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ABSTRACT

We employ weakly nonlinear theory to derive an amplitude equation for the conserved-Hopf instability, i.e., a generic large-scale oscillatory
instability for systems with two conservation laws. The resulting equation represents in the conserved case the equivalent of the complex
Ginzburg–Landau equation obtained in the nonconserved case as an amplitude equation for the standard Hopf bifurcation. Considering first
the case of a relatively simple symmetric two-component Cahn–Hilliard model with purely nonreciprocal coupling, we derive the nonlinear
nonlocal amplitude equation with real coefficients and show that its bifurcation diagram and time evolution well agree with the results for
the full model. The solutions of the amplitude equation and their stability are analytically obtained, thereby showing that in such oscillatory
phase separation, the suppression of coarsening is universal. Second, we lift the two restrictions and obtain the amplitude equation in the
generic case. It has complex coefficients and also shows very good agreement with the full model as exemplified for some transient dynamics
that converges to traveling wave states.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0222013

Nonreciprocal interactions and conservation laws both play an
important role in out-of-equilibrium pattern formation pro-
cesses, e.g., in biochemical systems. The generic oscillatory
instability in such systems—the conserved-Hopf instability—is
increasingly being studied as a central organizing element for
the ongoing dynamic patterning. We employ a weakly nonlinear
multi-scale analysis to obtain closed-form (but nonlocal) slow-
time evolution equations for the spatiotemporal dynamics of the
amplitude of fast-time oscillations for two-species Cahn–Hilliard
models with nonreciprocal interactions. A comparison of analyt-
ical results for the reduced model and numerical results for the
full model reveals excellent agreement. The derived amplitude
equations will allow for a systematic study of universal behavior
occurring in the vicinity of conserved-Hopf instabilities.

I. INTRODUCTION

For spatially extended dynamical systems, multiscale analyses
represent a powerful tool to identify universal behavior close to the
onset of linear instabilities, i.e., in the vicinity of local bifurcations.1–4

Independently of the specific system or instability, this relies on two
key observations: On the one hand, the growth rates of the mode(s)
destabilized at the bifurcation are small, i.e., their dynamics occurs
on a much slower timescale than the one of the stable modes. The
latter relax on a fast timescale implying that they are slaved to the
slow modes.5 On the other hand, in pattern forming systems, unsta-
ble modes only occur in a small band of wavenumbers about the
critical one. This results in the emergence of length scales and typ-
ically results in a scale separation between the length scale of a
pattern and the length scale over which its amplitude or phase are
modulated.2,3

The ensuing scale separation in space and/or time is then
employed through various multiscale expansions for systems that
develop spatial structures or patterns resulting in amplitude (or
envelope, or modulation) equations. These represent crucial sim-
plifications as they are of reduced complexity with reduced order
parameter and control parameter sets due to the eliminated small
length and/or fast timescales. This can dramatically reduce the
numerical effort. Often they even allow for analytical insights into
universal behavior beyond linear approximations. Further, ampli-
tude equations are quite valuable tools if one aims at a deeper
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understanding of possible generic qualitative behaviors in classes of
systems and the changes occurring with changing parameters. This
then allows one, for instance, to draw parallels between seemingly
unrelated physical systems, here, e.g., between reaction–diffusion
systems with two conservation laws and heated two-layer liquid
films. However, also note that amplitude equations are a less than
ideal tool if one aims at detailed quantitative predictions of nonlin-
ear behavior for a particular system at diverse sets of parameters far
from instability onset, e.g., in biophysics or material science.

A prominent classification of instabilities in spatially extended
systems by Cross and Hohenberg2 distinguishes three types (I, II,
and III) with two respective flavors: stationary (or monotonic)
and oscillatory—in total, six categories of generic codimension-one
instabilities. However, it has turned out that this traditional classifi-
cation is not ideally suited when systematically considering systems
with conservation laws that have come into sharper focus over the
past two decades.6–16

In consequence, a recent alternative classification into eight
categories is based on three dichotomous properties, namely, large-
scale (L) vs small-scale (S) instability, stationary (s) vs oscillatory (o)
instability, and nonconserved (N) vs conserved (C) dynamics of rel-
evant mode(s). A table that lists the resulting eight instability types,
the employed naming convention, and their relation to the tradi-
tional classification is given in the supplementary material of Ref. 16.
Here, it is reproduced in Appendix A as Table II together with some
further remarks.

Here, we solely focus on length and timescales that arise from
the dispersion relations and their implications for the corresponding
amplitude equation obtained by a weakly nonlinear approach. They
are well known for the four cases without conservation law: Turing
(small-scale, stationary) and Hopf (large-scale, oscillatory) instabil-
ity give rise to the real and complex Ginzburg–Landau equation,
respectively, that effectively describe the respective spatiotemporal
modulation of harmonic spatial modulations and of harmonic tem-
poral oscillations on large length and slow timescale. Because no
fast time or small length scale is induced by the dispersion relation,
in the case of the Allen–Cahn instability (large-scale, stationary),
the relevant “amplitude” is a simple scalar order parameter field,
resulting in the Allen–Cahn equation as “amplitude equation.” In
the case of a wave instability (small-scale, oscillatory), the ampli-
tude equation corresponds to coupled complex Ginzburg–Landau
equations for the amplitudes of left- and right-traveling waves. They
are, however, only valid at small group velocity (see, e.g., Sec. VI E
of Ref. 17). Otherwise, the amplitude equation is nonlocal.18,19 The
four basic cases without conservation law are all well covered by
the Cross–Hohenberg classification and extensively analyzed in the
literature.

