Research Areas
- Soft matter physics
- Active soft matter
- Active and passive colloidal particles
- Biophysics
- Microscopic derivation of field theories
- Classical dynamical density functional theory
- Phase field crystal models
CV
Honors
- Postdoctoral research fellowship (07/2015-09/2016) – Heinrich-Heine-Universität Düsseldorf
- Return fellowship (01/2015-06/2015) – Deutsche Forschungsgemeinschaft (German Research Foundation)
- Postdoctoral research fellowship (01/2013-12/2014) – Deutsche Forschungsgemeinschaft (German Research Foundation)
- Postdoctoral research fellowship (05/2012-12/2012) – Heinrich-Heine-Universität Düsseldorf
- Teilnahmestipendium – Wilhelm und Else Heraeus-Stiftung
- Designation as "Emerging Leader" – Journal of Physics: Condensed Matter (IOP Publishing)
- Election as member of the Young Academy of the North Rhine-Westphalian Academy of Sciences – North Rhine-Westphalian Academy of Sciences
- Emmy Noether program – German Research Foundation (DFG)
- Beste Dissertation in der Mathematisch-Naturwissenschaftlichen Fakultät 2012 – Heinrich-Heine-Universität Düsseldorf
- Stipendium für Studierende – Studienstiftung des deutschen Volkes
- Book award – Deutsche Physikalische Gesellschaft (German Physical Society)
External Function
- Member of the "Junges Kolleg" (Young Academy) of the North Rhine-Westphalian Academy of Sciences, Humanities and the Arts
Projects
Selection
- Controlling the dynamics of active colloidal liquid crystals by external fields ( – )
Individual project: DFG Emmy Noether Programme | Project Number: WI 4170/3-1
Complete List
- Controlling the dynamics of active colloidal liquid crystals by external fields ( – )
Individual project: DFG Emmy Noether Programme | Project Number: WI 4170/3-1
- CRC 1459 B01 - Towards intelligent light-propelled nano- and microsystems ( – )
Subproject in DFG-joint project hosted at WWU: DFG - Collaborative Research Centre | Project Number: SFB 1459, B01 - Controlling the dynamics of active colloidal liquid crystals by external fields ( – )
Individual project: DFG Emmy Noether Programme | Project Number: WI 4170/3-1
- Controlling the dynamics of active colloidal liquid crystals by external fields ( – )
Publications
Selection
- 10.1126/sciadv.1501850. . ‘Light-induced self-assembly of active rectification devices.’ Science advances 2: e1501850. doi:
- 10.1103/PhysRevLett.115.188302. . ‘Active Model H: scalar active matter in a momentum-conserving fluid.’ Physical Review Letters 115: 188302. doi:
- 10.1103/PhysRevLett.114.018301. . ‘Activity-induced phase separation and self-assembly in mixtures of active and passive particles.’ Physical Review Letters 114: 018301. doi:
- 10.1038/ncomms5829. . ‘Gravitaxis of asymmetric self-propelled colloidal particles.’ Nature Communications 5: 4829. doi:
- 10.1038/ncomms5351. . ‘Scalar ϕ^4 field theory for active-particle phase separation.’ Nature Communications 5: 4351. doi:
Complete List
- . . ‘Perspective: New directions in dynamical density functional theory.’ Journal of Physics: Condensed Matter 35, No. 4: 041501. doi: 10.1088/1361-648X/ac8633.
- . . ‘Thermodynamics of an Empty Box.’ Entropy 25, No. 2: 315. doi: 10.3390/e25020315.
- . . ‘From a microscopic inertial active matter model to the Schrödinger equation.’ Nature Communications 14: 1302. doi: 10.1038/s41467-022-35635-1.
- . . ‘Pressure drives rapid burst-like coordinated cellular motion from 3D cancer aggregates.’ Advanced Science 9, No. 6: 2104808. doi: 10.1002/advs.202104808.
- . . ‘Acoustically propelled nano- and microcones: fast forward and backward motion.’ Nanoscale Advances 4, No. 1: 281–293. doi: 10.1039/D1NA00655J.
- . . ‘Orientation-dependent propulsion of triangular nano- and microparticles by a traveling ultrasound wave.’ ACS Nano 16, No. 3: 3604–3612. doi: 10.1021/acsnano.1c02302.
- . . ‘Propulsion of bullet- and cup-shaped nano- and microparticles by traveling ultrasound waves.’ Physics of Fluids 34, No. 5: 052007. doi: 10.1063/5.0089367.
- 10.1039/D2CP00060A. . ‘Topological fine structure of smectic grain boundaries and tetratic disclination lines within three-dimensional smectic liquid crystals.’ Physical Chemistry Chemical Physics 24, No. 26: 15691–15704. doi:
- . . ‘Analytical approach to chiral active systems: suppressed phase separation of interacting Brownian circle swimmers.’ Journal of Chemical Physics 156, No. 19: 194904. doi: 10.1063/5.0085122.
- . . ‘Collective guiding of acoustically propelled nano- and microparticles.’ Nanoscale Advances 4, No. 13: 2844–2856. doi: 10.1039/D2NA00007E.
