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Front and back instability of a liquid film on a slightly inclined plate
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We study the transverse instability of a liquid ridge on horizontal and inclined substrates using a film
evolution equation based on a long wave approximation. The equation incorporates an additional
pressure term—the disjoining pressure—accounting for the effective interaction of the film with the
substrate. On a horizontal substrate the dominant instability mode is varicose, but may turn into a
zigzag mode on a slightly inclined substrate depending on the inclination angle and the ridge
volume. For larger angles or volumes the instabilities at the front and back decouple. The linear
stability properties of a one-dimensional transverse ridgelike state are studied in detail, and an
energy analysis is used to demonstrate that the disjoining pressure provides the dominant instability
mechanism at both the front and the back, while the body force is responsible for the main
differences between these two instabilities. An amplitude equation for the time evolution of
perturbations with small transverse wave numbers is derived that predicts correctly the linear
crossing of the most dangerous eigenvalues at zero wave number in the inclined case, in contrast to
the situation on a horizontal substrate. ZD03 American Institute of Physics.

[DOI: 10.1063/1.1545443

I. INTRODUCTION uid ridges, i.e., liquid sheets of finite streamwise width, slid-
ing down an inclined plarfé?® using a slip contact line

{nodel with a linear dependence of the dynamic contact
angles on the velocity of the contact lines. In models of this

straight or wedge-shaped fingers advancing faster than tt]tgpg tpe:turbanons W 'tth ;I-?onztﬁrc; Franlsversetr:/v ;}Ve rcnjumber
original front! This instability has been the subject of nu- \c2@ 0 transverse instabiiities that involve both the advanc-

merous investigatior’:2® Linear stability analysis shows "9 andthe receding contact I|r_1§§.When the ridge is as-
that the front is unstable for a band of wave numbers beSUmed to be quasi-stationary linear the(_)ry pre_dlcts that_the
tween zero and a finite limiting value, and that the dispersior#argeSt grovvth_ rate occurs ]‘or perturbations with vanishing
relation has a maximum at a finite wave numbhis quali- wave numbeli.e., perturbations on the scale of the system

tative result is independent of the details of the model usediz8>*** but once the quasi-stationarity assumption Is re-
for the contact line motion, i.e., of the model of the contactlaxed the fastest growth occurs at a finite wave nurfiber.
line slip at the substrate, and remains valid if a precursor film/Vhen such a ridge loses stability instability is observed at
is assumed to be present instead. Hydrostatic pressure terth the front and the back of the ridge simultaneously. In-
to stabilize the film, and is responsible for the existence of #Pection of the figures in Ref. 25 shows that the instabilities
threshold inclination angle for the onset of the instability. ~are coupled and correspond to an asymmetric varicose mode,
Related transvers@r spanwisginstabilities occur on a i.e., where the front bulges forwards the back bulges back-
liquid front that advances as a result of a Marangoni flowWwards but to a lesser degree.
induced by a longitudinal(i.e., streamwise temperature It is of interest to note that in contrast to a semi-infinite
gradient*~*® and on a spreading drop of surfactant on aliquid sheet on a horizontal substrate a liquid ridge on such a
prewetted plané®23 In all three cases a capillary ridge Substratds unstable to transverse perturbatiéfis?® in par-
forms at the advancing front, and the general belief is thaticular, for ridges of small height with negligible gravita-
the observed instabilities are due to differences in the mobiltional effects Davi® calculated sufficient stability condi-
ity of the thinner and thicker parts of this ridge. Since thistions for ridges with(i) fixed contact lines(ii) fixed contact
ridge tends to be suppressed by hydrostatic pressure the iangles, andiii) contact angles that vary smoothly with con-
clusion of this pressure stabilizes the advancing front withtact line speed, allowing for slip at the substrate in cases
respect to transverse perturbations in this case also. Howii,iii ), using an energylike integral form of the linearized
ever, no studies exist of the corresponding phenomena athydrodynamic equations. References 27 and 28 employ simi-
receding front under the influence of a body force. This mayar assumptions but consider more general geometries as
be due to the general assumption that such fronts are stableell. Both articles examine the second variation of an energy
because they are not associated with the presence of a cdphnctional to predict the minimum wavelength for the trans-
illary ridge. verse instability, but the former is restricted to small contact
In addition to the studies of individual advancing fronts angles. Liquid ridges are found to be always transversely
mentioned above Hocking and Miksis studied transverse ligunstable but the instability becomes weaker and weaker as

When a fluid sheet flows down an inclined plane the
leading front may be unstable to slight perturbations thal
initiate a fingering instability that develops into an array of
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the ridge becomes larger and larger. The unstable eigenmod@rizontal liquid layer on a solid substrate. The sharp liquid—
is a varicose mode that extends wider regions at the expensggs interface is thereby replaced by a smooth transition be-
of narrower oned! much as the Rayleigh instability in a tween liquid and gas densities. Likewise, the density varies
liquid jet>>*° The varicose mode and the first stable mode—close to the solid substrate due to molecular interactions that
the zigzag mode—are intrinsically related to the neutralenter into the calculation via the boundary condition for the
modes corresponding to the continuous symmetries of théuid density at the substrate. The resulting density profile is
one-dimensional problem, namely, the invariance with rethen incorporated into a fully consistent theory based on the
spect to change in liquid volume and invariance under transStokes equation in the long wave approximation to take into
lations in the longitudinal direction. account dynamical situations. The film thickness equation
A general difficulty arising in all problems involving that results has the usual form of a thin film equation with a
moving contact lines such as spreading drops or liquid sheetgisjoining pressuré® but the disjoining pressure is purely
or ridges on an inclined plate is that the classical no-sliphydrodynamic in origin and its form is derived self-
boundary condition at the liquid—solid interface has to beconsistently rather than modeled. For reasons already dis-
relaxed to permit movement of the contact line. This can bgyssed this equation admits instabilities of the homogeneous
done by introducing a very thin precursor film, or by allow- (j e | flap film, and the resulting structure formation was in-
ing for slip near the contact line, or introducing an eﬁeCtivevestigated both for a liquid film on a horizontal substf&fé
molecular intera.ction betvgeer) the substratle and liquid intqnq for a film flowing down a slightly inclined plari@Very
the hydrodynamic modél'l:‘ *With the exception of Refs. 10 yecent two-dimensional simulations of sliding drops and lig-
and 13, all of the work cited above on moving liquid sheets,;ij rigges on an inclined plane using this mddéf revealed
and ridges uses one of the first two options. Both prescribgye nresence of transverse instabilities at both the front and
tions avoid d_lvergenqe problems at the contact line, butatthg . ok of the ridge, apparently with different wave num-
expense of introducingd hoc parameters into the theory. o even in the linear regime of the instability. Related
'I_'hese_ parame?ers, namely the slip Iength_or the PrecursQinyiations of sliding drops have revealed a sequence of
film thickness, influence the base state profile and hence th[?ansitions in the drop shape with increasing inclination
growth rate and wave number of the fastest growing transéngle, from an elongated drop to one with a cusp at the

. e '7115’25 g . _
verse instabiliy. Moreover, th? eqL_ullbrlum and dy upstream tip, and then to a drop with a cusp that emits small
namic contact angles have to be fixed independently Whegatellite droolets. much as observed experimentall
introducing the slip conditioA*333¢In contrast, in the ab- Piets, P Y-

sence of motion the precursor film models require that the Motivated by these and other results on advancing fronts

contact angle be zero, although once the film is in motion theand rldlges, we stugly here the linear stability of Ilqwd ndge;
. . on horizontal and inclined substrates as a function of their
dynamic contact angle depends on the velocity of the ad-

vancing front. In an alternative approdéteither the gas— v?lurge ‘1”(: t?e |ncll?a|:|o?h angdle otf tgetsubstrate. For n-
liquid or liquid—solid interface, or both, are treated as sepa9 Ined substrates we take e ridge 1o be ansverse, 1.€., per-

rate phases with properties that differ from the bulk fluid. pendicular 1o the slgpe. Our aim is on the one ha_nd o un-

