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Abstract. When a liquid drop spreads on an adaptive substrate the
latter changes its properties what may result in an intricate coupled
dynamics of drop and substrate. Here we present a generic mesoscale
hydrodynamic model for such processes that is written as a gradient
dynamics on an underlying energy functional. We specify the model
details for the example of a drop spreading on a dry polymer brush.
There, liquid absorption into the brush results in swelling of the brush
causing changes in the brush topography and wettability. The liquid
may also advance within the brush via diffusion (or wicking) resulting
in coupled drop and brush dynamics. The specific model accounts for
coupled spreading, absorption and wicking dynamics when the under-
lying energy functional incorporates capillarity, wettability and brush
energy. After employing a simple version of such a model to numerically
simulate a droplet spreading on a swelling brush we conclude with a
discussion of possible model extensions.

1 Introduction

In spreading processes simple or complex liquids advance onto various substrates.
Such dynamic wetting processes are common in daily life and are also of large impor-
tance for many technological processes [1–4]. Most experimental and theoretical work
of the past decades considers these processes on smooth homogeneous solid sub-
strates or studies the influence of static substrate heterogeneities like wettability and
topography patterns and defects [5–8]. However, recent developments in areas like
microelectronics or 3D printing increasingly involve cases where (de)wetting hydro-
dynamics and substrate dynamics are coupled. This is particularly important on
microscopic and mesoscopic length scales, where (non-)equilibrium interface phenom-
ena dominate. For instance, viscous and soft elastic substrates reversibly change their
profile when one deposits a liquid drop [9–13]. In this case, nearly no transport of
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material takes place across the liquid–solid interface and the substrate mainly changes
its topography.

In contrast, adaptive substrates change their physico-chemical properties like wet-
tability and possibly additionally their topography due to the presence of a liquid or
through external conditions [14,15]. This may be induced by direct contact like under
a sessile droplet, or it may be mediated through an external phase like the ambient
atmosphere or a second liquid. Further, modifications may be mediated through grad-
ual changes of temperature [16–19], ambient humidity [20] and pH-value [14,15,21–24].
A recent overview of experimental systems and theoretical approaches is given in
reference [25].

For adaptive substrates, transport of material may take place across the liquid–
solid interface and phase boundaries may shift. For instance, polymer brushes and
networks, hydrogels and organic multilayers may swell under a drop of liquid or in
response to its extending vapour [15,26]. In a co-nonsolvency transition, poly(N -
isopropylacrylamide) (PNiPAAm) brushes in aqueous ethanol mixtures show a phase
transition including a nonmonotonic dependency of brush thickness on solvent con-
centration [27]. Similar effects are observed for hydrogel substrates [28,29]. In all
cases, the dynamics of the adaptive substrate and the dynamics of the de(wetting)
liquid take place on similar time scales, i.e., their direct coupling may result in new
phenomena. A limiting case of ultra-thin adaptive surface layers are the mentioned
substrates covered with a polymer brush [19,30,31]. For very mobile brushes one
can create liquid-like surfaces characterised by very small lateral adhesion forces. A
common model system are PDMS-brushes. The mobility results in a relatively fast
change of the brush thickness in the three-phase contact line region, i.e., the effective
substrate profile is adaptive. One also expects that the contact line motion orders
the brush molecules resulting in further anisotropy effects. Therefore the dynamic
wetting behaviour is influenced by the speed of adaptation, i.e., results from the
interplay of intermolecular forces of the coating, the vapour pressure of the liquid
and the adhesion forces.

The theoretical description and numerical simulation of wetting processes on
micro-, meso- and macroscales is in the case of simple liquids on inert solid substrates
quite well developed. The range of approaches includes Molecular Dynamics (MD)
simulations [32–34], lattice Boltzmann simulations [34], phase-field models [35], clas-
sical hydrodynamics (Navier–Stokes equations) [36,37] and asymptotic approaches
as mesoscopic thin-film (or long-wave) models [38,39]. Comparative studies, param-
eter passing approaches and consistency conditions connect these approaches into a
multiscale framework [34,36,40–42]. In macroscopic hydrodynamic models, polymer
brushes are often considered as flexible (viscoelastic) layers without adaptability [43].
Reference [25] presents a macroscopic dynamical model that incorporates the effect
of an adaptive substrate based on an imposed exponentially relaxing equilibrium
contact angle. The interaction of liquid drops with polymer brushes is also studied
employing MD simulations [44,45]. Here, we shall pursue a continuum model for the
coupled drop and brush dynamics.

