E log−(1−g1,U0(0)) < ∞. Then 1
n logZn →

E logμU0 Px-a.s. for all x ∈ N0 as n → ∞.

Proof. Let x ∈ N0. By our assumptions and Theorem 3.5 ((
∏n−1

i=0 μUi)
−1Zn)n≥0 converges Px-a.s.

to a finite random variable Z∞. Hence, we find that

lim sup
n→∞

1

n
logZn ≤ lim sup

n→∞

1

n
log

(
Zn∏n−1

i=0 μUi

)
+ lim sup

n→∞

1

n

n−1∑
i=0

logμUi ≤ E logμU0 Px-a.s.

by the law of large numbers. By [83, Theorem 5.5], we get for a BPRE (without immigration)
(Z̄n)n≥0 with a single ancestor and environmental sequence U

lim
n→∞

1

n
log Z̄n = E logμU0 P1-a.s.

on the event {Z̄n → ∞}, and thus we get for the process (Yn)n≥0 defined in (3.5)

lim
n→∞

1

n
log Yn = E logμU0 P-a.s.,

since the progeny of an immigrant survives eventually. Thanks to Yn ≤ Zn P-a.s. for each n

lim inf
n→∞

1

n
logZn ≥ lim inf

n→∞
1

n
log Yn = E logμU0 P-a.s.

and thus for all Px, x ∈ N0. This finishes the proof of the theorem.



3.4. THE CRITICAL REGIME 55

3.4 The critical regime

Compared to the supercritical case, the population size Zn in the critical regime tends to infinity
in probability under some integrability assumptions.

Proposition 3.8. Let E logμU0 = 0,

0 < E(log(g′1,U0
(1))2) < ∞ and E

(
(1 + log g′1,U0

(1))
g′′1,U0

(1)

g′1,U0
(1)

)
< ∞.

Then Zn
Px−→ ∞ for every x ∈ N0 as n → ∞.

Proof. We reproduce the proof of Bansaye in [16]. Since E logμU0 = 0, it follows that P(X1,0 =

0) > 0. By Corollary 3.2 it is enough to show that Eκτ = ∞. Thus, we consider starting with κ

ancestors. It can be easily seen by definition that κ is the minimal element in Cκ. Thus w.o.l.g.
we can assume that κ = 0, for otherwise we look at the process (Zn−κ)n≥0, and that τ describes
the first hitting time of the BPREI to 0. Let (Z̄n)n≥0 be the BPRE with reproduction law given
by X1,0 and no immigration. Due to our assumptions and [53], there exists a positive constant
c > 0 such that for every n ≥ 0

P1(Z̄n > 0) ≥ c√
n
.

Since Zn is stochastically larger than Z̄n for every n ≥ 0 we obtain

P1(τ > n) ≥ P1(Z̄n > 0) ≥ c√
n

which ensures
E1τ = ∞.

Since the BPREI starting from 1 individual is stochastically smaller than starting from k ≥ 1

ancestors, we get by using the Markov property

E0τ = 1 +
∞∑
z=1

P0(Z1 = z)Ezτ ≥ 1 + P0(Z1 > 0)E1τ = ∞

and thus the assertion.

The above theorem particularly states that, under the given assumptions, the BPREI is not
positive recurrent. However, there are cases under which the critical BPREI is positive recurrent
and thus converges in distribution to a finite random variable. See [77] for an example of a
positive recurrent branching process with immigration in a constant environment.

As in the situation without random environment (see [69, 78]), the population of a critical
BPREI grows slower than every geometric rate if the immigration rate is low, that is E log+ ξ0 <

∞. This is stated in the next theorem.

Theorem 3.9. Let E logμU0 = 0 and E log+ ξ0 < ∞. Then c−nZn → 0 in probability under each
Px, x ∈ N0, and c ∈ (1,∞).
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Proof. Let c > 1 and put F0 := σ ((ξn)n≥0,U). By (3.6), we get

Ex (Zn+1 | F0) = x+
n∑

k=0

ξk

n∏
i=k+1

μUi Px-a.s.

for n ∈ N0 and x ∈ N0. Since x/cn vanishes for n → ∞, we can assume from now on that x = 0.
Fix ε ∈ (0, c− 1) and put μ̃Ui := μUi(1 + ε). Then

0 < E log μ̃U0 = log(1 + ε) < log c (3.10)

and thus

1

cn+1
E (Zn+1 | F0) ≤ 1

cn+1

n∑
k=0

ξk

n∏
i=k+1

μ̃Ui

=

(
n∏

k=0

μ̃Uk

c

)
n∑

k=0

ξk∏k
i=0 μ̃Ui

≤
(

n∏
k=0

μ̃Uk

c

) ∞∑
k=0

ξk∏k
i=0 μ̃Ui

a.s.

Since E logμμ̃U0
> 0, the means μ̃Uk

, k ∈ N0, can be interpreted as given by a supercritical
BPREI with immigration sequence (ξn)n≥0. In the proof of Theorem 3.5, we have already seen
that the sum on the right side is almost surely finite. Because of (3.10) and the i.i.d. property
of μ̃Un , n ∈ N0, we further get

lim sup
n→∞

n∏
k=0

μ̃Uk

c
= lim sup

n→∞
exp

(
n∑

k=0

log
μ̃Uk

c

)
= 0

by the law of large numbers and hence

lim sup
n→∞

1

cn+1
E (Zn+1 | F0) = 0 a.s.

But this implies for each η > 0

lim sup
n→∞

P
(
c−nZn > η|F0

)
≤ lim sup

n→∞

1

ηcn
E (Zn | F0) = 0 a.s.

and thus dominated convergence ensures

lim sup
n→∞

P
(
c−nZn > η

)
= lim sup

n→∞
E
(
P
(
c−nZn > η|F0

))
= 0,

which finishes the proof.

Remark 3.10. (a) By an easy coupling argument or Theorem 3.11 below, the above theorem
also holds true for the subcritical BPREI.

(b) As a consequence of the proof, we conclude that

lim sup
n→∞

1

cn
Ex (Zn+1 | F0) = 0 Px-a.s.

for each x ∈ N0 and c > 1 such that E logμU0 < log c, where F0 := σ((ξn)n≥0,U) as defined
in the proof above. This holds true in all three regimes.
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3.5 The subcritical regime

Suppose that E logμU0 < 0. In contrast to both previous cases, (Zn)n≥0 only converges to infinity
(in probability) if the immigration rate is high, that is when E log+ ξ0 = ∞. If E log+ ξ0 < ∞,
then the population of the subcritical BPREI stabilizes, meaning that (Zn)n≥0 converges in
distribution to a finite random variable. These two results have been proved in [16] and [49]
under quite similar assumptions, which is why we omit a detailed proof here and refer to these
articles for precise arguments.

Theorem 3.11. Let E logμU0 < 0.

(a) If E log+ ξ0 < ∞, then there exists a finite random variable Z∞ such that Zn converges in
distribution to Z∞ as n → ∞ for every ancestor number x ∈ N0.

(b) If E log+ ξ0 = ∞ and E log−(1 − g1,U0(0)) < ∞, then Zn → ∞ Px-stochastically for each
x ∈ N0 as n → ∞.

Proof. Since E logμU0 < 0 is assumed, the descendants of every individual die out eventually as
they form a subcritical BPRE (see [81]). Hence, the number of ancestors has no influence on the
limiting distribution. So it is enough to show the results under P. Now, (3.9) provides

Zn
d−→

∞∑
k=0

ξk∑
i=1

Zk(i) =: Z∞ for n → ∞,

where conditioned under U the random variables (Zk(i))i,k∈N are independent and Zk(i) has
generating function gUk−1

◦ · · · ◦ gU0 . Let F0 = σ((ξk)k≥0,U).
(a) In [49, Theorem 3.3] it is shown that E(Z∞|F0) < ∞ a.s. if E log+ ξ0 < ∞, and (a)

follows.
(b) Let E log+ ξ0 = ∞. We infer from the Borel-Cantelli lemma

P(Z∞ = ∞|F0) = 1 a.s. iff
∞∑
k=0

ξkP(Zk(1) > 0|U) = ∞ a.s.

The convexity of the generating functions, the i.i.d. property of U and the law of large numbers
with the assumption E log−(1− gUi(0)) < ∞ ensure

P(Zk(1) > 0|U) = 1− gUk−1
◦ · · · ◦ gU0(0) ≥

k−1∏
i=0

(1− gUi(0))

= exp

(
k−1∑
i=0

log(1− gUi(0))

)
≥ exp(kα) a.s.

for all k ∈ N0 and a constant α ∈ (−∞, 0). Hence,
∞∑
k=0

ξkP(Zk(1) > 0|U) ≥
∞∑
k=0

ξk exp(kα) a.s.,

and the second sum is almost surely infinite due to Lemma 3.4. This completes the proof.

Remark 3.12. If E log+ ξ0 = ∞ and E log−(1 − g1,U0(0)) < ∞, then Theorem 3.11(b) and a
coupling argument gives Zn

P−→ ∞ in the supercritical and critical case.



Chapter 4

Limit theorems for the BwBP in the
case P(Surv) > 0

In the present chapter, we return back to the BwBP and analyze it under the premise of non-
certain extinction, i.e. P(Surv) > 0, which is assumed from now on for the entire chapter. We
deduce equivalent conditions for the martingale (Wn)n≥0 to be uniformly integrable. After-
wards, we focus on the question of finding an appropriate Heyde-Seneta norming for (Zn)n≥0

and (T ∗
n )n≥0. In particular, we identify the geometric rate at which these processes grow. The

last part of this chapter is devoted to the partition of parasites to the cells. Thereby, diverse
cases have to be considered, for this behavior depends on the regimes of the ABPRE.

4.1 Conditions for the number of parasites to grow like its means:
A Kesten - Stigum theorem

By Proposition 1.12, (Wn)n≥0 forms a non-negative martingale and therefore converges almost
surely to a finite random variable W . In this section, we give equivalent conditions for this
convergence to hold in mean too. We have already seen in Theorem 1.14 that EW = 1 under
certain second moment assumptions. However, there are weaker conditions, namely

EZ1 logZ1 < ∞ and E

(
g′Λ0

(1)

γ
log

g′Λ0
(1)

γ

)
< 0, (4.1)

under which uniform integrability still holds true; in fact, these conditions are equivalent to
EW = 1, besides in some trivial cases, as will be shown in Theorem 4.6. (4.1) comprises the well-
known (Z logZ)-condition, i.e. EZ1 logZ1 < ∞, which is equivalent to uniform integrability in
the classical Galton-Watson setting (see [14, Theorem 10.1 in Chapter I]), and a second condition
saying that the parasites are more or less uniformly spread over all cells and not concentrated in
a few cell lines. This second condition is similar to the one obtained for the weighted branching
model (see [55]). As in nearly all probabilistic proofs of Kesten-Stigum-type theorems, we use
the size-biased method and the dichotomy stated in Lemma 2.2 to verify the mentioned results.

58
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For analog proceedings, we refer to [27, 55] and recall that our conditions are similar to, but
stronger than the ones given in [27] (see the end of Subsection 1.1.1).

Before proving the afore mentioned results, we show that P(W > 0) > 0 and uniform integra-
bility are two sides of the same medal, meaning that these two properties are equivalent. Note
that by the considerations in Subsection 1.2.4 and (1.28), it is enough to consider the BwBP
when starting with one cell containing a single parasite.

Theorem 4.1. Let P(Ext) < 1. The following statements are equivalent:

(i) P(W > 0) > 0

(ii) EW = 1

(iii) (Wn)n≥0 is uniformly integrable

(iv) E
(
supn≥0Wn

)
< ∞.

Proof. The implications “(iv) ⇒ (iii) ⇒ (ii) ⇒ (i)” follow directly from standard martingale
theory. So it is left to deduce that P(W > 0) > 0 implies E

(
supn≥0Wn

)
< ∞. Besides slight

modifications, we follow the argumentations in the proofs of [23, Lemma 2] and [10, Lemma 2.6
in Chapter II], and we estimate the tail probabilities of supn≥0Wn.

Let P(W > 0) > 0. Assuming the existence of constants δ∗ > 0 and B > 0 such that

P (W > δ∗t) ≥ BP

(
sup
n≥0

Wn > t

)
(4.2)

for all t ∈ [1,∞), we can conclude

E

(
sup
n≥0

Wn

)
=

∫ ∞

0
P

(
sup
n≥0

Wn > t

)
dt

≤ 1 +

∫ ∞

1
P

(
sup
n≥0

Wn > t

)
dt

≤ 1 +
1

B

∫ ∞

1
P (W > δ∗t) dt

≤ 1 +
EW

δ∗B
< ∞.

This proves the implication “(i) ⇒ (iv)”. Thus, it is left to verify (4.2).

Proof of (4.2): Clearly, P(W > 0) > 0 implies EW > 0. By the monotone convergence
theorem, we find for each a ∈ (0,EW ) a constant K ≥ a such that E(W ∧K) ≥ a. Fix t ∈ [1,∞)

and define for n ∈ N0

En :=

{
Wn > t, sup

0≤k<n
Wk ≤ t

}
.

Then for all δ > 0, we get

P(W > δt) ≥ P

(
W > δt, sup

n≥0
Wn > t

)
=

∑
n∈N0

P(W > δt|En)P(En). (4.3)
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For v ∈ V and n ∈ N0 let Z(v)
n denote the number of parasites in the nth generation of the

subtree rooted in cell v, which contains Zv parasites. Since (Wn)n≥0 is a martingale under each
Pz, z ∈ N, by Proposition 1.12, we obtain the almost sure convergence of γ−nZ(v)

n conditioned
under Zv and denote its limit by W (v). Then for all n ∈ N0, we get the representation

W =
1

γn
lim
k→∞

∑
v∈T∗

n

Z(v)
k

γk
=

1

γn

∑
v∈T∗

n

W (v) a.s.

and consequently

P(W > δt|En) = P

⎛⎝ 1

γn

∑
v∈T∗

n

W (v) > δt

∣∣∣∣ En

⎞⎠
= P

⎛⎝ 1

γnWn

∑
v∈T∗

n

W (v) >
δt

Wn

∣∣∣∣ En

⎞⎠
≥ P

⎛⎝ 1

Zn

∑
v∈T∗

n

W (v) > δ

∣∣∣∣ En

⎞⎠
≥ P

⎛⎝ 1

Zn

∑
v∈T∗

n

(W (v) ∧ ZvK) > δ

∣∣∣∣ En

⎞⎠
= P(En)

−1

∫
En

P

⎛⎝ 1

Zn

∑
v∈T∗

n

(W (v) ∧ ZvK) > δ

∣∣∣∣ Fn

⎞⎠ dP. (4.4)

For Z∅ = z ∈ N0 let Zk,j denote the number of parasites in generation k ∈ N0 stemming from
the ancestor parasite j ∈ {1, . . . , z}. If for all 1 ≤ j ≤ z the offspring number in generation k is
at most γkK, then the sum over all offspring parasites is at most zγkK, i.e.

z∑
j=1

(
Zk,j ∧ γkK

)
≤

⎛⎝ z∑
j=1

Zk,j

⎞⎠ ∧ zγkK Pz-a.s.

This consideration implies

Ez(W ∧ zK) = Ez

⎛⎝ lim
k→∞

⎛⎝ 1

γk

z∑
j=1

Zk,j

⎞⎠ ∧ zK

⎞⎠
≥ Ez

⎛⎝ z∑
j=1

(
lim
k→∞

1

γk
Zk,j ∧K

)⎞⎠ = zE(W ∧K) ≥ za

for all z ∈ N0. From this, we infer

E

⎛⎝ 1

Zn

∑
v∈T∗

n

(
W (v) ∧ ZvK

) ∣∣∣∣ Fn

⎞⎠ =
1

Zn

∑
v∈T∗

n

∞∑
z=1

Ez (W ∧ zK)1{Zv=z}
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≥ 1

Zn

∑
v∈T∗

n

Zva = a a.s.

for all n ∈ N0. Let us put Wn(K) := 1
Zn

∑
v∈T∗

n
(W (v) ∧ ZvK) for n ∈ N0 and note that

Wn(K) ≤ K a.s. for all n ∈ N0. Keeping this in mind, we find that for all δ ∈ (0, a)

a ≤ E (Wn(K) | Fn) =

∫ K

0
P (Wn(K) > x | Fn) dx

≤ δ +

∫ K

δ
P (Wn(K) > x | Fn) dx ≤ δ + (K − δ)P (Wn(K) > δ | Fn)

and thus
P (Wn(K) > δ | Fn) ≥ a− δ

K − δ
a.s.

Plugging this inequality into (4.4) for δ∗ := a/2 and B := a/(2K − a) yields

P(W > δ∗t|En) ≥ B

for all n ∈ N0 and t ∈ [1,∞). By using (4.3), this finally implies

P(W > δ∗t) ≥
∑
n≥0

P(W > δ∗t|En)P(En) ≥ B
∑
n≥0

P(En) = BP

(
sup
n≥0

Wn > t

)
for all t ∈ [1,∞), and thus (4.2).

Next, we verify that the conditions (4.1) imply uniform integrability of (Wn)n≥0. To shorten
the arising formulas, we extend the notation of the means in a natural way and put

μu,M := E

(
X(u,M)|M

)
and μN,M := E

(
X(N,M)|N,M

)
(4.5)

for all u ∈ N and N0-valued random variables N,M .

Theorem 4.2. If EZ1 logZ1 < ∞ and E

(
g′Λ0

(1)

γ log
g′Λ0

(1)

γ

)
< 0, then EW = 1.

Proof. To prove the stated result, we use the size-biased tree introduced in Chapter 2 and show
that Ŵ := lim supn→∞ Ŵn is almost surely finite. Then EW = 1 follows by the dichotomy in
Lemma 2.2(c).

Recalling the notation of the size-biased process, we have the recursive representation

Ẑn+1 =
∑
v∈T̂n

∞∑
u=1

Ẑvu =

T̂n∑
u=1

ẐV̂nu
+

∑
v∈T̂n\{V̂n}

Tv∑
u=1

Ẑv∑
i=1

X
(u,Tv)
i,v , n ∈ N0 .

Let us further define the σ-algebra

G := σ
(
(T̂n)n≥0, (X̂

(•,t)
n )n≥0,t≥1, (V̂n)n≥0

)
. (4.6)

Then we get from the above recursive formula for each n ∈ N0

E

(
Ẑn+1

∣∣∣∣ G) = E

⎛⎝ T̂n∑
u=1

ẐV̂nu

∣∣∣∣ G
⎞⎠ + E

⎛⎝ ∑
v∈T̂n\{V̂n}

Tv∑
u=1

Ẑv∑
i=1

X
(u,Tv)
i,v

∣∣∣∣ G
⎞⎠



62 CHAPTER 4. LIMIT THEOREMS

= E

⎛⎝ T̂n∑
u=1

ẐV̂nu

∣∣∣∣ G
⎞⎠ + E

⎛⎜⎜⎜⎜⎝
∑

v∈T̂n\{V̂n}

Ẑv∑
i=1

E

(
Tv∑
u=1

X
(u,Tv)
i,v

)
︸ ︷︷ ︸

=γ

∣∣∣∣ G
⎞⎟⎟⎟⎟⎠

≤ E

⎛⎝ T̂n∑
u=1

ẐV̂nu

∣∣∣∣ G
⎞⎠ + γE

(
Ẑn | G

)

≤ . . . ≤
n∑

k=0

γn−kE

⎛⎝ T̂k∑
u=1

ẐV̂ku

∣∣∣∣ G
⎞⎠ a.s.

Using the definition of the size-biased variables and the fact that for fixed 1 ≤ u ≤ t < ∞ the
random variables (X

(u,t)
i,v )i∈N,v∈V are i.i.d., we further obtain

E

(
Ẑn+1

∣∣∣∣ G) ≤
n∑

k=0

γn−k
T̂k∑
u=1

⎛⎜⎝X̂
(u,T̂k)
k + E

⎛⎜⎝ẐV̂k
−1∑

i=1

X
(u,T̂k)

i,V̂k

∣∣∣∣ G
⎞⎟⎠
⎞⎟⎠

=
n∑

k=0

γn−k
T̂k∑
u=1

(
X̂

(u,T̂k)
k + E(ẐV̂k

− 1|G)E
(
X(u,T̂k) | T̂k

)
︸ ︷︷ ︸

=μu,T̂k

)
a.s. (4.7)

Thus, letting n tend to infinity on the right hand side, leads to

E

(
Ŵn+1

∣∣∣∣ G) ≤
∞∑
k=0

1

γk

T̂k∑
u=1

X̂
(u,T̂k)
k︸ ︷︷ ︸

(∗)

+
∞∑
k=0

1

γk
E(ẐV̂k

− 1|G)
T̂k∑
u=1

μu,T̂k︸ ︷︷ ︸
(∗∗)

(4.8)

a.s. for all n ∈ N0. Recall that γ > 1 by Theorem 1.10 and P(Ext) < 1. Next, we show that
both sums (∗) and (∗∗) are almost surely finite.

Finiteness of (∗): By definition, the family (
∑T̂k

u=1 X̂
(u,T̂k)
k )k≥0 consists of i.i.d. random

variable distributed as Ẑ1. As pointed out in Remark 2.3, EZ1 logZ1 < ∞ is equivalent to
E log Ẑ1 < ∞, and thus Lemma 3.4 implies

lim
k→∞

1

k
log

⎛⎝ T̂k∑
u=1

X̂
(u,T̂k)
k

⎞⎠ = 0 a.s. (4.9)

This guarantees for almost every ω ∈ Ω the existence of a kω ∈ N such that

T̂k(ω)∑
u=1

X̂
(u,T̂k(ω))
k (ω) ≤

(γ
2

)k

for all k ≥ kω. Hence, (∗) < ∞ a.s.

Finiteness of (∗∗): First, recall that by Theorem 2.4 (ẐV̂n
− 1)n≥0 is a BPREI with i.i.d.

environmental sequence [Ûn, T̂n]n≥0 and immigration sequence (X̂
(Ûn,T̂n)
n − 1)n≥0. Consequently,
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μÛi,T̂i
, i ∈ N0, is the (random) reproduction mean of parasites in cell V̂i, and thus of the first

marginal distribution of individuals in the ith generation of the ABPREI (see Subsection 2.3).
As previously pointed out, EZ1 logZ1 < ∞ implies E log Ẑ1 < ∞, and thus the immigration
components satisfy

E log+
(
X̂

(Û0,T̂0)
0 − 1

)
≤ E log Ẑ1 < ∞.

Using the assumptions in the theorem and Eg′Λ0
(1) = γ/ν (see (1.10)), we get

E

(
g′Λ0

(1) log
g′Λ0

(1)

γ

)
= Eg′Λ0

(1) log g′Λ0
(1)− γ

ν
log γ < 0

and by an appeal to (2.7)

E logμÛ0,T̂0
=

ν

γ
Eg′Λ0

(1) log g′Λ0
(1) < log γ. (4.10)

Thus, we find a constant c ∈ (1, γ) such that E logμÛ0,T̂0
< log c, and by Remark 3.10(b), we get

Ẑ∞ := sup
n∈N0

1

cn
E

(
ẐV̂k

− 1|G
)

< ∞ a.s.

This consideration now leads to a new upper bound for (∗∗), namely

(∗∗) ≤ Ẑ∞

∞∑
k=0

(
c

γ

)k T̂k∑
u=1

μu,T̂k
≤ Ẑ∞

∞∑
k=0

exp

⎛⎝log
c

γ
+

1

k
log+

⎛⎝ T̂k∑
u=1

μu,T̂k

⎞⎠⎞⎠k

(4.11)

a.s. Using Jensen’s inequality and (2.1), we estimate

E log+

⎛⎝ T̂0∑
u=1

μu,T̂0

⎞⎠ =
∑
t≥1

P(T̂0 = t) log+ E

(
t∑

u=1

X(u,t)

)

=
∑
t≥1

pt
γ
E

(
t∑

u=1

X(u,t)

)
log+ E

(
t∑

u=1

X(u,t)

)

≤ 1

γ

∑
t≥1

ptE

(
t∑

u=1

X(u,t) log+
t∑

u=1

X(u,t)

)

=
1

γ
EZ1 logZ1 < ∞,

and since the
∑T̂k

u=1 μu,T̂k
, k ≥ 0, are i.i.d., Lemma 3.4 yields

lim sup
n→∞

1

k
log+

⎛⎝ T̂0∑
u=1

μu,T̂0

⎞⎠ = 0 a.s. (4.12)

Hence, (∗∗) < ∞ a.s. by (4.11) and the just discovered asymptotic behavior.

Having verified that the sums (∗) and (∗∗) are almost surely finite, inequality (4.8) gives

sup
n∈N0

E

(
Ŵn | G

)
< ∞ a.s.
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and Fatou’s lemma ensures almost sure finiteness of lim infn→∞ Ŵn, i.e.

P(lim inf
n→∞

Ŵn < ∞) = Q̂(lim inf
n→∞

wn < ∞) = 1,

where Q̂ = P(B̂T ∈ ·) and Ŵn = wn ◦ B̂T (see (2.4) and (2.5)) should be recalled. It is left to
prove that (wn)n≥0 converges Q̂-a.s., since then Ŵ = lim infn→∞ Ŵn and Ŵ is almost surely
finite, which completes the proof of the theorem.

We show that (1/wn)n≥0 is a Q̂-supermartingale with respect to the filtration (Sn)n≥0 as
defined in Subsection 1.1.2. The adaptivity is clear by definition. For each n ∈ N0, note that

Q̂(wn = 0) =

∫
{wn=0}

wndQ = 0

by Lemma 2.2(b). For a probability measure Q let EQ denote the expectation with respect to
Q. Then for each A ∈ Sn ⊆ Sn+1, we establish by using Lemma 2.2 and Remark 2.3∫

A
EQ̂

(
1

wn+1

∣∣Fn

)
dQ̂ =

∫
A

1

wn+1
dQ̂ = EQ̂

(
1

wn+1
1{A∩{wn+1>0}}

)
= EQ

(
1

wn+1
wn+1 1{A∩{wn+1>0}}

)
= Q (A ∩ {wn+1 > 0})

≤ Q (A ∩ {wn > 0})

=

∫
A

1

wn
dQ̂,

where the last equality results by following the before made transformations backwards. Hence,
for each n ∈ N0

EQ̂

(
1

wn+1

∣∣Fn

)
≤ 1

wn
Q̂-a.s.

and the supermartingale property as well as the integrability are confirmed. The martingale
convergence theorem ensures almost sure convergence of (1/wn)n≥0 under Q̂ as n → ∞, and
thus almost sure convergence for (wn)n≥0. This completes the proof of the theorem.

Given P(g′Λ0
(1) ∈ {γ, 0}) < 1, the conditions of the above theorem are not only sufficient but

also necessary for uniform integrability of (Wn)n≥0. This is stated in the next theorem.

Theorem 4.3. Let P(g′Λ0
(1) ∈ {γ, 0}) < 1. If EZ1 logZ1 = ∞ or E

(
g′Λ0

(1)

γ log
g′Λ0

(1)

γ

)
≥ 0,

then W = 0 a.s.

Proof. We use again the size-biased tree introduced in Chapter 2 and show that P(Ŵ = ∞) = 1

for Ŵ := lim supn→∞ Ŵn. Then Lemma 2.2(c) provides P(W = 0) = 1.
First, note that

Ŵn =
1

γn

∑
v∈T̂n

Ẑv ≥ 1

γn

T̂n−1∑
u=1

ẐV̂n−1u
≥ 1

γn

T̂n−1∑
u=1

X̂
(u,T̂n−1)
n−1 a.s.
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for n ∈ N. Since EZ1 logZ1 = ∞ gives E log Ẑ1 = ∞ by Remark 2.3 and the random sums∑T̂n−1

u=1 X̂
(u,T̂n−1)
n−1 , n ∈ N, are independent and identically distributed as Ẑ1, we infer

lim sup
n→∞

Ŵn ≥ lim sup
n→∞

1

γn

T̂n−1∑
u=1

X̂
(u,T̂n−1)
n−1

= lim sup
n→∞

exp

⎛⎝ 1

n
log

T̂n−1∑
u=1

X̂
(u,T̂n−1)
n−1 − log γ

⎞⎠n

= ∞ a.s.

by using Lemma 3.4. Hence, the assertion is proved in the case when EZ1 logZ1 = ∞.

Let now be EZ1 logZ1 < ∞. Once again, by the definition of Ŵn, we get

Ŵn =
1

γn

∑
v∈T̂n

Ẑv ≥ 1

γn
ẐV̂n

≥ 1

γn
(ẐV̂n

− 1) a.s. (4.13)

for n ∈ N0. As stated in the part Finiteness of (∗∗) in the proof of the previous theorem,
(ẐV̂n

− 1)n≥0 forms a BPREI with i.i.d. environmental sequence [Ûn, T̂n]n≥0 and immigration

sequence (X̂
(Ûn,T̂n)
n − 1)n≥0. The assumption P(g′Λ0

(1) ∈ {γ, 0}) < 1 implies μu,t �= γ for a
1 ≤ u ≤ t < ∞ with pt > 0 and P(X(u,t) > 0) > 0, and thus

μÛ0,T̂0
�= γ w.p.p. (4.14)

Furthermore,
E log+

(
X̂

(Û0,T̂0)
0 − 1

)
< ∞

due to EZ1 logZ1 < ∞. By adapting the transformations done in (4.10), we get

E logμÛ0,T̂0
=

ν

γ
Eg′Λ0

(1) log g′Λ0
(1) ≥ log γ > 0. (4.15)

Hence, (ẐV̂n
− 1)n≥0 has a supercritical behavior (see Subsection 2.3), and by Theorem 3.5(a),

there exists an almost surely finite random variable Z∞ such that

lim
n→∞

ẐV̂n
− 1∏n−1

i=0 μÛi,T̂i

= Z∞ a.s. (4.16)

Moreover, Theorem 3.5(a) provides that Z∞ is positive almost surely since

E

(
X(Û0,T̂0)

μÛ0,T̂0

log+X(Û0,T̂0)

)
=

∑
1≤u≤t<∞

P

(
Û0 = u, T̂0 = t

)
E

(
X(u,t)

μu,t
log+X(u,t)

)

=
1

γ

∑
1≤u≤t<∞

ptE
(
X(u,t) log+X(u,t)

)

≤ 1

γ

∑
1≤u≤t<∞

ptE

(
X(u,t) log+

t∑
u=1

X(u,t)

)

=
1

γ
EZ1 log

+Z1 < ∞,
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where in the second equation Lemma 2.1(b) was used. Thus, from (4.13), (4.14), (4.15), (4.16)
and the fact that the μÛi,T̂i

, i ∈ N0, are i.i.d., we get

Ŵ = lim sup
n→∞

Ŵn ≥ Z∞ lim sup
n→∞

∏n−1
i=0 μÛi,T̂i

γn
= Z∞ exp

(
lim sup
n→∞

n−1∑
i=0

log

(
μÛi,T̂i

γ

))
= ∞

a.s. by the law of large numbers. With the statements at the beginning of the proof, the theorem
is proved.