The third, and most realistic, option is the explicit intro- derstand the transition between the varicose |nst.ab|I|t¥
duction of molecular interactions into the hydrodynamic for-Present on a hquzont_a_l _substrqte and the a_symmetrlc vark-
malism. This is accomplished by means of an additionafFOSe Or zigzag instabilities of ridges on an inclined plane,

pressure term, the disjoining press@feDepending on the and on the other hand to relate these findings to existing
particular problem treated, this disjoining pressure may inesults for a falling semi-infinite sheet obtained with different
’ icroscopic models. In other words, we are interested in

corporate long-range van der Waals and/or various types df' - ) » i
short-range interaction term&:“2These interactions are es- understanding the role played by the back instability found in

sential for the process of dewetting, and studies of dewettinﬁef- 54, and its coupling to the better known instability at the
of a thin liquid film on a substrate are generally based or™oNt: _ _ _
models involving a disjoining pressuf&:*®However, only a Our study is organized as follows. In Sec. Il we intro-
few studies of instabilities of an advancing liquid front have duce the evolution equation for the film thickness, discuss
adopted a similar approac¢h®® despite the fact that such an the form of the disjoining pressure used, and nondimension-
approachpredicts all the ad hoc parameters of the slip or alize the equations. In Sec. Ill we discuss the strategy used to
precursor model§.e., the static and dynamic contact ang|e,determine stationary solutions and their linear stability prop-
drop velocity, and the drop and precursor film thickness erties. Section IV gives the results for the transverse stability
connected with the wetting properties of the liquid in termsof a ridge on horizontalSec. IV A) and inclined(Sec. IV B
of the parameters characterizing the disjoining pressure. substrates. In the latter case we explore in detail the depen-
Recently Pismen and Poméagderived a film thickness dence on both the ridge volume and inclination angle. In Sec.
equation with a disjoining pressure term that remains finitdV C we discuss the physical mechanism of the front and
even for vanishing film thickness by combining the long back instabilities using an adaptation of the energy analysis
wave approximation for thin filn¥8 with a diffuse interface introduced by Spaid and Homsyn Sec. IV D an evolution
description for the liquid—gas interfacéThese authors take equation for transverse disturbances of very small wave
into account the deviation of the liquid density from its bulk number is derived, and used to explain an unexpected prop-
value in the vicinity of the liquid—solid and liquid—gas inter- erty of the dispersion relation for transverse perturbations on
face and discuss the resulting vertical density profile for aan inclined substrate in the long wavelength limit. Section V
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summarizes the main results, relates them to the literature y |2
and points out possible directions of future research. a=al~g (6)
and
Il. FILM THICKNESS EQUATION |
c= P9 @)
We start with the evolution equation for the film thick- K

ness derived by Pismen and Ponf€azombining the long
wave approximation for thin films with a diffuse interface
description for the liquid—gas interface:

measures the relative strength between gravity and molecular
interactions. Since the film flows down the upper surfé@e
opposed to the undersidef the substrateG>0. Moreover,
ath=—V.-(Q(h){V[yAh—dpf(h,a)]+eapg}). (1) Q(h)= h%/3 andM (h,a) is given by Eq(2) with | =1; since
kl/y=0(a?),* the length scale in the-direction isl/a. It
follows that the effect of inclination is comparable to that of
the hydrostatic term whea~1, i.e., whena~a. Sincea is
small this balance occurs only for small inclinatiomsThis
is the case considered in this paper. In the following we use
only dimensionless quantities, unless otherwise stated.

The parametea can be incorporated into the mobility
factor Q using the transformation’ =h+In a, leading to an
equation forh’ of the form(4) but with

Hereh(x,t) denotes the film thicknesg, denotes the longi-
tudinal (downstream direction, g is the gravitational accel-
eration,Q(h)=h>37 is the mobility factor due to the Poi-
seuille flow in the film,a is the inclination angle between the
substrate and the horizontal, apdy and » are, respectively,
the density, surface tension aidynamio viscosity of the
liquid. The subscript$ andh denote the corresponding par-
tial derivatives.

Equation(1) incorporates the Laplace or curvature pres-
sure (first term), driving due to gravity(last term), and the af=2e""(1-e " ™+Gh, Q(h,a)=(h—Ina)%3.
disjoining and hydrostatic pressures contained in the deriva- (8

tive of the free energy(h,a): In either form all spatially periodic solutions with spatial

dnf(h,a)=«kM(h,a)+pgh periodL satisfy

— 2_Ke—hll( 1— Ee—hll
a a

1 (L _
+pgh. (2 Efo h(x,t)dx=h, 9

HereIl(h)=—«M(h,a) is the disjoining pressure derived

. . . . whereh is a constant, hereafter referred to asrtieanthick-
from diffuse interface theor’ a is a small positive param-

L . S : ._pess. This quantity therefore measures the volume of liquid
eter describing the wetting properties in the regime of partia . . . o . .
. . ; . . in the spatial period. (i.e., the liquid contained in the drop
wetting,| is the length scale of the diffuse interface, ani$ . . : :
and the precursor since it is a constant it provides a good

the strength of the molecular interaction. Except for its be- .
. T measure of the notion of volume. In contrast the term drop
havior for smallh the disjoining pressure used here re-

. S - volume, also used below, refers only to the volume in the

sembles qualitatively other disjoining pressures that combin : 4 o
o 2 : rop on top of the precursor film. This quantity is not con-
destabilizing short-range and stabilizing long-range interac- . - :
. C S stant since liquid may flow in and out of a drop at the ex-
tions, such as the combination of destabilizing polar and sta-

o . . . . . jpense of the precursor. Of course whercontains several
bilizing apolar interactions that is often used in studies firons the volume of one mav arow at the expense of another
dewetting*+4752580r the two antagonistic power law inter- © P y9 P ’

actions used elsewhet&? The use of these alternative ex- and as a result the different drops withinmay have differ-

pressions has no qualitative effect on the results reporte‘am Ynolcllf\rgfsl.lowin we solve the problem in the for(@). It
below. A similar conclusion for dewetting on a horizontal . . J P N
substrate was established earfer. is important therefore to remember that the true thickness of

In the following we use the dimensionless quanties the film ish—Ina, i.e., a quantity slightly larger than that
(denoted temporargilly by a tilde q computed from Eq94) and(8). It is appropriate to think of

this change in thickness as a change in the thickness of the
7Y~ precursot

t= ﬁt’ The linear stability properties of the flat film solution
~ ho(xX)=hpo=h of Eqg. (4) in one dimension are well
h=1h, (3 understood*>>*The (one-dimensionalstability properties of
I spatially periodic solutions have also been extensively
x= /0%, investigated>°*On a horizontal substrate these solutions are
K time-independent, while on an inclined substrate they are
to rewrite Eq.(1) in the form stationary only in an appropriately moving reference frame.
Such stationary solutions are obtained as solutions of the
dth==V-{Q(N[V(Ah—dnf)+eaG]}, @ nonlinear eigenvalue problem
where 0=0Q(h,a)(dyh— dnpf ) +aG Q(h,a)—vh+C,
Inf=M(h,a)+Gh, (5) (10
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500 T - : T nounced for large6. In two dimensions these solutions are
F——- 40 p 1 independent of the transverse coordingtand will be re-
a00F 730, n ferred to agidges

Figure 1 shows the transition, for fixed inclination angle
and interaction parameters, from a small cuplike drop to a

. sheets of finite longitudinal extent. Both solutions are related
L : | . to appropriate limiting cases already studied in the literature:
-10000 -5000 0 (i) the front of a long flat drop resembles a single front mov-
ing down an inclined platg,and (ii) the liquid ridges on a
FIG. 1. Ridge profile$i,(x) for different values of the mean film thickness horizontal substrat@ resemble the small volume drops when
h (see legendfor G=10"5, «=0.2, L=20000 anda=0.1. The ridge is  the inclination angle approaches zero. The transverse stabil
sliding towards the right. ity properties of these limiting cases are already known; we
explore below the corresponding results for drops of finite
extent on an inclined substrate, focusing on small but not too

for the drift speedv of the solution, measured in units of Small values ofG. Existing work in one dlmensﬁﬁ_
(1k)¥2 \[5. Here C, is a constant of integration, and is shows that even thoug® is normally very small qualita-

nonzero whenever the substrate inclination is nonzero. For Aely correct results are obtained already for moderately
homogeneous film of thickness, we write small values ofG. Consequently we limit our study of the

two-dimensional problem to such values @f anticipating
that the results will remain qualitatively correct down to
physically relevant values d&.

