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From a microscopic inertial active matter
model to the Schrödinger equation

Michael te Vrugt 1,2, Tobias Frohoff-Hülsmann1, Eyal Heifetz3,
Uwe Thiele 1,4,5 & Raphael Wittkowski 1,2,4

Active field theories, such as the paradigmatic model known as ‘active
model B+’, are simple yet very powerful tools for describing phenomena
such as motility-induced phase separation. No comparable theory has been
derived yet for the underdamped case. In this work, we introduce active
model I+, an extension of active model B+ to particles with inertia. The
governing equations of active model I+ are systematically derived from the
microscopic Langevin equations. We show that, for underdamped active
particles, thermodynamic and mechanical definitions of the velocity field
no longer coincide and that the density-dependent swimming speed plays
the role of an effective viscosity. Moreover, active model I+ contains an
analog of the Schrödinger equation in Madelung form as a limiting case,
allowing one to find analoga of the quantum-mechanical tunnel effect and
of fuzzy dark matter in active fluids. We investigate the active tunnel effect
analytically and via numerical continuation.

The study of active particles has become one of the fastest-growing
fields of research in soft matter physics and statistical mechanics due
to the enormous number of interesting effects that active matter can
exhibit. Among theseeffects are aplethoraof analogies between active
matter and quantum mechanics. This includes Bose-Einstein
condensation1–3, Fermi-Dirac statistics applied to polymer loops4,
Hall viscosities5,6, orientational order in systems of fully symmetric
particles7,8, Schrödinger-type dynamics in polar liquids9, spin-orbit
coupling10, stationary Schrödinger equations for velocity
distributions11, time crystals12, and topological effects13. A very simple
yet extremely powerful description for active matter is given by scalar
active field theories such as active model B (AMB)14 and the more
general activemodel B+ (AMB+)15. Theseprovide aminimal description
for effects such as active phase separation and have led to crucial
insights into the thermodynamics of active matter16–20.

While such field theories have also been coupled to the
momentum-conserving dynamics of the solvent18,19,21,22, the inertia
of the active particles themselves has been ignored in this context.

However, recent experiments23–25 have found that the inertia of
active particles is important in a variety of contexts. Moreover,
theoretical and experimental studies have found a number of unu-
sual effects associated with inertial active matter26, ranging from
self-sustained temperature gradients27 through restored equili-
brium crystallization28 to damping-dependent phase boundaries29.
Consequently, there has been a strongly increasing recent interest
in inertial active matter30–34.

Field theories for inertial active matter have been derived in pre-
vious work29,35,36 as extensions of the active phase field crystal (PFC)
model37–40. Active PFC models can be derived as an approximation of
dynamical density functional theory (DDFT)41, and have two dis-
advantages compared to AMB+. First, they rely on the close-to-
equilibrium (adiabatic) approximation that DDFT is based on, and
second, they require two order parameter fields (density ρ and
polarization P) rather than just one, making them more complex. In
contrast to PFCmodels, to the best of our knowledge, no extension of
AMB+ to the underdamped case has been derived yet. A second gap is
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that up to now formal analogies between quantum mechanics and
active matter, which are known to be useful in other contexts4,11, have
not been exploited for the collectivedynamics of inertial activematter.

In thiswork, we closeboth of these gaps. Thefirstmain result is an
extension of AMB+ to particles with inertia that we refer to as active
model I+. It is found that thermodynamic and mechanical definitions
of the velocity field lead to different results in the active case, and that
the density-dependent swimming speedof active particles gives rise to
an effective viscosity of the active fluid. As a second main result, we
show that active model I (the underdamped analogon of AMB) con-
tains, as a limiting case, hydrodynamic equations that are formally
equivalent to the Madelung equations42,43, which constitute a hydro-
dynamic representation of the Schrödinger equation44,45. This allows
us to find analoga of fuzzy dark matter and the quantum-mechanical
tunnel effect in an active fluid. A numerical investigation of the active
tunnel effect using continuation methods shows that it also occurs
when the approximations required for the active-quantum mapping
are not exactly satisfied. This implies its robustness as physical phe-
nomenon. In the Methods, we present a microscopic derivation of
active model I+ using the well-established interaction-expansion
method46–50.

Results
Active model I+
In this section, we introduce active model I+.

Our starting point is AMB+15, which is given by

_ρ=∇ � Mρð∇ð f 0oðρÞ � κ∇2ρ+ λð∇ρÞ2Þ � ξð∇2ρÞ∇ρÞ
� �

ð1Þ

with a local particle number density ρ(r, t) depending onposition r and
time t, a mobility parameter M, an (overdamped) free-energy density
fo(ρ) typically assumed to be a fourth-order polynomial, the notation
f 0o =∂ρ f o, and constants κ, λ, and ξ. An overdot denotes a partial
derivative with respect to t. The model (1) is overdamped. Typically,
one introduces AMB+ with a constant mobility M0 rather than with a
density-dependent mobility Mρ as done here. The assumption of a
constant mobility is valid only for uniform states or close to a critical
point, but qualitatively reasonable also in other cases. The purpose of
this approximation is to get a noise that is additive rather than
multiplicative20. Here, we do not have a noise term since our
microscopic derivation interprets ρ as an ensemble-averaged density51.
By setting ξ = 0 in Eq. (1), one obtains AMB14. AMB, in turn, can be
thought of as a minimal extension of the Cahn-Hilliard equation52 to
the active case. The name “active model B” is based on the
classification of Hohenberg and Halperin53, where AMB is a model of
type B (conserved scalar order parameter).

An important feature of AMB and AMB+, which distinguishes
them from passive field theories, is that the right-hand side of Eq. (1)
cannot be written as a gradient dynamics, i.e., in terms of the func-
tional derivative of a free energy14,54. In addition, AMB+ allows (unlike
AMB) for circulating currents in steady state15. One can derive AMB+
either phenomenologically by writing down a general theory of a
certain order in gradients and fields (top-down approach) or micro-
scopically by explicit coarse-graining of the microscopic equations of
motion of active particles (bottom-up approach)20. Here, the bottom-
up approach has the advantage of providing explicit expressions for
the coefficients appearing in the model (predictive theory)48,49 and
giving a clearer insight into the origin of the various terms and the
approximations required to get them.

Since AMB+ is overdamped, it does not take the inertia of the
active particles into account. In this work, we obtain via a microscopic
derivation an extension of AMB+ to the underdamped case, which we
will refer to as active model I+ (AMI+), with “I” standing for “inertial”. It

is given by

_ρ = � ∇ � ðρvÞ+ 1
2DR

∇ � ðvldðρÞ∇vldðρÞρÞ, ð2Þ

_v+ ðv � ∇Þv= � 1
m

∇ð f 0ðρÞ � κ∇2ρ+ λð∇ρÞ2 +U1Þ

� γv+
vldðρÞ2

γ
∇2v +

ξ
m

ð∇2ρÞ∇ρ
ð3Þ

with the velocity field v, the rotational diffusion coefficientDR, the free
energy density f, its derivative f 0 =∂ρ f , the particlemassm, the friction
coefficient γ = 1/(mM), and the local density-dependent swimming
speed

vldðρÞ= v0 � A1

γm
ρ: ð4Þ

Here, v0 is the propulsion speed of a free particle and A1 is a constant
(see Eq. (83)). We have also included an external potential U1 for gen-
erality. The form (4) agrees with the expression derived by Bickmann
and Wittkowski49, who considered an overdamped system. In over-
dampedactivematter, the existenceof a density-dependent swimming
speed—that can arise, e.g., from particle collisions in the case of active
Brownian particles (ABPs) considered here or from quorum-sensing in
the case of bacteria—is essential for the phenomenon of motility-
induced phase separation (MIPS), where repulsively interacting
particles phase-separate (which would not be possible in a passive
system)55. From AMI+, we can see that vld(ρ) plays two roles in the
underdamped case: First, it leads to a second term in the continuity
equation (2) in addition to the well-known passive term ∇⋅(ρv). This
second term is related to the self-propulsion term known from the
active PFC model (see Methods). Second, it gives rise to an effective
viscosity vld(ρ)2/γ. This implies that a system of underdamped active
particles should behave more like a viscous fluid for larger activity
(larger vld) and more like an ideal fluid for larger density (smaller vld).

See Bär et al.56 for a discussion of other forms of effective viscosity
in active matter.

AMI+ contains AMB+ as a limiting case. Showing this requires two
approximations: First, we assume the system to be overdamped (large
γ), i.e., we set thematerial derivative _v+ ðv � ∇Þv in Eq. (3) to zero, solve
the resulting equation for v and insert the result into Eq. (2). (This is
analogous to the procedure required for deriving overdamped from
underdamped DDFT41). Second, using Eq. (4), we write in Eq. (2)

1
2DR

∇ � ðvldðρÞ∇vldðρÞρÞ=∇ � ðMρ∇f 0eðρÞÞ+Oðρ3Þ ð5Þ

with the effective free energy density

f e =
1

2MDR
v20ρ lnðΛ2ρÞ � 1

� �
� 3v0A1

2γm
ρ2

� �
, ð6Þ

where Λ is the (irrelevant) thermal de Broglie wavelength, and then
define fo = f + fe and f 0e =∂ρ f e. Equation (6) shows that we can interpret
v20=ð2MDRkBÞ with Boltzmann constant kB as a shift of the
temperature57, since the first term on the right-hand side has the form
of an ideal gas free energy.

As shown in the Methods, the microscopic derivation reveals
another formof effective temperature that is a feature of inertial active
matter. The free energy density f appearing in Eq. (3) and micro-
scopically determined by Eq. (111) in theMethods has, as a prefactor in
the ideal gas term, a factor kBT +mv20=2with temperatureT rather than
kBT as in the passive case. This shows that the active kinetic energy
mv20=2 plays the role of a thermal energy in inertial active matter.
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By taking the curl of Eq. (3) and defining the vorticityω =∇ × v, we
can obtain the active vorticity equation

_ω= � ðv � ∇Þω+ ðω � ∇Þv�ωð∇ � vÞ+ v2ldðρÞ
γ

∇2ω

+
1
γ

∇v2ldðρÞ
� �

×∇2v� γω� ξ
m

ð∇ρÞ× ð∇∇2ρÞ:
ð7Þ

Starting fromAMI+, we can againmake two approximations: First,
we assume that vld(ρ) is small. From Eq. (4), we can see that this
assumption is justified if v0 and A1 are both small (i.e., in the case of
weak activity) or, for larger activities, if v0 ≈A1ρ/(γm). Second, we drop
the term proportional to ξ, such that the material derivative of v is
given by the sum of the gradient of a generalized chemical potential
and a damping term. Setting ξ =0 is the usual approximation by which
one gets from AMB+ to AMB.

