Research Areas
Molecular self-assembly at interfaces
Molecular self-assembly at interfaces; Molecular control of interface-rich materials; Colloids, foams and nanoparticles; Electrochemistry and electrocatalysis; Nonlinear optical laser spectroscopy at interfaces
Molecular control of interface-rich materials
Colloids, foams and nanoparticles
Electrochemistry and electrocatalysis
Nonlinear optical laser spectroscopy at interfaces
CV
Education
- PhD Thesis at TU Clausthal in the group of Prof. Dr. Winfried Daum. Title: In situ Studies of Solid-Electrolyte Interfaces and their Molecular Structure: Platinum and alpha-Al2O3(0001)
- Studies of Physics (Diplom) at Clausthal University of Technology
Positions
- W1 tenure track W2 Professor, Physical Chemistry of Surfaces and Interfaces; Westfälische Wilhelms-Universität Münster
- Head of an independent research group at the Institute of Particle Technology (LFG) of the FAU Erlangen-Nürnberg
- Postdoc with a Feodor Lynen Return Fellowship at FAU Erlangen-Nürnberg
- Postdoc and Feodor Lynen fellow; Research associate in the groups of Prof. Drs. Dana D. Dlott and Andrzej Wieckowski with Prof. Dr. Martin Gruebele as mentor and host; University of Illinois at Urbana-Champaign, USA
- Postdoc in the group of Prof. Dr. Winfried Daum at TU Clausthal
Honors
- Junior Professional Management Program – BASF Stipendienplatz
- DAAD Kongressreisestipendium – Deutscher Akademischer Austauschdienst (DAAD)
- Max Buchner Research Fellowship – Max Buchner Forschnungsstiftung
- Feodor Lynen-Forschungsstipendium für Postdoktoranden – Alexander von Humboldt foundation
- ERC Starting Grant – European Research Council (ERC)
- Förderpreis für die beste Dissertation – Verein von Freunden der TU Clausthal
External Functions
- Membership American Chemical Society (ACS)
- Member of the European Colloid and Interface Society
- Membership in German Physical Society (DPG)
Projects
- BACCARA – International Graduate School of Battery Chemistry, Characterization, Analysis, Recycling and Application ( – )
Individual project: Federal Ministry of Culture and Science of the Federal State of North Rhine-Westphalia - CRC 1459 B03 - Molecular control of adaptive interfaces and hierarchical soft matter ( – )
Subproject in DFG-joint project hosted at WWU: DFG - Collaborative Research Centre | Project Number: SFB 1459, B03 - ECO2 – Electrocatalytic Activation of CO2 in Room-Temperature Ionic Liquids ( – )
Individual project: DFG - Individual Grants Programme | Project Number: BR 4760/3-2 - SPP 2171 - Dynamic Wetting of Flexible, Adaptive, and Switchable Substrates - Subproject: Structure-Property Relations and Wetting Dynamics of Organic Thin Films with Photo-Switches ( – )
Subproject in DFG-joint project hosted at WWU: DFG - Priority Programme | Project Number: BR 4760/5-1 - SPP 2171 - Dynamic wetting of flexible, adaptive and switchable surfaces ( – )
Main DFG-project hosted at WWU: DFG - Priority Programme - Spektroskopische Aufklärung des Unterschieds zwischen nanoskaligen und ausgedehnten Öl/Wasser-Grenzflächen: Adsorption und ionenspezifische Effekte von anionischen und kationischen Tensiden ( – )
Individual project: DFG - Individual Grants Programme | Project Number: BR 4760/4-1 - Smart liquid/gas interfaces with photo-switchable surfactants ( – )
Individual project: German Academic Exchange Service | Project Number: 57448918 - Electrocatlytic activation of CO2 in room-temperature ionic liquids (ECO2) ( – )
Individual project: DFG - Individual Grants Programme | Project Number: BR 4760/3-1 - SUPERFOAM – Structure-Property Relations in Aqueous Foam and Their Control on a Molecular Level ( – )
EU-project hosted at WWU: EC H2020 - ERC Starting Grant | Project Number: 638278
- BACCARA – International Graduate School of Battery Chemistry, Characterization, Analysis, Recycling and Application ( – )
Publications
- . . ‘Electrocatalysis and self assembly at solid/liquid interfaces studied by nonlinear optical spectroscopy.’ In Encyclopedia of Solid-Liquid Interfaces, edited by , 254–266. Amsterdam: Elsevier. doi: 10.1016/B978-0-323-85669-0.00098-2.