I

|

N —
S
SE=
i\‘\\

ioo ./"__}’__7"// large flat drop as the volume in the drop increases. In two
< [ 1 ! [ spatial dimensions the cuplike solutions correspond to cross-
2001 ,' 1 ! ,' I sections of ridgelike solutions that are independent of the
! i ' transverse coordinatg (and so are perpendicular to the
LY : I' n slope. The flat drops correspond to cross-sections of liquid
i il
. !

CO:_(FO_Uho):_Q(ho,a)aGJﬂ'Uho, (11)

wherel'(=Q(hg,a) aG is the downstream flux of liquid in

the Iaporatory frame. This problem can be solvgd using Cong | \\EAR STABILITY

tinuation techniques, starting from small amplitude steady

solutions on a horizontal substrate’* One finds that, de- Having determined the stationary solutiohg(x) in
pending on the mean film thickness, different types of soluthe comoving frame we now study their linear stability to
tions may be present. These may be classified into linearliransverse perturbations. The Ansata(x,y,t) =hg(x)
unstable(subcritica) nucleation solutions and linearly stable + € h;(x)exp(ky+ gt) used in Eqgs(4), (8) in the comoving
larger amplitude states. Although for small inclination anglesirame leads to a linear eigenvalue problem for the growth
the solution familiig found correspond to those found on theate 3 of the form

horizontal substraté there are already some significant dif-

ferences. First, the solutions are asymmetric sliae down Bh(x) = S(kiho(x))hy(X). (12

the inclined plane. Second, the dependence of the velocity oHere the operatofS is a function of the transverse wave
the solution period varies strongly with the mean film thick- numberk, and a functional oh, and its derivatives, and is
ness, a behavior that has no counterpart in the horizontaiven in the Appendix, Eq(A9). The eigenvalue problem
case. In addition, for larger values af stationary nonlinear (12) is solved using a three step procedure. Fhigtand the
surface waves are present. speedv are determined, at fixed volume, using numerical

The large amplitude stable solutions take the forntipf continuation techniqués starting from analytically known

small drops whose shape resembles an asymmetric invertethall amplitude solutions, as described elsewf&fihe ei-

cup whose properties like the drift speed and dynamic congenvalue problem is then discretized in space and solved
tact angles at the front and back depend both on the dropumerically. The necessary equidistant discretization im-
volume and on the inclination angle, @r) large flat drops poses a strong limitation on the parameter range where it can
resembling a liquid sheet of constant thickness with a capilbe used. The method gives, for instance, no reliable eigen-
lary ridge at its front end. Both types of drops sit on a pre-values for large periods_(>150) >3 To overcome this prob-
cursor film whose thickness is also given by the model. Inem we use, as a third step, the smialfesults as starting
contrast to the small drops the properties of the flat drops dsolutions for numerical continuation in of both hg andv,

not depend on the volume in the drdpHowever, with in-  and of the solutions to the eigenvalue problei®). It is
creasing inclination angle the thickness of the film in theconvenient to fix the., norm ofh,; during this process. The
plateau region decreases while the precursor film thicknesgquired extended system consists of 11 first order differen-
and the drift speed increase, and the dynamic contact angletial equations(three forh, and four each for the real and
at the rear decreases. In contrast the dynamic contact angleiataginary parts oh,). Using this method we determine in
the front shows a nonmonotonic dependence on the speed parallel the stationary solutions, and the eigenfunctions and
it first increases withv and then decreases and even fallseigenvalues of the linear probleth2) for any set of param-
below its static equilibrium value. This effect is more pro- eter values. Furthermore, points of special interest such as

Downloaded 20 Mar 2003 to 193.175.8.223. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



896 Phys. Fluids, Vol. 15, No. 4, April 2003 U. Thiele and E. Knobloch

— while invariance with respect to volume change gives rise to
the varicose mode. These neutral modes, i.e., the eigenfunc-
tions of the two-dimensional stability problem lat=0, are
shown in Fig. Zc). Their resemblance to the finikemodes is
§ clear. Note that both dispersion curves vanish quadratically
s 004\7‘(;506 as the transyerse wave numlilxmpproaches zero. As a result
) ' each mode is mapped onto itself under —k. The eigen-
410 functions of the two modes are virtually unchanged in the
------- . g k-range shown in Fig. ®): the modes fork=0 and k
1o =< =0.06 cannot be distinguished on the scale of Fig).an-
L 10% creasing the drop volume at fixed period by increasing the
14 L6 ) _ . . .
h mean film thicknesgcf. Fig. 2a)] leads to ridges with cross-
sections that resemble flat drop solutiéfs$Such drops are
FIG: 2. Transvers_e stability of a ridge on a h_orizor_ltal substl(a)gRidge still unstable to the varicose mode, although the maximum
profileshy(x) for different values of the mean film thickness as given in the growth rate and the corresponding transverse wave number

legend.(b) Dispersion relation3(k) for the two transverse modes whan both decrease exponentially with increasina volume. mea-
=1: the unstable varicose modgolid) and the stable zigzag mode P y g —

(dashegl The corresponding modes are sketched in the itgeThe eigen-  sured in Fig. 2d) in terms of mean film thicknesh. In
modesh, (x) corresponding tdb). The neutral modes obtainedlet0 are  practice, therefore, broad ridges are effectively stable on the
indistinguishable from the modes for the ottein (b). (d) Dependence of time scales accessible in experiments

the maximum growth rat@,., (left scale and the corresponding transverse )
wave numbek,. (right scalg on the mean film thickneds The remaining
parameters are=0, G=0.1, anda=0.1.

-~
-~
-~
~

B. Inclined substrate

The physical situation changes dramatically omace0
as a consequence of the broken symmeatry—x. As a re-

the zeros or the maxima @#(k), or the transition between ) .
) sult the drops become asymmetric and slide down the sub-
real and complex eigenvalues can be followed through pa-

. . trate (on t f the precursor film wh thickn now
rameter space. The maxima generally occukat0.1, im- strate (on top of the precurso ose fhickness no

. . : : depends on inclination angle and the drop velodjty
glr}g;]?ég?;ile most unstableimensional wavelength is of Whena=0 the variational structure of EqL0) implies

that v=Cy=0. As a result the equation is invariant under

both translations ix and changes in volum@rﬁ). In par-
ticular for each set of parameter values there is a two-
A. Horizontal substrate parameter family of solutions. In contrast, whe0 the

Instabilities of a liquid ridge on a horizontal substrate Stationary solutions are described by EXp) with «, v, and
(a=0) are characteristic of the dewetting process. In thi<Co all nonzero. The resulting equation is still invariant under

process a thin, initially flat, film may rupture at defects, andtransiation but no longer under volume change. This is be-
the resulting holes grow until they touch one another, creatc@Use & change in volume also changes the velocifys a
ing a polygonal network of straight liquid ridges. It is ob- result only the translational neutral mode remains, i.e., only

served that these ridges decay on a longer time scale formirff?® M0de with zero growth rate exists at zero wave number,
rows of drop55.8'59The stability study performed here applies in contrast to the two modes for the horizontal substrate. This

to the individual straight ridges. implies that the two leading eigenmodes of the transverse

Typical cross-sections of such ridges are shown in Fig_stability problem, i.e., the equivalents of the varicose and