- . . ‘Acoustic propulsion of nano- and microcones: dependence on the viscosity of the surrounding fluid.’ Langmuir 38, No. 35: 10736–10748. doi: 10.1021/acs.langmuir.2c00603.
- . . ‘Inertial dynamics of an active Brownian particle.’ Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 106, No. 3: 034616. doi: 10.1103/PhysRevE.106.034616.
- . . ‘Derivation and analysis of a phase field crystal model for a mixture of active and passive particles.’ Modelling and Simulation in Materials Science and Engineering 30, No. 8: 084001. doi: 10.1088/1361-651X/ac856a.
- . . ‘ASEVis: Visual Exploration of Active System Ensembles to Define Characteristic Measures.’ In 2022 IEEE Visualization and Visual Analytics (VIS), edited by , 150–154. Oklahoma City: IEEE Press. doi: 10.1109/VIS54862.2022.00039.
- . . ‘Containing a pandemic: nonpharmaceutical interventions and the 'second wave'.’ Journal of Physics Communications 5, No. 5: 055008. doi: 10.1088/2399-6528/abf79f.
- . . ‘Mori-Zwanzig formalism for general relativity: a new approach to the averaging problem.’ Physical Review Letters 127, No. 23: 231101. doi: 10.1103/PhysRevLett.127.231101.
- . . ‘Master equations for Wigner functions with spontaneous collapse and their relation to thermodynamic irreversibility.’ Journal of Computational Electronics 20, No. 6: 2209–2231. doi: 10.1007/s10825-021-01804-6.
- . . ‘Jerky active matter: a phase field crystal model with translational and orientational memory.’ New Journal of Physics 23, No. 6: 063023. doi: 10.1088/1367-2630/abfa61.
- . . ‘Pair-distribution function of active Brownian spheres in two spatial dimensions: simulation results and analytic representation.’ Journal of Chemical Physics 152, No. 19: 194903. doi: 10.1063/1.5140725.
- . . ‘Relations between angular and Cartesian orientational expansions.’ AIP Advances 10, No. 3: 035106. doi: 10.1063/1.5141367.
- . . ‘Predictive local field theory for interacting active Brownian spheres in two spatial dimensions.’ Journal of Physics: Condensed Matter 32, No. 21: 214001. doi: 10.1088/1361-648X/ab5e0e.
- . . ‘On the shape-dependent propulsion of nano- and microparticles by traveling ultrasound waves.’ Nanoscale Advances 2, No. 9: 3890–3899. doi: 10.1039/D0NA00099J.
- . . ‘Active Brownian motion with orientation-dependent motility: theory and experiments.’ Langmuir 36, No. 25: 7066–7073. doi: 10.1021/acs.langmuir.9b03617.
- . . ‘Collective dynamics of active Brownian particles in three spatial dimensions: a predictive field theory.’ Physical Review Research 2, No. 3: 033241. doi: 10.1103/PhysRevResearch.2.033241.
- . . ‘Projection operators in statistical mechanics: a pedagogical approach.’ European Journal of Physics 41, No. 1: 045101. doi: 10.1088/1361-6404/ab8e28.
- . . ‘Classical dynamical density functional theory: from fundamentals to applications.’ Advances in Physics 69, No. 2: 121–247. doi: 10.1080/00018732.2020.1854965.
- . . ‘Orientational order parameters for arbitrary quantum systems.’ Annalen der Physik 532, No. 12: 2000266. doi: 10.1002/andp.202000266.
- . . ‘Effects of social distancing and isolation on epidemic spreading modeled via dynamical density functional theory.’ Nature Communications 11: 5576. doi: 10.1038/s41467-020-19024-0.
- . . ‘Mori-Zwanzig projection operator formalism for far-from-equilibrium systems with time-dependent Hamiltonians.’ Physical Review E - Statistical, nonlinear, and soft matter physics 99, No. 6: 062118. doi: 10.1103/PhysRevE.99.062118.
- 10.1039/C7CP07026H. . ‘Liquid crystals of hard rectangles on flat and cylindrical manifolds.’ Physical Chemistry Chemical Physics 20, No. 7: 5285–5294. doi:
- . . ‘Active crystals on a sphere.’ Physical Review E - Statistical, nonlinear, and soft matter physics Vol. 97, Iss. 5 — May 2018. doi: 10.1103/PhysRevE.97.052615.
- . . ‘Hydrodynamic resistance matrices of colloidal particles with various shapes.’ arXiv.org 2018.
- . . ‘Active crystals on a sphere.’ Physical Review E 97, No. 5: 052615. doi: 10.1103/PhysRevE.97.052615.