We then obtain the simpler activemodel I (AMI), which is given by

_ρ= � ∇ � ðρvÞ, ð8Þ

_v+ ðv � ∇Þv= � 1
m

∇ð f 0ðρÞ � κ∇2ρ+ λð∇ρÞ2 +U1Þ � γv: ð9Þ

Equation (9) can be written as

_v+ ðv � ∇Þv= � 1
m

∇μ� γv ð10Þ

with a generalized chemical potential

μ= f 0ðρÞ � κ∇2ρ+ λð∇ρÞ2 +U1: ð11Þ

It is straightforward to obtain AMB from AMI by taking the
overdamped limit.

AMI+ constitutes our firstmain result. The relations of the various
models are illustrated in Fig. 1. This figure also shows themain steps of
the microscopic derivation of AMI+, which is performed in the
Methods.

Mechanical vs thermodynamic velocity
Before we proceed with the main part of the discussion by deriving an
analog of the Schrödinger equation from AMI, it is worth discussing
two interesting features of themicroscopic derivation of AMI+, namely
its relation to theMori-Zwanzig formalism and the fact that it implies a
difference between two types of velocity. (The full microscopic deri-
vation is shown in the Methods).

It is common in the theory of passive fluids, where the one-body
distribution function P1 depends only on position r andmomentum p,
to apply the local equilibrium approximation58,59

P1ðr,pÞ=
ρðrÞ

2πmkBT
exp � ðp�mvðrÞÞ2

2mkBT

 !
: ð12Þ

The ansatz (12) (with ρ(r) replaced by an orientation-dependent
density ϱðr,ûÞ) has also been used in active matter physics35. Here, we
apply the generalized local equilibrium approximation

P1ðr,p,ûÞ=
ϱðr,ûÞ

2πmkBT
exp �ðp�mvðr,ûÞÞ2

2mkBT

 !
ð13Þ

with a generalized velocity field vðr,ûÞ instead. (Themotivation for this
change is discussed below).

Using an ansatz of the form (13) (or (12) for a passive fluid) is
required because the interaction-expansion method is (like many
microscopic derivation methods) based on integrating an exact

microscopic theoryover the coordinates of all particles except for one,
which leads to a dynamic equation for the order parameter fields that
requires one or several closures. Equation (13) provides such a closure.
We will now briefly discuss a different derivation method by which
AMI+ can also be obtained, and explain how Eq. (13) can be understood
in this formalism.

Among the most general methods for microscopic derivations is
theMori-Zwanzig formalism60–64, which allows one to obtain transport
equations for an arbitrary set of slow variables by projecting the
complete microscopic dynamics onto their subdynamics. This form-
alism can be applied also to active matter5 and thus represents an
alternative route for a derivation of AMI+. In the Mori-Zwanzig form-
alism, one introduces a relevant distribution �PN that has the form65,66

�PN / exp �H �Pw
i = 1 a

\
i
bAi

kBT

 !
ð14Þ

with theHamiltonianH, the thermodynamic conjugates a\
i of themean

values ai of the relevant variables bAi, and the number of relevant
variables w. The Hamiltonian typically has the form
H =UðfrigÞ+

PN
i = 1 p

2
i =ð2mÞ with the potentialU and the position ri and

momentum pi of the i-th particle. While Eq. (14) also has a local equi-
librium form, it is not assumed that the actualN-particle distributionPN
actually looks like this67. In fact, calculating deviations of PN from �PN is
an essential part of the formalism66. The form (14) is chosen for
information-theoretical reasons64,68, as it maximizes the informational
entropy based on our macroscopically available knowledge69.

In fluid mechanics, one uses as a relevant variable the total
momentum density operator bgðrÞ= PN

i= 1 piδðr� riÞ with the Dirac
delta distribution δ (g is the ensemble average of bg). Inserting bA1 = bg
into Eq. (14), writing v for g♮, and integrating over the phase-space
coordinates of all except for one particle gives a distribution propor-
tional to the distribution (12). Thus, the velocity field v is simply the
thermodynamic conjugate for the momentum density66. In the active
case, however, additional variables can become relevant. An essential
parameter for active phase separation in overdamped55 and
underdamped27 active fluids is the average of û � p (which corresponds
to the average of the projection of the particle momentum onto the
direction of self-propulsion). Motivated by this observation, we use
the momentum density polarization bg

P
ðrÞ= PN

i= 1 ûi � piδðr� riÞ with
the orientation vector of the i-th particle ûi and the dyadic pro-
duct⊗ as a relevant variable in addition to bg. Using the same steps as
before, Eq. (14) then gives the relevant one-body distribution function

�P1 / exp � 1
kBT

p2

2m
� v � p� vP : ðû� pÞ

� �� �
, ð15Þ

where : denotes a double tensor contraction. Here, the local velocity
polarization vP is the thermodynamic conjugate for bg

P
. The form (15)

corresponds to our generalized local equilibrium form (13), as can be
seen by inserting the orientational expansion (75) (see Methods) into
Eq. (13). Note that Eq. (15) also explains why the density-dependent
swimming speed (which comes from vP, see Methods) gives rise to an
effective viscosity: Viscous terms arise from deviations of P1 from the
form (12)58, and such a deviation arises here fromactivity in the formof
vP. Moreover, since Eq. (15) reduces to the local equilibrium form (12)
for vP =0, the term involving vP accounts for thedeviationof the active
system from local equilibrium and detailed balance.

Note that differences between the relevant and the actual dis-
tribution (deviations from the generalized local equilibrium (13)) may
lead to differences in the precise form of the transport equations by
giving rise to additional viscous terms in the dynamic equation for v
(Eq. (69) in the Methods). In the interaction-expansion method, this
could be incorporated by expanding a general distribution P1 around
the distribution (13) (a procedure also employed in passive fluids58).
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Why including an additional relevant variable related to activity is
useful can be seenwhen analyzing what happens if it is not done, i.e., if
we use the ansatz (12) instead of (13). In passive fluids, the local equi-
librium approximation (12) can be rigorously justified because it arises
as the zeroth-order expression in the Chapman-Enskog expansion70.
The derivation for passive fluids uses the fact that the distribution (12)
satisfies the requirement of detailed balance70. In active matter, how-
ever, detailed balance is violated55.

We can nevertheless try to use the ansatz (12) also in the active
case, since it might still be a good approximation for small activities.
Integrating the microscopic dynamics of P1 (Eq. (64) from the Meth-
ods) over p using Eq. (12) (with ρ replaced by ϱ) yields

_ϱðr,ûÞ= � ∇ � ðϱðr,ûÞvðrÞÞ+DR∂
2
φϱðr,ûÞ: ð16Þ

A problem with the result (16) is that it is known from overdamped
models38,71 that the governing equation for ϱ should contain a term
�v0û � ∇ϱ on the right-hand side which accounts for self-propulsion.

Such a term cannot be obtained from Eq. (16) since v does not depend
on û. To avoid this problem and to get an ansatz that has both the
correct equilibrium and the correct overdamped limit, we use the
generalized local equilibrium approximation (13) instead.

The seemingly minor difference between Eqs. (12) and (13) has
profound implications for the definition of the velocity field v. In the
theory of classical passive fluids, v can be defined in two ways:

First, there is the mechanical definition: The density ρ obeys a
continuity equation m _ρ= � ∇ � g with the momentum density
g(r) = ∫d2ppP1(r,p). We can then define the velocity field as mv = g/ρ69,
implying that

_ρ= � ∇ � ðρvÞ: ð17Þ

Second, there is the thermodynamical definition: We use for the
one-body distribution function P1 the local equilibrium form (12) and
then define the velocity field to be the field v appearing in Eq. (12)67.

Fig. 1 | Illustration of the microscopic derivation and relations of the various
models considered in this article. Starting from the microscopic dynamics of
inertial active particles, a series of approximations leads to active models I and I+.

More general models are obtained by omitting some approximations. Active
models I and I+ contain an analog of the Schrödinger equation as well as the
overdamped active models B and B+ as limiting cases.
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Multiplying the dynamic equation for P1 by p, inserting Eq. (12), and
integrating over p also leads to Eq. (17).

Since both definitions give the same result (17) in the passive case,
their difference is usually not even mentioned. However, they are not
equivalent for the active fluid considered here, which is assumed to be
in a generalized local equilibrium of the form (13). While the
mechanical route leads to Eq. (17) also in the active case, the thermo-
dynamic route considered here gives the different result (2). Note that,
since this difference arises both in the interaction-expansion method
and in the Mori-Zwanzig formalism (where it is not assumed that the
distribution actually has the form (13)), it is not an artifact of choosing
the ansatz (13).

Derivation of the Schrödinger equation
Now, we derive an equation that is formally equivalent to the Schrö-
dinger equation from AMI given by Eqs. (8) and (9).