Remark 4.4. The condition P(g′Λ0
(1) ∈ {γ, 0}) < 1 was not needed to prove W = 0 a.s. in the

above theorem in the case where EZ1 logZ1 = ∞. Thus, the (Z logZ)-condition is necessary for
uniform integrability of (Wn)n≥0 without any further assumptions.

To cover all settings, the subsequent theorem considers the case when P(g′Λ0
(1) ∈ {γ, 0}) = 1.

In this situation only a single cell line can be infected, which entails the number of parasites to
behave as a BPRE. Consequently, the second condition can be omitted.

Theorem 4.5. Let P(g′Λ0
(1) ∈ {γ, 0}) = 1. Then EW = 1 if and only if EZ1 logZ1 < ∞.

Proof. By Remark 4.4, EW = 1 implies EZ1 logZ1 < ∞. To prove the converse, first note that
P(g′Λ0

(1) ∈ {γ, 0}) = 1 implies μu,t ∈ {0, γ} for all 1 ≤ u ≤ t < ∞ if pt > 0, and thus

γ =
∞∑
t=0

pt

t∑
u=1

μu,t = γ

∞∑
t=0

pt#{1 ≤ u ≤ t : P(X(u,t) > 0) > 0}︸ ︷︷ ︸
=:c=1

.

Since c denotes the mean number of cells that are able to host parasites, we get EzT ∗
1 ≤ c = 1

for all z ∈ N. Hence,

ET ∗
n+1 = E

⎛⎝∑
v∈T∗

n

∞∑
z=1

Ez(T ∗
1 )1{Zv=z}

⎞⎠ ≤ ET ∗
n ≤ . . . ≤ 1.

As P(Surv) > 0 is assumed, Theorem 1.10 provides P2(T ∗
1 ≥ 2) = 0, and by Theorem 1.7, we

infer T ∗
n = 1 a.s. on Surv. So (Zn)n≥0 is a BPRE (see Subsection 1.1.3) where the reproduction

law in each generation has mean γ. Now, the assertion follows with [85, Theorem 2].

We summarize all proved results in this chapter in the following theorem. Recall that Theorem
1.14(b) implies P(Ext) = P(W > 0) if (Wn)n≥0 is uniformly integrable.

Theorem 4.6. Let P(Ext) < 1. Then EW ∈ {0, 1} and P(W = 0) = P(Ext) if EW = 1.
Furthermore:

(a) If P(g′Λ0
(1) ∈ {γ, 0}) < 1, then

EW = 1 iff EZ1 logZ1 < ∞ and E

(
g′Λ0

(1)

γ
log

g′Λ0
(1)

γ

)
< 0.
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(b) If P(g′Λ0
(1) ∈ {γ, 0}) = 1, then

EW = 1 iff EZ1 logZ1 < ∞.

Remark 4.7. If only a single daughter cell might be infected, i.e. P2(T ∗
1 ≥ 2) = 0, the parasite

process (Zn)n≥0 forms a branching process in an i.i.d. random environment, and w.o.l.g., we
assume that the possible contaminated daughter cell is the first one (see Subsection 1.1.3). Hence,

E

(
g′Λ0

(1)

γ
log

g′Λ0
(1)

γ

)
=

1

ν

∑
t≥1

pt
μ1,t

γ
log

μ1,t

γ
≥ 1

ν

∑
t≥1

pt
μ1,t

γ
log

∑
t≥1

pt
μ1,t

γ
= 0

by Jensen’s inequality, and thus W = 0 a.s. if P(g′Λ0
(1) ∈ {γ, 0}) < 1. This is consistent with the

known results for branching processes in random environment (see [12,85]) since the martingale
norming sequence (

∏n
i=0 g

′
Λi
(1))n≥0 grows slower than γ, as Eg′Λ0

(1) = γ/ν < γ.

4.2 Growth rates and the problem of finding a Heyde-Seneta
norming ...

In Theorem 4.6, we have seen that W = 0 a.s. if the (Z logZ)-condition is violated. A question
naturally arising is: What is the actual growth rate of (Zn)n≥0 in this case? To completely
answer this question, one has to construct a sequence (cn)n≥0 in R such that limn→∞ c−1

n Zn

exists almost surely and is positive on the set of survival Surv. Such a normalization sequence is
called Heyde-Seneta norming, and their existence was first proved for the simple GWP in [45,76]
by the eponymous authors. Efforts were made to construct similar norming sequences for other
branching processes with success in [25,26,32,33,84] under the usage of diverse techniques.

However, the construction of a Heyde-Seneta norming is not the easiest task, especially in our
model. Since BwBPes starting with a different number of parasites are not identically distributed,
no recursive representation with i.i.d. copies can be given for Zn, which was fundamental for
the proofs in the above mentioned articles. Consequently, the techniques used there are not
easily transferable to our model. Because of this reason, we are unfortunately not proving the
existence of a Heyde-Seneta norming for (Zn)n≥0, but the author is optimistic that this can be
done, possibly under some additional assumptions. However, if the parasite multiplication is
high, a suitable normalization sequence can be constructed for (T ∗

n )n≥0. We further determine
the exponential factor of the growths rates for both processes, (T ∗

n )n≥0 and (Zn)n≥0. This weaker
partial result gives a first idea how the Heyde-Seneta norming should look like since it indicates
that an appropriate norming sequence is the product of this exponential factor and some strictly
slower increasing function.

4.2.1 ... for the process of contaminated cells

By Theorem 1.8, the process (ν−nT ∗
n )n≥0 forms a supermartingale. Furthermore, by Proposition

1.4 the normalization can be written as νn = ET ∗
n /P(Z

′
n > 0), n ∈ N0, and so T ∗

n behaves like its
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mean for n → ∞ apart from some regulation depending on the ABPRE. Since the environmental
sequence of the ABPRE takes values in a countable space, [59, Theorem 1.1] states

lim
n→∞

P(Z ′
n > 0)1/n = inf

0≤θ≤1
Eg′Λ0

(1)θ =: ρ (4.17)

with ρ = 1 if E log g′Λ0
(1) ≥ 0, ρ = ν−1γ if E log g′Λ0

(1) < 0 and Eg′Λ0
(1) log g′Λ0

(1) ≤ 0, and
ρ < min{1, ν−1γ} otherwise. Hence, it is justifiable to assume that the number of contaminated
cells grows with the geometric rate (νρ)n, and thus a proper Heyde-Seneta norming should not
differ much from this sequence. This is stated in the next theorem.

Theorem 4.8. Let P(Surv) > 0 (and thus particularly ν > 1). Then limn→∞ 1
n log T ∗

n = log νρ

Pz-a.s. on Surv for all z ∈ N.

Proof. First, let us consider the case when P2(T ∗
n ≥ 2) = 0. Then on Surv, there exists exactly

one contaminated cell in each generation (see Theorem 1.7), and (Zn)n≥0 forms a BPRE (see
Subsection 1.1.3). W.o.l.g., we can assume that the contaminated cell is always the first daughter
cell. Since parasites survive w.p.p., the process along the infected cell line is supercritical and
thus

ρ = inf
0≤θ≤1

Eg′Λ0
(1)θ =

1

ν
inf

0≤θ≤1

∞∑
t=1

ptμ
θ
1,t =

1

ν
,

where the last equality can be deduced with the help of Jensen’s inequality. Consequently, the
assertion follows in this case since log T ∗

n = 0 = log νρ for all n ∈ N0.
So, from now on, assume that P2(T ∗

n ≥ 2) > 0. For each ε > 0, the Markov inequality
provides

∞∑
n=0

Pz

(( T ∗
n

EzT ∗
n

)1/n

≥ 1 + ε

)
≤

∞∑
n=0

1

(1 + ε)n
< ∞,

whence by the Borel-Cantelli lemma

lim sup
n→∞

( T ∗
n

EzT ∗
n

)1/n

≤ 1 Pz-a.s.

But from (4.17), Proposition 1.4 and Jensen’s inequality, we infer for n → ∞

(EzT ∗
n )

1/n = νPz(Z
′
n > 0)1/n ≤ ν

(
z∑

i=1

P(Z ′
n > 0)

)1/n

≤ ν(zP(Z ′
n > 0))1/n → νρ,

and thus
lim sup
n→∞

1

n
log T ∗

n ≤ log νρ Pz-a.s.

Concerning the lower bound, assume that the result has been already shown for z = 1.
Then for all z ∈ N, we can write Surv =

⋃z
i=1{T ∗

n,i → ∞}, where T ∗
n,i denotes the number of

contaminated cells containing a descendant of the ancestor parasite i. Since T ∗
n,i is distributed

as T ∗
n when starting with a single parasite, we obtain

lim inf
n→∞

1

n
log T ∗

n ≥ lim inf
n→∞

1

n
log T ∗

n,i = log νρ Pz-a.s. on {T ∗
n,i → ∞}
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for each 1 ≤ i ≤ z and assertion follows. So, it is left to verify the lower bound for z = 1.
Theorem 1.7 entails T ∗

n → ∞ a.s. on Surv for n → ∞ and applying Fatou’s lemma gives

∞ = E lim inf
n→∞

T ∗
n ≤ lim inf

n→∞
ET ∗

n . (4.18)

In the following, we describe the construction of a sequence (T∗
n,m)n≥0 of sets of contaminated

cells for each m ∈ N. Step one, put T∗
0,m := {∅} and assume the root cell to host one parasite.

Next, put T∗
1,m := T∗

m as the set of contaminated cell in generation m. Now, consider a cell in
T∗
1,m, choose from its parasites an arbitrary one and identify all contaminated cells in generation

2m which contain descendants of this parasite. Repeat this procedure with all cells in T∗
1,m and

denote the union of all thus identified cells in generation 2m by T∗
2,m. Use the same procedure

to construct T∗
n+1,m from T∗

n,m for all n ∈ N. This gives us a sequence (T∗
n,m)n≥0 of sets of

contaminated cells in the generations 0,m, 2m, 3m, . . . Let us put

Sn,m := #T∗
n,m (4.19)

for n ∈ N0 as the cardinal number of these sets. Clearly,

T ∗
nm ≥ Sn,m P-a.s.

for all n ∈ N0, and (Sn,m)n≥0 forms a simple GWP with reproduction law P(T ∗
m ∈ ·) and

reproduction mean ET ∗
m. (4.18) ensures ET ∗

m > 1 and thus supercriticality of (Sn,m)n≥0 for
all large m. For m ∈ N denote by Survm the set of non-extinction of (Sn,m)n≥0, Obviously,
Survm ⊆ Surv for all m ∈ N. Fix m0 such that P(Survm0) > 0 and note that Survm0 ⊆ Surv2m0 ⊆
· · · ⊆ Surv a.s. because a GWP considered only at the points in time lN0 for a l ∈ N is also a
GWP and survives if the original one does. Using these inclusions and the branching property
of a GWP, we obtain

P(Survkm0) =

∞∑
t=1

P(T ∗
km0

= t)(1− P(Survckm0
)t) ≥ (1− P(Survcm0

)s)P(T ∗
km0

≥ s)

for all s ∈ N and k ∈ N. Hence,

P

⎛⎝⋃
k≥0

Survkm0

⎞⎠ = lim
k→∞

P(Survkm0) ≥ (1− P(Survcm0
)s)P(Surv)

for all s ∈ N, and since P(Survm0) > 0 is assumed, we get⋃
k≥0

Survkm0 = Surv P-a.s. (4.20)

by letting s tend to infinity in the above inequality.
Let now m ∈ m0N. For each n ∈ N, we can find kn ∈ N and ln ∈ {0, . . . ,m − 1} such that

n = knm+ ln and thus on Survm

T ∗
n ≥

∑
v∈T∗

n,m

T ∗
ln,v P-a.s.,
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where T ∗
ln,v

denotes the number of contaminated cells in generation n rooted in cell v. So by
Jensen’s inequality, this yields on Survm

log T ∗
n = log+ T ∗

n ≥ 1

Skn,m

∑
v∈T∗

n,m

log+ T ∗
ln,v + log+ Skn,m ≥ log+ Skn,m P-a.s.,

and the classical theory of GWPes (see for example the Heyde-Seneta theorem [10, Theorem 5.1
in Chapter II]) provides

lim inf
n→∞

1

n
log T ∗

n ≥ lim inf
n→∞

1

n
log+ Skn,m =

1

m
logET ∗

m = log ν +
1

m
logP(Z ′

m > 0) P-a.s.

on Survm, where in the last equation Proposition 1.4 has been used. As m = km0 for arbitrary
k ∈ N, (4.17) now gives

lim inf
n→∞

1

n
log T ∗

n ≥ log ν + lim
k→∞

1

km0
logP(Z ′

km0
> 0) = log νρ Pz-a.s.

on Surv, by recalling (4.20). This proves the theorem.

If the ABPRE survives w.p.p., (T ∗
n )n≥0 has nearly the same growth rate as the GWP (Tn)n≥0

(see Theorem 1.8). Hence, the Heyde-Seneta norming of (Tn)n≥0 gives the right normalization
for the process of contaminated cells in this case.

Theorem 4.9. Let P(Surv) > 0 (and thus particularly ν > 1) and z ∈ N. If E log g′Λ0
(1) > 0 and

E log−(1 − gΛ0(0)) < ∞, then there exists a sequence (cn)n≥0 in (0,∞) such that cn+1/cn → ν

and (c−1
n T ∗

n )n≥0 converges Pz-a.s. as n → ∞ to a finite random variable L̃ which satisfies
Pz(L̃ = 0) = Pz(Ext).

Proof. Fix z ∈ N. First, note that E log−(1 − gΛ0(0)) < ∞ ensures μu,t > 0 if pt > 0, and so
P2(T ∗

1 ≥ 2) > 0, due to ν > 1. W.o.l.g. assume that ET log T = ∞, as otherwise (νn)n≥0 is a
suitable norming sequence by Theorem 1.8. For each a > 0 such that ET 1{T≤a} > 1, we define

c0(a) := a and cn+1(a) := cn(a)E
(
T 1{T≤cn(a)}

)
, n ∈ N0, (4.21)

and let (cn)n≥0 be such a sequence for a fixed a. Notice that every sequence (cn(a))n≥0 is
determined by the choice of a and recall that (Tn)n≥0 is a supercritical GWP with reproduction
law L(T ) and mean ν. Then the classical theory of GWPes (see e.g. [10, Chapter II]) provides
that each thus defined sequence (cn(a))n≥0 forms a suitable Heyde-Seneta norming for (Tn)n≥0

with

lim
n→∞

cn+1(a)

cn(a)
= ν and lim

a→∞
1

a

∞∑
n=0

cn(a)P(T > cn(a)) = 0. (4.22)

Furthermore, for each sequence (cn(a))n≥0 there exists a constant y(a) ∈ (0,∞) such that
cn(a)/cn → y(a) as n → ∞.

For n ∈ N0 and v ∈ V with |v| = n, put

Tv(a) := Tv 1{Tv≤cn(a)}, (4.23)
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and let T∗
n(a), T ∗

n (a) and Tn(a) denote the obvious in a BwBP with an underlying cell process
given by (Tv(a))v∈V. It is well-known from the classical theory that the process (c−1

n (a)Tn(a))n≥0,
is a L2-bounded martingale (see e.g. the proof of [10, Theorem 5.6 in Chapter II]). As in the
proof of Theorem 1.8, we calculate for n ∈ N0

Ez

(
T ∗
n+1(a) | Fn

)
=

∑
v∈T∗

n(a)

Ez

⎛⎝Tv(a)∑
u=1

1{Zvu>0}
∣∣ Fn

⎞⎠
≤ E(T 1{T≤cn(a)})T ∗

n (a) =
cn+1(a)

cn(a)
T ∗
n (a) Pz-a.s.

Hence, (c−1
n (a)T ∗

n (a))n≥0 forms a positive supermartingale with EzT ∗
n (a) ≤ cn(a)/a, and since

the obvious majorant (c−1
n (a)Tn(a))n≥0 is L2-bounded, we find an almost surely finite random

variable L(a) such that
T ∗
n (a)

cn(a)
→ L(a) Pz-a.s. and in L1 (4.24)

as n → ∞. The rest of the proof is split into several parts.
Convergence of T ∗

n /cn: With calculations as in the proof of [25, Proposition 1], we get

Pz(T ∗
n (a) �= T ∗

n for some n ∈ N0) =
∞∑
n=1

Pz(T ∗
1 (a) = T ∗

1 , . . . , T ∗
n−1(a) = T ∗

n−1, T ∗
n (a) �= T ∗

n )

≤
∞∑
n=1

∞∑
x=0

Pz(T ∗
n−1(a) = T ∗

n−1 = x, T ∗
n (a) �= T ∗

n )

≤
∞∑
n=1

∞∑
x=0

Pz(T ∗
n−1(a) = x)xP(T > cn−1(a))

≤
∞∑
n=1

EzT ∗
n−1(a)P(T > cn−1(a))

≤ 1

a

∞∑
n=1

cn−1(a)P(T > cn−1(a)) → 0 as a → ∞,

where the convergence follows from (4.22). Hence, by (4.24) we get for almost every ω ∈ Ω the
existence of an a0 such that for all a ≥ a0

T ∗
n (ω)

cn
=

cn(a)

cn

T ∗
n (a)(ω)

cn(a)
→ y(a)L(a)(ω) (4.25)

for an appropriate constant y(a) ∈ (0,∞). Hence, (c−1
n T ∗

n )n≥0 converges Pz-a.s. to a random
variable L̃.

L̃ is positive w.p.p.: By (4.25), it is enough to show P(L(a) > 0) > 0 for some a > 0. Let
Λ(a) = (Λn(a))n≥0 be a sequence of independent random variables taking values in the set of
probability measures on N0 such that

P

(
Λn(a) = L(X(u,t))

)
=

pt

E
(
T 1{T≤cn(a)}

) =
cn(a)

cn+1(a)
pt (4.26)
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for all n ∈ N0 and 1 ≤ u ≤ t ≤ cn(a). Let further (Z ′
n(a))n≥0 be a branching process with

environmental sequence Λ(a), and let gΛn(a)(s) denote the random generating function of the in-
dividuals in the nth generation. Recall that (Z ′

n)n≥0 is the ABPRE with environmental sequence
Λ (see Subsection 1.2.1). Clearly,

Pz(Z
′
n(a) > 0|Λ(a) = λ) = Pz(Z

′
n > 0|Λ = λ)

as well as

P(Λ0(a) = λ0, . . . ,Λn(a) = λn) =
1

cn(a)

n∏
k=0

ptk

for a sequence of probability measures λ = (λk)k≥0 with λk = L(X(uk,tk)) and uk ≤ tk ≤ ck(a)

for each k ∈ N0. Hence, by merely adjusting the summations in the proof of Proposition 1.4, we
obtain for each n ∈ N0

P(Z ′
n(a) > 0) = c−1

n (a)ET ∗
n (a), (4.27)

and as (c−1
n (a)T ∗

n (a))n≥0 → L(a) in mean, we get

EL(a) = lim
n→∞

P(Z ′
n(a) > 0).

For λ = L(X(u,t)) and K > 0 let

gλ,K(s) =

K−1∑
k=0

skP(X(u,t) = k) + sKP(X(u,t) ≥ K)

be the generating function of the truncated random variable X(u,t) ∧K. As truncation reduces
the reproduction, obviously

EL(a) = lim
n→∞

P(Z ′
n(a) > 0) ≥ lim

n→∞
P(Z ′

n,K(a) > 0),

where (Z ′
n,K(a))n≥0 is the branching process with environmental sequence Λ(a) and truncated

reproduction laws. The truncation further guarantees supn≥0 g
′′
Λn(a),K

(1)/g′Λn(a),K
(1) < ∞ a.s.

and hence

lim
n→∞

P(Z ′
n,K(a) > 0) > 0 if

∞∑
n=0

(
n+1∏
i=0

g′Λi(a),K
(1)

)−1

< ∞ P-a.s. (4.28)

by Agresti [3, Theorem 1].
Due to the assumptions in the theorem, [4, Theorem 2.1] gives the existence of a constant

K > 0 such that

0 < E log g′Λ0,K(1) < ∞.

A look at (4.26) shows that

P

(
Λn(a) = L(X(u,t))

)
=

cn(a)

cn+1(a)
pt → pt

ν
= P

(
Λ0 = L(X(u,t))

)
as n → ∞,
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and by an appeal to (4.22) thus

lim
n→∞

E log g′Λn(a),K
(1) = lim

n→∞

∑
1≤u≤t≤cn(a)

cn(a)

cn+1(a)
pt logE(X

(u,t) ∧K)

=
∑

1≤u≤t<∞

pt
ν
logE(X(u,t) ∧K) = E log g′Λ0,K(1).

Furthermore, we obtain for all x > 0

P

(
log± g′Λn(a),K

(1) > x
)

=
∑

1≤u≤t≤cn(a),
log± μu,t>x

cn(a)

cn+1(a)
pt

≤ aν

c1(a)

∑
1≤u≤t<∞,
log± μu,t>x

pt
ν

=
aν

c1(a)
P
(
log± g′Λ0,K(1) > x

)

and therefore the law of large numbers in Theorem B.1 ensures the existence of an almost surely
finite random variable G such that

1

n

n−1∑
k=0

log g′Λk(a),K
(1) ≥ 1

2
E log g′Λ0,K(1) > 0 for all n ≥ G.

But from this, we deduce

∞∑
n=0

n+1∏
i=0

1

g′Λi(a),K
(1)

=
G−1∑
n=0

n+1∏
i=0

1

g′Λi(a),K
(1)

+
∞∑

n=G

exp

(
−

n+1∑
i=0

log g′Λi(a),K
(1)

)

≤
G−1∑
n=0

n+1∏
i=0

1

g′Λi(a),K
(1)

+
∞∑

n=G

exp

(
−1

2
E log g′Λ0,K(1)

)n+1

< ∞ .a.s.,

and hence, EL(a) > 0 by an appeal to (4.28).
L̃ vanishes only on Ext: Adapting the proof of Theorem 1.8(b), we set τn := inf{m ∈

N0 |T ∗
m ≥ n} for each n ∈ N. Then

Pz(L̃ = 0) ≤ Pz(L̃ = 0|τn < ∞) + Pz(τn = ∞)

= Pz

⎛⎝ lim
m→∞

cm
cm+τn

∑
v∈T∗

τn

c−1
m t∗m(BT (v)) = 0

∣∣∣∣ τn < ∞

⎞⎠+ Pz(τn = ∞)

≤ P

(
n⋂

k=1

{T ∗
m,k/cm → 0}

)
+ Pz(τn = ∞)

≤ P(L̃ = 0)n + Pz(τn = ∞),

where in the penultimate inequality we used (4.22). As P(L̃ = 0) < 1, letting n tend to infinity
completes the proof of the theorem by an appeal to Theorem 1.7.
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4.2.2 ... for the process of parasites

Turning now to the process of parasites, we show that the norming sequence can not differ much
from (γn)n≥0, viz. n−1 logZn → log γ a.s. for n → ∞ on Surv. In the case P2(T ∗

1 ≥ 2) = 0,
(Zn)n≥0 forms a BPRE (see Subsection 1.1.3). A suitable norming was already found in [84,
Theorem 1]. This case particularly comprises P (g′Λ0

(1) ∈ {γ, 0}) = 1 as seen in the proof of
Theorem 4.5. Hence, we can restrict our analysis to the case when two contaminated daughter
cells may occur. As in the previous section, it is sufficient to consider only the standard starting
configuration (one cell with one parasite).

Theorem 4.10. If P(Ext) < 1, P2(T ∗
1 ≥ 2) > 0 and E

(
g′Λ0

(1)

γ log
g′Λ0

(1)

γ

)
< 0, then W

1/n
n → 1

a.s. on Surv as n → ∞.

Proof. Since (Wn)n≥0 converges almost surely to a finite random variable by Proposition 1.12,
it immediately follows that lim supn→∞W

1/n
n ≤ 1 a.s.

To derive the other direction, we divide the proof into two cases and follow the truncation
argumentation given in [25]. Note that P2(T ∗

1 ≥ 2) > 0 implies P (g′Λ0
(1) ∈ {γ, 0}) < 1 (see the

discussion above the theorem).

Case I: Let T be bounded, i.e. T ≤ c a.s. for a finite constant c > 0. For a > 0, we define
for each 1 ≤ u ≤ t ≤ c

X(u,t)(a) := X(u,t) 1{X(u,t)≤a}

and let (Zn(a))n≥0 be the process of parasites and (T ∗
n (a))n≥0 the process of contaminated cells

having the truncated reproductions laws. Let further be γ(a) = EZ1(a) as well as gΛ0,a(s) and
Wn(a) the obvious random variables. Since T ∗

n (a) ↑ T ∗
n as a → ∞ for each n ∈ N, we get for

large a > 0 that P2(T ∗
1 (a) ≥ 2) > 0 as well as supn≥0 ET ∗

n (a) > 1. Thus, P(Zn(a) → 0) < 1 by
Theorem 1.10. Moreover,

E

(
g′Λ0,a(1) log

g′Λ0,a
(1)

γ(a)

)
= E

(
g′Λ0,a(1) log g

′
Λ0,a(1)

)
− E

(
g′Λ0,a(1) log γ(a)

)
≤ E

(
g′Λ0

(1) log g′Λ0
(1)

)
− E

(
g′Λ0,a(1) log γ(a)

)
↘ E

(
g′Λ0

(1) log g′Λ0
(1)

)
− E

(
g′Λ0

(1) log γ
)

as a → ∞

= E

(
g′Λ0

(1) log
g′Λ0

(1)

γ

)
< 0,

since γ(a) is isotone in a. Hence, by assumption there exists an a0 > 0 such that for all a ≥ a0

E

(
g′Λ0,a(1) log

g′Λ0,a
(1)

γ(a)

)
< 0.

As EZ1(a) logZ1(a) ≤ ac log ac, Theorem 4.6 implies the existence of a finite random variable
W (a) such that Wn(a) → W (a) in L1 as n → ∞. In particular, P(W (a) > 0) > 0.

Let now be ε > 0 and fix a ≥ a0 such that

γ(a) ≥ (1− ε)γ,
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which yields
EZn(a) = γ(a)n ≥ (1− ε)nγn

for all n ∈ N0. Let (Zn,k(a))n≥0 be the parasite process, where parasites in the first k generations
beget offspring according to the original reproduction laws and from generation k + 1 on with
the truncated laws. By the above established lower bound of the means, we get

EZn,k(a) = γkEZn−k(a) ≥ (1− ε)nγn

for all k ≤ n, k, n ∈ N0. Additionally, we find that

Zn

(1− ε)nγn
≥ Zn,k(a)

(1− ε)nγn
≥ Zn,k(a)

EZn,k(a)
≥ 1

γk

∑
v∈T∗

k

Z(v)
n−k(a)

EZn−k(a)

a.s., where Z(v)
n−k(a), v ∈ T∗

n, are i.i.d. random variables having the same law as Zn−k(a) when
starting with a single parasite. Because of our choice of a, taking the limit in the above inequality
yields

lim inf
n→∞

Zn

(1− ε)nγn
≥ lim inf

n→∞
1

γk

∑
v∈T∗

k

Z(v)
n−k(a)

EZn−k(a)
=

1

γk

∑
v∈T∗

k

W (v)(a),

where W (v)(a), v ∈ T∗
n, are independent and distributed as W (a) (under P). Recalling that Fk

is the σ-algebra of the k-past, we get from this inequality

P

(
lim inf
n→∞

Zn

(1− ε)nγn
> 0

∣∣∣∣ Fk

)
≥ P

⎛⎝ 1

γk

∑
v∈T∗

k

W (v)(a) > 0

∣∣∣∣ Fk

⎞⎠
= 1− P(W (a) = 0)T

∗
k a.s.

Since P(W (a) > 0) > 0, we conclude by recalling Theorem 1.7 and letting k tend to infinity

Surv = {T ∗
n → ∞} ⊆

{
lim inf
n→∞

Zn

(1− ε)nγn
> 0

}
a.s.,

and we finally get
lim inf
n→∞

W 1/n
n ≥ 1− ε a.s.

on the survival set Surv. Hence, the theorem is proved in the first case.

Case II: Let T be unbounded. We reduce this case to considerations of a bounded T by
truncation and use the results of Case I. For b > 0, we define

T (b) := T 1{T≤b} .

Let (Zn(b))n≥0 be the process of parasites and (T ∗
n (b))n≥0 the process of contaminated cells

having the truncated reproductions law for the cells. Additionally, let γ(b) = EZ1(b), ν(b) =

ET1(b) and gΛ0,b(s) be the generating function of the ABPRE of the truncated BwBP. For the
truncated process, we get

E
(
g′Λ0,b(1) log g

′
Λ0,b(1)

)
=

∑
1≤u≤t≤b

pt
ν(b)

μu,t logμu,t
b→∞−−−→ E

(
g′Λ0

(1) log g′Λ0
(1)

)
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as well as

E
(
g′Λ0,b(1) log γ(b)

)
=

ν

ν(b)

γ(b)

ν
log γ(b)

b→∞−−−→ γ

ν
log γ = Eg′Λ0

(1) log γ ∈ (0,∞).

Putting these two equations together and using γ(b) ↑ γ as b → ∞, we obtain

E

(
g′Λ0,b(1) log

g′Λ0,b
(1)

γ(b)

)
= E

(
g′Λ0,b(1) log g

′
Λ0,b(1)

)
− E

(
g′Λ0,b(1) log γ(b)

)
b→∞−−−→ E

(
g′Λ0

(1) log g′Λ0
(1)

)
− E

(
g′Λ0

(1) log γ
)

= E

(
g′Λ0

(1) log
g′Λ0

(1)

γ

)
< 0.

