Forschungsartikel (Zeitschriften)
- 10.1029/2023JE008152. . ‘A Microphysical Thermal Model for the Lunar Regolith: Investigating the Latitudinal Dependence of Regolith Properties.’ Journal of Geophysical Research: Planets 129, Nr. 3: e2023JE008152. doi:
- 10.1093/mnras/stad2229. . ‘Simulation and experiment of gas diffusion in a granular bed.’ Monthly Notices of the Royal Astronomical Society 524, Nr. 4: 6114–6123. doi:
- 10.1093/mnras/stad3890. . ‘Spectrophotometric properties of CoPhyLab’s dust mixtures.’ Monthly Notices of the Royal Astronomical Society 528, Nr. 1: 61–81. doi:
- 10.1093/rasti/rzad049. . ‘Micrometre-sized ice particles for planetary science experiments – CoPhyLab cryogenic granular sample production and storage.’ Royal Astronomical Society techniques and instruments 2, Nr. 1: 1–19. doi:
- 10.1093/mnras/stad2229. . ‘Simulation and experiment of gas diffusion in a granular bed .’ Monthly Notices of the Royal Astronomical Society 524, Nr. 4: 6114–6123. doi:
- 10.1093/mnras/stad1766. . ‘A quantitative description of comet 67P’s dust and gas production remains enigmatic.’ Monthly Notices of the Royal Astronomical Society 523, Nr. 4: 5171–5186. doi:
- 10.1088/1361-6501/acb373. . ‘Validation of gas flow experiments for porous media by means of computer simulations.’ Measurement Science and Technology 34, Nr. 4: 34 045012. doi:
- 10.1093/mnras/stac3420. . ‘Sub-mm/mm optical properties of real protoplanetary matter derived from Rosetta/MIRO observations of comet 67P.’ Monthly Notices of the Royal Astronomical Society 519, Nr. 1: 641–665. doi:
- 10.3390/universe8070381. . ‘Formation of Comets .’ universe 8, Nr. 7: 381. doi:
- 10.1093/mnras/stac1734. . ‘Cometary dust analogues for physics experiments.’ Monthly Notices of the Royal Astronomical Society: Letters 515, Nr. 3: 3420–3438. doi:
- 10.1093/mnras/stac1734. . ‘Cometary dust analogues for physics experiments.’ Monthly Notices of the Royal Astronomical Society 515, Nr. 3: 3420–3438. doi:
- 10.1093/mnras/stac1535. . ‘Are there any pristine comets? Constraints from pebble structure.’ Monthly Notices of the Royal Astronomical Society 514, Nr. 3: 3366–3394. doi:
- 10.1063/5.0057030. . ‘The CoPhyLab comet-simulation chamber.’ Review of Scientific Instruments 92, Nr. 11: 115102. doi:
- 10.1051/0004-6361/202142069. . ‘Sublimation of organic-rich comet analog materials and their relevance in fracture formation.’ Astronomy & Astrophysics 653: A153. doi:
- 10.1051/0004-6361/202140435 . . ‘Sublimation of ice-dust mixtures in cooled vacuum environments to reproduce cometary morphologies.’ Astronomy & Astrophysics 649, Nr. 35. doi:
- https://doi.org/10.1093/mnras/stab934. . ‘Viscous and Knudsen gas flow through dry porous cometary analogue material.’ Monthly Notices of the Royal Astronomical Society 504, Nr. 4: 5513–5527. doi:
- . . ‘A method to distinguish between micro-and macro-granular surfaces of small Solar system bodies.’ Monthly Notices of the Royal Astronomical Society 508, Nr. 4: 4705–4721. doi: 10.1093/mnras/stab2803.