A versatile asymptotic method to study nonequilibrium thin films and shallow
drops are thin-film models derived via a long-wave expansion from the governing
equations and boundary conditions of hydrodynamics [38,46]. They can often be
brought into gradient dynamics form [47,48]. Then, for a drop or film of simple non-
volatile liquid on a flat solid substrate the mass-conserving dynamics for the film
height profile h(x, y, t) is written as

∂th = ∇ ·
[
Q(h)∇δF

δh

]
with F [h] =

∫ [γ
2

(∇h)
2

+ f(h)
]
d2r (1)
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where the energy functional F [h] accounts for capillarity and wettability, γ is the
liquid–gas interfacial energy, f(h) a film height-dependent wetting energy (or binding
potential) [49–52], Q(h) = h3/3η is the mobility function in the case without slip at
the substrate, and η is the dynamic viscosity. In general, different descriptions of a
moving contact line are still under debate (see, e.g., [53] and other contributions in the
corresponding discussion volume). In the context of thin-film models, the two major
approaches are slip models where it is assumed that the liquid slips at the solid
substrate (amending the mobility Q [54]) and precursor film models that assume
an ultrathin adsorption layer exists on the macroscopically dry substrate [55] as
determined by the wetting energy.

For selected complex liquids, a theoretical description of the interaction of
(de)wetting dynamics and the dynamics of the internal degrees of freedom of the
liquid also exists. For instance, mesoscopic thin-film models describe films and drops
of mixtures of simple liquids and surfactant solutions on homogeneous, solid and inert
substrates [56–58]. Such models can often be reformulated as gradient dynamics on
an underlying energy functional [59]. This then allows for systematic and fully ther-
modynamically consistent extensions [60,61] that are able to capture the full extent of
the interface-dominated dynamics in cases where the various diffusive and advective
transport channels couple, e.g., in the case of surfactant-dependent wettability [62].
Further, the gradient dynamics approach provides a simple criterion to assess the
validity of other models.

To our knowledge, the coupled dynamics of an adaptive substrate and a spreading
liquid drop has not yet been considered with a mesoscopic hydrodynamic model. It
is the aim of the present work to develop such a mesoscopic hydrodynamic model
using as an example a drop of simple liquids spreading on a simple polymer brush.
The model is written as a gradient dynamics on an underlying energy functional
that accounts for capillarity, wettability and brush energy. For the latter, we use the
Alexander-de Gennes approach [63–65]. This shall in the future allow for a number
of extensions towards more complicated brush behaviour.

Our work is structured as follows. In Section 2 we introduce the dynamical model
and the underlying energy. The subsequent Section 3 presents selected numerical
results for droplets spreading on swelling brushes and compares our results with
other approaches in the literature. Finally, Section 4 concludes with a discussion of
possible future model extensions.

2 Dynamic model for simple liquid on adaptive substrate

2.1 Gradient dynamics

Here, we develop a generic model for thin films/shallow drops of simple liquid on adap-
tive substrates. We consider relatively simple substrates that can be characterised by
a single order parameter field that is then related to, e.g., the local stretching state
of a polymer brush covering the bare substrate (see sketch Fig. 1). In particular, we
use a generic quantity “substrate-absorbed liquid” as order parameter field. It rep-
resents the liquid absorbed into the adapting surface layer of the substrate. It can,
e.g., be directly related to the stretching state of a grafted polymer brush or to the
filling ratio of a porous layer. This absorption is a proper thermodynamic quantity,
i.e., at equilibrium it is determined by an appropriate energy functional. The gra-
dient dynamics approach then allows for a description of the coupled dynamics of
the thickness profile h(x, t) of the liquid above the substrate and of the profile of
substrate-absorbed liquid ζ(x, t). Both represent (effective) heights and have units of
length. The local thickness of the brush layer H is directly related to ζ (see Sect. 2.2).
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Fig. 1. Schematic representation of a liquid drop on a solid substrate covered by a polymer
brush. The focus is on the brush in the three-phase contact line region. The liquid film/drop
height is h(x, t) while ζ(x, t) is the effective height of the liquid absorbed into the brush,
indicated by the yellow to reddish colour gradient within the brush. The relative grafting
density σ and the chain length N`K determine the dry (collapsed) brush height. Liquid
absorption leads to an expansion of the polymers, i.e., an increase of the brush height by
ζ(x, t). For visual clarity, the schematics is not to scale.