- 10.1088/1367-2630/aa8195. . ‘Nonequilibrium dynamics of mixtures of active and passive colloidal particles.’ New Journal of Physics 19, No. 10: 105003. doi:
- 10.1063/1.4998605. . ‘Helical paths, gravitaxis, and separation phenomena for mass-anisotropic self-propelling colloids: experiment versus theory.’ Journal of Chemical Physics 147, No. 8: 084905. doi:
- 10.1063/1.4967876. . ‘Hard rectangles near curved hard walls: tuning the sign of the Tolman length.’ Journal of Chemical Physics 145, No. 20: 204508. doi:
- 10.1103/PhysRevE.94.052606. . ‘Symmetry breaking in clogging for oppositely driven particles.’ Physical Review E 94, No. 5: 052606. doi:
- 10.1126/sciadv.1501850. . ‘Light-induced self-assembly of active rectification devices.’ Science advances 2: e1501850. doi:
- 10.1103/PhysRevLett.115.188302. . ‘Active Model H: scalar active matter in a momentum-conserving fluid.’ Physical Review Letters 115: 188302. doi:
- 10.1103/PhysRevLett.114.198301. . ‘Pressure and phase equilibria in interacting active Brownian spheres.’ Physical Review Letters 114: 198301. doi:
- 10.1088/0953-8984/27/19/194110. . ‘Can the self-propulsion of anisotropic microswimmers be described by using forces and torques?’ Journal of Physics: Condensed Matter 27: 194110. doi:
- 10.1103/PhysRevLett.114.018301. . ‘Activity-induced phase separation and self-assembly in mixtures of active and passive particles.’ Physical Review Letters 114: 018301. doi:
- 10.1038/ncomms5829. . ‘Gravitaxis of asymmetric self-propelled colloidal particles.’ Nature Communications 5: 4829. doi:
- 10.1103/PhysRevLett.113.029802. . ‘Reply to “Comment on ‘Circular motion of asymmetric self-propelling particles’ ”.’ Physical Review Letters 113: 029802. doi:
- 10.1038/ncomms5351. . ‘Scalar ϕ^4 field theory for active-particle phase separation.’ Nature Communications 5: 4351. doi:
- 10.1103/PhysRevE.88.050301. . ‘Brownian motion and the hydrodynamic friction tensor for colloidal particles of complex shape.’ Physical Review E 88: 050301(R). doi:
- 10.1063/1.4820416. . ‘Dynamics of a deformable active particle under shear flow.’ Journal of Chemical Physics 139: 104906. doi:
- 10.1088/1751-8113/46/35/355003. . ‘Microscopic approach to entropy production.’ Journal of Physics A: Mathematical and Theoretical 46: 355003. doi:
- 10.1103/PhysRevE.87.052406. . ‘Structure and dynamics of interfaces between two coexisting liquid-crystalline phases.’ Physical Review E 87: 052406. doi:
- 10.1103/PhysRevLett.110.198302. . ‘Circular motion of asymmetric self-propelling particles.’ Physical Review Letters 110: 198302. doi:
- 10.1140/epjst/e2013-02073-0. . ‘Differently shaped hard body colloids in confinement: from passive to active particles.’ European Physical Journal Special Topics 222: 3023–3037. doi:
- 10.1063/1.4769101. . ‘Extended dynamical density functional theory for colloidal mixtures with temperature gradients.’ Journal of Chemical Physics 137: 224904. doi:
- 10.1103/PhysRevE.85.021406. . ‘Self-propelled Brownian spinning top: dynamics of a biaxial swimmer at low Reynolds numbers.’ Physical Review E 85: 021406. doi:
- 10.1080/00018732.2012.737555. . ‘Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview.’ Advances in Physics 61: 665–743. doi:
- 10.2370/9783844013689. . Brownian dynamics of active and passive anisotropic colloidal particles. 1st Ed. Aachen: Shaker Verlag. doi:
- 10.1080/00268976.2011.609145. . ‘Dynamical density functional theory for colloidal particles with arbitrary shape.’ Molecular Physics 109: 2935–2943. doi:
- 10.1103/PhysRevE.84.041708. . ‘Microscopic and macroscopic theories for the dynamics of polar liquid crystals.’ Physical Review E 84: 041708. doi:
- 10.1103/PhysRevE.84.031105. . ‘Brownian dynamics of a self-propelled particle in shear flow.’ Physical Review E 84: 031105. doi:
- 10.1103/PhysRevE.83.061712. . ‘Stability of liquid crystalline phases in the phase-field-crystal model.’ Physical Review E 83: 061712. doi:
- 10.1103/PhysRevE.83.061706. . ‘Polar liquid crystals in two spatial dimensions: the bridge from microscopic to macroscopic modeling.’ Physical Review E 83: 061706. doi:
- 10.1103/PhysRevE.82.031708. . ‘Derivation of a three-dimensional phase-field-crystal model for liquid crystals from density functional theory.’ Physical Review E 82: 031708. doi:
- 10.1002/ctpp.200910009. . ‘Mean motion in stochastic plasmas with a space-dependent diffusion coefficient.’ Contributions to Plasma Physics 49: 55–69. doi:
Promotion
te Vrugt, Michael Scale-bridging field theories for nonequilibrium systems Bickmann, Jens Field theories for active colloidal liquid crystals Voß, Johannes Self-acoustophoretic particles Bröker, Stephan Active materials in external fields Nitschke, Tobias Active colloidal particles in external fields Sitta, Christoph Structure and dynamics of soft matter: from two-dimensional liquid crystals to macromolecular diffusion through gels