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Abstract

®

CrossMark

In order to model the dynamics of thin films of mixtures, solutions, and suspensions, a
thermodynamically consistent formulation is needed such that various coexisting dissipative
processes with cross couplings can be correctly described in the presence of capillarity,
wettability, and mixing effects. In the present work, we apply Onsager’s variational principle
to the formulation of thin film hydrodynamics for binary fluid mixtures. We first derive the
dynamic equations in two spatial dimensions, one along the substrate and the other normal to
the substrate. Then, using long-wave asymptotics, we derive the thin film equations in one
spatial dimension along the substrate. This enables us to establish the connection between the
present variational approach and the gradient dynamics formulation for thin films. It is shown
that for the mobility matrix in the gradient dynamics description, Onsager’s reciprocal
symmetry is automatically preserved by the variational derivation. Furthermore, using local
hydrodynamic variables, our variational approach is capable of introducing diffusive
dissipation beyond the limit of dilute solute. Supplemented with a Flory—Huggins-type mixing
free energy, our variational approach leads to a thin film model that treats solvent and solute in
a symmetric manner. Our approach can be further generalized to include more complicated

free energy and additional dissipative processes.

Keywords: liquid thin films, modeling, liquid—solid interfaces, binary mixtures, capillarity,

wettability

1. Introduction

As free surface films of simple and complex liquids are
ubiquitous entities in nature and technology, they are studied
and applied in many fields of science and engineering. If
these films are ‘thin’, i.e. there exists a disparity of the
length scales along the free surface and perpendicular to it,
one can take advantage of this disparity and model the physico-
chemical hydrodynamics of the films in a unified way, namely,
employing a long-wave approximation (also called lubrication
model or thin-film model) [1].
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In particular, the behavior of simple liquids in this regime
is interface-dominated, i.e. controlled by the effects of
capillarity and wettability. This is well described by the
various long-wave thin film evolution equations that account
for the various physical settings that mostly involve single
liquid layers [1-4]. It is well known that these evolution
equations can be written as a gradient dynamics governed by
a free energy functional [4, 5] that is of a similar form as the
interface Hamiltonian introduced in statistical physics in the
context of wetting transitions [6].

Recently, an increasing number of theoretical and
experimental studies have focused on the dynamics of thin

© 2015 IOP Publishing Ltd  Printed in the UK
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films of complex liquids [3, 7-9], e.g. polymer solutions [10—
14], colloidal suspensions [14—17], mixtures (of simple liquids
or of polymers) [7, 18-22], liquids covered by surfactants at the
liquid-air interface [23-27], and even liquid films covered by
self-propelled surfactants [28,29]. Closely related systems
are thin layered films consisting of non-miscible liquids [3,
30-34]. In these complex liquids, diffusive transport, phase
separation, and phase transitions, which naturally arise from
the coexistence of two or more components, participate in the
film evolution and interact with and influence the effects of
capillarity and wettability. Physically, this leads to the cross-
coupling between the various transport processes involved
in thin film hydrodynamics and, in consequence, intricate
instabilities and nonlinear behaviors not found in the decoupled
systems.

Steps toward a more unified description of such systems
in the form of a gradient dynamics of a number of coupled
fields with a conserved dynamics were presented in the past
years. Thin-film models presented in a gradient dynamics
form include models for the evolution of two-layer films
[31, 35-37], of films covered by an insoluble surfactant [27]
and of films of non-surface active liquid mixtures, solutions,
and suspensions [22,38]. Compared to thin-film models
in ‘hydrodynamic formulation’ where additional effects,
e.g. concentration-dependent wettability, are often added
in an ad hoc manner, the gradient dynamics corresponds
to a ‘thermodynamic formulation’ that automatically ensures
thermodynamic consistency. This consistency is inherent in
the gradient dynamics formulation if correct conserved fields
are chosen, and allows for straightforward generalizations
through the introduction of more complicated free energy
functionals. For instance, in the case of a nonvolatile film
of a mixture, solution or suspension, the basic fields are
the conserved film height and the conserved effective solute
height fields [22]. Note that in the case of a thin film
of a mixture, there exists an alternative gradient dynamics
approach [18, 19] constructed based on the evolution of the
conserved film height and the non-conserved height-averaged
concentration field. The resulting model consists of integro-
differential equations where the integrals result from the use of
constrained variations. The status of this model is still under
discussion (see, e.g. the remarks in the final part of [9]).

A further advantage of formulating the evolution equations
as a general gradient dynamics is that one may readily
adapt results obtained in the analysis of other kinetic
equations for coupled conserved fields (e.g. [20, 35, 39]),
for coupled conserved and non-conserved fields (model C
in the classification of [40], analyzed in [41]), and for a
conserved field coupled to a field with a combined conserved
and non-conserved dynamics [42,43]. In such a way it has,
for example, been shown that the coupling of fluctuations of
different fields may always trigger new instabilities that do not
occur when the fields are decoupled. For the case of a film of a
mixture or a surfactant covered film, this implies that spinodal
dewetting may be caused by the coupling of film height and
concentration fluctuations.

In the following we focus entirely on the case of films of
mixtures, solutions, and suspensions as treated in [22].

Written in terms of the conserved fields, i.e. film thickness
and effective solute layer thickness, the gradient dynamics
expresses the corresponding fluxes in the linear response
regime with a symmetric and positive definite mobility matrix.
However, the mobility matrix is not derived from anything
more basic or fundamental within the gradient dynamics
description itself. In fact, it is determined from a comparison
with previously known hydrodynamic long-wave models as
limiting cases normally without ad hoc additions [22].
However, even if those models contained thermodynamic
inconsistencies through ad hoc additions, their leading terms
would still be correct and could be used for comparison.
Since the hydrodynamic long-wave equations for mixtures
were derived in the limit of a dilute solute (as evidenced by
the explicit form taken by the diffusion term), the mobility
matrix in the gradient dynamics description is inevitably only
valid in the same limit. In particular, it has been shown that
the gradient dynamics description can recover the long-wave
limit [20] of model H [40] apart from a small difference
in mobility. This indicates that the transport coefficients
in model H itself might be oversimplified. It is therefore
imperative to formulate a modeling approach that on the one
hand can ensure thermodynamic consistency as in the gradient
dynamics description, and on the other hand is able to describe
the dissipative dynamics using local hydrodynamic variables
that are more fundamental than those conserved fields in the
gradient dynamics description. Such a modeling approach
would open up the possibilities of introducing a diffusive
dissipation beyond the limit of dilute solute, of deriving a more
general mobility matrix for the long-wave gradient dynamics
description and, in consequence, of arriving at a description
where solvent and solute are treated in a symmetric manner—
a symmetry that may be broken later on by introducing
molecules of different sizes, with different interactions with
the substrate, etc.

The coexistence of different dissipative processes is
commonly seen in soft matter with multiple components (e.g.
solutions and mixtures) and/or internal degrees of freedom
(liquid crystals) [44]. To describe coupled irreversible
processes in the linear response regime, Onsager formulated
a variational principle that is fundamental to macroscopic
thermodynamics [45,46]. This principle is based upon
a general class of reciprocal relations and opens up a
straightforward and unified way of deriving dynamic equations
for soft matter [44,47,438].

Based on Onsager’s variational principle, the purpose of
this work is to present a variational approach to the modeling
of thin film hydrodynamics of binary mixtures. This is
achieved by introducing a free energy functional that takes
into account the effects of capillarity, wettability, and binary
mixing, and a dissipation functional that takes into account
viscous dissipation and diffusive dissipation. By writing
both functionals in the long-wave limit, we directly derive
the long-wave evolution equations for the conserved fields,
i.e. film thickness and effective solute layer thickness, in the
gradient dynamics form. Since the dissipation functional is
expressed using local hydrodynamic variables, we are able
to introduce a diffusive dissipation beyond the limit of dilute
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solute. Supplemented with a Flory—Huggins-type free energy
functional [49], this results in a gradient dynamics description
with a more general mobility matrix. The advantage of our
variational approach is reflected through the following. (i) The
solute-solvent symmetry in binary mixtures, once introduced
in the free energy functional (say, of Flory—Huggins type)
and the dissipation functional, will inevitably be manifested
in the final evolution equations. (ii) The Onsager reciprocal
symmetry of the mobility matrix will always be preserved
as long as the variational procedure is correctly followed,
and thermodynamic consistency is therefore ensured. (iii) A
proper linear transformation from one set to another set
of conserved fields can be performed with the reciprocal
symmetry preserved [50]. (iv) Formulated at a level that
is more fundamental than the gradient dynamics, the present
approach can be used for further generalization to include more
coupled dissipative processes, e.g. to describe free surfaces
covered by soluble or insoluble surfactants [27].