- . . ‘Molecular Kinetics and Wetting Dynamics of Self-Assembled Monolayers with Fluorinated Arylazopyrazoles.’ Journal of Physical Chemistry C 127: 15316–15325. doi: 10.1021/acs.jpcc.3c02472.
- . . ‘Photo-Responsive Control of Adsorption and Structure Formation at the Air-Water Interface with Arylazopyrazoles.’ Langmuir 39: 5861–5871. doi: 10.1021/acs.langmuir.3c00294.
- . . ‘Influence of Interfacial Water and Cations on the Oxidation of CO at the Platinum/Ionic Liquid Interface.’ Physical Chemistry Chemical Physics 25: 1014–1022. doi: 10.1039/D2CP05178H.
- . . ‘Dynamic Molecular Switches with Hysteretic Negative Differential Conductance Emulating Synaptic Behaviour.’ Nature Materials 21: 1403–1411. doi: 10.1038/s41563-022-01402-2.
- . . ‘Near-UV Induced Rapid Formation of Compact Self-Assembled Organophosphonate Monolayers on H-Terminated Si(111) Surfaces.’ Journal of Physical Chemistry C 126: 19978–19986. doi: 10.1021/acs.jpcc.2c03335.
- . . ‘Surface Properties of Saponin - Chitosan Mixtures.’ Molecules 27: 7505. doi: 10.3390/molecules27217505.
- . . ‘Formation and Stability of Heterogeneous Organo–Ionic Surface Layers on Geological Carbonates.’ Energy and Fuels 36: 7414–7433. doi: 10.1021/acs.energyfuels.2c01117.
- . . ‘Adsorption of CTAB on sapphire-c at high pH: Surface and zeta-potential measurements combined with sum-frequency and second-harmonic generation.’ Langmuir 38: 3380–3391. doi: 10.1021/acs.langmuir.1c03069.
- . . ‘Role of Imidazolium Cations on the Interfacial Structure of Room-Temperature Ionic Liquids in Contact with Pt(111) Electrodes.’ Electrochem. Sci. Adv. e2100173. doi: 10.1002/elsa.202100173. [online first]
- . . ‘Structure-Property Relations of β-Lactoglobulin/κ-Carrageenan Mixtures in Aqueous Foam .’ Coll. Surf. A 640: 128267. doi: 10.1016/j.colsurfa.2022.128267.
- . . ‘Dynamic Wetting of Photo-Responsive Arylazopyrazole Monolayers is Controlled by the Molecular Kinetics of the Monolayer.’ J. Am. Chem. Soc. 144: 4026–4038. doi: 10.1021/jacs.1c12832.
- 10.1021/acsami.1c18934. . ‘Responsive Material and Interfacial Properties Through Remote Control of Polyelectrolyte-Surfactant Mixtures.’ ACS Appl. Mat. Int. 14: 4656–4667. doi:
- . . ‘Nanoscale Effects on the Surfactant Adsorption and Interface Charging in Hexadecane/Water Emulsions.’ ACS Nano 15: 20136–20147. doi: 10.1021/acsnano.1c08038.
- . . ‘pH Effects on the Molecular Structure and Charging State of β-Escin Biosurfactants at the Air-Water Interface.’ J. Coll. Int. Sci. 607: 1754–1761. doi: 10.1016/j.jcis.2021.09.086.
- . . ‘Cations of ionic liquid electrolytes can act as a promoter for CO2 electrocatalysis through reactive intermediates and electrostatic stabilization.’ J. Phys. Chem. C 125: 16498–16507. doi: 10.1021/acs.jpcc.1c02898.
- . . ‘Memory effects in polymer brushes showing co-nonsolvency effects.’ Adv. Coll. Interface Sci. 294: 102442. doi: 10.1016/j.cis.2021.102442.
- . . ‘Light-Induced Switching of Polymer-Surfactant Interactions Enables Controlled Polymer Thermoresponsive Behaviour.’ Chemical communications 57: 5826–5829. doi: 10.1039/D1CC02054D.
- . . ‘Potential-Induced Adsorption and Structuring of Water at Pt(111) Electrode Surfaces in Contact with an Ionic Liquid.’ J. Phys. Chem. Lett. 11: 7116–7121. doi: 10.1021/acs.jpclett.0c02037.
- . . ‘β-Lactoglobulin Adsorption Layers at the Water/Air Surface: 4. Impact on Stability of Foam Films and Foams.’ Minerals 10, No. 636: 1–19. doi: 10.3390/min10070636.
- . . ‘Photo-Switchable Surfactants for Responsive Air-Water Interfaces: Azo vs. Arylazopyrazole Amphiphiles.’ J. Phys. Chem. B 124: 6913–6923. doi: 10.1021/acs.jpcb.0c02848.