2(a). These have been computed as steady solutions of Ea[gzag modes for the inclined case are either no longer inde-
(4) with a=0. For these cases the precursor thickness i§€ndent atkk=0 or only one has a zero growth rate lat
given (via a Maxwell constructionby the potentiaf (h); in =0.In facfc we find that the f|_rst hypothesis is true: the two
contrast on an inclined substrate the precursor thickness dg10des coincide ak=0 forming the translational neutral
pends in addition on the drop velocity and the inclinationM0de, but are distinct whenevier-0 being mapped into one

angle’®5 The dispersion relation for transverse perturba-2nother by the transformatida-— —k. o
tions of such a ridge, obtained as described in Sec. IIl, is N the following we study the stability of a liquid ridge
shown in Fig. 2b). It is important to note that there ateo as a function of both its volume and of the inclination angle.

modes with zero growth rate &t=0: these are the margin-
ally unstable varicose mode and the marginally stable zigza
mode, already discussed by Sekimetoal?’ using an en- The volume of the liquid in the ridge can be changed in
ergy functional. Note that the zero growth rate for the vari-two ways. On the one hand the volume in the ridge can be
cose mode ak=0 is a direct consequence of volume con-increaseddecreasefby increasing[decreasingjthe mean
servation: a nonzero growth rate would violate it. Thefilm thickness keeping the period fixed. On the other hand
appearance of these modes is sketched in the insets in Figne can fix the mean film thickness and increfaecreasg
2(b). Both are related to the neutral modes corresponding tthe period. Both procedures lead to identical drops sitting on
the continuous symmetries of the one-dimensional solutionprecursor films of identical thickness but different length,
translation invariance is responsible for the zigzag modeand give identical results for the dispersion relatiomess

IV. RESULTS

é. Change of ridge volume
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hl
Ehblomnoe

I
-100

FIG. 3. Stationary profile$i,(x) (upper plot$ and the corresponding eigenfunctiongx) (lower plotg for k=0 (dotted ling, at the maximum of the

dispersion relatior{Fig. 4) for smallk (dashed lingand at the maximum for largés (solid line, (b-d) only) whenh=1.5 and(a) L=75, (b) L=150, (c)
L =200 and(d) L=500. For narrow ridges the smé&ll(largek) maximum corresponds to a zigzagaricos¢ mode. For broader ridges the smial{largek)
instability is localized at the frontback of the ridge. The remaining parameters are 0.2, G=0.1, anda=0.1.

the period used is so small that individual ridges in the dif-leading eigenvalues$Fig. 4) and the corresponding eigen-
ferent periods “overlap.” For the parameter values used thigunctions(lower panels of Fig. B At small volume two dis-
can be avoided by choosing=75. The results reported be- persion curvesB(k) and B,(k), are still present, but in
low have been obtained imoth of the above ways and can- contrast to thex=0 case these now cro$isearly at k=0,
not be distinguished on the scale of the figures. implying that B,(k)=pB8,(—k) and, at smallk, B;(k)

As the volume is increased the ridges with small cuplike= — 3,(k). Note in particular that the dominant instability
cross-section change to large flat drops with a capillary ridgenode (i.e., the mode with maximum growth ratmay now
at the front whose profile relaxes towards the upper plateabe an asymmetric zigzag moddashed line in the lower
thickness[see for instance the upper panels of Figg)3 panel of Fig. 83)], even though for smaller drop volume and
3(d)]. This change in the ridge profile is accompanied by avery smalla the (asymmetri¢ varicose mode remains domi-
rather drastic change in the dispersion curves for the twmant(not shown.

0.0005

-0.002

0-0005 FIG. 4. Dispersion relationg(k) for h=1.5 and(a)

L=75, (b) L=150, (c) L=200 and(d) L=>500. Iden-

-0.004 08 0 002 004 006 008 tical dispersion relations are obtained flo=500 and
0.001 ——T— () h=0.59, (b)_h:0.77, (c) h=0.88 and(d) h=1.5.
] 0.001— - For L<75 (at h=1.5) the results from these two ap-
r 7 proaches start to differ because the ridges in the differ-
0.0005 0.0005 — - ent periods interact. The remaining parameters are
r 1 =0.2, G=0.1, anda=0.1. Thick (thin) lines indicate
0 (1] et ITTTTTTTTITITI. WP —] real (comple)a modes.

\10.0005 d

-0.001
.1000
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0.0015 T T 0.15
— — front mode
back mode
0.001 — o1
:
| Tt T T T T T T -
0.0005 - —
0.05
0] P PR — unstable N -
L . or | | hT_____T—_‘
400 500 100 200 300 400

FIG. 5. The maximum growth ratg ., at the two maxima of the dispersion |G, 6. The linear stability results as a function of the longitudinal pelriod

relation as a function of the IOngitudinaI perlhd Parameters are as in Flg The dashed lines show the critical wave num[jQrgf the first two eigen_

4 at fixedh=1.5. modes(the smallk mode in the upper left part of the plot and the lakge
mode in the upper right partThe system is linearly stable above the thick
dashed and dotted lindshaded region The dashed line denotes the zero

With increasing volume the character of the dispersiorFrOSSing of a real eigenvalue while the dotted line denotes the zero crossing

. . . . of the real part of a complex eigenvalue. The complex mode exists in the
relation ur_1derg(_)es two consecutive Chang@g' 4)' First, _ . parameter range enclosed by the thin dotted lines. The solid lines represent
the two dispersion curves approach one another at a finit@e transverse wave numbers corresponding to local maxima in the growth
value ofk. At a certain volume they touch, and for larger rate, with the thick lines representing the absolute maximum. Parameters are
volumes there is an interval of wave numbkgs<k<k,, in  asinFig. 4 at fixech=1.5.

which the growth rate is complex, and real growth rates are
present fok<ko; andk= Ko, only [Fig. 4b)]. The complex using the spatial period as control parametdrfixed mean

ill is initiall I ith i i - .~ . X . . .
(osm'ator)b mode IS initially St?b © b.u't wit !ncreasing vo thicknes$. Using the values given in the caption to Fig. 4 as
ume it acquires an interval of instability which increases un-

til the complex mode is unstable throughout its range of guide one can “translate” the horizontal axis into mean

existence. With further increase in volume the real modes dfim thicknessh at fixed period. As expected both growth
large k also lose stability; at the same time the interval offates approach constant values at large periods because the

complex modes shrinkEFig. 4(c)], and there is a second front and back_ instabilities are then completely decoupled
critical volume at which the imaginary part of the growth @nd therefore independent of the length of the drop. The
rates vanishes, and the modes become purely real Fjgin sys_tem behay|or can be quantified further. by tracking the
4(d)]. Note that the maximum growth rate of the oscillatory V&rious special wave numbers{, for maximum growth
mode is always smaller than the maximum of the real growtf&t€.Kc for marginal stability and, at the transition between
rates so that any instability is dominated by modes that grof€2! @nd oscillatory modgss a function of the spatial period
monotonically. Thus oscillations may only be expected inat fixed mean film thicknes&Fig. €. The most important
laterally confined systems. The net outcome of these chang&&rVes are the heavy dashetbtted lines that separate, for
is to replace the dominant unstable mode at small volume®@! (0scillatory modes, the stable wave numbeshaded
by a different mode, one that is related to #iablemode at gray) from the unstable ones. The thin dashed lines indicate
smallk. In particular, for sufficiently large ridge volumes the the remaining zero crossings of branches of the dispersion
former dominates only at smallwhile the new mode domi- relation (i.e., crossings in the unstable regimehereas the
nates at largek and has a larger maximum growth réég. thin dotted line denotes the limits of existence of the oscil-
4(d)]. Neither of these modes resembles the zigzag or th&ory modes. The positions of the maxima of the dispersion
varicose modes present at small volume. Instead, the eigeff'ation are indicated by the solid lines, with heavy lines
functions at maximum growth rate are localized at the frontndicating the wave number of the absolute maximum. It is
(the smallk mode or the back(the largek mode of the noteworthy that the critical wave number decreases with in-
ridge. Figure 4d) therefore indicates that for the parameter €r€asing period in the small volume regime, while it in-
values considered the instability of the back is alwtaater ~ creases(slightly) in the large volume regime towards its
than the instability of the front. However, because the insta¥2/ue for the completely decoupled back.
bility modes at the maxima of the dispersion relation are o
totally decoupled one may expect that in an experiment orf- ¢hange of inclination angle
ridges of large volume both instabilities may proceed in par-  Beside the ridge volume the second control parameter of
allel, and exhibit different wavelengths and growth rates.nterest is the inclination angle of the substrate. At fixed
These predictions concur with preliminary results from two-period and a mean film thickness large enough that the one-
dimensional numerical simulations of E@).**>* dimensional steady state far=0 is a flat drof® an increase