The paper is organized as follows. In section 2, we present
a brief review of Onsager’s variational principle [44—48]. In
section 3, there are two simple applications to demonstrate
the basic physics and techniques for carrying out the present
study. In section 4, we present a variational approach to
thin film hydrodynamics of binary mixtures. We first derive
the modeling equations in two spatial dimensions, one along
the substrate and the other normal to the substrate. Then,
using the asymptotic behavior of thin films, we derive the thin
film equations in one spatial dimension along the substrate.
The connection with the gradient dynamics description is also
established. In section 5, we show how to construct a model
for thin film hydrodynamics in a way symmetric with respect
to solvent and solute. The paper is concluded in section 6 with
a few remarks.

2. Onsager’s variational principle

For a closed system, consider the fluctuations of a set of (coarse
grained) variables «; (i = 1, - - -, n) measured relative to their
most probable (equilibrium) values. The entropy of the system
S has a maximum S, at equilibrium so that AS = § — S, can
be written in the quadratic form

1 n
AS = —z Z ﬂijaiaj

i j=1
where the coefficient matrix B is symmetric and positive
definite. The probability density at {c;} is given by

Flat, - o) = £(0,- -, 0)elS/ks

where kg is the Boltzmann constant. The thermodynamic force
conjugate to «; is defined by

n

d0AS
Xi=——= _Zﬂ[jaj»
j=1

805,-

which is a linear combination of &; (j = 1, - -, n) not far from
equilibrium.

In the linear response regime, the time evolution of the
(macroscopic) state is described by the linear equations

d n
aai(f) = ;Lijxj(t),

in which the phenomenological kinetic coefficients L;;
satisfy the reciprocal relations L;; = Lj;, which can be
derived from microscopic reversibility [45,46]. Based on
this reciprocal symmetry, Onsager formulated a variational
principle governing the time evolution of the state.

For isothermal systems with temperature being constant
in space and time, Onsager’s variational principle may be
outlined as follows [44,47,48]. Let the rates of change of
the variables o; (i = 1, - - -, n) be denoted by ;. An action
function (also called Rayleighian [48]), hereafter denoted by
A, can be constructed for minimization with respect to «;
i =1,---,n). There are two physically distinct parts in
A which can be written as

Il . OF
A= 5 Z é'ij()l,‘Olj + Z EO{,‘,
i,j=1 i=1 !
where the first term on the right-hand side is called the
dissipation function, hereafter denoted by ®, which is defined
to be half the rate of free energy dissipation, and the second
term is the rate of change of the free energy F = F (o1, -+, &),
hereafter denoted by F. Note that ® is quadratic in the rates,
with the friction coefficient matrix ¢{ being symmetric and
positive definite. Minimizing .4 with respect to ¢;, we obtain

Xn:§ : -
= ———
AR 9
j=1

for the time evolution of the state. It follows that the rate of
free energy dissipation F = ) |_, (0F /da;) &; equals —2P.

3. Two simple applications of Onsager’s variational
principle

In this section, we go through two simple applications of
Onsager’s variational principle. The techniques involved in
these applications are essential to a variational approach to
the modeling of thin film hydrodynamics of binary mixtures,
which is presented in section 4.

3.1. Thin film hydrodynamics of one-component liquids

Consider a thin film of a one-component simple liquid on a
solid substrate [1,3]. The model described below includes
the capillarity associated with the liquid—gas interface, the
wettability of the liquid on the solid surface, and the free
energy dissipation due to shear viscosity. For simplicity, the
film thickness profile 7 = h(x, t) is described in one spatial
dimension (with 47 measured in the z direction, see figure 1).
The free energy functional is given by

F[h] = /dx {y [1 + %(axmz} +f(h>}, (1
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h(z,t)

c(z,z,t) = ¢ (z,t)
U (x,t) = h(x,t)¢(x,t)

solid

Figure 1. Schematic illustration for a film of binary mixture on a smooth solid substrate. The definitions of the relevant order parameter

fields are given as well.

where y is the liquid—gas interfacial tension, [1+ % (3:h)?]dx is
the long-wave approximation of the surface arc length element
ds = [1 + (3,h)?]"2dx, and f(h) is the wetting (or binding)
energy locally dependent on 4. In the following, 9;, d, and
d, denote the partial derivatives with respect to time ¢ and
the coordinates x and z. Note that F[k] corresponds to the
interface Hamiltonian discussed in statistical physics [6]. The
rate of change of the free energy is found to be

- SF 2 ’
F = /dxﬁa,h - /dx [y02h+ f'(i)] 8k, ()

where an integration by parts is involved and f'(h) = d f/dh.
Here the boundary terms are dropped as we will not touch the
modeling of the three-phase contact line. The variation of F
with respect to the rate o,/ is of the form

SF = /dx [~y 32h + £/ ()] 8(3h). (3)

The dissipation functional associated with the shear viscosity
is given by

®, = /dx/hdz [g(azu)z], )
0

where 7 is the shear viscosity and u is the x component of
fluid velocity v(x, z, ) = u(x, z, £)X + w(x, z, £)Z in the 2D
xz space. Due to the slow variation of & with x, the rate of
viscous dissipation is represented by 1(d.u)? in the long-wave
limit. The variation of &, with respect to the rate u is of the
form

h
s, = —/dx/dz (naju)5u+/dx [(nd.u)8u] |.=h.
0

&)

in which the no-slip boundary condition # = 0 is used at the
solid surface z = 0. To impose the incompressibility condition
dxu + 9, w = 0, there is one more term

h
C= /dx/dz [—p(Bcu +d,w)] (6)
0

to be included in Onsager’s action .4, with p being a local
Lagrange multiplier which is physically the local pressure. The
variation of C with respect to the rates u and w is of the form

h
sC =/dx/dz [8u8Xp+8wazp] —/ds p(x, h,t)év,,
0

@)
where v, is the outward normal velocity at z = h, given by
v, = [1 + (8,h)?171/29,h. Using ds = [1 + (3,h)*]'/?dx, we
express 6C as

h
8C = /dx/dz [8ud. p +swd, p| —/dxp(x,h,t)b‘(a,h).
0

(8
From §F , 8®,, and §C expressed above, we can obtain
A = 8F + 6d, + 8C as a linear combination of du, Sw,
and §(9,/). Minimizing .4 with respect to 9,/ leads to

p(x,h,t) = —ydih + f'(h) ©

which gives the pressure at z = h. Minimizing A with respect
to u gives
nd;u —d.p =0, (10)

which describes the force balance in the tangential direction.
Minimizing .A with respect to w gives

a.p =0, an

which describes the hydrostatic equilibrium in the vertical
direction. Finally, minimizing A with respect to u at z = h
gives

nd.u =0, (12)
which is the boundary condition for the tangential stress at the
free surface. Supplemented with the no-slip condition # = 0 at

the solid surface, the above equations can be used to determine
a parabolic profile for u(x, z, t) in the form

2
u(x,z,1) = lax [—vath+ f'(0)] (% - zh) . (13)
n

from which the flux J;, = foh dz u is found to be

3

_ h_ 2y g/
I = 3n3x [yazh — f'()]. (14)
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In the form of the conservation law 9,4 = —a,J), for h, we
obtain the thin film evolution equation

3
am:-a{%@bmﬁ—fwﬂ} (15)
It is worth pointing out that in this approach, volume
conservation is imposed via the incompressibility condition
oyu + d,w = 0 and the conservation law for & in the
form of 9, = —0.J,, which can be derived from the flux
definition J;, = foh dz u, the incompressibility condition, and
the kinematic boundary conditions w = 0 at the solid surface
z = 0and w = 0;h + udh at the free surface of the film
z = h[1]. Animportant observation [4, 5]is thatequation (15)
can be brought into the form of the gradient dynamics for the
conserved field &:

h3_ 8F
8th:ax _8x_ ,
3y sh

where h®/3n is the mobility coefficient and the variational
derivative 8 F /8h is given by 8 F /6h = —y 3*h + f'(h).