Hence, as in the first case, for each ε > 0, we can fix b > 0 such that γ(b) ≥ (1− ε)γ, P2(T ∗
1 (b) ≥

2) > 0, P(Zn(b) → 0) < 1 and E

(
g′Λ0,b

(1) log
g′Λ0,b

(1)

γ(b)

)
< 0. Thus all conditions for Case I are

fulfilled which then implies

lim inf
n→∞

W 1/n
n ≥ (1− ε) lim inf

n→∞

(Zn(b)

γ(b)n

)1/n

≥ 1− ε a.s.

This completes the proof.

4.3 Relative proportions of contaminated cells

In this section, we are concerned with the long-run behavior of the relative proportions of con-
taminated cells containing a given number of parasites, viz.

Fn(k) :=
#{v ∈ T∗

n |Zv = k}
T ∗
n

for k ∈ N and n → ∞. We consider Fn(k) under the event of parasite survival. Recall that P∗
z,

z ∈ N, denotes the measure Pz conditioned under Surv. We assume throughout this section that

P2(T ∗
1 ≥ 2) > 0,

as otherwise T ∗
n = 1 P∗

z-a.s. for all z ∈ N and Fn(k) = 1{Zn=k}. Since (Zn)n≥0 is BPRE in this
situation, the known theory gives Zn → ∞ on Surv and thus Fn(k) → 0 a.s. (see [13]).

The asymptotic behavior of Fn(k) is highly dependent on the long-term behavior of the
parasite number along a cell line and thus of the ABPRE. Because of this reason, we need to
consider different cases. Theorem 4.11 deals with the situation when parasites multiply at a high
rate, viz. the ABPRE is supercritical. In this case the number of parasites in a cell line converges
to infinity and thus every cell is hosting a large number of parasites. This entails convergence
in probability of Fn(k) to 0 for all k ∈ N. If, on the other hand, the multiplication of parasites
in low, that is when the ABPRE is strongly subcritical (Eg′Λ0

(1) log g′Λ0
(1) < 0), Fn(k) stabilizes

and converges to a deterministic limit as n → ∞. This is shown in Theorem 4.12. These results
are generalizations of [15, Theorem 5.1 and Theorem 5.2], where the underlying cell tree was
assumed to be binary.

Before stating our results in detail, we recall that P(Surv) > 0 and thus ν > 1 is assumed.
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Theorem 4.11. Let E log g′Λ0
(1) > 0 and E log−(1 − gΛ0(0)) < ∞. Then for all z, k ∈ N and

ε > 0

lim
n→∞

P∗
z (Fn(k) > 1− ε) = 0.

Proof. Let z ∈ N and ε, η > 0. Due to the assumptions of the theorem and Theorem 4.9,
we can find a sequence of positive numbers (cn)n≥0 and a finite random variable L̃ such that
P∗
z(L̃ = 0) = 0 and T ∗

n ≥ cnL̃ Pz-a.s. for all n ∈ N0. So, we infer

P∗
z (Fn(k) > 1− ε) ≤ P∗

z

(
Fn(k) > 1− ε, L̃ ≥ η

)
+ P∗

z(0 < L̃ < η)

≤ P∗
z

(
c−1
n #{v ∈ T∗

n |Zv = k} > (1− ε)η
)
+ P∗

z(0 < L̃ < η). (4.29)

Recall the construction of the Heyde-Seneta normalization in the proof of Theorem 4.9. For each
large a > 0, the sequence (cn(a))n≥0 as defined in (4.21) is a suitable norming sequence and

lim
n→∞

cn(a)/cn = y(a) (4.30)

for a constant y(a) ∈ (0,∞). Furthermore, the number of contaminated cells T ∗
n (a) of the BwBP

with the underlying cell tree generated by the truncated reproduction laws defined in (4.23)
fulfills

Pz(T ∗
n (a) �= T ∗

n for some n ∈ N0) ≤ η

for all large a > 0 (see the part Convergence of T ∗
n /cn). With the same argumentation to

prove relation (4.27), we establish for all k ∈ N

P(Z ′
n(a) = k) = c−1

n (a)E#{v ∈ T∗
n(a)|Zv = k},

where (Z ′
n(a))n≥ is the ABPRE of the truncated BwBP with environmental sequence (Λn(a))n≥0

given by (4.26) and generating functions gΛn(a)(s). Taking all these observations into account,
we infer from (4.29) by using the Markov inequality

P∗
z (Fn(k) > 1− ε) ≤ P∗

z

(
c−1
n #{v ∈ T∗

n |Zv = k} > (1− ε)η
)
+ P∗

z(0 < L̃ < η)

≤ Pz

(
c−1
n #{v ∈ T∗

n(a)|Zv = k} > (1− ε)η
)

Pz(Surv)
+ η + P∗

z(0 < L̃ < η)

≤ Ez

(
c−1
n #{v ∈ T∗

n(a)|Zv = k}
)

Pz(Surv)(1− ε)η
+ η + P∗

z(0 < L̃ < η)

≤ cn(a)

cn

Pz(Z
′
n(a) = k)

Pz(Surv)(1− ε)η
+ η + P∗

z(0 < L̃ < η).

Since E log g′Λ0
(1) > 0, there exists a 1 ≤ u ≤ t < ∞ such that pt > 0 and P(X(u,t) ≥ 2) =: α > 0.

Recalling (4.21) and (4.26), this implies

P

(
g′Λn(a)

(0) ≤ 1− α/2
)

≥ cn(a)

cn+1(a)
pt ≥ pt

ν

for large a > 0 and all n ∈ N, and the Borel-Cantelli lemma entails
∞∑
n=1

(1− g′Λn(a)
(0)) = ∞ a.s.
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Hence, [30, Theorem 3] ensures limn→∞ P(Z ′
n(a) = k) = 0 for all k ∈ N and thus

lim
n→∞

P∗
z (Fn(k) > 1− ε) ≤ lim

n→∞
cn(a)

cn

Pz(Z
′
n(a) = k)

Pz(Surv)(1− ε)η
+ η + P∗

z(0 < L̃ < η)

= η + P∗
z(0 < L̃ < η),

where (4.30) was used. Letting η tend to 0 yields the assertion.

Turning now to the case when the ABPRE is strongly subcritical, we show convergence in
probability of Fn(k) to a deterministic limit, which can be determined as the quasi-stationary
distribution of the ABPRE.

Theorem 4.12. If E
(
g′Λ0

(1) log g′Λ0
(1)

)
< 0,

EZ1 logZ1 < ∞ and E

(
g′Λ0

(1)

γ
log

g′Λ0
(1)

γ

)
< 0,

then for all z, k ∈ N and ε > 0

lim
n→∞

P∗
z (|Fn(k)− qk| > ε) = 0,

where qk = limn→∞ P(Z ′
n = k|Z ′

n > 0). Furthermore,

T ∗
n

γn
P∗
z−→ W∑∞

k=1 kqk
as n → ∞

with W being the martingale limit defined in Proposition 1.12.

By our assumptions, all conditions for the proof of [15, Theorem 5.2] and the subsequent
corollaries are fulfilled. Hence, Theorem 4.12 follows with similar arguments. However, a bit of
work is still left to do since the parasite multiplication depends on the cell tree structure, which
is different in [15]. To verify the assertions of the theorem, we require some preliminaries, and
the next lemma comprises analogous results to [15, Lemma 6.1, Proposition 6.3, Lemma 6.5].

Lemma 4.13. The following assertions hold true under the assumptions in Theorem 4.12:

(a) For all η > 0 and z ∈ N

lim
K→∞

sup
n≥0

P∗
z

(∑
v∈T∗

n
Zv 1{Zv>K}
Zn

≥ η

)
= 0.

(b) For every ε > 0 and z ∈ N there exists constants 0 < a < b < ∞ such that

inf
n≥0

P∗
z

(T ∗
n

γn
∈ [a, b]

)
≥ 1− ε.

(c) For all η > 0 and z ∈ N

lim
K→∞

sup
n,m≥0

P∗
z

(
#{v ∈ T∗

n+m : Zv|n > K}
T ∗
n+m

≥ η

)
= 0.
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Proof. Let η > 0 and z ∈ N. By Theorem 4.6 there exists an almost surly finite random variable
C such that C ≤ γ−nZn Pz-a.s. for all n ∈ N0 and P∗

z(C = 0) = 0.
(a) For K,n ∈ N define

An(K, η) :=

{∑
v∈T∗

n
Zv 1{Zv>K}
Zn

≥ η

}
∩ Surv .

So with C given above

Ez

⎛⎝∑
v∈T∗

n

Zv1{Zv>K}

⎞⎠ ≥ ηEz

(
Zn 1An(K,η)

)
≥ γnηEz

(
C1An(K,η)

)
and thus by using Proposition 1.4

ηEz

(
C1An(K,η)

)
≤ 1

γn

∑
k>K

kEz (#{v ∈ T∗
n : Zv = k}) =

(
ν

γ

)n

Ez

(
Z ′
n1{Z′

n>K}
)
.

Since the ABPRE is strongly supercritical with EZ ′
1 logZ

′
1 < ∞, [2, Theorem 1.1 and Corollary

2.3] together with [17, Theorem 2] yield

lim
K→∞

sup
n≥0

Ez

(
C1An(K,η)

)
= 0,

and as C is positive on Surv, the assertion follows.
(b) For each K,n ∈ N obtain

Zn

γn
≥ T ∗

n

γn
≥

∑
v∈T∗

n
Zv 1{Zv≤K}
Kγn

≥ C

K

∑
v∈T∗

n
Zv 1{Zv≤K}
Zn

Pz-a.s.,

and the assertion follows from Theorem 4.6 and (a).
(c) For ε > 0 fix a > 0 as in (b). Then for all n,m ∈ N on {T ∗

n+m ≥ γn+ma}

#{v ∈ T∗
n+m : Zv|n > K}
T ∗
n+m

≤
#{v ∈ T∗

n+m : Zv|n > K}
aγn+m

≤
∑

v∈T∗
n+m

Z(v)
m 1{Zv>K}

aγn+m
Pz-a.s.,

where Z(v)
m denotes the number of parasites in generation m of the subtree rooted in v. Thus,

P∗
z

(
#{v ∈ T∗

n+m : Zv|n > K}
T ∗
n+m

≥ η

)
≤ P∗

z

⎛⎝∑
v∈T∗

n
Z(v)
m 1{Zv>K}

aγn+m
≥ η

⎞⎠+ ε

≤ 1

ηaγn
E∗
z

⎛⎝∑
v∈T∗

n

Zv 1{Zv>K}

⎞⎠+ ε,

for all n,m ∈ N0. For the last inequality, we recall that ExZm = xγm for all x ∈ N. As seen
in the proof of (a), the last term converges uniformly in n to 0 for K → ∞, and the lemma is
proved.
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Proof of Theorem 4.12: Let ε, η > 0 and k, z ∈ N. First, note that

Fn+m(k) =
#{v ∈ T∗

n+m : Zv = k, Zv|n ≤ K}
T ∗
n+m

+
#{v ∈ T∗

n+m : Zv = k, Zv|n > K}
T ∗
n+m

Pz-a.s.

for all n,m ∈ N0 and K > 0. By Lemma 4.13(c), we can find a K > 0 large enough such that

P∗
z (|Fn+m(k)− qk| ≥ 4η) ≤ P∗

z

(∣∣∣∣#{v ∈ T∗
n+m : Zv = k, Zv|n ≤ K}

T ∗
n+m

− qk

∣∣∣∣ ≥ 3η

)
+ ε

≤ P∗
z

(
#{v ∈ T∗

n+m : Zv|n ≤ K}
T ∗
n+m

∣∣∣∣#{v ∈ T∗
n+m : Zv = k, Zv|n ≤ K}

#{v ∈ T∗
n+m : Zv|n ≤ K} − qk

∣∣∣∣ ≥ 2η

)
+ P∗

z

(
#{v ∈ T∗

n+m : Zv|n > K}
T ∗
n+m

qk ≥ η

)
+ ε

≤ P∗
z

(∣∣∣∣#{v ∈ T∗
n+m : Zv = k, Zv|n ≤ K}

#{v ∈ T∗
n+m : Zv|n ≤ K} − qk

∣∣∣∣ ≥ 2η

)
+ 2ε (4.31)

for all n,m ∈ N0. We estimate the probability in (4.31) in the following two steps.

Step 1: We show that there exists a m0 ∈ N such that∣∣∣∣∣
∑

v∈T∗
n
1{Zv≤K} EZv#{u ∈ T∗

m0
: Zu = k}∑

v∈T∗
n
1{Zv≤K} EZvT ∗

m0

− qk

∣∣∣∣∣ ≤ η Pza.s.

for all n ∈ N.
For that purpose, let us put

Tm(k) := #{v ∈ Tm : Zv = k}, for m, k ∈ N .

First, observe that

ETm(k)

ET ∗
m

= P(Z ′
m = k|Z ′

m > 0) → qk as m → ∞ (4.32)

by Proposition 1.4 and [40, Theorem 1.1]. Furthermore, by [17, Theorem 2 and Theorem 7] and
once again Proposition 1.4, we get

ExTm(k)

ETm(k)
=

Px(Z
′
m = k|Z ′

m > 0)

P(Z ′
m = k|Z ′

m > 0)

Px(Z
′
m > 0)

P(Z ′
m > 0)

→ x and
ExT ∗

m

ET ∗
m

=
Px(Z

′
m > 0)

P(Z ′
m > 0)

→ x

for all x ∈ N as m → ∞. Hence,∣∣∣∣ExTm(k)

ETm(k)
− x

∣∣∣∣ ≤ η

4
and

∣∣∣∣ExT ∗
m

ET ∗
m

− x

∣∣∣∣ ≤ η

4

and thus
|ExTm(k)ET ∗

m − ETm(k)ExT ∗
m| ≤ η

2
ETm(k)ET ∗

m

for all 1 ≤ x ≤ K and all large m. From this, we infer∣∣∣∣∣
∑

v∈T∗
n
1{Zv≤K} EZvTm(k)∑

v∈T∗
n
1{Zv≤K} EZvT ∗

m

− ETm(k)

ET ∗
m

∣∣∣∣∣ ≤
∑

v∈T∗
n
1{Zv≤K} |EZvTm(k)ET ∗

m − ETm(k)EZvT ∗
m|

ET ∗
m

∑
v∈T∗

n
1{Zv≤K} EZvT ∗

m
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≤ η

2

∑
v∈T∗

n
1{Zv≤K} ETm(k)∑

v∈T∗
n
1{Zv≤K} EZvT ∗

m

≤ η

2
Pz-a.s.

for all large m. By an appeal to (4.32), Step 1 is proved.

Step 2: Fix m0 ∈ N according to Step 1. By an appeal to (4.31), the first convergence
statement of the theorem follows if the probability

P∗
z

(∣∣∣∣∣#{v ∈ T∗
n+m0

: Zv = k, Zv|n ≤ K}
#{v ∈ T∗

n+m0
: Zv|n ≤ K} −

∑
v∈T∗

n
1{Zv≤K} EZvTm0(k)∑

v∈T∗
n
1{Zv≤K} EZvT ∗

m0

∣∣∣∣∣ ≥ η

)
becomes small for large n.

Indeed, it is

#{v ∈ T∗
n+m0

: Zv = k, Zv|n ≤ K} =
K∑
x=1

∑
v∈T∗

n

1{Zv=x} T (v)
m0

(k)

for each n ∈ N0, where T (v)
m0 (k) = #{u ∈ T

(v)
m0 : Zu = k} and T

(v)
m0 denotes the set of cells in

generation m0 of the subtree rooted in v. Obviously, for each x ∈ {1, . . . ,K}, all T (v)
m0 (k) with

Zv = x are i.i.d. conditioned upon {Zn > 0}. Put Pn
z := Pz(·|Zn > 0) for each n ∈ N and

observe that
sup
A∈F

|Pn
z (A)− P∗

z(A)| → 0 as n → ∞ (4.33)

by easy calculations. Then, the law of large numbers ensures for each η′ > 0 the existence of a
N0 > 0 such that

Pn
z

⎛⎝∣∣∣∣∣∣
∑

v∈T∗
n
1{Zv=x} T (v)

m0 (k)− ExT (v)
m0 (k)

#{v ∈ T∗
n : Zn = x}

∣∣∣∣∣∣ ≥ η′

K
, #{v ∈ T∗

n : Zn = x} ≥ N0

⎞⎠ ≤ ε

2K

for all 1 ≤ x ≤ K and n ∈ N, and by (4.33), we can find a n0 ∈ N such that

P∗
z

⎛⎝∣∣∣∣∣∣
∑

v∈T∗
n
1{Zv=x} T (v)

m0 (k)− ExT (v)
m0 (k)

#{v ∈ T∗
n : Zn = x}

∣∣∣∣∣∣ ≥ η′

K
, #{v ∈ T∗

n : Zn = x} ≥ N0

⎞⎠ ≤ ε

K
(4.34)

for all 1 ≤ x ≤ K and n ≥ n0. Furthermore, the law of large numbers gives the existence of a
finite random variable C such that

Pn
z

⎛⎝∣∣∣∣∣∣
∑

v∈T∗
n
1{Zv=x} T (v)

m0 (k)− ExT (v)
m0 (k)

#{v ∈ T∗
n : Zn = x}

∣∣∣∣∣∣ ≥ y

⎞⎠ ≤ P (C ≥ y)

for all 1 ≤ x ≤ K, n ∈ N and y > 0. Hence, there exists a y0 > 0 such that

P∗
z

⎛⎝∣∣∣∣∣∣
∑

v∈T∗
n
1{Zv=x} T (v)

m0 (k)− ExT (v)
m0 (k)

#{v ∈ T∗
n : Zn = x}

∣∣∣∣∣∣ ≥ y0

⎞⎠ ≤ ε

K
(4.35)

for all 1 ≤ x ≤ K and n ∈ N by using agian (4.33). Fix N > N0Ky0/η
′. Since T ∗

n → ∞ P∗
z-a.s.

for n → ∞, Lemma 4.13(c) gives the existence of a n(η′) > n0 such that

P∗
z (#{v ∈ T∗

n : Zn ≤ K} ≥ N) ≥ 1− ε (4.36)
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for all n ≥ n(η′). Using the estimations (4.34), (4.35) and (4.36), we infer

P∗
z

(∣∣∣∣∣#{v ∈ T∗
n+m0

: Zv = k, Zv|n ≤ K} −∑
v∈T∗

n
1{Zv≤K} EZvTm0(k)

#{v ∈ T∗
n : Zv ≤ K}

∣∣∣∣∣ ≥ η′
)

≤ ε+ P∗
z

⎛⎝∣∣∣∣∣∣
∑

v∈T∗
n
1{Zv≤K}(T (v)

m0 (k)− EZvTm0(k))

#{v ∈ T∗
n : Zv ≤ K}

∣∣∣∣∣∣ ≥ η′, #{v ∈ T∗
n : Zv ≤ K} ≥ N

⎞⎠
≤ ε+

K∑
x=1

P∗
z

⎛⎝∣∣∣∣∣∣
∑

v∈T∗
n
1{Zv=x}(T (v)

m0 (k)− EZvTm0(k))

#{v ∈ T∗
n : Zv ≤ K}

∣∣∣∣∣∣ ≥ η′

K
, #{v ∈ T∗

n : Zv ≤ K} ≥ N

⎞⎠
≤ 2ε+

K∑
x=1

P∗
z

⎛⎝∣∣∣∣∣∣
∑

v∈T∗
n
1{Zv=x}(T (v)

m0 (k)− EZvTm0(k))

#{v ∈ T∗
n : Zv ≤ K}

∣∣∣∣∣∣ ≥ η′

K
,

#{v ∈ T∗
n : Zv = x}

#{v ∈ T∗
n : Zv ≤ K} ≤ N0

N

⎞⎠
≤ 3ε+

K∑
x=1

P∗
z

(
η′

Ky0
≤ #{v ∈ T∗

n : Zv = x}
#{v ∈ T∗

n : Zv ≤ K} ≤ N0

N

)
= 3ε

for all η′ > 0 and n ≥ n(η′). With the same arguments, we derive for all η′′ > 0 the existence of
a n(η′′) > 0 such that

P∗
z

(∣∣∣∣∣#{v ∈ T∗
n+m0

: Zv|n ≤ K} −∑
v∈T∗

n
1{Zv≤K} EZvT ∗

m0

#{v ∈ T∗
n : Zv ≤ K}

∣∣∣∣∣ ≥ η′
)

≤ ε

for all n ≥ n(η′′). So, with the right choice of η′ > 0 and η′′ > 0, we get

P∗
z

(∣∣∣∣∣#{v ∈ T∗
n+m0

: Zv = k, Zv|n ≤ K}
#{v ∈ T∗

n+m0
: Zv|n ≤ K} −

∑
v∈T∗

n
1{Zv≤K} EZvTm0(k)∑

v∈T∗
n
1{Zv≤K} EZvT ∗

m0

∣∣∣∣∣ ≥ η

)
≤ 5ε

for all large n. Hence, the second step and thus the first convergence statement of the theorem
is proved.

For the second limit statement, first recall that the mean of (qk)k≥1 is finite by [40, Theorem
1.1]. Moreover, note that for every K ∈ N and n ∈ N0

T ∗
n =

∑
v∈T∗

n
Zv 1{Zv≤K}∑K

k=1 kFn(k)

and thus∣∣∣∣T ∗
n

Zn
− 1∑∞

k=1 kqk

∣∣∣∣ ≤
∣∣∣∣∣ 1∑K

k=1 kFn(k)
− 1∑∞

k=1 kqk

∣∣∣∣∣+ 1∑∞
k=1 kqk

∣∣∣∣∣
∑

v∈T∗
n
Zv 1{Zv≤K}
Zn

− 1

∣∣∣∣∣ Pz-a.s.

So, applying Lemma 4.13(a), Theorem 4.6 and the convergence in probability of Fn(k) to qk for
each k ∈ N yields the assertion.



Chapter 5

Limit theorems for the BwBP in the
case P(Surv) = 0

This chapter is devoted to the case when almost sure extinction of parasites holds true, namely
P(Ext) = 1, which is a standing assumption unless stated otherwise. First, we look at the
asymptotic behavior of the survival probability and determine its decay rate. Afterwards, finer
convergence results are established while analyzing the BwBP conditioned under non-extinction
of parasites at present time. This is done with the help of the size-biased construction (see
Chapter 2) and will lead to a theorem similar to the classical one of Yaglom (see [14, Chapter
I.8, Corollary 1]).

5.1 Convergence rate of the survival probability

In the simple Galton-Watson setting, the problem of finding the speed of extinction is completely
solved and known under Kolmogorov’s theorem (see the standard literature [14, 46]). More
precisely, this result says that in the subcritical regime the survival probability decreases as fast
as the population means if the (Z logZ)-condition is valid. This result has been expanded to
more complex branching processes like the BPRE in [35,40].

Here, we prove an analogous theorem confirming that the survival probability has the rate
γn if the ABPREI is positive recurrent, which particularly holds true if the ABPRE is strongly
subcritical, and an additional integrability assumption is satisfied (see Theorem 5.5). But first,
we prove a slightly weaker result that determines the exponential decay rates of P(Zn > 0) in
all cases. Recall that S∗ is the set of configurations of contaminated cells and the parasites they
contain, see (1.15).

Theorem 5.1. Let P(Ext) = 1 and ρ = inf0≤θ≤1 Eg
′
Λ0
(1)θ as in (4.17). Then for each (s, z) ∈ S∗

lim
n→∞

P(s,z)(Zn > 0)1/n = lim
n→∞

P(s,z)(T ∗
n > 0)1/n = νρ

with ρ = 1 if E log g′Λ0
(1) ≥ 0, ρ = ν−1γ if E log g′Λ0

(1) < 0 and Eg′Λ0
(1) log g′Λ0

(1) ≤ 0, and
ρ < min{1, ν−1γ} otherwise.

83
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Proof. Let (s, z) ∈ S∗ and let Zn,i denote the progeny number in the nth generation stemming
from parasite i ∈ {1, . . . ,∑s

j=1 zj}. Since Zn,i has the distribution P(Zn ∈ ·), the subadditivity
of measures gives

P(Zn > 0) ≤ P(s,z)(Zn > 0) = P(s,z)

⎛⎝∑s
j=1 zj⋃
i=1

{Zn,i > 0}

⎞⎠ ≤ P(Zn > 0)

s∑
j=1

zj , (5.1)

and the theorem is proved if the statement holds true under P.
If P2(T ∗

1 ≥ 2) = 0, then (Zn)n≥0 is a branching process in i.i.d. random environment having
countable state space (see Subsection 1.1.3). Hence, the assertion follows since

lim
n→∞

P(Zn > 0)1/n = inf
0≤θ≤1

∑
1≤u≤t<∞

ptμ
θ
u,t = νρ

by [59, Theorem 1.1].
Let us from now on assume that P2(T ∗

1 ≥ 2) > 0. By Proposition 1.4, we get

P(T ∗
n > 0) ≤ ET ∗

n = νnP(Z ′
n > 0)

with (Z ′
n)n≥0 being the ABPRE, and from (4.17) we deduce

lim sup
n→∞

P(T ∗
n > 0)1/n ≤ ν lim sup

n→∞
P(Z ′

n > 0)1/n = νρ.

For the lower bound, we recall that supn≥1 ET ∗
n ≤ 1 by Theorem 1.10 under the given

assumptions. Furthermore, from the construction in (4.19), we get for each m ≥ 1 a simple
GWP (Sn,m)n≥0 with a single ancestor and reproduction mean ES1,m = ET ∗

m ≤ 1 which satisfies

P(T ∗
nm > 0) ≥ P(Sn,m > 0) (5.2)

for all n ∈ N0. Let (kn)n≥0 be the sequence in N0 such that knm < n ≤ (kn + 1)m for all n ≥ 0.
In particular, kn → ∞ as n → ∞, and we deduce from (5.2) and the known theory (see e.g. [61]
or [10, Theorem 1.6 in Chapter III])

lim inf
n→∞

P(T ∗
n > 0)1/n ≥ lim inf

n→∞
P(T ∗

(kn+1)m > 0)1/(knm)

≥
(
lim inf
n→∞

P(Skn+1,m > 0)1/kn
)1/m

=
(
lim inf
n→∞

P(Skn+1,m > 0)(1+1/kn)/(kn+1)
)1/m

= (ES1,m)1/m = (ET ∗
m)1/m

for all m ∈ N. Letting m tend to infinity, we get by Proposition 1.4 and once again (4.17)

lim inf
n→∞

P(T ∗
n > 0)1/n ≥ lim

m→∞
(ET ∗

m)1/m = ν lim
m→∞

P(Z ′
m > 0)1/m = νρ,

and the theorem is proved.
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The just proved theorem particularly indicates that under the assumption of almost certain
extinction of parasites, which by Theorem 1.10 is basically the case when E log g′Λ0

(1) < 0, the
decay rate of the survival probability is nearly γn if the ABPRE is strongly and intermediate
subcritical, i.e. Eg′Λ0

(1) log g′Λ0
(1) ≤ 0. However, if otherwise the ABPRE is weakly subcritical,

the survival probability decreases faster than γn. The rest of this section is dedicated to the
formulation of conditions under which γn is the right asymptotic rate for the survival probability,
viz.

P(Zn > 0) � cγn as n → ∞

for a constant c > 0. Before formulating the exact statements in the different cases, we have to
ensure the convergence of γ−nP(Zn > 0) for n → ∞.

Theorem 5.2. The sequence (γ−nP(Zn > 0))n≥0 decreases for n → ∞. In particular,

lim
n→∞

P(Zn > 0)/γn =: c (5.3)

for a constant c ∈ [0,∞), which is 0 if either γ ≥ min{1, ν} or EZ1 logZ1 = ∞.

Proof. Let σn denote the leftmost cell in the first generation which has a contaminated descendant
cell in generation n. We further write Z(σn)

n−1 for the number of parasites in these descendant cells.
Since Zn ≥ Z(σn)

n−1 a.s. and EyZn = yEZn for all n ∈ N and y ∈ N0, we calculate for each n ∈ N

E(Zn | Zn > 0) =
∑
z≥1

P(Zn ≥ z | Zn > 0)

≥
∑
z≥1

P(Z(σn)
n−1 ≥ z | Zn > 0)

=
∑
z≥1

∑
y≥1

P(Z(σn)
n−1 ≥ z, Zσn = y | Zn > 0)

=
∑
z≥1

∑
y≥1

P(Zσn = y | Zn > 0)Py(Zn−1 ≥ z)

=
∑
y≥1

P(Zσn = y | Zn > 0)EyZn−1

= E(Zn−1 | Zn−1 > 0)
∑
y≥1

P(Zσn = y | Zn > 0)yP(Zn−1 > 0)

≥ E(Zn−1 | Zn−1 > 0)
∑
y≥1

P(Zσn = y | Zn > 0)Py(Zn−1 > 0)

= E(Zn−1 | Zn−1 > 0),

where in the last inequality (5.1) was used. Hence, the sequence (E(Zn | Zn > 0))n≥0 is increasing
and consequently

P(Zn > 0)

γn
= E(Zn | Zn > 0)−1 ↘ c as n → ∞

for a constant c ∈ [0,∞).
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It is trivial that c = 0 if γ > 1. If otherwise γ = 1, Theorem 1.10 implies almost sure
extinction of parasites and thus c = 0 is valid in this case. Proposition 1.4 and the Markov
inequality yield

P(Zn > 0) = P(T ∗
n > 0) ≤ ET ∗

n = νnP(Z ′
n > 0) (5.4)

and thus c = 0 if γ > ν. If γ = ν, then Jensen’s inequality ensures that the ABPRE is critical
or subcritical. Hence, c = 0 by (5.4).

Let now γ < min{1, ν} and EZ1 logZ1 = ∞, and we recall that (Fn)n≥0 is the canonical
filtration of the BwBP. Denote by ϕ the generating function of Z1. Then using Jensen’s inequality,
we get for all n ∈ N and s ∈ [0, 1] the lower bound

E
(
sZn+1

∣∣ Fn

)
=

∏
v∈Tn

E

(
s
∑Zv

i=1

∑Tv
u=1 X

(u,Tv)
i,v

∣∣ Zv

)

=
∏
v∈Tn

∞∑
t=0

ptE

(
s
∑Zv

i=1

∑t
u=1 X

(u,t)
i,v

∣∣ Zv

)

=
∏
v∈Tn

∞∑
t=0

ptE
(
s
∑t

u=1 X
(u,t)

)Zv

≥
∏
v∈Tn

( ∞∑
t=0

ptE
(
s
∑t

u=1 X
(u,t)

))Zv

=
∏
v∈Tn

ϕ(s)Zv

= ϕ(s)Zn a.s.