To systematize these results we plot in Fig. 5 the growthin « produces sliding drops whose upper plateau is inclined
rates at the two maxima as functions of the ridge volumerelative to the substrate over all of its lengjffig. 7(a)]. With
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FIG. 7. Stationary profilehy(x) (upper plotg and corresponding eigenfunctiong(x) (lower plots for k=0 (dotted ling, at the maximum of the dispersion

relation (Fig. 8 for small k (dashed ling and at the maximum for largee [solid line, (b)—(d) only] when L=500, h=1.5, G=0.1, a=0.1 and(@ «
=0.025,(b) «=0.05, (c) @=0.1 and(d) «=0.2.

further increase inx this inclination decreases as the drop modes at maximum growth rate andkat O can be found in
develops a capillary ridge at the front and an upper plateau dfig. 7. At large inclination angle the modes at the two
constant thicknesigig. 7(c)]. With further increase imvthe ~ maxima correspond to pure frofismall k maximumn) and
upper plateau thickness decreases slightly while the precupure back(large k maximun) modes. The maximal growth
sor film thickness slightly increas¢Bigs. 71c), 7(d)]. These rates of both modes increase with increasings shown in
changes are reflected in the corresponding changes in tlgg. 9. For smallere the smallk mode is dominant but is
dispersion relatior(Fig. 8); these resemble the sequence ofeventually overtaken by the lardemode; the latter domi-
changes found when increasing the ridge volume in Semates fora>0.15. Figure 10 shows the various special wave
IVB1 above, but with fastest growing wave numbers andnumbers identified in Fig. 6 as a function ef for fixed
maximal growth rates that differ by one and two orders ofvolume. The critical wave numbdét, increases withy, as do
magnitude, respectively. the two fastest growing wave numbers. This increase is faster
The stationary solutions and the front and back eigenfor the back mode.

T T
o ' A w0t ~U'b C
6] _ C | L back mode
5x10 | 0k ] 0.0006 — — front mode
O ........................................ - __ __ L
ax10°F 3
6 g -
-5x10 | ax10°E 0.0 3 0.0004 -
-l><10-5 ) ) -6><10-5 E OLT ! | ) \ g
el 0 0.005 0.01 0.015 0 0.01 0.02
T T 1 —— LT T T T T T T no 0002 -
) 8x10 [ 7 .
1x10™ C C b
sl 4 axa0*F . I
5x10 L 4 ——
L g C ] 0 ==
0 O N _/
ro=0.1 | \ ‘ \ r Oc‘=0.2I | | . 1 . 1 . 1 .
0 0.02 0.04 0 0.02 0.04 0.06 0.08 0.1 0 0.05 Exl 0.15 0.2

FIG. 9. Maximum growth rate8,,., @s a function of the inclination angte
FIG. 8. Dispersion relations fdia) @=0.025, (b) =0.05, (c) «=0.1, (d) when L=500, G=0.1, h=1.5 anda=0.1. Solid (dashed lines indicate
@=0.2 andL=500, h=1.5,G=0.1 anda=0.1. Thick(thin) lines indicate back(front) modes corresponding to the two local maxima of the dispersion
real (complex modes. relation at largek.
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largek implying that at largek this mode is not involved in

the instability of the front position, i.e., that it is localized at

the back. In contrast, the fact that the dashed thin line ap-

proaches a finite value while the solid thin line approaches
e ' 1 zero implies that the smakl mode is localized at the front. If

-~ at a certain value ok the values along the thictor thin)

- e | curves are both nonzero and of opposite sign, the corre-

sponding eigenmode represents a zigzag mode, whereas like

signs indicate a varicose mode. Thus &o+=0.025 the long

wave unstable modéheavy lines neak=0) is a zigzag

0.05

0.04

0.02

unstable
0.01

- mode; the anticipated varicose instability occurs for yet
03 | ‘ \l\\‘.““—w __________ ] smaller values of the inclinatiomot shown).
0 0.05 0.1 0.15 0.2 One can use Fig. 11 to distinguish four distikatanges.
(04 (i) The regionk~0, where the deviation of either mode from

the translational neutral mod@ zigzag mode with nearly
equal contributions from the front and the bagklinear and
can be treated analytically, as in Sec. IV D. Regibhwith
0<k<0.02 [see Fig. 10a)] where the unstable mode re-

Knowing that on the one hand the two eigenmodes at th&hains of zigzag type but the contribution from the front of
maxima in Fig. 4d) are localized at the front or the back and the ridge dominates more and more kasncreasegheavy
that on the other hand &t=0 they both represent the trans- lines). The corresponding stable mode is also of zigzag type
lational neutral modda zigzag modethe question arises (thinlines, and for this mode the contribution from the back
how the eigenfunctions change along the dispersion relgexceeds that from the front. In regidiii) at k~0.02[Fig.
tions. We visualize this change by plotting in Figs(@+  11(@] the relative contribution to either mode from the back
11(d) the maximum(or minimum amplitudesh,,, of the  falls dramatically. For the unstable mode this contribution
eigenfunctions at the front and the back of the ridge for thechanges sign and the mode becomes a varicose one; with
parameter values corresponding to the dispersion relations increasing the contribution from the front drops rapidly and
Figs. §a)—8(d). The oscillatory modes are omitted from this at largek this mode is therefore confined to the back of the
plot because they are not important for the analysis. Theéidge. In contrast the stable mode remains a zigzag mode but
dashedsolid) lines represent the contributions from the front for k=0.02 this mode is dominated by the contribution from
(back of the ridge, while the heavithin) lines are used to the front of the ridge. Thus at lardethe dominant modes
distinguish the two modes using their largidehavior. Thus take the form of pure back and front modesgime(iv)]. If
the heavy(thin) lines refer to what we have called the back we ignore the narrovk ranges where the eigenmodes are
(front) modes, or equivalently the larde(small k) modes. oscillatory the above description, with obvious modifica-
The latter terminology is based on Fig.(d}, in which the tions, also applies to the remaining panels of Fig. 11. The
dotted vertical lines mark thé& values corresponding to general tendency is towards a narrowing of the transition
maximum growth rate and the filled circles indicate the cor-regions(i) and (iii) with increasing ridge volume, with the
responding eigenfunction maxima. One sees that in all fouproviso that at the same time the wave numbers correspond-
panels of Fig. 11 the dashed heavy line approaches zero mig to maximum growth rates move from ran@e to (iv).

FIG. 10. As for Fig. 6 but showing the dependence of the linear stability
results forL =500, G=0.1, h=1.5 anda=0.1.

K

N

FIG. 11. The maximum or minimum valués,, of the
eigenfunctionsh,(x) at the front(dashed lines and
back(solid lineg of the ridge. The two different eigen-
modes are indicated by heavy and thin lines. The dotted
vertical lines indicate the values &,,, at the local
maxima of the dispersion relation. The filled circles in-
dicate the corresponding mode. The inclination angles
«a and other parameters are as in Fig. 8.

Downloaded 20 Mar 2003 to 193.175.8.223. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 15, No. 4, April 2003 Front and back instability of a liquid film 901

TABLE I. The termsS,h; and their physical interpretatiofterms 1—7 are identical to those in Rej. By,
stands forf,,;, without the contribution of the hydrostatic pressure.