(16)

3.2. Diffusion of dilute solute

Consider a binary fluid mixture in which one component is
called the solvent and the other component is called the solute
[44,48]. Itis assumed that the volumes of the pure solvent and
the pure solute are additive. Let ny,x denote the maximum
number density of solute particles in the pure solute and ¢
denote the volume fraction of the solute in the binary mixture
with 0 < ¢ < 1. The number density of solute particles in the
binary mixture is given by np,xc. For simplicity, the model is
still described in the 2D xz space, with ¢ = c(x, z,¢). Here
we restrict our discussion to the dilute limit of ¢ — 0. The
free energy functional arising from the entropy of the solute
distribution is

Flc] =f/dxdzg(c) =nmanBT//dxdzc(logc— ),

a7

where g(c) is the free energy density and T is the temperature.
The rate of change of the free energy is given by

F://dxdzuca,c,

where the chemical potential . is definedby u. = §F /8¢ = ¢’
and equals nyxkg T log c. Using the conservation law for the
diffusive transport of the solute, d,c = —V - j, with j being the
diffusive flux, we can express F as

= / / dxdz (Vi) -,

in which an integration by parts is involved. The variation of
F with respect to the rate j is of the form

3F=f/m@wmya

(18)

19)

(20)

In the limit of dilute solute, the dissipation functional
associated with the diffusive transport is given by

1 i
q;d:_//dxdzw7
2 c

in which ¢ is the friction/drag coefficient for the diffusive
motion of a solute particle. This can be seen as follows.
Physically, the rate of dissipation for one particle is {v3, in
which v, is the mean velocity. As np,xc is the number density
of solute particles, the density of the rate of dissipation is
NmaxC (¢ vfl). Furthermore, the diffusive flux j related to v, via
Jj = cv,, implying that the density of the rate of dissipation is
nmax ¢ j*/c, which leads to equation (21) for ®,. The variation
of ®, with respect to the rate j is of the form

s
a%:/fmuﬁﬁLi
C

Employing 8F and §®, expressed above and minimizing

@1

(22)

A = F + &, with respect to j, we obtain the constitutive
equation
. C kBT
Nmax$ e

As we consider the dilute limit here, it corresponds to Fick’s
law, i.e. the diffusion coefficient D is a constant independent
of ¢, given by D = kgT /¢ according to the Einstein relation.
It is worth emphasizing that j = —(kgT /{)Vc is derived
with F and @, both expressed in the limit of dilute solute.
Note that in equation (23), —cV . can be written as —VII(c),
where I1(c) is the osmotic pressure I1(c) = cg’ — g, given by
cie —Nmaxkp T c(logc — 1) = npaxks T c [48]. As the chemical
potential . is defined by the variational derivative § F' /§c, the
conservation law for ¢ can be written as

c §F
de=V. vl
Mmax{ 8¢

in the gradient dynamics form, with ¢/n . ¢ being the mobility
coefficient.

(24)

4. Thin film hydrodynamics of binary mixtures

In this section, we present a variational approach to the
modeling of thin film hydrodynamics of a binary mixture
[1,3,22,38]. To be consistent with the discussion above, we
still call one component the solvent and the other the solute. We
consider the ‘simplest” mixture [44] by making the following
assumptions. (i) The pure solvent and the pure solute have
equal molecular volume and equal molecular mass. (ii) The
volumes of the pure solvent and the pure solute are additive.
Under these two assumptions, we have the following: (a) The
mass fraction is equivalent to the volume fraction. (b) The
mixture is incompressible with a mass density that is constant
in space and time. (c) The mass-averaged velocity is equivalent
to the volume-averaged velocity.
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4.1. Transport equations and conservation laws

Consider a thin film of a binary mixture on a solid substrate
in the 2D xz space. Following section 3, we use i = h(x, 1)
to denote the film thickness profile, v(x, z, t) = u(x, z, )X +
w(x, z, 1)Z to denote the velocity field, and c(x, z, ) to denote
the volume fraction of the solute with 0 < ¢ < 1. As the
mass fraction and the volume fraction are equivalent, hereafter
we call c the relative concentration. The mass density of the
mixture p is a constant and the incompressibility condition for
v is d,u + d,w = 0. The transport equation for ¢ reads

0c+udyc+wd,c = —0yjy — 0;Jj;, (25)
where j, and j, are the two components of the diffusive flux
i= ]xf( + ]zi

As to the kinematic boundary conditions, we have u = 0
and w = 0 at the solid surface z = 0, w = 9;h + ud,h at the
free surface of the filmz = A [1], j, =0atz =0, and j, =0
at z = h. Here the subscript n denotes the outward normal
component. Note that j, = 0 means j is locally tangent to the
free surface, i.e. j, = (9:h) j;.

The conservation law for & reads

oh+0.J, =0, (26)

n

where the flux J, is given by J;(x,1) = fol “D 4z u(x, z,1).
Note that equation (26) can be derived from the incompress-
ibility condition and the kinematic boundary conditions for
w at the solid surface z = 0 and the free surface of the film
z=nh[l].

The effective solute layer thickness W is locally defined
by W(x,t) = foh(x'r) dzc(x, z,t) [22]. The conservation law
for W reads

QW+, Jy =0, 27)

where the flux Jy is given by Jy(x,t) = foh(x't) dz (uc +
Jx)(x,z,t). Note that equation (27) is consistent with the
boundary conditions for v and j. If the variation of ¢ along
the z direction is negligibly small, i.e. c(x,z,1) ~ ¢(x,1),
then equation (27) for W (x, t) = h(x, t)¢(x, t) leads to

h

Jn 1
P+ —o ¢+ —09, | dz j, =0,
2o n ® h /Z].
0

(28)

which is the balance equation for ¢ (x, 7). It will be shown that
c(x,z,t) >~ ¢(x, t) canbe justified via along-wave asymptotic
expansion. Below ¢ is used only if c(x, z, t) is approximately
independent of z.

4.2. A variational approach in two-dimensional space

The free energy is a functional of the film thickness profile &
and the solute distribution ¢, given by

Flh,c] = y/dx [1 + %(axh)z}

h
+/dx/dz [g(C)+W(Z,C)i|,

0

(29)

in which g(c) is the free energy density due to mixing and
W (z, c) is the potential energy density due to long-range (van
der Waals) liquid—solid interactions. It is noted that F[A, c]
includes all the free energy contributions in equations (1) and
(17). The chemical potential, defined via u., = 6F/dc, is
given by

te(z, €) = 3:8(c) + W (z, ¢), (30)

which locally depends on z and c. The rate of change of F is
found to be

h
F = y/dx (—a2h) Bth+/dx/dzm-3rc
0

+/dx (g4 W) loondrh,

in which ;¢ can be replaced with —udyc — wd.c — 0y jix — 9. J;
according to equation (25). The variation of F' with respect to
the rates 9,4, v, and j is of the form

€19}

SF = /dx [—y02h + (g + W) |os] 5(@ih)

h h
—/ dx/dzuC (8u8xc+8wazc)+/ dxfdz (Ve - 8j,
0 0

(32)

in which an integration by parts, supplemented with the
boundary conditions for j, is involved. This comes from
— fdx [l dzp.V -j = [dx [dz (Vi) - j with j, = 0
at z = Oand j, = 0 at z = h, and the corresponding
variation with respect to j becomes [ dx foh dz (Vue) - 6jin
equation (32). The dissipation functional associated with
viscous momentum transport and diffusive transportis given by

h
2
® = /dx/dz [g(3zu)2] +//dxdz 2]\‘31(0)’
0

in which M (c) is the c-dependent mobility associated with
diffusion. The variation of ® with respect to the rates u and j
is of the form

(33)

h
5P = — / dx / dz (n02u)su + / dux [(19:20)8u] |-

0
‘s
+/fdxdzJ '].
M(c)

The incompressibility condition 0, u+0, w = 0is tobe imposed
by adding C, already expressed in equation (6), into Onsager’s
action A. The local Lagrange multiplier p in C acts as the
local pressure. The variation of C with respect to the rate v is
given by equation (8). Note that in the above derivation, the
limits O and # in the z-integrals are explicitly written down if
necessary for the performed integration by parts.

Using the expressions for SF , 0@, and 6C, we obtain the
variation of Onsager’s action A = 8 F + §® + 8C as a linear
combination of Su, Sw, §j, and §(d;4). Minimizing A with
respect to d,h, we have

(34)

plx,h,t) = —ydth + (g + W) |.—p (35)
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for the pressure at z = h. Minimizing .4 with respect to u, we
have
(36)

for the force balance in the tangential direction. Minimizing
A with respect to w, we have

HedyC + nafu —0;p=0

Medc — 3. p =0 (37)

for the hydrostatic equilibrium in the vertical direction.
Minimizing A with respect to u at z = h, we have

nou =0, (33)

for the tangential stress at the free surface. Finally, minimizing
A with respect to j, we have

J=-M(©)Vpu, (39)

for the diffusive flux.

To proceed toward a long-wave theory, we note that the
liquid—solid interaction energy density W (z, c) is related to the
wetting energy (per unit area) f through

h

/ dz Wz, ¢) = f(h. ).

0

(40)

in which ¢ represents the z-independent value of c in W (z, ¢).
We emphasize that f (&, ¢) is introduced only if c(x,z) =
¢ (x) is satisfied, a point to be elaborated below. Based on
equation (40), an approximation for W can be introduced,
and the hydrodynamics governed by equations (35)—(37) and
(39) can be formulated as a long-wave theory in one spatial
dimension.