Thus, iterating the above inequality yields

E(sZn) ≥ ϕ ◦ · · · ◦ ϕ(s)︸ ︷︷ ︸
n-times

for all n ∈ N. Let (Sn)n≥0 be a simple GWP with reproduction law given by ϕ. Then, we get
from the above inequality

P(Zn > 0) ≤ 1− ϕ ◦ · · · ◦ ϕ(0)︸ ︷︷ ︸
n−times

= P(Sn > 0)

for all n ∈ N. Since ϕ′(1) = γ < 1 and EZ1 logZ1 = ∞ is assumed, Kolmogorov’s theorem for
the standard GWP (see e.g. [46, Theorem (2.6.1)]) yields limn→∞ γ−nP(Sn > 0) = 0 and thus
c = 0.

To identify sufficient conditions under which the limit c in (5.3) is positive, we use the spinal
BwBP constructed in Chapter 2 and state an equivalent characterization for c = 0 in terms of
this process in Lemma 5.4. This approach is similar to the one for the standard GWP (see [61]),
and we also need the following measure-theoretical lemma.
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Lemma 5.3 (Lemma 5.1 in [61]). Let (Pn)n≥0 be a sequence of probability measures on the
positive integers with finite means mn and for n ∈ N0 let P̂n be the size-biased measure of
Pn. If (P̂n)n≥0 is tight, then supn≥0mn < ∞, while if P̂n({z}) → 0 for each z ∈ N, then
supn≥0mn = ∞.

Proof. For each z ∈ N, we get

1

supn≥0mn
− 1

z
≤ 1

mn
− 1

z
≤ Pn({1, . . . , z})

mn
≤ P̂n({1, . . . , z})

=

∑z
x=1 xPn({x})

mn
≤ zPn({1, . . . , z})

mn
≤ z

mn
.

So, if (P̂n)n≥0 is tight, there exists a z ∈ N such that

1

2
≤ P̂n({1, . . . , z}) ≤ z

mn

for all n ≥ 0, hence supn≥0mn < ∞. If, conversely, supn≥0mn < ∞, there exists a z ∈ N such
that

0 <
1

supn≥0mn
− 1

z
≤ lim

n→∞
P̂n({1, . . . , z}).

Lemma 5.4. limn→∞ γ−nP(Zn > 0) = limn→∞ E(Zn|Zn > 0)−1 = 0 if and only if Ẑn
P−→ ∞.

Proof. For n ∈ N0, put Pn := P(Zn ∈ · | Zn > 0), and let P̂n its corresponding size-biased
distribution. Then,

P̂n({z}) =
zP(Zn = z|Zn > 0)

E(Zn|Zn > 0)
=

zP(Zn = z)

EZn
= P(Ẑn = z) (5.5)

for all n, z ∈ N. If Ẑn
P−→ ∞, the above equation yields P̂n({z}) → 0 for all z ∈ N, and Lemma

5.3 ensures supn≥0 E(Zn|Zn > 0) = ∞. Now, suppose limn→∞ γ−nP(Zn > 0) = 0. Then,

0 = lim
n→∞

P(Zn > 0)/γn ≥ lim
n→∞

P(Zn = z)/γn = lim
n→∞

P(Ẑn = z)/z

for all z ∈ N, and thus P(Ẑn = z) → 0 for all z ∈ N as n → ∞. Since Ẑn ≥ 1 a.s. for all n ∈ N,
this implies Ẑn → ∞ in probability.

We have seen in Theorem 5.2 that γ < min{1, ν}, which implies subcriticality of the ABPRE
by Jensen’s inequality, is necessary for the survival probability to decay like the mean number
of parasites. So, we consider the three different subcritical cases Eg′Λ0

(1) log g′Λ0
(1) < 0,= 0 and

> 0 and give sufficient conditions under which the limit in (5.3) is positive. More precisely, if the
ABPRE is weakly subcritical, then limn→∞ γ−nP(Zn > 0) = 0. In the other cases, the positivity
of this limit depends on the existence of a positive recurrent state of (ẐV̂n

− 1)n≥0 and the mean
offspring number of parasites this process produces during two visits of such a positive recurrent
state. Before stating the result in detail, we need some notation. Let

κ := inf
{
z ∈ N0 | P(X(Û0,T̂0)

1,∅ = 0, X̂
(Û0,T̂0)
0 − 1 = z) > 0

}
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and put κ = ∞ if the set is empty. Furthermore, let

τ := inf
{
n ∈ N | ẐV̂n

− 1 = κ
}

denote the first time the Markov chain (ẐV̂n
− 1)n≥0 hits κ. If ẐV̂0

− 1 = κ, then the BwBP
starts with κ + 1 parasites and thus Eκ+1τ < ∞ if κ is positive recurrent, whereas Eκ+1τ = ∞
otherwise. We further define

Ŷ :=
τ−1∑
j=0

∑
u∈{1,...,T̂j}\{Ûj}

ẐV̂ju

as the total number of parasites in non-spinal cells which have a spinal mother cell up to gener-
ation τ . According to standard convention, we set min1≤u≤T P(X(u,T ) = 0|T ) = 1 on {T = 0}.

Theorem 5.5. Let γ < min{1, ν} and EZ1 logZ1 < ∞.

(a) If Eg′Λ0
(1) log g′Λ0

(1) > 0, then limn→∞ γ−nP(Zn > 0) = 0.

(b) Let Eg′Λ0
(1) log g′Λ0

(1) ≤ 0. Then limn→∞ γ−nP(Zn > 0) > 0 if one of the following
conditions holds true:

(i) Eκ+1τ < ∞ and Eκ+1 log
+ Ŷ < ∞

(ii) P(X(u,t) = 0) ∈ {0, 1} for all u ≤ t with pt > 0.

(c) Let Eg′Λ0
(1) log g′Λ0

(1) ≤ 0. Then limn→∞ γ−nP(Zn > 0) = 0 if one of the following
conditions holds true:

(i) Eκ+1τ = ∞
(ii) Eκ+1 log

+ Ŷ = ∞ and E log−
(
1−min1≤u≤T P(X(u,T ) = 0|T )

)
< ∞

Proof. (a) follows directly from Theorem 5.1 since in this case limn→∞ P(Zn > 0)1/n < min{1, γ}.
Let from now on Eg′Λ0

(1) log g′Λ0
(1) ≤ 0 hold true. Recall that (ẐV̂n

− 1)n≥0 is a BPREI

with immigration components (X̂
(Ûn,T̂n)
n − 1)n≥0 and i.i.d. environmental sequence [Ûn, T̂n]n≥0.

Furthermore, this process is critical or subcritical due to Remark 2.5 and the conditions given
in this theorem. The proof of the remaining statement (b) and (c) is divided into several parts.

Degenerated cases: We first consider the case when P(X(u,t) = 0) ∈ {0, 1} for all 1 ≤ u ≤
t < ∞ with pt > 0, which particularly means X̂

(Û0,T̂0)
0 = X

(Û0,T̂0)
0 = 1 a.s. Hence, Zn = T ∗

n a.s.
for all n ∈ N0 and (Zn)n≥0 forms a standard GWP. Then the classical result by Kolmogorov [46,
Theorem (2.6.1)] provides limn→∞ γ−nP(Zn > 0) > 0, (b)(ii) is proved.

Let now P(X(u,t) = 0) ∈ (0, 1) for some 1 ≤ u ≤ t < ∞ and P(X(u,t) ≤ 1) = 1 for all
1 ≤ u ≤ t < ∞ with pt > 0. Consequently, Zn = T ∗

n a.s. for all n ∈ N0 and (Zn)n≥0 forms
a standard GWP. As seen above, limn→∞ γ−nP(Zn > 0) > 0 follows. Furthermore, κ = 0 and
τ = 1 P-a.s., as only the spinal parasite is in the spinal cell due to the assumptions. Consequently,
Ŷ ≤ Ẑ1 P-a.s. and E log+ Ŷ ≤ E log Ẑ1 < ∞ by Remark 2.3 and the assumptions of this theorem.
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Assumptions: Let from now on

P(X(u,t) = 0) ∈ (0, 1) for some 1 ≤ u ≤ t < ∞ with pt > 0

and
P(X(u,t) ≥ 2) > 0 for some 1 ≤ u ≤ t < ∞ with pt > 0.

These two assumptions particularly imply P(X̂(Û ,T̂ ) > 1) > 0 and 0 < P(X(Û ,T̂ ) = 0) < 1.
Hence, by Lemma 3.1, the Markov chain (ẐV̂n

− 1)n≥0, independent from the starting state,
eventually hits an irreducible and aperiodic set Cκ containing κ.

Proof of (b)(i): Let Eκ+1τ < ∞ and Eκ+1 log
+ Ŷ < ∞. By Lemma 5.4, it is enough to

show that Ẑn does not converge to infinity in probability, which follows if (P(Ẑn ∈ ·))n≥0 is
tight. Under the given assumptions, κ is positive recurrent, and thus (ẐV̂n

− 1)n≥0 visits this
state infinitely often. Let (σi)i≥0 with σ0 = 0 be the successive return times of state κ, i.e.

σi+1 = inf{k > σi | ẐV̂k
− 1 = κ} for i ≥ 0.

We further put
τi = σi − σi−1 for i ≥ 1.

In particular, τ1 = σ1 = τ a.s. Recalling that Ẑ(v)
n denotes the number of parasites in generation

n of the subtree rooted in cell v, we obtain that

Ẑn = Ẑ(V̂σ1 )
n−σ1

+
∑

u∈T̂σ1\{V̂σ1}

Ẑ(u)
n−σ1

a.s. (5.6)

for all n ≥ σ1. Since Ẑ(u)
n−σ1

for u �= V̂σ1 behaves as a non-spinal process and P(Ext) = 1 is
assumed, it converges to 0 a.s. Hence, the right sum converges to 0 a.s. too, as σ1 < ∞ a.s.
Consequently, it is enough to consider the process starting with κ+ 1 parasites in the root cell,
which is assumed from now on. For convenience, we omit the index in the probability measures
and write P instead of Pκ+1 in the rest of this proof.

Let Ĥk := {1, .., T̂k} \ {Ûk} for k ≥ 0, and with G being the σ-algebra as defined in (4.6), we
put

H := σ
(
G ∪ σ

(
(ẐV̂n

− 1)n≥0, (X
(•,T̂n)

i,V̂n
)i≥1,n≥0

))
.

We show the existence of an almost surely finite random variable which dominates E(Ẑn|H)

for all n ≥ 0 stochastically. Indeed,

Ẑn = ẐV̂n
+

n−1∑
k=0

∑
u∈Ĥk

Ẑ(V̂ku)
n−1−k = ẐV̂n

+

σrn−1∑
k=0

∑
u∈Ĥk

Z(V̂ku)
n−1−k +

n−1∑
k=σrn

∑
u∈Ĥk

Z(V̂ku)
n−1−k (5.7)

for each n ≥ 0, where rn ∈ N0 such that σrn ≤ n < σrn+1, and it is recalled that host-parasite
processes not containing the spine behave as an ordinary BwBP. As all σk, Ĥk and ẐV̂k

u are
H-measurable, we get

E

(
Ẑn|H

)
= ẐV̂n

+

σrn−1∑
k=0

∑
u∈Ĥk

ẐV̂ku
γn−k−1 +

n−1∑
k=σrn

∑
u∈Ĥk

ẐV̂ku
γn−k−1
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≤ ẐV̂n
+

σrn−1∑
k=0

∑
u∈Ĥk

ẐV̂ku
γσrn−k−1

︸ ︷︷ ︸
(∗)rn

+

σrn+1∑
k=σrn

∑
u∈Ĥk

ẐV̂ku
a.s., (5.8)

where in the last inequality γ < 1 has been used. Since (ẐV̂n
− 1)n≥0 is positive recurrent (see

the discussion at the beginning of this part of the proof), it converges in distribution to a finite
random variable. Furthermore, the last sum in the above inequality is almost surely finite and
has the same distribution for each n ∈ N0. Hence, there exists a finite random variable C1

dominating ẐV̂n
and the last sum stochastically for each n ≥ 0, i.e.

P

(
ẐV̂n

+

σrn+1∑
k=σrn

∑
u∈Ĥk

ẐV̂ku
≥ m

)
≤ P(C1 ≥ m) for all m,n ∈ N0. (5.9)

Let us now consider (∗)n. Put

Ŷk :=

σk+1−1∑
j=σk

∑
u∈Ĥj

ẐV̂ju

for k ≥ 0 and observe that

(∗)n = γσn−1
n−1∑
k=0

τk+1−1∑
j=0

∑
u∈Ĥσk+j

ẐV̂σk+ju
γ−σk−j

≤ γσn

n−1∑
k=0

γ−σk+1

τk+1−1∑
j=0

∑
u∈Ĥσk+j

ẐV̂σk+ju
= γσn

n−1∑
k=0

γ−σk+1 Ŷk a.s.

Thanks to the positive recurrence of κ, the segments

Ẑi :=
(
ẐV̂σi

, . . . , ẐV̂σi+1−1

)
, i ≥ 0, (5.10)

are i.i.d. and thus particularly the τk+1, k ≥ 0. Due to the reproduction mechanism of cells and
parasites, this ensures that the vectors

Ŷk :=
(
τk+1, Ŷk

)
, k ≥ 0,

are i.i.d. too. In particular, Ŷk is distributed as Ŷ for each k ≥ 0. Hence,

ψ
(
Ŷ0, . . . , Ŷn

)
d
= ψ

(
Ŷn, . . . , Ŷ0

)
for all measurable functions ψ : N

2(n+1)
0 → R. This yields

γσn

n−1∑
k=0

γ−σk+1 Ŷk =

n−1∑
k=0

γ
∑n−1

i=k+1 τi+1 Ŷk

d
=

n−1∑
k=0

γ
∑n−1

i=k+1 τn−i Ŷn−k−1
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=
n−1∑
k=0

γσn−k−1 Ŷn−k−1

=
n−1∑
k=0

γσk Ŷk

≤
∞∑
k=0

exp

(
1

k + 1
log+ Ŷk +

σk
k + 1

log γ

)k+1

(5.11)

for all n ≥ 0. Lemma 3.4 and the law of large numbers yield

lim sup
k→∞

1

k
log+ Ŷk = 0 and lim

k→∞
σk
k

= lim
k→∞

1

k

k∑
i=1

τi = Eτ < ∞

since the (Ŷk)k≥0 are i.i.d. and E log+ Ŷ < ∞ is assumed. Thus, the sum in (5.11) is almost
surely finite. Consequently, (∗)n is stochastically bounded from above by a finite random variable
C2 uniformly in n, i.e.

P((∗)n ≥ m) ≤ P(C2 ≥ m) for all m,n ∈ N0.

Together with (5.8) and (5.9), this ensures that we find for each ε > 0 a constant d > 0 such
that

sup
n≥0

P

(
E

(
Ẑn

∣∣H)
≥ d

)
≤ ε.

But from this, we infer

P

(
Ẑn ≥ ε−1d

)
= E

(
P(Ẑn ≥ ε−1d|H)

)
≤ ε+ E

(
P(Ẑn ≥ ε−1d|H)1{P(Ẑn≥ε−1d|H)≥ε}

)
≤ ε+ P

(
P(Ẑn ≥ ε−1d|H) ≥ ε

)
≤ ε+ P

(
E(Ẑn|H) ≥ d

)
≤ 2ε

for all n ≥ 0, which implies tightness of (P(Ẑn ∈ ·))n≥0. Consequently, Ẑn cannot converge to
infinity in probability, and (b)(i) is proved.

Proof of (c)(i): Let Eκ+1 = ∞. By the observations in the part Assumptions and
Corollary 3.2, we get ẐV̂n

− 1
Px−→ ∞ for all x ∈ N0, and since

Ẑn ≥ ẐV̂n
− 1 a.s.

by (4.13), this yields Ẑn
P−→ ∞. Lemma 5.4 finishes the proof of (b)(i).

Proof of (c)(ii): Let the assumptions in (c)(ii) and additionally Eκ+1 < ∞ hold true. This
gives positive recurrence of (ẐV̂n

− 1)n≥0. We use the same notation as in the part Proof of

(b)(i). By (5.6), it is enough to consider the process with κ+ 1 parasites in the root cell and, as
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before, we write P as shorthand for Pκ+1 from now on in this proof. Again, we use Lemma 5.4
and show that Ẑn converges to infinity in probability. Observe that it is enough to consider the
sequence (Ẑσn)n≥0 since this argumentation can be repeated for each positive recurrent state.
As (ẐV̂n

− 1)n≥0 is in one of this states in every time step, the assertion follows.
From (5.7), we get

Ẑσn ≥
σn−1∑
k=0

∑
u∈Ĥk

Z(V̂ku)
n−1−k =

n−1∑
k=0

τk+1−1∑
j=0

∑
u∈Ĥσk+j

Z(V̂σk+ju)

σn−1−σk−j a.s. (5.12)

As before, the segments Ẑi, i ≥ 0, as defined in (5.10), are i.i.d. Now, the branching property
ensures that the vectors of subtrees spawning from these segments are i.i.d. too since the number
of these subtrees and the number of their root parasites are i.i.d. More precisely, the vectors

BTi :=
(
τi+1, Ẑi,BT(σi), . . . ,BT(σi+1 − 1)

)
, i ≥ 0,

are i.i.d., where the BT(σi + l) := (BT (V̂(σi+l)u))u∈Ĥσi+l
, 0 ≤ l < τi+1, denote the subtrees

spawning from the spinal cell V̂σi+l in segment i. In particular, each BT (V̂(σi+l)u) behaves as an
ordinary BwBP with one root cell and ẐV̂(σi+l)u

parasites. Hence,

ψ (BT0, . . . ,BTn)
d
= ψ (BTn, . . . ,BT0)

for all measurable functions ψ : R → R on a proper space R. As Zn = zn(BT ) for the measurable
mapping zn : S → N0 for each n ∈ N0 (see Subsection 1.1.2), we get

n−1∑
k=0

τk+1−1∑
j=0

∑
u∈Ĥσk+j

Z(V̂σk+ju)

σn−1−σk−j =
n−1∑
k=0

τk+1−1∑
j=0

∑
u∈Ĥσk+j

Z(V̂σk+ju)
∑n−1

i=k τi+1−1−j

d
=

n−1∑
k=0

τn−k−1∑
j=0

∑
u∈Ĥσn−k+j

Z(V̂σn−k−1+ju)

σn−k−1−j

=
n−1∑
k=0

τk+1−1∑
j=0

∑
u∈Ĥσk+j

Z(V̂σk+ju)

σk+1−1−j .

By an appeal to (5.12), we deduce that Ẑσn converges to infinity in probability if

∞∑
k=0

τk+1−1∑
j=0

∑
u∈Ĥσk+j

Z(V̂σk+ju)

σk+1−1−j = ∞ a.s.,

which follows if infinitely many Z(V̂σk+ju)

σk+1−1−j are positive. But conditioned under H, the host-
parasite trees spawning from the spinal cell line are independent, and hence the Borel-Cantelli
lemma gives that

∞∑
k=0

τk+1−1∑
j=0

∑
u∈Ĥσk+j

P

(
Z(V̂σk+ju)

σk+1−1−j > 0
∣∣ H)

= ∞ a.s.
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is sufficient for Ẑσn

P−→ ∞. Since the (τi)i≥1 are i.i.d. with finite mean Eτ , the law of large
numbers provides us with an almost surely finite random variable K such that σk ≤ 2k�Eτ� for
all k ≥ K. Recalling (5.1), we infer

∞∑
k=0

τk+1−1∑
j=0

∑
u∈Ĥσk+j

P

(
Z(V̂σk+ju)

σk+1−1−j > 0
∣∣ H)

≥
∞∑
k=0

τk+1−1∑
j=0

∑
u∈Ĥσk+j

P

(
Z(V̂σk+ju)
σk+1 > 0

∣∣ H)

≥
∞∑

k=K

τk+1−1∑
j=0

∑
u∈Ĥσk+j

P

(
Z(V̂σk+ju)

2(k+1)�Eτ� > 0
∣∣ H)

≥
∞∑

k=K

PŶk

(
Z4k�Eτ� > 0

∣∣ H)
a.s. (5.13)

Since E log+ Ŷ = ∞, it is lim supn→∞ n−1 log+ Ŷn = ∞ a.s. and thus

P

(
Ŷn ≥ an infinitely often

)
= 1

for each a > 0 by Lemma 3.4. In particular, this holds true for a = exp(log(a′)4�Eτ�) for all
a′ > 0. Thus, it is left to prove that there exist some a > 0 and b > 0 such that

Pan (Zn > 0) ≥ b (5.14)

for all large n. Indeed, if this holds true, then (5.13) is almost surely infinite and thus Ẑn
P−→ ∞

as n → ∞. We prove (5.14) in the subsequent lemma.

Lemma 5.6. Let γ < 1 and E log−
(
1−min1≤u≤T P(X(u,T ) = 0|T )

)
< ∞. There exists an a > 0

such that for all ε > 0 there exists a n0 ≥ 0 such that

Pz (Zn > 0) ≥ 1

2
(1− ε)

for all z ≥ an and n ≥ n0.

Proof. Consider the function

h : [0, 1] → [0, 1], h(x) = 1− xz − (1− x)z,

which is strictly concave for z ≥ 2. Furthermore, h(0) = h(1) = 0 and thus h(x) > 0 for all
x ∈ (0, 1), and h is symmetric in 1/2, i.e. h(x) = h(1− x) for all x ∈ [0, 1]. The concativity and
symmetry yield

h(x) ≥

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h(x0)
x0

x if x ≤ x0,

h(x0) if x ∈ (x0, 1− x0),

h(x0)
x0

(1− x) if x ≥ x0

for all x0 ∈ (0, 1).
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Fix ε > 0 and put

a := exp

(
2E log−

(
1− min

1≤u≤T
P(X(u,T ) = 0|T )

))
.

Observe that a > 1, as otherwise X(u,t) ≥ 1 a.s. for at least one 1 ≤ u ≤ t for each t ≥ 1 with
pt > 0. But the assumption E log−(1−min1≤u≤T P(X(u,T ) = 0|T )) < ∞ implies p0 = 0 and thus
γ =

∑∞
t=1 pt

∑t
u=1 μu,t ≥ 1, which contradicts γ < 1.

Conditioned under T the descendants of a root parasite behave in an i.i.d. manner and thus

Pz (Zn > 0) = 1− Pz (Zn = 0)

= 1− E (Pz (Zn = 0|T))

= E (1− P (Zn = 0|T)z)

= E ((1− P (Zn = 0|T))z) + E (h(P (Zn = 0|T))

≥ h(x0)P (P (Zn = 0|T) ∈ (x0, 1− x0)) (5.15)

for all x0 ∈ (0, 1), z ≥ 2 and n ∈ N0. For 1 ≤ u ≤ t < ∞, let g(u,t)(s) be the generating function
of X(u,t). Furthermore, let u(t) denote the smallest index in {1, . . . , t} for which

g(u(t),t)(0) ≤ g(u,t)(0) for all 1 ≤ u ≤ t.

We shortly write gt for the generating function of X(u(t),t). So, given (Tv)v∈V = (tv)v∈V and thus
T = τ , we obtain

P(Zn = 0|T = τ) ≤ P(Zu = 0|T = τ) = g(u1,t∅) ◦ g(u2,tu1 )
◦ · · · ◦ g(un,tu1...un−1 )

(0)

for all n ∈ N and u = u1 . . . un ∈ V. Note that the right hand side is 1 if u /∈ τ . Thus,

P(Zn = 0|T = τ) ≤ gt∅ ◦ gtu1 ◦ · · · ◦ gtu1...un−1
(0),

and the convexity of the generating functions entails

P(Zn > 0|T) ≥ 1− gTU0
◦ gTU1

◦ · · · ◦ gTUn−1
(0) ≥

n−1∏
i=0

(1− gTUi
(0)) a.s.

with U0 = ∅ and Ui+1 = Uiu(TUi) for i ≥ 0. Since the gTUi
(0) are i.i.d. and distributed as

min1≤u≤T P(X(u,T ) = 0|T ), the law of large numbers and the condition of the lemma ensure

P

(
1

n

n−1∑
i=0

log(1− gTUi
(0)) ≥ log(x0)

)
≥ 1− ε

for all large n and x0 := a−1 ∈ (0, 1). Hence, we find a n0 ∈ N such that

P (P (Zn = 0|T) ≤ 1− xn0 ) = P (P (Zn > 0|T) ≥ xn0 ) ≥ 1− ε (5.16)

for all n ≥ n0. Furthermore,

P(Zn = 0) = E(P(Zn = 0|T)) ≤ xn0 + (1− xn0 )P (P (Zn = 0|T) ≥ xn0 )
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and thus
P (P (Zn = 0|T) ≥ xn0 ) ≥ P(Zn = 0)− xn0

1− xn0
≥ 1− ε

for all large n, as P(Zn = 0) → 1 for n → ∞. In combination with (5.16), this gives

P (P (Zn = 0|T) ∈ (xn0 , 1− xn0 )) ≥ 1− 2ε,

and thus we find an n1 ≥ n0 such that

Pz(Zn > 0) ≥ h(xn0 )(1− 2ε) (5.17)

for all n ≥ n1 and z ≥ 2 by an appeal to (5.15).
So, the proof is complete if h(xn0 ) ≥ 1/2 for all z ≥ an and large n. Indeed, this statement

holds true if xnz0 + (1− x0)
nz ≤ 2−1. Observe that

(1− xn0 )
an =

(
1− 1

an

)an

→ e−1 as n → ∞

and thus there exists a n2 ≥ n1 such that

(1− xn0 )
z ≤ e−0.9 <

1

2
.

for all n ≥ n2 and z ≥ an. Obviously xn0 → 0 for n → ∞ and thus xnz0 becomes small for all
large n. This proves the claimed and thus the lemma.

Remark 5.7. (a) The condition Eκ+1τ = ∞ in part (i) of the previous Theorem 5.5(b) is valid
if the ABPREI is critical, i.e. Eg′Λ0

(1) log g′Λ0
(1) = 0 by Remark 2.5, and the integrability

assumptions 0 < E

(
log2 μÛ0,T̂0

)
< ∞ and

E

((
1 + log μÛ0,T̂0

)
E(X(Û0,T̂0)(X(Û0,T̂0) − 1)|Û0, T̂0)

2μÛ0,T̂0

)
< ∞

hold true. This follows directly from Proposition 3.8. Hence, limn→∞ γ−nP(Zn > 0) = 0

in this case.

(b) That the critical ABPREI may have a class of positive recurrent states, which is hit even-
tually, was shown by Seneta in [77], where he gave an example in the case of a constant
environmental sequence. So Eκ+1τ < ∞ is valid under suitable integrability assumptions.

(c) If the ABPREI is strongly subcritical, the state κ is positive recurrent and thus Eκ+1τ < ∞.
Indeed, Eg′Λ0

(1) log g′Λ0
(1) < 0 yields μu,t ∈ (0, 1) and thus P(X(u,t) = 0) ∈ (0, 1) for some

1 ≤ u ≤ t < ∞ with pt > 0. If P(X(u,t) ≤ 1) = 1 for all 1 ≤ u ≤ t < ∞ with
pt > 0, then obviously κ = 0 and Eτ = 1. If otherwise ptP(X

(u,t) ≥ 2) > 0 for some
1 ≤ u ≤ t < ∞, we get P(X̂

(Û,T̂0)
0 − 1 > 0) > 0 and P(X(Û0,T̂0) = 0) > 0. Then Lemma 3.1

states that (ẐV̂n
−1)n≥0 hits the irreducible and aperiodic set Cκ eventually. Furthermore,

this process along the spine is subcritical due to Eg′Λ0
(1) log g′Λ0

(1) < 0 and Remark 2.5.
But as EZ1 logZ1 < ∞, it converges in distribution to a finite random variable by Theorem
3.11. Standard Markov theory then gives the positive recurrence of state κ.
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(d) To verify Eκ+1 log
+ Ŷ < ∞ is not the easy task. However, we conjecture that this condition

is implied by Eκ+1τ < ∞ and EZ1 logZ1 < ∞ and vice versa, maybe under some further
mild assumptions. This should be true for at least the strongly subcritical case.

(e) If the ABPREI is weakly or intermediate subcritical (under minor conditions, for example
the ones in (a) of this remark), the decay rate of the survival probability is strictly less
than γn. In view of Theorem 5.1 and the results in [40], we conjecture that the proper rate
is of order

(νρ)n ·

⎧⎪⎨⎪⎩
n−1/2, (intermediate subcritical case),

n−3/2, (weakly subcritical case),

in the two different regimes.

An additional outcome of the proof of Theorem 5.5(b)(i) is the tightness of the probability
measures (P(Ẑn ∈ ·))n≥0. This holds true if

γ < min{1, ν}, EZ1 logZ1 < ∞, Eg′Λ0
(1) log g′Λ0

(1) ≤ 0,

Eκ+1 < ∞ and Eκ+1 log
+ Ŷ < ∞

(R)

and additionally sup1≤u≤t<∞ ptP(X
(u,t) ≥ 2) > 0 are valid. In particular, the process of parasites

along the spinal cells eventually hits a positive recurrent state. However, in the case where the
last condition is violated, there is no immigration in the ABPREI. Hence, the number of parasites
along the spine is non-decreasing, and if

P(X(u,t) = 0) ∈ (0, 1) for some 1 ≤ u ≤ t < ∞ with pt > 0, (R*)

the process (ẐV̂n
)n≥0 eventually reaches the absorbing state 1. As every parasite population in a

subtree branching off the spine dies out almost surely, the process has the asymptotic behavior as
starting with a single parasites and one parasite in each spinal cell. Hence, the proof of Theorem
5.5(b)(i) can be adapted, and we obtain tightness in this situation too. Since (R*) is implied
by sup1≤u≤t<∞ ptP(X

(u,t) ≥ 2) > 0, as seen in the proof of Theorem 5.5(b), this condition is a
relaxation of the latter one. If both (R) and (R*) are valid, we refer to them by (R1), i.e.

(R) and (R*). (R1)

In the case of part (ii) of Theorem 5.5(b), that is when

γ < min{1, ν}, EZ1 logZ1 < ∞, Eg′Λ0
(1) log g′Λ0

(1) ≤ 0 and

P(X(u,t) = 0) ∈ {0, 1} for all 1 ≤ u ≤ t < ∞ with pt > 0,
(R2)

we are in the standard Galton-Watson setting and thus tightness of the above measures holds
true under the (Z logZ)-condition by the classical theory (see e.g. [61, 62]). We summarize all
these observations in the next lemma.

