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Front and back instability of a liquid film on a slightly inclined plate
Uwe Thiele and Edgar Knobloch
Department of Physics, University of California, Berkeley, California 94720

~Received 14 June 2002; accepted 19 December 2002; published 4 March 2003!

We study the transverse instability of a liquid ridge on horizontal and inclined substrates using a film
evolution equation based on a long wave approximation. The equation incorporates an additional
pressure term—the disjoining pressure—accounting for the effective interaction of the film with the
substrate. On a horizontal substrate the dominant instability mode is varicose, but may turn into a
zigzag mode on a slightly inclined substrate depending on the inclination angle and the ridge
volume. For larger angles or volumes the instabilities at the front and back decouple. The linear
stability properties of a one-dimensional transverse ridgelike state are studied in detail, and an
energy analysis is used to demonstrate that the disjoining pressure provides the dominant instability
mechanism at both the front and the back, while the body force is responsible for the main
differences between these two instabilities. An amplitude equation for the time evolution of
perturbations with small transverse wave numbers is derived that predicts correctly the linear
crossing of the most dangerous eigenvalues at zero wave number in the inclined case, in contrast to
the situation on a horizontal substrate. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1545443#
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I. INTRODUCTION

When a fluid sheet flows down an inclined plane t
leading front may be unstable to slight perturbations t
initiate a fingering instability that develops into an array
straight or wedge-shaped fingers advancing faster than
original front.1 This instability has been the subject of n
merous investigations.2–13 Linear stability analysis show
that the front is unstable for a band of wave numbers
tween zero and a finite limiting value, and that the dispers
relation has a maximum at a finite wave number.5 This quali-
tative result is independent of the details of the model u
for the contact line motion, i.e., of the model of the conta
line slip at the substrate, and remains valid if a precursor fi
is assumed to be present instead. Hydrostatic pressure
to stabilize the film, and is responsible for the existence o
threshold inclination angle for the onset of the instability.7

Related transverse~or spanwise! instabilities occur on a
liquid front that advances as a result of a Marangoni fl
induced by a longitudinal~i.e., streamwise! temperature
gradient,14–18 and on a spreading drop of surfactant on
prewetted plane.19–23 In all three cases a capillary ridg
forms at the advancing front, and the general belief is t
the observed instabilities are due to differences in the mo
ity of the thinner and thicker parts of this ridge. Since th
ridge tends to be suppressed by hydrostatic pressure th
clusion of this pressure stabilizes the advancing front w
respect to transverse perturbations in this case also. H
ever, no studies exist of the corresponding phenomena
receding front under the influence of a body force. This m
be due to the general assumption that such fronts are s
because they are not associated with the presence of a
illary ridge.

In addition to the studies of individual advancing fron
mentioned above Hocking and Miksis studied transverse
8921070-6631/2003/15(4)/892/16/$20.00
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uid ridges, i.e., liquid sheets of finite streamwise width, sl
ing down an inclined plane24,25 using a slip contact line
model with a linear dependence of the dynamic cont
angles on the velocity of the contact lines. In models of t
type perturbations with a nonzero transverse wave num
lead to transverse instabilities that involve both the adva
ing and the receding contact lines.25 When the ridge is as-
sumed to be quasi-stationary linear theory predicts that
largest growth rate occurs for perturbations with vanish
wave number~i.e., perturbations on the scale of the syste
size!24,25 but once the quasi-stationarity assumption is
laxed the fastest growth occurs at a finite wave numbe25

When such a ridge loses stability instability is observed
both the front and the back of the ridge simultaneously.
spection of the figures in Ref. 25 shows that the instabilit
are coupled and correspond to an asymmetric varicose m
i.e., where the front bulges forwards the back bulges ba
wards but to a lesser degree.

It is of interest to note that in contrast to a semi-infin
liquid sheet on a horizontal substrate a liquid ridge on suc
substrateis unstable to transverse perturbations.26–28 In par-
ticular, for ridges of small height with negligible gravita
tional effects Davis26 calculated sufficient stability condi
tions for ridges with~i! fixed contact lines,~ii ! fixed contact
angles, and~iii ! contact angles that vary smoothly with co
tact line speed, allowing for slip at the substrate in ca
~ii,iii !, using an energylike integral form of the linearize
hydrodynamic equations. References 27 and 28 employ s
lar assumptions but consider more general geometries
well. Both articles examine the second variation of an ene
functional to predict the minimum wavelength for the tran
verse instability, but the former is restricted to small cont
angles. Liquid ridges are found to be always transvers
unstable but the instability becomes weaker and weake
© 2003 American Institute of Physics
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893Phys. Fluids, Vol. 15, No. 4, April 2003 Front and back instability of a liquid film
the ridge becomes larger and larger. The unstable eigenm
is a varicose mode that extends wider regions at the exp
of narrower ones,27 much as the Rayleigh instability in
liquid jet.29,30The varicose mode and the first stable mode
the zigzag mode—are intrinsically related to the neu
modes corresponding to the continuous symmetries of
one-dimensional problem, namely, the invariance with
spect to change in liquid volume and invariance under tra
lations in the longitudinal direction.

A general difficulty arising in all problems involving
moving contact lines such as spreading drops or liquid sh
or ridges on an inclined plate is that the classical no-s
boundary condition at the liquid–solid interface has to
relaxed to permit movement of the contact line. This can
done by introducing a very thin precursor film, or by allow
ing for slip near the contact line, or introducing an effecti
molecular interaction between the substrate and liquid
the hydrodynamic model.31–35With the exception of Refs. 10
and 13, all of the work cited above on moving liquid she
and ridges uses one of the first two options. Both presc
tions avoid divergence problems at the contact line, but at
expense of introducingad hoc parameters into the theory
These parameters, namely the slip length or the precu
film thickness, influence the base state profile and hence
growth rate and wave number of the fastest growing tra
verse instability.5,7,15,25 Moreover, the equilibrium and dy
namic contact angles have to be fixed independently w
introducing the slip condition.24,33,36 In contrast, in the ab-
sence of motion the precursor film models require that
contact angle be zero, although once the film is in motion
dynamic contact angle depends on the velocity of the
vancing front. In an alternative approach37 either the gas–
liquid or liquid–solid interface, or both, are treated as se
rate phases with properties that differ from the bulk fluid

The third, and most realistic, option is the explicit intr
duction of molecular interactions into the hydrodynamic fo
malism. This is accomplished by means of an additio
pressure term, the disjoining pressure.38 Depending on the
particular problem treated, this disjoining pressure may
corporate long-range van der Waals and/or various type
short-range interaction terms.39–42 These interactions are es
sential for the process of dewetting, and studies of dewet
of a thin liquid film on a substrate are generally based
models involving a disjoining pressure.43–48However, only a
few studies of instabilities of an advancing liquid front ha
adopted a similar approach,10,13 despite the fact that such a
approachpredicts all the ad hoc parameters of the slip
precursor models~i.e., the static and dynamic contact ang
drop velocity, and the drop and precursor film thickne!
connected with the wetting properties of the liquid in term
of the parameters characterizing the disjoining pressure.