The general gradient dynamics of two scalar fields has the form (see Eq. (4) of [59]
with n = 2)

∂th = ∇ ·
[
Qhh∇

δF

δh
+Qhζ∇

δF

δζ

]
−
(
Mhh

δF

δh
+Mhζ

δF

δζ

)
(2)

∂tζ = ∇ ·
[
Qζh∇

δF

δh
+Qζζ∇

δF

δζ

]
−
(
Mζh

δF

δh
+Mζζ

δF

δζ

)
. (3)

Note that in the general case, the dynamics of each of the fields combines a mass-
conserving part (the respective first r.h.s. term, of the form of a divergence of a flux
∇ · j) and a nonmass-conserving part (the respective second r.h.s. term, a transfer
rate r) that are both governed by the same underlying energy functional F [h, ζ].
We call the terms “conserved” and “nonconserved”, respectively. The corresponding
mobility functions form the positive definite and symmetric 2× 2 matrices Q and M.
Examples and more background for two-field systems and a three-field example are
given in [61]. The system (2)–(3) is generic and can be adapted for different adaptive
substrates. Also the consideration concerning the mobilities in the remainder of the
section is generic and one may replace “brush” by “adaptive substrate”. However, to
be specific, the argument is developed for the case of a polymeric brush pictured in
Figure 1.

We consider a mean-field long-wave approach to model the configuration shown
in Figure 1, in particular, we expect all relevant mean-field length scales in lateral
direction to be large as compared to vertical scales to allow for a long-wave continuum
description of the interface dynamics of the form (2)–(3). For simplicity, here, we
assume that the dynamics encompasses only three processes: (i) the hydrodynamic
motion of the liquid in the film/drop, (ii) the local transfer of liquid between the
film and the brush, and (iii) the diffusion of liquid within the brush. The absence of
advective liquid motion within the brush implies that there is no dynamic coupling of
hydrodynamic motion within the drop/film and within the brush, i.e.,Qhζ = Qζh = 0.
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Also neglecting slip at the brush–liquid boundary, the conserved mobilities are

Q =

(
h3/3η 0

0 Dζ

)
(4)

where D is a diffusive mobility. Without the nonconserved terms and energetic cou-
pling, i.e., with F = F [h], equation (2) reduces to the standard thin-film equation (1).
Similarly, for F = F [ζ], the decoupled equation (3) becomes a (possibly non-Fickian)
diffusion equation describing “wicking” within a polymer brush. We emphasize that
the resulting conserved parts of the dynamics of film thickness profile h and amount
of brush–absorbed liquid ζ only capture the fluxes within the film/drop and within
the brush, respectively.

Next, we discuss the respective nonconserved part of the dynamics of h and ζ
noting, that without evaporation, the total liquid volume

∫
(h+ ζ)dx should be con-

served, i.e., ∂t(h + ζ) has to equal the divergence of a total flux. This implies that
the outflux from the liquid film/drop has to equal the influx into the brush and vice
versa. The simplest nonconserved mobilities that satisfy this condition are

M = M

(
1 −1
−1 1

)
(5)

where M is a positive transfer rate that is here chosen to be constant but could, in
general, also be a positive definite function of h and/or ζ. However, we do not expect
different sensible choices of M to qualitatively change the dynamics of the model.
Note that introducing the mobility (5) into equations (2)–(3) gives a nonconserved
contribution simply driven by the difference in (partial) liquid pressure in the liquid
film/drop and the brush.

We argue that equations (2)–(5) represent the simplest thermodynamically con-
sistent framework model for the spreading of a drop on a polymer brush. It accounts
for the dynamic processes of liquid convection via Qhh, diffusion in the brush via Qζζ ,
and transfer between drop and brush via M . All dynamic processes are consistently
driven by the same energy functional F [h, ζ] that we discuss next. Note that the form
of equations (2)–(5) may be applied for other adaptive substrates, where adaptivity
is related to mass transfer.

2.2 Energy functional for drop on polymeric brush

For sufficiently small drops or sufficiently thin films of a simple liquid on a brush
we can neglect gravity and the governing energy functional only needs to capture
capillarity, i.e., interfacial energies, wettability and the energy determining the state
of the brush. We write

F [h, ζ] =

∫
[fcap(h, ζ) + fwet(h, ζ) + gbrush(ζ)] d2x. (6)

The capillarity contribution

fcap(h, ζ) =
γ

2
|∇(h+ ζ)|2 +

γbl
2
|∇ζ|2 (7)

contains the energy of the liquid–gas and the brush–liquid interface in long-wave
approximation (with interfacial tensions γ and γbl, here, both taken constant). For
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the wettability contribution we use the simple ansatz for partially wetting liquids

fwet(h, ζ) = fwet(h) = − A

2h2
+

B

5h5
(8)

where A and B are Hamaker-type constants for long- and short-range contributions,
respectively.1 Also note that for simplicity, we explicitly exclude a dependency of
wettability and brush–liquid interface tension on the brush state, a restriction that
should later be lifted by letting both quantities depend on ζ in a consistent manner
(see discussion in Sect. 4).

Finally, for the brush energy we adapt the Alexander-de Gennes mean-field
approach [63,64]. Specifically, we employ the form given in [65] for a brush interacting
with a binary mixture [their Eq. (1c)] setting their co-nonsolvent concentration φ to
zero. The resulting energy per monomer unit of the brush is

ĝbrush =
kBT

2

σ2

c2
+ kBT

(
1

c
− 1

)
log(1− c), (9)

where c is the volume fraction of brush monomers within the brush layer and σ is
the relative grafting density, i.e., an area fraction. Equation (9) combines the confor-
mational free energy of the brush and the mixing free energy of (miscible) brush and
solvent. The term ∼ σ2/c2 is the stretching energy in Gaussian approximation while
the entire second term is the Flory–Huggins free energy per brush monomer. Note
that the relation between brush volume fraction c and the brush layer thickness is
H = σN`K/c with the Kuhn segment length `K . The relation arises from equating
two expressions for the total polymer volume per substrate area A, namely, as σN`KA
(completely dry brush, i.e., fully compacted) or as cHA. Assuming polymer molecules
do not overlap, σ is proportional to the dry brush height H(ζ = 0) = σN`K . The
brush layer thickness depends on absorption as H = ζ + σN`K . The chain length
N does not explicitly enter the free energy per brush monomer (9), i.e., the phase
behaviour of brushes with identical grafting density is identical as long as brush
molecules do not overlap in the collapsed state [65].

Next, the brush energy per monomer ĝbrush is transformed into an absorption-
dependent brush energy per substrate area gbrush = Nσabsĝbrush where σabs = σ/`2K
is the absolute grafting density. This energy shall be expressed in terms of solvent
absorption into the brush ζ = (1− c)H = (1− c)σN`K/c. The latter implies we can
express c = σN`K/(ζ + σN`K). Bringing everything together, we have the brush
energy

gbrush(ζ) =
σN`KkBT

`3K

[
σ2

2

(
ζ + σN`K
σN`K

)2

+
ζ

σN`K
log

(
ζ

ζ + σN`K

)]
. (10)

Next, we nondimensionalize the full set of equations.

1Note that the particular wetting energy (8) is employed as one of the simplest models to ensure
partial wettability of the drop on top of the brush-covered substrate. It models a macroscopic drop
coexisting with an ultrathin adsorption layer (or precursor film). This layer outside the drop should
not be seen as representing a ’true’ adsorption layer on top of the brush. By choosing a sufficiently
small adsorption layer thickness we have ensured, that there is no large scale transport within the
layer that could feed the brush far away from the drop. Then, any dynamics within the adsorption
layer would be many orders of magnitude slower than the drop/brush dynamics.
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2.3 Nondimensionalization

The evaluation of the energy functional variations gives

δF

δh
= −γ∆(h+ ζ) +

A

h3
− B

h6

δF

δζ
= −γ∆(h+ ζ)− γbl∆ζ + g′brush(ζ)

(11)

with the derivative of the local brush energy

g′brush(ζ) =
kBT

`3K

[
σ2 ζ + σN`K

σN`K
+

σN`K
ζ + σN`K

+ log

(
ζ

ζ + σN`K

)]
. (12)

We further express the short-range interaction strength B by using the explicit
height of the adsorption layer hp = 3

√
B/A. Since the wetting potential fwet deter-

mines the equilibrium contact angle as cos θe = 1 + 1
γ fwet(hp) [49], for small contact

angles the remaining Hamaker constant may be substituted by A = 5
3γh

2
pθ

2
e .