Lemma 5.8. Let (R1) or (R2) hold true. The measures (P(s,z)(Ẑn ∈ ·))n≥0 are tight for each
(s, z) ∈ S∗.



5.2. CONDITIONAL LIMIT THEOREMS 97

Proof. Tightness follows immediately from (5.1) and the discussion above the lemma.

The results of Theorem 5.5 can be generalized to an arbitrary number of root cells and
parasites, and limits can be determined. The proof of the exact limit in the case when (R1)
holds true can be done by elementary but cumbersome calculations. However, these result
follows as an easy corollary from Proposition 5.12, which is why we omit the proof here and
refer to Corollary 5.14 for details. We mention that the below theorem is not needed to proof
Proposition 5.12.

Theorem 5.9. Let c ∈ [0,∞) as defined in (5.3). If c = 0, then γ−nP(s,z)(Zn > 0) → 0 as
n → ∞ for all (s, z) ∈ S∗. Furthermore,

lim
n→∞

1

γn
P(s,z)(Zn > 0) =

⎧⎪⎨⎪⎩
c
∑s

i=1 zi if (R1) holds true,

cs if (R2) holds true

for all (s, z) ∈ S∗.

Proof. If c = 0, the assertion follows immediately from (5.1). The case where (R1) holds true
follows from Corollary 5.14.

If (R2) is valid, viz. P(X(u,t) = 0) ∈ {0, 1} for all 1 ≤ u ≤ t < ∞ with pt > 0, it follows that
μu,t = 0 or μu,t ≥ 1 for all 1 ≤ u ≤ t < ∞ with pt > 0. Since Eg′Λ0

(1) log g′Λ0
(1) ≤ 0, this gives

P(X(u,t) = 0) = 1 or P(X(u,t) = 1) = 1

for all 1 ≤ u ≤ t < ∞ with pt > 0. Consequently, every infected cell contains as many parasites
as the root cell, i.e. Zn = xT ∗

n Px-a.s. for each x ∈ N, and (T ∗
n )n≥0 forms a standard GWP.

Hence,

P(s,z)(Zn > 0) = P

(
s∑

i=1

T ∗
n,i > 0

)
,

where (T ∗
n,i)n≥0, 1 ≤ i ≤ s, are independent copies of (T ∗

n )n≥0. So, P(s,z)(Zn > 0) has the same
asymptotic behavior as the survival probability of a standard GWP with s ancestors. By Lemma
1.9, the assertion follows, as only one of the T ∗

n,i survives in the long run and each of them has
the same probability to be that particular process.

Remark 5.10. In the case where (R2) holds true, c is the limit in Kolmogorov’s classical theorem
[46, Theorem (2.6.1)]. If otherwise (R1) holds true, c can be determined as

∑∞
k=1 k

−1θ̂(k), where
θ̂ is the limit distribution of P(Ẑn ∈ ·). This is shown in the later Corollary 5.13.

5.2 Conditional limit theorems

Considering almost sure extinction, the process of parasites (Zn)n≥0 reaches the absorbing state
0 eventually. Therefore, for a more detailed description of the behavior of the BwBP, one has
to study its distribution conditioned under the event {Zn > 0}. For this purpose, we assume
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that (R1) or (R2) hold true in this section, which ensures the limit c in (5.3) to be positive by
Theorem 5.5.

Before stating and proving results in detail, we shortly recall that the homogeneous Markov
chain BPG describes the number of infected cells and its containing parasites. BPG has state
space S∗

0 = S∗ ∪ {(0, 0)}, transient states S∗ and transition probabilities given by (1.17), i.e.

p((s, x), (t, z)) := P(s,x)(BPG1 = (t, z))

for (s, x), (t, z) ∈ S∗
0 .

Since we are interested in the asymptotic behavior of the BwBP conditioned under {Zn > 0},
we introduce some further notation. We put

Pn
(t,z) := P(t,z)(·|Zn > 0)

for all n ∈ N0 and (t, z) ∈ S∗
0 and denote by En

(t,z) the corresponding expectation. As usual we
write Pn

x if we start with one cell hosting x ∈ N0 parasites, and omit the index if the starting
cell contains only one parasite.

With this notation, the opening question for the analysis of this section can be formulated
as follows: Does there exist a probability distribution π on S∗ such that

lim
n→∞

Pn
(t,z)(BPGn ∈ ·) = π(·)

for each (t, z) ∈ S∗? Such a limiting distribution is called quasi-stationary distribution or Yaglom-
limit. This section gives a positive answer to this question. We even prove that the above
convergence holds true in total variation distance dTV . Moreover, we study the distribution of
BPGn conditioned under {Zn+k > 0} for k ∈ N arbitrary and determine its limit for n → ∞.
Similar results can be looked up in [2, 14] for the GWP and the BPRE. Before analyzing the
situation in the general model, we shortly look at the simple case in which the number of parasites
can be expressed via a weighted sum of standard GWPes.

5.2.1 A simple Galton-Watson case

We assume throughout this subsection that (R2) holds true. This particularly means that

P(X(u,t) = 0) = 1 or P(X(u,t) = 1) = 1 for all 1 ≤ u ≤ t < ∞ with pt > 0

as seen in the proof of Theorem 5.9. Hence, every contaminated cell contains exactly as many
parasites as the root cell. So, starting with s ∈ N root cells each containing a single parasite,
denoted by (s, 1) ∈ S∗, provides Zn = T ∗

n for all n ∈ N. Moreover, (Zn)n≥0 forms a simple GWP
starting with s ancestors. In this case, the introductory question of this section has been entirely
answered by the classical theory (see e.g. [14, 46,61]).

• (Yaglom’s theorem) For all k ∈ N0 there exists a probability distribution πk on N such that
for all (s, 1) ∈ S∗

lim
n→∞

Pn+k
(s,1)(Zn ∈ ·) = πk(·). (5.18)

Furthermore, the mean of π1 is c−1, and if EZ1 logZ1 < ∞, then limk→∞ πk(z) = czπ1(z)

for every z ∈ N. In particular, (Zn|Zn > 0)n≥0 is uniformly integrable.
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• (Q-process) For all z ∈ N and (s, 1) ∈ S∗

lim
k→∞

Pn+k
(s,1)(Zn = z) =

z

sγn
P(s,1)(Zn = z) =

z

sγn
P(s,1)(BPGn = (z, 1)), (5.19)

and if additionally EZ1 logZ1 < ∞,

lim
n→∞

lim
k→∞

Pn+k
(s,1)(Zn = z) = czπ1(z).

A Markov chain with transition probabilities given by (5.19) is called a Q-process and
converges to its stationary distribution (czπ1(z))z≥1 if EZ1 logZ1 < ∞ (see [14, Chapter
I.14]).

If cells are able to host more than one parasite, the situation becomes a bit more complex.
For (s, z) ∈ S∗ with z = (z1, . . . , zs) let BT (1), . . . ,BT (s) denote the independent BwBPes with
ancestor parasites z1, . . . , zs. The number of parasites can be expressed as

Zn =
s∑

i=1

zit
∗
n(BT

(i)), n ∈ N0,

with t∗n(BT
(1)), . . . , t∗n(BT

(s)) denoting the number of contaminated cells in the separate cell
trees. These processes of infected cells are i.i.d and each forms a standard GWP. By Lemma 1.9,
only one subtree survives and the surviving tree is picked uniformly due to the i.i.d. property
of the spawning trees. Thus the limiting distribution of BPG can be expressed as a convex
combination of Yaglom distributions of simple GWPes with a single ancestor. More precisely,
Yaglom’s theorem yields for every k ∈ N0

lim
n→∞

Pn+k
(s,z)(BPGn ∈ ·) =

s∑
i=1

1

s
πi
k(·), (5.20)

where πk(x) = πi
k((x, (zi))) for all 1 ≤ i ≤ s and πk as in Equation (5.18). Thereby, (x, (zi)) ∈ S∗

means that each of the x cells contains zi parasites. In particular, the limiting distribution
depends on the starting number of cells and parasites. Letting k tend to infinity, Yaglom’s
theorem once again gives for x ∈ N

lim
k→∞

s∑
i=1

1

s
πi
k((x, (zi))) =

s∑
i=1

xc

szi
πi
1((x, (zi))),

with (xcπi
1((x, (zi)))/zi)x∈N being the size-biased distribution of πi

1.
If we first let k tend to infinity for a fixed n, we get

Pn+k
(s,x)(BPGn = (t, z)) =

P(t,z)(Zk > 0)P(s,x)(BPGn = (t, z))

P(s,x)(Zn+k > 0)

→ t

sγn
P(s,x)(BPGn = (t, z)) as k → ∞

for each (s, x), (t, z) ∈ S∗ by using Theorem 5.9. Letting now n go to infinity yields

lim
n→∞

lim
k→∞

Pn+k
(s,x)(BPGn = (t, z)) = lim

n→∞
t

sγn
P(s,x)(BPGn = (t, z))
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= lim
n→∞

tP(s,x)(Zn > 0)

sγn
Pn
(s,x)(BPGn = (t, z))

=
s∑

i=1

tc

sxi
πi
1((t, z))

by (5.20) and Theorem 5.9. So, Yaglom’s theorem as well as the limit of the Q-process are
transfered to the general setting of an arbitrary starting configuration in this special scenario.

5.2.2 The general branching within branching case

After the short interlude about the simple case in the previous subsection, we consider the general
setting and assume from now on that (R1) holds true. In particular, under the latter assumption
(Zn)n≥0 loses its Galton-Watson properties and the classical theorems do not apply any more.
However, the convergence results mentioned in the introduction of this section are still true and
later proved. The methods of proof in this subsection are orientated on the ones given in [2] for
the BPRE.

The proofs of the afore mentioned results use a process B̂PG living on S∗ and describing
the number of contaminated cells and its parasites in the generations of the size-biased BwBP
B̂P. The process B̂PG is the analog to BPG of the ordinary BwBP. Thus, B̂PG = (B̂PGn)n≥0 is
defined by

B̂PGn := χn(B̂Pn), n ∈ N0,

with the mapping χn given in (1.16). For (s, z) = (s, (z1, . . . , zs)) ∈ S∗
0 , we introduce the notation

z̄ for the sum of all elements in the vector z, i.e.

z̄ :=
s∑

i=1

zi.

By Remark 2.3, this yields for all (t, z) ∈ S∗ with z = (z1, . . . , zt) and n ∈ N0

P(t,z)

(
(B̂PGk)k≤n ∈ ·

)
=

1

z̄
E(t,z)

(
Wn 1{(BPGk)k≤n∈·}

)
. (5.21)

As a result, we get for each n ∈ N0 and (s0, x0), . . . , (sn, xn) ∈ S∗

P(s0,x0)

(
(B̂PGk)k≤n = (sk, xk)k≤n

)
=

x̄n
x̄0γn

P(s0,x0) ((BPGk)k≤n = (sk, xk)k≤n)

=
x̄n

x̄0γn

n−1∏
k=0

p((sk, xk), (sk+1, xk+1))

=
n−1∏
k=0

x̄k+1

x̄kγ
p((sk, xk), (sk+1, xk+1))

=
n−1∏
k=0

P(sk,xk)

(
B̂PG1 = (sk+1, xk+1)

)
,

where we used the Markov property of BPG from Proposition 1.5. Hence, B̂PG is a homogeneous
Markov chain, and we summarize the obtained results in the following proposition.
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Proposition 5.11. B̂PG is a homogeneous Markov chain with state space S∗ and transition
probabilities

p̂((s, x), (t, z)) :=
z̄

x̄γ
p((s, x), (t, z)) (5.22)

for (s, x), (t, z) ∈ S∗.

For n ∈ N and (s, x), (t, z) ∈ S∗, let us define the n-step transition probabilities of BPG resp.
B̂PG by

pn((s, x), (t, z)) := P(s,x) (BPGn = (t, z))

and
p̂n((s, x), (t, z)) := P(s,x)

(
B̂PGn = (t, z)

)
=

z̄

x̄γn
pn((s, x), (t, z)). (5.23)

Proposition 5.12. Given the Assumptions (R1), the Markov chain B̂PG has a unique recurrence
class R̂ which is aperiodic and positive recurrent. Furthermore, the chain hits R̂ with probability
one from every initial state.

Proof. First, we prove that there are states in S∗ which can be reached from every other state.
In particular, (R*) yields the existence of a tuple (u, t) ∈ N2 such that pt > 0 and

P(X(u,t) = x̆)P(X(u,t) = 0) > 0

for some x̆ ∈ N. Let (x1, . . . , xt) ∈ Nt
0 and (y1, . . . , yt) ∈ Nt

0 such that xu = x̆ > 0, yu = 0 and

P(X(1,t) = x1, . . . , X
(t,t) = xt) > 0 and P(X(1,t) = y1, . . . , X

(t,t) = yt) > 0. (5.24)

For 1 ≤ i ≤ t define x′i := xi +
∑x̆−1

j=1 yi = xi + (x̆ − 1)yi and t′ := #{1 ≤ i ≤ t : x′i > 0}. Let
further denote x′ the increasingly ordered vector of the strictly positive x′i. Thus, x′ is of length
t′ and (t′, x′) ∈ S∗. By the definition of (t′, x′), this yields

p((1, x̆), (t′, x′)) > 0, (5.25)

and we show that this constructed state can be reached from every other state. To see that, put

A(x̆) := {(s, (z1, . . . , zs)) ∈ S∗ : x̆ ∈ {z1, . . . , zs}}

as the set of host-parasite configurations in which at least one cell contains x̆ parasites. Obviously,
Py(Z1 = 0) ≥ Py+1(Z1 = 0) > 0 for all y ∈ N, and utilizing this, the branching property, (5.21)
and (5.25), we deduce for all (s′, z′) ∈ A(x̆) with z′ = (z′1, . . . , z

′
s)

p̂((s′, z′), (t′, x′)) =
x̄′

z̄′γ
p((s′, z′), (t′, x′)) ≥ x̄′

z̄′γ
p((1, x̆), (t′, x′))Pz′s(Z1 = 0)s−1 > 0. (5.26)

By using the same arguments, we further obtain for each (s, z) ∈ S∗ with z = (z1, . . . , zs)

P(s,z)

(
B̂PG1 ∈ A(x̆)

)
≥ Pz1

(
B̂PG1 ∈ A(x̆)

)
Pzs(Z1 = 0)s−1

≥ ptP(X
(1,t) = x1, . . . , X

(t,t) = xt)P(X
(1,t) = y1, . . . , X

(t,t) = yt)
z1−1Pzs(Z1 = 0)s−1 > 0.
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Putting this together with (5.26) gives for all (s, z) ∈ S∗

p̂2((s, z), (t
′, x′) ≥

∑
(s′,z′)∈A(x̆)

p̂((s, x), (s′, z′))p̂((s′, z′), (t′, x′)) > 0.

Hence, (t′, x′) can be reached from every other state in S∗ in at least two time steps, and so
there exists at most one recurrence class R̂. As (t′, x′) ∈ A(x̆) by construction, (5.26) provides
the aperiodicity of this state. Thus, R̂ is aperiodic, if it exists.

Next, we show that R̂ exists and is positive recurrent. Indeed, Lemma 5.8 ensures for all
(s, x) ∈ S∗ and ε > 0 the existence of a z ∈ N such that

lim
n→∞

P(s,x)

(
B̂PGn ∈ B(z)

)
= lim

n→∞
P(s,x)(Ẑn ≤ z) ≥ 1− ε > 0 (5.27)

with B(z) := {(t, y) ∈ S∗ : ȳ ≤ z}. Since B(z) is finite, there is at least one positive recurrent
state contained in B(z).

Since transient states are visited only finitely often by a Markov chain and B(z) is a finite
set for each z ∈ N, we get for each (s, x) ∈ S∗

lim
n→∞

P(s,x)

(
B̂PGn ∈ B(z) ∩ R̂c

)
= 0.

Thus, we infer from (5.27) for each (s, x) ∈ S∗

lim
n→∞

P(s,x)

(
B̂PGn ∈ R̂

)
≥ lim

n→∞
P(s,x)

(
B̂PGn ∈ B(z) ∩ R̂

)
= lim

n→∞
P(s,x)(Ẑn ≤ z) ≥ 1− ε.

Letting ε tend to 0 yields that B̂PG hits R̂ a.s. from every initial state. This proves the
assertion.

As an immediate consequence of Proposition 5.12 and the ergodic theory for Markov chains,
we get the convergence of B̂PG to a stationary distribution in total variation distance dTV .
We briefly recall that the total variation distance for two probability measures P1 and P2 on a
countable space X is defined by

dTV (P1, P2) :=
1

2

∑
x∈X

|P1({x})− P2({x})|.

Corollary 5.13. Let (R1) hold true. There exists a distribution π̂ = (π̂((t, z)))(t,z)∈S∗ on S∗

such that

lim
n→∞

dTV

(
P(s,x)

(
B̂PGn ∈ ·

)
, π̂(·)

)
= 0

for all (s, x) ∈ S∗. In particular, there exists a probability distribution θ̂ = (θ̂(k))k≥1 on the
positive integers such that

lim
n→∞

P(s,z)(Ẑn ∈ ·) = θ̂(·)

for all (s, z) ∈ S∗. Furthermore, c =
∑

k=1 k
−1θ̂(k) for c as in Theorem 5.9.
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Proof. The limit statements follow immediately from Proposition 5.12 and the ergodic theory
for Markov chains. Recalling the size-biased construction and particular Lemma 2.2, we get

l∑
k=1

1

k
P(Ẑn = k) ≤ 1

γn
P(Zn > 0) =

∞∑
k=1

1

k
P(Ẑn = k) ≤

l∑
k=1

1

k
P(Ẑn = k) +

1

l
(5.28)

for all l ≥ 1. Hence,
l∑

k=1

1

k
θ(k) ≤ c ≤

l∑
k=1

1

k
θ(k) +

1

l

by letting n tend to infinity. Finally l → ∞ yields the assertion.

As an consequence of the above corollary, we get the part of Theorem 5.9, where (R1) holds
true.

Corollary 5.14. Let (R1) hold true, and let c ∈ [0,∞) be the constant as defined in (5.3). Then

lim
n→∞

1

γn
P(s,z)(Zn > 0) = cz̄

for all (s, z) ∈ S∗.

Proof. Let (s, z) ∈ S∗. As in (5.28), we get

z̄
l∑

k=1

1

k
P(s,z)(Ẑn = k) ≤ 1

γn
P(s,z)(Zn > 0) ≤ z̄

l∑
k=1

1

k
P(s,z)(Ẑn = k) +

z̄

l

for all n ∈ N0 and l ∈ N. Letting n tend to infinity provides

z̄
l∑

k=1

1

k
θ(k) ≤ lim inf

n→∞
1

γn
P(s,z)(Zn > 0) ≤ lim sup

n→∞

1

γn
P(s,z)(Zn > 0) ≤ z̄

l∑
k=1

1

k
θ(k) +

z̄

l

under utilizing Corollary 5.13. For l → ∞, the assertion follows by an other appeal to the above
corollary.

The next two additional results follow directly from Theorem 5.9 and Corollary 5.13. They
say that the process (Zn|Zn > 0)n≥0 is uniformly integrable and only descendants of one ancestor
parasite survive conditioned upon survival up to the present time.

Proposition 5.15. Let (R1) hold true.

(a) For all (s, x) ∈ S∗

lim
z→∞

sup
n≥0

En
(s,x)

(
Zn 1{Zn>z}

)
= 0.

(b) For all x ≥ 2

lim
n→∞

Pn
x (∃ 1 ≤ i < j ≤ x s.t. Zn,i ∧ Zn,j > 0) = 0,

where Zn,i denotes the number of descendants in generation n stemming from the ith initial
parasite.
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Proof. (a) Theorem 5.9, Corollary 5.13 and Lemma 2.2 provide for (s, x) ∈ S∗ with x =

(x1, . . . , xs)

E(s,x)

(
Zn 1{Zn>z} |Zn > 0

)
=

1

P(s,x)(Zn > 0)

∑
y>z

yP(s,x)(Zn = y)

=
γn

∑s
i=1 xi

P(s,x)(Zn > 0)
P(s,x)(Ẑn > z)

n→∞−−−→ c
∑
y>z

θ̂(y)

z→∞−−−→ 0.

(b) Let x ≥ 2. Since Zn,i is distributed as Zn when starting with a single parasite for each
1 ≤ i ≤ x, we obtain

Pn
x (ex. 1 ≤ i < j ≤ x s.t. Zn,i > 0 and Zn,j > 0) ≤

(
x

2

)
P2(Zn,1 > 0,Zn,2 > 0)

Px(Zn > 0)

≤
(
x

2

)
Pn
2 (Zn,1 > 0,Zn,2 > 0),

by an appeal to (1.20). So, it is enough to consider the case x = 2. But for each n ∈ N, we get

1 = Pn
2 (Zn,1 + Zn,2 > 0) = Pn

2 (Zn,1 > 0) + Pn
2 (Zn,1 = 0,Zn,2 > 0)

=
P(Zn > 0)

P2(Zn > 0)
+ Pn

2 (Zn,1 = 0,Zn,2 > 0),

and from Theorem 5.9, we deduce

lim
n→∞

Pn
2 (Zn,1 = 0,Zn,2 > 0) = 1− lim

n→∞
P(Zn > 0)

P2(Zn > 0)
=

1

2
.

By symmetry, the assertion follows.

After having established distributional convergence of B̂PG, we can now use these results to
derive limits for BPG. For (t, z) ∈ S∗ and k ∈ N0 let

π((t, z)) :=
1

cz̄
π̂((t, z)) and πk((t, z)) :=

P(t,z)(Zk > 0)

γk
π((t, z)) (5.29)

with π̂ being the probability distribution given in Corollary 5.13 and c as defined in (5.3). In
particular, π0 = π and πk is a proper probability distribution on S∗. Moreover, πk is the
distributional limit of BPGn conditioned under {Zn+k > 0} for each k ∈ N0. This is an analogous
result to the one of Yaglom in the classical Galton-Watson setting and stated in detail in the
subsequent theorem.

Theorem 5.16. Let (R1) hold true. πk as defined in (5.29) is a probability distribution on S∗

for every k ∈ N0 and for all (s, x) ∈ S∗

lim
n→∞

dTV

(
Pn+k
(s,x) (BPGn ∈ ·) , πk(·)

)
= 0.

Furthermore, c−1 =
∑

(t,z)∈S∗ z̄π((t, z)) as well as limk→∞ πk = π̂ in total variation distance.
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Proof. Let k ∈ N0 and (t, z) ∈ S∗. Then by definition of the size-biased process (Lemma 2.2)
and π

πk((t, z)) =
P(t,z)(Zk > 0)

γk
π((t, z)) =

∑
x≥1

z̄

x
P(t,z)(Ẑk = x)π((t, z))

=
1

c

∑
x≥1

1

x
P(t,z)(Ẑk = x)π̂((t, z)).

Summation over all (t, z) ∈ S∗ and the stationarity of π̂ (see Corollary 5.13) yield∑
(t,z)∈S∗

πk((t, z)) =
1

c

∑
x≥1

1

x

∑
(t,z)∈S∗

P(t,z)(Ẑk = x)π̂((t, z)) =
1

c

∑
x≥1

1

x
θ̂(x) = 1,

while in the last equation again Corollary 5.13 was used. By definition, it follows directly∑
(t,z)∈S∗

z̄π((t, z)) =
1

c

∑
(t,z)∈S∗

π̂((t, z)) =
1

c

and

dTV (πk, π̂) =
1

2

∑
(s,x)∈S∗

π̂((s, x))

∣∣∣∣P(s,x)(Zk > 0)

cγkx̄
− 1

∣∣∣∣ → 0, for k → ∞,

by utilizing dominated convergence with the fact that P(s,x)(Zk > 0) ≤ E(s,x)Zk = x̄γk for each
k ∈ N and (s, x) ∈ S∗.

Let us first prove the convergence in total variation distance for k = 0. Using (5.21), the
definition of π, Theorem 5.9 and Corollary 5.13, we obtain for every (s, x) ∈ S∗

dTV

(
Pn
(s,x) (BPGn ∈ ·) , π(·)

)
=

1

2

∑
(t,z)∈S∗

∣∣∣Pn
(s,x) (BPGn = (t, z))− π((t, z))

∣∣∣
=

1

2

∑
(t,z)∈S∗

∣∣∣∣ x̄γn

P(s,x)(Zn > 0)

1

z̄
P(s,x)

(
B̂PGn = (t, z)

)
− 1

cz̄
π̂((t, z))

∣∣∣∣
≤ x̄γn

P(s,x)(Zn > 0)
dTV

(
P(s,x)

(
B̂PGn ∈ ·

)
, π̂(·)

)
+

1

2

∣∣∣∣ x̄γn

P(s,x)(Zn > 0)
− 1

c

∣∣∣∣
n→∞−−−→ 0.

Let k ∈ N0 be arbitrary. Once again, using (5.21), the definition of πk and the Markov property,
we obtain

dTV

(
Pn+k
(s,x) (BPGn ∈ ·) , πk(·)

)
=

1

2

∑
(t,z)∈S∗

∣∣∣Pn+k
(s,x) (BPGn = (t, z))− πk((t, z))

∣∣∣
=

1

2

∑
(t,z)∈S∗

∣∣∣∣P(s,x) (BPGn = (t, z),Zn+k > 0)

P(s,x)(Zn+k > 0)
− πk((t, z))

∣∣∣∣
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=
1

2

∑
(t,z)∈S∗

P(t,z)(Zk > 0)

∣∣∣∣ P(s,x)(Zn > 0)

P(s,x)(Zn+k > 0)
Pn
(s,x) (BPGn = (t, z))− 1

γk
π((t, z))

∣∣∣∣
≤

P(s,x)(Zn > 0)

P(s,x)(Zn+k > 0)
dTV

(
Pn
(s,x) (BPGn ∈ ·) , π(·)

)
+

1

2

∣∣∣∣ P(s,x)(Zn > 0)

P(s,x)(Zn+k > 0)
− 1

γk

∣∣∣∣ .
Theorem 5.9 and the already established convergence for k = 0 finishes the proof when letting n

tend to infinity.

In the following corollary, we state the distributional convergence of the important processes
(T ∗

n )n≥0 and (Zn)n≥0 conditioned upon survival at present time. These special cases follow
directly from the above theorem.

Corollary 5.17. Let (R1) hold true. Then there exist probability distributions θ and ϑ on N

with finite mean, such that for all (s, x) ∈ S∗

lim
n→∞

Pn
(s,x) (Zn ∈ ·) = θ(·) and lim

n→∞
Pn
(s,x) (T ∗

n ∈ ·) = ϑ(·)

in total variation distance. Furthermore, θ̂ (from Corollary 5.13) is the size-biased distribution
of θ and

lim
n→∞

En
(s,x)Zn =

∞∑
k=1

kθ(k) (= c−1) as well as lim
n→∞

En
(s,x)T ∗

n =
∞∑
k=1

kϑ(k).

Proof. The convergences in total variation distance follow immediately from Theorem 5.16. By
Proposition 5.15, the process (Zn|Zn > 0)n≥0 is uniformly integrable and thus (T ∗

n |Zn > 0)n≥0

is uniformly integrable too. Hence, the convergence of the means is ensured. That θ is the
size-biased distribution of θ is derived from (5.5) and Corollary 5.13 as

θ̂(k) = lim
n→∞

P(Ẑn = k) = lim
n→∞

k

EnZn
Pn(Zn = k) = ckθ(k)

for each k ∈ N.

Consider again the distribution of BPGn conditioned under {Zn+k > 0}. Instead of n, we
let k tend to infinity first. This can be thought of looking at the process conditioned under
non-extinction of parasites in the far future, but on certain extinction in the even more distant
future. As in the standard Galton-Watson setting the considered distribution converges in total
variation distance to a distribution generated by a positive recurrent Markov chain. This is
described in more detail in the next theorem.

Theorem 5.18. Let (R1) hold true and let (kn)n≥0 be a sequence of natural numbers such that
kn ≤ n for all n ∈ N and n− kn → ∞ as n → ∞. Then for all (s, x) ∈ S∗

lim
n→∞

dTV

(
Pn
(s,x) ((BPGk)k≤kn ∈ ·) , P(s,x)

(
(B̂PGk)k≤kn ∈ ·

))
= 0.
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Proof. Fix (s, x) ∈ S∗. For all l ≤ n and (t1, z1), . . . , (tl, zl) ∈ S∗, we get, using the definition of
the transition probabilities of BPG and B̂PG (see (5.22) and (5.23)),

Pn
(s,x) (BPG1 = (t1, z1), . . . ,BPGl = (tl, zl))

=
∑

(t′,z′)∈S∗

P(s,x) (BPG1 = (t1, z1), . . . ,BPGl = (tl, zl),BPGn = (t′, z′))

P(s,x)(Zn > 0)

=
∑

(t′,z′)∈S∗

p((s, x), (t1, z1))

P(s,x)(Zn > 0)

(
l−1∏
i=1

p((ti, zi), (ti+1, zi+1))

)
pn−l((tl, zl), (t

′, z′))

=
∑

(t′,z′)∈S∗

x̄γl

z̄′l

p̂((s, x), (t1, z1))

P(s,x)(Zn > 0)

(
l−1∏
i=1

p̂((ti, zi), (ti+1, zi+1))

)
pn−l((tl, zl), (t

′, z′))

=
∑

(t′,z′)∈S∗
P(s,x)

(
B̂PG1 = (t1, z1), . . . , B̂PGl = (tl, zl)

) x̄γl

z̄′l

pn−l((tl, zl), (t
′, z′))

P(s,x)(Zn > 0)

= P(s,x)

(
B̂PG1 = (t1, z1), . . . , B̂PGl = (tl, zl)

) x̄γl

z̄l

P(tl,zl)(Zn−l > 0)

P(s,x)(Zn > 0)
.

For l, n ∈ N0 with l ≤ n and (t, z) ∈ S∗, let us define

h(l, n, (t, z)) :=
x̄γl

z̄

P(t,z)(Zn−l > 0)

P(s,x)(Zn > 0)
.