- . . ‘Role of H2O for CO2 Reduction Reactions at Platinum/Electrolyte Interfaces in Imidazolium Room-Temperature Ionic Liquids.’ ChemElectroChem 7: 1765–1774. doi: 10.1002/celc.202000316.
- . . ‘Spiropyran Sulfonates for Photo and pH Responsive Air-Water Interfaces and Aqueous Foam.’ Langmuir 36: 6871−6879. doi: 10.1021/acs.langmuir.9b03387.
- . . ‘Unexpected Monolayer-to-Bilayer Transition of Arylazopyrazole Surfactants Facilitates Superior Photo-Control of Fluid Interfaces and Colloids.’ Chemical science 11: 2085–2092. doi: 10.1039/C9SC05490A.
- . . ‘A cyclodextrin surfactant for stable emulsions with accessible cavity for host-guest-complexation.’ Chemical communications 56: 15434–15437. doi: 10.1039/D0CC06657E.
- . . ‘Specific Ion Effects of Trivalent Cations on the Structure and Charging State of β-Lactoglobulin Adsorption Layers.’ Langmuir 35: 11299–11307. doi: 10.1021/acs.langmuir.9b01803.
- . . ‘Specific Ion Effects of Dodecyl Sulfate Surfactants with Alkali Ions at the Air-Water Interface.’ Molecules 24: 2911. doi: 10.3390/molecules24162911.
- . . ‘Mechanistic Insights on CO2 Reduction Reactions at Platinum/[BMIM][BF4] Interfaces from In Operando Spectroscopy.’ ACS Catalysis 9: 6284–6292. doi: 10.1021/acscatal.9b01033.
- . . ‘Aqueous Mixtures of Room-Temperature Ionic Liquids: Entropy-Driven Accumulation of Water Molecules at Interfaces .’ J. Phys. Chem. C 123: 13795–13803. doi: 10.1021/acs.jpcc.9b04098.
- . . ‘CnTAB / Polystyrene Sulfonate Mixtures at Air-Water Interfaces: Effects of Alkyl Chain Length on Surface Activity and Charging State.’ Phys. Chem. Chem. Phys. 21: 7847–7856. doi: 10.1039/c9cp01107b.
- . . ‘Hydroxypropyl Cellulose as a Green Polymer for Thermo-Responsive Aqueous Foams.’ Soft Matter 15: 2876–2883. doi: 10.1039/c9sm00093c.
- . . ‘Quantifying Double-Layer Potentials at Liquid-Gas Interfaces from Vibrational Sum-Frequency Generation.’ J. Phys. Chem. C 123: 1279–1286. doi: 10.1021/acs.jpcc.8b10097.
- . . ‘Role of Citrate and NaBr at the Surface of Colloidal Gold Nanoparticles during Functionalization.’ J. Phys. Chem. C 122: 27383–27391. doi: 10.1021/acs.jpcc.8b07897.
- . . ‘Charge Controlled Surface Properties of Native and Fluorophore Labeled Bovine Serum Albumin at the Air-Water Interface.’ J. Phys. Chem. B 122: 10377–10383. doi: 10.1021/acs.jpcb.8b06481.
- . . ‘On the complex role of ammonia in the electroless deposition of curved silver patches on silica nanospheres.’ CrystEngComm 20: 6214–6224. doi: 10.1039/C8CE00866C.
- . . ‘Effects of Ca2+ Ion Condensation on the Molecular Structure of Polystyrene Sulfonate at Air-Water Interfaces.’ Langmuir 34: 11714–11722. doi: 10.1021/acs.langmuir.8b02631.
- . . ‘Molecular structure of octadecylphosphonic acids during their self-assembly on alpha-Al2O3(0001).’ Phys. Chem. Chem. Phys. 20: 19382–19389. doi: 10.1039/C8CP02391C.
- . . ‘Smart Air-Water Interfaces with Arylazopyrazole Surfactants and their Role in Photoresponsive Aqueous Foam.’ Langmuir 34: 6028–3035. doi: 10.1021/acs.langmuir.8b00587.
- . . ‘Impact of formulation pH on physicochemical protein characteristics at the liquid-air interface.’ Int. J. Pharm. 541: 234–245. doi: 10.1016/j.ijpharm.2018.02.009.
- . . ‘The surface chemistry of sapphire-c: A literature review and a study on various factors influencing its IEP.’ Adv. Coll. Int. Sci. 541: 234–245. doi: 10.1016/j.cis.2017.12.004.
- . . ‘Ion Pairing and Adsorption of Azo Dye/C16TAB Surfactants at the Air-Water Interface.’ J. Phys. Chem. C 2017, No. 121: 27992–28000. doi: 10.1021/acs.jpcc.7b08924.
- . . ‘Nanocylindrical confinement imparts highest structural order in molecular self-assembly of organophosphonates on aluminum oxide.’ Nanoscale 9: 6291–6295. doi: 10.1039/c7nr02420g.
- . . ‘Structure of Polystyrene Sulfonate/Surfactant Mixtures at Air-Water Interfaces and their Role as Building Blocks for Macroscopic Foam.’ Langmuir 2017, No. 33: 3499–3508. doi: 10.1021/acs.langmuir.7b00400.
- . . ‘In situ spectroscopy of ligand exchange reactions at the surface of colloidal gold and silver nanoparticles.’ J. Phys.: Cond. Matter 29, No. 13: 133002. doi: 10.1088/1361-648X/aa5a3c.
- 10.1016/j.apsusc.2017.01.199. . ‘Functionalization of Steel Surfaces with Organic Acids: Influence on Wetting and Corrosion Behavior.’ Applied Surface Science 404: 326–333. doi:
- 10.1016/j.jelechem.2016.10.035. . ‘Vibrational sum-frequency generation study of the CO2 electrochemical reduction at Pt/EMIM-BF4 solid/liquid interfaces.’ Journal of Electroanalytical Chemistry 800: 144–150. doi:
- 10.1039/c6sm00636a. . ‘Specific effects of Ca2+ ions and molecular structure of β-lactoglobulin interfacial layers that drive macroscopic foam stability.’ Soft Matter 12, No. 27: 5995–6004. doi:
- 10.1002/cite.201650452. . ‘Molekulares Verständnis fluider Grenzflächen am Beispiel von Proteinschäumen.’ Chemie Ingenieur Technik 88, No. 9: 1298. doi:
- 10.1021/acs.langmuir.6b01933. . ‘Lubrication of Individual Microcontacts by a Self-Assembled Alkyl Phosphonic Acid Monolayer on α-Al2O3(0001).’ Langmuir 32, No. 33: 8298–8306. doi:
- 10.1021/acs.langmuir.5b03861. . ‘Interaction between Polymeric Additives and Secondary Fluids in Capillary Suspensions.’ Langmuir 32, No. 6: 1440–1449. doi:
- 10.1021/acs.jpcc.5b11055. . ‘Fast and slow ligand exchange at the surface of colloidal gold nanoparticles.’ Journal of Physical Chemistry C 120, No. 3: 1673–1682. doi:
- 10.1021/acs.langmuir.5b00440. . ‘Self-assembled monolayers get their final finish via a quasi-Langmuir-Blodgett transfer.’ Langmuir 31, No. 16: 4678–4685. doi:
- 10.1021/acs.jpcb.5b01944. . ‘Carboxylate Ion Pairing with Alkali-Metal Ions for Β-Lactoglobulin and Its Role on Aggregation and Interfacial Adsorption.’ Journal of Physical Chemistry B 119, No. 17: 5505–5517. doi:
- 10.1016/j.cocis.2014.03.008. . ‘Vibrational sum-frequency generation at protein modified air-water interfaces: Effects of molecular structure and surface charging.’ Current Opinion in Colloid and Interface Science 19, No. 3: 207–215. doi:
- 10.1016/j.jelechem.2013.10.019. . ‘Surface spectroscopy of Pt(1 1 1) single-crystal electrolyte interfaces with broadband sum-frequency generation.’ Journal of Electroanalytical Chemistry 716, No. null: 136–144. doi:
- 10.1021/jp412295j. . ‘Surface charging and interfacial water structure of amphoteric colloidal particles.’ Journal of Physical Chemistry C 118, No. 19: 10033–10042. doi:
- 10.1021/nn500729r. . ‘Shedding light on the growth of gold nanoshells.’ ACS Nano 8, No. 3: 3088–3096. doi:
- 10.1021/jp501541q. . ‘Mixed layers of β-lactoglobulin and SDS at air-water interfaces with tunable intermolecular interactions.’ Journal of Physical Chemistry B 118, No. 15: 4098–4105. doi:
- 10.1021/ja5048076. . ‘Indentation and self-healing mechanisms of a self-assembled monolayer - A combined experimental and modeling study.’ Journal of the American Chemical Society 136, No. 30: 10718–10727. doi:
- . . „Einfluss von Proteinen auf die Schaumbildung und Schaumstabilität.“ In Proteinschäume in der Lebensmittelproduktion: Mechanismenaufklärung, Modellierung und Simulation, herausgegeben von , 11–28. unbekannt / n.a. / unknown.
- 10.1021/la402729g. . ‘PH effects on the molecular structure of β-lactoglobulin modified air-water interfaces and its impact on foam rheology.’ Langmuir 29, No. 37: 11646–11655. doi:
- 10.1002/9781118658871. (Eds.): . Vibrational Spectroscopy at Electrified Interfaces. Hobogen, New Jersey: John Wiley & Sons. doi:
- 10.1021/jp210542v. . ‘In situ spectroscopic examination of a low overpotential pathway for carbon dioxide conversion to carbon monoxide.’ Journal of Physical Chemistry C 116, No. 29: 15307–15312. doi:
- 10.1039/c2em30380a. . ‘The microelectronic wireless nitrate sensor network for environmental water monitoring.’ J. Environ. Monitoring 14, No. 12: 3068–3075. doi:
- 10.1021/la301368v. . ‘Protein adsorption at the electrified air-water interface: Implications on foam stability.’ Langmuir 28, No. 20: 7780–7787. doi:
- 10.1021/am2018223. . ‘Impact of oxygen plasma treatment on the device performance of zinc oxide nanoparticle-based thin-film transistors.’ ACS applied materials & interfaces 4, No. 3: 1693–1696. doi:
- 10.1021/jz200957e. . ‘Study of ethanol electrooxidation in alkaline electrolytes with isotope labels and sum-frequency generation.’ Journal of Physical Chemistry Letters 2, No. 17: 2236–2240. doi:
- 10.1016/j.jcat.2010.11.018. . ‘Reaction pathways of ethanol electrooxidation on polycrystalline platinum catalysts in acidic electrolytes.’ J. Catalysis 278, No. 2: 181–188. doi:
- 10.1016/j.susc.2011.03.009. . ‘Pt(111) thin-layer electrodes on α-Al2O3(0001): Morphology and atomic structure.’ Surface Science 605, No. null: 1082–1089. doi:
- 10.1021/la203916h. . ‘Tuning the molecular order of C 60 functionalized phosphonic acid monolayers.’ Langmuir 27, No. 24: 15016–15023. doi:
- 10.1063/1.3507257. . ‘Sum-frequency generation of acetate adsorption on Au and Pt surfaces: Molecular structure effects.’ Journal of Chemical Physics 133, No. 23. doi:
- 10.1021/ja106618z. . ‘Real-time investigations of Pt(111) surface transformations in sulfuric acid solutions.’ Journal of the American Chemical Society 132, No. 40: 14036–14038. doi:
- 10.1021/la901399j. . ‘Superstructures and order-disorder transition of sulfate adlayers on Pt(111) in sulfuric acid solution.’ Langmuir 25, No. 18: 11112–11120. doi:
- 10.1016/j.susc.2009.09.028. . ‘One-dimensional defects in iodine adlayers on Pt(1 0 0).’ Surface Science 603, No. 23: 3361–3366. doi:
- 10.1103/PhysRevB.80.220101. . ‘Atomic transport in metastable compounds: Case study of self-diffusion in Si-C-N films using neutron reflectometry.’ Physical Review B 80, No. 22. doi:
- . . In-situ-Untersuchungen zur molekularen Struktur von Festkörper/Elektrolyt-Grenzflächen: Platin und alpha-Al2O3(0001) Dissertation thesis, Technische Unversität Clausthal: Papierflieger.
- 10.1007/s00340-008-3134-z. . ‘Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives.’ Applied Physics B: Lasers and Optics 92, No. null: 327–333. doi:
- 10.1021/jp711758y. . ‘Molecular structure of a mineral/water interface: Effects of surface NanoRoughness of α-Al2O3 (0001).’ Journal of Physical Chemistry C 112, No. 6: 1751–1754. doi:
- 10.1103/PhysRevLett.93.097402. . ‘Nonlinear optical spectroscopy of suboxides at oxidized Si(111) interfaces.’ Physical Review Letters 93, No. 9. doi:
Promotion
Schulze-Zachau, Felix Aqueous Polyelectrolyte Foms: Effects of Molecular Structure and Composition on Bulk, Surface and Foam Properties Talks
- Braunschweig Björn (): ‘Remote Control of Photoswitchable Amphiphiles at Aqueous Interfaces’. 19. European Conference on Nonlinear Optical Spectroscopy (ECONOS), Karlsruhe, .
- Braunschweig, Björn (): ‘Smart Air-Water Interfaces with Arylazopyrazole Surfactants and their Role in Photoresponsive Aqueous Foam’. Annual Meeting of the European Colloid and Interface Society (ECIS), Ljubljana, .