We introduce length scales h0 = ζ0 = hp and x0 =
√

3/5hp/θe, a time scale
t0 = 27ηhp/(25γθ4e) and an energy (per area) scale F0 = 5γθ2e/3 in order to rewrite
the model into a dimensionless form. The free energy variations then become

δF

δh
= −∆(h+ ζ) +

1

h3
− 1

h6

δF

δζ
= −∆(h+ ζ)− γ̃bl∆ζ +

σT̃

l̃

(
ζ + σl̃

)
+ T̃

[
σl̃

ζ + σl̃
+ log

(
ζ

ζ + σl̃

)] (13)

where the remaining dimensionless parameters are

γ̃bl =
γbl
γ
, l̃ =

N`K
hp

, T̃ =
3hpkBT

5γθ2e`
3
K

. (14)

Similarly, the gradient dynamics reduce to

∂th = ∇ ·
[
h3∇δF

δh

]
− M̃

[
δF

δh
− δF

δζ

]
∂tζ = ∇ ·

[
D̃ζ∇δF

δζ

]
+ M̃

[
δF

δh
− δF

δζ

] (15)

where we use

D̃ =
3ηD

h2p
, M̃ = 3ηγ

3M

5γhpθ2e
(16)

as dimensionless constants for diffusion and transfer rates. Note that the lateral extent
x0 scales with the equilibrium contact angle θe, removing it from the dynamics as a
parameter and fixing the rescaled macroscopic contact angle to a value of

√
3/5.

The above procedure effectively reduces the complexity of the parameter space
and scales the dynamics for optimal numerical treatment. In the following, we employ
a finite element approach using the C++ FEM library oomph-lib [66] for time
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simulations of the governing equations in one spatial dimension. For time-stepping, a
backward differentiation formula (BDF) scheme of second order is used, while both
the time-steps and the spatial mesh are adaptive to the dynamics.

3 Results – drop spreading on a brush

The dimensionless dynamical model (15) can be employed to study the spreading of
a droplet on an initially dry polymer brush. In the following we illustrate this by a
direct numerical simulation. The results are given in Figure 2 in the form of snapshots
that illustrate the film height profile h+H and the brush thickness profile H as solid
lines and the absorbed amount of liquid within the brush ζ by a yellow to orange
shading of the brush layer. The insets show the respective contact line regions. The
employed parameters are listed in the caption. Figure 3 presents the corresponding
dependencies of useful quantities on time, including a comparison of the macroscopic
and mesoscopic contact angles in Figure 3a. In long-wave approximation, contact
angles are given by the slope of the respective height profiles where they meet the
substrate. In mesoscopic models, they can be measured as slope at the inflection point
of the liquid–gas interface. Note, however that the mesoscopic angle normally differs
from the macroscopic one. The latter is obtained by extrapolation of a spherical cap
shape from the drop maximum to the substrate. These quantities are well defined for
equilibrium drops on rigid smooth substrates (see e.g. [40]).

However, the situation is trickier for the present situation where contact angles
shall be measured in a dynamic situation where the substrate is not flat and rigid. We
define mesoscopic and macroscopic angles in close analogy to the simple described
case, however, one has to be careful when giving an interpretation.

We measure the three (mesoscopic) Neumann angles at the same position xc where
the profile of the liquid layer has its inflection point, i.e., where

h′(xc) = max h′(x). (17)

The three angles in long-wave approximation are then

θh =
∂h

∂x

∣∣∣∣
x=xc

, θζ =
∂ζ

∂x

∣∣∣∣
x=xc

, θζ+h =
∂(ζ + h)

∂x

∣∣∣∣
x=xc

. (18)

In contrast, the macroscopic contact angle is defined as the slope of a parabolic
fit f(x) to the apex region of h(x) + ζ(x) at the intersection with a macroscopic
approximate of the brush surface line:

θmacro = f ′(xs) with f(xs) = min(h(x) + ζ(x)). (19)

Further, Figure 3b shows the time evolution of the normalized droplet volume V =∫
dxh, Figure 3c the three Neumann contact angles and Figure 3d the normalized

maximal heights hmax(t) = maxh(x, t) and Hmax(t) = maxH(x, t). The logarithmic
time-scale reveals that there are different phases of the spreading dynamics, indicating
the interplay of different physical effects. In the following, we study these by means
of Figures 2 and 3.