However, this is less so for the four cases with conservation
laws. There, one has to additionally account for the slow relaxation
of the large-scale modes, i.e., with near-zero wavenumber. In the
case of the conserved-Turing instability, the real Ginzburg–Landau
equation then couples to a nonlinear diffusion equation,6 while
the case of the conserved-wave instability results in two com-
plex Ginzburg–Landau equations coupled to a nonlinear diffusion
equation.7 The Cahn–Hilliard instability is the conserved equivalent
of the Allen–Cahn instability, implying that the relevant ampli-
tude is also a simple scalar field and the amplitude equation is a

Cahn–Hilliard equation,20 explaining the coarsening behavior for
many reaction–diffusion (RD) systems with one conservation law, in
particular, in the vicinity of a large-scale stationary instability.8,21–23

In the final case of a conserved-Hopf instability, two conserva-
tion laws are needed to allow for a large-scale oscillatory instability
of a conserved mode. Although such instabilities and the resulting
nonlinear oscillatory behavior have been described for a number
of systems with at least two conservation laws,10,12,24–29 a system-
atic understanding of the underlying universal behavior has still to
emerge. A particular case that has recently attracted considerable
attention is the nonreciprocally coupled Cahn–Hilliard model.16,30–41

Reference 16 has shown that a general nonreciprocal two-
component Cahn–Hilliard model captures the universal behavior in
the vicinity of any conserved-Hopf instability in terms of the dynam-
ics of two density-like scalar fields that directly correspond to the
trivial amplitudes of the zero-modes as in the corresponding sta-
tionary case. However, although the resulting “amplitude equation”
captures the corresponding behavior of many specific systems and
encodes their parameters in its universal but still extremely rich
parameter set, it does not correspond to an amplitude equation
in the spirit of a Ginzburg–Landau-type equation that eliminates
a small length or fast timescale. Actually, the equation derived
in Ref. 16 instead corresponds to the amplitude equation for an
instability of higher codimension because it encompasses further
primary bifurcations besides the conserved-Hopf instability, e.g., a
codimension-two Cahn–Hilliard instability. Therefore, the corre-
sponding proper amplitude equation that eliminates the timescale
of fast oscillations is still missing.

Our present work develops such an amplitude equation and in
this way hopefully completes the set of eight such equations for the
eight above discussed linear instabilities. Our approach is based on
a close inspection of the dispersion relation that implies the occur-
rence of two different timescales (see Fig. 1). On the one hand, there
are the frequencies of the unstable modes. They scale with ε2, where
ε represents the distance to the onset of the conserved-Hopf insta-
bility. On the other hand, the fastest growing unstable mode has
a growth rate of order ε4. We show that these timescales can be
separated, ultimately resulting in an amplitude equation that cap-
tures the nonlinear behavior of the slowly evolving amplitude of
the modes with ε2-frequencies in the vicinity of the conserved-Hopf
bifurcation.

This work is structured as follows. In Sec. II, we discuss
the scaling properties resulting from the dispersion relation of
the conserved-Hopf bifurcation and introduce the relatively sim-
ple but instructive example of a symmetric Cahn–Hilliard model
with purely nonreciprocal linear coupling. We identify the resulting
linear problem as a free-particle Schrödinger equation and discuss
the resulting multi-scale ansatz in real and Fourier space. Subse-
quently, in Sec. III, we derive the leading-order amplitude equation
and briefly discuss its structure and properties. In Sec. IV, we
proceed by determining analytic solutions of the obtained ampli-
tude equation, their linear stability, and the resulting bifurcation
structure. The discussion carries over to Sec. V, where we quan-
titatively compare states, bifurcation structure, and time evolution
obtained from the amplitude equation and from the symmetric
purely nonreciprocally coupled fully nonlinear model. Finally, we
lift the restrictions imposed by the simplicity of the case considered
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in Secs. II–V and extend the developed approach toward the generic
case. We summarize and conclude in Sec. VII.

II. SCALING, ANSATZ, AND SYMMETRY

We consider a system of spatially and temporally homogeneous
and parity symmetric kinetic equations of first order in time for
scalar fields. For simplicity, we consider a large, one-dimensional
domain of size l with periodic boundary conditions. The Taylor-
expanded dispersion relation for a conserved-Hopf bifurcation is16

λ±(k) = 1(k)± i�(k),

1(k) = µk2 − δ′k4 + O(k6),

�(k) = ωk2 − ω′k4 + O(k6),

(1)

where µ = ε2µ̃ � 1, µ̃ = O(1), and ω = O(1). In other words,
the system is close to the onset of a conserved, large-scale, oscil-
latory instability, where for µ̃ > 0 modes with complex conjugate

pairs of eigenvalues with k < kc = ε
√

µ̃/δ′ will exponentially grow
whereas all other modes will decay exponentially (see Fig. 1). A sim-
ple example, that, similar to the Swift–Hohenberg model for the
Turing instability, directly and without Taylor-expansion yields the
dispersion relation (1) is the symmetric Cahn–Hilliard model with
purely nonreciprocal linear coupling,

∂tu = ∂xx(−µu + u3 − ∂xxu − ωv),

∂tv = ∂xx(−µv + v3 − ∂xxv + ωu), (2)

in the particular case,

∫ l

0

udx =
∫ l

0

v dx = 0.