4.3. Long-wave asymptotics for thin films

The liquid—solid interaction energy density W = W(z, ¢)
explicitly depends on z through the first argument z and
implicitly depends on z through the second argument
c=c(x,z). If it is assumed that ¢ does not vary with
z, i.e. c(x,z) = ¢(x), then W(z,c) becomes W(z, ¢)
whose z-integral defines f(k, ¢) according to equation (40).
Furthermore, W (z, ¢) can be approximated by its average over
the film thickness 4! foh dz W(z, ¢):

W ¢) = f(f;wﬁ).
This removes the explicit dependence on z from W, which is
now given by W = W(h, ¢) with h = h(x) and ¢ = ¢(x),
and therefore paves the way for a variational approach in
terms of fields that are defined in one spatial dimension (x).
Note that the approximation of W(z,$) by W(h, $) is to
be applied away from the free surface z = h. At the free
surface, W|,—, = W(h, ¢) is given by 9, f (h, ¢) according
to equation (40). Typically, the wetting energy f (&, ¢) is not
simply proportional to z [22], and consequently 2~ f (h, ¢) #
on f(h, @).
In order to justify the assumption of c(x, z) = ¢(x) and
the subsequent introduction of f(k, ¢), we need to study the

(41)

long-wave asymptotics for thin films. We show that if the
explicit dependence on z is removed from W (z, c¢), then the
long-wave asymptotics leads to c(x, z) = ¢ (x), which in turn
leads to the introduction of f(h, ¢) via equation (40). With
the explicit dependence on z removed from W(z, c¢) and c(x, z)
given by ¢ (x), W becomes represented by W (h, ¢) defined in
equation (41). Here we point out that f(h, ¢) and W(h, $)
are both quantities suitable for a description in 1D space.
This means the basic approximation made is that the explicit
dependence on z is removed from W (z, ¢). Starting from this
approximation, below we present the long-wave asymptotics.

With the explicit dependence on z removed from W (z, ¢),
the chemical potential u. defined in equation (30) only depends
on c¢. As a result, the diffusive flux in equation (39) can
be written as j = —D(c)Ve, with D(c) = M(c)du./dc
being the collective diffusion coefficient [44]. To simplify
the presentation of the long-wave asymptotics below, we use a
diffusion coefficient D independent of ¢. Following the steps
below, it can readily be seen that the long-wave asymptotics
is not affected by letting D depend on c. With j = —DVc,
equation (25) becomes

0;C + Udyc + wo,c = D8fc+ Dajc. 42)

In the long-wave limit of thin film hydrodynamics, the
characteristic or mean film thickness H is much smaller
than the length scale L for variations in the x direction,
ie. € = H/L « 1. It is natural to scale x by L and z by
H = €L with the scaled coordinates given by x = x/L
and z = z/eL. Then, d/0x and 9/dz are both O(1). If the
characteristic (tangential) velocity of the problemis U, then the
dimensionless velocity in the x direction is # = u/U and the
dimensionless velocity in the z direction is w = w/eU, with
the incompressibility condition given by di/dx +dw/dz = 0,
which implies that # and w are both O(1). The time ¢
is to be scaled by L/U with the dimensionless time given
by t = Ut/L. Using X, Z, i, w, and 7, we can rewrite
equation (42) as

drc + iidzc + wdzc = DdZc + e *Dde, (43)

with the dimensionless parameter D givenby D = D/UL.

For e = H/L <« 1, it is expected that the variation of
c(x, z, t) is negligibly small along the z direction. This can be
justified as follows. Let’s write c(x, z, f) as

c(x,z,1) = ¢(x, 1) +€*0(x, 2, 1), (44)

with ¢(x, ) being a constant in the z direction, and write
u(x,z,t)as

u(x,z,t) =up(x, t)+[ulx, z,t) —uy(x, )], (45)

with u, (x, t) defined as u, (x, t) = Jy(x,t)/hU. Substituting
equations (44) and (45) into equation (43), we have
0ip + €20:0 + [ity, + (il — i1),) )05 + €21030 + €>Wd:0

= D3¢ + D20 + D20, (46)
which include O(1) terms and O(e?) terms. To the leading

order, we have

O + i1y d5¢ + (it — ity)d3¢ = DdZ¢p + D320 (47)
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formed by all the O(l) terms. Rewritten in the
original dimensional variables with u,(x,t) = J,(x,t)/h,
equation (47) becomes

dp +unded + (u — up)dep = DIZP +€° D320,  (48)
which can be divided into two equations:
5 oy h
0+ updyp = DO P + A Do, ¢ (49)
and
2 n3 o h
(u —up)op =€ DO — h Do, ¢. (50)
It is interesting to note that equation (49) can be derived by
substituting j, = —Dd,¢ into equation (28) for c(x, z,1) =~

¢ (x, t). Itis also interesting to note that the foh dz - - - integral
of equation (50) is identically zero. On the left-hand side, this
follows from the definition of uy: u;(x,t) = Jy(x,¢t)/h, and
on the right-hand side, this follows from —Dd,(€%6)|.—;, =
0yh(—Dd,¢) according to the boundary condition j, =
(3:h) j. at the free surface, with j, = —Dd.(¢?0) and j, =
—Do,¢.

4.4. A variational approach in 1D space

Based on the asymptotic expansion c(x, z,t) = ¢(x,1) +
€26(x, z, t), the thin film equations for A (x, t) and ¢ (x, t) can
be formulated in one spatial dimension.

We start from the free energy. The c-dependent part,
represented by the second term in the right-hand side of
equation (29), becomes f dx [hg(¢) + f(h, ¢)], and the total
free energy is a functional of 4 and ¢, given by

1
Flh,¢] = )//dx [1 + 5(8xh)2i| +/dx lhg(@) + f(h. §)].

(S

The chemical potential, now defined via py, = h='8F /8¢, is
given by

1
Ky = 0p8(¢) + 58¢f(h, ®). (52)

The rate of change of F[h, ¢] can be written as

F:y/dx (—dZh) 8,h+/dxhu¢8,¢+/dx(g+8hf)8,h,
(53)

in which 9,¢ can be replaced with —h! foh dzud,¢—h=19,J,
according to equation (28). Here J, is the z-integrated
tangential diffusive flux, defined by J, = foh dz ji.. The
variation of F with respect to the rates d;4, u, and J, is of
the form

5F = /dx [—yaZh+ (g + 3 f)] 5(3,h)

h
—fdx/dzu¢8x¢5u+/dx3xu¢6Jx.
0

It will be shown that the only dependence (of u) on z can be
explicitly obtained.

(54)

According to the asymptotic expansion c(x,z,t) =
o(x,1) + €20(x,z, 1), if j, ~ —A;I(qb)axqb is O(1), then
j. >~ —€2M(¢)9.6 is O (). Note that this is consistent with
the boundary condition j, = (d,h)j, at the free surface (with
dyh ~ €). Substituting J, = hj, and j, = Ointo equation (33),
we have the dissipation functional

h
2
P = /dx/dz [g(azu)z] +/dx2h1\J/;(¢)'
0

The variation of ¢ with respect to the rates u and J, is of the
form

(55)

h
P = —/dx/dz (naju)5u+/dx [(n0.u)8u] 1.
0

J8J,
+f dx .
hM ()

The incompressibility condition d,u + d,w = 0 is still to be
imposed by adding C into Onsager’s action .A. The expressions
for C and its variation are given by equations (6) and (8).

The governing equations for thin film evolution can be
obtained by minimizing Onsager’s action A = F + ® + C with
respect to all the involved rates. Minimizing .4 with respect to
0;h, we have

(56)

px,h,t) = —ydih+(g+df) (57)

for the pressure at z = h. Minimizing .4 with respect to u, we
have

Hpdxd +ndju —8:p =0 (58)

for the force balance in the tangential direction. Minimizing
A with respect to w, we have

—o.p=0 (59)

for the hydrostatic equilibrium in the vertical direction.
Minimizing .A with respect to u at z = h, we have

nd,u =0, (60)

for the tangential stress at the free surface. Finally, minimizing
A with respect to J,, we have

Jr = —hM($)dx 1y (61)

for the integrated tangential diffusive flux. It is noted that
p(x,z,t) is a constant in the z direction, and therefore
a parabolic profile for u(x,z,?) can be obtained from
equations (58) (60) in the form

1
uGrz. o= [0 [y 2h+ (g + 3 f)] — npdid)

2
X (E - zh) , (62)
from which the flux J, is found to be
h3 )
Jn =§{3x [vosh — (g + 0 )] + npdcd} - (63)
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Using 0,80,¢ = d,g, we have

h3 !
h=3 [ax (yoih) — o, (o f) + E%fax‘f’}

(64)
for the flux associated with the conserved field .. Substituting
equation (52) into (61), we have

Jo = —hM (), <8¢g + %a¢ f) . (65)

The flux associated with the conserved field ¥ = foh dzc,

given by Jy = foh dz (uc + j), now takes the form of
Jy = Jyop + J; for c(x,z,t) = ¢(x,t) and can be readily
written down. Given the explicit expressions for J, and Jy,
the thin film equations for A (x, t) and ¥ (x, ¢t) = h(x, )¢ (x, 1)
are obtained from the conservation laws in equations (26) and
(27). Finally, we would like to point out that our variational
derivation of the thin film equations can be readily generalized
to two spatial dimensions.