For this purpose, we assume f 0ðρÞ=0 and γ =0. (More precisely,
since the microscopic model (Eqs. (55)–(61) from the Methods)
becomes passive if γ is exactly zero, we assume a small but finite γ
combined with a strong activity. A detailed discussion of this limit can
be found in the Methods.) Then, Eq. (9) reads

_v+ ðv � ∇Þv= � 1
m

∇ð�κ∇2ρ+ λð∇ρÞ2 +U1Þ: ð18Þ

We define ρq = 2ρ (ρq will later be interpreted as the quantum-
mechanical density) and assume thatρq has only small deviations from
a spatially and temporally constant reference density ρ0. Noting that
adding a constant to ρq has no influence on the dynamics of v oncewe
have set f 0 =0, we can then approximately write

ρ=
1
2
ρq =

ρ0

2

ρq

ρ0
≈

ρ0

2
ln

ρq

ρ0

� �
+ irrelevant constant : ð19Þ

As Eq. (8) is linear in ρ, it is left unchanged by the replacement ρ→ ρq/2,
i.e., it holds for ρq in exactly the same way as for ρ. In Eq. (18), we
replace ρ by ρ0 lnðρq=ρ0Þ=2 (motivated by Eq. (19)) and assume

κ = � λρ0: ð20Þ

This gives

_v+ ðv � ∇Þv= κρ0

2m
∇ ∇2 ln

ρq

ρ0

� �
+
1
2

∇ ln
ρq

ρ0

� �� �2
 !

� 1
m

∇U1

=
1
m

∇ κρ0

∇2 ffiffiffiffiffiffi
ρq

pffiffiffiffiffiffi
ρq

p � U1

 !
:

ð21Þ

The last step uses the identity44

∇2ϑ
ϑ

=∇2 lnðϑÞ+ ð∇ lnðϑÞÞ2, ð22Þ

where ϑ is a function, and the fact that lnðϑÞ= 2 lnð
ffiffiffi
ϑ

p
Þ. Moreover, we

set

_2

2m
= κρ0

ð23Þ

with the reduced Planck constant ℏ. We then arrive at the Madelung
equations43

_ρq = � ∇ � ðρqvÞ, ð24Þ

_v+ ðv � ∇Þv= 1
m

∇
_2

2m

∇2 ffiffiffiffiffiffi
ρq

pffiffiffiffiffiffi
ρq

p � U1

 !
: ð25Þ

Next, we assume that v is a potential flow such that we can write

v=
1
m

∇S, ð26Þ

with a phase S, and that v satisfies the condition (see the article by
Wallstrom72)

m
I

L
dl � v=2πn_ ð27Þ

with a closed loop L, a differential line element dl, and n 2 Z. We can
then substitute

ψ=
ffiffiffiffiffiffi
ρq

p
e

i
_S, ð28Þ

whereψ is (an analog of) the wave function and i is the imaginary unit.
Combining Eqs. (24)–(26) and (28) then finally yields

i_ _ψ= � _2

2m
∇2ψ+U1ψ, ð29Þ

which is mathematically identical to the Schrödinger equation. The
transformations required to obtain Eq. (29) from Eqs. (8) and (9) are
summarized in Table 1. Equation (29) and its derivation from AMI+
constitute our second main result.

It is also instructive to see what happens if we do not set f 0ðρÞ=0.
In this case, Eq. (21) reads

_v+ ðv � ∇Þv= 1
m

∇ κρ0

∇2 ffiffiffiffiffiffi
ρq

pffiffiffiffiffiffi
ρq

p � f 0
ρq

2

� �
� U1

 !
: ð30Þ

Applying the substitutions (23), (26), and (28) then gives the nonlinear
Schrödinger equation73

i_ _ψ= � _2

2m
∇2ψ+U1ψ+ f 0

∣ψ∣2

2

 !
ψ: ð31Þ

Table 1 | Correspondences between variables and terms in AMI and in the Schrödinger equation

AMI (Eqs. (8) and (9)) Schrödinger equation (Eq. (29)) Relation

Particle density ρ probability density ρq = ∣ψ∣2 ρq = 2ρ

Velocity v phase of the wavefunction S v =∇S/m

Interaction/activity parameters κ, λ reduced Planck constant ℏ κρ0 = � λρ2
0 = _2=ð2mÞ

Generalized chemical potential μ energy E μ = E

Interaction/activity
contributions − κ∇2ρþ λ ð∇ρÞ2

quantum potential �ð_2=ð2mÞÞð∇2 ffiffiffiffiffiffi
ρq

p Þ= ffiffiffiffiffiffi
ρq

p
Derivable via 2ρ≈ρ0 lnðρq=ρ0Þ
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For example, if we set f 0 =aρq with a constant a, we find74

i_ _ψ= � _2

2m
∇2ψ+U1ψ+a∣ψ∣2ψ, ð32Þ

which is the Gross-Pitaevskii equation. This equation has a wide range
of applications, such as modeling Bose-Einstein condensates (see the
article by Mocz and Succi74 and references therein).

In the considered active matter system, an even more realistic
case would be to also have γ ≠0. In this case, Eq. (21) reads

_v+ ðv � ∇Þv= 1
m

∇ κρ0

∇2 ffiffiffiffiffiffi
ρq

pffiffiffiffiffiffi
ρq

p � f 0
ρq

2

� �
� U1

 !
� γv: ð33Þ

The Madelung transformations then lead to75

i_ _ψ= � _2

2m
∇2ψ+ f 0

∣ψ∣2

2

 !
ψ+U1ψ� i_γ

2
ln

ψ
ψ?

� �
ψ, ð34Þ

which is the Schrödinger-Langevin equation76 (transformed into local
form, without the noise term, and with an additional nonlinear
term f 0ψ).

The derivation of the (analog of the) Schrödinger equation (29)
and its generalizations (31) and (34) from AMI is visualized in Fig. 1.

Physical significance of the active-quantum mapping
Having established the mathematical relation between AMI and the
Schrödinger equation, we now discuss the physical significance of the
active-quantum mapping.

Mathematically, the fact that AMI allows one to derive the
Madelung equations is essentially a consequence of the fact that
AMI is a compressible Euler equation with the pressure being given
by the most general expression of a certain order in gradients and
densities. Since the Madelung equations are of this order in gra-
dients and densities (if we can approximate densities by their
logarithm), they must be contained in AMI. Moreover, we cannot
use AMI+ since it leads to velocity fields with non-vanishing rota-
tion, which does not make sense if we want to interpret the velocity
as the gradient of a phase. In the overdamped case, it has been
shown that the rotational terms constituting the difference between
AMB and AMB+ are not relevant for quorum-sensing bacteria20,
which therefore constitute a promising model system for our pur-
poses. To obtain amore general model, we could also have included
the terms �∇f 0ðρÞ=m (with f 0ðρÞ= kBT lnðΛ2ρÞ), −γv, and v2ldðρÞ∇2v=γ
from AMI+. In this case, we would have obtained a model similiar to
the isothermal quantum Navier-Stokes equation, where the viscos-
ity also depends on the density (although in a different way)77. Of
course, this viscosity has a different physical interpretation since it
does not arise from a density-dependent swimming speed. Instead,
the viscous terms are obtained in the standard way from a
Chapman-Enskog expansion77.

It should be noted that, strictly speaking, we have not derived the
Schrödinger equation (since quantum physics is not a description of
the dynamics of active classical particles), but an active field theory
that has the same form as the Schrödinger equation. This is important
for the physical interpretation. If we want to think of Eq. (29) as a
limiting caseofAMI, then ∣ψ∣2 is proportional to theparticle density of a
classical many-body system. In contrast, if we think of Eq. (29) as the
quantum-mechanical Schrödinger equation, then ∣ψ∣2 is the probability
density of a single quantum-mechanical particle.

Equation (25) contains a term ð_2=ð2m2ÞÞ∇ðð∇2 ffiffiffiffiffiffi
ρq

p Þ= ffiffiffiffiffiffi
ρq

p Þ—pro-
portional to the gradient of the quantum potential
�ð_2=ð2mÞÞð∇2 ffiffiffiffiffiffi

ρq
p Þ= ffiffiffiffiffiffi

ρq
p

, which gives rise to a quantum pressure78—

on the right-hand side. This term,whichdisappears in the classical limit
ℏ→0, translates into the term− (ℏ2/(2m))∇2ψ in Eq. (29) after the

transformations (26) and (28). From a quantum-mechanical point of
view, this term arises from the momentum operator appearing in the
kinetic part of the quantum Hamiltonian. From a classical point of
view, however, this term arises from the terms − κ∇2ρ + λ(∇ρ)2 in Eq. (9)
(which come from activity and interactions), combined with the
assumption (20). We will later demonstrate numerically that this
assumption can also be relaxed. Consequently, the classical limit in
quantummechanics corresponds to the passive noninteracting limit in
active matter.

The usefulness of this mapping lies in two aspects. First, the
analogy to soft matter can be used to better understand effects that
are associated with the Schrödinger equation. This will be illustrated
below using the example of dark matter. Second, we can reproduce
effects known fromquantummechanics, which arise as a consequence
of the quantum potential, in a classical soft matter system, where they
arise from activity and/or interactions. In particular, our knowledge
about the numerous quantum-mechanical phenomena that arise from
the interplay with external fields can be used to better understand the
behavior of active matter in external fields, a topic currently of high
interest50. As an example,wewill later use themapping tofind an active
analog of the tunnel effect.

Analogy to dark matter
In this section, we use the active-quantum mapping derived above to
establish a relationbetween inertial activematter anddarkmatter. This
illustrates the usefulness of thismapping, as it shows that activematter
can be used as a model for dark matter (for example in analog
experiments) and that our understanding of pattern formation can
become useful for astrophysics.

An important field of application for the Madelung equations is
the study of dark matter78. Recently, there has been an increase of
interest in so-called fuzzy dark matter (FDM), which consists of ultra-
light scalar particles. It was introduced to avoid the problem that the
standard colddarkmattermodels predicted cuspy halos and excessive
small-scale structures, in conflict with observations79,80. Further moti-
vations for research on FDM are the lack of evidence for other dark
matter candidates and the fact that such ultralight particles are pre-
dicted by various models from particle physics (such as string
theory)81.

On galactic scales, one can neglect self-interactions of the real
scalar field representing darkmatter and use a simple quadratic action
functional82. In the nonrelativistic limit, the real scalar field can be re-
written using a complex fieldψ that obeys a Schrödinger equationwith
modifications accounting for cosmic expansion81. Thesemodifications
can be neglected on galactic scales82 and are also neglected here. The
FDMparticles aremostly in the ground state and can thus bedescribed
by a single macroscopic wavefunction as in a Bose-Einstein
condensate81. It is very common in dark matter physics to transform
from the Schrödinger equation to the Madelung equations since this
allows to usehydrodynamic codes82. FDMcan thenbedescribedby the
Madelung equations (24) and (25) coupled to the Poisson equation83

∇2U1 = 4πGm
2ρq ð35Þ

with the gravitational constantG. Equation (35) determinesU1, which is
here the gravitational potential, via the density ρq.

Let us now consider the dynamics of a system of ABPs with an
electric chargeq. Its dynamicswouldbegivenbyAMI in the limitwhere
vld and ξ are small. The (electrostatic) potential U1 could be calculated
from the charge distribution ρ via the Poisson equation

∇2U1 = � q2

ϵ
ρ ð36Þ

with the permittivity ϵ.

Article https://doi.org/10.1038/s41467-022-35635-1

Nature Communications |         (2023) 14:1302 6



As shown above, AMI contains the Madelung equations as a lim-
iting case. Therefore, in the quantum limit, an underdamped charged
active matter system would be described by equations of the same
form as a fuzzy dark matter system, suggesting an interesting parallel
between active and astrophysical systems.

The analogy between dark and active matter is further supported
by the fact that (as mentioned above) fuzzy dark matter models are
based on Bose-Einstein condensates, which have been found also in
active matter1–3. Also, the full governing equations for dark matter
contain an additional nonlinearity as in Eq. (32)78, just as the full gov-
erning equations for active matter contain an additional nonlinearity
due to the nonzero function f 0. These nonlinearities have a different
physical interpretation in the two contexts. If Eq. (31) is applied to
active matter, the function f 0 primarily arises from the temperature
(see Eq. (111)). In FDM, however, it would describe self-interactions78.

Note, however, that there is also an important difference, namely
the fact that the density appears with a different sign in the gravita-
tional Poisson equation (35) and the electrostatic Poisson equation
(36). This is a consequence of the fact that gravity is a purely attractive
force, whereas electrostatic forces are repulsive for particles of the
same charge. Therefore, the patterns observed in fuzzy dark matter
and in charged active systems might be quite different. Schrödinger
equations coupled to electrostatic Poisson equations of the form (36)
are used in the theory of quantum plasmas84. Note that both dark
matter85 and quantum plasmas86 can be found to exhibit solitonic
solutions in a Schrödinger-Poisson model, such that solitons are likely
to be observed also in charged inertial active matter.

When comparing the use of Eq. (29) in standard quantum
mechanics and in FDM, two important differences should be noted.
First, in the context of FDM, ψ describes the density of a many-body
system, not of a single particle. Second, Eq. (29) is only approximately
valid for dark matter, both due to cosmic expansion81 and due to the
presence of nonlinear terms as in Eq. (32). Notably, FDM has in com-
mon with active matter both the many-body interpretation and the
larger complexity of the actual governing equations.

FDM constitutes an important example for a system where the
mapping to a soft matter system can contribute to a better physical
understanding of the Schrödinger equation. Recall that FDM was
introduced because existing dark matter models predict excessive
small-scale structures80. The suppression of small-scale structure in
FDM is a consequence of quantum pressure87. In our mapping, the
quantum pressure corresponds to the gradient terms in the chemical
potential (11). This result gives a good physical intuition for why FDM
does better than older dark matter models regarding the small-scale
problem: It is well known that gradient terms in the chemical potential
suppress the formationof small-scale structure, since they (if they have
the right sign) lead to an energetic penalty for interfaces. Using the
active-quantummapping developed here, such standard insights from
pattern formation theory in soft matter physics can become fruitful
also for astrophysics. In particular, knowledge of pattern formation
effects from soft matter can be used to develop more sophisticated
models for astrophysical pattern formation.

Tunnel effect
After having introduced the general theories AMI and AMI+ and
establishing a mapping between AMI and the Schrödinger equation,
we now turn to an application of this mapping by deriving and inves-
tigating an active analogon of the tunnel effect. In this section, we
restrict ourselves to one-dimensional systems.

Time-independent problems in quantum mechanics can be
described by the stationary Schrödinger equation

Eψ= � _2

2m
∂2xψ+U1ψ ð37Þ

with the energy E. A central phenomenonof quantummechanics is the
tunnel effect, where a particle has non-zero probability of traveling
through a potential barrier that it could not pass through classically. It
can be described theoretically by solving Eq. (37) for the potential

U1ðxÞ=
0 for x <� L,

V0 for � L ≤ x ≤ L,

0 for x > L,

8><>: ð38Þ

where V0 is the height and 2L the width of the potential barrier. As
is well known, the solution of Eq. (37) with the potential (38) is
given by

ψðxÞ=
eikx +R1e

�ikx for x <� L,

T2e
�ϰx +R2e

ϰx for � L ≤ x ≤ L,

T3e
ikx for x > L

8><>: ð39Þ

with the wavenumbers

k =

ffiffiffiffiffiffiffiffiffiffi
2mE

_2

s
, ð40Þ

ϰ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðV0 � EÞ

_2

s
, ð41Þ

the transmission coefficients T2 and T3, and the reflection coefficients
R1 and R2. (Explicit expressions for these coefficients are given in
the article by Heifetz and Plochotnikov88). The physical interpretation
of the solution (39) is that it describes the wavefunction of a particle
with energy E that approaches a rectangular potential barrier of height
V0 > E from the left, decays within the barrier, and continues to travel
as awave on the right of the barrier. The density ρq(x) = ∣ψ(x)∣2 gives the
probability that the particle is found at a certain position x in a position
measurement. Since this probability is non-zero for x > L, there is a
non-zero probability that the particle passes through a barrier that it
could not have passed through classically. This phenomenon is known
as the tunnel effect.

Due to the linearity of Eq. (37), another solution is given by

ψðxÞ=

1ffiffi
2

p ðeikx + ðR1 +T3Þe�ikxÞ for x <� L,
1ffiffi
2

p ðT2 +R2Þðe�ϰx + eϰxÞ for � L ≤ x ≤ L,

1ffiffi
2

p ðe�ikx + ðR1 +T3ÞeikxÞ for x > L,

8>><>>: ð42Þ

which is simply the superposition of the solution given by Eq. (39) and
the same solutionmirror reflected at x = 0 (corresponding to a particle
coming from the right). Such a symmetric tunneling solution has
advantages in a numerical treatment (as it allows to use periodic
boundary conditions) and captures the same physics. The quantum-
mechanical density ρq = ∣ψ∣2 for the solution (42) is given by

ρqðxÞ=
1
2 ð1 +R2 + 2R cosð2kx � αÞÞ for x <� L,

∣T2 +R2∣
2ðcoshð2ϰxÞ+ 1Þ for � L ≤ x ≤ L,

1
2 ð1 +R2 + 2R cosð2kx +αÞÞ for x > L,

8>><>>: ð43Þ

wherewehavewrittenR1 + T3 = Reiαwith themodulusR and the phaseα
of the complex number R1 + T3.

Using the Madelung transform, the nondimensionalized form of
Eq. (37) for v =0 reads (see Methods)

E = � _2

2m
1
2
∂2x lnðρqÞ+

1
4
ð∂x lnðρqÞÞ2

� �
+U1: ð44Þ
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We now show how an analogon of the tunnel effect can be found in
active matter. For simplicity, we set v = 0, such that AMI reduces to
μ = const. with μ given by Eq. (11). Solutions of Eq. (11) with μ = const.
are also stationary solutions of AMB, such that all of the following
considerations apply to both AMI and AMB.

A nondimensionalization (see Methods) gives

μ= f 0ðρÞ � κ∂2xρ+ λð∂xρÞ2 +U1, ð45Þ

which is simply Eq. (11) in dimensionless form.
We now consider the special case with κ = − λ and f 0 =0, in which

Eq. (45) reduces to

μ= � κð∂2xρ + ð∂xρÞ2Þ+U1, ð46Þ

A solution of Eq. (46) for the potential (38) is given by

ρðxÞ=
lnðcosðkðx + LÞ+αÞÞ+A for x <� L,

lnðcoshðϰxÞÞ+B for � L ≤ x ≤ L,

lnðcosðkðx � LÞ � αÞÞ+A for x > L

8><>: ð47Þ

with the wavenumbers

k =

ffiffiffi
μ
κ

r
, ð48Þ

ϰ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 � μ

κ

r
, ð49Þ

the phase shift

α = arctan
ϰ
k
tanhðϰLÞ

� �
, ð50Þ

and two constants A and B that satisfy

A� B= lnðcoshðϰLÞÞ � lnðcosðαÞÞ: ð51Þ

Equations (50) and (51) ensure that ρ and ∂xρ are continuous at the
boundaries of the potential barrier. We have thus found an analytical
solution of Eq. (46) for an active system at a potential barrier, namely
Eq. (47). At the boundary of the potential barrier, a discontinuity in
κ∂2

xρ balances the discontinuity in U1 and thereby ensures that μ is

Fig. 2 | Results of the numerical continuation of Eq. (53). a–c Numerical con-
tinuationwith control parameter awith fixed parameter values κ = − λ = 1. The plots
show a the L2-norm of ρ as a function of a, b the chemical potential μ as a function
of a, and c density profiles for selected parameter values as indicated by circles of
corresponding colors in a and b, compared to the analytical solution (47) (dashed

curve), which is used as the starting point for the continuation. d–f Like a–c, but
with varying κ and fixed a =0 and λ = − 1. g–i Like a–c, but with varying λ and fixed
a =0 and κ = 1. Note that the general formof the analytical solution persists also for
other parameter values, indicating that the tunnel effect in model (53) is a robust
phenomenon.
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constant (as required for a stationary solution). Following the analysis
by Heifetz and Plochotnikov88, we can define I = λð∂xρÞ2 (which is here
the active term) and a pressure Π= � ρκ∂2

xρ. Π is the pressure one
would get from the thermodynamic expression μρ − f 14 for λ = 0 and
f =0. (Here, we have λ ≠0, so Π is in general not equal to the thermo-
dynamic or mechanical pressure in the active system.) With these
definitions, Eq. (45) gives for f 0 =0

μ=
Π

ρ
+ I +U1: ð52Þ

At the boundaries of the potential barrier, ρ and I are continuous. The
tunneling is thus a consequence of a pressure jump ΔΠ = ρV0 at the
boundaries.

The stationary Madelung equation (44) coincides with the sta-
tionary formof AMI or AMB given by Eq. (46) if we identify ρ= lnðρqÞ=2
(cf. Eq. (19)), κ = ℏ2/(2m) (cf. Eq. (23)), and μ = E. Therefore, we do not
even need to employ the approximation (19) from the dynamical case,
we can just straightforwardly map the quantum onto the classical
problem. Taking the logarithm of the quantum solution (43) does
indeed give us something that (apart from phases and prefactors)
looks like Eq. (47), indicating that similar physical mechanisms act
here. In particular, the change in the potential leads to a shift in the
wavenumber from k to ϰ that gives a density decay within the barrier
for μ <V0 (or E <V0) both in the quantum and in the active case
(compare Eqs. (40) and (41) to Eqs. (48) and (49)).

Numerical continuation
The strong mathematical analogy between AMI and the Madelung
equations (or between AMB and the stationary Schrödinger equation)
holds only for the rather special case f 0ðρÞ=0 and κ = −λ. In a real
experiment, these equalities will, of course, be realized at most
approximately. Therefore, it is investigated in this section how robust

the analogy between active matter and quantum mechanics is if these
equalities are modified.

For this purpose, we consider the more general model

μ=aρ� κ∂2
xρ+ λð∂xρÞ2 +U1, ð53Þ

where U1 is still given by Eq. (38). For a =0 and κ = −λ, the analytical
solution (47) is known. Starting from these parameter values and this
solution, we can find solutions for Eq. (53) for other parameter values
via numerical continuation (see Methods).

We wish to ensure that the density ρ is always positive and that ρ
and ∂xρ take identical values on both boundaries of the domain,
allowing us to use periodic boundary conditions. This determines the
one-dimensional domain Ω = [ − α/k − L, L + α/k]. Furthermore, we set
κ = 1, V0 = 5, μ = 1, and α =π/4 and use the analytical solution (47) as
starting solution for the continuation. Using Eqs. (48)–(50) we obtain
L= arctanhð1=2Þ=2. Moreover, we set B =0.5 (an arbitrary positive
constant can be chosen here); A is then determined by Eq. (51). Note
that with this also the averaged rescaled particle density is determined
as �ρ=

R
ΩdxρðxÞ=∣Ω∣≈0:7945 (where ∣Ω∣ is the domain length). It can be

chosen arbitrarily using different values of B. Hence, the following
result does not depend on the particle number. The starting state is
now continued, changing various parameters while keeping �ρ fixed.
This in turn determines μ as corresponding Lagrange multiplier.
Alternatively, one could keep μ fix, in which case �ρ would change
during the continuation. However, this is not pursued here.

Figure 2 shows bifurcation diagrams and solution profiles that
illustrate the tunnel effect that can be observed in model (53). In

Fig. 2a, d, g and Fig. 2b, e, h we see how the L2-norm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
Ωdxρ

2ðxÞ=∣Ω∣
q

and the generalized chemical potential μ, respectively, depend on the
parameters (panels a, b) a, (panels d, e) κ, and (panels g, h) λ. Finally,
Fig. 2c, f, i present solution profiles for the states indicated by orange
andblue circles in the corresponding bifurcationdiagrams to their left.
The dashed black curve in each solution plot indicates the analytical
solution given by Eq. (47) for comparison.

The solution profiles show that the general form does not change
significantly if the parameter values are not exactly those used for the
analytical mapping. This indicates that the tunnel effect, and the
general active-quantum analogy presented here, are not an artifact of
picking the parameter values in such a way that it works, but rather a
robust phenomenon that can be investigated also in microscopic
simulations and experiments. Furthermore, according to a linear sta-
bility analysis that is performed during the continuation (see Meth-
ods), the solution is linearly stable with respect to perturbations
compatible with mass conservation for all considered parameter
values. Despite this limitation and the fact that we consider a small
domain, the stability of all solutions emphasizes the relevance for
experiments.

We can also get amore detailed idea of the effect that changing the
various parameters has on the solution (47). In general, a steepdecrease
of ρ towards x =0 indicates that the field cannot penetrate far into the
potential barrier, whereas a more flat curve is a sign of a strong tunnel
effect. Changing λ has no strong effect on the form of the solution
(Fig. 2i). The tunnel effect becomes more pronounced for positive
values of a, whereas it is suppressed by negative ones (Fig. 2c). Since
positive values of a are more plausible on physical grounds (one would
typically expand f around a local minimum rather than around a local
maximum), we can expect this tunneling to be even more significant in
real systems. Note that for sufficiently large values of a, we get μ>V0,
such that strictly speaking we do not have tunneling anymore (since
tunneling requires E <V0 and μ corresponds to E). For μ >V0, ϰbecomes
imaginary (see Eq. (49)) such that ρ has the form lnðcosðxÞÞ also within
thebarrier. The strongest effect canbe foundby varying κ (Fig. 2f). If it is
small (close to zero), we observe a sharp decrease and thus very weak

Fig. 3 | Possible experimental realization of the active tunnel effect. Active
dielectric spheres (with orientations indicated by arrows) are immersed in a solvent
and illuminated by a laser beam with rectangular intensity profile. The intensity
gradient at the boundaries of the beam gives rise to a force pushing the particles
outwards. Due to activity and interactions, thedensity decays smoothly at the beam
boundaries, i.e., it is low also in the vicinity of the beam and not only in the
illuminated area.
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tunneling. For larger κ, on the other hand, the field canpass through the
barrier much more easily. This result is plausible since, as indicated
above, it is the discontinuity in the κ term that balances the dis-
continuity of the potential. Also, larger values of κ imply that gradients,
which are smaller if thefluidpasses through thebarrier (i.e., if the tunnel
effect is present), are associated with an energetic cost, implying that
tunneling is more likely to occur for larger κ.

Physical interpretation of the active tunnel effect
Finally, we turn to a physical discussion of the active tunnel effect.

A first question that is relevant here is what one has to look at if
one wants to see this effect, i.e., what a possible experimental reali-
zation could be. While many realizations are conceivable, we turn for
concreteness to a system of dielectric spherical (active) particles with
effective polarizability p0 illuminated by a laser beam with intensity
Ilaser(r), giving rise to a gradient force Fgrad =p0∇I laser=4

89 and thereby
to a potential U1 = − p0Ilaser/4. We assume p0 < 0, such that particles
move towards low-intensity regions, and use an intensity profile cor-
responding to the potential (38). If, as assumed in many theoretical
studies of such systems, the particles are passive and noninteracting,
the density profile of the particles in case of a beam profile of the form
(38) is given by90

ρ = �ρ 1� U1 � �U1

kBT

� �
, ð54Þ

where �U1 is the spatial average of U1. In our active interacting system,
however, the discontinuous transition in Eq. (54) is replaced by a

smoother one as shown in Fig. 2. Interacting active particles are thus
more likely to be found in the illuminated region thanpassive particles.
A visualization of this proposed experiment can be found in Fig. 3.

Next, we discuss what the active tunnel effect adds to the existing
literature. First andmostobviously, it constitutes an analytical solution
to AMB/AMI (namely Eq. (47)) that is analogous to a quantum-
mechanical one (namely Eq. (43)). Second, it shows how activity and
interactions affect the interaction with an external potential, namely
by smoothing the density profile at a sharp barrier (to see this, com-
pare Eqs. (47) and (54)). Third, it offers, as in the case of FDM, a soft-
matter-based physical intuition for where the tunnel effect comes
from. Tunneling is only possible for ℏ >0, and the terms proportional
to ℏ2 (quantum potential) correspond to the gradient terms in the
activemattermodel. Gradient termspenalize sharp interfaces and thus
lead to a smooth transition of the density at a potential barrier. But the
fact that the quantum-mechanical probability density decays smoothly
on a finite length scale ϰ−1 inside the barrier is precisely what is char-
acteristic of the tunnel effect in quantummechanics. Hence, quantum
tunneling can be thought of as arising from the energetic cost of
density gradients.

Also, we should address the differences between the active and
the quantum-mechanical tunnel effect. An important one is the dif-
ferent physical interpretation. The active tunnel effect is related to the
density of classical particles, the quantum tunnel effect to the prob-
ability that a quantum-mechanical particle overcomes a potential
barrier.Moreover, the active tunnel effect ismore complex since it can
be affected by a larger number of parameters (as illustrated in Fig. 2).
For example, by considering the more general case f 0ðρÞ≠0, where
AMI becomes an analog of the nonlinear Schrödinger equation (31)
instead, we can consider also nonlinear (soliton) tunneling91, an effect
that is of importance in optics92.

Discussion
In this work, we have systematically derived an extension of common
scalar active matter models to the underdamped case which we refer
to as active model I+. This model and its derivation reveal some
important properties of inertial active matter, such as the fact that
mechanical and thermodynamic definitions of the velocity give dif-
ferent results and that the particles’ density-dependent swimming
speed acts as an effective viscosity. Moreover, we have shown that
AMI+ contains (a nonlinear extension of) the Madelung equations and
therefore an analog of the (nonlinear) Schrödinger equation as a spe-
cial case, such that the Schrödinger equation can be seen as an active
field theory. This allows to study quantum effects in active-matter
systems, as has been demonstrated for the tunnel effect and for fuzzy
dark matter. A numerical investigation of the active tunnel effect
shows that this active-quantum analogy has no sensitive dependence
on the assumptions that have beenmade to derive it, indicating that it
is of broader relevance for both theory and experiment.

Methods
Microscopic derivation of active model I+
Here, we explain themicroscopic derivation of AMI+. A visualization of
this derivation can be found in Fig. 1.

Microscopically, a two-dimensional system of N underdamped
ABPs is described by the Langevin equations35

_ri =
pi

m
, ð55Þ

_pi = � γpi � ∇ri
UðfrigÞ+mγv0ûi +ηi, ð56Þ

_φi = χ i, ð57Þ

Fig. 4 | Visualization of the microscopic setup considered in the derivation.
Here, x and y are the components of r and êx is the unit vector in x direction. Each
particle’s state is characterized by the degrees of freedom ri (position), pi

(momentum), and ûi (orientation). By exploiting the symmetries of the system, we
can pass to a reduced description in terms of the vector rûðφRÞ pointing from
particle 1 to particle 2 and the angles θ1 and θ2 defined relative to the orientation of
particle 1. A force arises at the boundary of the potential barrier inside of which
U1 =V0. The setup is a generalization of the overdamped one shown in Fig. 1 of the
article by Jeggle et al.93.
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where ri(t), pi(t), and φi(t) are position, momentum, and orientation
(direction of self-propulsion force) of the i-th particle,
ûiðφiÞ= ðcosðφiÞ, sinðφiÞÞT is its orientation vector, m is its mass, v0 is
its self-propulsion velocity, γ is the translational friction coefficient,
and U =U2 +U1 is the potential consisting of interaction potential U2

and external potentialU1. The translational noises ηi and the rotational
noises χi(t) have the properties

hηiðtÞi =0, ð58Þ

hηiðtÞ � ηjðt0Þi=2γmkBT1δijδðt � t0Þ, ð59Þ

hχ iðtÞi=0, ð60Þ

hχ iðtÞχ jðt0Þi= 2DRδijδðt � t0Þ, ð61Þ

with the ensemble average 〈⋅〉 and the unit matrix 1. This setup is
visualized in Fig. 4, which shows the independent degrees of freedom
of each particle (position, momentum, and orientation) and the forces
from an external potential (which in the figure has the form of a barrier
as in the active tunnel effect). The corresponding Fokker-Planck
equation is given by35

_PNðfri,pi,ûigÞ= iLðfri,pi,ûigÞPNðfri,pi,ûigÞ, ð62Þ

where PN is the N-body probability distribution and

iLðfri,pi,ûigÞ=
XN
i = 1

�pi

m
� ∇ri

+ γ + γpi � ∇pi
+ ð∇ri

UÞ � ∇pi

�
�mγv0ûi � ∇pi

+ γmkBT∇
2
pi
+DR∂

2
φi

� ð63Þ

is the Liouvillian. The dependence on t is not written explicitly to
simplify the notation (except in Eqs. (58)–(61), where it is important).

By integrating Eq. (62) over the coordinates of all except for one
particle, we find35

_P1ðr,p,ûÞ= � p
m

� ∇+ γ + γp � ∇p + ð∇U1Þ � ∇p

�
� mγv0û � ∇p + γmkBT∇

2
p +DR∂

2
φ

�
P1ðr,p,ûÞ

+
Z

d2r2

Z
d2p2

Z 2π

0
dφ2ð∇U2Þ � ∇pP2ðr,r2,p,p2,û,û2Þ

ð64Þ

with ∇ =∇r and the n-body density defined as58

Pn =
N!

ðN � nÞ!
Z

d2r1 � � �
Z

d2rN�n

Z
d2p1 � � �

Z
d2pN�nZ 2π

0
dφ1 � � �

Z 2π

0
dφN�nPN ,

ð65Þ

where n∈ {1,…,N}. The index 1 is dropped for the coordinates. We
define the particle density

ϱðr,ûÞ=
Z

d2pP1ðr,p,ûÞ: ð66Þ

Moreover, we make the generalized local equilibrium approximation
(13) (see Results), which implies35

ϱðr,ûÞvðr,ûÞ=
Z

d2p
p
m

P1ðr,p,ûÞ: ð67Þ

We now drop arguments of the fields unless unclear. Integrating
Eq. (64) over p and using Eqs. (66) and (67) yields

_ϱ= � ∇ � ðϱvÞ+DR∂
2
φϱ: ð68Þ

Similarly, we can multiply Eq. (64) by p/m, integrate over p, and use
Eqs. (13) and (66)–(68) to get

_v + ðv � ∇Þv= � DRv
∂2φϱ
ϱ

� γv+ γv0û� 1
m

∇U1

� kBT
m

∇ lnðϱÞ � 1
mϱ

I

ð69Þ

with the interaction term

I ðr,ûÞ=
Z

d2r2

Z 2π

0
dφ2ϱ2ðr,r2,û,û2Þ∇U2ðrÞ, ð70Þ

where ϱ2 = ∫ d2p∫ d2p2P2 is the two-particle density and r = ∥r − r2∥
with the Euclidean norm ∥⋅∥ is a distance. (From now on, we
ignore factors of Λ2 or ρ0 required to make the argument of the
logarithm dimensionless.) The derivation of Eq. (69) generally
follows the standard procedure of deriving hydrodynamic
equations from microscopic dynamics58. Our result differs from
the standard form of velocity transport equations by the
presence of the term �DRvð∂2

φϱÞ=ϱ, which arises from the term
DR∂

2
φϱ in Eq. (68).
We can define the pair-distribution function g as46,49,93

gðr,r2,û,û2Þ=
ϱ2ðr,r2,û,û2Þ
ϱðr,ûÞϱðr2,û2Þ

: ð71Þ

Following the treatment byBickmannandWittkowski49, weassume the
pair-distribution function to be translationally and rotationally
invariant, implying that it can be written as g(r, θ1, θ2) with the angles
θ1 =φR −φ and θ2 =φ2 −φ and the parametrization r2 � r= rûðφRÞ.
These new variables are visualized in Fig. 4. Then, we can perform a
Fourier and a gradient expansion49,94 of g and find

Iðr,ûÞ= �
X1
l =0

1
l!
ϱðr,φÞ

Z 1

0
drrl + 1U 0

2ðrÞ
Z 2π

0
dφRûðφRÞðûðφRÞ � ∇ÞlZ 2π

0
dφ2

X1
n1 ,n2 =�1

gn1n2
ðrÞ cosðn1θ1 +n2θ2Þϱðr,φ2Þ

ð72Þ

with the r-dependent expansion coefficients49

gn1n2
ðrÞ=

R 2π
0 dθ1

R 2π
0 dθ2 gðr,θ1,θ2Þ cosðn1θ1 +n2θ2Þ
π2ð1 + δn10

Þð1 + δn20
Þ ð73Þ

and U 0
2ðrÞ=dU2=dr.

We now carry out the Cartesian orientational expansions7

ϱðr,ûÞ=ρðrÞ+ û � PðrÞ, ð74Þ

vðr,ûÞ=vðrÞ+ û � vPðrÞ ð75Þ

with the non-orientational particle density

ρðrÞ= 1
2π

Z 2π

0
dφϱðr,ûÞ, ð76Þ
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the local velocity

vðrÞ= 1
2π

Z 2π

0
dφvðr,ûÞ, ð77Þ

the local polarization

PðrÞ= 1
π

Z 2π

0
dφûϱðr,ûÞ, ð78Þ

and the local velocity polarization

vPðrÞ=
1
π

Z 2π

0
dφû� vðr,ûÞ: ð79Þ

Here, our treatment differs in an important way from standard treat-
ments of active overdamped48,49, passive underdamped58, and even
active underdamped35 particles. Since we have a generalized velocity
field v that also depends on û, we have to perform the orientational
expansion not only for the density, but also for the velocity.

We now insert Eq. (74) into lnðϱÞ and Taylor expand around P =0.
This gives

lnðϱÞ≈ lnðρÞ+ 1
ρ
û � P≈ lnðρÞ+ 1

ϱ0
û � P, ð80Þ

where we have replaced ρ by a spatially and temporally constant
reference density ϱ0 in the last step. Similarly, we insert Eqs. (74) and
(75) into vð∂2φϱÞ=ϱ and Taylor expand around P =0 to find

ðv+ û � vPÞ∂2φðρ + û � PÞ
ρ+ û � P ≈ � ðv+ û � vPÞû � P

ρ
: ð81Þ

Finally, an orientational expansion of the interaction term gives

1
ϱ
I =A1ûρ+A2∇ρ+A3∇

2P+2A3∇ð∇ � PÞ

+A4û∇
2ρ+2A4∇ð∇ � ûÞρ+ � � �

ð82Þ

with the coefficients

A1 = � 2π2
Z 1

0
drrU 0

2ðrÞðg1,0ðrÞ+ g�1,0ðrÞÞ, ð83Þ

A2 = � 2π2
Z 1

0
drr2U 0

2ðrÞg0,0ðrÞ, ð84Þ

A3 = � π2

4

Z 1

0
drr3U 0

2ðrÞðg1,�1ðrÞ+ g�1,1ðrÞÞ, ð85Þ

A4 = � π2

2

Z 1

0
drr3U 0

2ðrÞðg1,0ðrÞ+ g�1,0ðrÞÞ: ð86Þ

These coefficients can be time-dependent by inheriting a time-
dependence of g49, but we will assume them to be constant.

From Eqs. (68), (69), (74), (75), and (80)–(82), we obtain the
general local field theory for underdamped ABPs

_ρ= � ∇ � ðρvÞ � 1
2
∇ � ðP � vPÞ, ð87Þ

_P= � ∇ � ðv� PÞ � ∇ � ðρvPÞ � DRP, ð88Þ

_v= � ðv � ∇Þv� 1
2
ðvP � ∇Þ � vP � γv� A3

m
∇2P

+DR
P � vP
2ρ

� 1
m

∇ kBT lnðρÞ+A2ρ + 2A3ð∇ � PÞ+U1

� �
,

ð89Þ

_vP = � ðvP � ∇Þ � v� ðv � ∇ÞvP � γvP + γv01

+DR
v� P
ρ

� kBT
ϱ0m

∇� P� 1
m

ðA1ρ+A4∇
2ρÞ � 2A4

m
∇� ∇ρ:

ð90Þ

Starting from the very general model given by Eqs. (87)–(90),
various approximations can be made. In most active matter models, it
is assumed that the polarization P is slow compared to the velocity v.
While this is reasonable for strongly damped systems, v should be slow
in a system with weak damping and activity because there the
momentum density is (almost) a conserved quantity (unlike P). In this
case, it is plausible to assume that v evolves slower than P. This limit,
which is less well understood, will be considered in this work.

