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We investigate the interplay between a stable horizontal thin liquid film on a solid substrate and an
excitable or bistable reactive mixture on its free surface. Their coupling is twofold. On the one hand,
flow in the film transports the reacting surfactants convectively. On the other hand, gradients in the
surfactant concentration exert Marangoni stresses on the free surface of the film. A reduced model
is derived based on the long-wave approximation. We analyze the linear stability of the coupled
system as well as the nonlinear behavior, including the propagation of solitary waves, fronts, and
pulses. We show, for instance, that the coupling of thin film hydrodynamics and surfactant chemistry
can either stabilize instabilities occurring in the pure chemical system, or in a regime where the pure
hydrodynamic and chemical subsystems are both stable, the coupling can induce instabilities.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2775938�

I. INTRODUCTION

A thin liquid film on a solid substrate, either bounded,
e.g., a droplet, or unbounded, has over the years proven to be
an important prototype at the core of many industrial pro-
cesses and applications, such as lubrication and coating, as
well as biological problems for which it is necessary to un-
derstand and control flows at a small scale.1,2 Numerous
studies have thus been devoted to the statics and dynamics of
thin films in different settings and configurations and in par-
ticular of simple liquids in isothermal conditions: film rup-
ture and coarsening,3–6 falling films,7–10 fingering instabili-
ties of advancing film fronts,11–14 film and droplet
evaporation,15–17 and sliding or rolling droplets.18,19

As an example, falling liquid films have received con-
siderable attention for several decades since the pioneering
study by Kapitza.20 The primary instability of the flat film
base flow is driven by the classical long-wave mode first
observed in the experiments by Kapitza and Kapitza.21 After
the instability onset, the primary wave field undergoes a se-
quence of wave transitions and is eventually transformed
into a train of solitary pulses �see Ref. 22 for a detailed
analysis of the wave transitions�. We note that Benney23 was
the first to apply, for the falling problem, a long-wave expan-
sion leading to a single equation of the evolution type for the
free surface. Subsequently, the so-called “long-wave ap-
proximation” introduced by Benney has been central to
many other thin film studies �see, e.g., Refs. 1 and 2�.

Another example that has received considerable atten-

tion over the years is the dynamics of droplets on a substrate.
In addition to the presence of a free boundary, we now en-
counter several other challenging aspects and complexities
including the presence of a moving contact line and the as-
sociated singularity at the three-phase conjunction as well as
the wettability characteristics of the substrate which play a
crucial role in the liquid-solid interaction.24–26

The dynamics of thin films is often influenced by
concentration/temperature dependent fluid physical proper-
ties, in particular surface tension gradients due to the thermal
Marangoni effect associated with spatially inhomogeneous
temperature fields and the solutal Marangoni effect associ-
ated with the presence of surface active substances, i.e., sur-
factants. The role of the thermal Marangoni effect in gener-
ating fluid motion was established by Pearson27 and
Sternling and Scriven.28 Pearson discovered a short-wave
mode that does not require a deformable free surface and is
responsible for the formation of convection rolls in the
Bénard experiment with a horizontal temperature gradient.
Sternling and Scriven, on the other hand, obtained a long-
wave mode that leads to deformation of the interface. The
role of the two modes in the instability onset for the problem
of a film falling down a uniformly heated plane was scruti-
nized by Goussis and Kelly.29 Recent work on this problem
has focused on the nonlinear wave regime.30–33

The role of the solutal Marangoni effect in generating
fluid motion was first examined by Sternling and Scriven34

for a two-phase system with soluble surfactants. They dem-
onstrated that a stationary instability arises whenever the sur-
factant is transferred out of the phase in which its diffusivity
is lower, while the system is always stable when the transfer
is in the opposite direction. Oscillatory instability can also
appear for transfer in any direction when the kinematic vis-
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cosity and the surfactant diffusivity are both lower in one
phase. The influence of soluble surfactants on the linear in-
stability of falling films has been investigated by Ji and
Setterwall35 and Shkadov et al.36 On the other hand, in-
soluble surfactants always have a stabilizing influence as was
demonstrated in the early study by Ruckenstein and Jain for
a thin film in the presence of insoluble surfactants37 �see also
Jensen and Grotberg38�. Indeed, to obtain an instability with
insoluble surfactants on the surface of the film one requires a
source of surfactants. The resulting instability typically leads
to rupture of the film �see, e.g., Matar39�. A detailed analysis
of the spreading dynamics of insoluble surfactants on thin
films, including shock evolution and rupture is given by
Jensen and Grotberg.38

It is then clear that thin liquid films often exhibit a very
rich pattern formation dynamics. Another class of well-
studied problems that also shows a rich pattern forming be-
havior is that of reaction-diffusion systems, often encoun-
tered in the fields of chemistry and biology. In contrast to the
above hydrodynamic systems where the patterns result from
the action of a driving force on the flow, such as gravity �as
in the falling films case� or thermal/solutal Marangoni ef-
fects, in reaction-diffusion systems the patterns typically re-
sult from the competition between diffusion and nonlinear
reactions which frequently involve autocatalytic steps. Well
studied examples in the absence of diffusion are the cel-
ebrated Belousov-Zhabotinsky reaction,40–43 its Oregonator
reduction,44 the Brusselator model,45 and the Gray-Scott
model.46 These systems are spatially homogenous but they
can exhibit complex temporal behavior including transition
to chaos, unlike, e.g., the Bénard experiment mentioned ear-
lier which displays spatial inhomogeneity.

One of the most widely studied reaction-diffusion sys-
tem is the FitzHugh-Nagumo system, a relatively simple pro-
totype that arose originally in the biological field as a model
for the axon of a nerve cell.47 It is of paradigmatic value, not
only because it is a comparatively simple prototype for com-
plex spatio-temporal behavior resulting from the coupling
between chemical reactions and diffusion, but also because it
is well understood and has been applied to many different
physical settings.48–51 The destabilization of the base state
for this system quite frequently results in the formation of
spatially periodic steady states �so called “Turing patterns”�
or in an oscillatory behavior in time as well as in a wide
variety of wave patterns. These patterns are strongly linked
to the two regimes which typically characterize the
FitzHugh-Nagumo system: depending on the values of the
parameters describing the reaction, we can have bistability or
excitability. A bistable system possesses two stable uniform
steady states and fronts connecting the two are likely to
propagate in it. For an excitable system on the other hand, a
small but finite perturbation can drive the system far from its
initial uniform steady state. This property often leads to the
propagation of pulses. In two dimensions more complicated
patterns such as spiral or scroll waves can be observed.

Hydrodynamic and reaction-diffusion systems are seem-
ingly unrelated and are mostly studied separately. However,
in many important cases the combined effect of convection
on chemical reactions and the influence of Marangoni

stresses on the dynamics of a fluid interface, come to the fore
and cannot always be neglected. This interdependence can
even result in new pattern forming behavior. The coupling
between the chemistry and the hydrodynamics in this context
can be achieved by including dependencies of the bulk vis-
cosity and density of reactant concentration as was done in
Hele-Shaw flows52–56 or through the thermal Marangoni ef-
fect induced by exothermic chemical reactions as was done
in falling liquid films.57–59

Another possibility is to couple the hydrodynamics with
the reaction-diffusion process through a surface active agent
involved in the chemical reaction. A reactive surfactant
might act at the liquid/substrate or at the liquid/gas interface.
In the first case, for example, Dos Santos and Ondarçuhu60

have taken advantage of the ability of n-alkane molecules to
alter the wettability of glass or silicon to show that a chemi-
cal reaction taking place at the substrate can cause a droplet
to run. Other examples of driven droplets have been reported
by Lee et al.61 and Sumino et al..62 Theoretical descriptions
include estimations for droplet velocities based on force
equilibria,63 but also dynamical models based on �long-
wave� thin film equations.64,65

In the present study, we examine the interaction between
the free-surface dynamics of a horizontal thin film and reac-
tive surfactants at the liquid/air interface. Related studies are
sparse in the literature. Noted exceptions are the works by
Pismen66 and Dagan and Pismen67 that examined the inter-
action between propagating chemical fronts and thin film
hydrodynamics. The first study considered a single autocata-
lytic reaction on a nondeformable surface involving a soluble
surfactant supplied to the surface from the bulk. In this case,
the coupling between chemistry and hydrodynamics can lead
to some complex flow patterns in the bulk. The second study
allowed the interface to deform while the surfactant was as-
sumed to be insoluble. The chemical scheme, a single mul-
tistable chemical reaction maintaining two different steady
concentration states at the far ends of the film, can lead to a
propagating chemical wave on the surface. In another study
undertaken by Buyevich et al.68 the chemical reaction takes
place at the interface between two liquids.