Term Expression Physical mechanism

1 vhyy Convective flow inx-direction due to reference velocity

2 %(hghlxxx)x Capillary flow in x-direction induced by perturbation curvaturexdirection
3 — %(kZhgth)x Capillary flow in x-direction induced by perturbation curvatureyirdirection
4 aG(hShl)X Flow in x-direction due to gravity

5 (h2hoesh1)x Capillary flow inx-direction due to perturbation thickness variations

6 — %kzhghm Capillary flow iny-direction induced by perturbation curvaturexdirection
7 %k“hghl Capillary flow iny-direction induced by perturbation curvatureyirdirection
8 (h3Fhnhy)xx Flow in x-direction due to variation of disjoining pressure

9 G(h3hy)yx Flow in x-direction due to variation of hydrostatic pressure

10 _hg‘fhthhl Flow in y-direction due to variation of disjoining pressure

11 —thkzhl Flow in y-direction due to variation of hydrostatic pressure

Thus for sufficiently large ridge volume&nd inclination front and back mode, respectivelparameter values as in
angles the dominantunstablemodes are localized at the Fig. 4(d)].

front and back of the ridge. Figure 12 reveals rather drastic changes in the individual
contributions neatkk=0 (both modes and k=0.05 (back
C. Physical mechanism mode. These correspond to the qualitative changes in the

‘eigenmodes around thekevalues noted already in Fig. 11.

The physical mechanism responsible for contact line in h ¢ lated h th vsis | ble of
stabilities can be studied using the widely used method oir us as formulated here ne energy analysis 1s capablé o
revealing more detailed information than its traditional

energy analysis??*®The growth rateg of an unstable _ .
dy anay 9 A /ersion>?#A second difference between the present prob-

mode is interpreted as an energy production rate and contr d th tudied in the literat . f the fact
butions to it from the individual terms of the linearized prob- em an ose studied in the literature arises from the fac

lem can be connected to underlying physical mechantsms.
For this type of analysis we multiply Eq12) by h; and
integrate the result over one spatial period. The right side oo4p——— T — 1 — 7 — 1 "~ 1T "~ 13 _
then consists of a sum of the individual contributiogs,, R
defined by o

_ (hlisnhl>
A (hy,hy)

where

B

2

! i

0.02 T

7

(13 5

L = i

(v, W)= fo vw dx. (14 oo
The operators, that add up to give the linear opera®are 004 ‘ ‘ ‘ N
given, together with their physical interpretation, in Table | 0 001 002 003 004 005 006
and depend nonlinearly on the base flow solutig(). k

The assessment of the influence of the individual terms, , , L B T —
used in the literature, is based on the signs of the respective I s Lo bl =
Bn: positive B, are destabilizing, while terms corresponding 5| 1 —
to negatives, are stabilizing>?*?Although this interpreta- UCTRANN e
tion provides useful information about the overall influence ' x :
of the terms it does not reveal either the mechanism of the -
instability or the terms responsible for the selected wave
number because it does not take into account that all the
contributions B,, in fact balance ak=0: 28,(k=0)=0.
This requirement is a consequence of the fact thet=ad the -0.05 .
unstable mode becomes the translational neutral mode of the L
one-dimensional geometry. It is the destabilization of this
mode, and therefore traeviationof the 8, from their values ' Tk
atk=0 that determines the transverse instabﬁ‘?tylence the o
most mportant instably mechanisms are those for whict, 1% The conviuters o be o) oo i of @ 1o fov,
the associateq, deviate most from their value &=0. of the transverse wave numberThe parameters are as in Figd#and the
These deviations are plotted in Figs.(&2and 12b) for the  numbering follows Table I.
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0.05F i ]

] | """""""" | T heeenes fereens prosenspeeens [
0 0.02 004 006 008 0.1
T T T T T
0.0008- —— B b - FIG. 14. The contributiongﬁ to the eigenvalue of the back mode. Normal-
I Bf | ization, term numbering and parameters are as in Fig. 12.
00006 T i ; i
i [ 1 respectively, with¢ chosen to lie between the locations of the
- 0.0004} " — back and the front. For drops of sufficiently large volume the
L }i 1 exact value of the cuk=¢ becomes immaterial and the
000021 ;_} | quantities!, B° become independent @f Figures 18a)
I I'}; | and 13b) show B, B and B8P for the front and back mode,
Lo \\ respectively. These show clearly that the front mode is ex-
0 N TR T clusively caused by contributions from the front part of the

L | L | L
0 0.02 0.04 0.06 0.08 0.1 . . . .
profile even in the range at very smklfor which the eigen-

function has significant amplitude at both the front and the
FIG. 13. The contributions of the front pag/, and back partg®, to the  pack. In this case all but one of the signs of Bigagree with
eigenvalueg for (a) the front mode andb) the back mode. The parameters h X . . .
are as in Fig, ). t e signs of the correspon.dnﬁgp Likewise, the back mode
is mainly caused by contributions from the back part of the
profile [Fig. 13b)]. However, during the qualitative change
that contributions tg3,,, for either mode, can arise from the '(;1 th_e el%er:)functlon_bnegk=0];05 thﬁ 'nf’tab'“ty IS E”egy K
front, ,8{1, and the back,BE, if the eigenfunction has two ominate y contri U'FIOHS ronf] the Lont. For the bac
mode the split of the3,, into the B, and B8, has a profound

peaks. So a situation may arise whege 8+ 8° is domi- , ST L
nated by either the front or the back, but the individual con-effect on the signs of the individual contributions as can be

tributions to thesed', or 82, may bear no relation to the S€€N When comparing Fig. 14 with Fig. (b2

location of the dominant instability. Here we have introduced . The overall influence _Of the individual _terr_ns IS summa-
rized in Table Il. Comparison of the contributions from the

Br=(h1,Sh1)p/(hi,he),  Bi=(hi,Shy)e/(hy,hy), front part of the front modécolumn 3 with the contribu-
(19  tions from the back part of the back mo¢=lumn 4 indi-

where cates that in both cases the main stabilizing influence comes
from term 2, i.e., the flow in thex-direction due to
(v,u)p= FUU dx,  (v,u)= vau dx, (16) X-curvature, and the main destabilizing influence from term
0 ¢ 8, i.e., the flow in thex-direction due to variations of the

TABLE II. Effect of the termsS;h, on the stability of moving contact lines. The respective main stabilizing and
destabilizing influences are marked by bold letters.

Term Front mode Back mode Front motfeont only) Back mode(back only

1 none none none none

2 stabilizing destabilizing stabilizing stabilizing

3 stabilizing stabilizing stabilizing stabilizing

4 destabilizing stabilizing destabilizing stabilizing

5 stabilizing destabilizing destabilizing stabilizing

6 stabilizing destabilizing stabilizing stabilizing

7 stabilizing stabilizing stabilizing stabilizing

8 destabilizing stabilizing destabilizing destabilizing

9 stabilizing destabilizing stabilizing stabilizing
10 destabilizing destabilizing destabilizing destabilizing
11 stabilizing stabilizing stabilizing stabilizing
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disjoining pressure. The hydrostatic pressure terms are stab 2xi0*
lizing for both instabilities, whereas the flow in the
y-direction due to variations of the disjoining press(tezm 1x10™
10) is destabilizing. The two instabilities differ only in terms

4 and 5, that are both destabilizing for the front and stabiliz- s5x;¢?°
ing for the back. However, of these term 5 is relatively un-
important, while term 4 arises from the flow in the & ¢
x-direction due to the body force, one of the two most de-
stabilizing terms in the model of Spaid and Homsy in either _s, ;o5

interpretation of the energy analy$fs. — 20 . - -~y
- o ta,
. 10t == 150 T
D. Analytical approach 75 - =4
L | | | |
As already mentioned the dispersion curves undergo & 0 0.001 0.002 0.003 0.004 0.005

