Projekte
- BC MERTIS: Cruise Phase Teil 2 - Teilvorhaben Labormessung und Missionsunterstützung ( – )
participations in other joint project: Bundesministerium für Wirtschaft und Klimaschutz | Förderkennzeichen: 50QW2201A - BC MERTIS: Systemtests, Start, Inbetriebnahme, Cruise-Phase Teil 1 ( – )
participations in other joint project: Bundesministerium für Wirtschaft und Klimaschutz | Förderkennzeichen: 50QW1701 - MERTIS – Mercury Radiometer & Thermal Infrared Spectrometer, Phase E/F1 ( – )
participations in bmbf-joint project: Bundesministerium für Bildung und Forschung | Förderkennzeichen: 50QW1302 - MERTIS – Mercury Radiometer & Thermal Infrared Spectrometer, Phase D/C2 ( – )
participations in bmbf-joint project: Bundesministerium für Bildung und Forschung | Förderkennzeichen: 50QW0901
- BC MERTIS: Cruise Phase Teil 2 - Teilvorhaben Labormessung und Missionsunterstützung ( – )
Forschungsartikel (Zeitschriften)
- . . ‘Synthetic analogs for lava flows on the surface of Mercury: A mid-infrared study.’ Icarus 415: 116078. doi: 10.1016/j.icarus.2024.116078.
- . . ‘Crystallographic and Mid-Infrared Spectroscopic Properties of the CaS-MgS Solid Solution.’ Journal of Geophysical Research: Planets 129, Nr. 8: e2024JE0–e2024JE008483. doi: 10.1029/2024JE008483.
- 10.1016/j.icarus.2022.115344. . ‘Simulation of surface regolith gardening and impact associated melt layer production under ns-pulsed laser ablation.’ Icarus 391. doi:
- . . ‘A mid-infrared study of synthetic glass and crystal mixtures analog to the geochemical terranes on mercury.’ Icarus 396: 115498. doi: 10.1016/j.icarus.2023.115498.
- . . ‘Mid-Infrared Spectroscopy of Feldspars From the Bühl Basalt (Northern Hesse, Germany) Formed Under Reducing Conditions as Terrestrial Analogue of Mercury for MERTIS.’ Earth and Space Science 10, Nr. 6: e2023EA002903. doi: 10.1029/2023EA002903.
- . . ‘Mid-IR spectral properties of different surfaces of silicate mixtures before and after excimer laser irradiation.’ Icarus 404: 115683. doi: 10.1016/j.icarus.2023.115683.
- . . ‘Mid-infrared spectroscopy of sulfidation reaction products and implications for sulfur on Mercury.’ Journal of Geophysical Research: Planets 128, Nr. 12: e2023JE0. doi: 10.1029/2023JE007895.
- . . ‘Sulfides and hollows formed on Mercury’s surface by reactions with reducing S-rich gases.’ Earth and Planetary Science Letters 593: 117647. doi: 10.1016/j.epsl.2022.117647.
- . . ‘Mid-infrared reflectance spectroscopy of synthetic glass analogs for mercury surface studies.’ Icarus 361: 114363. doi: 10.1016/j.icarus.2021.114363.
- . . ‘A shock recovery experiment and its implications for Mercury's surface: The effect of high pressure on porous olivine powder as a regolith analog.’ ıcarus 357: 114162. doi: 10.1016/j.icarus.2020.114162.
- . . ‘The effect of excimer laser irradiation on mid-IR spectra of mineral mixtures for remote sensing.’ Earth and Planetary Science Letters 569: 117072. doi: 10.1016/j.epsl.2021.117072.
- . . ‘Mid-Infrared Spectroscopy of Anorthosite Samples From Near Manicouagan Crater, Canada, as Analogue for Remote Sensing of Mercury and Other Terrestrial Solar System Objects.’ Journal of Geophysical Research (Planets) 126, Nr. 8: e06832. doi: 10.1029/2021JE006832.
- . . ‘Mid-infrared spectroscopy of alkali feldspar samples for space application.’ Mineralogy and Petrology 114: 453–463. doi: 10.1007/s00710-020-00709-9.
- . . ‘Studying the Composition and Mineralogy of the Hermean Surface with the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo Mission: An Update.’ Space Science Reviews 216, Nr. 6: 110. doi: 10.1007/s11214-020-00732-4.
- 10.1111/maps.13568. . ‘Mid-infrerad reflectance spectroscopy of aubrite components.’ Meteoritics & Planetary Science 55: 2080–2096. doi:
- . . ‘Space weathering by simulated micrometeorite bombardment on natural olivine and pyroxene: A coordinated IR and TEM study.’ Earth and Planetary Science Letters 530. doi: 10.1016/j.epsl.2019.115884.
- . . ‘Mid-infrared spectroscopy of planetary analogs: A database for planetary remote sensing.’ Icarus 324: 86–103. doi: 10.1016/j.icarus.2019.02.010.