Here, we adopt a chemical system that exhibits a much
richer behavior than the above settings. More specifically, we
employ the earlier introduced FitzHugh-Nagumo system to
model a reactive mixture of two surface active species one of
which acts as a strong surfactant. This is a system of two
equations for the evolution in time and space of two vari-
ables, frequently referred to as the activator and inhibitor. As
discussed earlier this prototype represents a simple model for
a two species chemical system showing both excitable and
bistable regimes. Here both reactants are transported convec-
tively through the film flow and also diffuse along the sur-
face. For simplicity we assume that the film is driven by the
surface-active properties of the inhibitor. On the other hand
the activator is only weakly surface active. Hence, both film
and inhibitor have typical wavelengths of the same order.
Assuming that this wavelength is long compared to the un-
disturbed film thickness, so that both film and inhibitor are
“long-wave” variables, allows us to perform a long-wave
approximation of the full system resulting in a set of three
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coupled nonlinear partial differential equations for the evo-
lution in time and space of the film thickness profile and the
concentration profiles of the two species.

The paper is organized as follows: In Sec. II we formu-
late the problem mathematically and we outline the govern-
ing equations for the coupled hydrodynamic-reaction-
diffusion system. In Sec. III we give the governing
dimensionless groups and dimensionless governing equa-
tions. In Sec. IV we derive a simplified model based on the
long-wave approximation. Section V is devoted to the steady
state and its linear stability. In Sec. VI, we present theoretical
and numerical results on the coupling between chemical
fronts, waves and pulses and the convectively evolving free-
surface profile of the film. Conclusions and summary are
drawn in Sec. VII.

II. PROBLEM DEFINITION AND GOVERNING
EQUATIONS

A. Hydrodynamics

We consider a two-dimensional horizontal thin liquid
film interacting with chemically reactive insoluble surfac-
tants. Figure 1 sketches the setup. A Cartesian coordinate
system �x ,y� is chosen so that x is in the direction parallel to
the substrate and y is the outward-pointing coordinate normal
to the substrate. The fluid has viscosity �, density �, and
surface tension �. The governing equations are the continuity
and Navier-Stokes equations,

� · u = 0, �1a�

�� �

�t
+ u · ��u = − �p + � · � + �g , �1b�

where �= �� /�x ,� /�y� is the gradient operator on the �x ,y�
plane, u= �u ,v� is the fluid velocity vector, g= �0,−g�, where
g is the gravitational acceleration, p is the fluid pressure, and
�=����u�+ ��u�t� is the deviatoric stress tensor.

These equations are subject to the following boundary
conditions. On the substrate we have the usual no-slip and
no-penetration conditions

u = 0 on y = 0. �2�

On the free surface y=h�x , t� we have the kinematic bound-
ary condition along with the normal and tangential stress
balances,

ht + uhx = v ,

− p + �� · n� · n = 2�K�h� , �3�

�� · n� · t = �s� · t ,

where without loss of generality the pressure of the sur-
rounding gas phase has been set equal to zero. n and t are
unit vectors, normal �outward pointing� and tangential to the
interface, respectively, defined from n=n−1�−hx ,1�, t
=n−1�1,hx�, where n= �1+hx

2�1/2. K�h�=−�1/2��s ·n is the
curvature of the interface and �s= �I−nn� ·� is the surface
gradient operator with I the 2�2 unitary matrix and nn the
dyadic product of the unit vector n with itself. Hence the
tangential stress balance includes the Marangoni effect in its
right-hand side through the gradient of the surface tension
along the interface.

B. The reaction-diffusion system

We assume an excitable or bistable reaction-diffusion
system on the free surface of the film. The state of this ex-
citable or bistable system �referred to also as the chemical
�sub�system hereafter� can be described by two variables �
and � corresponding to the concentrations of the two species
�actually concentration shifts as we shall discuss later� al-
though they can actually represent linear combinations of
concentrations. As discussed in Sec. I, their dynamics is
modeled by the FitzHugh-Nagumo system, which has long
been used as a prototype system characterized by propagat-
ing fronts and pulses.69 The system can be written in dimen-
sional form as follows:

�t = D��xx + k��� − b2��
3 − b1��� , �4a�

�t = D��xx + k��� − a1�� − a0�� . �4b�

As no convection is present at this stage, the time evolution
of the two chemical species is governed by a set of two
reaction-diffusion equations which state that a local change
in the chemical system state is due to two main effects: the
diffusion of the species on the interface and their generation
or consumption by the chemical reaction �first and second
term in the right-hand side of Eqs. �4�, respectively�.

This system is parameterized by eight coefficients, D�

and D� are the surface diffusion coefficients of the two spe-
cies, k� and k� are the reaction rate constants, and a0�, a1�, b1�,
and b2� are the kinetic parameters. All except a0� are positive.
� is called the “activator” and � the “inhibitor,” as discussed
in Sec. I; indeed, as can be seen from Eqs. �4�, � tends to
increase the concentration of the species while � tends to
lower them, hence their names activator/inhibitor. When the
ratio k� /k� is large, as is the case for an excitable medium, �
is a “fast variable” and � is a “slow variable.” The stationary
homogenous solutions of Eqs. �4� �fixed points of the ho-
mogenous system� are found by setting all derivatives equal

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

(ζ , ξ )

y
h

x

h (x,t)

(x,t) (x,t)

0

FIG. 1. Two-dimensional thin film of thickness h�x , t� on a horizontal solid
substrate. h0 denotes the flat film thickness. The free surface of the film is
covered by a mixture of two chemical species undergoing a chemical reac-
tion with FitzHugh-Nagumo kinetics. The effective concentrations of the
two species are ��x , t� and ��x , t� with the latter acting as a surfactant.
Depending on the values of the physical parameters, the flat film may be
unstable exhibiting different types of waves on its surface.
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to zero and looking for intersections of the “nullclines,” �
−b2��

3−b1��=0 and �−a1��−a0�=0. The nullclines are depicted
in Fig. 2. Depending on the values of a0�, a1�, b1�, and b2�, one
or three fixed points exist.

Here we include the effect of convection in the underly-
ing liquid film on the time evolution of the species as it is the
first ingredient of the coupling between the flow and the
chemical system. To do so, we cannot use Eqs. �4� as it is.
Indeed, the FitzHugh-Nagumo equations are in general ob-
tained after a reduction of an initial larger set of equations, so
that � and �, whose physical meaning may be lost in the
reduction process, do not necessarily correspond to the
physical variables that are actually transported by the flow.
Hence there is a need to distinguish between the actual val-
ues of the species concentrations, denoted �� and ��, in terms
of which the transport equations should be formulated, and
the variables � and � that appear in the kinetic terms of the
FitzHugh-Nagumo equations. We then suppose that in this
model there is a simple connection between them, i.e., ��
=�+�m� and ��=�+�m� . This way � and � refer to the devia-
tions of the actual concentrations from their reference values,
denoted as �m� and �m� , respectively. Further, the values of �m�
and �m� can ensure positivity of the variables �� and �� which

is essential if these variables are to describe actual species
transported by the flow �Eq. �4� admits negative values for �
and �; notice, e.g., the symmetry �� ,��→ �−� ,−�� for a0�=0�.
If �m� =�m� =0 and �, � are negative, then these variables do not
represent actual concentrations, but something more in-
volved, e.g., linear combinations of concentrations.

We then suppose that the kinetic parts included in the
transport equations for �� and �� may be written in the fol-
lowing form, which incorporates a total of eight parameters:

F1���,��� = k���� − �m� − b2���� − �m� �3 − b1���� − �m� �� , �5a�

F2���,��� = k����� − �m� � − a1���� − �m� � − a0�� . �5b�

The values of �m� and �m� , along with those of k�, k�, a0�, a1�, b1�,
and b2�, are given by the actual excitable/bistable system un-
der consideration.

C. The surface transport equations

We first obtain the basic surface transport equation in the
absence of chemical reaction and surface diffusion. Amongst
the several studies that dealt with this issue before, we note
the works by Stone,70 Wong et al.,71 and Cermelli et al.72

The last two derived the transport equation from different
starting points to that in Ref. 70, pointing out the ambiguity
of the time derivative in the equation given there and provid-
ing the proper interpretation of this derivative as the time
derivative in a direction normal to the interface. Here, we
offer a simple and concise derivation of the basic surface
transport equation using the same starting point as Ref. 70.
Our derivation parallels in part Ref. 70 but also clearly pro-
vides the proper interpretation of the time derivative used in
Ref. 70.

Let � denote the concentration per unit area of a chemi-
cal species on the free surface. Our starting point is Eqs. �2�
and �4� in Ref. 70: if S denotes a two-dimensional curved
surface, the conservation of species can be simply expressed
by D /Dt�S�dS=0, where D /Dt is the Lagrangian derivative.
This expression can be written as

�
S
�D�

Dt
dS + �

D

Dt
dS� = 0, �6�

corresponding to Eq. �2� of Ref. 70. The Lagrangian deriva-
tive of dS can be expressed in terms of the surface gradient
of the velocity field u at the surface through Eq. �4� of Ref.
70 �which in turn originates from Batchelor’s book73�, re-
written here for clarity,

D

Dt
dS = dS�s · u , �7�

where �s is the surface gradient operator defined in Sec.
II A. Combining Eqs. �6� and �7�, and since S is an arbitrary
surface element, one gets

D�

Dt
+ ��s · u = 0, �8�

our basic surface transport equation in the absence of reac-
tion and surface diffusion. Note that the term ��s ·u ac-

(a)
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FIG. 2. The nullclines of the FitzHugh-Nagumo equations �4�. The intersec-
tion points define the homogeneous steady states of the chemical system
�Eq. �29��. �a� Single intersection with a0=−0.5 and a1=0.5 corresponding
to the case considered in Figs. 7 and 8. �b� Three intersections with a0

=0.1 and a1=2.0 corresponding to the case considered in Fig. 12.
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counts for the change of the concentration due to the stretch-
ing of the interface.

From the definition now of the Lagrangian derivative,

D� /Dt=��̃ /�t+ �u ·���̃, where we have implicitly extended
the surface field � to a two-dimensional neighborhood of the

interface, �̃, as Cermelli et al.72 did in their study. Clearly by

doing so, the individual terms ��̃ /�t and �u ·���̃ might de-
pend on the particular extension being employed, however
our derivation does not depend on the extension as long as
the two terms are kept together �which they are� since their
sum, D� /Dt, does not depend on the extension. We then
obtain from Eq. �8�

��̃

�t
+ �u · ���̃ + ��s · u = 0. �9�

By decomposing u in the term u ·� of Eq. �9� into two com-
ponents, a normal to the surface, un, and a tangential to the
surface, us, Eq. �9� can be written as

��̃

�t
+ �us · ���̃ + �un · ���̃ + ��s · u = 0, �10�

which by utilizing the relationships us ·�=u ·�s and
�u ·�s��+���s ·u�=�s · ��u� can be written as

��̃

�t
+ �un · ���̃ + �s · ��u� = 0. �11�

Note that the sum of the first two terms does not depend on
the particular extension as the third term involves only �s. At
first this equation appears to differ from Eq. �5� of Ref. 70,
which does not contain the contribution of the normal com-

ponent, �un ·���̃. However, the transformation ��̃ /�t

+ �un ·���̃→�� /�t in Eq. �11� gives precisely Eq. �5� in Ref.
70. Therefore, the partial time derivative in Ref. 70 should
not be interpreted as the usual partial time derivative, i.e., the
derivative obtained by differentiating with respect to time for
a fixed point in space, and hence the time derivative in the
laboratory frame, but as the partial time derivative that fol-
lows the interface in a direction normal to the interface �this
time derivative was referred to by Cermelli et al.72 as the
“normal time derivative following the surface”�. The same
conclusion was reached by Wong et al.,71 who also obtained
the surface transport equation in an arbitrary surface coordi-
nate system, and by Cermelli et al.72 who extensively dis-
cussed the role of the normal time derivative following the
surface in the description of evolving interfaces �the same
study offers a detailed analysis of transport relations for sur-
face integrals over evolving interfaces including applications
to surfactant transport�. Hence, unlike Ref. 70, where the
surface transport equation is written in a frame of reference
moving with the velocity normal to the interface, here the
surface transport equation is written in the laboratory frame
of reference, a frame more appropriate for the description of
interfacial waves.

We now return to Eq. �8�. As we shall discuss in Sec. IV,
in the present study we shall be concerned with long waves
thus excluding the possibility of multivalued interfaces.

Hence � is allowed to be a function of x and we can use the
one-dimensional version of the Lagrangian derivative,
D� /Dt=�� /�t+u�x, so that Eq. �8� can be further simplified
to

��

�t
+ u�x + ��s · u = 0. �12�

Note that this equation can also be derived by using Eq. �9�,
where for the sake of simplicity the following extension for

� may be chosen: �̃�x ,y , t�	��x , t�, i.e., �̃ does not depend
on y. With �=�� ,�� now and adding to the right-hand side of
Eq. �12� the diffusive contributions D��s

2� with D� a surface
diffusion coefficient and the source contributions from the
kinetic terms in Eqs. �5a� and �5b�, we obtain the following
transport equations at y=h�x , t� for the two species:

�t + u�x + ��m� + ���s · u = D��s
2� + k��� − b2��

3 − b1��� �13a�

�t + u�x + ��m� + ���s · u = D��s
2� + k��� − a1�� − a0�� . �13b�

From our earlier discussion, the first two terms in the left-
hand sides of the above equations correspond to the Lagrang-
ian derivatives of the concentrations of the two species,
while the third terms account for the changes due to the
stretching of the interface.

The interaction between the flow and the chemical sys-
tem takes place in two ways. On the one hand, the flow
changes the distribution of the species at the film surface by
convection. On the other hand, the chemical system acts
upon the surface through the surface tension. The system is
then closed by expressing the surface tension as a function of
concentration. For simplicity we assume that only the inhibi-
tor acts as a surfactant and alters the surface tension. Further,
the dependence of � on � is supposed to be sufficiently weak
to justify an expansion of � in � around �m� . We then define
�m=���m� � and � by

���m� + �� = �m − �� , �14�

which allows the evaluation of the right-hand side of the
tangential stress balance in Eqs. �3�. �	0 for typical liquids
while �m is assumed to be sufficiently large so that moderate
values of � do not lead to unphysical negative surface
tensions.

III. SCALINGS AND DIMENSIONLESS EQUATIONS

The vertical scale is the undisturbed film thickness h0.
The horizontal scale � is a typical length of the pattern ap-
pearing at the film surface. Any pattern on the free surface is
driven by the chemical system and hence � is determined by
the chemical system, more precisely by the activator � which
acts as a surfactant as noted earlier. Likewise, the character-
istic velocity U in the horizontal direction is set by � so that
the characteristic time scale is obtained from � /U �unlike the
reactive falling film problem in Refs. 57–59, where the flow
is due to gravity so that the dynamics is driven by the hy-
drodynamics and all scales were based on the hydrodynam-
ics�. We then introduce the nondimensionalization
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x → � x, �y,h� → h0�y,h�, t →
�

U
t ,

�15a�

u → Uu , v →
Uh0

�
v, p →

�U�

h0
2 p ,

� → �*�, � → �*� , �15b�

where

� =
D�

k�

�*

�* , U =
D�k�

�*

�* , �* =
1


b2�
, �* =

�*

b1�
.