Front and back instability of a liquid film

903

~=

—_—Tn—

- —

remarkable transition ne&=0 as soon as& becomes non-

zero. To understand the origin of this change we introduce g, 15. comparison of the full dispersion relati¢meavy lines with the
two slow timescalesy=et and T=¢€’t, and a long trans- smallk dispersion relation derived in Sec. IV Bhin lines for different
verse scaleY=ey, wheree<1, so thatd,=ed + 52(9T and values ofL (given in the legend The parameters are as in Fig. 4.
dy=e€dy. Next we suppose that the film thickness can be

written in the form

— 2
h=ho(x+ 6(Y,7,T))+ehy(X,Y,7,T)+ €2 hy(x,Y,7,T) O:J g Nor[hy Jdx= GoTJ g hoy dx, (22
+0(€), (17) L . _ - ,
whereg™ is the eigenfunction of the adjoint operatiig,,
where (see Appendix corresponding to the eigenfunctidm,, of
. + + . . .
0= 0+ €0, + €20, + O( ) 19) Non - Inspection ofNg,, shows thag™ is a constant implying

that the solvability condition is trivially fulfilled(since

is a slowly varying spatial phase, ahg and h, represent [hg,dx=0). ThusNg, has a unique inverse, and

perturbations of the drop. With this Ansatz the left hand side _ -1
of Eq. (4) becomes h1= 00:Non L Nox] 23
) 5 3 3 4 can be calculated fror,, . To ordere? one finds
htzhOX(EGT'f'E 0T)+E th+E h1T+E h2T+O(6 ) .
(19 h1,+ hoxOor+ Noxf1,= 2 Nonn[ 1]+ Non[h2] + N3l h?%;b

The nonlinear differential operatdX[h] on the right hand o ) ) -
side of Eq.(4) (in the comoving framecan also be written as 1 NiS iS an inhomogeneous equation f“){ The solvability

a series ine. Writing N=No+N,+N,, whereN, denotes condition, obta!ned by multl_plylng by™ and mte_gratlng_
the part that does not contain derivatives with respedt,to  OVer 0<x<L yields the desired envelope equation. Using
N, denotes terms with two such derivatives, ahiddenotes - (23) and the fact thafho, dx=0 this equation takes the
terms with four derivatives, we find that orm

N[h]=N[ho+ eh; + €2h,] a100..= 05, + 8305y + asfoyy, (25
1 where
=No[ho]+ €Non[h1]+ 3 € Nopp[h1]
+ €®Ngp[h,]+ €2N,[hg] + O(€%), (20) a;= f Non [hox]dX, (26)

whereNgy, is a linear operator depending &y and acting
here onh; or h, andNg, is @ nonlinear operator depending
on hy and involving terms quadratic in,. From the Ansatz
for hy [Eq. (17)] Ny[hg] can be written in the form
Oy yNoa[ho(X) ]+ 6$N2b[h0(x)]. All of the above operators
are summarized in the Appendix.

At leading order_ one now obt_ams the e_quatlon 0 a4:f N,a[holdx. (27)
=Ng[ hg] for the one-dimensional stationary solutions. Order

e yields The linearization of Eq(25),
hoxfo-= Non[h1]. (21

Note that theO(€) equation does not yield the translational now gives the desired dispersion relation valid nkar0,
neutral modeh,, because this mode is already included inviz. a, 3%+ a,k?=0, implying the presence of two branches
the Ansatz forhg=hy(x+ 6). The linear inhomogeneous of the dispersion relatioi8(k) crossing the axik=0 lin-
equation(21) for h, has a solution if and only if early at B3=0. The slopeB’(k) at k=0 is given by

1 _
a=5 f Nonr[ Non [ hox]1dx,

aazf Nop[holdX,

a; 007’72 ay 0OYY ’ (28)
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+\—a4/a;, a quantity that can be computed for a givenference between the two instabilities arises from the body
stationary profileh, from the formulag26), (27). Figure 15 force that is destabilizing at the front and stabilizing at the
demonstrates excellent agreement between the above predimack, as in Ref. 5.
tion and the full dispersion relation computed directly from The linear stability problem of a finite ridge is charac-
Eg. (12). As the inclinationa of the substrate decreases to- terized by a double zero eigenvaluekat 0. On a horizontal
wards zero so does the coefficiemf. As this occurs the substrate these eigenvalues are a consequence of the two
scaling assumed above breaks down and fourth order derivaeutral modes of the system, arising from translation invari-
tives enter the leading order balance in the dispersion relaance in the logitudinal direction and invariance with respect
tion, resulting in a dramatic change in the dispersion relationto changes in the mean film thickness. We have seen that for
nonzero transverse wave numiighese eigenvalues become
nonzero and depend da quadratically. This property is a
V. CONCLUSION consequence of the invariance of the system under reflection.
In this paper we studied the transverse instability of qu_We have identified the resulting unstable mode with the vari-

uid ridges on horizontal and inclined substrates using a fil cose mode and the stable mode with the zigzag mode. Thus

) ) 15ING @ T, 51k the algebraic and the geometric multiplicity of the zero
evolution equation based on a long wave approximation, in-

. S . eigenvalue is two. In contrast, once the substrate is inclined
corporating a disjoining pressure to account for the effectiv

interaction of the film with the substrate. The disjoining presﬁhe algebraic multiplicity of the zero eigenvalue remains two

sure used was recently derived by Pismen and Pomeau ushgctlrét the geometric multiplicity drops to one: the two disper-

diffuse interface theor§? The form of the disjoining pressure n curves cross linearly at the origin where the unstable

that results remains nonsingular even for zero film thicknes a}nd stable modes degenerate into one another. We have de-

and is therefore convenient for analytical study. However, wi ived an amplitude equation for the time evolution of trans-

expect qualitatively similar results for other forms of the dis- V€'S€ perturbar;t_lor;s of a sllld_lng”rldgedonhan w:jch:ed ﬁlane to
joining pressure involving a destabilizing short range and agemonstratet Is fact analytically, and showed that this equa-

stabilizing long range interaction as occurs for dewettig. tion repr.oduce.s quanti.tatively the wave number dep_e“d‘?”ce
We have studied three different types of transverse insta! the dispersion relation near the origin. The crossing is a
bilities for liquid ridges: direct result of the breakmg_ o_f th_e reflection symmetry that
occurs when the substrate is inclined from the horizontal.

(i)  The varicose instability on a horizontal substrate in-  The transverse instability of a liquid ridge on a horizon-
volving symmetrically both edges of the ridge. In this t3] substrate was studied earlier by DaifisSekimoto,
situation the competing zigzag mode is stable. Oguma and Kawasaki,and Roy and Schwart?, focusing

(i) Coupled instabilities of the front and back of the ridge on, ridges of heights smaller than the capillary length in order
on an inclined substrate. These are mostly of an asymy, neglect gravitational effects. Such ridges are always un-
metric zigzag type but an asymmetric varicose instastaple, with the product of the ridge width and the critical
bility also occurs for very small inclination angles. yansyerse wave number decreasing monotonically from
These instabilities, in which the behavior of the front 5,44t 2.4 for zero contact angle to zero at a contact angle of
and back is coupled, are found for small volumes of; gye 28 Egtimates of this product for the ridges shown in Fig.