Recently Pismen and Pomeau49 derived a film thickness
equation with a disjoining pressure term that remains fin
even for vanishing film thickness by combining the lo
wave approximation for thin films50 with a diffuse interface
description for the liquid–gas interface.51 These authors take
into account the deviation of the liquid density from its bu
value in the vicinity of the liquid–solid and liquid–gas inte
face and discuss the resulting vertical density profile fo
Downloaded 20 Mar 2003 to 193.175.8.223. Redistribution subject to A
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horizontal liquid layer on a solid substrate. The sharp liqui
gas interface is thereby replaced by a smooth transition
tween liquid and gas densities. Likewise, the density va
close to the solid substrate due to molecular interactions
enter into the calculation via the boundary condition for t
fluid density at the substrate. The resulting density profile
then incorporated into a fully consistent theory based on
Stokes equation in the long wave approximation to take i
account dynamical situations. The film thickness equat
that results has the usual form of a thin film equation with
disjoining pressure,50 but the disjoining pressure is purel
hydrodynamic in origin and its form is derived sel
consistently rather than modeled. For reasons already
cussed this equation admits instabilities of the homogene
~i.e., flat! film, and the resulting structure formation was i
vestigated both for a liquid film on a horizontal substrate48,52

and for a film flowing down a slightly inclined plane.53 Very
recent two-dimensional simulations of sliding drops and l
uid ridges on an inclined plane using this model13,54revealed
the presence of transverse instabilities at both the front
the back of the ridge, apparently with different wave nu
bers even in the linear regime of the instability. Relat
simulations of sliding drops have revealed a sequence
transitions in the drop shape with increasing inclinati
angle, from an elongated drop to one with a cusp at
upstream tip, and then to a drop with a cusp that emits sm
satellite droplets, much as observed experimentally.55

Motivated by these and other results on advancing fro
and ridges, we study here the linear stability of liquid ridg
on horizontal and inclined substrates as a function of th
volume and the inclination angle of the substrate. For
clined substrates we take the ridge to be transverse, i.e.,
pendicular to the slope. Our aim is on the one hand to
derstand the transition between the varicose instab
present on a horizontal substrate and the asymmetric v
cose or zigzag instabilities of ridges on an inclined pla
and on the other hand to relate these findings to exis
results for a falling semi-infinite sheet obtained with differe
microscopic models. In other words, we are interested
understanding the role played by the back instability found
Ref. 54, and its coupling to the better known instability at t
front.

Our study is organized as follows. In Sec. II we intr
duce the evolution equation for the film thickness, discu
the form of the disjoining pressure used, and nondimens
alize the equations. In Sec. III we discuss the strategy use
determine stationary solutions and their linear stability pro
erties. Section IV gives the results for the transverse stab
of a ridge on horizontal~Sec. IV A! and inclined~Sec. IV B!
substrates. In the latter case we explore in detail the dep
dence on both the ridge volume and inclination angle. In S
IV C we discuss the physical mechanism of the front a
back instabilities using an adaptation of the energy anal
introduced by Spaid and Homsy.5 In Sec. IV D an evolution
equation for transverse disturbances of very small w
number is derived, and used to explain an unexpected p
erty of the dispersion relation for transverse perturbations
an inclined substrate in the long wavelength limit. Section
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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894 Phys. Fluids, Vol. 15, No. 4, April 2003 U. Thiele and E. Knobloch
summarizes the main results, relates them to the litera
and points out possible directions of future research.

II. FILM THICKNESS EQUATION

We start with the evolution equation for the film thick
ness derived by Pismen and Pomeau49 combining the long
wave approximation for thin films with a diffuse interfac
description for the liquid–gas interface:

] th52¹•~Q~h!$¹@gDh2]hf ~h,a!#1exārg%!. ~1!

Hereh(x,t) denotes the film thickness,x denotes the longi-
tudinal ~downstream! direction,g is the gravitational accel
eration,Q(h)[h3/3h is the mobility factor due to the Poi
seuille flow in the film,ā is the inclination angle between th
substrate and the horizontal, andr, g andh are, respectively,
the density, surface tension and~dynamic! viscosity of the
liquid. The subscriptst andh denote the corresponding pa
tial derivatives.

Equation~1! incorporates the Laplace or curvature pre
sure ~first term!, driving due to gravity~last term!, and the
disjoining and hydrostatic pressures contained in the der
tive of the free energyf (h,a):

]hf ~h,a!5kM ~h,a!1rgh

[
2k

a
e2h/ l S 12

1

a
e2h/ l D1rgh. ~2!

Here P(h)[2kM (h,a) is the disjoining pressure derive
from diffuse interface theory,49 a is a small positive param
eter describing the wetting properties in the regime of par
wetting, l is the length scale of the diffuse interface, andk is
the strength of the molecular interaction. Except for its b
havior for small h the disjoining pressure used here r
sembles qualitatively other disjoining pressures that comb
destabilizing short-range and stabilizing long-range inter
tions, such as the combination of destabilizing polar and
bilizing apolar interactions that is often used in studies
dewetting,44,47,52,56or the two antagonistic power law inte
actions used elsewhere.10,45 The use of these alternative e
pressions has no qualitative effect on the results repo
below. A similar conclusion for dewetting on a horizont
substrate was established earlier.52

In the following we use the dimensionless quantitie53

~denoted temporarily by a tilde!:

t5
hg

k2l
t̃,

h5 l h̃, ~3!

x5Alg

k
x̃,

to rewrite Eq.~1! in the form

] th52¹•$Q~h!@¹~Dh2]hf !1exaG#%, ~4!

where

]hf 5M ~h,a!1Gh, ~5!
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and

G5
lrg

k
~7!

measures the relative strength between gravity and molec
interactions. Since the film flows down the upper surface~as
opposed to the underside! of the substrate,G.0. Moreover,
Q(h)5h3/3 andM (h,a) is given by Eq.~2! with l 51; since
k l /g5O(a2),49 the length scale in thex-direction isl /a. It
follows that the effect of inclination is comparable to that
the hydrostatic term whena;1, i.e., whenā;a. Sincea is
small this balance occurs only for small inclinationsa. This
is the case considered in this paper. In the following we
only dimensionless quantities, unless otherwise stated.

The parametera can be incorporated into the mobilit
factorQ using the transformationh85h1 ln a, leading to an
equation forh8 of the form ~4! but with

]hf 52e2h~12e2h!1Gh, Q~h,a!5~h2 ln a!3/3.
~8!

In either form all spatially periodic solutions with spati
periodL satisfy

1

L E
0

L

h~x,t !dx5h̄, ~9!

whereh̄ is a constant, hereafter referred to as themeanthick-
ness. This quantity therefore measures the volume of liq
in the spatial periodL ~i.e., the liquid contained in the drop
and the precursor!; since it is a constant it provides a goo
measure of the notion of volume. In contrast the term d
volume, also used below, refers only to the volume in
drop on top of the precursor film. This quantity is not co
stant since liquid may flow in and out of a drop at the e
pense of the precursor. Of course whenL contains severa
drops the volume of one may grow at the expense of anot
and as a result the different drops withinL may have differ-
ent volumes.

In the following we solve the problem in the form~8!. It
is important therefore to remember that the true thicknes
the film is h2 ln a, i.e., a quantity slightly larger than tha
computed from Eqs.~4! and~8!. It is appropriate to think of
this change in thickness as a change in the thickness of
precursor.

The linear stability properties of the flat film solutio
h0(x)5h0[h̄ of Eq. ~4! in one dimension are wel
understood.53,54The ~one-dimensional! stability properties of
spatially periodic solutions have also been extensiv
investigated.53,54On a horizontal substrate these solutions
time-independent, while on an inclined substrate they
stationary only in an appropriately moving reference fram
Such stationary solutions are obtained as solutions of
nonlinear eigenvalue problem

05Q~h,a!~]xxxh2]hhf ]xh!1aG Q~h,a!2vh1C0 ,
~10!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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for the drift speedv of the solution, measured in units o
( lk)3/2/hAg. Here C0 is a constant of integration, and
nonzero whenever the substrate inclination is nonzero. F
homogeneous film of thicknessh0 we write

C052~G02vh0!52Q~h0 ,a!aG1vh0 , ~11!

whereG0[Q(h0 ,a)aG is the downstream flux of liquid in
the laboratory frame. This problem can be solved using c
tinuation techniques, starting from small amplitude stea
solutions on a horizontal substrate.53,54 One finds that, de-
pending on the mean film thickness, different types of so
tions may be present. These may be classified into line
unstable~subcritical! nucleation solutions and linearly stab
larger amplitude states. Although for small inclination ang
the solution families found correspond to those found on
horizontal substrate48 there are already some significant d
ferences. First, the solutions are asymmetric andslide down
the inclined plane. Second, the dependence of the velocit
the solution period varies strongly with the mean film thic
ness, a behavior that has no counterpart in the horizo
case. In addition, for larger values ofa, stationary nonlinear
surface waves are present.

The large amplitude stable solutions take the form of~i!
small drops whose shape resembles an asymmetric inve
cup whose properties like the drift speed and dynamic c
tact angles at the front and back depend both on the d
volume and on the inclination angle, or~ii ! large flat drops
resembling a liquid sheet of constant thickness with a ca
lary ridge at its front end. Both types of drops sit on a p
cursor film whose thickness is also given by the model.
contrast to the small drops the properties of the flat drops
not depend on the volume in the drop.53 However, with in-
creasing inclination angle the thickness of the film in t
plateau region decreases while the precursor film thickn
and the drift speedv increase, and the dynamic contact ang
at the rear decreases. In contrast the dynamic contact ang
the front shows a nonmonotonic dependence on the speev:
it first increases withv and then decreases and even fa
below its static equilibrium value. This effect is more pr

FIG. 1. Ridge profilesh0(x) for different values of the mean film thicknes

h̄ ~see legend! for G51025, a50.2, L520 000 anda50.1. The ridge is
sliding towards the right.
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nounced for largerG. In two dimensions these solutions a
independent of the transverse coordinatey and will be re-
ferred to asridges.

Figure 1 shows the transition, for fixed inclination ang
and interaction parameters, from a small cuplike drop t
large flat drop as the volume in the drop increases. In t
spatial dimensions the cuplike solutions correspond to cro
sections of ridgelike solutions that are independent of
transverse coordinatey ~and so are perpendicular to th
slope!. The flat drops correspond to cross-sections of liq
sheets of finite longitudinal extent. Both solutions are rela
to appropriate limiting cases already studied in the literatu
~i! the front of a long flat drop resembles a single front mo
ing down an inclined plate,5 and ~ii ! the liquid ridges on a
horizontal substrate26 resemble the small volume drops whe
the inclination angle approaches zero. The transverse st
ity properties of these limiting cases are already known;
explore below the corresponding results for drops of fin
extent on an inclined substrate, focusing on small but not
small values ofG. Existing work in one dimension53,54

shows that even thoughG is normally very small qualita-
tively correct results are obtained already for moderat
small values ofG. Consequently we limit our study of th
two-dimensional problem to such values ofG, anticipating
that the results will remain qualitatively correct down
physically relevant values ofG.

III. LINEAR STABILITY

Having determined the stationary solutionsh0(x) in
the comoving frame we now study their linear stability
transverse perturbations. The Ansatzh(x,y,t)5h0(x)
1e h1(x)exp(iky1bt) used in Eqs.~4!, ~8! in the comoving
frame leads to a linear eigenvalue problem for the grow
rateb of the form

bh1~x!5S~k,h0~x!!h1~x!. ~12!

Here the operatorS is a function of the transverse wav
numberk, and a functional ofh0 and its derivatives, and is
given in the Appendix, Eq.~A9!. The eigenvalue problem
~12! is solved using a three step procedure. First,h0 and the
speedv are determined, at fixed volume, using numeric
continuation techniques57 starting from analytically known
small amplitude solutions, as described elsewhere.53 The ei-
genvalue problem is then discretized in space and so
numerically. The necessary equidistant discretization
poses a strong limitation on the parameter range where it
be used. The method gives, for instance, no reliable eig
values for large periods (L.150).53 To overcome this prob-
lem we use, as a third step, the smallL results as starting
solutions for numerical continuation inL of both h0 andv,
and of the solutions to the eigenvalue problem~12!. It is
convenient to fix theL2 norm ofh1 during this process. The
required extended system consists of 11 first order differ
tial equations~three for h0 and four each for the real an
imaginary parts ofh1). Using this method we determine i
parallel the stationary solutions, and the eigenfunctions
eigenvalues of the linear problem~12! for any set of param-
eter values. Furthermore, points of special interest such
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the zeros or the maxima ofb(k), or the transition between
real and complex eigenvalues can be followed through
rameter space. The maxima generally occur atk,0.1, im-
plying that the most unstable~dimensional! wavelength is of
order 60l /a@ l .

IV. RESULTS

A. Horizontal substrate

Instabilities of a liquid ridge on a horizontal substra
(a50) are characteristic of the dewetting process. In t
process a thin, initially flat, film may rupture at defects, a
the resulting holes grow until they touch one another, cre
ing a polygonal network of straight liquid ridges. It is ob
served that these ridges decay on a longer time scale form
rows of drops.58,59The stability study performed here applie
to the individual straight ridges.

Typical cross-sections of such ridges are shown in F
2~a!. These have been computed as steady solutions of
~4! with a50. For these cases the precursor thicknes
given ~via a Maxwell construction! by the potentialf (h); in
contrast on an inclined substrate the precursor thickness
pends in addition on the drop velocity and the inclinati
angle.48,53 The dispersion relation for transverse perturb
tions of such a ridge, obtained as described in Sec. III
shown in Fig. 2~b!. It is important to note that there aretwo
modes with zero growth rate atk50: these are the margin
ally unstable varicose mode and the marginally stable zig
mode, already discussed by Sekimotoet al.27 using an en-
ergy functional. Note that the zero growth rate for the va
cose mode atk50 is a direct consequence of volume co
servation: a nonzero growth rate would violate it. T
appearance of these modes is sketched in the insets in
2~b!. Both are related to the neutral modes correspondin
the continuous symmetries of the one-dimensional solut
translation invariance is responsible for the zigzag mo

FIG. 2. Transverse stability of a ridge on a horizontal substrate:~a! Ridge
profilesh0(x) for different values of the mean film thickness as given in t

legend.~b! Dispersion relationb(k) for the two transverse modes whenh̄
51: the unstable varicose mode~solid! and the stable zigzag mod
~dashed!. The corresponding modes are sketched in the inset.~c! The eigen-
modesh1(x) corresponding to~b!. The neutral modes obtained atk50 are
indistinguishable from the modes for the otherk in ~b!. ~d! Dependence of
the maximum growth ratebmax ~left scale! and the corresponding transvers

wave numberkmax ~right scale! on the mean film thicknessh̄. The remaining
parameters area50, G50.1, anda50.1.
Downloaded 20 Mar 2003 to 193.175.8.223. Redistribution subject to A
a-

s

t-

ng

.
q.
is

e-

-
is

g

-

ig.
to
n:
e,

while invariance with respect to volume change gives rise
the varicose mode. These neutral modes, i.e., the eigenf
tions of the two-dimensional stability problem atk50, are
shown in Fig. 2~c!. Their resemblance to the finitek modes is
clear. Note that both dispersion curves vanish quadratic
as the transverse wave numberk approaches zero. As a resu
each mode is mapped onto itself underk→2k. The eigen-
functions of the two modes are virtually unchanged in t
k-range shown in Fig. 2~b!: the modes fork50 and k
50.06 cannot be distinguished on the scale of Fig. 2~c!. In-
creasing the drop volume at fixed period by increasing
mean film thickness@cf. Fig. 2~a!# leads to ridges with cross
sections that resemble flat drop solutions.48 Such drops are
still unstable to the varicose mode, although the maxim
growth rate and the corresponding transverse wave num
both decrease exponentially with increasing volume, m
sured in Fig. 2~d! in terms of mean film thicknessh̄. In
practice, therefore, broad ridges are effectively stable on
time scales accessible in experiments.

B. Inclined substrate

The physical situation changes dramatically onceaÞ0
as a consequence of the broken symmetryx→2x. As a re-
sult the drops become asymmetric and slide down the s
strate ~on top of the precursor film whose thickness no
depends on inclination angle and the drop velocity53!.

Whena50 the variational structure of Eq.~10! implies
that v5C050. As a result the equation is invariant und
both translations inx and changes in volume~or h̄). In par-
ticular for each set of parameter values there is a tw
parameter family of solutions. In contrast, whenaÞ0 the
stationary solutions are described by Eq.~10! with a, v, and
C0 all nonzero. The resulting equation is still invariant und
translation but no longer under volume change. This is
cause a change in volume also changes the velocityv. As a
result only the translational neutral mode remains, i.e., o
one mode with zero growth rate exists at zero wave num
in contrast to the two modes for the horizontal substrate. T
implies that the two leading eigenmodes of the transve
stability problem, i.e., the equivalents of the varicose a
zigzag modes for the inclined case are either no longer in
pendent atk50 or only one has a zero growth rate atk
50. In fact we find that the first hypothesis is true: the tw
modes coincide atk50 forming the translational neutra
mode, but are distinct wheneverkÞ0 being mapped into one
another by the transformationk→2k.

In the following we study the stability of a liquid ridge
as a function of both its volume and of the inclination ang

1. Change of ridge volume

The volume of the liquid in the ridge can be changed
two ways. On the one hand the volume in the ridge can
increased@decreased# by increasing@decreasing# the mean
film thickness keeping the period fixed. On the other ha
one can fix the mean film thickness and increase@decrease#
the period. Both procedures lead to identical drops sitting
precursor films of identical thickness but different leng
and give identical results for the dispersion relationunless
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 3. Stationary profilesh0(x) ~upper plots! and the corresponding eigenfunctionsh1(x) ~lower plots! for k50 ~dotted line!, at the maximum of the

dispersion relation~Fig. 4! for small k ~dashed line! and at the maximum for largerk ~solid line, ~b-d! only! when h̄51.5 and~a! L575, ~b! L5150, ~c!
L5200 and~d! L5500. For narrow ridges the smallk ~largek) maximum corresponds to a zigzag~varicose! mode. For broader ridges the smallk ~largek)
instability is localized at the front~back! of the ridge. The remaining parameters area50.2, G50.1, anda50.1.
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the period used is so small that individual ridges in the d
ferent periods ‘‘overlap.’’ For the parameter values used t
can be avoided by choosingL>75. The results reported be
low have been obtained inboth of the above ways and can
not be distinguished on the scale of the figures.

As the volume is increased the ridges with small cupl
cross-section change to large flat drops with a capillary ri
at the front whose profile relaxes towards the upper plat
thickness@see for instance the upper panels of Figs. 3~a!–
3~d!#. This change in the ridge profile is accompanied b
rather drastic change in the dispersion curves for the
Downloaded 20 Mar 2003 to 193.175.8.223. Redistribution subject to A
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leading eigenvalues~Fig. 4! and the corresponding eigen
functions~lower panels of Fig. 3!. At small volume two dis-
persion curves,b1(k) and b2(k), are still present, but in
contrast to thea50 case these now crosslinearly at k50,
implying that b1(k)5b2(2k) and, at small k, b1(k)
52b2(k). Note in particular that the dominant instabilit
mode~i.e., the mode with maximum growth rate! may now
be an asymmetric zigzag mode@dashed line in the lower
panel of Fig. 3~a!#, even though for smaller drop volume an
very smalla the ~asymmetric! varicose mode remains dom
nant ~not shown!.
-
er-
FIG. 4. Dispersion relationsb(k) for h̄51.5 and~a!
L575, ~b! L5150, ~c! L5200 and~d! L5500. Iden-
tical dispersion relations are obtained forL5500 and

~a! h̄50.59, ~b! h̄50.77, ~c! h̄50.88 and~d! h̄51.5.

For L,75 ~at h̄51.5) the results from these two ap
proaches start to differ because the ridges in the diff
ent periods interact. The remaining parameters area
50.2, G50.1, anda50.1. Thick ~thin! lines indicate
real ~complex! modes.
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With increasing volume the character of the dispers
relation undergoes two consecutive changes~Fig. 4!. First,
the two dispersion curves approach one another at a fi
value of k. At a certain volume they touch, and for larg
volumes there is an interval of wave numbersko1,k,ko2 in
which the growth rate is complex, and real growth rates
present fork,ko1 andk.ko2 only @Fig. 4~b!#. The complex
~oscillatory! mode is initially stable but with increasing vo
ume it acquires an interval of instability which increases u
til the complex mode is unstable throughout its range
existence. With further increase in volume the real mode
large k also lose stability; at the same time the interval
complex modes shrinks@Fig. 4~c!#, and there is a secon
critical volume at which the imaginary part of the grow
rates vanishes, and the modes become purely real again@Fig.
4~d!#. Note that the maximum growth rate of the oscillato
mode is always smaller than the maximum of the real gro
rates so that any instability is dominated by modes that g
monotonically. Thus oscillations may only be expected
laterally confined systems. The net outcome of these cha
is to replace the dominant unstable mode at small volum
by a different mode, one that is related to thestablemode at
smallk. In particular, for sufficiently large ridge volumes th
former dominates only at smallk while the new mode domi-
nates at largerk and has a larger maximum growth rate@Fig.
4~d!#. Neither of these modes resembles the zigzag or
varicose modes present at small volume. Instead, the ei
functions at maximum growth rate are localized at the fr
~the smallk mode! or the back~the largek mode! of the
ridge. Figure 4~d! therefore indicates that for the parame
values considered the instability of the back is alwaysfaster
than the instability of the front. However, because the ins
bility modes at the maxima of the dispersion relation a
totally decoupled one may expect that in an experiment
ridges of large volume both instabilities may proceed in p
allel, and exhibit different wavelengths and growth rat
These predictions concur with preliminary results from tw
dimensional numerical simulations of Eq.~4!.13,54

To systematize these results we plot in Fig. 5 the grow
rates at the two maxima as functions of the ridge volum

FIG. 5. The maximum growth ratebmax at the two maxima of the dispersio
relation as a function of the longitudinal periodL. Parameters are as in Fig

4 at fixedh̄51.5.
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using the spatial period as control parameter~at fixed mean
thickness!. Using the values given in the caption to Fig. 4
a guide one can ‘‘translate’’ the horizontal axis into me
film thicknessh̄ at fixed period. As expected both growt
rates approach constant values at large periods becaus
front and back instabilities are then completely decoup
and therefore independent of the length of the drop. T
system behavior can be quantified further by tracking
various special wave numbers (kmax for maximum growth
rate,kc for marginal stability andko at the transition between
real and oscillatory modes! as a function of the spatial perio
at fixed mean film thickness~Fig. 6!. The most important
curves are the heavy dashed~dotted! lines that separate, fo
real ~oscillatory! modes, the stable wave numbers~shaded
gray! from the unstable ones. The thin dashed lines indic
the remaining zero crossings of branches of the disper
relation ~i.e., crossings in the unstable regime!, whereas the
thin dotted line denotes the limits of existence of the os
latory modes. The positions of the maxima of the dispers
relation are indicated by the solid lines, with heavy lin
indicating the wave number of the absolute maximum. It
noteworthy that the critical wave number decreases with
creasing period in the small volume regime, while it i
creases~slightly! in the large volume regime towards it
value for the completely decoupled back.

2. Change of inclination angle

Beside the ridge volume the second control paramete
interest is the inclination anglea of the substrate. At fixed
period and a mean film thickness large enough that the o
dimensional steady state fora50 is a flat drop48 an increase
in a produces sliding drops whose upper plateau is inclin
relative to the substrate over all of its length@Fig. 7~a!#. With

FIG. 6. The linear stability results as a function of the longitudinal periodL.
The dashed lines show the critical wave numberskc of the first two eigen-
modes~the smallk mode in the upper left part of the plot and the largek
mode in the upper right part!. The system is linearly stable above the thic
dashed and dotted lines~shaded region!. The dashed line denotes the ze
crossing of a real eigenvalue while the dotted line denotes the zero cros
of the real part of a complex eigenvalue. The complex mode exists in
parameter range enclosed by the thin dotted lines. The solid lines repr
the transverse wave numbers corresponding to local maxima in the gr
rate, with the thick lines representing the absolute maximum. Parameter

as in Fig. 4 at fixedh̄51.5.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 7. Stationary profilesh0(x) ~upper plots! and corresponding eigenfunctionsh1(x) ~lower plots! for k50 ~dotted line!, at the maximum of the dispersion

relation ~Fig. 8! for small k ~dashed line! and at the maximum for largerk @solid line, ~b!–~d! only# when L5500, h̄51.5, G50.1, a50.1 and~a! a
50.025, ~b! a50.05, ~c! a50.1 and~d! a50.2.
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further increase ina this inclination decreases as the dr
develops a capillary ridge at the front and an upper platea
constant thickness@Fig. 7~c!#. With further increase ina the
upper plateau thickness decreases slightly while the pre
sor film thickness slightly increases@Figs. 7~c!, 7~d!#. These
changes are reflected in the corresponding changes in
dispersion relation~Fig. 8!; these resemble the sequence
changes found when increasing the ridge volume in S
IV B 1 above, but with fastest growing wave numbers a
maximal growth rates that differ by one and two orders
magnitude, respectively.

The stationary solutions and the front and back eig

FIG. 8. Dispersion relations for~a! a50.025, ~b! a50.05, ~c! a50.1, ~d!

a50.2 andL5500, h̄51.5, G50.1 anda50.1. Thick~thin! lines indicate
real ~complex! modes.
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modes at maximum growth rate and atk50 can be found in
Fig. 7. At large inclination angle the modes at the tw
maxima correspond to pure front~small k maximum! and
pure back~large k maximum! modes. The maximal growth
rates of both modes increase with increasinga as shown in
Fig. 9. For smallera the smallk mode is dominant but is
eventually overtaken by the largek mode; the latter domi-
nates fora.0.15. Figure 10 shows the various special wa
numbers identified in Fig. 6 as a function ofa for fixed
volume. The critical wave numberkc increases witha, as do
the two fastest growing wave numbers. This increase is fa
for the back mode.

FIG. 9. Maximum growth ratebmax as a function of the inclination anglea

when L5500, G50.1, h̄51.5 anda50.1. Solid ~dashed! lines indicate
back~front! modes corresponding to the two local maxima of the dispers
relation at largek.
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Knowing that on the one hand the two eigenmodes at
maxima in Fig. 4~d! are localized at the front or the back an
that on the other hand atk50 they both represent the tran
lational neutral mode~a zigzag mode! the question arises
how the eigenfunctions change along the dispersion r
tions. We visualize this change by plotting in Figs. 11~a!–
11~d! the maximum~or minimum! amplitudesh1m of the
eigenfunctions at the front and the back of the ridge for
parameter values corresponding to the dispersion relation
Figs. 8~a!–8~d!. The oscillatory modes are omitted from th
plot because they are not important for the analysis. T
dashed~solid! lines represent the contributions from the fro
~back! of the ridge, while the heavy~thin! lines are used to
distinguish the two modes using their largek behavior. Thus
the heavy~thin! lines refer to what we have called the ba
~front! modes, or equivalently the largek ~small k) modes.
The latter terminology is based on Fig. 11~d!, in which the
dotted vertical lines mark thek values corresponding to
maximum growth rate and the filled circles indicate the c
responding eigenfunction maxima. One sees that in all f
panels of Fig. 11 the dashed heavy line approaches ze

FIG. 10. As for Fig. 6 but showing thea dependence of the linear stabilit

results forL5500, G50.1, h̄51.5 anda50.1.
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largek implying that at largek this mode is not involved in
the instability of the front position, i.e., that it is localized
the back. In contrast, the fact that the dashed thin line
proaches a finite value while the solid thin line approach
zero implies that the smallk mode is localized at the front. I
at a certain value ofk the values along the thick~or thin!
curves are both nonzero and of opposite sign, the co
sponding eigenmode represents a zigzag mode, whereas
signs indicate a varicose mode. Thus fora50.025 the long
wave unstable mode~heavy lines neark50) is a zigzag
mode; the anticipated varicose instability occurs for y
smaller values of the inclination~not shown!.

One can use Fig. 11 to distinguish four distinctk ranges.
~i! The regionk'0, where the deviation of either mode from
the translational neutral mode~a zigzag mode with nearly
equal contributions from the front and the back! is linear and
can be treated analytically, as in Sec. IV D. Region~ii ! with
0,k,0.02 @see Fig. 11~a!# where the unstable mode re
mains of zigzag type but the contribution from the front
the ridge dominates more and more ask increases~heavy
lines!. The corresponding stable mode is also of zigzag ty
~thin lines!, and for this mode the contribution from the bac
exceeds that from the front. In region~iii ! at k'0.02 @Fig.
11~a!# the relative contribution to either mode from the ba
falls dramatically. For the unstable mode this contributi
changes sign and the mode becomes a varicose one;
increasingk the contribution from the front drops rapidly an
at largek this mode is therefore confined to the back of t
ridge. In contrast the stable mode remains a zigzag mode
for k*0.02 this mode is dominated by the contribution fro
the front of the ridge. Thus at largek the dominant modes
take the form of pure back and front modes@regime~iv!#. If
we ignore the narrowk ranges where the eigenmodes a
oscillatory the above description, with obvious modific
tions, also applies to the remaining panels of Fig. 11. T
general tendency is towards a narrowing of the transit
regions~i! and ~iii ! with increasing ridge volume, with the
proviso that at the same time the wave numbers corresp
ing to maximum growth rates move from range~i! to ~iv!.
-
ted

-
les
FIG. 11. The maximum or minimum valuesh1m of the
eigenfunctionsh1(x) at the front ~dashed lines! and
back~solid lines! of the ridge. The two different eigen
modes are indicated by heavy and thin lines. The dot
vertical lines indicate the values ofkmax at the local
maxima of the dispersion relation. The filled circles in
dicate the corresponding mode. The inclination ang
a and other parameters are as in Fig. 8.
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Downloaded 20 M
TABLE I. The termsSnh1 and their physical interpretation~terms 1–7 are identical to those in Ref. 5!. f̃ hh

stands forf hh without the contribution of the hydrostatic pressure.

Term Expression Physical mechanism

1 vh1x Convective flow inx-direction due to reference velocityv
2 1

3(h0
3h1xxx)x

Capillary flow in x-direction induced by perturbation curvature inx-direction

3 2
1
3(k2h0

3h1x)x
Capillary flow in x-direction induced by perturbation curvature iny-direction

4 aG(h0
2h1)x Flow in x-direction due to gravity

5 (h0
2h0xxxh1)x Capillary flow in x-direction due to perturbation thickness variations

6 2
1
3k2h0

3h1xx
Capillary flow in y-direction induced by perturbation curvature inx-direction

7 1
3k4h0

3h1
Capillary flow in y-direction induced by perturbation curvature iny-direction

8 (h0
3 f̃ hhh1)xx

Flow in x-direction due to variation of disjoining pressure

9 G(h0
3h1)xx Flow in x-direction due to variation of hydrostatic pressure

10 2h0
3 f̃ hhk

2h1
Flow in y-direction due to variation of disjoining pressure

11 2Gh0
3k2h1 Flow in y-direction due to variation of hydrostatic pressure
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Thus for sufficiently large ridge volumes~and inclination
angles! the dominantunstablemodes are localized at th
front and back of the ridge.

C. Physical mechanism

The physical mechanism responsible for contact line
stabilities can be studied using the widely used method
energy analysis.5,21,22,60 The growth rateb of an unstable
mode is interpreted as an energy production rate and co
butions to it from the individual terms of the linearized pro
lem can be connected to underlying physical mechanism5

For this type of analysis we multiply Eq.~12! by h1 and
integrate the result over one spatial period. The right s
then consists of a sum of the individual contributions,bn ,
defined by

bn52
^h1 ,Snh1&

^h1 ,h1&
, ~13!

where

^v,w&5E
0

L

vw dx. ~14!

The operatorsSn that add up to give the linear operatorS are
given, together with their physical interpretation, in Table
and depend nonlinearly on the base flow solutionh0(x).

The assessment of the influence of the individual ter
used in the literature, is based on the signs of the respec
bn : positivebn are destabilizing, while terms correspondin
to negativebn are stabilizing.5,21,22Although this interpreta-
tion provides useful information about the overall influen
of the terms it does not reveal either the mechanism of
instability or the terms responsible for the selected wa
number because it does not take into account that all
contributionsbn in fact balance atk50: (bn(k50)50.
This requirement is a consequence of the fact that atk50 the
unstable mode becomes the translational neutral mode o
one-dimensional geometry. It is the destabilization of t
mode, and therefore thedeviationof thebn from their values
at k50 that determines the transverse instability.60 Hence the
most important instability mechanisms are those for wh
the associatedbn deviate most from their value atk50.
These deviations are plotted in Figs. 12~a! and 12~b! for the
ar 2003 to 193.175.8.223. Redistribution subject to A
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front and back mode, respectively@parameter values as i
Fig. 4~d!#.

Figure 12 reveals rather drastic changes in the individ
contributions neark50 ~both modes! and k50.05 ~back
mode!. These correspond to the qualitative changes in
eigenmodes around thesek values noted already in Fig. 11
Thus as formulated here the energy analysis is capabl
revealing more detailed information than its tradition
version.5,21,22A second difference between the present pro
lem and those studied in the literature arises from the

FIG. 12. The contributionsbn to the overall growth rateb of ~a! the front
and~b! the back mode, relative to their values atk50, plotted as a function
of the transverse wave numberk. The parameters are as in Fig. 4~d! and the
numbering follows Table I.
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that contributions tobn , for either mode, can arise from th
front, bn

f , and the back,bn
b , if the eigenfunction has two

peaks. So a situation may arise whereb[b f1bb is domi-
nated by either the front or the back, but the individual co
tributions to these,bn

f or bn
b , may bear no relation to the

location of the dominant instability. Here we have introduc

bn
b5^h1 ,Snh1&b /^h1 ,h1&, bn

f 5^h1 ,Snh1& f /^h1 ,h1&,
~15!

where

^v,u&b5E
0

j

vu dx, ^v,u& f5E
j

L

vu dx, ~16!

FIG. 13. The contributions of the front part,b f , and back part,bb, to the
eigenvalueb for ~a! the front mode and~b! the back mode. The paramete
are as in Fig. 4~d!.
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respectively, withj chosen to lie between the locations of th
back and the front. For drops of sufficiently large volume t
exact value of the cutx5j becomes immaterial and th
quantitiesbn

f , bn
b become independent ofj. Figures 13~a!

and 13~b! showb, b f andbb for the front and back mode
respectively. These show clearly that the front mode is
clusively caused by contributions from the front part of t
profile even in the range at very smallk for which the eigen-
function has significant amplitude at both the front and
back. In this case all but one of the signs of thebn

f agree with
the signs of the correspondingbn . Likewise, the back mode
is mainly caused by contributions from the back part of t
profile @Fig. 13~b!#. However, during the qualitative chang
in the eigenfunction neark50.05 the instability is briefly
dominated by contributions from the front. For the ba
mode the split of thebn into thebn

f andbn
b has a profound

effect on the signs of the individual contributions as can
seen when comparing Fig. 14 with Fig. 12~b!.

The overall influence of the individual terms is summ
rized in Table II. Comparison of the contributions from th
front part of the front mode~column 3! with the contribu-
tions from the back part of the back mode~column 4! indi-
cates that in both cases the main stabilizing influence co
from term 2, i.e., the flow in thex-direction due to
x-curvature, and the main destabilizing influence from te
8, i.e., the flow in thex-direction due to variations of the

FIG. 14. The contributionsbn
b to the eigenvalue of the back mode. Norma

ization, term numbering and parameters are as in Fig. 12.
and
TABLE II. Effect of the termsSnh1 on the stability of moving contact lines. The respective main stabilizing
destabilizing influences are marked by bold letters.

Term Front mode Back mode Front mode~front only! Back mode~back only!

1 none none none none
2 stabilizing destabilizing stabilizing stabilizing
3 stabilizing stabilizing stabilizing stabilizing
4 destabilizing stabilizing destabilizing stabilizing
5 stabilizing destabilizing destabilizing stabilizing
6 stabilizing destabilizing stabilizing stabilizing
7 stabilizing stabilizing stabilizing stabilizing
8 destabilizing stabilizing destabilizing destabilizing
9 stabilizing destabilizing stabilizing stabilizing

10 destabilizing destabilizing destabilizing destabilizing
11 stabilizing stabilizing stabilizing stabilizing
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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disjoining pressure. The hydrostatic pressure terms are s
lizing for both instabilities, whereas the flow in th
y-direction due to variations of the disjoining pressure~term
10! is destabilizing. The two instabilities differ only in term
4 and 5, that are both destabilizing for the front and stabi
ing for the back. However, of these term 5 is relatively u
important, while term 4 arises from the flow in th
x-direction due to the body force, one of the two most d
stabilizing terms in the model of Spaid and Homsy in eith
interpretation of the energy analysis.60

D. Analytical approach

As already mentioned the dispersion curves underg
remarkable transition neark50 as soon asa becomes non-
zero. To understand the origin of this change we introd
two slow timescales,t5et and T5e2t, and a long trans-
verse scaleY5ey, wheree!1, so that] t5e]t1e2]T and
]y5e]Y . Next we suppose that the film thickness can
written in the form

h5h0~x1u~Y,t,T!!1e h1~x,Y,t,T!1e2 h2~x,Y,t,T!

1O~e3!, ~17!

where

u5u01eu11e2u21O~e3! ~18!

is a slowly varying spatial phase, andh1 and h2 represent
perturbations of the drop. With this Ansatz the left hand s
of Eq. ~4! becomes

ht5h0x~eut1e2uT!1e2h1t1e3h1T1e3h2t1O~e4!.
~19!

The nonlinear differential operatorN@h# on the right hand
side of Eq.~4! ~in the comoving frame! can also be written as
a series ine. Writing N5N01N21N4 , whereN0 denotes
the part that does not contain derivatives with respect toY,
N2 denotes terms with two such derivatives, andN4 denotes
terms with four derivatives, we find that

N@h#[N@h01eh11e2h2#

5N0@h0#1eN0h@h1#1 1
2 e2N0hh@h1#

1e2N0h@h2#1e2N2@h0#1O~e3!, ~20!

whereN0h is a linear operator depending onh0 and acting
here onh1 or h2 andN0hh is a nonlinear operator dependin
on h0 and involving terms quadratic inh1 . From the Ansatz
for h0 @Eq. ~17!# N2@h0# can be written in the form
uYYN2a@h0(x)#1uY

2N2b@h0(x)#. All of the above operators
are summarized in the Appendix.

At leading order one now obtains the equation
5N0@h0# for the one-dimensional stationary solutions. Ord
e yields

h0xu0t5N0h@h1#. ~21!

Note that theO(e) equation does not yield the translation
neutral modeh0x because this mode is already included
the Ansatz forh05h0(x1u). The linear inhomogeneou
equation~21! for h1 has a solution if and only if
Downloaded 20 Mar 2003 to 193.175.8.223. Redistribution subject to A
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05E g1N0h@h1#dx5u0tE g1h0x dx, ~22!

where g1 is the eigenfunction of the adjoint operatorN0h
1

~see Appendix! corresponding to the eigenfunctionh0x of
N0h . Inspection ofN0h

1 shows thatg1 is a constant implying
that the solvability condition is trivially fulfilled~since
*h0x dx50). ThusN0h has a unique inverse, and

h15u0tN0h
21@h0x# ~23!

can be calculated fromh0x . To ordere2 one finds

h1t1h0xu0T1h0xu1t5 1
2 N0hh@h1#1N0h@h2#1N2@h0#.

~24!

This is an inhomogeneous equation forh2 . The solvability
condition, obtained by multiplying byg1 and integrating
over 0,x,L yields the desired envelope equation. Usi
Eq. ~23! and the fact that*h0x dx50 this equation takes the
form

a1u0tt5a2u0t
2 1a3u0Y

2 1a4u0YY, ~25!

where

a15E N0h
21@h0x#dx, ~26!

a25
1

2 E N0hh@N0h
21@h0x##dx,

a35E N2b@h0#dx,

a45E N2a@h0#dx. ~27!

The linearization of Eq.~25!,

a1u0tt5a4u0YY, ~28!

now gives the desired dispersion relation valid neark50,
viz. a1b21a4k250, implying the presence of two branche
of the dispersion relationb(k) crossing the axisk50 lin-
early at b50. The slope b8(k) at k50 is given by

FIG. 15. Comparison of the full dispersion relation~heavy lines! with the
small k dispersion relation derived in Sec. IV D~thin lines! for different
values ofL ~given in the legend!. The parameters are as in Fig. 4.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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6A2a4 /a1, a quantity that can be computed for a giv
stationary profileh0 from the formulas~26!, ~27!. Figure 15
demonstrates excellent agreement between the above pr
tion and the full dispersion relation computed directly fro
Eq. ~12!. As the inclinationa of the substrate decreases t
wards zero so does the coefficienta4 . As this occurs the
scaling assumed above breaks down and fourth order de
tives enter the leading order balance in the dispersion r
tion, resulting in a dramatic change in the dispersion relat

V. CONCLUSION

In this paper we studied the transverse instability of l
uid ridges on horizontal and inclined substrates using a
evolution equation based on a long wave approximation,
corporating a disjoining pressure to account for the effec
interaction of the film with the substrate. The disjoining pre
sure used was recently derived by Pismen and Pomeau u
diffuse interface theory.49 The form of the disjoining pressur
that results remains nonsingular even for zero film thickne
and is therefore convenient for analytical study. However,
expect qualitatively similar results for other forms of the d
joining pressure involving a destabilizing short range an
stabilizing long range interaction as occurs for dewetting52

We have studied three different types of transverse in
bilities for liquid ridges:

~i! The varicose instability on a horizontal substrate
volving symmetrically both edges of the ridge. In th
situation the competing zigzag mode is stable.

~ii ! Coupled instabilities of the front and back of the rid
on an inclined substrate. These are mostly of an as
metric zigzag type but an asymmetric varicose ins
bility also occurs for very small inclination angle
These instabilities, in which the behavior of the fro
and back is coupled, are found for small volumes
the ridge or small inclination angles of the substra

~iii ! Decoupled instabilities of the front and back havi
different growth rates and fastest growing wave nu
bers. These occur for large volumes or large inclin
tion angles.

These instabilities and the transitions between them w
studied as a function of the system parameters by means
linear stability analysis of stationary one-dimensional so
tions. Both the stationary solutions and their stability pro
erties can be followed simultaneously in parameter space
ing numerical continuation techniques.57 In the transition
region between the instabilities~i!–~iii ! oscillatory instabili-
ties are present in a certain wave number range. Howeve
the cases studied the oscillatory modes were never domin
and may therefore be seen only when the correspon
wave number is selected by the experimental apparatus

The mechanisms responsible for the pure back and f
instabilities were elucidated using an adaptation of the
ergy analysis originally proposed by Spaid and Homsy.5 The
main destabilizing effect in both cases is given by the flow
the longitudinal direction due to the variation of the disjoi
ing pressure caused by the perturbation, while the main
Downloaded 20 Mar 2003 to 193.175.8.223. Redistribution subject to A
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ference between the two instabilities arises from the bo
force that is destabilizing at the front and stabilizing at t
back, as in Ref. 5.

The linear stability problem of a finite ridge is chara
terized by a double zero eigenvalue atk50. On a horizontal
substrate these eigenvalues are a consequence of the
neutral modes of the system, arising from translation inva
ance in the logitudinal direction and invariance with resp
to changes in the mean film thickness. We have seen tha
nonzero transverse wave numberk these eigenvalues becom
nonzero and depend onk quadratically. This property is a
consequence of the invariance of the system under reflec
We have identified the resulting unstable mode with the v
cose mode and the stable mode with the zigzag mode. T
both the algebraic and the geometric multiplicity of the ze
eigenvalue is two. In contrast, once the substrate is incli
the algebraic multiplicity of the zero eigenvalue remains t
but the geometric multiplicity drops to one: the two dispe
sion curves cross linearly at the origin where the unsta
and stable modes degenerate into one another. We hav
rived an amplitude equation for the time evolution of tran
verse perturbations of a sliding ridge on an inclined plane
demonstrate this fact analytically, and showed that this eq
tion reproduces quantitatively the wave number depende
of the dispersion relation near the origin. The crossing i
direct result of the breaking of the reflection symmetry th
occurs when the substrate is inclined from the horizontal

The transverse instability of a liquid ridge on a horizo
tal substrate was studied earlier by Davis,26 Sekimoto,
Oguma and Kawasaki,27 and Roy and Schwartz,28 focusing
on ridges of heights smaller than the capillary length in or
to neglect gravitational effects. Such ridges are always
stable, with the product of the ridge width and the critic
transverse wave number decreasing monotonically fr
about 2.4 for zero contact angle to zero at a contact angl
180°.28 Estimates of this product for the ridges shown in F

2 give values of about 3.4 (h̄50.8), 2.1 (h̄51.0) and 0.33

(h̄51.6). The first two of these values are in good agreem
with the literature value for small contact angles~viz., 2.4!,
especially since the small drops involved are strongly infl
enced by the destabilizing disjoining pressure used here.
third value is for a ridge that is already flattened by grav
and reveals the stabilizing influence of hydrostatic pressu

We remark that the variational formulation employed
Ref. 27 yields results that differ from ours. To determine t
stability of the ridge the authors examine the variation of
generalized forces with respect to contact line replacem
for the varicose and zigzag modes. Negative eigenvalue
the resulting matrix imply instability, and their dependen
on the transverse wave numberk yields information about
the most dangerous mode, i.e., the mode with maximal
ergy gain. The authors of Ref. 27 argue that the eigenvalu
the matrix corresponding to the unstable varicose mode
proaches quadratically a nonzero value ask vanishes, imply-
ing that the most dangerous mode is of the order of
system size. However, due to volume conservation the
thors exclude the pointk50 from this curve. The difference
between this result and ours@a quartic relation going to zero
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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ask2, see Fig. 2~b!# appears to be due to the intrinsic diffe
ence between their static approach involving the study o
energy functional and the dynamical approach we pur
here that takes into account the viscous character of the
that suppresses the motion of the liquid on very large sca
References 26 and 28 do not compute equivalent disper
~or eigenvalue! relations.

Our results for small inclination angles or small ridg
volumes can be compared with earlier work.25 The product
of the ridge width and the most dangerous wave number i
both cases approximately one@cf. Figs. 3~a! and 4~a! or Figs.
7~a! and 8~a!#. However, the transition to large flat ridge
with increasing inclination or ridge volume decreases t
product by an order of magnitude, although inspection
Figs. 3~d! and 4~d! or Figs. 7~d! and 8~d! reveals that in this
case the product of the width of thecapillary ridge at the
front and the most dangerous wave number of the front m
still remains of order one, as observed in other studies
front instabilities.5,7,18 However, in contrast to Ref. 25, w
find that even for quite small inclination angles or ridge v
umes the dominant mode is an asymmetric zigzag mo
with an asymmetric varicose mode found only for very sm
inclination angles. The transition towards stability found
Ref. 7 for an individual front with decreasing inclinatio
angle is reflected here by the transition between decou
front and back instability and coupled instabilities. The d
coupled front instability has a counterpart in studies of
individual front, the coupled instabilities do not.

Note that for the instability of the back the product of t
back width and of the most dangerous wave number is
about one. To our knowledge there are currently no exp
mental investigations of back instabilities for wide ridges
receding fronts on inclined planes. However, a transve
back instability occurs in dewetting, where a liquid reced
on a solid substrate.58,61There the mechanism proposed he
may play a role although the instability is believed in t
literature to be a combination of a Rayleigh instability of t
liquid rim formed at the receding back and an instability d
to the slip at the substrate.61 Related work on the stability o
a receding dewetting front under evaporation, including
effects of a disjoining pressure, can be found in Ref.
Here, too, the presence of the instability is believed to
associated with the forming rim. However, the rim is tin
and it may be that the instability is in fact due to the disjo
ing pressure, as in the problem studied here. Further stu
involving an energy analysis of this type of instability a
necessary to decide this issue.

We conclude with a few remarks about the possible n
linear states that may result from the instabilities discus
here. Whena50 and the drop volume is small the unstab
varicose mode grows monotonically and may saturate
finite amplitude, forming a fingered state. If such a state
mains unstable the continued growth of the instability w
break the ridge into drops which may merge on a lon
timescale forming finally a single drop. On an inclined su
strate the growth of the fingers, be they varicose or zigza
structure, affects the speed with which the ridge slides. T
effect remains small when the transverse perturbation
small, but the nonvariational structure of the system fora
Downloaded 20 Mar 2003 to 193.175.8.223. Redistribution subject to A
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.0 now permits the occurrence of parity-breaking bifurc
tions producing varicose, zigzag or mixed modes that drif
the transverse direction; these in turn can lead to comp
dynamical behavior, as discussed elsewhere.63,64 Figure 4~d!
suggests another source of complex dynamics as well.
figure shows that the maximum growth rate of the varico
mode occurs neark5k0[0.035 while that of the zigzag
mode occurs neark52k0 . Since the ridge has the symmet
O~2! in the transverse direction, generated by translationy
→y1c and reflectiony→2y, the resulting mode interac
tion corresponds to the 1:2 spatial resonance in the pres
of O~2! symmetry, at least if periodic boundary condition
with spatial period 2p/k0 are imposed in this direction. Re
cent work indicates the presence of a remarkable wealth
dynamical behavior generated by this mode interaction.65,66

For other parameter values lateral boundaries may sele
primary oscillatory instability, and this may evolve into
pattern of standing oscillations; with periodic lateral boun
ary conditions with an appropriate period waves that tra
either in the1y or the2y directions become possible, an
these resemble the laterally drifting states produced in
secondary parity-breaking bifurcations. Distinct dynamic
behavior is present near the codimension-two Taken
Bogdanov bifurcations with O~2! symmetry whose presenc
is also suggested by Fig. 4; at these bifurcations the osc
tion frequency vanishes, and the bifurcation therefore rep
sents the transition between an oscillatory and a steady
primary bifurcation. Such bifurcations are, however, acc
sible only through selecting an appropriate slopea and spa-
tial period 2p/kTB . Simulations of an unstable ridge in tw
dimensions are likely, therefore, to generate a plethora
new types of behavior that may be relevant to thin film
stabilities.
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APPENDIX: THE OPERATOR N †h‡

The nonlinear operatorsN0 , N2 , andN4 are given by

N0@h#52$Q@~hxx2 f h!x1aG#%x1vhx , ~A1!

N2@h#52$Q hYYx%x2$Q~hxx2 f h!Y%Y , ~A2!

N4@h#52$Q hYYY%Y , ~A3!

where Q5(h2 ln a)3/3 and f h is given by Eq.~8!. The
time-independent equationN0@h#50 gives, after integration
and transformation into comoving coordinates, the equa
for the stationary states~10!. Taking into account thath0

5h0(x1u(Y,t,T)), N2@h0# can be written asN2@h0#
5N2a@h0#uYY1N2b@h0#uY

2 with

N2a@h0#52$Q h0xx%x2Q~h0xx2 f h!x , ~A4!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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N2b@h0#52$Q h0xxx%x2$Q~h0xx2 f h!x%x . ~A5!

Using the Ansatzh5h0(x)1eu(x,Y) wheree!1 andu is a
perturbation, the linearized operatorsN0h , N2h andN4h are

N0h@u#52$Qhu@~h0xx2 f h!x1aG#%x1vux

2$Q~uxx2 f hhu!x%x , ~A6!

N2h@u#52$Q uxYY%x2Q~uxxYY2 f hhuYY!, ~A7!

N4h@u#52Q uYYYY, ~A8!

whereQ5(h0(x)2 ln a)3/3 and all derivatives off are func-
tions of h0(x). The linear operatorS used in the numerica
calculations@Eq. ~12!# is given by

S5N0h1N2h1N4h , ~A9!

with each derivative with respect toY in N2h and N4h re-
placed by the factorik. The adjoint operator,N0h

1 , of the
linear operatorN0h defined by^w,N0h@u#&5^N0h

1 @w#,u& is
given by

N0h
1 @w#5Qh~@h0xx2 f h#x1aG!wx2vwx2~Qwx!xxx

1 f hh~Qwx!x . ~A10!

For the eigenvalue zero the eigenfunction is given bywx

50, i.e., the adjoint eigenfunction for the neutral mode
N0h is a constant.

Finally, the leading nonlinear operatorNhh is given by

Nhh@u#52$Qhu~uxx2 f hhu!x%x2$Qhhu
2@~h0xx2 f h!x

1aG#%x1$Q~ f hhhu
2!x%x . ~A11!
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