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Abstract
Wetting and dewetting dynamics of simple and complex liquids is described by kinetic
equations in gradient dynamics form that incorporates the various coupled dissipative
processes in a fully thermodynamically consistentmanner. After briefly reviewing this,
we also review how chemical reactions can be captured by a related gradient dynamics
description, assuming detailed balancedmass action type kinetics. Then,we bring both
aspects together and discuss mesoscopic reactive thin-film hydrodynamics illustrated
by two examples, namely, models for reactive wetting and reactive surfactants. These
models can describe the approach to equilibrium but may also be employed to study
out-of-equilibrium chemo-mechanical dynamics. In the latter case, one breaks the
gradient dynamics form by chemostatting to obtain active systems. In this way, for
reactive wetting we recover running drops that are driven by chemically sustained
wettability gradients and for drops covered by autocatalytic reactive surfactants we
find complex forms of self-propulsion and self-excited oscillations.

Keywords Chemo-mechanical coupling · Gradient dynamics · Reactive surfactants ·
Reactive thin-film hydrodynamics · Reactive wetting · Self-propelled drops

1 Introduction

Phenomena involving reactive fluids are found across many scales and range from
the formation of stars to combustion, biofilm growth and many intracellular processes
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[1–7]. Often, occurring chemical reactions do not only amend existing flows, but give
rise to novel phenomena that result from the interplay of reactions and hydrodynamic
transport. In his seminal paper [8], Turing showed that pattern formation is possible
even if only simple diffusive transport exists in a reactive system. One may then
naturally turn to more intricate hydrodynamic settings, for instance, the wetting of
solid or liquid substrates by (other) liquids [9–11] and discuss how chemical reactions
influence the occurring phenomena [12–21], also see reviews [22–24].

The statics and dynamics of wetting inherently involves the study of interacting
interfaces and three-phase contact lines which gives rise to a myriad of fascinating
phenomena like drop spreading and dewetting of thin liquid films [10, 11], contact
line motion and instabilities [11, 25], the lotus effect [26] as well as tears of wine
[27] and surfactant-induced spreading instabilities [11]. One may then expect that the
additional presence of chemical reactionswill greatly enrich the spectrumof interfacial
effects. Indeed, examples include chemically driven running droplets [16, 28–39],
and chemically driven Marangoni flows that cause oscillatory bulk convective motion
[40–42], surface waves [43, 44], fingering instabilities [45], and crawling vesicular
aggregates [46]. Such reactive interface phenomena are highly relevant for technical
applications like soldering [22, 47], but also have many biophysical applications such
as, e.g., intracellular processes related to the wetting properties of membranes and
biomolecular condensates [48–50].

It is tempting to base theoretical descriptions of such complex dynamic scenarios,
where chemical reactions couple nontrivially to interface-dominated hydrodynamic
transport processes, on a simple addition of mass action chemical kinetics to existing
hydrodynamic descriptions. However, there is a certain danger that such an ad hoc
approach may miss certain cross-influences of the different aspects that one has added
together. A preferential approach could be to obtain the coupled chemo-hydrodynamic
dynamics from a common thermodynamic framework, namely, a gradient dynamics
on an underlying energy functional as well known from the description of chemically
inert systems described, e.g., by mesoscopic hydrodynamics (thin-film models) [51–
55]. If chemical reactions were incorporated into such an approach, systems would
still be relaxational, i.e., would approach an equilibrium. Then, specific nonequilib-
rium conditions could be included in a well-controlled manner. In this way, couplings
that originate in thermodynamic constraints and that may significantly affect statics
and dynamics are still present, even when the system is permanently driven away from
equilibrium, as is often the case in biological contexts. Familiar examples of recipro-
cal pairs of cross-couplings include the Seebeck and Peltier effects (thermoelectricity)
and the Soret andDufour effects (thermophoresis and diffusion thermoeffect) [56–58].
These effects are captured by linear nonequilibrium thermodynamics and are pairwise
related by the Onsager reciprocity relations [59, 60] as a consequence of microscopic
reversibility (detailed balance). In general, chemical reactions lie outside of the frame-
work of linear thermodynamics [58]. However, by invoking detailed balance one may
still infer thermodynamically consistent kinetics which then for ideal systems recover
mass action kinetics [61–63].

Returning specifically to the description of reactivewetting and reactive surfactants,
we may then find chemical reactions that not only depend on the reactant concentra-
tions but also on, e.g., reactant-substrate interactions, the proximity of the three-phase
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contact line or the shape of the liquid–gas interface. In the present work, we show
how chemical reactions can be incorporated into a gradient dynamics model to obtain
a description of reactive thin-film hydrodynamics responsible, e.g., for reactive wet-
ting. This approach is based on an underlying (free) energy functional from which
thermodynamically fully consistent kinetic equations describing reactive thin-film
hydrodynamics are derived.

The structure of our work is as follows. In Sect. 2, we review the gradient dynamics
approach to linear nonequilibrium thermodynamics. In Sect. 3, we turn to the gradi-
ent dynamics description of chemical reactions. We start with a simple autocatalytic
reaction in a spatially homogeneous system, clarify how mass action kinetics may
be re-expressed in terms of a free energy functional and show that the principle of
detailed balance guarantees thermodynamic consistency. We also discuss how the
breaking of detailed balance, e.g. by chemostatting, can result in persistent nonequi-
librium behavior. Section4 then exemplifies the approach by considering two cases of
reactive mesoscopic thin-film hydrodynamics. Both involve the interplay of chemical
reactions and interfacial effects, e.g., reactant-induced wettability gradients or solutal
Marangoni stresses. Further, we show how breaking the gradient dynamics form by
external chemostats results in active behavior such as the self-propulsion of drops and
the self-excitation of various drop oscillations.We conclude in Sect. 5 with a summary
and discussion of possible extensions.

2 Linear gradient dynamics and applications

Here, we briefly review the gradient dynamics description of systems that are suf-
ficiently close to thermodynamic equilibrium to allow for a description by linear
nonequilibrium thermodynamics, i.e., the kinetic equations are linear in the variations
of an underlying thermodynamic functional (the thermodynamic forces). In Sect. 2.1,
we introduce the general kinetic equations for the dynamics of a system of N scalar
fields and show their thermodynamic consistency. In Sect. 2.2 we give two correspond-
ing examples related to reactive thin-film hydrodynamics.

2.1 General Equations

We now consider a spatially extended system, the state of which is fully determined
by N scalar state variables u = (u1, u2, . . . , uN )T which depend on the spatial
coordinates �x = (x, y, z)T and time t . We assume that the system relaxes to thermo-
dynamic equilibrium. Depending on the relevant constraints, different thermodynamic
functionals capture this relaxation process in agreement with the second law of ther-
modynamics. Here, we restrict ourselves to closed, isothermal systems. In this case,
the (Helmholtz) free energy functional F [u] decreases monotonically until equilib-
rium is reached. If the system is sufficiently close to thermodynamic equilibrium, the
general time evolution equations for the fields u can be expressed as
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∂t uα = ∇ ·
⎡
⎣

N∑
β=1

Qc
αβ∇ δF

δuβ

⎤
⎦−

N∑
β=1

Qnc
αβ

δF

δuβ

, (1)

where ∂t denotes the partial derivative with respect to time t and ∇ = (
∂x , ∂y, ∂z

)T
is the spatial gradient operator. The variational derivatives δF/δuβ express thermo-
dynamically conjugate quantities to the fields uβ such as the pressure or chemical
potentials. In (1), these variations linearly enter the time evolution equations. Here,
the first term corresponds to transport processes that conserve

∫
uαd3r and that are

driven by spatial gradients in pressure or chemical potentials. The second term is
associated with nonconserved contributions to the dynamics that are related to tran-
sitions between the individual fields and are, for instance, driven by local differences

in chemical potentials. The mobility matrices Qc =
(
Qc

αβ

)
and Qnc =

(
Qnc

αβ

)
relate

the energy variations to the fluxes and are positive (semi-)definite and symmetric,
expressing irreversibility of the macroscopic processes and microscopic reversibility
(Onsager relations [59, 60]). We note that the specific form (1) can be derived from
Onsager’s variational principle [54, 64]. Using (1) and the properties of Qc,Qnc, one
can show that the free energy F decreases monotonically:

dF

dt
=
∫ [ N∑

α=1

δF

δuα

∂uα

∂t

]
d3r (2)

=
∫ ⎡
⎣

N∑
α,β=1

δF

δuα

∇ ·
(
Qc

αβ∇ δF

δuβ

)⎤
⎦ d3r −

∫ ⎡
⎣

N∑
α,β=1

δF

δuα

Qnc
αβ

δF

δuβ

⎤
⎦ d3r (3)

= −
∫ ⎡
⎣

N∑
α,β=1

Qc
αβ

(
∇ δF

δuα

)
·
(

∇ δF

δuβ

)⎤
⎦ d3r −

∫ ⎡
⎣

N∑
α,β=1

δF

δuα

Qnc
αβ

δF

δuβ

⎤
⎦ d3r

(4)

≤ 0. (5)

Here, integration is performed over the whole system domain. From (2) to (3) we have
used the dynamic equations (1) and from (3) to (4) partial integration was used on
the first term, assuming no-flux or periodic boundary conditions. The final inequality
follows from the positive (semi-)definiteness of the mobility matrices. Then, if F is
bounded from below, it is a Lyapunov functional to the dynamics (1) which is therefore
consistent with (linear) nonequilibrium thermodynamics.