the ridge or small inclination angles of the substrate.,, . — —
(i) Decoupled instabilities of the front and back having 2 gve values of about 3.41¢=0.8), 2.1 f=1.0) and 0.33

different growth rates and fastest growing wave num—(h: 1.6). .The first two of these values are in gooq agreement
bers. These occur for large volumes or large inclina-With the literature value for small contact anglesz., 2.4),
tion angles. especially since the small drops involved are strongly influ-
enced by the destabilizing disjoining pressure used here. The
These instabilities and the transitions between them werthird value is for a ridge that is already flattened by gravity
studied as a function of the system parameters by means ofad reveals the stabilizing influence of hydrostatic pressure.
linear stability analysis of stationary one-dimensional solu- We remark that the variational formulation employed in
tions. Both the stationary solutions and their stability prop-Ref. 27 yields results that differ from ours. To determine the
erties can be followed simultaneously in parameter space ustability of the ridge the authors examine the variation of the
ing numerical continuation techniqu?s_ln the transition generalized forces with respect to contact line replacements
region between the instabilitigs)—(iii ) oscillatory instabili-  for the varicose and zigzag modes. Negative eigenvalues of
ties are present in a certain wave number range. However, itie resulting matrix imply instability, and their dependence
the cases studied the oscillatory modes were never dominartn the transverse wave numbleryields information about
and may therefore be seen only when the correspondinthe most dangerous mode, i.e., the mode with maximal en-
wave number is selected by the experimental apparatus. ergy gain. The authors of Ref. 27 argue that the eigenvalue of
The mechanisms responsible for the pure back and frorthe matrix corresponding to the unstable varicose mode ap-
instabilities were elucidated using an adaptation of the enproaches quadratically a nonzero valukasnishes, imply-
ergy analysis originally proposed by Spaid and Hom$fte  ing that the most dangerous mode is of the order of the
main destabilizing effect in both cases is given by the flow insystem size. However, due to volume conservation the au-
the longitudinal direction due to the variation of the disjoin- thors exclude the poirk=0 from this curve. The difference
ing pressure caused by the perturbation, while the main difbetween this result and oufa quartic relation going to zero
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ask?, see Fig. ?)] appears to be due to the intrinsic differ- >0 now permits the occurrence of parity-breaking bifurca-
ence between their static approach involving the study of ations producing varicose, zigzag or mixed modes that drift in
energy functional and the dynamical approach we pursuthe transverse direction; these in turn can lead to complex
here that takes into account the viscous character of the fluidynamical behavior, as discussed elsewfi&P&Figure 4d)
that suppresses the motion of the liquid on very large scalesuggests another source of complex dynamics as well. The
References 26 and 28 do not compute equivalent dispersidigure shows that the maximum growth rate of the varicose
(or eigenvalugrelations. mode occurs neak=k,=0.035 while that of the zigzag
Our results for small inclination angles or small ridge mode occurs ned=2k,. Since the ridge has the symmetry
volumes can be compared with earlier wéPkThe product  O(2) in the transverse direction, generated by translations
of the ridge width and the most dangerous wave number is ir=y+c and reflectiony— —y, the resulting mode interac-
both cases approximately of&f. Figs. 3a) and 4a) or Figs.  tion corresponds to the 1:2 spatial resonance in the presence
7(a) and 8a)]. However, the transition to large flat ridges of O(2) symmetry, at least if periodic boundary conditions
with increasing inclination or ridge volume decreases thigwith spatial period Zr/k, are imposed in this direction. Re-
product by an order of magnitude, although inspection ofcent work indicates the presence of a remarkable wealth of
Figs. 3d) and 4d) or Figs. 7d) and &d) reveals that in this dynamical behavior generated by this mode interactish.
case the product of the width of tteapillary ridge at the  For other parameter values lateral boundaries may select a
front and the most dangerous wave number of the front modprimary oscillatory instability, and this may evolve into a
still remains of order one, as observed in other studies opattern of standing oscillations; with periodic lateral bound-
front instabilities>”*® However, in contrast to Ref. 25, we ary conditions with an appropriate period waves that travel
find that even for quite small inclination angles or ridge vol- either in the+y or the —y directions become possible, and
umes the dominant mode is an asymmetric zigzag moddhese resemble the laterally drifting states produced in the
with an asymmetric varicose mode found only for very smallsecondary parity-breaking bifurcations. Distinct dynamical
inclination angles. The transition towards stability found inbehavior is present near the codimension-two Takens-—
Ref. 7 for an individual front with decreasing inclination Bogdanov bifurcations with @) symmetry whose presence
angle is reflected here by the transition between decoupleig also suggested by Fig. 4; at these bifurcations the oscilla-
front and back instability and coupled instabilities. The de-tion frequency vanishes, and the bifurcation therefore repre-
coupled front instability has a counterpart in studies of arsents the transition between an oscillatory and a steady state
individual front, the coupled instabilities do not. primary bifurcation. Such bifurcations are, however, acces-
Note that for the instability of the back the product of the sible only through selecting an appropriate slapand spa-
back width and of the most dangerous wave number is alstial period 27/krg. Simulations of an unstable ridge in two
about one. To our knowledge there are currently no experidimensions are likely, therefore, to generate a plethora of
mental investigations of back instabilities for wide ridges ornew types of behavior that may be relevant to thin film in-
receding fronts on inclined planes. However, a transversétabilities.
back instability occurs in dewetting, where a liquid recedes
on a solid substrat®:* There the mechanism proposed here ~\ NowLEDGMENTS
may play a role although the instability is believed in the
literature to be a combination of a Rayleigh instability of the ~ This work was supported in part by the Deutsche
liquid rim formed at the receding back and an instability dueForschungsgemeinschaft under Grant No. TH78141T.)
to the slip at the substrafé Related work on the stability of and by the NASA Microgravity Sciences Program under
a receding dewetting front under evaporation, including theGrant No. NAG3-2152.
effects of a disjoining pressure, can be found in Ref. 62.
Here,_too, th(_a presence pf th_e instability is belie_ve(_j tc_J be\ppENDIX: THE OPERATOR N[h]
associated with the forming rim. However, the rim is tiny
and it may be that the instability is in fact due to the disjoin- ~ The nonlinear operatod,, N,, andN, are given by
ing pressure, as in the problem studied here. Further studies

involving an energy analysis of this type of instability are ~ No[h]=—{Q[(hyx— fn)x+ aGl}x+vh,, (A1)
necessary to decide this issue.

We conclude with a few remarks about the possible non-  Ny[h]=—{Q hyv,¢,—{Q(hyx—fr)v}y, (A2)
linear states that may result from the instabilities discussed
here. Whene=0 and the drop volume is small the unstable N, h]=—{Q hyy+}vy, (A3)

varicose mode grows monotonically and may saturate at a

finite amplitude, forming a fingered state. If such a state rewhere Q=(h—In a)®/3 and f,, is given by Eq.(8). The
mains unstable the continued growth of the instability will ime-independent equatids,[ h]=0 gives, after integration
break the ridge into drops which may merge on a longeland transformation into comoving coordinates, the equation
timescale forming finally a single drop. On an inclined sub-for the stationary state€l0). Taking into account thah,
strate the growth of the fingers, be they varicose or zigzag ir=ho(x+ 6(Y,7,T)), N,[hy] can be written asN,[hg]
structure, affects the speed with which the ridge slides. This=Ny,[ ho]6yy+ Nop[hol62 with

effect remains small when the transverse perturbation is

small, but the nonvariational structure of the system dor Noalhol= —{Q hgyytx— Q(hoxx= fr)x s (A4)
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Nop[ho]= _{Q hOxxx}x_{Q(hOxx_fh)x}x- (A5)

Using the Ansath=hg(x) + eu(x,Y) wheree<1 andu is a
perturbation, the linearized operatdMg,, No,, and Ny, are

Non[U]= _{Qhu[(hOXX_ frxt aG]}x+qu

_{Q(uxx_ fhhu)x}xv (AG)
Nop[u]=—{Q Uy vix— Q(Uyxyy— frnlvy), (A7)
Nan[U]=—Q Uyvyy, (A8)

whereQ= (hy(x) — Ina)%3 and all derivatives of are func-
tions of hy(x). The linear operatof used in the numerical
calculationg Eq. (12)] is given by

S= N0h+ N2h+ N4h! (Ag)

with each derivative with respect 6 in N,, and Ny, re-
placed by the factoik. The adjoint operatoriNg,, of the
linear operatoN, defined by(w,Ngp[u])=(Ng,[w],u) is
given by

Na—h[W] =Qn([hoxx— frlx+ @G)Wy— v Wy — (QWy) xxx

+ Frn(QWy ). (A10)

For the eigenvalue zero the eigenfunction is givenvny
=0, i.e., the adjoint eigenfunction for the neutral mode
Non is a constant.

Finally, the leading nonlinear operathi,;, is given by

Nhr[U]= = {Qnu(Uxy— frnt) hx—{ Qnat[ (hoxx— fr)x
+aGTH A+ {Q(fhnnu?)x - (A11)
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