Theorem 5.9 implies

h(kn, n, (t, z)) =
x̄γkn

z̄

P(t,z)(Zn−kn > 0)

P(s,x)(Zn > 0)
→ 1 as n → ∞

if n− kn → ∞, and the Markov inequality and once again Theorem 5.9 ensure the existence of
a constant c∗ > 0 such that for all (t, z) ∈ S∗ and l, n ∈ N0 with l ≤ n

h(l, n, (t, z)) =
x̄γl

z̄

P(t,z)(Zn−l > 0)

P(s,x)(Zn > 0)
≤ x̄γl

z̄

E(t,z)Zn−l

P(s,x)(Zn > 0)
=

x̄γn

P(s,x)(Zn > 0)
≤ c∗.

Taking all these established properties into account, we get by dominated convergence

dTV

(
Pn
(s,x) ((BPGk)k≤kn ∈ ·) , P(s,x)

(
(B̂PGk)k≤kn ∈ ·

))
=

1

2

∑
(t1,z1),...,(tkn ,zkn )∈S∗

P(s,x)

(
(B̂PGk)k≤kn = ((tk, zk))k≤kn

)
|h(kn, n, (tkn , zkn))− 1|

=
1

2

∑
(t,z)∈S∗

P(s,x)

(
B̂PGkn = (t, z)

)
|h(kn, n, (t, z))− 1|

n→∞−−−→ 0

when n− kn → ∞.



Chapter 6

A host-parasite model for a two-type
cell population

This chapter studies a host-parasite branching model with two types of cells (the hosts), here
called A and B, and proliferating parasites colonizing the cells. In this particular model unilateral
cell type heredity is assumed, meaning that B-cells can only split into cells with the same type,
whereas type-A cells are able to split into both types. The model grew out of a discussion with
biologists in an attempt to provide a first very simple setup that allows to study coevolutionary
adaptations, here due to the presence of two different cell types.

The reciprocal, adaptive genetic change of two antagonists (e.g. different species or genes)
through reciprocal, selective pressures is known as host-parasite coevolution. It may be observed
even in real-time under both, field and laboratory conditions, if reciprocal adaptations occur
rapidly and generation times are short. For more information see e.g. [57,89].

In the first section, the model is introduced in detail and a connection to the BwBP is
established. We then focus on the case of non-extinction of contaminated A-cells. Results on the
number of contaminated cells of the various types, including the growth rate of contaminated cells
with a certain type, are shown in Section 6.2. These will be partly instrumental for the proofs
of our results on the asymptotic behavior of the relative proportion of contaminated cells with k

parasites within the population of all contaminated cells. The analysis of the model makes use
of the previously established branching within branching theory. Most of the presented results
have been published in [6].

6.1 Description of the model

Consider a cell population where each cell is of one of the two types A or B, and proliferating
parasites living in these cells. All cells behave independently and split into two daughter cells
after one unit of time. The daughters of a type-B cell are thereby again of type B whereas
type-A cells divide into cells of both types according to a random mechanism. Parasites in a cell
multiply in an i.i.d. manner to produce a random number of offspring with a distribution which
depends on the type of this cell as well as on those of its daughter cells. The same holds true for

108



6.1. DESCRIPTION OF THE MODEL 109

the random mechanism by which the offspring is shared into these daughter cells. This model is
described in more detail in the following.

We use the notation of [6, 15], which is slightly different to the one of the previous chapters.
Making the usual assumption of starting from one ancestor cell, denoted by ∅, we put G0 := {∅},
Gn := {0, 1}n for n ∈ N, and let

V2 :=
⋃

n∈N0

Gn with Gn := {0, 1}n

be the binary Ulam-Harris tree rooted at ∅, which describes the cell tree. For any cell v ∈ V2, let
Tv ∈ {A,B} denote its type and Zv the number of parasites it contains. Unless stated otherwise,
the ancestor cell is assumed to be of type A and to contain one parasite, i.e.

T∅ = A and Z∅ = 1. (SA1)

Then, for t ∈ {A,B} and n ∈ N0 define

Gn(t) := {v ∈ Gn : Tv = t} and G∗
n(t) := {v ∈ Gn(t) : Zv > 0}

as the sets of type-t cells and contaminated type-t cells in generation n, respectively. The set of
all contaminated cells in generation n is denoted by G∗

n := G∗
n(A) ∪G∗

n(B).
The process (Tv)v∈V2 is a Markov process indexed by the tree V2 with transition probabilities

P(Tv0 = x,Tv1 = y |Tv = A) = px y, (x, y) ∈ {(A,A), (A,B), (B,B)},

P(Tv0 = B,Tv1 = B |Tv = B) = 1.

For information on tree-indexed Markov chains with independent and symmetric transitions
see [20]. We further denote by

p0 := pAA + pAB = 1− pBB and p1 := pAA

the probabilities that the first and the second daughter cell are of type A, respectively. In order
to rule out total segregation of type-A and type-B cells, which would just lead back to the model
studied in [15], it will be assumed throughout that

pAA < 1. (SA2)

The family (Tv)v∈V2 indicates which cells are of type A, and by the transition probabilities,
(Gn(A))n≥0 forms a Galton-Watson cell tree with a cell giving rise to at most two daughter cells
and reproduction mean

ν := p0+ p1 .

Then the classical theory (see e.g. [14]) provides

#Gn(A) → 0 a.s. iff ν ≤ 1 and pAB < 1. (6.1)
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To describe the multiplication of parasites, let Zv denote the number of parasites in cell v
and let {(

X
(0)
k,v(t, s), X

(1)
k,v(t, s)

) ∣∣ k ∈ N, v ∈ V2

}
, t ∈ {A,B}, s ∈ {AA,AB,BB}

be independent families of i.i.d. N2
0-valued random vectors with respective generic copies of

(X(0)(t, s), X(1)(t, s)). If v is of type t and their daughter cells are of type x and y, then X
(i)
k,v(t, xy)

gives the offspring number of the kth parasite in cell v that is shared into the daughter cell
vi of v. Since type-B cells can only produce daughter cells of the same type, we will write
(X

(0)
k,v(B), X

(1)
k,v(B)) as shorthand for (X

(0)
k,v(B,BB), X

(1)
k,v(B,BB)).

Next, observe that

(Zv0, Zv1) =
∑

t∈{A,B}
1{Tv=t}

∑
s∈{AA,AB,BB}

1{(Tv0,Tv1)=s}

Zv∑
k=1

(X
(0)
k,v(t, s), X

(1)
k,v(t, s)),

and concentrating on the process of A-cells by ignoring cells of type B, gives a BwBP by definition
(see Section 1.1.1). Thus, all results established in the previous chapters are applicable to the
process of A-cells and the parasites it contains, which is why we mainly focus on the behavior of
B-cells and its proportion to A-cells in the current chapter. This observation is summarized in
the following proposition.

Proposition 6.1. The process of type-A cells and the parasites it contains forms a BwBP.

We put μi,t(s) := EX(i)(t, s) for i ∈ {0, 1} and t, s as before, write μi,B as shorthand for
μi,B(BB) and assume throughout that μi,t(s) are finite and

μ0,A(AA), μ1,A(AA), μ0,B, μ1,B > 0. (SA3)

Furthermore, we allow cell infection of both types from a type-A cell, viz.

P (G∗
1(A) �= ∅|(T∅, Z∅) = (A, 1)) > 0 and P (G∗

1(B) �= ∅|(T∅, Z∅) = (A, 1)) > 0, (SA4)

as otherwise, parasites are concentrated in a one type cell process. It is noted that μ0,A(AB)

and μ1,A(AB) might be unequal, which then indicates the preference of parasites of one cell type
over the other. In extreme cases, one or both of the means may even be zero. To avoid further
trivialities and exceptions, it is always assumed hereafter that

P

(
X(0)(B) ≤ 1, X(1)(B) ≤ 1

)
< 1. (SA5)

The total number of parasites in cells of type t ∈ {A,B} at generation n is denoted by

Zn(t) :=
∑

v∈Gn(t)

Zv,

and we put Zn := Zn(A) +Zn(B), namely the total number of all parasites at generation n. To
enforce actual growth of the type-A parasite number, we further assume

P(Z1(A) = 1) < 1. (SA6)
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Under this assumption, both, (Zn)n≥0 and (Zn(A))n≥0, are transient Markov chains with ab-
sorbing state 0. That this holds true for (Zn(A))n≥0, follows directly from Proposition 6.1 and
Corollary 1.6, and if this Markov chain reaches 0, then all remaining parasites are in B-cells and
form a standard GWP. Hence, transience is ensured. According to our notation of the BwBP
the extinction events are defined as

Ext := {Zn → 0} and Ext(t) := {Zn(t) → 0}, t ∈ {A,B},

and their complements by Surv and Surv(t), respectively.

As in [15] and the chapters about the BwBP, we are interested in the stochastic properties
of an infinite random cell line. But since the process concentrated on the A-cells is a BwBP,
a random cell line picked from those lines consisting of A-cells only, the so-called random A-
cell line, behaves like a BPRE denoted by (Zn(A))n≥0 in an i.i.d. environmental sequence (see
Subsection 1.2.1). The environment of this process is denoted by Λ := (Λn)n≥1 and takes values
in {L(X(0)(A,AA)),L(X(1)(A,AA)),L(X(0)(A,AB))} with

P

(
Λ1 = L(X(0)(A,AB))

)
=

pAB
ν

and P

(
Λ1 = L(X(i)(A,AA))

)
=

pAA
ν

with i ∈ {0, 1}. Furthermore, for s ∈ [0, 1]

gλ(s) := E(sZ1(A)|Λ1 = λ) =
∑
n≥0

λns
n

for any distribution λ = (λn)n≥0 on N0. Moreover, the gΛn , n ∈ N, are i.i.d. with

Eg′Λ1
(1) = EZ1(A) =

pAA
ν

(
μ0,A(AA) + μ1,A(AA)

)
+

pAB
ν

μ0,A(AB) =
γ

ν
,

where
γ := EZ1(A) = pAA (μ0,A(AA) + μ1,A(AA)) + pABμ0,A(AB)

denotes the expected total number of parasites in cells of type A in the first generation (recall
from (SA1) that Z∅ = Z∅(A) = 1).

Looking now on a random cell line trough the whole tree V2 leads to another BPRE but
without i.i.d. environment since multiplication of parasites depend on their hosting cell. However,
one of the cells in such a cell line is of type B eventually due to pAA < 1 and the Borel-Cantelli
lemma. As B-cells produce only daughter cells of the same type, this process starting from such
a cell now behaves in an i.i.d. environmental manner. Hence, we are in the same situation as [15]
and properties of a random B-cell line can be looked up there.

For a stringent definition of a random cell line, let U = (Un)n∈N be an i.i.d. sequence of
symmetric Bernoulli variables independent of the parasite evolution and put Vn := U1...Un.
Then

∅ =: V0 → V1 → V2 → ... → Vn → ...

provides us with a random cell line in the binary Ulam-Haris tree, and we denote by

T[n] = TVn and Z[n] = ZVn , n ∈ N0,
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the cell types and the number of parasites along that random cell line. A random A-cell line up
to generation n is obtained when T[n] = A, for then T[k] = A for any k = 0, ..., n − 1 as well.
As will be shown in Proposition 6.2, the conditional law of (Z[0], ..., Z[n]) given T[n] = A equals
the law of (Zn(A))n≥0 up to generation n for each n ∈ N. As mentioned before, this cannot be
generally true for the unconditional law of (Z[0], ..., Z[n]) due to the multi-type structure of the
cell population.

Proposition 6.2. The law of (Z[0], ..., Z[n]) conditioned under T[n] = A equals the law of
(Z0(A), ..., Zn(A)), for each n ∈ N0.

Proof. We use induction over n and begin by noting that nothing has to be shown for n = 0.
For n ≥ 1 and (z0, ..., zn) ∈ Nn+1

0 , we introduce the notation

Cz0,...,zn := {(Z[0], ..., Z[n]) = (z0, ..., zn)} and CA
z0,...,zn := Cz0,...,zn ∩ {T[n] = A}

and note that

P
(
T[n] = A

)
= 2−n E

( ∑
v∈Gn

1{Tv=A}

)
=

(ν
2

)n
, (6.2)

for each n ∈ N, in particluar

P(T[n] = A |T[n−1] = A) =
P(T[n] = A)

P(T[n−1] = A)
=

ν

2
.

Assuming the assertion holds for n− 1 (inductive hypothesis), thus

P(Cz0,...,zn−1 |T[n−1] = A) = P (Z0(A) = z0, ..., Zn−1(A) = zn−1)

for any (z0, ..., zn−1) ∈ Nn
0 , we infer with the help of the Markov property that

P
(
(Z[0], ..., Z[n]) = (z0, ..., zn)|T[n] = A

)
=

P(CA
z0,...,zn)

P(T[n] = A)

= P
(
Cz0,...,zn−1 |T[n−1] = A

)
P(Z[n] = zn,T[n] = A |CA

z0,...,zn−1
)
P(T[n−1] = A)

P(T[n] = A)

= P (Z0(A) = z0, ..., Zn−1(A) = zn−1)
P(Z[1] = zn,T[1] = A |Z[0] = zn−1,T[0] = A)

P(T[n] = A |T[n−1] = A)

= P (Z0(A) = z0, ..., Zn−1(A) = zn−1)
2P(T[1] = A)

ν

P(Z[0] = zn−1, Z[1] = zn|T[1] = A)

P(Z[0] = zn−1,T[0] = A)

= P (Z0(A) = z0, ..., Zn−1(A) = zn−1) P (Zn(A) = zn|Zn−1(A) = zn−1)

= P (Z0(A) = z0, ..., Zn(A) = zn) .

This proves the assertion.
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As in the BwBP, the process along a random cell line has a closely relation to the number of
contaminated cells.

Lemma 6.3. For every k, n ∈ N

E#{v ∈ G∗
n |Zv = k} = 2nP(Z[n] = k) and E#G∗

n = 2nP(Z[n] > 0)

as well as

E#{v ∈ G∗
n(A)|Zv = k} = νnP(Zn(A) = k) and E#G∗

n(A) = νnP(Zn(A) > 0).

Proof. The statements for the type-A cells follow directly from Proposition 1.4. The assertion
for the random cell line process through the whole tree is ensured by the equation

2−nE#{v ∈ G∗
n |Zv = k} = 2−n

∑
v∈Gn

P(Zv = k) = P(Z[n] = k)

for k, n ∈ N.

Aiming at a study of host-parasite coevolution in the framework of a multi-type host popula-
tion, our model may be viewed as the simplest possible alternative. There are only two types of
host cells and reproduction is unilateral in the sense that cells of type A may give birth to both,
A- and B-cells, but those of type B will never produce cells of the other type. The basic idea
behind this restriction is that of irreversible mutations that generate new types of cells but never
lead back to already existing ones. Observe that the setup could readily be generalized without
changing much the mathematical structure by allowing the occurrence of further irreversible
mutations from cells of type B to cells of type C, and so on.

For convenience, we define for the rest of this chapter

Pt,z := P(·|Z∅ = z,T∅ = t), z ∈ N, t ∈ {A,B},

and use E t,z for expectation under Pt,z. Recalling that P stands for PA,1, we put P∗ :=

P(·| Surv(A)) and, furthermore,

P∗
t,z := Pt,z(·| Surv(A)) and Pn

t,z := Pt,z(·|Zn(A) > 0)

for z ∈ N and t ∈ {A,B}.

6.2 Properties of #G∗
n(t)

This section is dedicated to the analysis of the asymptotic behavior of G∗
n(A) and G∗

n conditioned
under Surv(A) and Surv, respectively. We begin by ratifying the extinction-explosion principle
for these two processes, saying that contaminated cells tend to infinity if the parasite population
explodes. But before, note that the conditions

pAA > 0 and P(X(0)(A,AA) = X(1)(A,AA) = X(0)(A,AB) = 1) < 1 (AsBP)

in addition with the standard assumptions (SA1)-(SA6) ensure the validation of (A1)-(A3) of
the BwBP as well as PA,2(#G∗

1(A) ≥ 2) > 0. Hence, under these premises all results of the
BwBP in all previous chapters can be applied without further concern.
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Theorem 6.4.

(a) If P(Surv(A)) > 0 and pAA > 0, then P(#G∗
n(A) → ∞| Surv(A)) = 1.

(b) If P(Surv) > 0, then P(#G∗
n(B) → ∞| Surv) = 1.

In particular, Surv(A) = {Zn(A) → ∞} ⊆ Surv(B) = {Zn(B) → ∞} a.s.

Proof. (a) If X(0)(A,AA) = X(1)(A,AA) = X(0)(A,AB) = 1 a.s., then Zn(A) = #G∗
n(A) for all

n ∈ N0 and the assertion follows as Zn(A) → ∞ on Surv(A). If otherwise (AsBP) holds true,
then Proposition 6.1 and Theorem 1.7 finishes the proof of (a).

(b) First note that, given Surv, a contaminated B-cell is eventually created with probability
one and then spawns a single-type cell process (as EZ1(B) > 0 by (SA4)). Hence, the assertion
follows from [15, Theorem 4.1] and the Borel-Cantelli lemma if μB = μ0,B + μ1,B > 1.

Left with the case μB ≤ 1, it follows that

P(Surv(A)| Surv) = 1,

for otherwise, given Surv, only B-parasites would eventually be left w.p.p. which however would
die out almost surely, as they then form a standard GWP. Next, pAA > 0 implies #G∗

n(A) → ∞
almost surly by (a), and so the same holds true for the number of contaminated B cells since
every contaminated A cell has a positive probability to beget an infected B daughter cell by
(SA4). Hence, the law of large numbers entails

lim inf
n→∞

#G∗
n+1(B) ≥ lim inf

n→∞

∑
v∈G∗

n(A)

1{Zv0>0,Tv0=B}+1{Zv1>0,Tv1=B}

≥ P(Z1(B) > 0) lim inf
n→∞

#G∗
n(A) = ∞ a.s.

on Surv. It remains to consider the situation when pAA = 0 and thus pAB = 1, as otherwise
Zn(A) = 0 eventually. In this case there is a single line of A-cells, namely ∅ → 0 → 00 → ...,
and (Zn(A))n≥0 is an ordinary GWP tending P(·| Surv(A))-a.s. to infinity. For n, k ∈ N, let

Zk(n,B) :=
∑

v∈Gn+k+1(B):v|n+1=0n1

Zv

denote the number of B-parasites at generation k sitting in cells of the subpopulation stemming
from the cell 0n1, where 0n := 0...0 (n-times). Using pAB = 1, (SA3) and (SA4), notably
μ1,A(AB) > 0, μ0,B > 0 and μ1,B > 0, it is readily seen that

P∗
(
lim
n→∞

Z0(n− k,B) = ∞
)
= 1

and thus
P∗

(
lim
n→∞

ZK(n− k,B) = 0
)
= 0

for all K ∈ N and k ≤ K. Consequently,

P∗
(
lim inf
n→∞

#G∗
n(B) ≤ K

)
≤ P∗

(
lim
n→∞

min
0≤k≤K

Zk(n− k,B) = 0

)
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≤
K∑
k=0

P∗
(
lim
n→∞

ZK(n− k,B) = 0
)

= 0

for all K ∈ N

The next result provides us with the geometric rate at which the number of contaminated
cells tends to infinity, which is basically a restatement of Theorem 1.8 in this special situation.

Theorem 6.5. The process (ν−n#G∗
n(A))n≥0 is a non-negative supermartingale and therefore

a.s. convergent to a random variable L(A) as n → ∞. Furthermore,

(a) L(A) = 0 a.s. iff E log g′Λ1
(1) ≤ 0 or pAB < ν ≤ 1

(b) P(L(A) = 0) < 1 implies {L(A) = 0} = Ext(A) a.s.

Proof. If pAA = 0 and thus pAB = ν, then E(#G∗
n+1(A)|#G∗

n(A)) ≤ #G∗
n(A)pAB for all n ∈ N0,

and the supermartingale property follows. Furthermore, if pAB < 1, then #G∗
n(A) ≤ #Gn(A) =

0 eventually by (6.1), and if otherwise pAB = 1, (Zn(A))n≥0 is an ordinary GWP and hence dies
out almost surely if and only if its reproduction mean μ0,A(AB) is less or equal to 1. (b) is clear
in this case.

Let now be pAA > 0. If additionally X(0)(A,AA) = X(1)(A,AA) = X(0)(A,AB) = 1 a.s.,
then Zn(A) = #G∗

n(A) = #Gn(A) for all n ∈ N0. Hence, (#G∗
n(A))n≥0 forms a GWP with

reproduction mean ν, and the classical theory yields the assertions (see e.g. [14]). So let now
(AsBP) hold true, but then the theorem follows from Proposition 6.1 and Theorem 1.8.

Since ν < 2 by (SA2) and (ν−n#Gn(A))n≥0 is a non-negative, a.s. convergent martingale,
we see that 2−n#G∗

n(A) ≤ 2−n#Gn(A) → 0 a.s. and therefore

#G∗
n

2n
� #G∗

n(B)

2n
as n → ∞.

That is, the asymptotic proportion of all contaminated cells is the same as the asymptotic
proportion of contaminated B-cells. Note also that

P(T[n] = A) = E

(
#Gn(A)

2n

)
→ 0 as n → ∞. (6.3)

Further information is provided by the next result.

Theorem 6.6. There exists a random variable L ∈ [0, 1] such that #G∗
n /2

n → L a.s. Moreover,

(a) L = 0 a.s. iff μ0,Bμ1,B ≤ 1.

(b) If P(L = 0) < 1, then {L = 0} = Ext a.s.

Proof. The existence of L follows because 2−n#G∗
n is obviously decreasing. As for (a), suppose

first that μ0,Bμ1,B ≤ 1 and note that this is equivalent to almost certain extinction of a random
B-cell line, i.e.

lim
n→∞

P(Z[n] > 0|Z∅ = k,T[0] = B) = 0
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for any k ∈ N. This follows because, starting from a B-cell, we are in the one-type model studied
in [15]. There it is stated that (Z[n])n≥0 forms a BPRE which dies out a.s. iff μ0,Bμ1,B ≤ 1

(see [15, Proposition 2.1]). Now, fix any ε > 0 and choose m ∈ N so large that P(T[m] = A) ≤ ε,
which is possible by (6.3). Then, by the monotone convergence theorem, Lemma 6.3 and the
Markov property of a BPRE, we find that for sufficiently large K ∈ N

EL = lim
n→∞

P(Z[n+m] > 0)

≤ lim
n→∞

P(Z[n+m] > 0,T[m] = B) + ε

= lim
n→∞

∞∑
k=0

P(Z[n+m] > 0, Z[m] = k,T[m] = B) + ε

≤ lim
n→∞

K∑
k=0

P(Z[n] > 0|Z[0] = k,T[0] = B) + 2ε

≤ 2ε

and thus EL = 0. For the converse, note that

0 = EL

= lim
n→∞

P(Z[n+1] > 0)

≥ lim
n→∞

P(Z[1] > 0,T[1] = B)P(Z[n] > 0|T[0] = B)

implies 0 = limn→∞ P(Z[n] > 0|T[0] = B) and thus μ0,Bμ1,B ≤ 1 as well.
The proof of (b) follows along similar lines as Theorem 1.8(b). If P(L = 0) < 1, (a) implies

μ0,Bμ1,B ≤ 1 and [15, Theorem 3.1] then PB,1(L = 0) < 1. Hence, there exists a constant � < 1

such that
max{PA,1(L = 0),PB,1(L = 0)} ≤ � < 1.

Defining τn = inf{m ∈ N : #G∗
m ≥ n}, we find that

P(L = 0) ≤ P(L = 0|τn < ∞) + P(τn = ∞)

≤ P

⎛⎝ ⋂
v∈G∗

τn

{#G∗
m,v /2

m → 0}
∣∣∣∣τn < ∞

⎞⎠+ P(τn = ∞)

≤ max{PA,1(L = 0),PB,1(L = 0)}n + P(τn = ∞)

≤ �n + P(τn = ∞)

for all n ∈ N, where the #G∗
m,v, v ∈ G∗

τn , are independent processes of contaminated cells each
starting with a single parasite in a cell of type Tv. Since � < 1, Theorem 6.4 implies

P(L = 0) ≤ lim
n→∞

P(τn = ∞) = P

(
sup
n≥1

#G∗
n < ∞

)
= P(Ext),

which in combination with Ext ⊆ {L = 0} a.s. proves the assertion.
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Remark 6.7. At the end of this section, we shortly comment on the case when Assumption
(SA6) fails. In this situation, Zn(A) = 1 a.s. for each n ∈ N0 and the only type-A cell spawns
type-B parasites in each generation due to (SA4). Since this reproduction mechanism is of an
i.i.d. manner, the number of B-parasites Zn(B) forms a branching process with immigration,
and the results in the standard literature [43, 44,78,80] yield

Zn(B)

⎧⎨⎩
a.s.−−→ ∞
d−→ Z∞

if μB := μ0,B + μ1,B

⎧⎨⎩> 1

≤ 1,

where Z∞ is almost surely finite if μB < 1, whereas infinite if μB = 1 and additionally Z1(B)

square integrable under PB,1.

With little effort, a similar result can be established for the number contaminated B cells
(#G∗

n(B))n≥0. More precisely,

#G∗
n(B)

⎧⎨⎩
a.s.−−→ ∞
d−→ G∞

if μB := μ0,B + μ1,B

⎧⎨⎩> 1

≤ 1,

where G∞ is almost surely finite if μB < 1, whereas infinite if μB = 1 and EB,1Z2
1 < ∞. To see

that, note that when Zn(B) → ∞ a.s., there exist at least one type-B subtree in which parasites
survive. Hence, [15, Theorem 4.1] states #G∗

n(B) → ∞ a.s. if μB > 1. Since the immigration of
new type-B cells per generation is of the i.i.d. kind and B-parasites multiply in an i.i.d. manner,
we get

#Gn(B)
d
=

n−1∑
i=0

#Gi(B, 0
i1)1{T0i=AB} →

∞∑
i=0

#Gi(B, 0
i1)1{T0i=AB} =: G∞ for n → ∞,

where the #Gi(B, 0
i1), i ∈ N0, are independent, and #Gi(B, 0

i1) is distributed as #G∗
i (B) with

Z0i1 parasites in the root cell. Obviously, Z∞ dominates G∞ stochastically and thus G∞ < ∞
a.s. if μB < 1. However, [15, Corollary 5.6] yields in the case when μB = 1 and EB,1Z2

1 < ∞

P
(
#Gn(B, 0

n1)1{T0n=AB} ≥ n
)

≥ pAB
2

P(Z1(B) > 0)PB,1(#G∗
n > 0)P(E ≥ c) > 0, (6.4)

for all n ≥ n0, a suitable n0 ∈ N and constant c > 0, and an exponential distributed random
variable E . Thus,

∞∑
n=0

P
(
#Gn(B, 0

n1)1{T0n=AB} ≥ n
)

≥ pAB
2

P(Z1(B) > 0)P(E ≥ c)

∞∑
n=n0

PB,1(Zn > 0) = ∞,

by [14, Theorem 9.1 in Chapter I], as (Zn(B))n≥0 starting in a B cell is a critical GWP. Hence,
applying the Borel-Cantelli lemma gives G∞ = ∞ a.s.

Theorem 6.5 is trivial in the case when (SA6) fails, and the latter assumption was not used
to prove Theorem 6.6, which is why it stays valid in this situation.
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6.3 Relative proportions of contaminated cells

We now turn to statements that are concerned with the long-run behavior of relative proportions
of contaminated cells containing a given number of parasites, viz.

Fn(k) :=
#{v ∈ G∗

n |Zv = k}
#G∗

n

for k ∈ N and n → ∞, and of the corresponding quantities when restricting to contaminated
cells of a given type t, viz.

Fn(k, t) :=
#{v ∈ G∗

n(t)|Zv = k}
#G∗

n(t)

for t ∈ {A,B}. Note that

Fn(k) = Fn(k,A)
#G∗

n(A)

#G∗
n

+ Fn(k,B)
#G∗

n(B)

#G∗
n

.

The limit behaviors of Fk(n,A), #G∗
n(A)/#G∗

n and Fk(n,B) depend on that of Zn(A) and Zn(A)

in a crucial way. In the following, we consider two different cases: (Zn(A))n≥0 is supercritical

E log g′Λ1
(1) > 0, (SupC)

that is when parasites along an infinite A-cell line may tend to infinity, and the case where
(Zn(A))n≥0 is strongly subcritical but type-A parasites survive w.p.p. and their number growths
like its means, viz.

EZ1(A) logZ1(A) < ∞, E

(
g′Λ1

(1)

γ
log

g′Λ1
(1)

γ

)
< 0 and Eg′Λ1

(1) log g′Λ1
(1) < 0. (SubC)

We assume from now on that P(Surv(A)) > 0 and furthermore that (AsBP) holds true to
avoid too many exceptions. Under the given assumptions, the asymptotic of Fn(k,A) was already
detected in Theorem 4.11 and Theorem 4.12. We restate these results for the present studied
bifurcating host-parasite model in the subsequent corollary.

Corollary 6.8. Let (AsBP) hold true.

(a) If (SupC), then Fn(k,A) converges to 0 in probability conditioned under Surv(A) as n → ∞
for each k ∈ N.

(b) If (SubC), then (Fn(k,A))k≥1 converges in probability conditioned under Surv(A) as n → ∞
to a probability distribution (qk)k≥1 on N with

qk = lim
n→∞

P(Zn(A) = k|Zn(A) > 0) for k ∈ N . (6.5)

Furthermore, #G∗
n(A)/γ

n → W ′ in probability, where W ′ is almost surely finite and strictly
positive on Surv(A).
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6.3.1 Statement of the results

The first theorem deals with the situation when B-parasites multiply at a high rate, viz.

μ0,Bμ1,B > 1.

In essence, it asserts that among all contaminated cells in generation n those of type B prevail
as n → ∞. This may be surprising at first glance because multiplication of A-parasites can also
be high (or even higher), namely if

μ0,A(AA)
pAAμ1,A(AA)

pAAμ0,A(AB)
pAB > 1,

which is equivalent to (SupC). On the other hand, it should be recalled that the subpopulation
of A-cells grows at rate ν < 2 only (recall (SA2)), whereas the growth rate of B-cells is 2.
Hence, prevalence of B-cells in the subpopulation of all contaminated cells is observed whenever
#G∗

n(B)/#Gn(B), the relative proportion of contaminated cells within the nth generation of all
B-cells, is asymptotically positive as n → ∞.

Theorem 6.9. Assuming μ0,Bμ1,B > 1, the following assertions hold true:

(a) As n → ∞
#G∗

n(A)

#G∗
n

→ 0 P∗-a.s.

