POLYGONAL NETWORKS RESULTING FROM DEWETTING
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The occurence of polygonal structures is widespread in nature [1]. Ex-
tensive investigations on the statistics of two-dimensional networks have
been performed for biological tissues [2, 3], clusters of metal grains [4, 5],
systems of soap bubbles [6, 7, 8], emulsion lattices [9], gas bubbles in Lang-
muir monolayers [10], magnetic froth [11] or convective patterns in hydrody-
namics [12, 13, 14]. The strong similarity between structure and evolution
of two-dimensional soap froth and grain boundary networks has become a
subject of growing interest [15, 16, 17, 6]. These similarities make it dif-
ficult to differentiate the networks occuring in different experimental sys-
tems. Additionally, one faces a problem if the system is two-dimensional
because it is a planar cut of a three-dimensional systems (grain bound-
ary network) or through putting the three-dimensional structure between
two narrowly spaced glass plates (soap froth, emulsion lattice, magnetic
froth). Here, we will introduce two new experimental systems representing
dewetting processes of a thin liquid films on a solid substrates. The oc-
curing polygonal networks are intrinsically two-dimensional. After a short
introduction of the concepts of wetting and dewetting, the dewetting exper-
iments of polystyrene on silicon and of collagen solution on highly oriented
polygraphite are explained. The different stages of the dewetting process
will be discussed at these examples. Main features of the resulting struc-
tures are analysed by means of stochastic geometry of polygonal networks.
The resulting distributions are compared with distributions obtained for
two-dimensional soap froth. Typical differences between dewetting patterns
and soap froth and between the two dewetting patterns are explained by
distinct driving forces behind structure formation.



Putting a macroscopic drop of liquid on a surface one can observe two
different scenarios. Macroscopic means here bigger than the range of long
range molecular interactions like Van-der-Waals forces but small enough
that effects of gravity need not be taken into account!'. The drop of liquid
can spread until a thin film covers the whole surface. The liquid wets the
surface. The case is called complete wetting. On the other hand the drop
can remain as a small spherical cap. The liquid does not wet the surface.
This case is called partial wetting.

In both cases the driving force is the minimization of surface energy.
The final state is characterized by the equilibrium contact angle 8 between
the liquid—gas and the liquid—substrate interface at the three-phase contact
line. It can be calculated from the surface tensions with the help of the
Youngs—relation:

Ysa = vsL + Yra cos by (1)

where vs¢, vs1, and 1o denote the surface tensions of the solid—gas, solid—
liquid and liquid—gas interface respectively. For vsq —vsr. > vrg the liquid
wets the substrat.

Now, consider the situation, where a thin film of fluid is placed on the
surface. This may be realized by spin-casting, floating or painting. What
will happen? If the liquid wets the substrate the film remains. But taking a
liquid that does not wet the substrate the film tries to reach its equilibrium
configuration, i.e. it tries to form a single drop. A thicker film will retract
at the borders in order to reach this state. If, however, the film is very thin
(when it is brought onto the substrate by spin casting at high frequencies),
it does not only draw back at the borders but also breaks up at many
locations 'within’ the film. In the course of this process, inner edges appear
that also draw back. Or in other words, holes appear that grow with time.
This process is called dewetting. We will discuss here patterns resulting
from this process. (For an introduction into the subject see [18, 19, 20].)

Before the stages of the process are explained in more detail, the exper-
imental systems are shortly introduced. Experiments on polystyrene (PS)
films on silicon are described in [21, 22]. Thin films (thickness 20-300nm)
are produced at room temperature by spin casting a solution of PS in toluen
onto the silicon. Toluen evaporates and a smooth thin film of glassy PS is
formed. When one brings the sample above the glass transition tempera-
ture, PS becomes a liquid at once and dewets from silicon. The process
is observed time resolved with an optical microscope. All holes arise at
nearly the same time at random distributed spots on the substrate[22].
The mechanism of formation of initial holes is still controversial. It may
be a spontaneous instability of the thin film under the influence of long

!The latter is the case for drops smaller than the capillary length.



range molecular forces [21, 23], or heterogeneous nucleation caused by de-
fects [22, 24]. In the next stage of the process the holes grow till they meet
each other. At first, neighbouring holes touch leaving a thin liquid bridge
inbetween. The liquid bridge between the holes can either rupture, leading
to hole coalescence, or remain stable. If the bridge remains stable, a thin
rim of liquid is formed between the holes. The rims form the edges of a
two-dimensional polygonal network resembling at the first sight to a two-
dimensional aged soap froth. The diameters of the polygonal cells are in
the range of 10-100pum (see Fig.1d).

But this is only a transient state. On a longer timescale the liquid rims
are not stable. They may decay into rows of drops via a Rayleigh instability.

We have investigated acedic collagen solution (CS) that is spin-casted
on highly oriented polygraphite (HOPG) [25]. After the deposition of the
film (thickness 10-15pm) the solvent begins to evaporate. Evaporation con-
tinues during all the process. In competition with evaporation, hole nucle-
ation sets in. The holes grow, meet and form a polygonal network as in
the PS experiment. But in contrast with PS films, the nucleation of holes
continues during all stages of the process. The evolution of the structure
only stops when all the solvent is evaporated. The pattern resulting from
dewetting is fixed in the dried collagen and can be imaged by scanning
force microscopy (cell diameter below 1um). The rate of evaporation and
therefore the observed stage of the dewetting process can be controlled by
humidity. In Fig.la-c three stages of this process are shown. In order to get
this series of images, different collagen concentrations and different humidi-
ties are used. The edges of the polygonal network are stable, because they
have approximatively the same size as the collagen molecules (relatively
rigid rods of 300nm length). Thus coalescence of holes and the evolution
of the rims into drops are supressed. At this point it should be mentioned
that both systems can show a dynamical instability of the moving liquid
rim during hole growth: Liquid rims may lag behind the moving circular
rim (so called back-fingering). In the case of the CS, this gives a transition
between network-like pattern and tree-like patterns. Here, we restrict our
attention to networks.

In order to characterize the network structures that form an intermedi-
ate state of the PS film and the final state for the collagen film evolution, we
use methods of stochastic geometry of polygonal networks (SGPN) which
are part of stochastic geometry. These methods were used extensively to
analyse the evolution of 2d soap froths. They allow comparison between
soap froth and dewetting structures. We are investigating the statistical
distributions of network variables, such as number of edges, edge length,
cell area, cell perimeter or angles between the edges. The mean values and
second moments of these distributions give a first characterisation of the
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Figure 1.  Structures obtained by dewetting for two different experimental systems:
collagen solution on highly oriented polygraphite (a-c), and polystyrene on silicon [26]
(d). For the collagen solution three stages of the evolution of holes are illustrated by
final images taken at different experimental conditions. The images a-c show an area of
5 micron x 5 micron. (a) The formation of holes just started. (b) Intermeadiate state
during hole growth. Some holes have touched. (¢) Developed polygonal network, final
state of the dewetting process of collagen films. (d) Developed polygonal network for PS
on silicon. Some rims are ruptured, leading to coalescence of pores.

structures. One can further take into account correlations between neigh-
bouring cells (for edge numbers: Aboav-Weaire law) or between different
variables like for example cell area and edge number (Lewis law). Here we
are interested in the distribution functions of the single variables only.

Fig.2a-d show the distributions of edge number, edge angle, cell perime-
ter and cell area. We show data from two samples of aged soap froth, dewet-
ting network of PS films and of collagen films [27].

With respect to the edge angles we have to remark that the data rep-
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Figure 2. Comparison of distributions characterising the polygonal networks occuring in
the dewetting process (polystyrene, collagen) and aged soap froth [27]. (a) Edge number
distribution. (b) Distribution of angles between edges, where the straight lines between
vertices are taken as edges. (c) Distribution of normalised cell perimeter. (d) Distribution
of normalised cell area.

resent not the actual angles under which the edges meet locally at the
vertices, but the angles that are given if one connects neighbouring vertices
by straight lines (resulting from the image analysis procedure). This might
be misleading if one wants to analyse the physics of a soap froth near the
vertices however it gives nevertheless a good measure for comparison of
different experimental systems as it is done here.

The distributions are in general quite similar for the same experimen-
tal system (meaning that they are reproducible), but show characteristic
differences with respect to each other. Differences are more pronounced for



edge angle and edge number than for cell perimeter and area. To quantify
these differences one has to study the characteristic variables of the distri-
bution functions. Note first, that the mean values of the distributions are
not relevant for a comparison. Networks with threefold vertices only have
generally a mean value of the edge number (n) = 6 and a mean value of the
edge angle that is 120°. The mean value of the area gives only the length
scale for the experimental system.