- 10.1016/j.chemer.2016.10.004. . ‘The Braunschweig meteorite - a recent L6 chondrite fall in Germany.’ Chemie der Erde / Geochemistry 77, Nr. null: 207–224. doi:
- 10.1016/j.icarus.2016.11.030. . ‘Chelyabinsk – a rock with many different (stony) faces: An infrared study.’ Icarus 284, Nr. null: 431–442. doi:
- 10.1111/maps.12883. . ‘The Stubenberg meteorite—An LL6 chondrite fragmental breccia recovered soon after precise prediction of the strewn field.’ Meteoritics and Planetary Science 52, Nr. 8: 1683–1703. doi:
- 10.1016/j.icarus.2016.06.013. . ‘Mid-infrared bi-directional reflectance spectroscopy of impact melt glasses and tektites.’ Icarus 278: 162–179. doi:
- . . ‘Mid-infrared spectroscopy of impactites from the Nördlinger Ries impact crater.’ Icarus 264: 352–368. doi: 10.1016/j.icarus.2015.10.003.
- 10.1111/maps.12586. . ‘Cosmochemical and spectroscopic properties of Northwest Africa 7325-A consortium study.’ Meteoritics and Planetary Science 51, Nr. 1: 3–30. doi:
- . . „Dust from collisions: A way to probe the composition of exo-planets?“ Icarus 239: 1–14.
- . . ‘Mid-infrared spectroscopy of components in chondrites: Search for processed materials in young Solar Systems and comets.’ Icarus 2014, Nr. 231: 338–355. doi: 10.1016/j.icarus.2013.12.018.
- . . ‘Aqueous alteration in CR chondrites: Meteorite parent body processes as analogue for long-term corrosion processes relevant for nuclear waste disposal.’ Geochimica et Cosmochimica Acta 103: 76–103. doi: 10.1016/j.gca.2012.10.030.
- . . ‘Spitzer evidence for a late-heavy bombardment and the formation of ureilites in η corvi at 1 Gyr.’ Astrophysical Journal 747, Nr. 2. doi: 10.1088/0004-637X/747/2/93.
- . . ‘A self-consistent model of the circumstellar debris created by a giant hypervelocity impact in the HD 172555 system.’ Astrophysical Journal 761, Nr. 1. doi: 10.1088/0004-637X/761/1/45.
- . . ‘Mid-infrared spectra of differentiated meteorites (achondrites): Comparison with astronomical observations of dust in protoplanetary and debris disks.’ Icarus 219, Nr. 1: 48–56. doi: 10.1016/j.icarus.2012.02.018.
- . . ‘Chondrules born in plasma? Simulation of gas-grain interaction using plasma arcs with applications to chondrule and cosmic spherule formation.’ Meteoritics and Planetary Science 2012. doi: 10.1111/maps.12043.
- . . ‘Laihunite in planetary materials: An FTIR and TEM study of oxidized synthetic and meteoritic Fe-rich olivine.’ Journal of Mineralogical and Petrological Sciences 107, Nr. 4: 157–166. doi: 10.2465/jmps.120409.
- . . ‘The use of natural and archeological analogues for understanding the long-term behavior of nuclear glasses | L'utilisation des analogues naturels et archéologiques pour la compréhension de l'évolution à long terme des verres nucléaires.’ Comptes Rendus Géoscience 343, Nr. 2-3: 237–245. doi: 10.1016/j.crte.2010.12.004.
- . . ‘Mid-infrared spectra of the shocked Murchison CM chondrite: Comparison with astronomical observations of dust in debris disks.’ Icarus 207, Nr. 1: 45–53. doi: 10.1016/j.icarus.2009.11.018.
- . . ‘Abundant circumstellar silica dust and sio gas created by a giant hypervelocity collision in the 12 myr hd172555 system.’ Astrophysical Journal Letters 701, Nr. 2: 2019–2032. doi: 10.1088/0004-637X/701/2/2019.
- . . ‘Circumstellar dust created by terrestrial planet formation in HD 113766.’ Astrophysical Journal Letters 673, Nr. 2: 1106–1122. doi: 10.1086/523626.
- . . ‘Mid-infrared spectroscopy of refractory inclusions (CAIs) in CV and CO chondrites.’ Meteoritics and Planetary Science 43, Nr. 7: 1147–1160. doi: 10.1111/j.1945-5100.2008.tb01119.x.
- . . ‘2-16 μm spectroscopy of micron-sized enstatite (Mg,Fe) 2Si 2O 6 silicates from primitive chondritic meteorites.’ Monthly Notices of the Royal Astronomical Society 376, Nr. 3: 1367–1374. doi: 10.1111/j.1365-2966.2007.11548.x.
- . . ‘Brecciation and chemical heterogeneities of CI chondrites.’ Geochimica et Cosmochimica Acta 70, Nr. 21: 5371–5394. doi: 10.1016/j.gca.2006.08.007.
- . . ‘FT-IR microspectroscopy of extraterrestrial dust grains: Comparison of measurement techniques.’ Planetary and Space Science 54, Nr. 6: 599–611. doi: 10.1016/j.pss.2006.02.002.
- . . ‘FTIR 2-16 micron spectroscopy of micron-sized olivines from primitive meteorites.’ Meteoritics and Planetary Science 41, Nr. 5: 773–784. doi: 10.1111/j.1945-5100.2006.tb00991.x.
- . . ‘Stable isotope composition of impact glasses from the Nördlinger ries impact crater Germany.’ Geochimica et Cosmochimica Acta 65, Nr. 8: 1325–1336. doi: 10.1016/S0016-7037(00)00600-1.