4.5. Gradient dynamics

It is straightforward to derive the gradient dynamics
description [22, 38] from the above variational approach. The
rate of free energy dissipation can be expressed in terms of the
conserved fields & and W as

. SF SF
F=/dx —oh+——oV|.
8h v

Using the conservation laws (26) and (27) for h and W,
respectively, followed by integration by parts, we obtain

. SF oF
F:/dx Jhax_"'-l\[}ax_ )
oh ow

(66)

(67)

in which J, and Jy are the rates or fluxes induced by the
forces 9, (§ F /6h) and 9, (§ F /§W). These two forces vanish at
equilibrium because 4 and W are conserved fields and therefore
6F/6h and §F/5W must be homogeneous in equilibrium.
Introducing the mobility matrix Q in the linear response
regime, we have

3 SF
Jn | _ _| Qw Qnw *5h (68)
Jy Oui Quy 5 SF |7
tow
which lead to the coupled evolution equations
3 SF
0rh O Onw Y sh
= 0y 69
[a,w] [Qw Ovu || , OF ©9)
tow
It follows that F can be written as
9 SF
. SF SF ~sh
F=—|[d Oy — Oy — 70

F:—/dx[Jh JW]Q—I[ﬁJ] (71
The matrix Q must be positive definite according to the second
law of thermodynamics. Furthermore, since the model is
derived using Onsager’s variational principle, Q must satisfy
the reciprocal symmetry: Qny = Q.

We are ready to give the explicit expressions for all the
entries of Q. With ¢ replaced by ¥/ & in equation (51) for F,
we have

o0F _ Ph+g—29 \Ij+af aqu (72)
and
oF _ 058 + 18 f= (73)
sy W8Tt = e
It follows that Jj, in equation (64) can be expressed as
W SF  h*V _SF
Jp= ey — (74)
3n " Sh 3n "oV

which gives Qg = h3/3n and Qpy = h2‘lf/377. From
Jy = Jp¢ + J, and equation (65) for J,, we obtain

h?¥ _ §F hW? SF
Jy=———0——| —+hM )3 —, (75)

3n " Sh 3n g
which gives Qy, = h*W/3n and Quy = hV?/3n + hM.

It is readily seen that the reciprocal relation Qpy = Quyy is
satisfied.

Finally, we would like to point out that with W
chosen as a conserved field, the corresponding flux
Jy = J,¢ + J, combines the contributions of both convection
(J) and diffusion (J;). This combination is an acceptable
transformation [50] and results in a non-diagonal matrix Q!
in equation (71), where F is quadratic in the fluxes J;, and Jy .
It is interesting to note that the off-diagonal entries Qpy and
Qv are nonzero even if diffusion is absent (M = 0). This
means that here the cross-coupling is not of dynamic origin (as
the dissipation functional (33) or (55) does not couple the fluid
mixture velocity and the diffusive flux) but rather arises from
the choice of W as a conserved field whose corresponding flux
Jy contains contributions from both convection and diffusion.

5. Toward a symmetric formulation

A thin film model for a non-surface-active mixture, which
is valid in the entire concentration range and allows for a
consistent inclusion of evaporation, is best constructed in a
symmetric way with respect to solvent and solute. In order
to do so, we introduce the effective layer thicknesses yr; for
the solvent and vy, for the solute whose sum gives the film
height 4 = v + ¥». The final gradient dynamics can be
expressed as evolution equations for v, and ¥,, or as evolution
equations for /2 and one of the ;. Other choices are possible
as well. In addition, the mass densities are denoted by p; for
i = 1,2 as above, while the height-averaged concentrations
are ¢; = ¥;/h with ¢ + ¢ = 1.



J. Phys.: Condens. Matter 27 (2015) 085005

X Xu et al

5.1. Bulk transport equations and diffusive flux

Let us start from the continuity equations of the two miscible
components, with the solvent labeled by the subscript ‘1’ and
the solute labeled by the subscript ‘2’. They read

0
Ly - (ov) =0

76
a7 (76)
and
9p2
B +V - (02v2) =0, W)

in which v; (i = 1, 2) is the velocity of a particular species.
The mass density p and velocity v of the solution are defined
by o = p; + pp and pv = p;v; + ppv,. Physically, v is
the mass-averaged velocity which is a field variable that enters
into the hydrodynamic momentum equation. The local relative
concentration of the solute is defined by ¢ = p,/p and that
of the solvent is given by 1 — c. It follows that v equals
(1 —c)vy +cvs.

Adding equations (76) and (77) gives the continuity
equation

8_,0 V-(pv) =0
ar Y=

for p. For the simplest mixture considered here, p is
constant in space and time, and consequently v satisfies the
incompressibility condition V-v = 0. Defining j; = p;(v;—V)
and j, = p»2(v, — v) to measure diffusion, we have j; +j, = 0,
meaning that diffusion can be measured by j, (or j;) alone. We
emphasize that the diffusion discussed here is defined relative
to the motion of the center of mass of a fluid element. For
mixtures diffusing on a substrate, diffusion may also be defined
with respect to the substrate or to aresting background medium
as often done in dynamical density functional theory [43].
How the gradient dynamics formulations resulting from the
two distinct choices are related will be briefly discussed in
section 5.4.

Rewriting equation (77) as

(78)

0 .
3 (pc)+V - (pcv+j2) =0 (79
and using p = const. and V - v = 0, we obtain
dc .
—+v-Vc=-V.j, (80)

ot

in which j is the diffusive flux associated with ¢, defined
by j = j2/p. We note that j may be expressed either as
j=c(vp—v)orasj = c(l —c)(vy — vy), which reveals
its physical nature.

5.2. Dissipation functional

From j = c¢(1 — ¢)(v, — vy), a dissipation functional can be
constructed to describe the diffusive transport in a way that is
symmetric with respect to solvent and solute.

A solution consists of two interpenetrating components
whose relative motion generates diffusion. In the regime
of linear response, the rate of dissipation is quadratic in the
relative velocity v, — v; between the two components. In

10

order to propose an expression for the density of the rate
of dissipation, we need to measure the number of frictional
contacts between the two components. Neglecting any short-
range order, this number is proportional to c(1 — ¢), which is
the probability for forming a solute-solvent pair at a particular
spatial point. Therefore, the density of the rate of dissipation is
proportional to ¢(1 — ¢) (v, — v1)2. In the limit of dilute solute
(¢ — 0), this density should take the form of ny,xc¢ (V2 — vy )2,
in which ny,,x is the particle number density of the solution,
nmaxC 18 that of the solute, and ¢ is the drag coefficient of a
solute particle (see section 3.2). In the other limit (1 —c¢ — 0),
the density of the rate of dissipation should take the form of
fmax (1 — €)¢(v2 — v1)?, in which the same drag coefficient
is used for a solvent particle surrounded by the solute. Here
the similarity in molecular sizes between solvent and solute
is assumed. Based on the above observations, it is natural to
adopt nmaxc(1 — )¢ (vy — v;)? as the simplest expression for
the density of the rate of dissipation, which is symmetric with
respect to ¢ = 1/2 in the entire range of c.

By definition, the dissipation functional is half the rate
of free energy dissipation. Expressed in terms of the diffusive
flux j, the dissipation functional associated with diffusion takes

nmaxgjz

the form of
dxdz ——
ff i —o

which is symmetric with respect to the relative concentrations
of solvent and solute. It can be readily used for the diffusive
part of ® in equations (33) and (55), with

Y — 1

=2 81

c(l—=c¢)

Mie) = Nmax§ )

(82)
To achieve a symmetric formulation for thin film hydrody-
namics, the free energy functional also needs to be symmetric.
This can be realized by using the Flory—Huggins free energy
of mixing for g(c) [44,49]:
g(c) = nmakaT{c(logc — 1D+ —o)log(l —c)—1]
+xc(l = o)}, (83)
which enters into the expression for F[A, c] in equation (29)
(and subsequently the expression for F [/, ¢]inequation (51)).
Physically, it is understood that a symmetric formulation is
possible only if the similarity in molecular sizes between
solvent and solute is assumed, an assumption made for both
the diffusive dissipation functional ®’™ and the symmetric
free energy density of mixing g(c). Note, however, that once a
consistent symmetric formulation is established, asymmetries
between the components may be re-introduced in a controlled
manner.

With the help of equations (81) and (83), thin film
hydrodynamics can be formulated for concentrated solutions
following the variational approach presented in section 4. It
is physically expected that high concentration will lead to
nonlinear diffusion and strong coupling between flow and
diffusion, both of which have been incorporated in the present
formulation.

Finally, we would like to point out that our variational
approach is developed to derive the local dynamics expressed
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in terms of fluid velocity and solute concentration. Starting
from the local dynamic equations, the gradient dynamics
expressed in terms of conserved fields can be formulated in
a straightforward way, as demonstrated in section 4.5. Based
on the results in sections 4.5 and 5.2, in the next section we give
a complete symmetric formulation for the gradient dynamics
of a film of a mixture.