This is a special case of the models analyzed in Refs. 30–35 and 40,
where sometimes noise is added. Further simplified versions are
obtained by linearizing the second equation.38,39,41,42 Using a vec-
tor notation u = (u, v) and employing the usual ansatz u(t) = u0

+ δu(t) with δu(t) ∼ ε eikx−λt � 1 in (2), i.e., adding a small
perturbation δu to the trivial solution u(x, t) = v(x, t) = 0, we
obtain the dispersion relation (1) with δ′ = 1 and ω′ = 0.

FIG. 1. Dispersion relation of the conserved-Hopf instability. The growth rate 1
is, respectively, shown in blue, purple, and red below (µ < 0), at (µ = 0) and
above (µ > 0) the onset of instability. The dotted lines indicate the corresponding
frequencies ±�.

Next, we observe that the fastest growing wavenumber kmax

is of O(ε), which implies that the dynamics occurs on the length
scale X = εx. This implies that the leading order oscillation in (1)
occurs on the timescale τ = ε2t, whereas the first contribution of
the growth rates occurs on the timescale T = ε4t.

Note that one could similarly argue for the frequency �(kmax)

at the largest growing wavenumber kmax to be used for the fast

timescale. However, since kmax = kc/
√

2, this does not affect the
scaling in ε. Then, we perform a weakly nonlinear analysis for
the symmetric model (2) with the scalings ∂x = ε∂X and ∂t = ε2∂τ
+ ε4∂T and

u(t) = εu1(X, τ , T)+ ε2u2(X, τ , T)+ ε3u3(X, τ , T)+ h.o.t. (3)

The first nonvanishing contribution occurs at O(ε3) and yields the
homogeneous linear problem

Lu1 = 0,

with L = 1∂τ −
(

0 −ω
ω 0

)

∂XX.
(4)

This corresponds, up to prefactors, to the linear, i.e., free-particle
Schrödinger equation.43 Its general solution is

u1(X, τ , T) = eiωτ∂XXA(X, T)e++e−iωτ∂XXA∗(X, T)e−, (5)

where e± = (±i, 1)/
√

2 (i.e., e+ ⊥ e−). In other words, eiωτ∂XX cor-
responds to a time evolution operator, where −ω∂XX is the free-
particle Hamiltonian and the slowly varying amplitude A(X, T) takes
to role of the initial wavefunction that (on the fast timescale τ ) freely
propagates in space. Note that the ansatz breaks down if ω = 0 or
ω = O(ε2), as then Eq. (4) becomes trivial (∂τu1 = 0) and all terms
enter the expansion at O(ε5), i.e., no separation of timescales is pos-
sible. This occurs, e.g., when studying the codimension-two point
where a transition between Cahn–Hilliard instability and conserved-
Hopf instability occurs. There, ω → 0 and the critical wave number
is zero for both instabilities. Therefore, considering such a transi-
tion, the nonreciprocal Cahn–Hilliard (NRCH) model cannot be
reduced by scale separation and, therefore, emerges as its own
amplitude equation (see Ref. 16).

Next, we discuss the consequences of the ansatz (5) that arises
from the linear problem at leading order. In general, the under-
lying symmetry of the original system, i.e., parity symmetry and
homogeneity in space and time combined with the relation between
amplitude and original variables implies consequences for the form
of occurring nonlinearities. For instance, for the standard Hopf
instability without conservation law, the usual ansatz is u(x, t)
= ε eiωtA(X, τ)e+ + c.c. Then, homogeneity in time implies that
the equations are invariant under the shift t → t + t0. Hence, on
the amplitude level, amplitude A picks up a global phase A(X, τ)
→ eiωt0A(X, τ). From this, we can conclude that the simplest occur-
ring nonlinearity is ∼A|A|2 as it transforms like the linear term, i.e.,
A|A|2 → eiωt0A|A|2, whereas quadratic or other cubic terms are for-
bidden, because, e.g., A2 → e2iωt0A2 shows a different transforma-
tion behavior. (Analogously, for Turing instabilities, where u(x, t)
= ε eikxA(X, τ)e+ + c.c., the combination of homogeneity in space
with additional parity invariance yields that the simplest nonlinear-
ity is ∼A|A|2 with a real coefficient.)
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We transfer this argument to the ansatz (5) for the conserved-
Hopf instability. Here and in the following, it is instructive to
discuss the problem in terms of Fourier modes, i.e., we intro-
duce the usual Fourier transform Ã(K, T), which fulfills A(X, T)
=
∑

K Ã(K, T) eiKX, where K = 2πz/L, with L = εl and z ∈ Z.
Hence, the amplitude transforms under τ → τ + τ0 as

A(X, T) → eiωτ0∂XXA(X, T)

= eiωτ0∂XX
∑

K

Ã(K, T) eiKX

=
∑

K

e−iωτ0K2
Ã(K, T) eiKX. (6)

In other words, by the convolution theorem each Fourier
mode Ã(K, T) of the amplitude transforms individually as Ã(K, T)

→ e−iωτ0K2
Ã(K, T). This has dramatic consequences for nonlineari-

ties of the amplitude equation. In particular, it rules out all local non-
linearities, as they generically couple distinct Fourier modes with
nonuniform transformation behavior. However, (nonlocal) nonlin-
earities compatible with the symmetry can be explicitly constructed
based on their Fourier space representation, like, e.g., F−1[Ã|Ã|2].
Next, we will derive the amplitude equation, i.e., a dynamical
equation for A(X, T) at leading order.

III. LEADING ORDER AMPLITUDE EQUATION: SIMPLE

CASE

AtO(ε4), we obtain a similar homogeneous linear system for u2

as Eq. (4) for u1 at O(ε3). Here, it is not considered further as it does
not contribute at O(ε5). At O(ε5), we obtain the inhomogeneous
linear system

Lu3 = q5,

with q5 = ∂XX

(

−µ̃u1 + u3
1 − ∂XXu1

−µ̃v1 + v3
1 − ∂XXv1

)

−
(

∂Tu1

∂Tv1

)

.
(7)

To apply a Fredholm alternative, we define a “spatiotemporal scalar
product” in the function space of spatially L-periodic and temporally
1/�-periodic functions

〈F; G〉 = �min

L

∫ L

0

dX

∫ 1/�min

0

dτF†G, (8)

where �min = ωK2
min/(2π) = 2πω/L2. Then, the integral of a har-

monic function is only nonzero, i.e., �min
L

∫ L

0
dX
∫ 1/�min

0
dτ eiKX ei�τ

= 1 if both spatial and temporal frequencies vanish (K = � = 0). It
is zero otherwise.

By the Fredholm alternative, Eq. (7) only has a solution if q5 is
orthogonal to the kernel of the adjoint linear operator L†, given by

L†=−1∂τ −
(

0 ω

−ω 0

)

∂XX = −L. (9)

In line with Eqs. (4) and (5) at O(ε3), the kernel of this linear
operator is given by

m = eiωτ∂XX B(X)e++ e−iωτ∂XX C(X)e−, (10)

where B(X) and C(X) are arbitrary functions. To obtain an

equation for the amplitude A(X̂, T)we choose B(X) = δ(X − X̂) and
C(X) = 0.44 Then, applying the Fredholm alternative for the lin-
ear contributions in q5, i.e., evaluating their scalar product (8) with
Eq. (10) and substituting u1 with the amplitude (5), we obtain

〈

m;
(

−µ̃∂XX − ∂XXXX − ∂T

)

u1

〉

=
〈

eiωτ∂XXδ
(

X − X̂
)

e+;
(

− µ̃∂XX − ∂XXXX − ∂T

)

×
(

eiωτ∂XX A
(

X, T
)

e++e−iωτ∂XX A∗(X, T
)

e−
)〉

=
(

−µ̃∂X̂X̂ − ∂X̂X̂X̂X̂ − ∂T

)

A
(

X̂, T
)

, (11)

where we employed the orthogonality of e+ and e−, and used the
unitarity of the operator e−iωτ∂XX .45 Next, we consider the cubic
nonlinearities within q5. Inserting the amplitude A(X, T) from (5)
yields

∂XX

(

u3
1

v3
1

)

= ∂XX

[

(

eiωτ∂XX A(X, T)
)3

w(1)

+ 3
(

e−iωτ∂XX A∗(X, T)
) (

eiωτ∂XX A(X, T)
)2

w(2)

+ 3
(

e−iωτ∂XX A∗(X, T)
)2 (

eiωτ∂XX A(X, T)
)

w(3)

+
(

e−iωτ∂XX A∗(X, T)
)3

w(4)
]

. (12)

The w(i) are given by

w(1) =
(

(e+)
3
1

(e+)
3
2

)

, w(2) =
(

(e+)
2
1(e−)1

(e+)
2
2(e−)2

)

,

w(3) =
(

(e+)1(e−)
2
1

(e+)2(e−)
2
2

)

and w(4) =
(

(e−)
3
1

(e−)
3
2

)

,

(13)

where (e±)1 and (e±)2 refer to the first and second component of e±,
respectively. For the presently considered simple nongeneric choice
of linear and nonlinear terms, we obtain w(1) = w(3) = e−/2 and
w(2) = w(4) = e+/2.

First, we deal with the second term ∼w(2) in (12), as it results in the dominant nonlinear contribution. We use the identity δ(X − X̂)

=
∑

Q eiQ(X−X̂) and again express all occurring amplitudes by their Fourier transform A(X, T) =
∑

K Ã(K, T) eiKX to evaluate the scalar
product,

3
〈

eiωτ∂XXδ(X − X̂)e+; ∂XX

(

e−iωτ∂XX A∗(X, T)
) (

eiωτ∂XXA(X, T)
)2

w(2)
〉

= 3

2

〈

eiωτ∂XX
∑

Q

eiQ(X−X̂)e+; ∂XX

(

e−iωτ∂XX
∑

K

Ã∗(K, T) eiKX

)(

e−iωτ∂XX
∑

K

Ã(K, T) eiKX

)2

e+

〉
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= 3�min

2L

∑

Q,K,K′ ,K′′
eiQX̂Ã∗(K, T)Ã(K′, T)Ã(K′′, T)

(

−Q2
)

∫ 1/�min

0

eiωτ(Q2+K2−K′2−K′′2) dτ

∫ L

0

eiX(−Q−K+K′+K′′) dX

= 3

2

[

2
∑

Q

eiQX̂(−Q2)Ã(Q, T)
∑

K

Ã∗(K, T)Ã(K, T)−
∑

Q

eiQX̂(−Q2)Ã(Q, T)Ã(Q, T)Ã∗(Q, T)

]

= 3

2
∂X̂X̂

(

2F−1[Ã(K, T)
∑

K′
|Ã(K′, T)|2] − F

−1[Ã(K, T)|Ã(K, T)|2]
)

. (14)

Here, the key observation is that the two integrals in the third
line are zero, whenever one of the integrands has a nonzero phase.
Therefore, only terms with

Q2 + K2 = K′2 + K′′2 and Q + K = K′ + K′′ (15)

contribute. Equations (15) has a strong analogy to an elas-
tic collision, i.e., they correspond to the nonrelativistic, elas-
tic 2 → 2 scattering of particles with equal mass, incoming
momenta Q, K and outgoing momenta K′, K′′. In one dimen-
sion, the only possibilities are that the two particles exchange
momenta or pass unhindered, i.e., the momenta are pairwise
equal Q = K′ and K = K′′ or Q = K′′ and K = K′. After inserting
into Eq. (14), both options yield the same contribution. How-
ever, if Q = K, the two solutions are identical, i.e., we have to
account for overcounting, which is done by the second term in
the fourth row of Eq. (14). Due to Parseval’s identity, the first
term transforms into real space, as F−1[Ã(K, T)

∑

K′ |Ã(K′, T)|2]
= A(X, T)〈|A(X, T)|2〉, i.e., as a coupling to the mean of the squared
amplitude. In real space, the second term can be expressed as the
double-convolution F−1[Ã|Ã|2](X) = [A(X̃) ? A(X̃) ? A∗(−X̃)](X),
but we will keep the first notation for brevity. A similar con-
sideration for the three remaining nonlinearities yields that they
correspond to elastic 4 → 0, 3 → 1, and 1 → 3 scatterings of par-
ticles with equal mass in one dimension. Here, elastic means that
energy and momentum are both conserved. However, mass is not
conserved, e.g., for the 1 → 3 case, one particle splits into three par-
ticles, where each has identical mass as the incident particle. Trivial
solutions, where some of the momenta equal zero do not contribute,
since A(K = 0, T) = 0, which results from the mass conservation of
the underlying system. Further, the latter two contributions are also
negligible compared to the 2 → 2 scattering if the amplitude is suffi-
ciently localized in Fourier space, which we assume. Finally, collect-
ing all terms and reintroducing the original scales, i.e., introducing
a = εA, we obtain the amplitude equation

∂ta = ∂xx

(

−µa + 3

2
(2a〈|a|2〉 − F

−1[ã|ã|2])− ∂xxa

)

, (16)

where the coefficient(s) are all real. The nature of the nonlocal
terms can be understood in terms of the dynamics on the differ-
ent timescales: due to the dispersion relation �(k) ∼ ±ωk2, each
individual harmonic mode propagates with a distinct velocity ±ωk
on the fast timescale τ . As the propagation of the wave is very
fast as compared to the growth of their amplitudes, during a char-
acteristic time interval of amplitude growth, several wavelengths

of other waves will have passed, resulting in a nonlocal interac-
tion. In other words, each wave interacts with the (squared) mean
of all other waves. This holds for all interactions besides the self-
interaction of a wave, since in this case the propagation velocity triv-
ially coincides. The amplitude equation is related to the dynamics of
the original fields u via

u(x, t) = eiωt∂xx a(x, t)e++ e−iωt∂xx a∗(x, t)e−. (17)

The dispersion relation of Eq. (16) is λ(k2) = µk2 − k4, i.e., com-
pared to the general Eq. (1), the frequencies ±ωk2 on the fast
timescale do no longer appear, i.e., the fast timescale has been fully
separated. In the considered case, the instability is even stationary,
i.e., the eigenvalues λ(k2) are all real. However, this is a nongeneric
consequence of our minimal choice (2), i.e., without a contribu-
tion ∼k4 to the frequency, i.e., ω′ = 0 in Eq. (1). The general case
is treated below in Sec. VI.

Remarkably, the obtained amplitude equation with real coef-
ficients has the structure of a gradient dynamics for a conserved
complex field, i.e., it can be written in the form

∂ta = ∂xx

δG[a]

δa∗ , (18)

where the underlying energy functional is

G[a] =
∫ l/2

−l/2

(

−µ|a|2 + |∂xa|2
)

dx + 3l

2

(

1

l

∫ l/2

−l/2

|a|2 dx

)2

− 3

4l2

∫∫∫

[− l
2 , l

2 ]
3

a∗(x)a∗(−x′)a(x′′)a(x − x′ − x′′) dx dx′dx′′.

(19)

The energy is more intuitively understood, if it is expressed by
the Fourier amplitude ã, where a(x, t) =

∑

k ã(k, t) eikx. It reads

G[ã] = l
∑

k

[

(−µ+ k2)|ã|2 − 3

4
|ã|4

]

+ 3l

2

(

∑

k

|ã|2
)2

. (20)

As
(
∑

k |ã|2
)2 ≥

∑

k |ã|4, for large values of ã, the energy is domi-
nated by the strictly positive last term. This shows that it is bounded
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from below. The variational character of (18) has important impli-
cations: The evaluation of the total time derivative of G[a], i.e.,

d

dt
G[a] =

∫ l/2

−l/2

(

δG

δa∗
da∗

dt
+ δG

δa

da

dt

)

dx

=
∫ l/2

−l/2

[

δG

δa∗

(

∂xx

δG

δa

)

+ δG

δa

(

∂xx

δG

δa∗

)]

dx

p.I.= −2

∫ l/2

−l/2

∣

∣

∣

∣

∂x

δG

δa

∣

∣

∣

∣

2

dx ≤ 0 (21)

demonstrates that G[a] is a Lyapunov functional. This implies that
the amplitude a(x, t) will always eventually approach a stable steady
state, and all stable steady states will only show eigenmodes with real
eigenvalues. That is, no oscillatory dynamics occurs on the level of
the amplitude equation, although it does on the level of the original
fast dynamics.

Next, we will analyze the analytical solutions of the amplitude
equation (16) and relate them to the dynamics of the full model.

IV. STATES AND THEIR STABILITY

Before entering fine details, we discuss the simple harmonic
solution to the amplitude equation (16). As shown below, it is
given by

a(x, t) = a0 eiqx, with |a0|2 = 2

3

(

µ− q2
)

, (22)

where |q| ∈ (0,
√
µ) for µ > 0. Using Eq. (17) to translate this back

into the original fields, i.e., applying the linear Schrödinger-like time
evolution yields

u =
√

2|a0|
(

sin
(

qx + ωq2t + φ
)

cos
(

qx + ωq2t + φ
)

)

. (23)

Therefore, a single-mode harmonic solution of the amplitude
equation corresponds to a traveling wave with velocity −ωq, where
the fields u1 and u2 are phase shifted by π/2. Left-traveling (right-
traveling) waves are, hence, given by q > 0 (q < 0). The global phase
φ is undetermined and reflects translational symmetry.

To find the general solution of the steady state equation, i.e.,
Eq. (16) with ∂ta = 0, we integrate twice. The first integration con-
stant is zero as we request the net flux to be zero. Remarkably, here
we can also eliminate the second integration constant as we have to
request a = 0, because the amplitude a defines the perturbation with
respect to the mean value of the original field. As a result, we have

− µa + 3a〈|a|2〉 − 3

2
F

−1[ã|ã|2] − ∂xxa = 0. (24)

To solve it, we reintroduce the Fourier transform, i.e., we substitute
a(x, t) =

∑

q ã(q) eiqx to obtain

∑

q

(

−µ+ 3
∑

k

|ã(k)|2 − 3

2
|ã(q)|2 + q2

)

ã(q) eiqx = 0. (25)

Since the eiqx are linearly independent, all contributing modes,
i.e., all modes where ã(q) 6= 0 satisfy −µ+ 3

∑

k |ã(k)|2 − 3
2
|ã(q)|2

+ q2 = 0. We can, therefore, construct solutions as follows: We

pick an arbitrary set of N pairwise distinct contributing modes
q1, . . . , qN. Then, the mean squares of their amplitudes ã1, . . . , ãN

are determined by the linear system
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, (26)

and the phases are left arbitrary. As the solutions have to fulfill
|ãi|2 > 0 for all i, for each configuration, there exists a thresh-
old value µt, such that the solution exists if µ > µt. Note that
the single-mode solution arises as the special case for N = 1, i.e.,
1
2
|ã1|2 = 1

3
(µ− q2

1). To illustrate the procedure and its result, we
also detail the case N = 2, where Eq. (26) reduces to







1

2
1

1
1

2







(|ã1|2

|ã2|2
)

= 1

3

(

µ− q2
1

µ− q2
2

)

(27)

and is solved by

(

|ã1|2
|ã2|2

)

= 2

9

(

µ+ q2
1 − 2q2

2

µ− 2q2
1 + q2

2

)

. (28)

For q1 = −q2 =: qs, the two equations reduce to

|ã1,2|2 = 2

9
(µ− q2

s ). (29)

Notably, the condition for the existence of the solution isµ− q2
s > 0

and is, therefore, the same as for the single harmonic mode with the
same wavelength. Specifically, if ã1 = ã2, the solution reads

a(x, t) = ãs cos(kx), with |ãs|2 = 8

9
(µ− q2

s ). (30)

For this solution, the original fields become

u(x, t) =
√

2|ãs| cos(kx)

(

sin(ωq2
s t + φ)

cos(ωq2
s t + φ)

)

, (31)

which is a standing wave, where independently of space and time,
the two fields are phase-shifted in time by π

2
. Note that this state

can be seen as a superposition of the left and right-traveling waves,
i.e., the already discussed single-mode states. For the case q2 > q1,
Eq. (28) has a solution, whenµ− 2q2

2 + q2
1 > 0, i.e., it only exists for

µ-values that are strictly larger than the critical ones for the individ-
ual modes with wavenumbers q1 and q2. Further, we note that any
(multi-mode) steady state of the amplitude equation corresponds to
a superposition of traveling waves in the full model. Here, we call
them oscillatory states. Figure 2 gives a schematic overview of the
discussed states on the two levels of description, i.e., the full dynamic
equation and the amplitude equation with real coefficient.

To analyze the stability of the single-mode states described
above, we introduce a small complex perturbation εap(x, t) with
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FIG. 2. Scheme of the corresponding states in the nonreciprocal Cahn–Hilliard
(NRCH) model (2) and the obtained amplitude equation with real coefficients (16).
The blue rectangle highlights the states captured with numerical path continua-
tion, whereas the right rectangle displays states that are obtained from analytic
considerations in Sec. IV.

ε � 1,

a(x, t) =
√

2

3
(µ− q2) eiqx + εap(x, t),

with ap(x, t) ∼ eikx+λt.