As initial condition (t = 0), we use the equilibrium solution of a liquid drop on
a rigid reference substrate, that we obtain from a simulation with vanishing transfer
rate M = 0. We assume the substrate to be nearly dry, setting ζ(x, t = 0) = 0.1. We
then switch on the substrate dynamics M > 0 and observe the dynamics until the
simulation reaches the new equilibrium state. Due to the relatively small adsorption
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Fig. 2. The snapshots show the states of a spreading liquid drop on an initially dry
polymer brush at times (a) t = 0.08, (b) t = 1.0, (c) t = 10.0, (d) t = 500.0, (e) t = 5 · 103

and (f) t = 105. The height profiles of the liquid drop h+H and of the brush H are shown
as solid lines while the absorbed amount of liquid in the brush ζ is indicated as humidity
ζ/Hmax (with Hmax = (1 − σ)N`K) by a yellow to orange shading of the brush layer (see
colour bar). The horizontal dashed line indicates the reference height of a completely dry
brush. The insets show the respective contact line regions and the dimensionless parameters
are σ = 0.5, l̃ = 20, γ̃bl = 50, T̃ = 22, D̃ = 1 and M̃ = 0.1.

film height, any transport process that could occur within the adsorption layer is
several orders of magnitude slower than the dynamics of the drop and the brush.

Until t ≈ 0.2, the initial conditions relax, i.e., the precursor layer and the brush
absorption equilibrate, resulting in a rather small homogeneous swelling of the brush
(cf. Fig. 2a). Till t ≈ 2.0, underneath the drop, liquid is absorbed into the brush that
swells in consequence. Naturally, the droplet volume decreases and the contact line
recedes slightly. Simultaneously, the mesoscopic contact angle and the other Neu-
mann angles all increase, while the macroscopic contact angle remains constant as
the dynamics mainly occurs in the contact line region (cf. Fig. 2b). At t ≈ 10, the
swelling of the brush underneath the drop is nearly equilibrated, as the brush humid-
ity diminishes the transfer rate. However, diffusion in the brush transports liquid away
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Fig. 3. For the spreading liquid drop on an initially dry polymer brush of Figure 2 we
give the time dependencies of (a) the macro- and mesoscopic contact angle, (b) the volume
of the droplet, (c) the mesoscopic Neumann contact angles (θζ , θh, θζ+h) and (d) the max-
imum heights of both liquid drop and brush. For a discussion of the used macroscopic and
mesoscopic measures for the contact angle see main text. The times corresponding to the
snapshots in Figure 2 are indicated by thin vertical dotted lines. Note that the time axis is
logarithmic.

from the drop, where liquid is replenished by absorption. The mesoscopic angles start
to decrease again, while the macroscopic one is still unchanged (cf. Fig. 2c). Subse-
quently, the brush starts to swell in the region away from the droplet, leading to a
further decrease of the mesoscopic contact angles. Then also the macroscopic angle
reacts, first, it shortly decreases before it increases due to a steepening of the overall
drop shape. The process peaks at t ≈ 103 (cf. Fig. 2d). Lastly, diffusion in the brush
continues until the whole brush has equilibrated. In parallel, the drop spreads again,
leading to a decrease of all contact angles. (cf. Figs. 2e and 2f). Beyond t ≈ 104, the
new equilibrium state is reached. As expected, the contact angles are the same as the
equilibrium angles of the initial dry brush. This is due to our simplifying assump-
tion that we explicitly exclude a dependency of wettability and brush–liquid interface
tension on the brush state.

In [25] it is assumed that after placing a drop on an adaptive substrate, the inter-
facial tension relaxes exponentially towards a new equilibrium value, i.e., the contact
angle at the end of the simulation should show the same behaviour. However, it is also
mentioned that the observed change can be complex and depends on the particular
considered process. Even though, for simplicity, our initial and final equilibrium con-
tact angles are chosen to be identical, our simulations confirm both aspects. On the
one hand, we find a rather complex dynamics of the relevant contact angles (see Fig. 3
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Fig. 4. Log-normal plot of the mesoscopic contact angles θh (liquid) and θζ (brush) as a
function of time showing their exponential approach of their equilibrium values θ∞h and θ∞ζ .
The measured values (symbols) may be approximated by an exponential f(t) = λ exp(−t/τ)
as indicated by the solid lines. When the difference becomes very small, numerical precision
is lost.

and discussion above) that reflect the interplay of the coupled relaxation processes.
On the other hand, the final equilibrium is approached via an exponential relaxation
as evidenced in the log-normal plot in Figure 4. There, we show the exponential decay
of the mesoscopic contact angles θh and θζ towards their equilibrium values θ∞h and
θ∞ζ and compare the simulation results (symbols) to an exponential fit in the relax-

ation range 2 · 103 < t < 3 · 104. For large times the difference becomes very small,
and a high sensitivity towards finite grid effects and a precision loss in numerical
subtraction become visible. Nevertheless, the relaxation of the contact angles, and
thus, the respective interfacial tensions is well approximated by an exponential.