5.3. Symmetric gradient dynamics model for mixture films

5.3.1. Free energy. The free energy functional is of the form
given in equation (51). The local bulk free energy density g is
of the Flory—Huggins type as expressed in equation (83), i.e.
it consists of the two entropic terms

81(91) = nmaxksT ¢1 (logpy — 1) (84)

and
82(¢2) = nmaxkpT ¢ (log g — 1),

responsible for the diffusion of solvent and solute, and the
interaction term

(85)

212(¢1) = nmaxksT X P16h2. (86)

The maximum number density is chosen to be identical for
solvent and solute. Written in the conserved fields, i.e. the
solvent height | and the solute height vr,, one has

g§=81+t8+t812 :nmakaT [wllf'IWZ (log w]ilwz - 1)
2 () Y1y

1 -1 —_— . 87

+¢1+1/f2<0g1/f1+1/f2 >+X(1/f1+1/f2)2} &7

Introducing the g of equation (87) into equation (51), we
obtain for the free energy functional in terms of v and v,
the expression

Flvn. vl = / {gw(wl S YD+ FW +P2) + ks T

X [llfl (log ¢ — 1) +yn(logya — 1) — (Y1 + ¥2)

Y1y :|}d
_— X.
(W1 +y2)

where y is the liquid—gas interfacial tension, and f (Y| + ¥)
is the wetting energy that is assumed to locally depend on #.
The variational derivatives of F are

x log(¥r; + ) + x (88)

OF
5_ = _Vaxx(l//l + WZ) +al[/|f+nmakaT [1Og wl
21
g+ — 1+ x =]
SV V) T X |
OF
5_ = —y o (Y1 +¥2) +al/f2f+nmakaT |:10g 153
Yo
log(tr + ) — 14 x—21 ] (89)
s X+t

Here we assume f = f (¥ + ) for the wetting energy, and
hence 9y, f = 3y, f = f".

5.3.2. Purely diffusive case. We can now construct the matrix
of mobility functions (i.e. the mobility matrix) using the results
derived in section 4.5. We start from the case of transport
by diffusion only. This corresponds to the limit of infinite
viscosity (n — 00). According to equations (74) and (75), the
mobility matrix defined through equation (68) is given by

Q= Om  Oww \ _ ( h*/3n h*W /31
“\ Qun Quv ) \ h*¥/3n h¥?/3n+hM )’

90)

which, in the limit of  — o0, becomes

QDIFF QDIFF 0 0
Q= (Ot otk )= (o 1 )-
Wh (2

Oon

For the moment, the mobility M is kept general. The

symmetric expression proposed in section 5.2 will be further
incorporated below.

As adopted in section 5, the solvent is labeled by the
subscript ‘1’ and the solute labeled by the subscript 2’.
Through the relations ¥y = h — ¥ and ¥, = W, we have
the transformation from QP™F for 4 and W into QY for v
and v, in the form of

Qdiff — 1{(2])11:“1‘7117‘7 (92)
where R = (1) _11 is defined by the transformation
Y _ h . .
v = R v ) and superscript T indicates the
2

transposed matrix. This leads to

o (O, ol Lo
QU = ( gt part . | = Wi+ v)M :
Ql/lelﬂ Qilflzilfz -1 1
(93)
The conservation laws for ¥r; and 1, can be written in matrix
form as
diff diff
d ( v ) = -0, ( ' ) = 8[( A )
() J‘/fz Yo Q‘//ﬂ//z

5. SE
* 8y
( 5 oF 94)

)]

where the mobility matrix QI is explicitly involved. From the
structure of Q%f, we immediately have J,, + Jy, = O for the
fluxes Jy, and Jy,, which are defined through the conservation
laws 0,v; + 0, Jy, = O (for i = 1,2). As a result, we have
o%h = 8,(Y1 + Y1) = —0:(Jy, + Jy,) = 0. This means
that the time evolution of % is frozen because no flow can be
activated for n — oo. We would like to emphasize again that
the diffusion discussed here is defined relative to the motion of
the center of mass of a fluid element. Although the infinitely
large viscosity freezes the motion of the center of mass and thus
the time evolution of &, diffusion of the components still occurs
in the binary mixture. Next we derive the purely diffusive
fluxes Jy, and Jy,.
Using equation (93) for Q4ff we obtain

SF SF
Jy, = =1 + ) MO, (—

- —. 95
Y 51/f2> ©)
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According to equation (89), the above expression does not
contain contributions from capillarity and wettability, but only
contributions from the entropic and interaction parts of the
mixing free energy. Substituting equation (89) into (95) yields

3, 3,
Jy = —(h +wz)Mnmakar< w‘f' _ %
Y10y — maxx/q), 6)
(Y1 + ¥2)?

Now we employ the symmetric M given in equation (82).
Using ¢ = ¥ /(Y| + ¥») for the relative concentration of the
solute and the diffusion coefficient D = kg7 /¢ in the dilute
limit, we have

Y1 D
= . 97
W+ 927 Mk T o7
Substituting equation (97) into (96), we obtain
7= V1Yo [3)&#1 0x Y2 V10: Y2 — Wzaxlﬁl}
Y = — + 2)(
Yi+yn | Yy ) (Y1 +¥2)?
Y1y, } < Y >
= —D 1 - 2 - . <A 8x £
W) [ X+ ] "\ v
(93)
which can be written as Jy, = —h D¢ with the non-Fickian

diffusion coefficient D= D(1—-2x¢1¢2). Inasimilar way we
obtain Jy, = —hDa  ¢. It is readily seen that the condition
Jy, + Jy, = 01is satisfied for n — oo because of ¢ + ¢, = 1.

Substituting 9,4 = 0, ¥; = h¢; and Jy, = —h Do, ¢; into
Y = —0yJy, fori =1, 2, we obtain

i = 9,(D, )

99)

For x = 0, i.e. for constant D= D, this is of the same form
as equation (49) with u;, = 0 (no convection).

5.3.3. Purely convective case. Now we turn to the case of
transport by convection only. This corresponds to the limit of
zero diffusive mobility (M = 0). From Q in equation (90), we

then obtain

QCONY — (
(100)

Through the transformation from QC°NV for i and W into Q™
for 1| and v, in the form of

QCONV QCONV

h?  hv
W2

h

Q CONV Q E%NV 3 n

Qconv — RQCONVRT, (101)

we obtain
conv __ 1ﬁ1 +¢2 le Wﬂﬁz ) 102
Qe = 37 ( vive Yy ) (102)

The conservation laws for v and ¥, in matrix form can be
written as

Y1

conv conv

Jl//1

9 =9, =9, 101%1 1//11/‘//2 )
t( () ) ( J‘//2 ) |:< f/fo;:/fl ‘C/fOZI:/fz
§F
3X8—
x Ad ] (103)
0y —
v

where the mobility matrix Q°°™ is explicitly involved. Below
we derive the fluxes Jy, and Jy, contributed by convection
only.

Using equation (102) for Q°™, we obtain

SF
w”‘/’zwl(wla RS A w)

Substituting equation (89) into (104), we obtain

Jy, = (104)

1
Jy, = —gwl(wl +92)%0, [y o; (W1 + ¥2) + (W1 + ¥2)],
(105)

and find that it does not contain contributions from the
entropic and interaction parts of the mixing free energy,
but only contributions from capillarity and wettability in
equation (89).

Equation (105) can be written as Jy, = —yr (h?/31)
ax[ — yafh + f/(h)]. In a similar way we obtain Jy, =
—¥2(h?/30)d, [~y 82h + f'(h)]. 1t follows that the evolution
equations for ¥| and v, are given by

1
3y = —d, Ewl(wl + )70, [y (W1 + ¥2)

@+ )] }

1
3y = —d, ngwl +92) 20 [Y 02 (1 + )

—f'( + wz)]}. (106)

The sum of these two equations is

2o,

h'%
8th - —3x {

5 (107)

[vain — f’(h)]} ,
as expected for the transport by convection only (see equa-
tion (15) for one-component liquids).

5.3.4. General dynamics. It is interesting to note that in
the completely symmetric case discussed above, the diffusive
mobility matrix Q% results in the fluxes Jy, and Jy, that
only pick up contributions from the mixing free energy while
the convective mobility matrix Q™ results in the fluxes Jy,
and Jy, that only pick up contributions not related to the
mixing free energy. Cross-contributions naturally appear if the
symmetry is broken. Finally, we point out that equations (94)
and (103) represent kinetic equations of linear nonequilibrium
thermodynamics. Using the fact that Q% and Q™ are
additive and collecting the above obtained expressions, we
give the general evolution equations for v; and v, in gradient
dynamics form. In matrix form they can be written as

at( Vi ) — _ax( JY//1 ) — ax|:<Qdiff+Qconv>

(43 J‘/fz
§F
0y ——
3y
§F ’
0y ——
v

(108)
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or in expanded form as

1
dp =—0 {gwlwﬁwzfax [vor(i+v2) — £ (Y1+y2)]

B _ Y1y 1
D) (1 K+ wz)2> O (wl " wz>} ’

1
0Py =—0, {ﬁ‘pZ(wl'HﬂZ)zax [v3: (W1 +9) — £/ (Y1 +9) ]
Y1y )

Oy .
X<w1+wz>2> <w1 +wz>}

(109)

The basic symmetric formulation (108) may now be easily
extended by including additional effects in the free energy
functional F[v, ¥»]. Then evolution equations either in
terms of ¥, and v, or in terms of &2 and W can be readily
obtained. Such additional effects could be (i) a concentration-
dependent wetting energy f (¥, ¥») (which is no longer a
function of only V| + 1), (ii) a more complicated mixing free
energy density g(¢;, ¢) to replace the simple Flory—Huggins
one, or (iii) gradient terms in the concentration fields. Note
that phase-transition limited evaporation may be included by
adding nonconserved terms proportional to § F /8; — uf to the
equation for y; in (108). Here . is the chemical potential of
the component i in the gas phase. To model coating processes,
one may also add terms that account for driving forces, e.g.
the influence of a moving substrate that is drawn out of a bath.
Such extensions are discussed in more details in the context
of previous gradient dynamics models with non-symmetric
diffusive mobilities [22, 38, 51].

—D (Y1 +y2) <1—2

5.4. Mobilities in other reference frames

In the above discussion, diffusion has been defined as occurring
relative to the motion of the center of mass of a fluid element.
Below we discuss how one may determine diffusive and
convective mobilities when diffusion is defined as occurring
relative to a resting substrate or background medium as often
done in dynamical density functional theory (DDFT) [43].
Our starting point is the symmetric formulation with
diffusion defined relative to the center of mass motion (see
section 5.3.2). We have the diffusive mobility matrix for the

fields (1, V)
diff L =1\ iy D
Q= W”M( —-1 1 ) T (W1 + V) Mok T

1 -1
x<_1 1). (110)

We note that

V1 (1 —1)+ 1 <
Wi+y2) \ -1 1 (V1 +¥2)

(2 2)
0 v /)’

where the matrix on the right hand side is the diagonal matrix
encountered, e.g. in DDFT where diffusion is defined with
respect to the substrate. It is interesting to note that the second
matrix on the left hand side may, up to a constant factor, be

v}

Y1y )
Y1y

V3
(111)

obtained from our convective mobility matrix in section 5.3.3
as Q™ /(Y + ¥»)? (from equation (102)).

Using ¥; = h¢;, we find itinstructive to write the mobility
from equations (110) and (102) as

) D 1 -1
Q=Qd1ff+Qconv=h¢l¢2 ( . | )

n maka T
NG < ¢ ¢ )
I\ o2 b3
A decomposition into the diffusive and convective mobilities
with respect to a resting substrate gives

DU Dh ¢ O
_ ydiff conv __
Q_Q +Q _nmakaT< 0 ¢2 >
Dh

+<’£__>( o7 ¢1¢2)
3n Nmaxk T D102 ¢§ .

It is clearly seen that the first term in equation (113)
corresponds to the diagonal mobility matrix employed in a
DDFT for a layer of a binary nanoparticle-solvent mixture on
a substrate [43]. There, however, no convective transport of
the mixture with respect to the substrate is studied. The present
discussion indicates that subtle issues arise when one tries to
relate the results of studies that define diffusion with respect to
the center of mass of a fluid element and those of studies that
define diffusion with respect to the resting background.

(112)

(113)

6. Concluding remarks

In the present work we have employed Onsager’s variational
principle to first re-derive (i) the thin film (or long-wave)
equation for a film of simple nonvolatile liquid on a smooth
solid substrate and (ii) the standard diffusion equation. The
concepts and procedures introduced in these two cases have
then been applied to thin films of binary mixtures on solid
surfaces. After deriving the evolution equations for film height
and effective solute height in a general form, we have employed
them to present a model that is symmetrically formulated with
respect to solvent and solute, or more precisely, to the two
components of the mixtures.

Our derivations start from free energy functionals and
dissipation functionals which are expressed using variables
that are more fundamental than the effective thicknesses that
finally appear in the thin film equations. This approach has
allowed us to examine the assumption(s) and approximation(s)
that are implicitly made and applied in the thin film description
of binary mixtures on solid surfaces. This has also provided
a general scheme that may now be employed for further
generalizations of the presented models by introducing more
physical components, in addition to the capillarity, wettability,
and miscibility aspects encoded in the free energy functionals
and the viscous and diffusive transport processes encoded in
the dissipation functionals.

It has been shown that the variational approach presented
here naturally leads to a gradient dynamics description on
the level of the independent conserved fields, namely the
effective film heights. This gradient dynamics description
is itself of the form of kinetic equations of linear
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nonequilibrium thermodynamics with Onsager’s reciprocal
symmetry automatically satisfied by the mobility matrix. Note
that the variational approach works properly only if fields
are identified that can be varied independently. Therefore,
for the presently studied film of binary mixture, the choice
of height and height-averaged solute concentration is not
advisable as it seems to result in kinetic equations that include
constrained variations [18], where neither it is obvious whether
Onsager’s reciprocal symmetry is satisfied, nor it is clear how
the diffusion equation emerges in the dilute limit (see [9, 38]
for further discussion on this point).

Equations of the form (69) have also been derived and
studied for the dynamics of thin two-layer films [31, 35-37]
and of thin films covered by a layer of insoluble surfactant [27].
In the latter case, it is important to employ the surfactant
concentration projected onto the substrate plane as the second
field and not the surfactant concentration on the free surface
of the film as it can not be varied independently of the film
height. For instance, in the case of [27] only the right choice of
the second field results in the correct definition of the density-
dependent surface tension and, consequently, the correct linear
Marangoni effect in the limit of low surfactant concentration.
It should be interesting to consider the case of the surfactant
covered film within the here presented formalism to pursue
extensions of existing models toward the incorporation of
surface viscosity and elasticity.

The symmetric formulation of the kinetic long-wave
equations for the film of two-component mixture is valid
at arbitrary concentrations of the two components. This
allows one to avoid certain problems that literature models
encounter at high solute concentrations. For instance, if
a solution or suspension with a volatile solvent shall be
considered, the presented gradient dynamics equations for
conserved fields have to be augmented by evaporation term(s).
If the evaporation dynamics is limited by the phase transition
(and not by the diffusion in the gas phase), one may add a
nonconserved term proportional to § F'//8h — [Lgas, Where [Lgas
is the chemical potential of the gas phase [4, 9]. In the present
symmetric formulation, this term naturally contains an osmotic
pressure contribution (¢g’ — g) that results in an evaporation
that ceases as ¢ — 1. Models in the gradient dynamics form
for Langmuir-Blodgett transfer and dip-coating processes are
reviewed in [51]. There the gradient dynamics equations
for conserved fields (69) are augmented not only by terms
accounting for evaporation but also by an advection term to
model the transfer of material from a bath onto a moving plate.
In this context, one should mention that there exist special
cases in which systems permanently out of equilibrium may
be modeled through adequate adaptations of gradient dynamics
models that are, in general, relaxational. For instance, drops
on an incline can be described by incorporating a proper long-
wave potential energy into the free energy functional.

Finally we mention that the gradient dynamics form offers
a thermodynamic point of view onto long-wave hydrodynamic
models that brings them into the context of dynamical density
functional theories (DDFT) [52,53] for layers of colloidal
fluids because for two-component systems they are of a similar
form [43, 54]. Based on the discussion of relations between the

diffusive mobility matrices measured with respect to different
reference frames as presented in section 5.4 and, in general,
the formal similarity of DDFT and thin-film hydrodynamics,
it might be possible and worthwhile to develop a more unified
view onto these models. That might facilitate the development
of models that are based on proper energy functionals as
obtained from statistical physics and dissipation functionals
combining the various channels of dissipation.

Acknowledgments

This work is supported by Hong Kong RGC Grant No 604013.
T Qian and U Thiele would like to thank the Isaac
Newton Institute for Mathematical Sciences at the University
of Cambridge for the Research Program ‘Mathematical
Modelling and Analysis of Complex Fluids and Active Media
in Evolving Domains’ in which this work was initiated.

References
[1]
[2]
[3]
[4]
[5]
[6]

(7]
(8]

(9]
[10]

Oron A, Davis S H and Bankoff S G 1997 Rev. Mod. Phys.
69 931

Thiele U 2007 Thin Films of Soft Matter ed S Kalliadasis and
U Thiele (Berlin: Springer) pp 25-93

Craster R V and Matar O K 2009 Rev. Mod. Phys. 81 1131

Thiele U 2010 J. Phys.: Condens. Matter 22 084019

Mitlin V S 1993 J. Colloid Interface Sci. 156 491

Bonn D, Eggers J, Indekeu J, Meunier J and Rolley E 2009
Rev. Mod. Phys. 81 739

Geoghegan M and Krausch G 2003 Prog. Polym. Sci. 28 261

Kalliadasis S and Thiele U (ed) 2007 Thin Films of Soft Matter
(New York: Springer)

Thiele U 2013 Adv. Colloid Interface Sci. 206 399

Gu X, Raghavan D, Douglas J F and Karim A 2002 J. Polym.
Sci. B: Polym. Phys. 40 2825

Ozawa K, Nishitani E and Doi M 2005 Japan. J. Appl. Phys.
44 4229

Doumenc F and Guerrier B 2013 Europhys. Lett. 103 14001

Frastia L, Archer A J and Thiele U 2012 Soft Matter 8 11363

Han W and Lin Z 2012 Angew. Chem. Int. Edn 51 1534

Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R and
Witten T' A 2000 Phys. Rev. E 62 756

Wasan D T and Nikolov A D 2003 Nature 423 156

Pauliac-Vaujour E, Stannard A, Martin C P, Blunt M O,
Notingher I, Moriarty P J, Vancea I and Thiele U 2008
Phys. Rev. Lett. 100 176102

Clarke N 2005 Macromolecules 38 6775

Thomas K R, Clarke N, Poetes R, Morariu M and Steiner U
2010 Soft Matter 6 3517

Niraigh L O and Thiffeault J L 2010 Nonlinearity 23 1559

Karpitschka S and Riegler H 2012 Phys. Rev. Lett. 109 066103

Thiele U, Todorova D V and Lopez H 2013 Phys. Rev. Lett.
111 117801

Cachile M, Albisu G, Calvo A and Cazabat A 2003 Physica A
3297

Starov V M, Zhdanov S, Kosvintsev S R, Sobolev V D and
Velarde M G 2003 Adv. Colloid Interface Sci. 104 123

Matar O K and Craster R V 2009 Soft Matter 5 3801

Kopf M H, Gurevich SV, Friedrich R and Chi L F 2010
Langmuir 26 10444

Thiele U, Archer A J and Plapp M 2012 Phys. Fluids
24102107

Alonso S and Mikhailov A 2009 Phys. Rev. E 79 061906

Pototsky A, Thiele U and Stark H 2014 Phys. Rev. E 90 030401

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
(20]
(21]
[22]
(23]
[24]

[25]
[26]

[27]

(28]
[29]


http://dx.doi.org/10.1103/RevModPhys.69.931
http://dx.doi.org/10.1103/RevModPhys.81.1131
http://dx.doi.org/10.1088/0953-8984/22/8/084019
http://dx.doi.org/10.1006/jcis.1993.1142
http://dx.doi.org/10.1103/RevModPhys.81.739
http://dx.doi.org/10.1016/S0079-6700(02)00080-1
http://dx.doi.org/10.1016/j.cis.2013.11.002
http://dx.doi.org/10.1002/polb.10347
http://dx.doi.org/10.1143/JJAP.44.4229
http://dx.doi.org/10.1209/0295-5075/103/14001
http://dx.doi.org/10.1039/c2sm26574e
http://dx.doi.org/10.1002/anie.201104454
http://dx.doi.org/10.1103/PhysRevE.62.756
http://dx.doi.org/10.1038/nature01591
http://dx.doi.org/10.1103/PhysRevLett.100.176102
http://dx.doi.org/10.1021/ma0505777
http://dx.doi.org/10.1039/c0sm00046a
http://dx.doi.org/10.1088/0951-7715/23/7/003
http://dx.doi.org/10.1103/PhysRevLett.109.066103
http://dx.doi.org/10.1103/PhysRevLett.111.117801
http://dx.doi.org/10.1016/S0378-4371(03)00612-5
http://dx.doi.org/10.1016/S0001-8686(03)00039-3
http://dx.doi.org/10.1039/b908719m
http://dx.doi.org/10.1021/la101900z
http://dx.doi.org/10.1063/1.4758476
http://dx.doi.org/10.1103/PhysRevE.79.061906
http://dx.doi.org/10.1103/PhysRevE.90.030401

J. Phys.: Condens. Matter 27 (2015) 085005

X Xu et al

[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]

(40]
[41]

Danov K D, Paunov V N, Alleborn N, Raszillier H and Durst F
1998 Chem. Eng. Sci. 53 2809

Pototsky A, Bestehorn M, Merkt D and Thiele U 2004 Phys.
Rev. E 70 025201

Bandyopadhyay D, Gulabani R and Sharma A 2005 Indust.
Eng. Chem. Res. 44 1259

Nepomnyashchy A and Simanovskii I 2007 Phys. Fluids
19 122103

Kostourou K, Peschka D, Miinch A, Wagner B, Herminghaus S
and Seemann R 2011 Chem. Eng. Process. 50 531

Pototsky A, Bestehorn M, Merkt D and Thiele U 2005
J. Chem. Phys. 122 224711

Jachalski S, Huth R, Kitavtsev G, Peschka D and Wagner B
2013 SIAM J. Appl. Math. 73 1183

Bommer S, Cartellier F, Jachalski S, Peschka D, Seemann R
and Wagner B 2013 Eur. Phys. J. E 36 87

Thiele U 2011 Eur. Phys. J. Spec. Top. 197 213

Plapp M and Gouyet J F 1997 Phys. Rev. Lett. 78 4970

Hohenberg P C and Halperin B I 1977 Rev. Mod. Phys. 49 435

Fischer H P and Dieterich W 1997 Phys. Rev. E 56 6909

[42]
[43]

[44]

[45]
[46]
[47]
(48]
[49]

[50]
[51]

[52]
(53]
[54]

Martin G 1994 Phys. Rev. B 50 12362

Robbins M J, Archer A J and Thiele U 2011 J. Phys.:
Condens. Matter 23 415102

Doi M 2013 Soft Matter Physics (Oxford: Oxford University
Press)

Onsager L 1931 Phys. Rev. 37 405

Onsager L 1931 Phys. Rev. 38 2265

Qian T, Wang X P and Sheng P 2006 J. Fluid Mech. 564 333

Doi M 2011 J. Phys.: Condens. Matter 23 284118

Flory P J 1953 Principles of Polymer Chemistry (Ithaca, NY:
Cornell University Press)

Meixner J 1973 Adv. Mol. Relax. Process. 5319

Wilczek M, Tewes W B H, Gurevich S V, Kopf M H, Chi L
and Thiele U 2015 Math. Model. Nat. Phenom. at press

Marconi U M B and Tarazona P 1999 J. Chem. Phys. 110 8032

Archer A J and Evans R 2004 J. Chem. Phys. 121 4246

Thiele U, Vancea I, Archer A J, Robbins M J, Frastia L,
Stannard A, Pauliac-Vaujour E, Martin C P, Blunt M O
and Moriarty P J 2009 J. Phys.: Condens. Matter
21 264016


http://dx.doi.org/10.1016/S0009-2509(98)00098-0
http://dx.doi.org/10.1103/PhysRevE.70.025201
http://dx.doi.org/10.1021/ie049640r
http://dx.doi.org/10.1063/1.2819748
http://dx.doi.org/10.1016/j.cep.2010.10.006
http://dx.doi.org/10.1063/1.1927512
http://dx.doi.org/10.1137/120886613
http://dx.doi.org/10.1140/epje/i2013-13087-x
http://dx.doi.org/10.1140/epjst/e2011-01462-7
http://dx.doi.org/10.1103/PhysRevLett.78.4970
http://dx.doi.org/10.1103/RevModPhys.49.435
http://dx.doi.org/10.1103/PhysRevE.56.6909
http://dx.doi.org/10.1103/PhysRevB.50.12362
http://dx.doi.org/10.1088/0953-8984/23/41/415102
http://dx.doi.org/10.1103/PhysRev.37.405
http://dx.doi.org/10.1103/PhysRev.38.2265
http://dx.doi.org/10.1017/S0022112006001935
http://dx.doi.org/10.1088/0953-8984/23/28/284118
http://dx.doi.org/10.1016/0001-8716(73)80004-5
http://dx.doi.org/10.1063/1.478705
http://dx.doi.org/10.1063/1.1778374
http://dx.doi.org/10.1088/0953-8984/21/26/264016

	1. Introduction
	2. Onsager's variational principle
	3. Two simple applications of Onsager's variational principle
	3.1. Thin film hydrodynamics of one-component liquids
	3.2. Diffusion of dilute solute

	4. Thin film hydrodynamics of binary mixtures 
	4.1. Transport equations and conservation laws
	4.2. A variational approach in two-dimensional space
	4.3. Long-wave asymptotics for thin films
	4.4. A variational approach in 1D space
	4.5. Gradient dynamics

	5. Toward a symmetric formulation 
	5.1. Bulk transport equations and diffusive flux
	5.2. Dissipation functional 
	5.3. Symmetric gradient dynamics model for mixture films
	5.4. Mobilities in other reference frames 

	6. Concluding remarks 
	 Acknowledgments
	 References