(32)

Inserting into (16) and linearizing in ε yields the dispersion
relation

λ(k) = k2
[

−δk,q(µ− q2)− µ+ 2q2 − k2
]

. (33)

The discontinuity, i.e., the term ∼δk,q arises from the evaluation of

integrals ∼
∫ l

0
ei(k−q)x dx that correspond to Fourier transforms of

harmonics and are related to the second nonlinear term in Eq. (16),
i.e., to the self-interaction of a traveling wave discussed in Sec. III.
Examples of dispersion relations are given in Fig. 3.

For a specific q, the single-mode solution is stable if the square
bracket in Eq. (33) is negative for all k. Since µ− q2 > 0 is neces-
sary for the existence of the single-mode solution with wavelength

q, the discontinuity is always stabilizing. Therefore, Eq. (33) repre-
sents a large-scale instability if −µ+ 2q2 − k2 > 0 for some k. In
a finite system of size l, the spectrum of wavenumbers is discrete,
such that the first allowed perturbation occurs at k = kmin = 2π/l
[see Fig. 3(c)]. In other words, q is linearly stable if

q2 ≤ 1

2

(

µ+ k2
min

)

. (34)

In the limit of an infinite system, i.e., for kmin → 0, the condition for
linear stability reduces to

q2 ≤ µ

2
. (35)

This implies that for any sufficiently large domain, there exist
several states with wavenumbers in the stable band, i.e., with
q ∈ [−√

µ/2,
√
µ/2] , i.e., we find a multistability of traveling waves

of different wavelengths in the full system. This is in stark contrast to
the amplitude equation for the stationary large-scale instability with
conservation law, i.e., the Cahn–Hilliard equation, where the only
stable state has a structure length of system size.

The multistability of traveling wave solutions naturally raises
the question of wavelength selection, i.e., as there exist stable single-
mode states of various different wavenumbers, it is an intriguing
question, which state a system is likely to realize as a function of
the initial condition. To investigate this question and further vali-
date our findings, we continue with a numerical comparison of the
dynamics as captured by the amplitude equation (16) and by the full
model (2).

V. BIFURCATION ANALYSIS AND TIME SIMULATIONS

For the numerical analysis, we employ bifurcation
techniques46,47 and direct time simulations. Both are applied to the
full dynamics (2) and the amplitude Eq. (16).

Remarkably, all steady states of the amplitude equation can be
analytically determined as superpositions of (arbitrarily many) har-
monics, as discussed in Sec. IV. As the NRCH dynamics contains
various oscillatory states that are not easily tracked by numerical
continuation, we restrict our attention to simple steady states and
traveling waves. As solution measures, we employ the L2-norms of

FIG. 3. Shown are selected dispersion relations
of the single mode solution according to Eq. (33).
Panels (a) and (b) show the stable and unsta-
ble case, respectively. Panel (c) illustrates the
effect of the discretized wavenumbers on the linear
stability, i.e., in the displayed dispersion relation
the wavenumber q is unstable in the infinite-sys-
tem limit but stable for a finite domain of length
2π/kmin. The term ∼δk,q in Eq. (33) q = k leads
to a discontinuity at k = q, which is indicated by
blue dots.
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the amplitude and of the original fields, i.e.,

||a||L2 =
(

2

l

∫ l/2

−l/2

|a|2 dx

)
1
2

,

||u||L2 =
(

1

l

∫ l/2

−l/2

(u2 + v2) dx

)
1
2

,

(36)

respectively. To account for relation (17) between a and u = (u, v),

the norm of a is scaled by a factor
√

2, such that the single-mode
solution of the amplitude equation and the corresponding travel-
ing wave in the full dynamics have the same norm. The numerical
continuation of the NRCH dynamics is performed employing the
finite-element library pde2path.48

For the time simulations, we use a pseudo-spectral, semi-
implicit Euler method for both the amplitude equation and the full
dynamics, where the time-step is adapted via a half-step method.
To allow for a comparison we match the initial condition by pro-
jecting u(x, t = 0) onto the initial amplitude a(x, t = 0), apply the
respective nonlinear time-evolution on the two levels of description
and then calculate the approximated solution from the amplitude
equation ua(x, t) using the linear Schrödinger relation (17).

We start with a discussion of the bifurcation structure.
Figure 4(a) collects the analytical considerations from Sec. IV in a
bifurcation diagram whereas Fig. 4(b) presents the homogeneous
steady state and traveling wave states of the full model as obtained by
path continuation. In Fig. 4(a), at µ = 0.01, the homogeneous state
becomes unstable with respect to the system-spanning mode with
kmin = 2π

l
in a pitchfork bifurcation. Beyond the bifurcation, the

homogeneous state has a fourfold degenerate positive eigenvalue,
corresponding to real and imaginary perturbations with ±kmin. Note
that for a more transparent comparison with the real fields of the
nonreciprocal Cahn-Hilliard equation, we count real degrees of free-
dom. Therefore, every eigenvalue of the complex equation is twice
degenerate as any complex perturbation corresponds to an arbitrary
linear combination of real and imaginary part. At the bifurcation,
three branches emerge, corresponding to the linearly stable har-
monic functions a ∼ e±ikminx and their unstable superposition a ∼
cos(kminx). Note that the former two have identical norms as they
are related by symmetry.