Using the quasi-stationary approximation

_vP =0, ð91Þ

Eq. (90) gives

vP = vldðρÞ �
A4

γm
∇2ρ

� �
1 +DR

v� P
γρ

� 2A4

γm
∇� ∇ρ� kBT

γϱ0m
∇� P

� 1
γ
ðvP � ∇Þ � v� 1

γ
ðv � ∇ÞvP,

ð92Þ

wherevld is defined in Eq. (4). By inserting Eq. (92) recursively into itself
and neglecting terms of higher than second order in gradients, of
higher than first order in velocities, or that involve products of polar-
izations with velocities, we find

vP = vldðρÞ �
A4

γm
∇2ρ

� �
1� 2A4

γm
∇� ∇ρ

� kBT
γϱ0m

∇� P� vldðρÞ
γ

∇� v+
A1

γ2m
ðv � ∇Þρ1:

ð93Þ

Themotivation behind these approximations is that wewish to derive a
theory of third order in gradients and of second order in velocities and
that we assume both polarizations and velocities to be small. (By velo-
city, we mean v, whereas vP is always referred to as velocity polariza-
tion.) The velocity polarization vP appears in Eq. (89) only in the term
ðvP � ∇Þ � vP=2 (quadratic in vP and of first order in gradients) and in the
termDRP � vP=ð2ρÞ (productwith the small polarization). If we insert Eq.
(93) into Eq. (88) anddropagain termscontainingproducts of velocities
with polarizations (in particular the advection term), we find

_P= � ∇ðρvldðρÞÞ+
A4

γm
∇ð∇ρÞ2 + 3ρ∇∇2ρ+ ð∇ρÞð∇2ρÞ
� �

+
kBT
γϱ0m

∇ � ðρ∇� PÞ+∇ � vldðρÞ
γ

ρ∇� v
� �

� A1

γ2m
∇ðρððv � ∇ÞρÞÞ � DRP,

ð94Þ

where we used the vector identity

∇ � ðρ∇� ∇ρÞ= 1
2
∇ð∇ρÞ2 +ρ∇∇2ρ: ð95Þ

If we have vld(ρ) ≈ v0, the first term on the right-hand side of Eq. (94)
reduces to the self-propulsion term known from the active PFC
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model37. We now make the further quasi-stationary
approximation46,48,49,95

_P=0 ð96Þ

and find

P= � 1
DR

∇ðρvldðρÞÞ+∇ � vldðρÞ
γDR

ρ∇� v
� �

+
A4

γmDR
∇ð∇ρÞ2 + 3ρ∇∇2ρ+ ð∇ρÞð∇2ρÞ
� �

+
kBT

γϱ0mDR
∇ � ðρ∇� PÞ � A1

γ2mDR
∇ðρððv � ∇ÞρÞÞ:

ð97Þ

Inserting Eq. (97) into itself and neglecting terms of higher than third
order in gradients and second order in densities gives

P= � 1
DR

∇ðρvldðρÞÞ+∇ � vldðρÞ
γDR

ρ∇� v
� �

+
A4

γmDR
∇ð∇ρÞ2 + 3ρ∇∇2ρ+ ð∇ρÞð∇2ρÞ
� �

� v0kBT

2γϱ0mD2
R

ð∇ð∇ρÞ2 + 2ρ∇∇2ρÞ

� A1

γ2mDR
∇ðρððv � ∇ÞρÞÞ,

ð98Þ

where we have used Eq. (95) again. This agrees with the result from
Bialké et al.96 if we neglect terms of higher order in gradients and the
velocity term in Eq. (98). We can insert Eq. (98) into Eq. (93) and
neglect terms of higher than third order in gradients to get

vP = vD½ρ,v�1� 2A4

γm
� v0kBT

γϱ0mDR

� �
∇� ∇ρ

� kBTA1

γ2ϱ0m2DR
∇� ∇ρ2 � vldðρÞ

γ
∇� v

� kBT
γ2ϱ0mDR

∇� ð∇ � ðvldðρÞρ∇� vÞÞ

+
kBTA1

γ3ϱ0m2DR
∇� ∇ðρððv � ∇ÞρÞÞ

ð99Þ

with

vD½ρ,v�= vldðρÞ �
A4

γm
∇2ρ+

A1

γ2m
ðv � ∇Þρ: ð100Þ

Equation (100) provides a microscopic expression for the density-
dependent swimming speed vD in the active fluid. To see this, note that
one can calculate the density-dependent swimming speed from the
interaction-expansion method by looking for a contribution of the
form ∇ � ðvD½ρ�ûϱÞ in the dynamic equation for ϱ48. Inserting Eq. (75)
into Eq. (68) gives

_ϱ= � ∇ � ðvϱÞ � ∇ � ðû � vPϱÞ+DR∂
2
φϱ: ð101Þ

This shows that the role of the density-dependent swimming speed is,
in our extended theory, played by the tensorial quantity vP. The part of
vP that is proportional to 1 then directly gives us vD. Note that the fact
that vP gives rise to the density-dependent swimming speed (which is
responsible for MIPS55) is also plausible since, as discussed in the
Results, vP accounts for the violation of local equilibrium. Interest-
ingly, thedensity-dependent swimming speeddependsnotonly on the
density ρ, but also on the velocity v. This suggests that v also has to be
taken into account when describing the emergence of MIPS in
underdamped active fluids.

Inserting Eqs. (98)–(100) into Eq. (87) and neglecting terms of
higher than second order in gradients gives Eq. (2). The reason that
terms of second order in gradients are sufficient is that all third-order
terms would include also v, which (as is evident from Eq. (3)) is of at
least first order in gradients.

Deriving Eq. (3) is slightly more involved. First, we deal with the
term DRP � vP=ð2ρÞ appearing in Eq. (89). Inserting Eqs. (98)–(100),
dropping terms of higher than third order in gradients, terms quad-
ratic in v that are of higher than first order in gradients (since v is of
first order in gradients), terms of higher than second order in fields,
and products of density gradients and velocities (these approxima-
tions will be referred to as standard approximations from here on)
gives

DRP � vP
2ρ

= � v20∇ρ
2ρ

+
3v0A1∇ρ
2γm

� A2
1

2γ2m2 ∇ρ
2

+
v0
4ρ

2A4

γm
� v0kBT

γϱ0mDR

� �
∇ð∇ρÞ2 + v0A4

2γmρ
ð∇ρÞð∇2ρÞ

+
v0A4

2γmρ
∇ð∇ρÞ2 + 3ρ∇∇2ρ+ ð∇ρÞð∇2ρÞ
� �

� v20kBT
4γϱ0mDRρ

ð∇ð∇ρÞ2 + 2ρ∇∇2ρÞ+ v2ldðρÞ
2γ

∇2v,

ð102Þ

where we have used

ð∇� ∇ρÞ � ∇ρ= 1
2
∇ð∇ρÞ2: ð103Þ

We have not expanded the expression vld(ρ)2 in the last term of Eq.
(102) to simplify the notation even though this term thereby contains
terms up to third order infields. Thefirst termon the right-hand sideof
Eq. (102) can be rewritten using ð∇ρÞ=ρ=∇ lnðρÞ. In the fourth-from-
last, third-from-last, and penultimate terms, we replace ρ by ϱ0 in the
denominator such that these terms are of second order in ρ as
required. This yields

P � vP
2ρ

= � v20
2
∇ lnðρÞ+ 3v0A1

2γm
∇ρ� A2

1

2γ2m2 ∇ρ
2

+
3v0A4

2γm
� v20kBT

2γϱ0mDR

� �
∇∇2ρ

+
v0A4

γmϱ0
� v20kBT

2γϱ20mDR

 !
∇ð∇ρÞ2

+
v0A4

γmϱ0
ð∇ρÞð∇2ρÞ+ v2ldðρÞ

2γ
∇2v:

ð104Þ

Next, we consider the term ðvP � ∇Þ � vP=2. Inserting Eqs. (4), (99) and
(100) gives with the standard approximations

1
2
ðvP � ∇Þ � vP = � v0A1

2γm
∇ρ+

A2
1

4γ2m2 ∇ρ
2

� 3v0A4

2γm
� v20kBT

2γϱ0mDR

� �
∇∇2ρ

+
3A1A4

2γ2m2 �
3v0A1kBT
2γ2ϱ0m2DR

� �
∇ðρ∇2ρÞ

+
A1A4

2γ2m2 �
5v0A1kBT
4γ2ϱ0m2DR

� �
∇ð∇ρÞ2

� A1A4

γ2m2 �
v0A1kBT

2γ2ϱ0m2DR

� �
ð∇ρÞð∇2ρÞ

� vldðρÞ2
2γ

∇2v,

ð105Þ
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where we used Eq. (103) and

∇2ρ2 = 2ðρ∇2ρ + ð∇ρÞ2Þ, ð106Þ

ρ∇∇2ρ=∇ðρ∇2ρÞ � ð∇ρÞð∇2ρÞ: ð107Þ

Finally, using Eqs. (98) and (106) and the standard approximations, we
find

A3∇
2P+2A3∇ð∇ � PÞ= � 3v0A3

DR
∇∇2ρ +

6A1A3

γmDR
∇ðρ∇2ρ+ ð∇ρÞ2Þ: ð108Þ

Inserting Eqs. (104), (105), and (108) into Eq. (89) and collecting terms
results in

_v= � ðv � ∇Þv� γv

� 1
m

∇ kBT +
mv20
2

� �
lnðρÞ

�
+ A2 �

2v0A1

γ

� �
ρ+

3A2
1

4γ2m
ρ2

� 3v0A3

DR
+
3v0A4

γ
� v20kBT

γϱ0DR

� �
∇2ρ

� �6A1A3

γmDR
� 3A1A4

2γ2m
+

3v0A1kBT
2γ2ϱ0mDR

� �
ðρ∇2ρÞ

+ � v0A4

γϱ0
+

v20kBT
2γϱ20DR

+
A1A4

2γ2m

 