2.2 Examples

To model particular systems, the described gradient dynamics model (1) can be sup-
plemented by specific choices for the energy functional and the mobility matrices. In
the following, we briefly discuss a few models. For instance, the diffusion of an ideal
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gas is described by the diffusion equation

∂t n = D�n, (6)

where � = ∂2x + ∂2y + ∂2z is the Laplace operator, n denotes the local particle density
(particles per unit volume) and D > 0 is the diffusion constant. With the entropic free
energy

F = kbT
∫

n [ln(n/n0) − 1] d3r , (7)

where kb is the Boltzmann constant, T is the temperature, n0 is some reference density,
and with the diffusive mobility

M(n) = Dn

kbT
, (8)

the diffusion equation (6) can be brought into the gradient dynamics form

∂t n = ∇ ·
[
M(n)∇ δF

δn

]
. (9)

Note that here δF/δn corresponds to a chemical potential.
Mesoscopic thin-film equations [54] represent another class of such models. In

the simplest case, the evolution of the local film height h of a thin liquid film on a
homogeneous rigid solid substrate is described by [10, 65, 66]

∂t h = −∇ · [Q(h)∇ (γ�h + �(h))
]

(10)

with∇ = (∂x , ∂y)
T and� = ∂2x +∂2y . Here, γ is a constant surface tension and the term

−γ�h is the Laplace pressure, while �(h) is a Derjaguin (disjoining) pressure that
encodes wettability on the mesoscopic scale [9, 67, 68]. The mobility factor Q(h) ≥ 0
typically is a polynomial in h and depends on the particular model, e.g., the degree of
slip at the substrate [65, 69, 70]. We introduce the free energy functional

F =
∫ [

f (h) + γ

2
|∇h|2

]
d2r , (11)

where the Derjaguin pressure is �(h) = − f ′(h) with the prime indicating the uni-
variate derivative. We can then write (10) as [51, 68]

∂t h = ∇ ·
[
Q(h)∇ δF

δh

]
. (12)

From (12), we can see that δF/δh corresponds to a pressure (or its negative). Besides
the two shown simple examples, otherwell-known examples include theCahn-Hilliard
equation [71, 72], various two- and three-field thin-film models, e.g., for two-layer
films, films of binarymixtures, surfactant-covered drops and drops on soft and adaptive
substrates [52, 55, 73–78] as well as other soft matter models [64, 79].
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3 Chemical reactions as nonlinear gradient dynamics

After having treated the gradient dynamics form of systems that are captured by
linear nonequilibrium thermodynamics in Sect. 2, we now turn to systems allowing
for chemical reactions. As we will see, reactive processes that follow mass action
type kinetics lie outside of the framework of linear nonequilibrium thermodynamics,
i.e., the corresponding reactive fluxes between chemical species are nonlinear in the
variations of the underlying thermodynamic functional.1 Tomotivate this, we first treat
ideal mixtures in Sect. 3.1 and show that the corresponding mass action type kinetics
can be rewritten employing rates that are nonlinear in the (free) energy variations. We
then show that the general dynamic equations indeed represent a gradient dynamics
when assuming detailed balanced kinetics. In Sect. 3.2, we discuss possible deviations
from ideal mass action type kinetics and touch on some of the reactive cross-couplings
that follow.

3.1 Mass action type kinetics as gradient dynamics

Tomotivate that chemical processes are insufficiently treated by linear nonequilibrium
thermodynamics, we consider a closed, isothermal box of volume V at temperature
T containing two well-mixed ideal gases, namely species N1 and N2. For this setup,
the (Helmholtz) free energy appropriately describes the approach to thermodynamic
equilibrium. To be specific, we assume that the autocatalytic conversion reaction

2N1 + N2 � 3N1, (13)

takes place between the two chemical species. For mixtures of ideal gases, chemical
reactions are appropriately described by mass action kinetics [58]. The time evolution
of the particle densities n1 and n2 of the two gases (particles per unit volume) inside
the box is then given by

dn1
dt

= rfn
2
1n2 − rbn

3
1, (14)

dn2
dt

= −rfn
2
1n2 + rbn

3
1, (15)

where rf , rb > 0 denote the reaction rates in the forward and backward direction.
Thereby, the reaction 2N1 + N2 → 3N1 is defined as the forward reaction. Note that
d(n1 + n2)/dt = 0 and the total particle number N = (n1 + n2)V in the container is
conserved. We consider the associated chemical potentials of ideal gases [58]

μα = kbT ln
(
nα/n0,α

)+ ζα(T ), (16)

where n0,α are reference densities and ζα(T ) are general dependencies on the temper-
ature T . Note that ζα represents the chemical potential of species α at the reference

1 We remark thatwith somewhat ‘unnatural’mobilities, chemical reactions can be treated bymeans of linear
nonequilibrium thermodynamics [80–82] while the resulting fluxes are still nonlinear in the variations.
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density n0,α . For simplicity, we set ζα = 0 in the following. Using Eq. (16), we rewrite
Eqs. (14) and (15) as

dn1
dt

= rfn
2
0,1n0,2e

2μ1+μ2
kbT − rbn

3
0,1e

3μ1
kbT , (17)

dn2
dt

= −rfn
2
0,1n0,2e

2μ1+μ2
kbT + rbn

3
0,1e

3μ1
kbT . (18)

We know that the gas mixture must approach thermodynamic equilibrium. For chemi-
cal reactions thermodynamic equilibrium is equivalent to the condition that the affinity
A vanishes [58]. The affinity corresponds to the difference in total chemical energy
between the reactants and the products of a reaction and represents the thermodynamic
force that drives the reaction.2 Specifically for reaction (13) the affinity is given by
A = 3μ1 − (2μ1 + μ2) = μ1 − μ2. Setting the right hand side of (17)–(18) to zero
for A = 0, one finds that this condition only holds if r = rfn20,1n0,2 = rbn30,1 is
the rate for both the forward and the backward reaction. Only then (17)–(18) can be
reformulated as

dn1
dt

= r

(
e
2μ1+μ2

kbT − e
3μ1
kbT

)
, (19)

dn2
dt

= −r

(
e
2μ1+μ2

kbT − e
3μ1
kbT

)
, (20)

with a common rate (function) r .3 Writing the reactive flux as

J = J f − Jb = r

(
e
2μ1+μ2

kbT − e
3μ1
kbT

)
, (21)

at thermodynamic equilibrium we have equal fluxes in both reactive directions, i.e.,

J f
eq = Jbeq. (22)

2 Note that the affinity A j can be related to the reaction coordinate ξ j which represents the ‘degree
of advancement’ of reaction j (see also [58]). In a well-mixed reactor it is related to the particle num-

ber by Nα = N0,α + ∑ j (ν
b
α j − ν

f
α j )ξ j where N0,α are the initial particle numbers or equivalently

∂ξ j /∂t = J j . Differentiating, e.g., the free energy F with respect to ξ j we obtain
(
∂F/∂ξ j

)
T ,V ,ξi �= j

=
∑

α (∂F/∂Nα)T ,V ,Nβ �=α
∂Nα/∂ξ j = ∑

α(νb
α j − ν

f
α j )μα = A j , that is, the affinity is the derivative of

the relevant thermodynamic potential with respect to the reaction coordinate [62].
3 Note that we have restricted ourselves to mixtures of ideal gases in the derivation of (19)–(20). Anal-
ogously, one could consider a reacting ideal solution (or any other ideal system), for which mass action
kinetics are also commonly assumed. The chemical potential of, e.g., component 1 in an ideal solution
would read μ1 = kbT ln( n1n ) + ζ1(T ) with the total particle density n1 + n2 = n and where the first term
corresponds to the mixing entropy of N1. If one starts with mass action kinetics formulated in terms of
particle densities as in (14)–(15), then the equilibrium constant rf/rb generally becomes a function of T
and n [58, 83]. However, this does not change the following general results and the corresponding mass
action kinetics can still be derived from Eqs. (19)–(20) or (24)–(25).
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Condition (22) is the principle of detailed balance, which follows from microscopic
reversibility [84], and here corresponds to the common rate function r for both reactive
directions. While (22) seems rather trivial, as it is simply the steady state condition
for one reaction, in systems with multiple reactions one may also find steady states
for which the reactive fluxes do not vanish separately, as discussed by Wegscheider
[85]. These states need to be distinguished from genuine thermodynamic equilibrium
given by detailed balance (22). We note that by introducing the free energy functional

F =
∫
V

(
kbT n1

[
ln(n1/n0,1) − 1

]+ kbT n2
[
ln(n2/n0,2) − 1

])
dV , (23)

we can express the chemical potentials (16) as μα = δF
δnα

and therefore obtain as time
evolution equations

dn1
dt

= r

[
exp

(
2 δF

δn1
+ δF

δn2

kbT

)
− exp

(
3

δF
δn1

kbT

)]
, (24)

dn2
dt

= −r

[
exp

(
2 δF

δn1
+ δF

δn2

kbT

)
− exp

(
3

δF
δn1

kbT

)]
. (25)

The more general form of (24) and (25) dates back to Marcelin [61] and De Don-
der [62, 86] and suggests applicability to nonideal systems and to more complicated
energy functionals aswell as heterogeneous spatially extended systems.Whilewe have
motivated the form (24)–(25) starting from simple mass action kinetics, we note that
the same expression can be derived by considering chemical reactions as a diffusion
process in the (continuous) configuration space of the reactive complex so that this
form indeed remains valid for nonideal systems [87–89]. Note that in general, the rate
function r need not be constant and may depend on, e.g., the local concentrations. We
now show that detailed balanced mass action type kinetics such as Eqs. (24)–(25) is a
gradient dynamics, i.e., that F monotonically decreases. To this end, we treat a more
general scenario and consider a heterogeneous spatially extended system compris-
ing the components N1, . . . , NQ with the particle densities n1, . . . , nQ in a closed,
thermostatted box of volume V . For clarity of notation, we exclusively use Greek
script for field variable indexing and Latin script for reaction indexing. Between the
Q components, R chemical reactions may occur. Each reaction j is characterized by
its stoichiometric coefficients ν

f
β j , ν

b
β j ≥ 0 for each component β in the forward and

backward directions, respectively. Each reaction j can then be summarized as

Q∑
β=1

ν
f
β j Nβ �

Q∑
β=1

νbβ j Nβ. (26)

Note that because chemical reactions conserve total mass, the stoichiometric coeffi-
cients must obey the condition

123



Gradient dynamics approach to reactive thin-film hydrodynamics Page 9 of 40     2 

Q∑
β=1

mβν
f
β j =

Q∑
β=1

mβνbβ j , (27)

where mβ is the mass per particle for component β. Equation (27) states that the total
mass of reactants and products must be identical. For instance, applying (27) to the
autocatalysis reaction (13) implies that themolecularmassesmust be equal. In addition
to conservation of the total massM = ∫V [m1n1 + m2n2] dV the total particle number
N = ∫

V [n1 + n2] dV is then also conserved, as already observed from Eqs. (14)–
(15). One should always take care that the particular choices of molecular masses
(whichmay, e.g., explicitly appear in some transport coefficients) and of stoichiometric
coefficients do not contradict mass conservation. In analogy to (21), we associate with
each reaction j , specified by (26), a detailed balanced mass action type kinetics

J j = J f
j − Jbj = r j

⎡
⎣exp

⎛
⎝
∑Q

β=1 ν
f
β j

δF
δnβ

kbT

⎞
⎠− exp

⎛
⎝
∑Q

β=1 νbβ j
δF
δnβ

kbT

⎞
⎠
⎤
⎦ , (28)

where r j > 0 is again the common rate function for both reaction directions and F is
the free energy (or any other appropriate thermodynamic functional). Note that (28)
can be expanded close to chemical equilibrium (A = ∑Q

β=1(ν
b
β j − ν

f
β j )

δF
δnβ

	 kbT )
to obtain a flux that is linear in the affinity A [58]. To demonstrate applicability to
spatially heterogeneous extended systems, we additionally assume diffusive transport
such that the total time evolution of the particle densities is given by

∂nα

∂t
=

Q∑
β=1

∇ ·
(
Lαβ∇ δF

δnβ

)
−

R∑
j=1

(ν
f
α j − νbα j )J j , (29)

where the diffusive coefficients Lαβ form a symmetric, positive (semi)-definite
matrix and ∇ = ( ∂

∂x , ∂
∂ y ,

∂
∂z )

T. Note that (29) conserves the total mass M =
∫
V

[∑Q
β=1 mβnβ

]
dV due to (27). In general, the total number of conserved quan-

tities is determined as Q− S, where S is the dimension of the stoichiometric subspace
S that is spanned by the vectors ν j = (να j ) = (ν

f
α j − νbα j ). Conserved quantities

are then given as linear combinations
∑

α cαnα , where c = (cα) are vectors in the
orthogonal complement of S, i.e., c · ν j = 0 for all j [90]. Since chemical reactions
conserve mass, this implies that particular behavior described for reaction-diffusion
systemswith conservation laws [91–99] ismost likely a better representation of generic
behavior than the more frequently investigated fully open reaction-diffusion systems
without any conservation law.

We next show that (29) constitutes a gradient dynamics. For the free energy F we
have
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dF

dt
=
∫
V

⎡
⎣

Q∑
β=1

δF

δnβ

∂nβ

∂t

⎤
⎦ d3r (30)

=
∫
V

⎡
⎣

Q∑
α,β=1

δF

δnβ
∇ ·
(
Lαβ∇ δF

δnα

)⎤
⎦ dV −

R∑
j=1

∫
V

⎡
⎣

Q∑
β=1

δF

δnβ
(ν

f
β j − νbβ j )J j

⎤
⎦ d3r (31)

= −
∫
V

⎡
⎣

Q∑
α,β=1

Lαβ

(
∇ δF

δnβ

)
·
(

∇ δF

δnα

)⎤
⎦ dV − kbT

R∑
j=1

∫
V
ln
(
J f
j /Jbj

)
J j d

3r (32)

= −
∫
V

⎡
⎣

Q∑
α,β=1

Lαβ

(
∇ δF

δnβ

)
·
(

∇ δF

δnα

)⎤
⎦ dV − kbT

R∑
j=1

∫
V
ln
(
J f
j /Jbj

)
(J f

j − Jbj ) d
3r (33)

≤ 0. (34)

From (30) to (31) we have used the time evolution equations (29). In (32), partial inte-
gration was performed on the first term assuming, e.g., no-flux boundary conditions.
The second term was re-expressed in (32) and (33) using Eq. (28). We stress that the
transformation from (31) to (32) requires a common rate function r j for each reaction
j and is therefore only possible for detailed balanced kinetics. The final inequality
follows from the positive definiteness of the transport matrix L = (Lαβ) and from
the inequality [ f (b) − f (a)] [b − a] ≥ 0 for any monotonic f if b ≥ a. We thus
conclude that any bounded F is a Lyapunov functional to the dynamics (29) with its
minimum corresponding to thermodynamic equilibrium.4 There exist several ways
to go beyond the described relaxational dynamics, i.e., to obtain sustained out-of-
equilibrium dynamics (e.g., oscillatory dynamics), as found in many active systems.
A common strategy consists of chemostatting one or several of the reactive compo-
nents, i.e., keeping them at a constant chemical potential [63, 101, 102]. This breaks
detailed balance (28) since, by rearranging the indices of the species, we can write the
fluxes as

J j = r j

⎡
⎣exp

⎛
⎝
∑Q′

β=1 ν
f
β j

δF
δnβ

+∑Q
β=Q′+1 ν

f
β jμβ,0

kbT

⎞
⎠

− exp

⎛
⎝
∑Q′

β=1 νbβ j
δF
δnβ

+∑Q
β=Q′+1 νbβ jμβ,0

kbT

⎞
⎠
⎤
⎦ (35)

= r̃ f
j exp

⎛
⎝
∑Q′

β=1 ν
f
β j

δF
δnβ

kbT

⎞
⎠− r̃ bj exp

⎛
⎝
∑Q′

β=1 νbβ j
δF
δnβ

kbT

⎞
⎠ , (36)

where Q′ is the number of nonchemostatted species and Q − Q′ is the number of
chemostatted species that are kept at the respective chemical potentials μβ,0. The
constant chemical potentials can be absorbed into the effective rates

4 For an analogous proof for the entropy production, see for example [100].
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r̃ f
j = r j exp

⎛
⎝
∑Q

β=Q′+1 ν
f
β jμβ,0

kbT

⎞
⎠ , (37)

r̃ bj = r j exp

⎛
⎝
∑Q

β=Q′+1 νbβ jμβ,0

kbT

⎞
⎠ , (38)

which are generally distinct such that the proof (30)–(34) breaks down. Alternatively,
one may directly break detailed balance by introducing different rates r f

j , rbj in the

forward and backward directions or by simply assuming irreversible reactions (rbj = 0
for some j). This may be appropriate, e.g., when treating active protein and enzymatic
reactions [7, 103, 104] or in open systems if the reaction products are immediately
removed. A combination of both strategies can be found in the construction of the
Brusselatormodel [105, 106],where the presence of irreversible reactions and assumed
constant concentrations of certain reactants lead to chemical oscillations. Finally, we
note that breaking the principle of detailed balance does not necessarily result inmodels
that allow for ‘active dynamics’. Even for (well-mixed) open systems, there exist wide
classes of mass action reaction networks with ‘complex balance’ that guarantees the
existence of a Lyapunov-function and a unique equilibrium point which, however,
does not coincide with thermodynamic equilibrium in general [90, 107, 108].

3.2 Reactive cross-couplings in nonideal systems

Having shown that fluxes of the form (28) result in a proper gradient dynamics,
they may now be used to incorporate chemical reactions into models of systems
with more complicated free energies and transport processes possibly resulting in
chemo-mechanical coupling. For nonideal systems, Eq. (28) then yields mass action
type kinetics with reactive fluxes that contain additional factors from nonideal or
even mechanical contributions to the chemical potentials. A common example com-
prises the interaction between chemical reactions and phase separation [63, 101, 109].
There, the free energy is amended, e.g., by adding Flory-Huggins-type interactions
between the different species [110, 111] as well as interface energies. In consequence,
the reactive fluxes additionally depend on the presence or absence of interfaces and
on the interaction parameters. In the context of reactive wetting, reactions may be
influenced by the proximity of the solid–liquid interface due to reactant-substrate
interactions which may become crucial in the contact line region. Examples include
effects of reactant-dependent wettability [16, 28–39] or of substrate-mediated con-
densation [112–114]. Also, for reactions of surface-active species (surfactants), the
reactive fluxes can depend on the shape of the liquid–gas interface, leading to an effec-
tive chemo-mechanical coupling. This may be relevant to systems studied, e.g., in [20,
115–117].
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4 Applications to reactive thin-film hydrodynamics

Next, we illustrate the gradient dynamics approach from Sect. 3.1 for two distinct
systems involvingwetting phenomena and chemical reactions that couple to interfacial
physics. For simplicity, we restrict ourselves to shallow drops and thin films of partially
wetting liquid on a flat, solid substrate. In particular, we consider mesoscopic models
that incorporate liquid-substrate interactions as a film heightdependent free energy
contribution (wetting energy) which vanishes for large film heights. The final model
equations then correspond to a leading-order long-wave expansion [11, 65] of the
respective mesoscopic Stokes problem and are strictly valid only for shallow drops
of heights in the nanometer to micrometer range, while qualitative agreement is also
expected for larger slopes. However, we also mention that the gradient dynamics
approach can naturally lead to improved thin-film models that go beyond leading
order, although not in an asymptotically rigorous sense [54, 118]. This could, e.g., be
utilized in the second considered model (Sect. 4.2).

In Sect. 4.1, we treat drops of a suspension (or solution) where the suspended
particles (or molecules) within the drop may adsorb onto the substrate and particles
on the substrate may desorb into the drop. The adsorbed particles in turn modify
the wettability of the substrate, leading to sustained running drops if the system is
driven by chemostatting. In Sect. 4.2, we treat drops of a simple liquid covered by two
species of insoluble surfactants which are continuously converted into each other by an
autocatalytic reaction. Additionally, the drop surface is in contact with a chemostatted
‘bath’ that acts as an external supply of surfactant. Marangoni fluxes then couple the
reactive surface dynamics to the liquid bulk. As the chemostat-induced driving force
is varied, we find, inter alia, Turing patterns of surfactant distributions, swaying and
breathing modes of self-excited drop oscillation as well as self-propelled drops. In
both cases, the gradient dynamics approach allows for thermodynamically consistent
modeling, including cross-couplings and nonideal energetic contributions.

4.1 Reactive wetting—drops driven by chemically sustained wettability gradients

As afirst example,we consider drops of a partiallywetting suspension (or solution) that
are situated on a flat, solid substrate (Fig. 1). The suspended particles (or molecules)
may adsorb from the drop onto the substrate and vice versa, thereby altering the wetta-
bility of the substrate. Here, we treat the case of an adsorbate that renders the substrate
less wettable. Similar systems have been studied experimentally and theoretically in
[16, 28–39] where it has been shown that the induced wettability gradient leads to self-
propelled drop motion. We assume that the occurring adsorption–desorption process
is appropriately described by the conversion reaction

A
r0� B, (39)

where A and B denote particles that are either suspended in the liquid or adsorbed
onto the substrate. The corresponding particle densities per unit volume of liquid and
per unit substrate area are given by a(�x, t) and b(�x, t), respectively. Note that for
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Fig. 1 Sketch of the considered geometry. A shallow drop of partially wetting suspension (or solution) is
situated on a flat solid substrate. The particles (or the solute) may adsorb from the drop onto the substrate
or desorb from the substrate into the drop, thus altering the wettability. The constant rate of this reaction
is given by r0 in both directions. Due to the (developing) wettability gradient, the drop moves with the
velocity v. The local film height of the drop is h(�x, t), the z-averaged local density of suspended particles
per unit liquid volume is a(�x, t) and the local density of adsorbed particles per unit substrate area is b(�x, t)

a meaningful representation in the thin-film geometry, a(�x, t) must correspond to a
z-averaged quantity. The reaction itself obeys the principle of detailed balance with
the constant rate r0. The local film height of the drop is h(�x, t).
With this system, we associate the free energy

F =
∫

�

[
f (h, b) + γ

2
|∇h|2 + hga(a) + gb(b) + h

σa

2
|∇a|2 + σb

2
|∇b|2

]
d2r ,

(40)
with integration over the system domain�. In (40), f denotes the adsorbate-dependent
wetting energy, γ denotes the constant surface tension of the liquid, ga and gb are
free energy contributions of A and B per unit liquid volume and unit substrate area,
respectively, and σa , σb denote interfacial stiffnesses that penalize gradients in a and
b. First, we compute the liquid pressure and the chemical potentials as variational
derivatives of (40). To this end, we observe that changes in the local particle number
of A do not exclusively correspond to changes in a(�x, t) in the thin-film geometry. This
can be seen by considering the particle number of A in a liquid column of infinitesimal
base area d�, which is given by

dA = ah · d� = â · d�, (41)

with â = ah. Because the substrate area is not subject to any dynamics (d� is con-
stant), Eq. (41) expresses a one-to-one correspondence between the particle number
of species A and the field â, i.e., all changes in dA translate to changes in â and vice
versa. Therefore, to compute the correct liquid pressure and chemical potentials, the
free energy must be varied with respect to h, b and â instead of a, as these fields
directly relate to respective changes in the local liquid volume and the local particle
numbers of B and A. The variations are then

p = δF

δh
= ∂h f − γ�h + ga − ag′

a + σa

2
|∇a|2 + σa

a

h
∇ · (h∇a) , (42)
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μa = δF

δâ
= g′

a − σa

h
∇ · (h∇a) , (43)

μb = δF

δb
= g′

b + ∂b f − σb�b, (44)

where g′
a and g

′
b are the univariate derivatives of ga and gb, respectively. The dynamic

equations then take on the gradient dynamics form

∂t h = ∇ ·
[
Qhh∇ δF

δh
+ Qha∇ δF

δâ
+ Qhb∇ δF

δb

]
, (45)

∂t â = ∇ ·
[
Qah∇ δF

δh
+ Qaa∇ δF

δâ
+ Qab∇ δF

δb

]
+ Jr , (46)

∂t b = ∇ ·
[
Qbh∇ δF

δh
+ Qba∇ δF

δâ
+ Qbb∇ δF

δb

]
− Jr , (47)

where the symmetric, positive definite transport matrix Q is

Q =
⎛
⎝

Qhh Qha Qhb

Qah Qaa Qab

Qbh Qba Qbb

⎞
⎠ =

⎛
⎜⎝

h3
3η

h2â
3η 0

h2â
3η

hâ2
3η + Daâ 0

0 0 Dbb

⎞
⎟⎠ , (48)

with the dynamic viscosity η and the diffusive coefficients Da and Db. Note that the
upper left 2 × 2-block in (48) directly corresponds to the transport coefficients of the
gradient dynamics formulation for thin films of mixtures and suspensions in the case
without slip at the substrate [75]. In consequence, only diffusive transport is possible
for species B (with mobility Dbb). The reactive flux of the adsorption–desorption
process is given by the detailed balanced kinetics

Jr = r(h)

(
exp

[
1

kbT

δF

δb

]
− exp

[
1

kbT

δF

δâ

])
. (49)

We assume that the rate function r(h) in (49) is film height-dependent to impose that
adsorption and desorption may only occur where the macroscopic drop is in contact
with the substrate. The rate takes the form

r(h) = r0 · ξ(h) = r0 · 1
2

[
1 + tanh

(
h − h0

δh

)]
, (50)

where r0 is the actual (constant) rate of the reaction and ξ(h) is a smooth step-like
function. The quantity h0 is chosen slightly larger than the thickness of the equilibrium
liquid adsorption layer (precursor film) and δh > 0 is a measure for the steepness of
the step that is chosen much smaller than the maximal drop height. Alternatively, the
wetting energymay be adapted in such a way that no solute enters the adsorption layer.
We stress that Eq. (50) conserves the gradient dynamics form, as (49) still expresses
detailed balanced kinetics.
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4.1.1 Reduced two-field model with chemostatting

In principle, the free energy (40) can be supplemented by specific choices for f , ga
and gb such that equations (45)–(47) describe the time evolution of a particular system.
However, here we further simplify (45)–(47) by assuming that species A within the
drop is kept at constant and uniform density a0 by means of chemostatting. This may
express that it is present in vast excess of what is needed to cover the substrate. Then,
Eqs. (45)–(47) reduce to the two-field description

∂t h = ∇ ·
[
h3

3η
∇ p

]
, (51)

∂t b = ∇ · [Dbb∇μb] − Jr , (52)

with the pressure

p = ∂h f − γ�h, (53)

and the chemical potential of B

μb = g′
b + ∂b f − σb�b. (54)

The reactive flux becomes

Jr = r(h)

(
exp

[
μb

kbT

]
− exp

[
μa,0

kbT

])
, (55)

with μa,0 as the chemostatted (uniform and constant) chemical potential of species A
where r(h) is still given by (50). In general, chemostatting breaks the gradient dynam-
ics form and results in active rather than thermodynamic behavior. However, in the
special case μa,0 = 0 there is no energetic influx associated with chemostatting and
dissipation remains unperturbed. In consequence, the system relaxes to thermody-
namic equilibrium (defined by the separate vanishing of all fluxes) and it can be
shown that Eqs. (51)–(52) then represent a gradient dynamics (see Appendix A.1).

4.1.2 Free energy choices

We now supplement the simplified model (51)–(52) with specific choices for f and
gb. The wetting energy is

f (h, b) = AH

(
1 + λ

b

b0

)
·
(

− 1

2h2
+ h3a

5h5

)
, (56)

where AH is the Hamaker constant, λ > 0 is a dimensionless proportionality factor,
b0 is some characteristic density of B and ha denotes the thickness of the equilibrium
liquid adsorption layer (precursor film). The choice (56) models a substrate that is
rendered less wettable by the adsorbate and thus corresponds to the regime of partial
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wetting since the spreading coefficient S∗ = f (ha, b) [9, 10, 68] is negative for all
b ≥ 0. Further, we employ the purely entropic local free energy

gb(b) = kbT b [ln (b/b0) − 1] , (57)

for species B. To study themodel numerically, Eqs. (51)–(52) are nondimensionalized,
see Appendix A.3.1. From here on, all symbols denote dimensionless quantities.

4.1.3 Numerical results

To elucidate some general features of the reduced model (51)–(52), we perform time
simulations of the nondimensional equations (A17)–(A18) using the finite-element
library oomph- lib [119] with periodic boundary conditions on the one-dimensional
domain � = [0, 2000]. Further details on the numerical methods are given in
Appendix B. We consider the passive (relaxational) case at μa,0 = 0 and the active
(chemostat-driven) case at μa,0 �= 0, while all other parameters are identical. In both
cases, we initialize the simulation with a symmetric drop profile and an asymmetric
concentration profile, i.e., we impose an initial wettability gradient. In the passive
case (see Fig. 2), we find that the drop initially moves away from its starting position
driven by the initial wettability gradient. However, it subsequently slows down due to
the equilibration of b (Fig. 2a). Note that also the wettability to the right of the drop
slowly decreases because B slowly diffuses outside the drop (and across the periodic
domain boundaries). In the final equilibrium state, the concentration of B is respec-
tively uniform inside and outside the drop with a steep gradient located in the contact
line region. The difference in coverage can be traced back to the reduced chemical
potential of B outside the drop due to the concentration-dependent wetting energy.
We note that the equilibrium value of b inside the drop is determined as ‘bare’ reac-
tive equilibrium, i.e., it must be unity in dimensionless units (dimensional b = b0).
The equilibration process is also visible in Fig. 2b that shows the dependence of the
advancing and receding contact angles on time. They approach the same equilibrium
value. As the system is passive, the free energy F decreases monotonically (Fig. 2c).5

Figure 3 shows an example for the active casewithμa,0 > 0. There,wefind continu-
ouslymovingdrops:After a short transient, the dropmoves along the substrate at nearly
constant speed maintained by the self-sustained wettability gradient across its length.
Note that the drop’s center-of-mass velocity v slightly decreases with time (Fig. 3d)
due to slow diffusion of b across the periodic domain boundaries which reduces the
wettability in front of the drop.6 The advancing and receding dynamic contact angles
(θa and θr ) differ when the dropmoves (Fig. 3c) with the difference slightly decreasing
with time due to the mentioned diffusion. In contrast to the passive case, after the tran-
sient the free energy increases approximately linearly with time (Fig. 3e). Considering
the rate of energy influx due to the chemostat Rchem and the dissipation rate Rdiss (an

5 While we only show part of the time evolution of the free energy, we have checked that F always decreases
until the final equilibrium state is reached.
6 A similar effect occurs for no-flux boundary conditions, where some B diffuses in front of the drop. For
boundary conditions which allow for constant v, see [33].
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Fig. 2 a Snapshots of the film height profile h and the adsorbate density profile b at different times in
the relaxational case at μa,0 = 0. The drop first moves away from its initial position because initially
at t = 0 an asymmetric wettability profile is imposed via b(x, 0). Then, the drop slows down due to the
equilibration of b. As equilibrium is approached, b becomes respectively uniform inside and outside of
the drop with interfaces in b in the contact line regions. b Dependence of the tangents of the advancing
(solid line) and receding (dashed line) contact angles on time. Starting with an initially symmetric drop,
the initial wettability gradient causes a difference in contact angles, with θa < θr . At the final equilibrium,
θa = θr . c The free energy F decreases monotonically with time since the system is passive. The remaining
parameters are W = 1, λ = 0.5, r0 = 0.0025, Db = 0.001, h0 = 2 and δh = 0.3. Only part of the
computational domain � = [0, 2000] is shown

Fig. 3 Space-time plots illustrating the time evolution of a the film height profile h and b the adsorbate
density profile b in the active case at μa,0 = ln 6. The drop first moves due to an initial asymmetric
wettability profile. After a short transient, the drop moves across the substrate at constant speed while
self-sustaining the driving wettability gradient. c Dependence of the tangents of the advancing (solid line)
and receding (dashed line) contact angles on time. After the acceleration phase, both contact angles remain
distinct while the difference very slowly decreases. d Dependence of the drop’s center-of-mass velocity v

on time. After the initial transient, v slowly decreases due to adsorbate diffusion. e The free energy F first
shows a transient. Then, when the drop has reached its constant speed, F increases linearly. f Shown are the
corresponding energy rates associated with dissipation Rdiss (dashed line) and chemostatting Rchem (solid
line). Note that Rdiss ≥ 0 per definition. After the transient, the chemostat supplies energy at constant rate
while the system constantly dissipates energy. The remaining parameters are as in Fig. 2. The computational
domain is � = [0, 2000]
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energy outflux) during the sustained dropmotion (Fig. 3f, also seeAppendixA.2), both
rates are roughly constant since there is a continuous turnover of suspended particles.
Namely, the chemostat replaces particles in the drop that adsorb onto the substrate.
Since the wettability profile across the drop remains roughly stationary in the comov-
ing frame, the chemostat must supply energy at a constant rate. Similarly, energy is
dissipated at a constant rate. Therefore, because chemostatting outweighs dissipation
(Rchem > Rdiss), the free energy increases linearly, reflecting the continuous coating
of the substrate. Strikingly, the relative difference (Rchem − Rdiss)/Rchem between the
rates of chemostatting and dissipation is less than five percent, i.e., only a small part
of the energy from the chemostat remains in the system while a much larger part is
immediately dissipated.

4.2 Reactive surfactants—sessile drops covered by autocatalytic surfactants

Our second example are shallow drops of partially wetting liquid that are covered
by two species of insoluble reactive surfactants (Fig. 4). In general, systems involv-
ing reactive surfactants are usually treated starting from a hydrodynamic perspective
where chemical reactions are added in an ad hoc manner [13, 40, 44, 115, 120, 121].
Here, we employ the described gradient dynamics approach to model the interplay
between autocatalytic chemical reactions, Marangoni effects and wetting physics in
a thermodynamically consistent manner, i.e., with an appropriate passive limit. In
particular, we assume that the two species engage in the autocatalytic reaction

2�1 + �2 � 3�1, (58)

where �1 and �2 denote the particle densities of the two species (particles per
unit interface area). Additionally, we allow for surfactant exchange with an external
chemostatted ‘bath’.

The free energy of the system is given by

F =
∫

�

[ f (h) + ξg(�1, �2)] d
2r , (59)

where f (h) is the wetting energy and g(�1, �2) is the energy density of the surfactant-
covered free surface. For simplicity, here, we neglect a possible surfactant dependence
of the wetting energy and, similarly, a dependence of the surface energy on the film
height [122]. Note that we use the exactmetric factor ξ = √1 + |∇h|2 and not its long-
wave approximation that was used in Sect. 4.1. To compute the correct pressure and
chemical potentials from F we need to identify the independent fields that correspond
to the local liquid volume and the local particle numbers of surfactant in a small
liquid column. In analogy to the argument in Sect. 4.1 for the bulk concentration, the
independent fields are the local film height h and the projected densities �̃α = ξ�α

(particles per unit substrate area) with α = 1, 2. For further discussion, we refer to
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Fig. 4 Sketch of the considered geometry. A shallow drop of a partiallywetting liquid on a flat solid substrate
is covered by two species of insoluble surfactant which engage in an autocatalytic conversion reaction.
Additionally, the two species are in contact with an external bath that acts as a chemostat and exchanges
surfactant with the drop surface (Jex). The film height profile is described by h and the surfactant density
profiles on the film surface by �1 and �2. For a gradient dynamics description, the densities have to be
projected onto the substrate plane where the projected densities are �̃α = ξ�α with α = 1, 2. Here, ξ is
the metric factor of the film surface

[52, 74]. The resulting pressure and chemical potentials are

p = δF

δh
= ∂h f − ∇ ·

[
1

ξ

(
g − �1∂�1g − �2∂�2g

)∇h

]
, (60)

μα = δF

δ�̃α

= ∂�αg, (61)

respectively. The coupled time evolution equations are

∂t h = ∇ ·
[
Qhh∇ δF

δh
+ Qh�1∇

δF

δ�̃1
+ Qh�2∇

δF

δ�̃2

]
, (62)

∂t �̃1 = ∇ ·
[
Q�1h∇

δF

δh
+ Q�1�1∇

δF

δ�̃1
+ Q�1�2∇

δF

δ�̃2

]
+ Jr + Jex,1, (63)

∂t �̃2 = ∇ ·
[
Q�2h∇

δF

δh
+ Q�2�1∇

δF

δ�̃1
+ Q�2�2∇

δF

δ�̃2

]
− Jr + Jex,2, (64)

where the symmetric positive definite mobility matrix is given by

Q =
⎛
⎝

Qhh Qh�1 Qh�2

Q�1h Q�1�1 Q�1�2

Q�2h Q�2�1 Q�2�2

⎞
⎠ =

⎛
⎜⎜⎝

h3
3η

h2�1
2η

h2�2
2η

h2�1
2η

h�2
1

η
+ D1�1

h�1�2
η

h2�2
2η

h�1�2
η

h�2
2

η
+ D2�2

⎞
⎟⎟⎠ . (65)

It represents a straightforward generalization of the mobilities for the single-surfactant
case [74] and contains advective anddiffusive contributions.Here, Dα > 0 are constant
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diffusive mobilities. For the reactive flux, we have

Jr = r

[
exp

(
2

kbT

δF

δ�̃1
+ 1

kbT

δF

δ�̃2

)
− exp

(
3

kbT

δF

δ�̃1

)]
, (66)

where r > 0 is the constant rate. For simplicity, the surfactant exchange with the
external chemostatted bath is assumed to be proportional to the chemical potential
difference between the surfactants on the film and in the bath, i.e.,

Jex,1 = −β1

(
δF

δ�̃1
− μ0,1

)
= −β1

δF

δ�̃1
− βμ, (67)

Jex,2 = −β2

(
δF

δ�̃2
− μ0,2

)
= −β2

δF

δ�̃2
+ βμ. (68)

Here, βα > 0 are transition rates for the transfer between the ambient bath and the film
surface and theμ0,α are the imposed chemical potentials of the two species in the bath.
Here, we restrict our attention to part of the possible parameter space by assuming
the two terms βαμ0α to be equal in magnitude (given by βμ) and opposite in sign.
With βμ > 0 and the sign choices as in (67)–(68), �1 tends to transfer from the film
surface to the bath, with an inverse tendency for �2. The parameter βμ then represents
the sustained nonequilibrium driving force of the chemostat. For βμ = 0 there is no
energy flux in or out of the system associated with chemostatting. In this case, the
system is passive and equations (62)–(64) again represents a gradient dynamics.

Since the dynamic equations are expressed in terms of the projected densities,
the nonconserved terms explicitly depend on the metric factor of the free surface.
This corresponds to a basic form of geometry-induced chemo-mechanical coupling
which, here, leads to an overall slowing-down of the reaction flux (66) on the convex
drop surface. While the metric factor only weakly deviates from unity in the long-
wave limit and can then often be neglected, on strongly curved surfaces and in bulk
fluids chemo-mechanical couplings can give rise to pattern forming instabilities and
sustained oscillations/motion [123–126].

4.2.1 Free energy choices and further simplifications

Starting from the gradient dynamics form (62)–(64), we now supplement the model
with specific energies and introduce further simplifications.We assume that the surfac-
tant species only sparsely cover thefilmsurface, implyingpurely entropic contributions
to the surface free energy, i.e.,

gs (�1, �2) = γ 0 + kbT �1

[
ln
(
�1a

2
1

)
− 1
]

+ kbT �2

[
ln
(
�2a

2
2

)
− 1
]
. (69)

Here, γ 0 is the surface tension of the bare surface and a1, α2 > 0 are characteristic
length scales of the two surfactants. Additionally, we use the simple wetting energy

f (h) = AH

(
− 1

2h2
+ h3a

5h5

)
, (70)
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where AH is the Hamaker constant and ha is the equilibrium adsorption layer height
(precursor thickness), corresponding to the minimum of f (h). Again, we consider the
case of partial wetting, i.e., of negative spreading coefficient S∗ = f (ha) < 0 [9, 10,
68]. The resulting pressure and chemical potentials are

p = ∂h f − ∇ ·
[
1
ξ

(
γ 0 − kbT �1 − kbT �2

)
∇h
]
, (71)

μα = kbT ln(�αa
2
α). (72)

Finally, we assume that ξ ≈ 1, i.e., we transition from the full-curvature formulation
to the long-wave limit (||∇h|| 	 1). We further assume that the changes in surface
tension due to the presence of surfactant are small compared to γ 0. Then the pressure
reduces to

p = ∂h f − γ 0�h. (73)

This approximation does not affect theMarangoni flows but only simplifies theLaplace
pressure. It is commonly used when considering Marangoni effects [11, 65]. The
resulting time evolution equations are

∂t h = ∇ ·
[
h3

3η
∇ p

]
+ kbT∇ ·

[
h2

2η
∇�1

]
+ kbT∇ ·

[
h2

2η
∇�2

]
, (74)

∂t�1 = ∇ ·
[
h2�1

2η
∇ p

]
+ kbT∇ ·

[(
h�1

η
+ D1

)
∇�1

]
+ kbT∇ ·

[
h�1

η
∇�2

]

+ r

[(
�1a

2
1

)2 (
�2a

2
2

)
−
(
�1a

2
1

)3]− β1kbT ln(�1a
2
1) − βμ, (75)

∂t�2 = ∇ ·
[
h2�2

2η
∇ p

]
+ kbT∇ ·

[
h�2

η
∇�1

]
+ kbT∇ ·

[(
h�2

η
+ D2

)
∇�2

]

− r

[(
�1a

2
1

)2 (
�2a

2
2

)
−
(
�1a

2
1

)3]− β2kbT ln(�2a
2
2) + βμ. (76)

To numerically study the model, we nondimensionalize (74)–(76). The rescaled
model as well as details on the choice of scales and dimensionless parameters can be
found in Appendix A.3.2. In the following, all symbols denote dimensionless quanti-
ties.

4.2.2 Numerical results

Wenow show a few typical features of chemo-mechanical drop dynamics described by
Eqs. (74)–(76). We focus on two-dimensional drops, i.e., one-dimensional substrates,
and analyze the nondimensional model (A30)–(A32) given in Appendix A.3.2. In
our analysis we use numerical path continuation, employing the continuation package
pde2path [127], supplemented by time simulations obtained with the finite-elements
library oomph- lib [119]. The latter are used to obtain starting states needed to initiate
the continuation of time-periodic states and to study states that are not easily accessible
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Fig. 5 a Partial bifurcation diagram for drop states in dependence of the chemostat driving strength βμ.
The solution measure corresponds to the norm ||h||2. Shown are branches of linearly stable states (solid
lines) and directly related sections of the branches of unstable states (dashed lines). The horizontal black
line represents the base state - the simple resting drop with homogeneous surfactant concentration. Cyan
lines correspond to steady drops with localized surfactant Turing-like patterns, orange lines are branches
of steadily traveling drops and purple ones represent standing wave-like drop oscillations. Labeled filled
circles denote selected states shown in Fig. 6. b Magnifies the region where a supercritical drift-pitchfork
bifurcation occurs resulting in the emergence of the first two branches of traveling drops (left- and right
traveling, otherwise identical states). The corresponding drop velocities v are given in c for the entire branch.
The remaining parameters are W = 3, δ = 1, D1 = 1.4, D2 = 0.1, r = 0.8, β1 = 1 and β2 = 0.5

by continuation. Further details are given inAppendix B.2. For the bifurcation diagram
we use as solution measure the L2-norm of the film height

||h||2 =
√

1

L

∫ L/2

−L/2
h2 dx, (77)

with the domain size L . For time-periodic states we use the time-averaged norm
1/T

∫ T
0 ||h||2dt , where T is the temporal period.Weuse the chemostat driving strength

βμ as main control parameter and investigate how the drop behavior changes as
the system is driven further away from thermodynamic equilibrium. Most results
are obtained for a periodic domain of size L = 100 and a drop volume of V =∫ L/2
−L/2 h dx ≈ 816, corresponding to small drops with a maximal height of about 20
times the adsorption layer height. In the bifurcation diagram we indicate different
bifurcations using the specific symbols listed in Table 1.

Figure 5a shows the resulting bifurcation diagram in dependence of the driving
strength βμ. Only a selected part of the rich structure is shown, namely, branches of
linearly stable resting, traveling and oscillating drop states and relevant sections of
directly related branches of unstable states. For clarity, we do not show less relevant
branches of unstable states. Selected corresponding drop and concentration profiles
are given in Fig. 6.
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Fig. 6 a Selected profiles of the film height h (solid lines) and the surfactant�1 (dashed lines) corresponding
to steady (P1 to P3) and traveling (T1) drop states at the respective points marked in Fig. 5a. The steadily
traveling drop is shown in the comoving frame with speed v, the arrow indicates the direction of travel.
b, c Corresponding profiles of standing wave-like drop-surfactant oscillations at different times within one
temporal period at the points H1 and H2 in Fig. 5a. The periods are b T ≈ 10.58 and c T ≈ 20.71

Table 1 Summary of the symbols used to mark different bifurcation types

Symbol Base branch Bifurcation type

◦ Steady state Pitchfork

♦ Steady state [standing wave] Hopf [torus]

� Steady state Drift-pitchfork

The horizontal line in Fig. 5a corresponds to the base state—a simple resting sessile
dropwith homogeneous surfactant concentration. It is the only shown state that already
exists in the passive limit (βμ = 0). As βμ is increased, the simple drop becomes
unstable in a double pitchfork bifurcation where two branches of unstable steady drop
states with localized Turing-like surfactant patterns emerge subcritically (cyan lines).
The first patterned branch (once unstable) is then rendered linearly stable in a saddle-
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Fig. 7 Profiles of the film height h (solid lines) and surfactant �1 (dashed lines) of standing wave-like
drop-surfactant oscillations corresponding to a a stable breathing mode and b an unstable swaying mode at
different times within one temporal period. The parameters are (a)W = 4, δ = 1, D1 = 2, D2 = 0.15, r =
1.1, β1 = 6, β2 = 1 and βμ = 5.3992 for a drop volume V ≈ 816 and domain size L = 100, and b
W = 1.504, δ = 1, D1 = 4, D2 = 0.3, r = 1.2, β1 = 6, β2 = 1 and βμ = 5.7868 for V = 720 and
L = 120. The periods are a T ≈ 6.04 and b T ≈ 9.28

node bifurcation and shortly after is again destabilized at a drift-pitchfork bifurcation
(filled triangle) [128, 129]. There, a pair of branches of steadily traveling drops emerges
(orange line) that connect thefirst patternedbranch to the secondone (doubly unstable).
The corresponding drop velocities are given in Fig. 5c. Note that the traveling drops are
mostly stable states but become unstable in a saddle-node bifurcation shortly before
they connect to the second patterned branch in another drift-pitchfork bifurcation, see
Fig. 5b. Beyond this bifurcation, the second patterned branch stabilizes in a saddle-
node bifurcation, remains linearly stable for an extended βμ-range, before it becomes
unstable at a Hopf bifurcation, and is here not further discussed. There, a branch of
time-periodic states emerges that correspond to standing wave-like oscillations.7 The
stable oscillatory state (H1) is illustrated in Fig. 6b. The oscillation in the surfactant
pattern is relatively weak and the one of the drop shape is not visible on the scale
of the figure, indicating a weak coupling between chemical reactions and bulk liquid.
Remarkably, there exists a range of driving strengthswhere the simple drop branch, the
second patterned branch and the branch of steadily traveling drops are simultaneously
linearly stable.

7 Due to the relaxed numerical tolerance and mesh resolution necessary for the continuation of this branch,
its end does not exactly match the location of the Hopf point of the branch of steady patterns. However, we
have checked that the profiles and periods match at the bifurcation and have therefore shifted the L2-norm
of the branch by 0.00165 for presentational purposes.
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Fig. 8 a Series of drop profiles at times t0 to t5 depicting drop expansion and contraction for a stable
modulated traveling wave-like ‘crawling’ drop-surfactant state in the laboratory frame at W = 7, D1 =
1.3, D2 = 0.1, δ = 1, r = 0.8, β1 = 1.4, β2 = 0.7, βμ = 2.2, V ≈ 816, L = 100. b The L2-norm

||ψ ||2 =
√
1/L

∫ L
0

(
h2 + p2 + �2

1 + �2
2

)
dx as a function of time. Because the L2-norm is invariant

w.r.t. state translation, the observed modulated traveling wave results in time-periodic behavior. Markers
represent the drop profiles from a

Time simulations at larger values of βμ also result in time-periodic states with
noticeable surfactant-bulk coupling (cf. state H2 in Fig. 5a, profiles in Fig. 6c) lead-
ing to left-right symmetric drop oscillations, i.e., a breathing mode. Following the
corresponding branch by continuation, we find that it destabilizes in a saddle-node
bifurcation at a smaller value of βμ and in a torus bifurcation at a larger βμ. The
emerging linearly stable quasi-periodic drop-surfactant oscillations are also found in
time simulations initialized just beyond this bifurcation (not shown).

Despite its already rather complex structure, the bifurcation diagram in Fig. 5a
contains general features that are also found at stronger surfactant-bulk coupling,
however, within much more involved bifurcation structures (not shown). Seemingly
universal key elements are the emergence of patterned surfactant branches in double
pitchfork bifurcations from the simple drop branch, the pairwise interconnection of
these patterned branches by branches of steadily traveling drops as ‘rung states’ and
the virtually exclusive existence of quasi-periodic states at large driving strengths.
Furthermore, in general, we find twomodes of drop oscillation, breathing and swaying
drops, which are illustrated in Fig. 7. For breathing modes (Fig. 7a), the film height
profile and the surfactant distributions are left-right symmetric at all times. Swaying
modes (Fig. 7b) are generally antisymmetric, i.e., film height and surfactant profiles
that are offset by half a temporal period are related by reflection. Both modes normally
emerge in Hopf bifurcations. Lastly, in time simulations we also find stable modulated
traveling drops that represent amore complicated formof transport (Fig. 8). Such states
may for instance emerge from drift-pitchfork bifurcations of standing wave-like states
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or from Hopf bifurcations of steadily traveling drop states. In time simulations, the
drop begins to drift after an initial spontaneous breaking of the left-right symmetry and
it oscillates asymmetrically while moving. In the case of Fig. 8a, the drop periodically
flattens and forms a large protrusion in the direction of propagation and subsequently
contracts again to a cap-like shape, resulting in net movement of the whole drop. The
periodicity in the comoving frame is best appreciated in the dependence of the L2-

norm ||ψ ||2 =
√
1/L

∫ L
0

(
h2 + p2 + �2

1 + �2
2

)
dx on time (Fig. 8b). This measure is

minimal and maximal when the drop’s protrusion is at maximal length (fully flattened,
see t3 in Fig. 8a) and when the drop is nearly cap-like (fully contracted, see t0, t5 in
Fig. 8a), respectively.

5 Conclusion

We have introduced a way to write reactive mesoscopic hydrodynamics (reactive
thin-film models) in gradient dynamics form. On the one hand, this thermodynam-
ically consistent description models passive processes where the system ultimately
approaches thermodynamic equilibrium. On the other hand, it allows for a controlled
introduction of persistent nonequilibrium driving by making the dynamical couplings
nonreciprocal (breaking the Onsager relations of transport coefficients and introduc-
ing indefinite transport matrices [130, 131], breaking detailed balance of chemical
reactions [103, 104]) or by chemostatting certain reactant species [63, 101, 102]. One
could also render the interactions nonreciprocal by introducing driving force terms
that cannot be derived from an energy functional [132–136].

To introduce the general gradient dynamics formwe have first briefly reviewed how
thin-film equations without chemical reactions can be written as gradient dynamics
in the framework of linear nonequilibrium thermodynamics. Next, we have reviewed
how chemical reactions governed by detailed balance are brought in gradient dynamics
form, however, this time employing nonlinear nonequilibrium thermodynamics. Then,
we have combined the linear approach for transport processes (and possibly simple
transfer processes between phases)with the nonlinear approach for chemical reactions.
The resulting rather general model may be employed to describe various phenomena
that involve the physics ofwetting for simple or complex liquids and chemical reactions
that couple to interface dynamics.

In particular, we have illustrated the gradient dynamics form for chemical reac-
tions first for a single reaction with mass action kinetics in a spatially homogeneous
system. By re-expressing the reaction rates via the chemical potentials and introduc-
ing the principle of detailed balance from simple thermodynamic considerations, we
have motivated a well-known form of mass action type kinetics. The approach cor-
responds to a gradient dynamics with nonlinear relations between the variations of
the underlying energy functional and the thermodynamic fluxes. Active and sustained
out-of-equilibrium dynamics can then be obtained by breaking the detailed balanced
structure of the kinetics. This may, for instance, be achieved by chemostatting certain
reactant species or by directly assuming different rate functions for the forward and
backward reactions (e.g., for irreversible reactions).
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The gradient dynamics form retains its thermodynamic consistency even for non-
ideal systems. This naturally leads to modifications of standard mass action reaction
kinetics when nonideal contributions to the energy functional are present. In this way,
a wide variety of cross-couplings between chemical reactions and fluid-mechanical
phenomena may be captured. Here, we have focused on the combination of chemical
reactions and wetting physics.We have demonstrated the usefulness of the approach at
the example of two mesoscopic hydrodynamic models for shallow drops of partially
wetting liquid on homogeneous rigid solid substrates—describing reactive wetting
and reactive surfactants.

First, we have considered active wetting: drops of solutions or suspensions where
the suspended particles may adsorb from the drop onto the substrate or desorb from
the substrate into the drop, thereby altering the substrate’s wettability. In this case,
one finds that the adsorption–desorption process is influenced by the proximity of
the contact line due to interactions between the adsorbed particles and the substrate.
At thermodynamic equilibrium, this leads to an additional interface between regions
with different but respectively homogeneous adsorbate coverage that is located in
the contact line region. When driving the system, e.g., by chemostatting the solute
within the drop, the drop may perpetually move across the substrate while rendering
the underlying substrate less wettable. Such drops driven by chemically sustained
wettability gradients had already been experimentally and theoretically studied [16,
28–39]. Here, we recover these results with a model based on a gradient dynamics
form where controlled chemostatting allows to quantify the ‘distance from a passive
situation’.

Second, we have considered reactive surfactants: sessile drops of simple liquids
are covered by two species of insoluble surfactant which engage in an autocatalytic
conversion reaction. Bringing the surfactants on the free surface additionally in con-
tact with a chemostat, i.e., a vast ‘surfactant bath’, a through-flow of energy and mass
is introduced. Systems involving reactive surfactants had already been modeled in an
ad hoc manner, e.g., for liquid film flows in [13, 44]. Here, employing the developed
gradient dynamics description, we have found the emergence of a geometry-induced
chemo-mechanical coupling resulting from the interdependence of the autocatalytic
reaction and the free surface geometry that is known to result in chemo-mechanical
instabilities on strongly curved surfaces [123, 124]. Note, however, that this effect
vanishes when employing a long-wave approximation as a final step of the deriva-
tion, as we have done here. However, the reactive surfactant dynamics still couples
to the liquid bulk within the drop via solutal Marangoni forces. Focusing on the
chemostatted out-of-equilibrium case, we have used numerical path continuation and
time simulations to determine the rather complex bifurcation structure that shows how
increasingly complex modes of motion emerge with increasing chemostatic driving
strength. Described examples include steady localized Turing-like patterns of surfac-
tants, self-excited breathing and swayingmodes of standingwave-like droposcillations
as well as stationary and time-periodic self-propelled drop motion. The latter repre-
sents a modulated traveling wave-like behavior and the observed periodic emergence
and disappearance of advancing protrusions might be seen as a primitive model of
cell propulsion where time-periodic protrusion dynamics can also be observed [137].
Further, it is remarkable that the bifurcation structure shows features that are quite
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similar to the snaking of localized states described for the Swift-Hohenberg equation
[138] and its mass conserving equivalent, the phase-field-crystal (PFC) model [139].
However, in contrast to these cases, here, the localization is caused by the finite drop
extension that limits the region where Turing patterns can develop. This should be
further scrutinized in the future.

The presented general framework for the gradient dynamics-based description of
reactive thin-film hydrodynamics can be easily adapted to many related situations
and systems by incorporating other contributions to the energy such as interaction
terms between surfactants (e.g., to account for surfactant phase transitions [140]) or
by adapting the mobilities to account for other transport channels. In the case of our
second example, one could introduce film height-dependent rate functions [mobilities]
in the nonconserved [conserved] part of the dynamics (62)–(64) to suppress surfactant
reactions [diffusion] in the ultrathin adsorption layer outside the drop. Finally, although
we have restricted ourselves to mesoscopic hydrodynamic models for the description
of sessile drops, we stress that the presented gradient dynamics approach may also be
employed in many other systems where chemical reactions and fluid flows interact.

Appendix A: Supplemental calculations

A.1 Gradient dynamics form of the reduced two-field model for�a,0 = 0

Here we show that the reduced model (51)–(52) is a gradient dynamics for μa,0 = 0
as stated in Sect. 4.1.1. First, we introduce the (reduced) free energy

F =
∫

�

[
f (h, b) + γ

2
|∇h|2 + gb(b) + σb

2
|∇b|2

]
d2r , (A1)

and use it to obtain the liquid pressure and the chemical potential of B as

p = δF

δh
= ∂h f − γ�h, (A2)

μb = δF

δb
= g′

b + ∂b f − σb�b. (A3)

We can then re-express (51)–(52) as

∂t h = ∇ ·
[
Qhh∇ δF

δh

]
, (A4)

∂t b = ∇ ·
[
Qbb∇ δF

δb

]
− Jr , (A5)

where

Q =
(
Qhh 0
0 Qbb

)
=
(

h3
3η 0
0 Dbb

)
, (A6)
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is again a symmetric, positive (semi-)definitematrix. Therefore, the transport processes
only lead to a reduction of the free energy. For the chemical reaction with μa,0 = 0,
we have the reactive flux

Jr = r(h)

[
exp

(
δF/δb

kbT

)
− 1

]
= r(h) [X − 1] , (A7)

where X = exp
(

δF/δb
kbT

)
. We now show that this flux is purely dissipative. To this end,

we consider the change in F due to reactive processes

(
dF

dt

)

react
=
∫

�

δF

δb
(−Jr ) d

2r (A8)

= −kbT
∫

�

r(h)(ln X) (X − 1) d2r (A9)

≤ 0. (A10)

Here, we have only used the definitions of Jr and X . The final inequality follows from
the inequality (ln X)(X−1) ≥ 0.Wenote that this inequality does not hold for themore
general expression (ln X)(XX0), i.e., for μa,0 �= 0. Therefore, as thermodynamics
suggests, Eqs. (51)–(52) only represent a gradient dynamics for μa,0 = 0.