(b) Conditioned upon survival of A-cells, Fn(k,B) converges to 0 in probability for any k ∈ N.

Limits of #G∗
n(A)/#G∗

n and Fk(n,B) in the case (SubC) are given in Theorem 6.10. By
Corollary 6.8 the partition of contaminated A-cells stabilizes, and hence, the number of parasites
entering the type-B cell population is drawn by this limit distribution in distant generations.
This immigration dynamic allows us to control the B-cells and the parasites within. We are
able to show convergence in probability to a deterministic limit for the proportion of these B-
cells with a given number of parasites to all contaminated B-cells. This limit highly depends
on the relation of the parasite multiplication rates of both types. Roughly speaking, given a
higher multiplication rate of B-parasites, i.e. μB ≥ γ, B-cells and parasites dominate the cell
tree. Thus, contaminated B-cells prevail in the long-run and Fn(k,B) behaves as in the one-type
model as given in [15]. For these results to be true, we need to consider additional integrability
assumptions for the reproduction law of B-parasites, namely

EB,1Z2
1 < ∞, μB > 1 and μ0,B logμ0,B + μ1,B logμ1,B < 0. (B)

If, on the other hand, μB < γ, the proportion of infected A-cells to all contaminated cells
converges to a positive constant. Moreover, (Fn(k,B))k≥1 converges to a distribution as well.

Theorem 6.10. Let (AsBP) and (SubC) hold true.

(a) If μB ≥ γ and (B), then

#G∗
n(A)

#G∗
n

P∗
−→ 0 and Fn(k,B)

P∗
−→ qk(B)

for each k ∈ N as n → ∞, where qk(B) = limn→∞ PB,1(Z[n] = k|Z[n] > 0).
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(b) If μB < γ, then
#G∗

n(A)

#G∗
n

P∗
−→ 1

1 + ρ
> 0 and Fn(k,B)

P∗
−→ ρk

ρ

for each k ∈ N and n → ∞, where

ρk :=
∞∑
n=0

(2/γ)n+1
∞∑
z=1

qzPA,z(Z[n+1] = k,T[1] = B) and ρ =
∞∑
k=1

ρk

with the probability distribution (qz)z≥1 as given in (6.5).

Finally, we consider (SupC) and thus a high multiplication rate of A-parasites. Given that,
contaminated B-cells still prevail in the long-run because, roughly speaking, highly infected A-
cells eventually produce highly infected B-cells whose offspring m generations later for any fixed
m are all contaminated (thus 2m in number). However, as in Theorem 6.11, (Fn(k,B))k≥1

behaves as in the one-type model if the multiplication of type-B parasites is higher than the one
of type-A parasites.

Theorem 6.11. Let (AsBP) and (SupC) hold true, then

#G∗
n(A)

#G∗
n

P∗
−→ 0, n → ∞.

Furthermore, if μB > γ and (B), then

Fn(k,B)
P∗
−→ qk(B)

for each k ∈ N as n → ∞, where qk(B) = limn→∞ PB,1(Z[n] = k|Z[n] > 0).

6.3.2 Proofs

Here, we present the proofs of the theorems stated in the previous subsection.

Proof of Theorem 6.9

(a) By Theorem 6.6, 2−n#G∗
n → L P∗-a.s. and P∗(L > 0) = 1, while Theorem 6.5 shows that

ν−n#G∗
n(A) → L(A) P-a.s. for an a.s. finite random variable L(A). Consequently,

#G∗
n(A)

#G∗
n

=
(ν
2

)n
(

2n

#G∗
n

)(
#G∗

n(A)

νn

)
� 1

L

(ν
2

)n #G∗
n(A)

νn
→ 0 P∗-a.s.

as n → ∞, for ν < 2.
(b) Fix arbitrary ε, δ > 0 and K ∈ N and define

Dn :=

{
K∑
k=1

Fn(k,B) > δ

}
∩ Surv(A).

By another appeal to Theorem 6.6, #G∗
n(B) ≥ 2nL P∗-a.s. for all n ∈ N and L as above. It

follows that

#{v ∈ Gn(B) : 0 < Zv ≤ K} ≥ δ#G∗
n(B)1Dn ≥ δ 2n L1Dn ,
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and by taking the expectation, we obtain for m ≤ n

δ E (L1Dn) ≤ 1

2n
E

( ∑
v∈Gn

1{0<Zv≤K,Tv=B}

)

≤ 1

2n
E

(
#
{
v ∈ Gn : Tv|m = A,Tv = B

}
+

∑
v∈Gn

1{0<Zv≤K,Tv|m=B}

)

≤ 1

2m
E#Gm(A) +

1

2n

∑
v∈Gn

P
(
0 < Zv ≤ K,Tv|m = B

)
=

(ν
2

)m
+

1

2n

∞∑
z=1

∑
v∈Gn

P
(
0 < Zv ≤ K,Zv|m = z,Tv|m = B

)
=

(ν
2

)m
+

∞∑
z=1

( ∑
u∈Gm

P(Zu = z,Tu = B)

2m

)( ∑
u∈Gn−m

PB,z(0 < Zv ≤ K)

2n−m

)

=
(ν
2

)m
+

∞∑
z=1

P(Z[m] = z,T[m] = B)PB,z

(
0 < Z[n−m] ≤ K

)
.

Since ν < 2, we can fix m ∈ N such that (ν/2)m ≤ ε. Also fix z0 ∈ N such that

P(Z[m] > z0) ≤ ε.

Then

δ E (L1Dn) ≤
∞∑
z=1

P(Z[m] = z,T[m] = B)PB,z

(
0 < Z[n−m] ≤ K

)
+

(ν
2

)m

≤
z0∑
z=1

PB,z

(
0 < Z[n−m] ≤ K

)
+ 2ε.

But the last sum converges to zero as n → ∞ because, under PB,z, (Z[n])n≥0 is a single-type
BPRE (see [15]) and thus satisfies the extinction-explosion principle. So we have shown that
EL1Dn → 0 implying P(Dn) → 0 because L > 0 on Surv. Hence, the theorem is proved.

Proof of Theorem 6.10

Firs, we note that given the additional assumptions (B), the process of a random cell line starting
from a B-cell is strongly subcritical but descendants of a B-parasite survive w.p.p. Thus, Theorem
5.2 and the following corollaries in [15] are applicable in this case. Furthermore, Pn converges to
P∗ in total variation distance (Pn dTV−−→ P∗), which can be shown with easy calculations.

Before turning to the proof of the theorem, we first give some auxiliary lemmata after the
following notations: For v ∈ Gn and k ∈ N, let

G∗
k(t, v) := {u ∈ G∗

n+k(t) : v < u}

denote the set of all infected t-cells in generation n+ k stemming from v. Let further be

G∗
n(A,B) := {u ∈ G∗

n+1(B) : Tu|n = A},

which is the set of all infected B-cells in generation n+ 1 whose mother cells are of type A.
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Lemma 6.12. Assuming (AsBP) and (SubC), then for all z ∈ N

#{v ∈ G∗
n(A,B)|Zv = z}
#G∗

n(A)
P∗
−→ c(z) and

#G∗
n(A,B)

#G∗
n(A)

P∗
−→

∞∑
z=1

c(z),

where c(z) := 2
∑∞

x=1 qxPA,x(Z[1] = z,T[1] = B) and (qx)x≥1 as in (6.5).

Proof. Let z ∈ N. Then

#{v ∈ G∗
n(A,B)|Zv = z}
#G∗

n(A)
=

∞∑
x=1

Fn(x,A)
#{v ∈ G∗

n(A,B)|Zv|n−1 = x, Zv = z}
#{v ∈ G∗

n(A)|Zv = x}

for all n ∈ N0. By Corollary 6.8(b), Fn(x,A) → qx for each x ∈ N and n → ∞. Since Pn dTV−−→ P∗,
the law of large numbers yields

#{v ∈ G∗
n(A,B)|Zv|n−1 = x, Zv = z}

#{v ∈ G∗
n(A)|Zv = x}

P∗
−→ EA,x#{v ∈ G∗

1(B)|Zv = z}

= 2PA,x(Z[1] = z,T[1] = B)

for n → ∞ on {#{v ∈ G∗
n(A)|Zv = x} → ∞}. Thus,

K∑
x=1

Fn(x,A)
#{v ∈ G∗

n(A,B)|Zv|n−1 = x, Zv = z}
#{v ∈ G∗

n(A)|Zv = x}
P∗
−→ 2

K∑
x=1

qxPA,x(Z[1] = z,T[1] = B) (6.6)

for all K ∈ N. Finally, for each ε > 0, we can choose K large enough such that∑
x>K

qxPA,x(Z[1] = z,T[1] = B) ≤
∑
x>K

qx ≤ ε

4
,

and thus

P∗
(∑

x>K

Fn(x,A)
#{v ∈ G∗

n(A,B)|Zv|n−1 = x, Zv = z}
#{v ∈ G∗

n(A)|Zv = x} ≥ ε

)
≤ P∗

(∑
x>K

Fn(x,A) ≥
ε

2

)

= P∗
(

K∑
x=1

Fn(x,A) ≤ 1− ε

2

)
→ 0

for n → ∞ by an appeal to Corollary 6.8(b). In combination with (6.6) this finishes the proof.

Lemma 6.13. Let (AsBP), (SubC), (B) and μB ≥ γ hold true. For all ε > 0 there exist a
constant η > 0 such that

inf
n≥0

P∗
(
#G∗

n(B)

#G∗
n(A)

≥ nη

)
≥ 1− ε.

Proof. Fix ε > 0 and note that {#G∗
n(A,B) → ∞} = Surv(A) a.s. by the Borel-Cantelli lemma.

By Theorem 4.6 and the assumptions of the lemma, there exists a finite random variable D which
is strictly positive on Surv(A) with γ−nZn(A) ≤ D a.s. for all n ∈ N0. From this, we get

#G∗
n(B)

#G∗
n(A)

=
1

#G∗
n(A)

n−1∑
m=0

∑
v∈G∗

m(A,B)

#G∗
n−m−1(B, v)



6.3. RELATIVE PROPORTIONS OF CONTAMINATED CELLS 123

≥ 1

Z(A)

n−1∑
m=0

∑
v∈G∗

m(A,B)

#G∗
n−m−1(B, v, 1)

≥ 1

D

n−1∑
m=0

∑
v∈G∗

m(A,B)

1

γn
#G∗

n−m−1(B, v, 1)

≥ η1
D

n−1∑
m=0

∑
v∈G∗

m(A,B)

1

γm+1
1{#G∗

n−m−1(B,v,1)≥η1γn−m−1} a.s.

for all n ∈ N and η1 > 0, where #G∗
n−m−1(B, v, 1) gives the number of cells in generation n

infected with a parasite stemming from the first parasite in cell v. Furthermore, conditioned
upon {#G∗

n(A,B) → ∞}(= Surv(A)) these random variables are independent to each other as
well as to the type-A cells. By choosing η1 small enough, [15, Corollary 5.3] provides

PB,1 (#G∗
n(B) ≥ η1γ

n) ≤ PB,1 (#G∗
n(B) ≥ η1μ

n
B) ≥ δ > 0

for a δ > 0 and all n ∈ N by recalling that μB ≤ γ. Hence,

P∗
(
#G∗

n(B)

#G∗
n(A)

≥ t

)
≥ P∗

⎛⎝η1
D

n−1∑
m=0

∑
v∈G∗

m(A,B)

βv
γm+1

≥ t

⎞⎠ (6.7)

for all t ≥ 0 and n ∈ N0, where (βv)v∈V2 are i.i.d., independent of the A-cells an A-parasites and
Bernoulli distributed with success probability δ. Since

∞∑
m=0

∑
v∈G∗

m(A,B)

1

(m+ 1)2
Var

(
βv

γm+1

)
≤

∞∑
m=0

#G∗
m(A,B)

γ2(m+1)

≤ 2
∞∑

m=0

Zm(A)

γ2(m+1)
≤ 2D

γ2

∞∑
m=0

1

γm
< ∞ a.s.,

the law of large numbers ensures

lim
n→∞

1

n

n−1∑
m=0

∑
v∈G∗

m(A,B)

βv − δ

γm+1
= 0 P∗-a.s. (6.8)

Furthermore,

1

n

n−1∑
m=0

∑
v∈G∗

m(A,B)

δ

γm+1
=

δ

n

n−1∑
m=0

#G∗
m(A,B)

γm+1
≥ δη2

n

n−1∑
m=0

1{#G∗
m(A,B)≥η2γm+1} P∗-a.s.

for every η2 > 0 and n → ∞. Using Corollary 6.8 and Lemma 6.12, we can choose η2 small
enough such that

P∗ (#G∗
m(A,B) ≥ η2γ

m+1
)

≥ 1− ε

for all m ∈ N, and hence

1− ε ≤ E∗
(
1

n

n−1∑
m=0

1{#G∗
m(A,B)≥η2γm+1}

)
=

∫ 1

0
P∗

(
1

n

n−1∑
m=0

1{#G∗
m(A,B)≥η2γm+1} > t

)
dt
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≤ ε+ (1− ε)P∗
(
1

n

n−1∑
m=0

1{#G∗
m(A,B)≥η2γm+1} > ε

)
.

This implies

P∗

⎛⎝ 1

n

n−1∑
m=0

∑
v∈G∗

m(A,B)

δ

γm+1
> δη2ε

⎞⎠ ≥ P∗
(
1

n

n−1∑
m=0

1{#G∗
m(A,B)≥η2γm+1} > ε

)
≥ 1− 2ε

1− ε

for all n ∈ N. This together with the right choice of t in (6.7) and (6.8) yields the assertion.

The next lemma ensures that the contribution of highly infected type-B cells is negligible
to the total number of B-cells if the multiplication of type-B parasites is higher then the one of
type-A parasites, i.e. μB ≥ γ.

Lemma 6.14. Assuming (AsBP), (B) and μB > γ, then for all ε > 0

lim
z→∞

sup
n≥0

P∗
(
#{v ∈ G∗

n(B) | Zv > z}
#G∗

n(B)
≥ ε

)
= 0.

If additionally (SubC), the above limit even holds true for μB = γ.

Proof. First, we note that (Z[n])n≥0 is a BPRE with mean μB/2 when starting with a B-cell
hosting one parasite (see [15]). Second, we get by (6.2) and Proposition 6.2

EZ[n] 1{T[n]=A} = P(T[n] = A)EZn(A) =
(γ
2

)n

and thus

EZ[n] = EZ[n] 1{T[n]=A}+
n−1∑
m=0

EZ[n] 1{T[m]=A,T[m+1]=B}

=
(γ
2

)n
+

n−1∑
m=0

EZ[m] 1{T[m]=A} EA,1Z[1] 1{T[1]=B} EB,1Z[n−m−1]

=
(γ
2

)n
+ η

n−1∑
m=0

(γ
2

)m (μB

2

)n−m−1
(6.9)

for all n ∈ N where η := EA,1Z[1] 1{T[1]=B}.
Fix ε > 0 and let μB > γ. By [15, Proposition 6.3] there exists a constant a > 0 such that

PB,1

(
#G∗

n(B)

μn
B

≥ a

∣∣∣∣ Zn(B) → ∞
)

≥ 1− ε

for all n ∈ N0, and thus

P

(
K∑
k=1

#G∗
n,k(B)

μn
B

≥ a

)
≥ 1− 2ε (6.10)

for large K ∈ N, where (#G∗
n,k(B))k≥1 are i.i.d. copies of #G∗

n(B) starting in a B-cell with a
single parasite. By Theorem 6.4, we can find for each K ∈ N a n0 ∈ N such that

P∗(#G∗
n(B) ≥ K) ≥ 1− ε



6.3. RELATIVE PROPORTIONS OF CONTAMINATED CELLS 125

for all n ≥ n0, and with (6.10), this implies

inf
n≥0

P∗
(
#G∗

n(B)

μn
B

≥ c

)
≥ (1− 3ε) ∧ inf

n≥n0

P∗
(

K∑
k=1

#G∗
n−n0,k

(B)

μn−n0
B

≥ cμn0
B , #G∗

n0
(B) ≥ K

)
≥ 1− 3ε

for a suitable small c > 0. Fix such a c and define

En(z) :=

{
#{v ∈ G∗

n(B) | Zv > z}
#G∗

n(B)
≥ ε

}
∩
{
#G∗

n(B)

μn
B

≥ c

}
for z ∈ N. Then

#{v ∈ G∗
n | Zv > z} ≥ #{v ∈ G∗

n(B) | Zv > z} ≥ εcμn
B 1En(z) a.s.

for all n ∈ N, and consequently, by using Lemma 6.3 and (6.9),

εP(En(z)) ≤ 1

μn
B

E#{v ∈ G∗
n | Zv > z} =

(
2

μB

)n

P(Z[n] > z)

≤ 1

z

(
2

μB

)n

EZ[n] ≤ 1

z
c̃

∞∑
m=0

(
γ

μB

)m

< ∞

for some c̃ < ∞. Letting z tend to infinity proves the first statement of this lemma.

Let now (SubC) and μB = γ. Then Lemma 6.13 and Corollary 6.8 ensure the existence of a
constant c > 0 such that

inf
n≥0

P∗
(
#G∗

n(B)

μn
B

≥ nc

)
≥ 1− ε,

and defining

E′
n(z) :=

{
#{v ∈ G∗

n(B) | Zv > z}
#G∗

n(B)
≥ ε

}
∩
{
#G∗

n(B)

μn
B

≥ nc

}
for n ≥ 0, we find by an analogous argumentation as above that

εP(En(z)) ≤ 1

nμn
B

E#{v ∈ G∗
n(B) | Zv > z} ≤ 1

nz

(
2

μB

)n

EZ[n] ≤ c̃

z

for a constant c̃ < ∞. Hence, the assertion follows for z → ∞.

Having verified the above lemmata, we are now able to prove Theorem 6.10.

Proof of Theorem 6.10: (a) Lemma 6.13 provides #G∗
n(B)/#G∗

n(A)
P∗
−→ ∞, and we infer

#G∗
n(A)

#G∗
n

=
1

1 +#G∗
n(B)/#G∗

n(A)
P∗
−→ 0 as n → ∞. (6.11)

Let k ∈ N and m ∈ N be large. For n ∈ N, (6.11) and the fact that #G∗
n(B) → ∞ P∗-a.s.

(Theorem 6.4) ensure

#{v ∈ G∗
n+m(B)|Tv|n = A}
#G∗

n+m(B)
≤ 2m

#G∗
n(A)

#G∗
n(B)

#G∗
n(B)

#G∗
n+m(B)

P∗
−→ 0
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and thus
#{v ∈ G∗

n+m(B)|Tv|n = B}
#G∗

n+m(B)
P∗
−→ 1 as n → ∞.

Hence,

Fn+m(k,B)
P∗
�

#{v ∈ G∗
n+m(B)|Zv = k,Tv|n = B}

#{v ∈ G∗
n+m(B)|Tv|n = B}

=

∑
u∈G∗

n(B)
#{v ∈ G∗

m(B, u)|Zv = k}∑
u∈G∗

n(B)
#G∗

m(B, u)
for n → ∞, (6.12)

where an
P∗
� bn means that limn→∞ P∗(|an − bn| ≥ η) = 0 for all η > 0. Let us set

G∗
m(B, u, k) := {v ∈ G∗

m(B, u)|Zv = k}

for m ∈ N and u ∈ V2, and let ε, δ > 0. Lemma 6.14 yields

P∗ (#{v ∈ G∗
n(B) : Zv ≤ z} ≥ (1− η)#G∗

n(B)) ≥ 1− ε (6.13)

for all η > 0, n ∈ N0 and suitable large z ∈ N, and thus

P∗
(∣∣∣∣

∑
u∈G∗

n(B)
#G∗

m(B, u, k)∑
u∈G∗

n(B)
#G∗

m(B, u)
−

∑
u∈{v∈G∗

n(B):Zv≤z}#G∗
m(B, u, k)∑

u∈{v∈G∗
n(B):Zv≤z}#G∗

m(B, u)

∣∣∣∣ ≥ δ

)
≤ ε (6.14)

for all n ∈ N0 and a large z ∈ N. Further note that by definition {v ∈ G∗
n(B) : Zv = x} =

G∗
n(B,∅, x) for every x ∈ {1, . . . , z}. As the random variables #G∗

m(B, u), u ∈ G∗
n(B,∅, x), are

i.i.d. conditioned upon {Zn(B) > 0}, we can find a Kx ∈ N such that

P

(∣∣∣∣
∑

u∈G∗
n(B,∅,x)#G∗

m(B, u)

#G∗
n(B,∅, x)

− EB,x#G∗
m

∣∣∣∣ ≥ δ, #G∗
n(B,∅, x) ≥ Kx

∣∣∣∣ Zn(B) > 0

)
≤ ε

for all n ∈ N by the law of large numbers. Since P(·|Zn(B) > 0) → P(·| Surv) in total variation
distance as n → ∞, and Surv(A) ⊆ Surv by Theorem 6.4, there exists a n1 ∈ N such that

P∗
(∣∣∣∣

∑
u∈G∗

n(B,∅,x)#G∗
m(B, u)

#G∗
n(B,∅, x)

− EB,x#G∗
m

∣∣∣∣ ≥ δ, #G∗
n(B,∅, x) ≥ Kx

)
≤ 2ε

for all n ≥ n1. From (6.13), we get that P∗(#{v ∈ G∗
n(B) : Zv ≤ z} → ∞) ≥ 1 − ε, which

provides us with a n2 ≥ n1 such that

P∗
(∣∣∣∣

∑
u∈G∗

n(B,∅,x)#G∗
m(B, u)

#{v ∈ G∗
n(B) : Zv ≤ z} − #G∗

n(B,∅, x)

#{v ∈ G∗
n(B) : Zv ≤ z}EB,x#G∗

m

∣∣∣∣ ≥ δ

)

= P∗
(

#G∗
n(B,∅, x)

#{v ∈ G∗
n(B) : Zv ≤ z}

∣∣∣∣
∑

u∈G∗
n(B,∅,x)#G∗

m(B, u)

#G∗
n(B,∅, x)

− EB,x#G∗
m

∣∣∣∣ ≥ δ

)

≤ 2ε+ P∗
(

Kx2
m+1

#{v ∈ G∗
n(B) : Zv ≤ z} ≥ δ, #G∗

n(B,∅, x) < Kx

)
≤ 3ε
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for all n ≥ n2, where we used that #G∗
m ≤ 2m a.s. for all m ∈ N. This estimation can be done

for each x ∈ {1, . . . , z}, and thus we find a n3 ≥ n2 such that

P∗
(∣∣∣∣

∑
u∈{v∈G∗

n(B):Zv≤z}#G∗
m(B, u)

#{v ∈ G∗
n(B) : Zv ≤ z} −

∑z
x=1#G∗

n(B,∅, x)EB,x#G∗
m

#{v ∈ G∗
n(B) : Zv ≤ z}

∣∣∣∣ ≥ 2δ

)
≤ 4ε

for all n ≥ n3. Repeating the same argumentation for the random variables #G∗
m(B, u, k) now

gives for all n ≥ n4 with n4 ≥ n3 large enough

P∗ (Gn(z, k) ≥ 3δ) ≤ 5ε, (6.15)

for the random variable

Gn(z, k) :=

∣∣∣∣
∑

u∈{v∈G∗
n(B):Zv≤z}#G∗

m(B, u, k)∑
u∈{v∈G∗

n(B):Zv≤z}#G∗
m(B, u)

−
∑z

x=1#G∗
n(B,∅, x)EB,x#G∗

m(B,∅, k)∑z
x=1#G∗

n(B,∅, x)EB,x#G∗
m

∣∣∣∣.
Finally, Lemma 6.3 yields∑z

x=1#G∗
n(B,∅, x)EB,x#G∗

m(B,∅, k)∑z
x=1#G∗

n(B,∅, x)EB,x#G∗
m

=

∑z
x=1#G∗

n(B,∅, x)PB,x(Z[m] = k)∑z
x=1#G∗

n(B,∅, x)PB,x(Z[m] > 0)

for n ∈ N, and since [17, Theorem 7] states

lim
m→∞

PB,x(Z[m] = k|Z[m] > 0) = qk(B),

for all 1 ≤ x ≤ z, we infer∣∣∣∣∑z
x=1#G∗

n(B,∅, x)EB,x#G∗
m(B,∅, k)∑z

x=1#G∗
n(B,∅, x)EB,x#G∗

m

− qk(B)

∣∣∣∣ ≤ δ

for all n ∈ N by having m chosen large enough at the beginning of the proof. Putting this, (6.12),
(6.14) and (6.15) together finishes the proof of (a).

(b) Note that EB,xZ[n] = x(μB/2)
n and EA,xZ[1] = xEA,1Z[1] for all n ∈ N and x ∈ N, which

entails

ρ =
∞∑
n=0

(2/γ)n+1
∞∑
z=1

qzPA,z(Z[n+1] > 0,T[1] = B)

≤
∞∑
n=0

(2/γ)n+1
∞∑
z=1

qz

∞∑
x=1

PA,z(Z[1] = x,T[1] = B)EB,xZ[n]

≤ 1

γ

∞∑
n=0

(μB/γ)
n

∞∑
z=1

qz

∞∑
x=1

xPA,z(Z[1] = x)

≤
EA,1Z[1]

γ

∞∑
n=0

(μB/γ)
n

∞∑
z=1

zqz < ∞,

as μB < γ and
∑∞

z=1 zqz < ∞ by [40, Theorem 1.1]. Furthermore,

#G∗
n(A)

G∗
n

=
1

1 +#G∗
n(B)/G

∗
n(A)

and Fn(k,B) =
#G∗

n(A)

#G∗
n(B)

· #{v ∈ G∗
n(B)|Zv = k}

#G∗
n(A)

,
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for all n, k ∈ N, and so (b) follows if

#G∗
n(B)

#G∗
n(A)

P∗
−→ ρ and

#{v ∈ G∗
n(B)|Zv = k}

#G∗
n(A)

P∗
−→ ρk.

We use the following representation of ρ

ρ =
1

γ

∞∑
n=0

(2/γ)n
∞∑
z=1

c(z)PB,z(Z[n] > 0) =
∞∑
n=0

∞∑
z=1

c(z)

γn+1
EB,z#G∗

n,

where we recall the definition of c(z) in Lemma 6.12. The triangular inequality yields∣∣∣∣#G∗
n(B)

#G∗
n(A)

− ρ

∣∣∣∣ ≤ (∗) + (∗∗) + (∗ ∗ ∗)

with

(∗) =

∣∣∣∣∣∣ 1

#G∗
n(A)

n−N−1∑
m=1

∑
u∈G∗

m−1(A,B)

#G∗
n−m(B, u)−

∞∑
m=N+1

∞∑
z=1

c(z)

γm+1
EB,z#G∗

m

∣∣∣∣∣∣
(∗∗) =

∣∣∣∣∣∣ 1

#G∗
n(A)

n∑
m=n−N

∑
u∈{v∈G∗

m−1(A,B):Zv>z0}
#G∗

n−m(B, u)−
N∑

m=0

∑
z>z0

c(z)

γm+1
EB,z#G∗

m

∣∣∣∣∣∣
(∗ ∗ ∗) =

∣∣∣∣∣∣ 1

#G∗
n(A)

n∑
m=n−N

∑
u∈{v∈G∗

m−1(A,B):Zv≤z0}
#G∗

n−m(B, u)−
N∑

m=0

z0∑
z=1

c(z)

γm+1
EB,z#G∗

m

∣∣∣∣∣∣
for each n,N ∈ N with N ≤ n and z0 ∈ N. We show that these three summands become
sufficiently small for the right choice of N and z0.

Estimation of (∗): Since ρ < ∞, pick N so large that

∞∑
m=N+1

∞∑
z=1

c(z)

γm+1
EB,z#G∗

m ≤ δ,

and by Corollary 6.8, we can find a constant c > 0 such that for all n ∈ N

P∗
(

γn

#G∗
n(A)

> c

)
≤ ε. (6.16)

Using these two estimations, EZm(A) = γm and EB,xZm = xμm
B for each x,m ∈ N, we get

P∗ ((∗ ∗ ∗) ≥ 2δ) ≤ P∗

⎛⎝ 1

#G∗
n(A)

n−N−1∑
m=1

∑
u∈G∗

m−1(A,B)

#G∗
n−m(B, u) ≥ δ

⎞⎠
≤ P∗

⎛⎝ 1

γn

n−N−1∑
m=1

∑
u∈G∗

m−1(A,B)

#G∗
n−m(B, u) ≥ δ

c

⎞⎠+ ε

≤ c

δγn

n−N−1∑
m=1

E∗

⎛⎝ ∑
u∈G∗

m−1(A,B)

#G∗
n−m(B, u)

⎞⎠+ ε
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≤ c

δγn

n−N−1∑
m=1

E∗

⎛⎝ ∑
u∈G∗

m−1(A,B)

EB,ZuZn−m

⎞⎠+ ε

=
c

δγn

n−N−1∑
m=1

μn−m
B E∗

⎛⎝ ∑
u∈G∗

m−1(A,B)

Zu

⎞⎠+ ε

=
c

δP(Surv(A))γn

n−N−1∑
m=1

μn−m
B EZm−1(A)EZ1(B) + ε

≤ cEZ1(B)

δP(Surv(A))γ

∞∑
m=N−1

(
μB

γ

)m

+ ε

≤ 2ε,

possibly after enlarging N . Recall that μB < γ is assumed.
Estimation of (∗∗): Let N be as chosen in the estimation of (∗) and fix z0 ∈ N large

enough such that

N∑
m=0

∑
z>z0

c(z)

γm+1
EB,z#G∗

m ≤ δ and
∑
z>z0

c(z)
N∑

m=0

1

γm+1
≤ δ

2N+1
.

From Lemma 6.12 and Corollary 6.8(b), we deduce

N∑
m=0

#{v ∈ G∗
n−m−1(A,B) : Zv > z0}

#G∗
n(A)

P∗
−→

∑
z>z0

c(z)
N∑

m=0

1

γm+1
as n → ∞,

and since #G∗
n−m(B, u) ≤ 2n−m a.s. for all m ≤ n, we infer

P∗ ((∗∗) ≥ 2δ) ≤ P∗

⎛⎝ 1

#G∗
n(A)

n∑
m=n−N

∑
u∈{v∈G∗

m−1(A,B):Zv>z0}
#G∗

n−m(B, u) ≥ δ

⎞⎠
≤ P∗

(
n∑

m=n−N

#{v ∈ G∗
m−1(A,B) : Zv > z0}
#G∗

n(A)
≥ δ

2N

)

= P∗
(

N∑
m=0

#{v ∈ G∗
n−m−1(A,B) : Zv > z0}

#G∗
n(A)

≥ δ

2N

)
→ 0, n → ∞.