- 10.1016/j.actaastro.2021.06.037. . ‘Thermal properties of lunar regolith simulant melting specimen.’ Acta Astronautica 187: 429–437. doi:
- 10.1038/s41586-020-2834-3. . ‘The Philae lander reveals low-strength primitive ice inside cometary boulders.’ Nature 586: 697–701. doi:
- 10.1051/0004-6361/202037763 . . ‘Tensile strength of dust-ice mixtures and their relevance as cometary analog material.’ Astronomy & Astrophysics 642: A218. doi:
- 10.1093/mnras/staa2126. . ‘Sticky or not sticky? Measurements of the tensile strength of microgranular organic materials.’ Monthly Notices of the Royal Astronomical Society 497, Nr. 3: 2517–2528. doi:
- . . ‘On the activity of comets: understanding the gas and dust emission from comet 67/Churyumov-Gerasimenko’s south-pole region during perihelion.’ Monthly Notices of the Royal Astronomical Society 493, Nr. 3: 3690–3715. doi: 10.1093/mnras/staa449.
- 10.1007/s11214-019-0611-0. . ‘Towards New Comet Missions.’ Space Science Reviews 215: 47. doi:
- 10.1051/0004-6361/201834631 . . ‘Effect of radiative heat transfer in porous comet nuclei: case study of 67P/Churyumov-Gerasimenko.’ Astronomy & Astrophysics 630: A5. doi:
- 10.1051/0004-6361/201833889 . . ‘Compressive strength of comet 67P/Churyumov-Gerasimenko derived from Philae surface contacts.’ Astronomy & Astrophysics 630: A2. doi:
- 10.1016/j.rinp.2019.102617. . ‘Do lunar rover wheels sink equally on Earth and Moon?’ Results in Physics 15: 102617. doi:
- 10.1007/s11214-019-0603-0. . ‘Experimenting with Mixtures of Water Ice and Dust as Analogues for Icy Planetary Material. Recipes from the Ice Laboratory at the University of Bern.’ Space Science Reviews 215: 37. doi:
- 10.1093/mnras/stz1101. . ‘The footprint of cometary dust analogues – II. Morphology as a tracer of tensile strength and application to dust collection by the Rosetta spacecraft.’ Monthly Notices of the Royal Astronomical Society 486, Nr. 3: 3755–3765. doi:
- 10.1186/s40645-018-0237-y. . ‘Asteroid Ryugu before the Hayabusa2 encounter.’ Progress in Earth and Planetary Science 5: 82. doi:
- 10.1093/mnras/sty3182. . ‘Experiments on cometary activity: ejection of dust aggregates from an evaporating water-ice surface.’ Monthly Notices of the Royal Astronomical Society 483, Nr. 1: 1202–1210. doi:
- 10.3847/2041-8213/ab2898. . ‘How comets work: non-isothermal pebbles.’ Astrophysical Journal Letters 879, Nr. 1. doi:
- 10.1093/mnras/sty2664. . ‘Laboratory measurements of the sub-millimetre opacity of amorphous and micro-particulate H2O ices for temperatures above 80 K.’ Monthly Notices of the Royal Astronomical Society 481, Nr. 4: 5022–5033. doi:
- 10.1093/mnras/sty1839. . ‘Sintering and sublimation of micrometre-sized water-ice particles: the formation of surface crusts on icy Solar System bodies.’ Monthly Notices of the Royal Astronomical Society 479, Nr. 4: 5272–5287. doi:
- 10.1093/mnras/sty1550. . ‘The tensile strength of ice and dust aggregates and its dependence on particle properties.’ Monthly Notices of the Royal Astronomical Society 479, Nr. 1: 1273–1277. doi:
- 10.1093/mnras/stx2741. . ‘Evidence for the formation of comet 67P/Churyumov-Gerasimenko through gravitational collapse of a bound clump of pebbles.’ Monthly Notices of the Royal Astronomical Society 469, Nr. 2: S755–S773. doi:
- 10.3847/1538-4357/aa8c7f. . ‘Micrometer-sized Water Ice Particles for Planetary Science Experiments: Influence of Surface Structure on Collisional Properties.’ Astrophysical Journal 848, Nr. 2. doi:
- 10.1051/0004-6361/201629910. . ‘Seasonal erosion and restoration of the dust cover on comet 67P/Churyumov-Gerasimenko as observed by OSIRIS onboard Rosetta.’ Astronomy & Astrophysics 604: A114. doi:
- 10.1093/mnras/stx1607. . ‘Thermal modelling of water activity on comet 67P/Churyumov-Gerasimenko with global dust mantle and plural dust-to-ice ratio.’ Monthly Notices of the Royal Astronomical Society 469, Nr. 2: S295–S311. doi:
- 10.1093/mnras/stx1257. . ‘The footprint of cometary dust analogues - I. Laboratory experiments of low-velocity impacts and comparison with Rosetta data.’ Monthly Notices of the Royal Astronomical Society 469, Nr. 2: S204–S216. doi:
- 10.1051/0004-6361/201527260 . . ‘Why are Jupiter-family comets active and asteroids in cometary-like orbits inactive?’ Astronomy & Astrophysics 589: A111. doi:
- 10.1051/0004-6361/201526565 . . ‘Comet formation in collapsing pebble clouds.’ Astronomy & Astrophysics 587: A128. doi:
- 10.1016/j.icarus.2015.09.020. . ‘Experimental characterization of the opposition surge in fine-grained water–ice and high albedo ice analogs.’ Icarus 264: 109–131. doi:
- 10.1051/0004-6361/201525828 . . ‘What drives the dust activity of comet 67P/Churyumov-Gerasimenko?’ Astronomy & Astrophysics 583: A12. doi:
- 10.1016/j.icarus.2015.04.032. . ‘Regolith grain size and cohesive strength of near-Earth Asteroid (29075) 1950 DA.’ Icarus 257: 126–129. doi:
- 10.1007/s11214-015-0192-5. . ‘Laboratory Studies Towards Understanding Comets.’ Space Science Reviews 197: 101–105. doi:
- 10.1088/0004-637X/798/1/34. . ‘The stickiness of micrometer-sized water-ice particles.’ Astrophysical Journal 798, Nr. 1. doi:
- 10.3791/51541. . ‘Laboratory Drop Towers for the Experimental Simulation of Dust-aggregate Collisions in the Early Solar System.’ Journal of Visualized Experiments 88: 51541. doi:
- 10.1016/j.icarus.2014.03.016. . ‘Comets formed in solar-nebula instabilities! - An experimental and modeling attempt to relate the activity of comets to their formation process.’ Icarus 235: 156–169. doi:
- 10.1051/0004-6361/201322215 . . ‘Thermophysical properties of near-Earth asteroid (341843) 2008 EV5 from WISE data.’ Astronomy & Astrophysics 561: A45. doi:
- 10.1016/j.icarus.2012.11.039. . ‘A New Method to Determine the Grain Size of Planetary Regolith.’ Icarus 223, Nr. 1: 479–492. doi:
- 10.1016/j.icarus.2013.04.007. . ‘Micrometer-Sized Ice Particles for Planetary-Science Experiments - II. Bidirectional Reflectance.’ Icarus 225, Nr. 1: 352–366. doi:
- 10.1016/j.icarus.2012.03.013. . ‘Outgassing of Icy Bodies in the Solar System - II. Heat Transport in Dry, Porous Surface Dust Layers.’ Icarus 219, Nr. 2: 618–629. doi:
- 10.1016/j.icarus.2011.03.022. . ‘Outgassing of Icy Bodies in the Solar System - I. The Sublimation of Hexagonal Water Ice through Dust Layers.’ Icarus 213, Nr. 2: 710–719. doi:
- 10.1016/j.icarus.2011.05.005. . ‘Micrometer-Sized Ice Particles for Planetary-Science Experiments - I. Preparation, Critical Rolling Friction Force, and Specific Surface Energy.’ Icarus 214, Nr. 2: 717–723. doi: