© Uni Münster

Research Topic

Our research aims to understand the mechanisms of early mammalian development before and at the time of implantation on cellular and molecular level. We use the mouse embryo as a model system to decipher the interconnected processes of self-organization and cell fate transitions of the early lineages. To study these basic properties of the mammalian conceptus we use embryo micromanipulation techniques, 3D stem cell culture, genetic and genomic engineering, next generation sequencing methods, advanced microscopy and automated functional screens. The project within the Collaborative Research Center focuses on the architectural reorganization of the trophoblast stem cell pool (extraembryonic ectoderm) of the implanting embryo. These cells are critical for establishing the connection to the maternal tissues during the early stages of pregnancy and later for the formation of the placenta. Our aim is to dissect the signaling circuits that regulate the shape and function of the extraembryonic ectoderm during the implantation process.

Selected Publications

  • Chen R., Fan R., Chen F., Govindasamy N., Brinkmann H., Stehling M., Adams R.H., Jeong H.W., Bedzhov I. (2024). Analyzing embryo dormancy at single-cell resolution reveals dynamic transcriptional responses and activation of integrin-Yap/Taz prosurvival signaling. Cell Stem Cell Jul 18:S1934-5909(24)00250-9. doi.org/10.1016/j.stem.2024.06.015.

  • Ozguldez, H.O., Govindasamy, N., Fan, R., Long, H., Mildner, K., Zeuschner, D., Trappmann, B., Ranga, A., and Bedzhov, I. (2023). Polarity inversion reorganizes the stem cell compartment of the trophoblast lineage. Cell Reports 42, 112313. doi.org/10.1016/j.celrep.2023.112313.
  • Sathyanarayanan, A., Ing-Simmons, E., Chen, R., Jeong, H.W., Ozguldez, H.O., Fan, R., Duethorn, B., Kim, K.P., Kim, Y.S., Stehling, M., Scholer H.R., Adams R.H., Vaquerizas J. M., and Bedzhov I. (2022). Early developmental plasticity enables the induction of an intermediate extraembryonic cell state. Science  Advances 8, eabl9583. doi.org/10.1126/sciadv.abl9583.
  • Kim, Y.S., Fan, R., Lith, S.C., Dicke, A.K., Drexler, H.C.A., Kremer, L., Kuempel-Rink, N., Hekking, L., Stehling, M., and Bedzhov, I. (2022). Rap1 controls epiblast morphogenesis in sync with the pluripotency states transition. Developmental Cell 57, 1937-1956 e1938. doi.org/10.1016/j.devcel.2022.07.011.
  • Govindasamy, N., Long, H., Jeong, H.W., Raman, R., Ozcifci, B., Probst, S., Arnold, S.J., Riehemann, K., Ranga, A., Adams, R.H., Adams R.H., Trappmann B. and Bedzhov I. (2021). 3D biomimetic platform reveals the first interactions of the embryo and the maternal blood vessels. Developmental Cell 56, 3276-3287 doi.org/10.1016/j.devcel.2021.10.014.

Patents

  • Sathyanarayanan, A. and Bedzhov, I. (2020). Generation of trophectoderm-like cells and assembly of trophectoderm-like vesicles and synthetic embryoids. EP20181414.2
  • Zernicka-Goetz, M. and Bedzhov, I. (2015). Media and methods for culturing embryos and stem cells. WO2015022541