Estimation of (∗ ∗ ∗): Let N and z0 chosen according to the estimations of (∗) and (∗∗).
Once again, by Lemma 6.12 and Corollary 6.8(b), we obtain

#{v ∈ G∗
n−m(A,B)|Zv = z}
#G∗

n(A)
P∗
−→ c(z)

γm
as n → ∞ (6.17)

for each z ∈ N and m ∈ N. Let z ∈ N with c(z) > 0. For each m ∈ N, the random variables
#G∗

m(B, u) with u ∈ {v ∈ G∗
n−m−1(A,B)|Zv = z} are conditioned upon {Zn−m > 0} (⊇
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{Zn−m(A) > 0}) i.i.d., and thus the law of large numbers with (6.17) gives for each η1, η2 > 0 a
n0 ∈ N such that

P

(∣∣∣∣
∑

u∈{v∈G∗
n−m−1(A,B)|Zv=z}#G∗

m(B, u)

#{v ∈ G∗
n−m−1(A,B)|Zv = z} − EB,z#G∗

m

∣∣∣∣ ≥ η1

∣∣∣∣ Zn−m > 0

)
≤ η2

for all n ≥ n0. Since P(·|Zn(B) > 0) → P(·| Surv) in total variation distance as n → ∞, and
Surv(A) ⊆ Surv by Theorem 6.4, this leads to

1

#G∗
n(A)

∑
u∈{v∈G∗

n−m−1(A,B)|Zv=z}
#G∗

m(B, u)
P∗
−→ c(z)

γm+1
EB,z#G∗

m

for n → ∞ by an appeal to (6.17). But this implies

1

#G∗
n(A)

n∑
m=n−N

∑
u∈{v∈G∗

m−1(A,B):Zv≤z0}
#G∗

n−m(B, u)

=
N∑

m=0

z0∑
z=1

1

#G∗
n(A)

∑
u∈{v∈G∗

n−m−1(A,B)|Zv=z}
#G∗

m(B, u)
P∗
−→

N∑
m=0

z0∑
z=1

c(z)

γm+1
EB,z#G∗

m

for n → ∞, completing the proof of the theorem.

Proof of Theorem 6.11

As in the proof of Theorem 6.10, we first show an auxiliary lemma which provides us with a cell
type change rate.

Lemma 6.15. Let (AsBP) and (SupC) hold true. Then for all z ∈ N

#{v ∈ G∗
n(A,B)|Zv ≥ z}
#G∗

n(A)
P∗
−→ β > 0 as n → ∞,

where β := limz→∞ EA,z#G∗
1(B). In particular, #G∗

n(A,B)/#G∗
n(A) conditioned upon Surv(A)

converges in probability to β.

Proof. Since z �→ EA,z#G∗
1(B) is increasing and EA,1#G∗

1(B) > 0 by our standing assumption
(SA4), we see that β must be positive. Moreover,

∑
k≥z0

Fn(k,A)
P∗
−→ 1 by Corollary 6.8(a),

whence
#{v ∈ G∗

n(A,B) : Zv ≥ z0}
#G∗

n(A,B)
P∗
−→ 1.

Thus, it is enough to prove the result with #G∗
n(A,B) as numerator. Next, observe that

#G∗
n(A,B) =

∑
v∈G∗

n−1(A)

#G∗
1(B, v)

for each n ∈ N, where the #G∗
1(B, v) are conditionally independent given {Zn(A) > 0}. Since

#G∗
n(A) → ∞ P∗-a.s. (Theorem 6.4) and Pn dTV−−→ P∗, it is not difficult to infer with the help of

the law of large numbers that

#G∗
n(A,B)

#G∗
n(A)

− 1

#G∗
n(A)

∑
v∈G∗

n(A)

EA,Zv#G∗
1(B)

P∗
−→ 0 as n → ∞.
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Now, use EA,z#G∗
1(B) ↑ β to infer the existence of a z0 ∈ N such that

EA,z#G∗
1(B) ≥ β(1− ε)

for all z ≥ z0. After these observations, we finally obtain by an appeal to Corollary 6.8(a) that

β ≥ 1

#G∗
n(A)

∑
v∈G∗

n(A)

EA,Zv#G∗
1(B)

≥
∑
z≥z0

Fn(z,A)

#{v ∈ G∗
n(A)|Zv ≥ z0}

∑
v∈{u∈G∗

n(A)|Zu≥z0}
EA,Zv#G∗

1(B)

≥ β(1− ε)
∑
z≥z0

Fn(z,A)

→ β(1− ε), n → ∞.

Proof of Theorem 6.11: If μB > γ, Lemma 6.14 holds true and the correctness of the limit
statement of Fn(k,B) for n → ∞ follows with the exact same argumentation as in the proof of
Theorem 6.10(a), which is why we omit it here.

For the other assertion, let ε > 0 and N ∈ N. Then

#G∗
n(B) =

n−1∑
k=0

∑
v∈G∗

k(A,B)

#G∗
n−k−1(B, v)

≥
n−1∑
k=0

∑
v∈{u∈G∗

k(A,B)|Zu≥z}
#G∗

n−k−1(B, v)

≥
∑

v∈{u∈G∗
n−1−m(A,B)|Zu≥z}

#G∗
m(B, v) a.s.

for all n > m ≥ 1 and z ∈ N, hence

P∗
(
#G∗

n(A)

#G∗
n

>
1

N + 1

)
= P∗ (N #G∗

n(A) > #G∗
n(B))

≤ P∗

⎛⎝N #G∗
n(A) >

∑
v∈{u∈G∗

n−1−m(A,B)|Zu≥z}
#G∗

m(B, v)

⎞⎠ .

(6.18)

Fix m so large that

2m(1− ε) >
4N

β
.

Then, since
lim
z→∞

PB,z(#G∗
m = 2m) = 1,

there exists a z0 ∈ N such that

PB,z(#G∗
m = 2m) ≥ 1− ε



132 CHAPTER 6. A HOST-PARASITE MODEL

and therefore
EB,z#G∗

m ≥ (1− ε)2m >
4N

β
(6.19)

for all z ≥ z0. Moreover, Lemma 6.15 yields

#{v ∈ G∗
n(A,B) : Zv ≥ z0}
#G∗

n(A)
P∗
−→ β

and thereupon

P∗
(
#{v ∈ G∗

n(A,B) : Zv ≥ z0}
#G∗

n(A)
≥ β

2

)
≥ 1− ε (6.20)

for all n ≥ n0 and some n0 ∈ N. By combining (6.18) and (6.20), we now infer

P∗
(
#G∗

n(A)

#G∗
n

>
1

N + 1

)

≤ P∗

⎛⎝N #G∗
n(A) >

∑
v∈{u∈G∗

n−1−m(A,B):Zu≥z0}
#G∗

m(B, v)

⎞⎠
≤ P∗

(
2N

β
>

∑
v∈{u∈G∗

n−1−m(A,B):Zu≥z0}#G∗
m(B, v)

#{u ∈ G∗
n−1−m(A,B) : Zu ≥ z0}

)
+ ε

≤ Pn−m

(
2N

β
>

∑
v∈{u∈G∗

n−1−m(A,B):Zu≥z0}#G∗
m(B, v)

#{u ∈ G∗
n−1−m(A,B) : Zu ≥ z0}

)
P(Zn−m(A) > 0)

P(Surv(A))
+ ε

≤ Pn−m

(
2N

β
>

∑#{u∈G∗
n−1−m(A,B):Zu≥z0}

i=1 Gi,m(z0)

#{u ∈ G∗
n−1−m(A,B) : Zu ≥ z0}

)
P(Zn−m(A) > 0)

P(Surv(A))
+ ε

for all n ≥ n0 + m, where the Gi,m(z0) are i.i.d. with the same law as #{v ∈ G∗
m(B) : Z∅ =

z0,T∅ = B}. The law of large numbers, together with Lemma 6.15 and Pn dTV−−→ P∗, provides us
with a n1 ≥ n0 +m such that

Pn−m

(∑#{u∈G∗
n−1−m(A,B):Zu≥z}

i=1 Gi,m(z0)

#{u ∈ G∗
n−1−m(A,B) : Zu ≥ z} ≥ EGi,m(z0)/2

)
≥ 1− ε

for all n ≥ n1. By combining this with (6.19), we can further estimate in the above inequality

P∗
(
#G∗

n(A)

#G∗
n

>
1

N + 1

)
≤

(
Pn−m

(
2N

β
>

EGi,m(z0)

2

)
+ ε

)
P(Zn−m(A) > 0)

P(Surv(A))
+ ε

=

(
P(Zn−m(A) > 0)

P(Surv(A))
+ 1

)
ε

n→∞−−−→ 2ε.

This completes the proof.

Remark 6.16. We briefly remark on the cases when (AsBP) or (SA6) is violated.

(a) Let pAA > 0 and P(X(0)(A,AA) = X(1)(A,AA) = X(0)(A,AB) = 1) = 1. Then Zn(A) =

#G∗
n(A) a.s. for all n ∈ N0 and #G∗

n(A) → ∞ on Surv(A) by Theorem 6.4. Moreover,
(#G∗

n(A))n≥0 forms a standard GWP with finite reproduction variance, and consequently,
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(#G∗
n(A)/ν

n)n≥0 is an L2-bounded martingale (see e.g. [14, Theorem 2 in Chapter I.6]).
As every type-A cell contains exactly one parasite, evidently Fn(1,A) = 1 P∗-a.s., and
the assertions in Theorem 6.10 can be analogously proved by using the just mentioned
properties.

(b) Let pAA = 0 and P(Zn(A) → ∞) > 0, which particularly entails pAB = 1 as P(Surv(A)) > 0.
Moreover, Fn(k,A) = 1{Zn(A)=k} → 0 P∗-a.s. for all k ∈ N and so Lemma 6.14 as well as
Lemma 6.15 for β = 1 can be shown in this case with analogous arguments. The statement
in the latter lemma can be even expanded to almost sure convergence. By just copying
the proof of Theorem 6.11, the assertions given there follow for this case, whereby the first
limit result can be expanded to almost sure convergence.

(c) Let (SA6) fail. In this case Zn(A) = 1 P∗-a.s and therefore Fn(1,A) = 1 P∗-a.s. for all
n ∈ N0. Remark 6.7 yields

#G∗
n(A)

#G∗
n

=
1

1 +#G∗
n(B)

⎧⎨⎩
a.s.−−→ 0
d−→ (1 +G∞)−1

if μB

⎧⎨⎩> 1

≤ 1,

where, as in Remark 6.7, the random variable G∞ is finite if μB < 1, whereas infinite if
μB = 1 and EB,1Z2

1 < ∞.

Following the short proof in Remark 6.7, it is not hard to see that

#{v ∈ G∗
n(B) : Zv = k} d−→ G∞,k as n → ∞

for each k ∈ N if μB < 1, where G∞,k is an almost surely finite random variable. Thus, for
each k ∈ N

Fn(k,B)
d−→ G∞,k

G∞
as n → ∞

if μB < 1. If μB ≤ 1 and EB,1Z2
1 < ∞ in the case when equality holds, Lemma 6.14 can

be easily verified under the present conditions with similar arguments given there and by
the usage of (6.4). Hence, Theorem 6.10(a) is still valid is this case and can be shown with
the same arguments done in the theorem’s proof.



Appendix A

Calculation of the variance

Here, we proof the exact formula for the variance of the process of parasites (Zn)n≥0.

Lemma A.1. Let σ2 := VarZ1 < ∞ and τ2 := νEg′′Λ0
(1). Then

VarZn = σ2γn−1
n−1∑
k=0

γk + cτ2
γ2(n−1)

γ̃

n−1∑
k=0

(
γ̃γ−2

)k k−1∑
j=0

(
γ

γ̃

)j

for n ∈ N, where

γ̃ := ν Eg′Λ0
(1)2 =

∞∑
t=1

pt

t∑
u=1

μ2
u,t and c := Cov

⎛⎝ T∅∑
u=1

X
(u,T∅)
1,∅ ,

T∅∑
u=1

X
(u,T∅)
2,∅

⎞⎠ .

In particular

VarZn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2γn−1 γn−1
γ−1 + cτ2 1

γ−γ̃

(
γn−1(γn−1)

γ−1 − γ2n−γ̃n

γ2−γ̃

)
if γ �= 1, γ̃ �= 1, γ �= γ̃ �= γ2,

σ2γn−1 γn−1
γ−1 + cτ2 γn−1

γ(1−γ)

(
γn−1
γ−1 − γn−1n

)
if γ �= 1, γ̃ �= 1, γ2 = γ̃,

σ2γn−1 γn−1
γ−1 + cτ2 γn

γ2(γ−1)

(
γn−1
γ−1 − n

)
if γ �= 1, γ̃ �= 1, γ = γ̃,

σ2γn−1 γn−1
γ−1 + cτ2 1

γ−1

(
γn−1(γn−1)

γ−1 − γ2n−1
γ2−1

)
if γ �= 1, γ̃ = 1,

σ2n+ cτ2 1
γ̃−1

(
γ̃n−1
γ̃−1 − n

)
if γ = 1, γ̃ �= 1,

σ2n+ cτ2 n(n−1)
2 if γ = 1, γ̃ = 1.

Proof. First, we like to point out that γ̃ and τ2 are finite since Jensen’s inequality yields

γ̃ ≤
∞∑
t=1

pt

t∑
u=1

E

(
X(u,t) 2

)
= νE

(
Z ′ 2
1

)
≤

∞∑
t=1

ptE

(
t∑

u=1

X(u,t)

)2

= EZ2
1 < ∞.

Furthermore, by the Cauchy-Schwarz inequality

c ≤ Var

⎛⎝ T∅∑
u=1

X
(u,T∅)
1,∅

⎞⎠ 1
2

Var

⎛⎝ T∅∑
u=1

X
(u,T∅)
2,∅

⎞⎠ 1
2

= VarZ1 < ∞

134
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because
∑T∅

u=1X
(u,T∅)
i,∅ is distributed as Z1 for i ∈ {1, 2}. Another appeal to Jensen’s inequality

provides

E

⎛⎝ T∅∑
u=1

X
(u,T∅)
1,∅

T∅∑
u=1

X
(u,T∅)
2,∅

⎞⎠ =
∞∑
t=1

pt
∑

1≤u,v≤t

μu,tμv,t =
∞∑
t=1

pt

⎛⎝ ∑
1≤u≤t

μu,t

⎞⎠2

≥

⎛⎝ ∞∑
t=1

pt
∑

1≤u≤t

μu,t

⎞⎠2

= (EZ1)
2

and thus non-negativity of c.
Let n ∈ N. To compute the stated variance we use the formula

VarX = E (Var(X|G)) + Var (E(X|G))

for a random variable X and a σ-algebra G. Since conditioned under Fn the subtrees rooted
in cells of generation n are independent and depend only on the number of parasites in their
ancestor cell, we infer

VarZn+1 = E (Var(Zn+1|Fn)) + Var (E(Zn+1|Fn))

= E

(∑
v∈Tn

Var

(
Zv∑
i=1

Tv∑
u=1

X
(u,Tv)
i,v

∣∣∣∣ Zv

))
+ γ2Var (Zn) .

(A.1)

Recalling that each
∑Tv

u=1X
(u,Tv)
i,v , i ∈ N, is identically distributed as Z1 with mean γ, we get for

the conditioned variance

Var

(
Zv∑
i=1

Tv∑
u=1

X
(u,Tv)
i,v

∣∣∣∣ Zv

)

= E

⎛⎝(
Zv∑
i=1

Tv∑
u=1

X
(u,Tv)
i,v − E

(
Zv∑
i=1

Tv∑
u=1

X
(u,Tv)
i,v

∣∣∣∣Zv

))2 ∣∣∣∣ Zv

⎞⎠
= E

⎛⎝(
Zv∑
i=1

(
Tv∑
u=1

X
(u,Tv)
i,v − γ

))2 ∣∣∣∣ Zv

⎞⎠
=

Zv∑
i=1

Var

(
Tv∑
u=1

X
(u,Tv)
i,v

)
+ Zv(Zv − 1)E

((
Tv∑
u=1

X
(u,Tv)
1,v − γ

)(
Tv∑
u=1

X
(u,Tv)
2,v − γ

))
= Zvσ

2 + Zv(Zv − 1)c.

By plugging this equation into (A.1), we establish the recursive formula

VarZn+1 = γ2VarZn + σ2EZn + c

(
E

(∑
v∈Tn

Z2
v −Zn

))

= γ2VarZn + σ2γn + cνn
(
EZ ′ 2

n − EZ ′
n

)
= γ2VarZn + σ2γn + cνnf ′′

n(1)
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with fn(1) being the generating function of Z ′
n (see Subsection 1.2.1) and thus via iteration

VarZn+1 = σ2γn
n∑

k=0

γk + c
n∑

k=0

νkγ2(n−k)f ′′
k (1), (A.2)

while f ′′
0 (1) ≡ 0. Consider the recursive representation for the second derivative of the generating

function of a branching process in varying environments established by Fearn in [37] and use the
i.i.d. property of Λ to obtain for each k ∈ N

f ′′
k (1) = E

(
f ′′
k (1|Λ)

)
= E

(
f ′′
k−1(1|Λ)g′Λk−1

(1)2 + f ′
k−1(1|Λ)g′′Λk−1

(1)
)

= f ′′
k−1(1)Eg

′
Λ0
(1)2 + f ′

k−1(1)Eg
′′
Λ0
(1)

= f ′′
k−1(1)

γ̃

ν
+

(γ
ν

)k−1 τ2

ν

= . . . =
τ2

νk

k−1∑
j=0

γ̃k−1−jγj .

Combined with (A.2), we get

VarZn+1 = σ2γn
n∑

k=0

γk + cτ2
n∑

k=0

γ2(n−k)
k−1∑
j=0

γ̃k−j−1γj

= σ2γn
n∑

k=0

γk + cτ2
γ2n

γ̃

n∑
k=0

(
γ̃γ−2

)k k−1∑
j=0

(
γ

γ̃

)j
(A.3)

and thus the formula of the variance.
Based on this equation, we consider six different cases.
Case γ = γ̃ = 1:

VarZn = σ2n+ cτ2
n−1∑
k=0

k = σ2n+ cτ2
n(n− 1)

2
.

Case γ = 1, γ̃ �= 1:

VarZn = σ2n+ cτ2
n−1∑
k=0

k−1∑
j=0

γ̃k−1−j = σ2n+ cτ2
n−1∑
k=0

k−1∑
j=0

γ̃j

= σ2n+ cτ2
n−1∑
k=0

γ̃k − 1

γ̃ − 1
= σ2n+

cτ2

γ̃ − 1

(
γ̃n − 1

γ̃ − 1
− n

)
.

Case γ �= 1, γ̃ = 1:

VarZn = σ2γn−1 γ
n − 1

γ − 1
+ cτ2γ2(n−1)

n−1∑
k=0

γ−2k
k−1∑
j=0

γj

= σ2γn−1 γ
n − 1

γ − 1
+ cτ2γ2(n−1)

n−1∑
k=0

γ−2k γ
k − 1

γ − 1
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= σ2γn−1 γ
n − 1

γ − 1
+ cτ2

γ2(n−1)

γ − 1

(
n−1∑
k=0

γ−k −
n−1∑
k=0

γ−2k

)

= σ2γn−1 γ
n − 1

γ − 1
+ cτ2

1

γ − 1

(
γn−1 γ

n − 1

γ − 1
− γ2n − 1

γ2 − 1

)
.

Case γ �= 1, γ̃ �= 1, γ = γ̃:

VarZn = σ2γn−1 γ
n − 1

γ − 1
+ cτ2

γ2(n−1)

γ

n−1∑
k=0

kγ−k

= σ2γn−1 γ
n − 1

γ − 1
+ cτ2

γ2n

γ2
d

dγ

(
−

n−1∑
k=0

γ−k

)

= σ2γn−1 γ
n − 1

γ − 1
+ cτ2

γ2n

γ2
d

dγ

1− γ−n

γ−1 − 1

= σ2γn−1 γ
n − 1

γ − 1
+ cτ2

γ2n

γ2
nγ−n−1(γ−1 − 1) + (1− γ−n)γ−2

(γ−1 − 1)2

= σ2γn−1 γ
n − 1

γ − 1
+ cτ2

γn

γ2(γ − 1)

(
γn − 1

γ − 1
− n

)
.

Case γ �= 1, γ̃ �= 1, γ �= γ̃, γ2 = γ̃:

VarZn = σ2γn−1 γ
n − 1

γ − 1
+ cτ2

γ2(n−1)

γ2

n−1∑
k=0

k−1∑
j=0

γ−j

= σ2γn−1 γ
n − 1

γ − 1
+ cτ2

γ2(n−1)

γ(1− γ)

n−1∑
k=0

(γ−k − 1)

= σ2γn−1 γ
n − 1

γ − 1
+ cτ2

γ2(n−1)

γ(1− γ)

(
γ−n − 1

γ−1 − 1
− n

)
= σ2γn−1 γ

n − 1

γ − 1
+ cτ2

γn−1

γ(1− γ)

(
γn − 1

γ − 1
− γn−1n

)
.

Case γ �= 1, γ̃ �= 1, γ �= γ̃, γ2 �= γ̃:

VarZn = σ2γn−1 γ
n − 1

γ − 1
+ cτ2

γ2(n−1)

γ̃

n−1∑
k=0

(γ̃γ−2)k

(
γ
γ̃

)k
− 1

γ
γ̃ − 1

= σ2γn−1 γ
n − 1

γ − 1
+ cτ2

γ2(n−1)

γ − γ̃

n−1∑
k=0

(
γ−k −

(
γ̃

γ2

)k
)

= σ2γn−1 γ
n − 1

γ − 1
+ cτ2

γ2(n−1)

γ − γ̃

(
1− γ−n

1− γ−1
−

( γ̃
γ2 )

n − 1

γ̃
γ2 − 1

)

= σ2γn−1 γ
n − 1

γ − 1
+ cτ2

1

γ − γ̃

(
γn−1 γ

n − 1

γ − 1
− γ̃n − γ2n

γ̃ − γ2

)
.



Appendix B

A law of large numbers for
stochastically bounded random
variables

In this short section, we present a law of large numbers for a sequence of independent random
variables which are not assumed to have second moments. But, instead of the latter, these random
variables are stochastically bounded, despite a constant factor, by another random variable. This
guarantees that the sum is not dominated by only finite summands.

Theorem B.1. Let (Xn)n≥1 be independent random variables, and X an integrable random
variable such that

sup
n≥1

P(X+
n > k) ≤ cP(X+ > k) and sup

n≥1
P(X−

n > k) ≤ cP(X− > k)

for all k ∈ N0 and a finite constant c > 0. Then

lim
n→∞

1

n

n∑
i=1

(Xi − EXi) = 0 a.s.

If additionally limn→∞ EXn = EX, then

lim
n→∞

1

n

n∑
i=1

Xi = EX a.s.

Proof. First, note that Xn is integrable for each n ∈ N by our assumptions, and we set Sn :=∑n
i=1(Xi − EXi) for n ∈ N. To prove the assertion, we use a truncation argument analog to

the one in the proof of Etemadi for the law of large numbers (see e.g. [36, Theorem 2.4.1]). For
n ∈ N, define

Yn := Xn 1{|Xn|≤n}

and set Tn :=
∑n

i=1(Yi − EYi). Observe that
∞∑
n=1

P(Xn �= Yn) =

∞∑
n=1

P(|Xn| > n) ≤ c

∞∑
n=1

P(|X| > n) ≤ cE|X| < ∞,
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and thus the Borel-Cantelli lemma provides

P(Xn �= Yn ∞-often) = 0.

Furthermore, we estimate for the difference of the means

|E(Xn − Yn)| ≤ E|Xn − Yn| = E|Xn|1{|Xn|>n} ≤ cE|X|1{|X|>n},

and thus we infer from the integrability of X

1

n

∣∣∣∣∣
n∑

i=1

E(Xi − Yi)

∣∣∣∣∣ ≤ c

n

n∑
i=1

E|X|1{|X|>i} ≤ c

n

m∑
i=1

E|X|1{|X|>i}+c
n−m

n
E|X|1{|X|>m}

→ cE|X|1{|X|>m} as n → ∞

→ 0 as m → ∞.

This yields

lim
n→∞

1

n
|Sn − Tn| = 0 a.s.

Hence, it is enough to show the law of large numbers for the sequence (Yn)n≥0. To see that, first
observe for each n ∈ N

EY 2
n = EX2

n 1{Xn≤n} =

∫ n

0
2tP(Xn > t)dt ≤ c

∫ n

0
2tP(X > t)dt = cEX2 1{X≤n},

which together with [36, Lemma 2.4.3] entails

∑
n≥1

EY 2
n

n2
≤ c

∑
n≥1

EX2 1{X≤n}
n2

≤ 4cEX < ∞.

Hence, Kolmogorov’s criterion for the strong law of large numbers is satisfied, and the assertion
follows (see e.g. [36, Exercise 2.5.4]).



List of Abbreviations

ABPRE associated branching process in random environment
ABPREI associated branching process in random environment with immigration
BPRE branching process in random environment
BPREI branching process in random environment with immigration
BwBP branching within branching process
GWP Galton-Watson process
GWT Galton-Watson tree

a.s. almost surely
i.i.d. independent and identically distributed
w.o.l.g. without loss of generality
w.p.p. with positive probability
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List of Symbols

Symbols of the branching within branching process, Chapter 1-5

BP branching within branching process
BPn nth generation of the branching within branching process
BPG process denoting the number of contaminated cells and the parasites they

contain
BPGn number of infected cells and the parasites they contain in generation n

BT branching within branching tree
BTn branching within branching tree up to generation n

BT (v) subtree rooted in v

Δ = (Δn)n≥0, environmental sequence of the ABPREI
gΔn(s) generating function giving the nth reproduction law of the ABPREI
gΛn(s) generating function giving the nth reproduction law of the ABPRE
Λ = (Λn)n≥0, environmental sequence of the ABPRE
T tree of (alive) cells
Tn set of (alive) cells in the nth generation
T∗ set of contaminated cells
T∗
n set of contaminated cells in the nth generation

Tn number of (alive) cells in the nth generation
T ∗
n number of contaminated cells in the nth generation

Tv number of daughter cells of cell v
Tv indicator if cell v is alive (v ∈ T)
V infinite Ulam-Harris tree
(Vn)n≥0 random cell line through T

(V̂n)n≥0 spinal cells in the size-biased BwBP
Wn mean normalized number of parasites in generation n, := γ−nZn

W martingale limit of (Wn)n≥0

(X
(1,t)
i,v , . . . , X

(t,t)
i,v ) offspring numbers of the ith parasite in cell v provided that v has t daugh-

ter cells
X

(u,t)
i,v offspring number of the ith parasite in cell v which goes into the uth of t

daughter cells
X

(•,t)
i,v := (X

(1,t)
i,v , . . . , X

(t,t)
i,v )
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Zn number of parasites in the nth generation
Z ′
n number of individuals of the ABPRE in generation n

Ẑ ′
n number of individuals of the ABPREI in generation n

Zv number of parasites in cell v
ẐV̂n

number of parasites in the nth spinal cell

γ mean number of offspring of a parasite, := EZ1

μu,t mean offspring number of a parasite which goes into the uth of t daughter
cells, := EX(u,t)

ν reproduction mean of a cell, := ET1

(Fn)n≥0 canonical filtration
(S,S) space of host-parasite trees
Sn sub-σ-algebra of S generated by the projections on the first n generations

of the host-parasite trees
S set of all possible root configurations
S∗ set of configurations of contaminated cells in a generation
S∗
0 := S∗ ∪ {(0, 0)}

S state space of a cell, := {0, 1} × N0

θ(·) limit distribution of Pn(Zn ∈ ·)
π(·) Yaglom-limit of BPG
(pk)k≥0 reproduction law of a cell
P(t,z) probability measure under which the process starts with t cells containing

z = (z1, . . . , zt) parasites
P∗
(t,z) the same as before but conditioned upon Surv

Pn
(t,z) the same as before but conditioned upon {Zn > 0}

Pz,P
∗
z,P

n
z the same probability measures as before for (1, z)

â, Â variable (object) a resp. random variable A in the size-biased BwBP
Ext / Surv event of extinction/survival of parasites
z̄ sum of all entries in a vector z = (z1, . . . , zt)

∅ root cell of V

Symbols of the two-type host parasite model, Chapter 6

Gn set of cells in generation n

Gn(t) set of cells of type t in generation n

G∗
n set of contaminated cells in generation n
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G∗
n(t) set of contaminated cells of type t in generation n

gΛn(s) generating function giving the n-th reproduction law of the process
of a random A cell line

Tv type of cell v
V2 binary cell tree
(X(0)(A, s), X(1)(A, s)) offspring numbers of an A-parasite with daughter cells of type s ∈

{AA,AB,BB}
(X(0)(B), X(1)(B)) offspring numbers of a B-parasite
Zn number of parasites in generation n

Zn(t) number of parasites in t-cells in generation n

Z[n] number of parasites in a random cell in generation n

Zn(A) number of parasites of a random A-cell in generation n

Zv number of parasites in cell v

γ mean number of offspring of an A-parasite which goes in an A-cell,
:= EA,1Z1(A)

μi,A(s) mean offspring number of a A-parasite which goes in daughter cell i ∈
{0, 1} if daughter cells are of type s ∈ {AA,AB,BB}, := EX(i)(A, s)

μi,B mean offspring number of B-parasites which goes in daughter cell
i ∈ {0, 1}, := EX(i)(B)

μB reproduction mean of a parasite in a B-cell, := μ0,B + μ1,B

ν mean number of type-A daughter cells of an A-cell, := EA,1#G1(A)

ps probability that the daughter cell of an A-cell is of type s ∈
{AA,AB,BB}

p0 probability that the 1st daughter cell of an A-cell is of type A

p1 probability that the 2nd daughter cell of an A-cell is of type A

Pt,z probability measure under which the process starts with one t-cell
containing z parasites

P∗
t,z the same as before but conditioned upon Surv(A)

Pn
t,z the same as before but conditioned upon survival of A-parasites in

generation n

Ext / Surv event of extinction/survival of parasites
Ext(t)/ Surv(t) event of extinction/survival of type-t parasites
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