�16�

In terms of the above nondimensionalization, the conti-
nuity and Navier-Stokes equations in Eqs. �1� become

ux + vy = 0, �17a�


 Re�ut + uux + vuy� = − px + 
2uxx + uyy , �17b�


3 Re�vt + uvx + vvy� = − py + 
4vxx + 
2vyy − 
 Bo.

�17c�

These equations are subject to the wall boundary conditions

u = v = 0 on y = 0, �18�

and the dimensionless versions of the interfacial boundary
conditions in Eqs. �3�

ht + uhx = v , �19a�

p +
2
2

1 + 
2hx
2 ��1 − 
2hx

2�ux + hx�uy + 
2vx��

= − 
3�We − Ma ��
hxx

�1 + 
2hx
2�3/2 , �19b�

− 4
2hxux + �1 − 
2hx
2��uy + 
2vx� = − 
1 + 
2hx

2
 Ma �x.

�19c�

On the interface we also have the following dimensionless
versions of the surface transport equations in Eqs. �13�:

�t + u�x +
�m + �

1 + 
2hx
2 ��ux + 
2hxvx� + hx�uy + 
2hxvy��

=
1

�
� �xx

1 + 
2hx
2 − 
2 �xhxhxx

�1 + 
2hx
2�2� + K�� − �3 − �� �20a�

and

�t + u�x +
�m + �

1 + 
2hx
2 ��ux + 
2hxvx� + hx�uy + 
2hxvy��

=
�xx

1 + 
2hx
2 − 
2 �xhxhxx

�1 + 
2hx
2�2 + �� − a1� − a0� . �20b�

The different dimensionless groups and parameters in the
above system of equations are defined as follows:

Re =
�Uh0

�
, Bo =

�gh0
2

�U
, We =

�m

�U
, Ma =

��*

�U
, 
 =

h0

�
,

�21a�

� =
D�

D�

, K =
�*

�*

k�

k�

, �m =
�m�

�* ,

�21b�

�m =
�m�

�* , a0 =
a0�

�* , a1 = a1�
�*

�* .

Re is the Reynolds number, Bo is the Bond number, We is
the Weber number, Ma is the Marangoni number, and 
 is the
aspect ratio or “film parameter” as is frequently called in thin
film studies.74 The last six groups are related to the chemical
system only.

IV. LONG-WAVE EXPANSION

We shall not investigate the dynamics of the full system
in Eqs. �17�–�20�, but rather restrict our attention to long-
wave surface dynamics, i.e., slow time and space variations
of the flat film. The y-dependence of the system in Eqs.
�17�–�20� can then be suppressed and its complexity thereby
greatly reduced. For the long-wave approximation we must
ensure that the length scale of the waves propagating on the
film surface is large compared to the film thickness, i.e.,

�1. Since the typical length scale of the interfacial waves
and of the �-waves is of the same order as we pointed out in
the previous section, both h and � are “long-wave” variables.
The length scale of � is discussed below.

We now assume the following relative orders between
the dimensionless groups that affect the hydrodynamics and
the film parameter 
: Re=O�1� �lubrication approximation�,
Bo=O�1/
�, We=O�1/
3�, and Ma=O�1/
�. With the or-
ders of magnitude assignments for Bo, We, and Ma we in-
clude the different physical effects at the lowest possible
order, i.e., at O�1�. For convenience we introduce the follow-
ing modified parameters: B=
 Bo, W=
3 We, and M
=
 Ma, which are all O�1�.

For the chemical system parameters � and K we do not
assign an order with respect to 
. After all the long-wave
approximation affects the hydrodynamics, the convective
parts of the surface transport equations and the diffusive
terms of these equations through the surface gradient opera-
tor but not the kinetic term K��−�3−�� and the spatial de-
rivative �1/���xx in the surface transport equation for � which
determine the wavelength of � with respect to �. Let us con-
sider, e.g., the case of fronts for the pure chemical system.
By appropriately choosing the parameters � and K one can
have “sharp” or smooth fronts for � but always smooth or
“long-wave” fronts for � �the two variables are coupled and
clearly changing � and K affects the shape of � but not the
order of magnitude of its wavelength�. Indeed, computations
with, e.g., K=10 and �=1 reveal a sharper front for � com-
pared to that for � while reducing K to, e.g., 0.1 and main-
taining � the same makes � a long-wave front. Computations
with, e.g., �=100 and K=0.1 give results similar to those
with K=10 and �=1, i.e., � is long and � is sharp. So the
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�-front can be made sharp either by increasing K for a fixed
� or by increasing � for a fixed K. It turns out that the same
is true for the coupled system, i.e., changing � and K alters
the wavelength of � leading to sharper fronts for large �
and/or large K. Now � is always a long-wave variable with
respect to the film parameter 
. On the other hand, had we
coupled the hydrodynamics to � instead of �, the long-wave
assumption would make � long while the wavelength of �
would depend on the values of � and K and would vary from
being of the same order with that of � to being much longer.

Retaining now only the leading-order terms for the hy-
drodynamic system in Eqs. �17�–�19� yields

ux + vy = 0, �22a�

px = uyy , �22b�

py = − B , �22c�

subject to the wall boundary conditions

u = 0, v = 0, �23�

and free-surface boundary conditions �y=h�x , t��

ht + uhx − v = 0, �24a�

p = − Whxx, �24b�

uy = − M�x, �24c�

while the leading-order terms of the surface transport equa-
tions in Eqs. �20� give

�t + �u��m + ���x =
1

�
�xx + K�� − �3 − �� �25a�

and

�t + �u��m + ���x = �xx + � − a1� − a0 �25b�

at y=h�x , t�. The leading-order terms of the horizontal veloc-
ity and pressure field are then easily determined from Eqs.
�22b�, �22c�, �24b�, and �24c�. They read

p = B�h − y� − Whxx �26�

and

u = �Bh − Whxx�xy� 1
2 y − h� − M�xy , �27�

respectively. Using Eqs. �22a� and �23�, the leading-order
term of the vertical velocity v is easily determined. Substi-
tuting u and v into the kinematic boundary condition �24a�
and u into the surface transport equations �25� yields a set of
three coupled nonlinear partial differential equations for the
evolution in time and space of the fields h, �, and �,

ht = �1

3
Bh3hx −

1

3
Wh3hxxx +

1

2
Mh2�x�

x
, �28a�

�t = �1

2
Bh2��m + ��hx −

1

2
Wh2��m + ��hxxx

+ Mh��m + ���x�
x

+
1

�
�xx + K�� − �3 − �� , �28b�

and

�t = �1

2
Bh2��m + ��hx −

1

2
Wh2��m + ��hxxx

+ Mh��m + ���x�
x

+ �xx + � − a1� − a0. �28c�

These are the basic equations for the analysis to follow. They
account for the coupling of the two subsystems: the free
surface dynamics of the thin film and the excitable/bistable
reaction-diffusion system.

V. ANALYSIS OF THE UNIFORM STATE

Depending on the values of a0 and a1, Eqs. �28� have
one or three uniform steady solutions obtained by setting the
time and space derivatives in these equations equal to zero.
They are defined by the flat film solution h=1 and the values
�=�0, and �=�0 obtained from the solution of the following
algebraic system:

�0 − �0
3 − �0 = 0, �29a�

�0 − a1�0 − a0 = 0. �29b�

Hence the values �0 and �0 coincide with those obtained from
the nullclines of the pure reaction-diffusion system defined in
Sec. II B �Fig. 2�. We now analyze the temporal linear sta-
bility of these states focusing on the influence of the modi-
fied Marangoni number.

Linearization of Eqs. �28� around �1,�0 ,�0� yields

ht =
1

3
Bhxx −

1

3
Whxxxx +

1

2
M�xx, �30a�

�t =
1

2
B��m + �0�hxx −

1

2
W��m + �0�hxxxx + M��m + �0��xx

+
1

�
�xx − K�� − K� , �30b�

and

�t =
1

2
B��m + �0�hxx −

1

2
W��m + �0�hxxxx + M��m + �0��xx

+ �xx + � − a1� . �30c�

Introducing the normal modes �h ,� ,��= �H ,Z ,X�exp�
t
+ ikx�, where k is the real wavenumber and 
 the complex
growth rate, yields a linear algebraic system with constant
coefficients. For the system to have nontrivial solutions it is
necessary and sufficient that its principal determinant be
equal to zero. This yields an algebraic eigenvalue problem of
the form det�A−
I � =0, where A is a 3�3 matrix and I is
the unitary matrix. This is a cubic equation for the dispersion
relation 
=
�k�,
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3 + p
2 + q
 + r = 0, �31a�

where

p = K� +
k2

�
+ �M� + 1�k2 + a1 +

k2

3
�B + Wk2� , �31b�

q = �K� +
k2

�
���M� + 1�k2 + a1� + K + M�k

2

+
k2

3
�B + Wk2��K� + �1

�
+

M�

4
+ 1�k2 + a1
 , �31c�

and

r =
k2

3
�B + Wk2���K� +

k2

�
���M�

4
+ 1�k2 + a1


+ K +
1

4
M�k

2� , �31d�

and where, for convenience, we have introduced the new
dimensionless parameters,

� = 3�0
2 − 1, M� = ��m + �0�M, and M� = ��m + �0�M .