A.2 Computation of energetic influx and dissipation for�a,0 �= 0

In Sect. 4.1.3 we have discussed the rates of dissipation and of energetic influx from
the chemostat for μa,0 �= 0 in the reduced model (51)–(52). Here, we briefly show
how to compute these quantities by comparison with the passive case μa,0 = 0. To
this end, we compute the total change in free energy due to reactions for μa,0 �= 0

(
dF

dt

)

react
=
∫
�

δF

δb
(−Jr ) d

2r (A11)

= −kbT
∫
�
r(h) ln X

[
X − exp

(
μa,0

kbT

)]
d2r (A12)

= −kbT
∫
�
r(h) ln X [X − 1] d2r

︸ ︷︷ ︸
≤0

+ kbT
∫
�
r(h) ln X

[
exp

(
μa,0

kbT

)
− 1

]
d2r

︸ ︷︷ ︸
=Rchem

. (A13)

Here, we have again used X = exp
(

δF/δb
kbT

)
and the definition (A7) for Jr . In line

(A13), we have separated the purely dissipative contributions known from the passive
case in Appendix A.1. We then identify

Rchem = kbT
∫

�

r(h) ln X

[
exp

(
μa,0

kbT
− 1

)]
d2r . (A14)

Note that Rchem may be positive or negative, i.e., the chemostat may be an energetic
source or sink. If one chooses μa,0 > 0, however, we usually find Rchem > 0 after
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brief initial transients since then there is an energetic cost associated with replacing
particles of species a that adsorb onto the substrate. We now obtain the dissipation
rate Rdiss from dF/dt = −Rdiss + Rchem, where dF/dt is the total derivative of F .
Note that we have Rdiss ≥ 0.

A.3 Details on nondimensionalization

A.3.1 Drops driven by chemically sustained wettability gradients

We here briefly describe the derivation of the nondimensional version of Eqs. (51)–
(52). For the nondimensionalization, we introduce the scales

(x, y) = L(x̃, ỹ) h = lh̃ t = τ t̃ b = b0b̃, (A15)

with the scaling factors

L = l

√
γ

kbT b0
l = ha τ = L2η

hakbT b0
. (A16)

Dimensionless quantities are denoted by tildes. The dimensionless time evolution
equations then take the form

∂t̃ h̃ = ∇̃ ·
[
h̃3

3
∇̃ p̃

]
, (A17)

∂t̃ b̃ = ∇̃ ·
[
D̃bb̃∇̃μ̃b

]
− J̃r , (A18)

with the nondimensional pressure and chemical potentials given as

p̃ = W ·
(
1 + λb̃

)
·
(

1

h̃3
− 1

h̃6

)
− �̃h̃, (A19)

μ̃b = ln b̃ + λW

(
− 1

2h̃2
+ 1

5h̃5

)
− σ̃b�̃b̃. (A20)

and with
J̃r = r̃(h̃)

[
exp (μ̃b) − exp

(
μ̃a,0

)]
, (A21)

where the rate function is given by

r̃(h̃) = r̃0ξ(h̃). (A22)

The remaining dimensionless quantities are

W = AH

h2ab0kbT
, (A23)
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σ̃b = b0
L2kbT

σb, (A24)

D̃b = τkbT

L2 Db, (A25)

r̃0 = τ

b0
r0, (A26)

μ̃a,0 = 1

kbT
μa,0, (A27)

where the wettability parameter W describes the ratio of wetting energy to entropic
substrate adsorbate contributions. In the main text, tildes denoting nondimensional
quantities are omitted.

A.3.2 Sessile drops covered by insoluble autocatalytic surfactants

We here briefly summarize the nondimensionalization of Eqs. (74)–(76). To this end,
we introduce the scales

t = τ t̃, (x, y) = L(x̃, ỹ), h = lh̃, �α = a1a2�̃α ( f , gs) = κ( f̃ , g̃s),
(A28)

where dimensionless quantities are denoted by tildes. The respective scales are chosen
as

τ = L2η

κl
, L =

√
γ 0

κ
l, l = ha, κ = kbT

a1a2
. (A29)

Note that for this particular choice of scales the long-wave approximation L 
 l
simplifies to γ 0 
 kbT

a1a2
. Therefore, neglecting surfactant contributions to the capillary

pressure, as done in (73), is consistent with the present scaling. The nondimensional
equations are now given by

∂t̃ h̃ = ∇̃ ·
[
h̃3

3
∇̃
[
W

(
1

h̃3
− 1

h̃6

)
− �̃h̃

]]
+ ∇̃ ·

[
h̃2

2
∇̃�̃1

]
+ ∇̃ ·

[
h̃2

2
∇̃�̃2

]
, (A30)

∂t̃ �̃1 = ∇̃ ·
[
h̃2�̃1

2
∇̃
[
W

(
1

h̃3
− 1

h̃6

)
− �̃h̃

]]
+ ∇̃ ·

[(
h̃�̃1 + D̃1

)
∇̃�̃1

]
+ ∇̃ ·

[
h̃�̃1∇̃�̃2

]

+ r̃
[
δ�̃2

1 �̃2 − δ3�̃3
1

]
− β̃1 ln(�̃1δ) − ˜βμ, (A31)

∂t̃ �̃2 = ∇̃ ·
[
h̃2�̃2

2
∇̃
[
W

(
1

h̃3
− 1

h̃6

)
− �̃h̃

]]
+ ∇̃ ·

[
h̃�̃2∇̃�̃1

]
+ ∇̃ ·

[(
h̃�̃2 + D̃2

)
�̃2

]

− r̃
[
δ�̃2

1 �̃2 − δ3�̃3
1

]
− β̃2 ln(�̃2δ

−1) + ˜βμ. (A32)

Here, the dimensionless wettability parameter

W = AHa1a2
h2akbT

, (A33)
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expresses the ratio ofwetting energy to surfactant energy.The remainingdimensionless
quantities are

δ = a1
a2

, (A34)

D̃α = ηa1a2
ha

Dα, (A35)

r̃ = τa1a2r = γ 0haη(a1a2)3

(kbT )2
r , (A36)

β̃α = τa1a2kbTβα = γ 0haη(a1a2)3

kbT
βα, (A37)

˜βμ = τa1a2βμ = γ 0haη(a1a2)3

(kbT )2
βμ. (A38)

In the main text, we omit tildes denoting dimensionless quantities.

Appendix B: Numerical methods

Here, we briefly describe the numerical methods employed to obtain the results pre-
sented in Sects. 4.1.3 and 4.2.2.

B.1 Time simulations

For all time simulations, we use the finite-element library oomph- lib [119] with
linear Lagrange elements and adaptive mesh refinement based on a Zienkiewicz-Zhu
error estimator [142, 143] on a one-dimensional periodic domain. Typical numbers
of elements are nel = 5000 (Sect. 4.1.3) and nel = 1000 (Sect. 4.2.2). Time-stepping
is employed using a second-order backward differentiation scheme (BDF[2]) and is
usually adaptive. An exception are the data shown in Fig. 3a,b which are obtained with
a constant timestep of dt = 5 to produce equidistant spacing of the panels.

B.2 Path continuation

Given a system of (differential) equations, path continuation methods [144–149] may
be employed to determine entire branches of states (steady or time-periodic) as a con-
trol parameter is continuously varied. Importantly, path continuation methods work
regardless of the stability of the state of interest, in contrast to time simulations which
typically only result in linearly stable states. Branches can then be arranged in bifurca-
tion diagrams such as Fig. 5 that reveal the relations and transitions between the various
states of the system. A simple approach to the continuation of steady states consists in
starting with a known steady state and then slightly changing the control parameter.
Using the state at the previous parameter value as initial data for a Newton method,
the corresponding state can be computed at a new parameter value. By consecutively
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altering the continuation parameter and computing the corresponding state directly
from the known state at a previous parameter value, one may obtain the corresponding
branch. However, this simple procedure fails at critical points such as saddle-node
bifurcations and in practice more sophisticated tangent predictor-Newton corrector
methods are typically used (see e.g. [149]). The continuation of time-periodic states
follows the same principles but is computationally more costly.

To obtain entire bifurcation diagrams, it is often practical to start with a simple
analytically or numerically known state. We use the state at thermodynamic equi-
librium, i.e., the state at βμ = 0 on the black branch in Fig. 5. Then numerical
continuation is used to compute the entire branch and to simultaneously detect bifurca-
tion points. At each of the latter onemay switch branches to then follow the bifurcating
branches (again detecting bifurcation points).Repeating the procedure, the entire bifur-
cation diagram is obtained step-by-step. However, the strategy may not work when
states exist that are nested too deeply within the bifurcation structure or when (the
often tricky) branch switching fails. Then, it may be useful to initialize continuation
for part of the branches starting with states directly obtained from time simulations.
Here, we do this for all branches of time-periodic states as branch switching fails at
many of the occurring Hopf bifurcations. We stress that all branches in Fig. 5 are
computed using path continuation regardless of the particular initialization strategy.
Note that additionally all stable states have also been recovered in time simulations.

To perform continuation of states described by Eqs. (74)–(76), we discretize the
model using the finite-element method with linear Lagrange elements on a one-
dimensional periodic domain. We employ the continuation package pde2path [127]
which uses pseudo-arc length continuation with a predictor-corrector method. In par-
ticular, pde2path provides extensive methods for the treatment of partial differential
equations with continuous symmetries such as volume conservation or translational
invariance, which are both present in Eqs. (74)–(76) with periodic boundaries. We use
static meshes with a typical number of nodes nx = 300 and nt = 40 in space and
time, respectively.
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