However as demonstrated in the following the normalised second mo-
ments are a good measure to compare networks resulting from different
experimental systems. They are defined as follows:

W= L LSy (2)
2 = v &Y ’

where f denotes the relevant variable of the distribution (n edge number, p
cell perimeter, a cell area and w angle between edges), (f), its mean value,
fi, its value for cell ¢+ and N the number of cells. Normalisation of metric
variables like perimeter and area is necessary in order to compare different
networks. The normalisation is also used for the edge angles. The second
moment of the edge number distribution p% is given without normalisa-
tion as in the literature. Higher moments are not discussed because of the
restricted number of cells available for the statistical analysis. The second
moments are listed in Tab.1. The second moment of the edge number dis-

TABLE 1. comparison of the second moments of colla-
gen and polystyrene dewetting networks and soap froth

Property Collagen Polystyrene  Soap (aged)

s 2—-5 ~ 2 ~1.4
s 0.4 —1.5 ~ 0.3 0.4 —1.2
ug 0.10 — 0.35 0.05-0.10 0.01 —0.03
"y 0.05—-0.07 0.03—-10.05 =~ 0.015

tribution p4 that is usually taken as a measure of disorder indicates that
dewetting structures are more disordered than soap froth. Among dewetting
structures, PS patterns are more ordered than the collagen networks. This
can be explained by coalescence of holes occuring during the evolution of
the PS system. Coalescence happens through rupture of the thinnest rims,
found mainly inbetween holes of very different sizes. Therefore, coalescence
equilibrates the cell sizes. Indeed, p§ is considerably smaller in PS than in

CS.



By contrast, the evolution process of a soap froth is driven by pressure
differences between neighbouring cells that are equilibrated by diffusion
of gas through the cell walls. Cells with more than six sides grow at the
expense of the cells with less than six sides that shrink (von Neumann’s law)
[15, 28]. Therefore, one finds allways small and large cells, i.e. u3 does not
decrease in time in the steady state of an aged froth. Locally, the vertices
stay in equilibrium; three edges meet at angles of 120°.

The evolution of soap froth and dewetting networks are therefore very
different, as reflected by the second moments of the area distributions u§
and the edge angle distribution Y.
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Figure 3. Shown is the second moment of the area distribution vs. the second moment of
the distribution of edge angles for networks resulting from dewetting and two-dimensional
soap froth respectively [29].

This is visualised in Fig.3 where u§ is plotted over pu§. The dewet-
ting pattern and the soap froth occupy different regions of the uy — p§
plane. Moreover dewetting patterns are clearly split into separate PS and
CS regions. The soap froth has a very small p4. We will call this vertex
equilibrium. By contrast the PS pattern has a large p% but a small p§. We
call this edge equilibrium because the system tends to form edges that are
stable on the time scale of the growth of the holes.



Because the collagen molecules suppress the coalescence of holes almost
completely, the observed structures result from hole formation only. Neither
edges nor vertices are in local equilibrium. This is reflected by the fact that
both p§ and p§ are large.

All the statistical distributions are a measure of the initial distribution
of holes. Therefore they should resemble the distributions found for spatial
tesselations generated with the Johnson-Mehl model [30, 31]. In this model
one generates a random distribution of points (Poisson distribution). These
points are activated at time ¢ with a probability p(¢). Activated points grow
into circular holes at constant velocity until they touch, ultimately filling
the whole plane by a polygonal network. Let p(t) ~ t(°=1) be the probability
of activating a point at time {. The exponent 3 can be negativ or positive.
For 8 < 1 the activation probability decreases with time, for § > 1 it
increases whereas for § = 1 one gets a activation homogeneous in time.
A delta function for p(?) activates all points at ones, and one obtains the
Voronoi tesselation. This simultaneous activation can be ruled out, because
the values of the second moments of a Voronoi tesselation are smaller than
the collagen values (Voronoi: pf ~ 1.8, u% ~ 0.3, p5 ~ 0.06).

The evolution of the dewetting pattern itself suggests new extensions of
the Johnson-Mehl model to interpret the experimental distributions. The
standart Johnson-Mehl model can only be used for a qualitative compari-
son. For collagen films, it is not possible to extract a value for # by compar-
ing model and experiment. The problem is that, experimentally, the rate of
growth of the holes is not the same at all times. It decreases with increasing
viscosity, as the solvent evaporates.

In conclusion dewetting of a thin liquid film is an interesting phenomena
showing two-dimensional polygonal network formation. The direct com-
parison of networks of different physical origin with methods of stochastic
geometry gives means to quantify the differences. It is possible to distin-
guish two local equilibriums: the vertex equilibrium of soap froth and the
edge equilibrium of the coalescing dewetting network.
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