�31e�

Note that all coefficients in Eqs. �31b�–�31d� are even in k.
As a consequence 
 in Eq. �31a� is also even in k, a mani-
festation of the reflection symmetry x→−x of the system.
Further, note that for k=0, r=0 and hence one eigenvalue,
say 
1, vanishes. Let �HiZiXi�t denote the eigenvector corre-
sponding to the eigenvalue 
i. It turns out that �H1Z1X1�t is
such that H1�0 for k=0. The eigenvalue 
1=0 for k=0
originates from the hydrodynamic equation �30a� followed
by the substitution of normal modes: in this limit 
1H1=0 or

1=0. It also turns out that the first components H2 ,H3 of the
other two eigenvectors vanish for k=0. Hence for the special
case k=0 the chemical subsystem does not affect the hydro-
dynamic subsystem and at the same time since 
1=0 origi-
nates from the hydrodynamic equation �30a� the hydrody-
namic subsystem is always neutrally stable in this limit.

If all dimensionless parameters in the coefficients
�31b�–�31d� are strictly positive, p	0, pq	r, and r	0. Ac-
cording to the Hurwitz-Routh criterion then, the real parts of
all the roots of Eq. �31a� are strictly negative and the corre-
sponding uniform steady state is linearly stable. A destabili-
zation of the whole system may nevertheless occur if, for
example, the values of �m and �m are such that M� and/or M�

are negative or if the modified Marangoni number M is nega-
tive. Note that, although surface tension typically decreases
with concentration, there are several systems which are
known to display the opposite behavior.75 Another possibil-
ity, due to the excitable/bistable system, is the case ��0.

In the case M =0, much like the limit k=0 discussed
above, the chemical subsystem does not affect the hydrody-
namics. For M =0 the Marangoni effect is eliminated but
convection can still be present. Clearly the free surface is
linearly stable as the dispersion relation for the hydrody-
namic system 
=−�k2 /3��B+Wk2� from Eq. �30a� shows
that any disturbance on it will decay for large times. Simi-
larly, the u-velocity would vanish for large times as is evi-

dent from Eq. �27�. For earlier times, however, there would
be a transient regime with nonzero free-surface gradients
leading also to a nonzero u-velocity which would then influ-
ence the concentrations of both species through the convec-
tive term in the left-hand side of Eqs. �25a� and �25b� or their
equivalent expressions in Eq. �28c�. Hence we never have a
truly decoupled system; that would correspond to the case,
where both Marangoni effect and convection are absent.

Let us now investigate in detail the linear stability char-
acteristics for M =0. In this case Eq. �31a� can be factorized,

�
 +
k2

3
�B + Wk2�
 � �
2 + �K� +

k2

�
+ k2 + a1�


+ �K� +
k2

�
��k2 + a1� + K
 = 0, �32�

where the first factor is associated with h and the second one
accounts for the chemical subsystem. This factorization is
possible because for M =0 the chemical subsystem does not
affect the free surface, even though there is still an influence
of the hydrodynamics on the chemical system through con-
vection, as discussed above. Equation �32� reveals that for
M =0, the two subsystems have in general different behav-
iors: the uniform free surface is always linearly stable while
the chemical subsystem can be stable or unstable. A neces-
sary condition for instability is that ��0, as � is the only
parameter that can change sign and becomes from positive to
negative. Since � corresponds to the negative slope of the
nullcline �0��0� given by Eq. �29a�, the unstable steady state
of the chemical subsystem is located on the inner solution
branch of Eq. �29a� �see Fig. 2�. A general sufficient and
necessary condition for instability can be obtained from the
second factor of Eq. �32� �the specific case a0=0 is treated in
Ref. 69�. The spatially uniform steady state of the chemical
subsystem is unstable when at least one of the two
conditions,

� � − min�1/a1,a1/K� �33a�

and

�K� � a1 − max�2a1,2
K�� , �33b�

is satisfied. The destabilization occurs through a Hopf �at
onset the growth rate is purely imaginary� or a “Turing bi-
furcation” �see Fig. 4�. The term Turing bifurcation is spe-
cific to reaction-diffusion systems and means that a spatially
homogeneous state becomes linearly unstable to a spatial
pattern at a critical value of a �bifurcation� parameter.76 The
growth rate is real and for values of the bifurcation parameter
larger than the critical one the dispersion curve for the
growth rate as a function of wavenumber is characterized by
a band of unstable wavenumbers centered around the most
unstable mode kmax and bounded by two neutral wavenum-
bers k1,2 such that 0�k1�kmax�k2. The fully nonlinear sys-
tem demonstrates the existence of a stationary periodic pat-
tern of wavenumber kmax, a “Turing pattern.” In the present
case, if
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− min�1/a1,a1/K� � � � 0 and � � − 1, �34�

the spatially uniform steady state of the chemical subsystem
undergoes a Turing instability as soon as �	�c, where the
critical value �c is defined by


K�c = −
1

�
�1 + 
1 + �a1� . �35�

The maximum growing wavenumber at criticality is then
given by

kmax,c = 

K�c − a1. �36�

In all other cases, the destabilization occurs with kmax,c=0. In
the case of a Hopf bifurcation this results in an oscillatory
behavior in time but uniform in space.

Next, we examine how the stability of the homogeneous
steady states is influenced by the coupling, i.e., by a nonzero
modified Marangoni number. Two different situations are
encountered.

Case I: The excitable/bistable subsystem in the absence
of hydrodynamics is unstable, i.e., one of the conditions in
Eqs. �33� is fulfilled. Then it is to be expected that at least for
weak coupling the full system is also linearly unstable, i.e.,
the free surface is destabilized. Two typical examples are
presented in Fig. 3 �case Ia� and Fig. 4 �case Ib�. Both dis-
persion curves exhibit a range of unstable wavenumbers cor-
responding to modes with a complex �Fig. 3�a�; Hopf bifur-
cation at onset corresponding to a solution that oscillates in
time but is uniform in space� or a real growth rate �Fig. 4�a��.
For the case of real growth rate the dispersion curves are
reminiscent of Turing-type dispersion curves but we refrain
from using the term “Turing instability” discussed earlier. Of
course there are several systems in addition to reaction-
diffusion systems �such as reactive flows in Hele-Shaw
cells54,55� with Turing-type dispersion curves and in which
the nonlinearities saturate the linear instability leading to
spatially periodic stationary structures. However, there are
also several systems, e.g., channel flow and Blasius bound-
ary layer77 which do not equilibrate to stationary norm solu-
tions. The issue of whether or not an instability saturates to a
stationary norm state is essentially a nonlinear question. In-
deed we shall demonstrate through fully nonlinear computa-
tions that at least in the region of the parameter space we
have explored, a Turing pattern for the coupled system is not
observed despite the Turing-type dispersion curves. When
the growth rate is complex and hence the primary bifurcation
is of the Hopf-type, the instability onset is characterized by
periodic oscillations in time. Again, the behavior of the sys-
tem far from criticality can only be addressed through fully
nonlinear computations.

By increasing now the modified Marangoni number M
the instability is weakened and eventually for sufficiently
large M the instability can be suppressed all together. In case
Ia, the dominant mode is k=0 and as we have seen earlier,
this mode corresponds to the case where the chemical system
does not affect the hydrodynamics. Hence this mode is not
affected by the modified Marangoni number. However, the
range of unstable modes around k=0 is shortened by the
Marangoni stresses: for large wavelength modes the spatial

gradients in the concentrations generate Marangoni flows
which tend to homogenize the species on the surface and
stabilize the chemical subsystem. In case Ib, the instability
can even be suppressed by the hydrodynamics �Fig. 4�b��
although no dramatic change is observed in the shape of the
dispersion curves �Fig. 4�a��. Here the behavior of the system
can be understood by considering the two opposing forces
acting on it. The intrinsic dynamics of the chemical sub-
system, as a reaction diffusion system, tends to generate a
spatially periodic stationary pattern. Gradients in the species
concentrations arise and induce a gradient of the surface ten-
sion and, accordingly, a Marangoni flow �Fig. 5�b��. At the
same time, the convective flow tends to homogenize the spe-
cies on the surface. As a result, for moderate modified Ma-
rangoni numbers we can have finite-amplitude steady solu-
tions for all fields, h, �, and �. They are computed using the
continuation software AUTO97 �Refs. 78–80� and imposing
periodic boundary conditions in the domain �0,1� close to
the maximum growing wavenumber of �2� as Fig. 4 indi-
cates. These solutions result from the balance of the two
processes described above and are depicted in Figs. 5�a� and
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FIG. 3. Case Ia for �=1, K=1, �m=1, �m=1, a0=−0.1, a1=0.5, B=1, and
W=1. �a� Dispersion curves for M =0 �solid lines�, M =1 �dashed lines�, and
M =2 �dotted lines�. As the modified Marangoni number increases, the range
of unstable modes becomes smaller. A bullet �•� on a curve indicates that for
this curve the growth rate is complex. Only two growth rates for each M are
shown; the third one is the complex conjugate of the complex growth rate.
�b� Corresponding stability map.
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6. However, these spatially periodic steady solutions are un-
stable in time-dependent computations and hence they are
not Turing patterns �Fig. 9�.

Case II: In the second situation, both subsystems are
linearly stable ensured by choosing �	0. However, the full
system becomes unstable when the modified Marangoni
number reaches a threshold value. Two different examples
are presented in Fig. 7 �denoted IIa� and Fig. 8 �denoted IIb�,
respectively. Note that in Fig. 7 �m=0 while in Fig. 8 �m=0
and hence as we emphasized in Sec. II B, � in Fig. 7 and � in
Fig. 8 do not correspond to true concentrations but rather
combinations of concentrations. In case IIa, M��0 and M�

	0 while in case IIb, M�	0 and M��0. The dispersion
curves exhibit a range of unstable wavenumbers with a real
�case IIa� or complex �case IIb� growth rate �onset through a
Hopf bifurcation but now kmax,c�0 and hence the solution is
not uniform in space�. The instability is always a finite wave-
length instability since as noted previously the coupling does
not affect the dispersion curves in the vicinity of k=0, i.e.,
the wavenumbers near k=0 are always stable. By increasing
the modified Marangoni number even further, a second range
of unstable wavenumbers may appear as indicated by the
neutral stability curves �Figs. 7�b� and 8�b��.

In the nonlinear regime the behavior of the full system
for the different subcases can be understood from time-
dependent computations of Eqs. �28�. Such computations can
also be used to check the linear stability predictions for the
behavior of the uniform state �1,�0 ,�0� at onset. The numeri-
cal scheme is a Crank-Nicholson-type implicit scheme with
the x-derivatives approximated by central differences. The
time step is chosen dynamically to control several aspects of
the simulation. In case I pictured in Fig. 9, the uniform state
used as the initial condition is altered by a small sinusoidal
perturbation of maximum amplitude 0.1. When M =0, the
bistable system evolves towards a Turing pattern as ex-
pected. When M �0, at small times the system evolves into a
spatially periodic cellular pattern as expected from the linear
stability analysis that predicts a real growth rate. This pat-
tern, however, does not saturate to a Turing pattern as in Fig.
9�a� but rather develops a temporal oscillation in addition to
the spatial one, leading to a spatio-temporal breather-like
pattern. In case IIa displayed in Fig. 10 the uniform state is
disturbed by random noise of maximum amplitude 0.1.
Again, as the growth rate is real, for small times the system
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FIG. 4. Case Ib, defined by �=1000, K=1, �m=1, �m=1, a0=−0.3, a1=0.5,
B=1, and W=1. �a� Dispersion curves for M =0 �solid lines�, M =1 �dashed
lines�, and M =2 �dotted lines�. As in Fig. 3, the Marangoni stresses shorten
the range of unstable modes. A circle ��� on a curve indicates that for this
curve the growth rate is real. �b� Corresponding stability map.
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FIG. 5. Case Ib �cf. Fig. 4�. �a� Free-surface profile h for different values of
the modified Marangoni number: M =0, 1.5, and 3. �b� Corresponding
streamlines for M =3. The flow induced by the Marangoni stresses gives rise
to a stationary pattern for the film surface.
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evolves into a spatial pattern that grows monotonically in
time without any lateral displacement. For large times both
free surface and activator evolve into a number of fronts
which continuously collide with each other. These coales-
cence events are deeply inelastic resulting in annihilation of
the colliding fronts. Front solutions will be examined in de-
tail in the next section.

In Fig. 11 for case IIb the initial condition is the same
with that in Fig. 10 for case IIa. For small times �not shown�
the system evolves into a spatio-temporal oscillation consis-
tent with the linear stability analysis that predicts a complex
growth rate with kmax,c�0. In fact at about t=20 a time
dependent spatially periodic pattern appears with a wave-
length matching the most unstable wavelength for this con-
figuration �Fig. 8�a��. Overall the system now evolves much
more slowly compared to the situation shown in Fig. 10.
Eventually, for large times a temporal oscillation with two
frequencies, a small �between two consecutive curves� and a
large �every �200–300 time units� sets in. These are due to
the coupling between the two subsystems: time-dependent
computations with the pure chemical subsystem, show that
when the primary bifurcation is a Hopf bifurcation, in the
nonlinear regime a single oscillation is observed.

VI. FRONT- AND PULSE-DRIVEN HYDRODYNAMIC
INSTABILITIES

In addition to Turing structures, traveling waves may
arise in the excitable/bistable reaction-diffusion subsystem.
Through the surface tension gradient such waves may drive a
flow in the film, destabilize the flat surface and trigger non-
linear traveling hydrodynamic waves.

We then seek traveling wave solutions of the full system
�28� propagating at a constant speed c. We introduce the
moving coordinate transformation z=x−ct and we obtain an
eight-dimensional dynamical system

�ch +
1

3
Bh3h� −

1

3
Wh3h� +

1

2
Mh2��
�

= 0, �37a�

�c� +
1

2
Bh2��m + ��h� −

1

2
Wh2��m + ��h�

+ Mh��m + ���� +
1

�
��
�

+ K�� − �3 − �� = 0, �37b�
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�c� +
1

2
Bh2��m + ��h� −

1

2
Wh2��m + ��h�

+ Mh��m + ���� + ��
�
+ � − a1� − a0 = 0, �37c�

where the primes denote differentiation with respect to z.
Only solutions that are bounded as z→ ±� are relevant.
Equations �37� then define a nonlinear eigenvalue problem
for the wave speed c. The traveling wave solutions of Eqs.
�28� have a simple description in the phase space associated
with Eqs. �37�: homogeneous states of Eqs. �28� correspond
to fixed points of Eqs. �37� while traveling wave trains,
pulses, and fronts correspond to periodic, homoclinic, and
heteroclinic orbits, respectively.

Interestingly, some analytical steady solutions of Eqs.
�37� can be derived for M =0, a1	1, and in the limit �K�1.
Looking for solutions with c=0 which are bounded as z
→ ±� we have to leading-order

h = 1, �38a�

1

�K
�xx − �3 + �1 −

1

a1
�� +

a0

a1
= 0, �38b�

� =
� − a0

a1
. �38c�

In the front case Hagberg69 obtained the solution

� = − 
2af tanh�af

�Kx� , �39a�

where

1 −
1

a1
= 2af

2 and a0 = 0. �39b�
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FIG. 8. Case IIb for �=1000, K=1, �m=1, �m=0, a0=−0.5, a1=0.5, B=1,
and W=1. �a� Dispersion curves for two different values of the modified
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the steady state is linearly stable whereas for M =6 it is unstable. A circle ���
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FIG. 9. Case Ib �cf. Fig. 4�. Time-dependent computations for modified
Marangoni numbers �a� M =0 and �b� M =2. In both cases the initial condi-
tion is a sinusoidal perturbation of amplitude 0.1 superimposed to the uni-
form state. The domain size is L=5 ��5 times the fastest growing wave-
length obtained in the linear stability analysis; see Fig. 4�, the number of
spatial grid points is 1000, and the time interval between two consecutive
profiles is �t=2. For M =0 the chemical subsystem evolves into a Turing
pattern, whereas for M =2 a breather-like pattern is found.
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In this limit the front is a hyperbolic tangent. In the pulse
case we find

� =
ap


1 − bp
2


2
� 2

1 + bp cosh�ap

�Kx�

−
1

1 − bp
2� , �40a�

where ap and bp are defined by

1 −
1

a1
= ap

2� 3

2�1 − bp
2�

− 1� and
a0

a1
=

ap
3bp

2


2�1 − bp
2�3/2

.

�40b�

In the general case, however, traveling wave solutions
can only be obtained numerically. This was done by using
the continuation software AUTO97 �Refs. 78–80� �the ana-
lytical solutions presented above have also been confirmed
numerically�. We distinguish two main situations according
to the type of wave propagating in the chemical system: case
III, a front connecting the two concentration states at the far
ends of the domain, ��± ,�±� with ��+ ,�+�	 ��− ,�−�; and case
IV, a pulse.

Depending on the stability characteristics of the two
states in case III we can further distinguish two subcases.
Case IIIa, the state with the larger concentrations, ��+

a ,�+
a�, is

the more stable state invading that with the smaller concen-
trations, ��−

a ,�−
a�, the less stable one �the more stable state

requires a stronger perturbation to destabilize it69�. Case IIIb,

the role of the two states is now reversed: the state with the
smaller concentrations, ��−

b ,�−
b�, is now the more stable state

invading that with the larger concentrations, ��+
b ,�+

b�, the less
stable one.

The first subcase is depicted in Fig. 12. The chemical
front generates a surface tension gradient on the interface
which then induces a solitary wave there. Depending on the
sign of the modified Marangoni number, we obtain either a
positive-hump wave �M 	0� or a hollow negative-hump one
�M �0� in the surface profile. Roughly speaking, as the
modified Marangoni number departs from zero, the height of
the surface wave becomes larger while the front of the
chemical system is increasingly smoothed out.

The second subcase is shown in Fig. 13. The situation is
inverted with respect to the free surface: a negative-hump
wave propagates on the free surface when M 	0 and be-
comes a positive-hump one as M crosses zero. The differ-
ence between these two subcases is due to the role played by
the surface active species of the bistable system: in case IIIb
the inhibitor which acts directly on the surface tension, has
its concentration at a high level ahead of the front and at a
low level behind it. The direction of the resulting Marangoni
flow is then opposite to that of the wave; we shall return to
this point shortly. In case IIIa the opposite applies: both wave
and Marangoni flow are now in the same direction. In case
IV �Fig. 14�, a pulse instead of a front propagates in the
excitable system and induces either a positive-hump solitary

(a)

0 5 10 15 20 25 30 35 40
40

45

50

55

60

65

70

75

80

1
2
3

h

x

t

h

(b)

0 5 10 15 20 25 30 35 40
40

45

50

55

60

65

70

75

80

-1.2
-0.3
0.6

ζ

x

t

ζ

FIG. 10. Case IIa �cf. Fig. 7�. Evolution of �a� the free surface and �b� the
activator for M =6. The uniform state is disturbed by random noise of maxi-
mal amplitude 0.1. The domain size is L=40 ��40 times the fastest growing
wavelength obtained in the linear stability analysis; see Fig. 7�, the number
of spatial grid points is 1000 and the time interval between two consecutive
curves is �t=8/15.
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pulse �M 	0� or a negative-hump one �M �0� on the free
surface. Note that here �m=�m=0 and hence � ,� are not true
concentrations but correspond to combinations of concentra-
tions.

Note that ��+
a ,�+

a�� ��+
b ,�+

b� and ��−
a ,�−

a�� ��−
b ,�−

b� and
hence the need to distinguish between two subcases when
fronts propagate in the chemical subsystem. In case IV, how-
ever, when a pulse propagates in the excitable system, the
pulse connects the same state at the two ends of the domain.
Hence, for pulses only a single subcase is considered. Note
also that due to the reflection symmetry of our system in the
streamwise direction, changing the direction of propagation
for the pulses in Fig. 14 produces exactly the same pulses
and humps for the free surface. The same invariance also
exists for the fronts case �both for the pure reaction-diffusion
system and the coupled system� due to the reflection symme-
try, e.g., in case IIIa depicted in Fig. 12, changing the loca-
tion of the two states so that ��−

a ,�−
a� is now at the left end of

the domain and ��+
a ,�+

a� at the right end gives the same front
and the same hump for the free surface but now propagating
from the right to the left.

The dependence of the wave speed on the modified Ma-
rangoni number for each situation is depicted in Figs. 15–17,

respectively. For cases IIIa and IV the speed is a monotoni-
cally increasing function of M and hence the coupling be-
tween the two subsystems leads to increasing the speed of
the chemical wave for the excitable as well as for the bistable
system. For case IIIb, we observe a decrease of �c� �c�0 in
Fig. 13�. This is not surprising as in cases IIIa and IIIb the
surface active species � has similar profiles implying similar
Marangoni flows at the film surface. Specifically, in both
cases the Marangoni flow is in the positive direction as is
evident from the Marangoni contribution −M�xh to the flow
field in Eq. �27�. However, because the wave fronts move in
opposite directions, the Marangoni flow enforces the propa-
gation of the IIIa fronts and slows down that of IIIb ones.

An exception is found for small values of M in case IIIa
as shown in Fig. 15�a� in contrast to case IIIb shown in Fig.
16�a� and although a symmetry between the two types of
propagating fronts exists for M =0,

z → − z, ĉ → − ĉ, ĥ → ĥ, �̂ → − �̂, �̂ → − �̂, a0 → − a0,

�41�

where the hats refer to the steady states at M =0, e.g., ĉ

	c�M =0� and ĥ	h�M =0�=1. The symmetry is evident
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FIG. 12. Case IIIa: The large/small front concentrations are the more stable/
less stable states, respectively. K=10, �=1, �m=1, �m=1, a0=0.1, a1=2.0,
B=1, and W=1. �a� Free surface h for several values of the modified Ma-
rangoni number M between −2 and 10. �b� Corresponding profiles of �
�solid lines� and � �dashed lines�.
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from Figs. 15�a� and 16�a�, where for M =0, �c � �2.2 for
both cases. However, this symmetry is broken for small M,
unless �m=�m=0. More precisely, if we consider M�1 and
denote with the subscript 1 the first-order deviations of the

variables, e.g., h= ĥ+h1+O�M2�, Eqs. �37� yields at first or-
der in M

�ĉh1 +
1

2
Bh1� −

1

3
Wh1� +

1

2
M�̂�
�

= 0, �42a�

�ĉ�1 + c1�̂ +
1

2
B��m + �̂�h1� −

1

2
W��m + �̂�h1�

+ M��m + �̂��̂� +
1

�
�1�
�

+ K��1 − 3�̂2�1 − �1� = 0,

�42b�

�ĉ�1 + c1�̂ +
1

2
B��m + �̂�h1� −

1

2
W��m + �̂�h1�

+ M��m + �̂��̂� + �1�
�
+ �1 − a1�1 = 0, �42c�

which show that for �m=�m=0 the symmetry exists

M → M, c1 → c1, h1 → − h1, �1 → �1, �1 → �1

�43�

between the first-order quantities of the two cases. All signs
in Eq. �43� are reversed if M→−M instead of M→M. A
bifurcation diagram illustrating this symmetry is given in
Fig. 18, where the speed c of the traveling waves increases
monotonically as a function of M as in case IIIb, whichever
direction the front travels in. This suggests that the decrease
of c with M for small values of M in Fig. 15�a� is connected
with nonzero values for �m, �m.

In terms of the amplitude of the free surface deflection,
we find that in general this amplitude increases with increas-
ing absolute value of the modified Marangoni number �Figs.
15�b�, 16�b�, and 17�b��. This implies that for the chemically
driven hydrodynamic system the Marangoni coupling has the
opposite effect compared to that of surface active agents on
thin films, where in general insoluble surfactants have a sta-
bilizing influence.37,38 Here it is the instability of the reactive
surfactants that drives the deflection of the surface.