� 5v0A1kBT
4γ2ϱ0mDR

+
6A1A3

γmDR

�
ð∇ρÞ2 +U1

�
+

A1A4

γ2m2 �
v0A1kBT

2γ2ϱ0m2DR
+

v0A4

γmϱ0

� �
ð∇ρÞð∇2ρÞ

+
vldðρÞ2

γ
∇2v:

ð109Þ

We have not dropped the higher-order contributions in ρ for the
logarithmic term,which is consistentwith the fact thatwedo notmake
a constant-mobility approximation97. It is interesting that, instead of
the thermal energy kBTwewould have in the passive case, the ideal gas
contribution f 0 is proportional to kBT +mv20=2, implying that the active
contribution to the kinetic energy effectively shifts the temperature by
mv20=ð2kBÞ. This is a different sort of effective temperature than the
one reported for active systems by Preisler and Dijkstra57. The
additional term mv20 lnðρÞ=2 originates from Eq. (104). Equation (109)
can be written in the form

_v+ ðv � ∇Þv= � 1
m

∇ f 0ðρÞ � ðκ0 + ςρÞ∇2ρ� γv
�

+ λ0ð∇ρÞ2 +U1

�
+
vldðρÞ2

γ
∇2v+

ξ
m

ð∇2ρÞ∇ρ

ð110Þ

with the function

f 0ðρÞ= kBT +
mv20
2

� �
lnðρÞ+ A2 �

2v0A1

γ

� �
ρ+

3A2
1

4γ2m

 !
ρ2 ð111Þ

and the coefficients

κ0 =
3v0A3

DR
+
3v0A4

γ
� v20kBT

γϱ0DR
, ð112Þ

ς = � 6A1A3

γmDR
� 3A1A4

2γ2m
+

3v0A1kBT
2γ2ϱ0mDR

, ð113Þ

λ0 = � v0A4

γϱ0
+

v20kBT
2γϱ20DR

+
A1A4

2γ2m

� 5v0A1kBT
4γ2ϱ0mDR

+
6A1A3

γmDR
,

ð114Þ

ξ =
A1A4

γ2m
� v0A1kBT

2γ2ϱ0mDR
+
v0A4

γϱ0
: ð115Þ

Finally, we separate the variational and non-variational dynamics
using an argument adapted from Wittkowski et al.14. While −ρ∇2ρ is
non-variational, one couldwrite − (ρ∇2ρ + (∇ρ)2/2) as a derivative of the
free energy density ρ(∇ρ)2/2. On this basis, we replace − ςρ∇2ρ by
− ςρ∇2ρ − ς(∇ρ)2/2 + ς(∇ρ)2/2 and combine the last term (i.e., ς(∇ρ)2/2)
with the term λ0(∇ρ)

2 already present to get a term (λ0 + ς/2)(∇ρ)2. The
remaining gradient contribution − (κ0 + ςρ)∇2ρ − ς(∇ρ)2/2 can be writ-
ten as a functional derivative of the passive free energy FP = ∫d2rκ(ρ)
(∇ρ)2/2 with κ(ρ) = κ0 + ςρ. As is standard in passive model B14, we
make the simplifying assumption that κ is constant. Also, we define
λ0 + ς/2 = λ. Then, Eq. (110) reduces to Eq. (3) of AMI+. Note that, for
large values of v20kBT=ϱ0, Eq. (20) used in the derivation of Eq. (29)
follows from Eqs. (112) and (114) together with ρ0 = 2ϱ0 (see Eq. (19)).
Hence, the choice of coefficients used in the derivation of an analog of
the Schrödinger equation is quite natural for large activities or
temperatures.

Having available a microscopic theory, we can now understand in
more detail the significance of the limit γ→0 that has been used above
to derive an analog of the Schrödinger equation. Simply setting γ=0 is
problematic for two reasons: First, themicroscopicmodel given by Eqs.
(55)–(61) reduces to a passive system for γ =0, which appears to be in
conflict with the fact that Eq. (18), whose derivation requires (among
other things) setting γ =0 in Eq. (9), still contains the active term λ(∇ρ)2.
Second, the microscopic definitions of f 0 and the model coefficients
given by Eqs. (111)–(115) have γ in the denominator in several terms.

To understand this issue, note first that in a passive system (which
we have if γ is exactly zero), P and vP cannot influence the dynamics
sincewehave spherical particles. For determining the formof Eq. (9) in
the case γ =0, the best strategy is thus to re-do the coarse graining
procedure with P =0 and vP =0, giving us

_v+ ðv � ∇Þv= � 1
m

∇ð f 0ðρÞ+U1Þ: ð116Þ

(This does notmean that there can be no gradient terms in the passive
case. These can be obtained by a more sophisticated treatment of
interaction terms).

Of course, the correctpassive limit should alsoemerge fromthe full
theory (assuming that all approximations made during the derivation
remain valid in this limit). Whether this is the case is not obvious since
the coefficients A1,…,A4, which we have treated as constants, generally
vary if quantities like γ or v0 change. While the precise dependencies
remain to be investigated, we may assume that A1, A3, and A4 become
small in a passive system due to the resulting approximate rotational
symmetry of g (see Eqs. (83), (85), and (86)). Taking this into account, it
is easy to see from Eqs. (111)–(115) that Eq. (3) (and thus also Eq. (9))
indeed reduces to Eq. (116) (with an additional term − γv) for v0→0.

The case γ→0 is a bit more difficult since the microscopic deri-
vation of AMI+ involves divisions by γ. This is the reason for why γ
appears in the denominator in several termsof Eqs. (111)–(115), and this
also implies that we cannot simply set γ =0 since this would require a
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division by zero. Nevertheless, we can recover Eq. (116) if we first take
the limit v0→0 and then γ→0. (Note that the blow-up apparently
occurring in Eqs. (111)–(115) in the limit γ→0 will be compensated for
by the small values ofA1,A3, andA4, andby the fact that the assumption
that the polarization relaxes very quickly implies a large value of DR).

Here, however, we wish to study the effects of activity and are
therefore not interested in the limit (116). Instead, we consider a small
but finite γ, and at the same time—to ensure that the terms propor-
tional κ and λ do not become negligible compared to f 0—assume that
v0 is very large. In this case, we may assume (as done in Eq. (18)) that
the (partly) passive term involving f 0 can be neglected compared to
the active terms. Consequently, the limit γ→0 that has been investi-
gated in the Results is not the rather trivial frictionless (passive) limit,
but the case of small but finite damping and strong activity. Interest-
ingly, our investigation of the active tunnel effect has solely relied on
the form (11) of μ, which (as remarked above) also occurs in the
overdamped AMB. Consequently, this effectmay occur both in weakly
damped and in overdamped active matter.

Nondimensionalization
Here, we derive the nondimensional static equations required for our
analysis of the tunnel effect, starting with the quantum model. Using
the Madelung transformations, Eq. (37) can be rewritten as88

0 =∂xðρqvÞ, ð117Þ

E =
m
2
v2 � _2

2m
1
2
∂2
x lnðρqÞ+

1
4
ð∂x lnðρqÞÞ2

� �
+U1: ð118Þ

For v =0, Eq. (118) simplifies to

E = � _2

2m
1
2
∂2x lnðρqÞ+

1
4
ð∂x lnðρqÞÞ2

� �
+U1: ð119Þ

While v is not zero for the quantum-mechanical tunnel effect88, the
essential physics can still be captured in the simpler case v =0.
Defining E = E0

~E, U1 = E0
~U1, and x = x0~x (where the tilde denotes

dimensionless quantities and E0 and x0 are constants) gives

~E = �
~_
2

2 ~m
1
2
∂2
~x lnðρqÞ+

1
4
ð∂~x lnðρqÞÞ2

� �
+ ~U1

ð120Þ

with ~_
2
=ð2 ~mÞ= _2=ð2mE0x

2
0Þ. Dropping all tildes results in Eq. (44).

Note that we have not nondimensionalized the density ρq in
the argument of the logarithm since, strictly speaking, it is already
nondimensionalized (as noted above, lnðρqÞ is a short notation for
lnðρq=ρ0Þ). Moreover, the wavefunctions and densities given in Eqs.
(39), (42), and (43) are dimensionless (this is standard in treat-
ments of the tunnel effect and a consequence of the fact that plane
wave solutions of Eq. (37) cannot be normalized on infinite
domains).

Next, we turn to the static active matter model (11). Defining
ρ=ρ0~ρ, μ= E0~μ, f 0 = E0

~f
0
, U1 = E0

~U1, and x = x0~x (the tildes again
denote dimensionless quantities and ρ0 is another constant) gives

~μ= ~f
0ð~ρÞ � ~κ∂2

~x~ρ+
~λð∂~x~ρÞ2 + ~U1 ð121Þ

with ~κ = κρ0=ðx0
2E0Þ and ~λ= λρ0

2
=ðx0

2E0Þ. Dropping all tildes results in
Eq. (45). We could have eliminated the parameters κ and λ (corre-
sponding to ℏ2/(2m) in Eq. (44)) by an appropriate choice of the con-
stants ρ0, E0, and x0, but we assume here that these constants have
already been used to eliminate other parameters, e.g., in the free
energy.

Numerical path continuation
To obtain the results shown in Fig. 2, we use numerical path con-
tinuation via the Matlab package pde2path98. Starting from the analy-
tical solution (Eq. (47)) of model (53), pde2path subsequently applies
tangent predictors and Newton correctors to track a branch of steady
states through parameter space. A numerical linear stability analysis
during the continuation yields the stability of the corresponding
solution and enables the detection of bifurcations. Pde2path uses the
finite element method and the model is implemented in a weak for-
mulation.Wehaveused aprimary control parameter (a, κ, or λ) and the
chemical potential μ as a secondary onewhich is adapted freely during
the continuation to ensure mass conservation.

Data availability
The data corresponding to Fig. 2 generated in this study have been
deposited in the Zenodo database under accession code https://doi.
org/10.5281/zenodo.637606099.

Code availability
The code used for the numerical continuation has been deposited in
the Zenodo database under accession code https://doi.org/10.5281/
zenodo.637606099.
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