4 Conclusion

We have presented a physico-chemical mesoscopic hydrodynamic thin-film model for
the droplet spreading on an adaptive substrate. The model has been developed as
a gradient dynamics on an underlying energy functional. After presenting the gen-
eral framework we have considered the coupled spreading, absorption, diffusion and
swelling dynamics that occurs when a liquid drop is placed on a dry polymer brush.
There the underlying energy functional accounts for capillarity, wettability and brush
energy. Finally we have employed the basic model to numerically simulate a droplet
spreading on a swelling brush. The analysis has shown an intricate dynamics consist-
ing of several phases with qualitatively different behaviour. It will be an interesting
for future studies to investigate in detail how the behaviour changes when the ratios
of the time scales for the various involved processes are varied.

The presented model is basic in some aspects and allows for several pathways
of future improvements: (i) It has been assumed that there is no dynamic coupling
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between liquid motion in the brush layer and the liquid in the drop. In consequence,
only the elements of the main diagonal of the mobility matrix of the conserved dynam-
ics are nonzero. Treating the liquid flow within the brush layer in detail will be
cumbersome but feasible (cf. analogous case of coupled flow on and in a thin porous
layer [67]), but main features can be captured by a brush-state dependent effective
slip at the brush–liquid interface. Similar considerations will apply for drop spread-
ing on a porous layer (cf. systems described in [68]) or on gels (see e.g. [76]). (ii) For
simplicity, here both, the brush-liquid interface tension and the wetting energy, have
been chosen to be independent of the brush state as our main focus was the estab-
lishment of the basic model to study the interplay of the main dynamic processes.
This shortcoming may be amended by incorporating dependencies on brush state, i.e.
absorption ζ, into the brush–liquid interface energy γbl(ζ)(1 + (∂xζ)

2
) [Eq. (7)] and

into the wetting energy fwet(h, ζ). Note that care has to be taken to introduce such
dependencies in a consistent manner as wetting energy and interface energies have to
be related to ensure consistency between the underlying mesoscopic and macroscopic
approaches. This is discussed for surfactant-covered drops/films in reference [62].
Note that a brush-state dependent brush–liquid interface energy may result in addi-
tional Marangoni-type flows, and the appropriate mobilities also have to be discussed
(cf. [61] for the case of surfactants). (iii) Another such improvement is to replace the
long-wave approximation of the interface energies by the full expressions, i.e., using
the “exact-curvature trick” of [42,69,70]. Of these amendments, the one concerning
the mobilities, i.e. (i), will most likely be less important than the ones improving on
the energies, i.e. (ii) and (iii). For other thin-film models this is discussed in [59].

More generally, the modelling approach can be applied to more complex situa-
tions by expanding the framework we have presented in Section 2. Evaporation of
liquid from the drop and the brush as well as condensation into the brush may be
incorporated via further nonconserved terms in equations (2) and (3) that do not
balance each other. This would capture the case of phase-transition controlled evap-
oration/condensation as considered in [71–73], also see discussion on pp. 404–405
of [74]. Further, changing the brush energy should allow one to consider a liquid layer
on a brush in the case where the liquid is not fully miscible with the brush. Stud-
ies employing MD simulations [45] have shown that then phase transitions between a
partially wetting drop on a dry brush, a wetting liquid layer on a dry brush and a fully
mixed homogeneous brush state occur. Also an adaptive substrate interacting with a
liquid mixture is of high interest, see e.g., recent works on the co-nonsolvency transi-
tion [29,65,75]. To model drops of mixtures on brushes one would need to combine the
approach presented here with gradient dynamics models for films of mixtures [60]. In
general, it should be possible to account for most of the adaptive substrates discussed
in the introduction of [25] with gradient dynamics models extending the one we have
presented here.
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