The behavior of the wave profiles in the limit z→ ±�
can be examined by performing a linear stability analysis of
the system �37� around the relevant fixed points. The eigen-
values of the linearized system around the sole fixed point in
the pulse case are displayed in Fig. 19 for modified Ma-
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rangoni numbers ranging from 0 to 10. We note, for instance,
that for M =5, the wave profiles have an oscillatory behavior
for z→ +� and an exponential behavior for z→−�, since the
fixed point in that case has two complex eigenvalues with
negative real parts, one zero eigenvalue �which exists for all
values of the parameters; a consequence of the translational
invariance of the system in the streamwise direction�, and
three positive real eigenvalues. This is reflected in the corre-
sponding profiles displayed in Fig. 14 and confirmed in Fig.
19. Hence the Marangoni stresses also influence the way the
pulse connects to the uniform state.

The existence of a special class of solutions, namely,
those which are stationary in a moving frame, raises the
question of relevance/stability of these solutions which is
related to the way they attract initial conditions. An answer
to this question can be given by time-dependent computa-
tions of the full system �28�. The numerical method was
described in Sec. V. In cases IIIa and IIIb, depicted in Figs.
20 and 21, respectively, the initial condition is a Gaussian
distribution of amplitude 0.3 and −0.3, respectively, in the
middle of the domain added to the homogeneous base state.
Due to the reflection symmetry in the streamwise direction,
two fronts with opposite speeds appear in the bistable system
and induce two solitary waves at the free surface, positive
ones in case IIIa and negative ones in case IIIb. The dip in

case IIIa �or peak in case IIIb� appearing in the h-profile at
the location of the initial perturbation decays slowly and re-
mains visible for a long period of time. These computations
indicate the stability of the fronts/pulses for the
concentration/free surface. In case IV �Fig. 22�, the same
kind of initial condition as in cases III is used but with a
smaller spatial extension and a larger amplitude of 1.6 to
overcome the excitability threshold and to obtain a pulse in
the excitable system. After a short transient �t�1� two coun-
terpropagating pulses appear in the excitable system that
move with constant speed �again due to the reflection sym-
metry, Fig. 22�b��. On the free surface two solitary waves
with opposite speeds arise as well as a depression at the
center of the domain which slowly spreads and decays.
These computations indicate the stability of the pulse travel-
ing wave solutions in this case.

VII. CONCLUSION

We have presented a model for a horizontal liquid film
on a solid substrate whose free surface is covered by two
species undergoing an autocatalytic chemical reaction mod-
eled with the well studied FitzHugh-Nagumo equations in-
volving two dynamic variables, the activator and the inhibi-
tor. Depending on the values of the chemical parameters, the
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chemical subsystem allows for propagating waves, fronts
and pulses, corresponding to the bistable and excitable re-
gimes, respectively.

The inhibitor was assumed to possess much stronger sur-
factant properties than the activator. Hence, gradients in its
concentration induce solutal Marangoni stresses along the
free surface of the film causing convection below the surface
and therefore, as a feedback mechanism, a redistribution of
the surfactant at the surface. The coupled Navier-Stokes/
reaction-diffusion equations and associated wall/free-surface
boundary conditions were simplified using a long-wave ap-
proximation resulting in a system of three coupled nonlinear
partial differential equations for the evolution in time and
space of the free-surface profile and the concentration pro-
files of the two species. These equations allowed us to carry
out a theoretical and numerical analysis of the coupled
system.

The steady state consists of a flat film with uniform con-
centrations of the two species corresponding to those ob-
tained from the nullclines of the pure reaction-diffusion sys-
tem. A linear stability analysis revealed that the steady state
can become unstable in two different ways. In the first case
the uniform state of the chemical subsystem in the absence
of hydrodynamics is unstable. This instability is either of the

Turing-type, resulting in spatially periodic cellular structures,
or of the Hopf-type resulting in temporal oscillations. Cou-
pling the two subsystems through the Marangoni effect and
increasing M from zero, makes the full system unstable as
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FIG. 19. Eigenvalues r associated with the fixed point corresponding to the
base state of the system in case IV �see Fig. 14�. The corresponding wave
speeds that enter the computation are given in Fig. 17. For a given value of
M there are eight eigenvalues. For example, for M =5 we obtain four real
eigenvalues �denoted by dotted lines�, three positive ones and one equal to
zero, and two complex pairs �denoted by solid lines� with negative real
parts.
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FIG. 18. Bifurcation diagram in the front case for the speed c as a function
of M with �m=�m=0. The values of the remaining dimensionless groups for
�a� and �b� are given in Figs. 12 and 13, respectively. In contrast to Figs.
15�a� and 16�a�, a symmetry exists between �a� and �b�.
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well, i.e., a hydrodynamic instability is now observed. But
further increasing M, the Marangoni stresses can stabilize the
coupled system and for sufficiently large M can suppress the
instabilities all together. The nature of the primary bifurca-
tion can vary from one with real growth rate to one with
complex growth rate at onset �Hopf�. For the case of real
growth rate the coupling between the two subsystems can
alter a Turing pattern for the pure chemical subsystem to a
breather-like pattern.

In the second case, both subsystems are linearly stable.
The coupled system, however, can become unstable because
of increased coupling for M above a threshold value. Again
the nature of the primary bifurcation changes from one with
a real growth rate to one with a complex growth rate �Hopf�.
In the case of a real growth rate, time-dependent computa-
tions reveal that in the nonlinear regime the system evolves
into a series of fronts characterized by continuous coales-
cence events leading to annihilation of colliding fronts. In
the Hopf case the system evolves into a spatial pattern that
oscillates in time in a complex fashion.

In principle, one can imagine a third case having an
unstable base state of the decoupled hydrodynamic sub-
system, i.e., the liquid film is itself unstable without any
reacting surfactant, like for falling films. The coupling be-
tween hydrodynamics and reaction-diffusion process then
could also have a stabilizing or destabilizing influence. How-

ever, in the present study we did not include a destabilizing
influence for the decoupled liquid film. Similarly, systems of
increased degree of complexity can be set up by coupling
reaction-diffusion processes with other instabilities such as
the long-wave thermocapillary Marangoni instability for
horizontal films81,82 and falling films30,32 or the spinodal
dewetting instability for ultrathin films.83–85

Further, we examined the existence of traveling waves
on the free surface driven by solitary pulses and fronts in the
respective excitable and bistable systems. In the former case,
we demonstrated the existence of solitary pulses on the free
surface. In the latter case, chemical fronts were shown to
induce a traveling elevation or depression of the free surface.
These deformations correspond to positive- and negative-
hump solitary pulses, respectively �for M 	0�. In general, for
sufficiently strong coupling �large M� between the two sub-
systems the deformation amplitude increases with the abso-
lute value of M while the absolute value of the propagation
speed is an increasing function of M when the wave and
Marangoni flow have the same direction and a decreasing
one otherwise. �For small coupling �small M�, however, the
propagation speed may also decrease.� Traveling pulses in
the excitable case have been shown to behave in a similar
way.
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FIG. 21. Case IIIb �see Fig. 13�: Time evolution for M =2. The domain size
is L=100, the number of spatial grid points is 1000, and the time interval
between two consecutive curves is �t=1. �a� Free surface: two negative-
hump solitary waves with opposite speeds travel along the surface. �b� The
activator: two fronts with opposite speeds propagate in the system.
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FIG. 22. Case IV �see Fig. 14�: Time evolution for M =10. The domain size
is L=100, the number of spatial grid points is 1000, and the time interval
between two consecutive curves is �t=0.08. �a� Free surface: two solitary
waves with opposite speeds travel along the surface. Note the presence of a
slowly decaying residual dip due to the initial condition. �b� The activator:
the resting pulse formed at the beginning splits into two counterpropagating
solitary pulses.
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Finally, it is important to emphasize that in the present
study we focused on the basic dynamic characteristic of the
coupling between the thin film and the reaction-diffusion
process, i.e., the influence of the coupling strength through
M, while keeping all other parameters constant. However,
because of the large number of dimensionless groups in-
volved, we expect other interesting features due to the influ-
ence of the purely hydrodynamic or chemical parameters,
e.g., a0 or K. In fact, both uniform state and traveling waves
of the chemical subsystem undergo a wide variety of bifur-
cations when the chemical parameters are varied. Here, it has
already been shown that the mean concentrations of activator
and inhibitor can significantly alter the bifurcation diagrams
�cf. Figs. 15�a� and 18�a��. The present study may also be
altered by considering the activator rather than the inhibitor
acting as a surfactant or when both species possess surface
active properties.
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