Similar bifurcations occur on the homogeneous steady state
branch (primary branch) for all modes with kn = nkmin, in Fig. 4
shown up to n = 6, each further destabilizing the trivial state
(with fourfold degeneracy). Next, following the secondary (n = 2)-
branch, we observe another pitchfork bifurcation. At µ ≈ 0.06,
three tertiary branches emerge from the secondary branch, corre-
sponding to the linear combinations of two modes with wavenum-
bers n = 1 and n = 2. There, the fourfold degenerate eigenvalue
changes its sign from positive to negative and the secondary (n = 2)-
branch is stabilized. Something similar occurs for the secondary
(n = 3)-branch that emerges from the primary branch with two
fourfold degenerate positive eigenvalues. Following the branch, we
see that first the two-mode solutions with n = {1, 3} emerge stabi-
lizing the first eigenvalue and second the two-mode solutions with
n = {2, 3} emerge, stabilizing also this secondary branch [see inset in
Fig. 4(a)]. Similar successive stabilization occurs for every secondary

FIG. 4. Bifurcation diagrams obtained for (a) the amplitude equation (16) and (b)
the symmetric NRCH model (2). Solid (dashed) lines represent stable (unstable)
states. The light gray lines in (b) reproduce the single-mode branches from (a) to
allow for direct comparison. The inset in panel (b) shows the velocity vtw of trav-
eling waves. Large circles and diamonds mark pitchfork and Hopf bifurcations,
respectively, while the small circles indicate bifurcations on tertiary (two-mode)
branches. Panel (a) additionally includes cosine modes (red), the superposition
of harmonic modes with two (three) distinct wavenumbers [green (purple)] and
superpositions of cosine and harmonic modes (brown). Panels (c), (d), and (e)
show u-profiles for the traveling wave states at loci marked by the crosses in
(b), thereby the light gray curves reflect the real and imaginary part of the cor-

responding steady states in the amplitude equation (rescaled by a factor
√
2).

The dotted vertical lines in (a) and (b) indicate the parameter values where the
time simulations in Fig. 6 are performed. The domain size is l = 20π .

branch, i.e., the (n = i)-branch is stabilized via i − 1 consecutive
pitchfork bifurcations.

Our analytic consideration allows us to find further branches—
in fact, all branches—for example, those with three contributing
modes, which emerge from the ones with two contributing modes
in further bifurcations, indicated by the small circles in Fig. 4(a).

Next, turning to the bifurcation diagram of the correspond-
ing NRCH system displayed in Fig. 4(b), we see that each pitchfork
bifurcation of the trivial branch in Fig. 4(a) exactly corresponds to
a Hopf bifurcation in Fig. 4(b). At each bifurcation, four complex
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FIG. 5. Space–time plots for the amplitude (left column), the approximate dynamics for ua reconstructed from the amplitude equation (middle column) and the full dynamics
u obtained with the NRCH model (right column) with different initial condition, namely, white noise (first row), an unstable traveling wave (second row) and a standing wave
(third row). Panels (a), (c), and (e1) show Im(a), whereas (e2) shows Re(a). Panels (b), (d), and (f) display u. Panel (g) shows the temporal evolution of the L2-norm ‖u‖L2
of the middle (right) column as dashed (solid) lines as well as their signed relative deviation. The parameters are µ = 1/16, ω = 1, and l = 50π . The spatial discretization
consists of 512 points and the adapted timestep is usually around 1 × 10−2 for the full dynamics and 1 × 10−1 for the amplitude equation.

eigenvalues cross the imaginary axis, corresponding to two iden-
tical pairs of complex conjugate eigenvalues, one for the left- and
one for the right-traveling wave. Despite our technical restriction to
the continuation of traveling wave states, it is obvious that another
branch will emerge that corresponds to standing wave states formed
by the superposition of right- and left-traveling wave. In fact, the
degeneracy is a general consequence of the translation- and parity
invariance of the system, i.e., it is guaranteed by the underlying

O(2)-symmetry and can be rigorously proven as the equivariant
Hopf-theorem.49,50

Following the emerging traveling wave branches, we see that,
analogously to the amplitude equation, the (n = 1)-branch is
unconditionally stable, whereas branches for higher n are at first
unstable but stabilize in a sequence of Hopf bifurcations. With the
exception of the (n = 2)-branch, where the numerical precision is
not sufficient to unambiguously tell, the degeneracy is partly lost,
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i.e., the (n = 3)-branch stabilizes in four consecutive Hopf bifurca-
tions, where at each only one complex conjugate pair of eigenvalues
crosses the imaginary axis. In the case of the amplitude equation, the
degeneracy is due to the relative sign of the superposed harmonic
mode having no impact, i.e., the superpositions of the contributing
modes {k2, k1} and {k2, −k1} behave identically. In the case of the
full dynamics, this would mean that the superposition of a right-
traveling wave with a left-traveling wave behaves analogously to the
superposition of a right-traveling wave with a right-traveling wave.
As the corresponding degeneracy is not seen in the full dynamics,
we speculate that it will also be lifted if the weakly nonlinear analysis
is expanded up to a higher-order.

Figures 4(c)–4(e) show three examples of traveling wave states
obtained by numerical continuation. The underlying gray lines show
the steady states as obtained from the imaginary and real part of
the corresponding solution of the amplitude equation, demonstrat-
ing that they also quantitatively match. Note that further away from
the primary instability, the traveling waves are deformed, i.e., they
do not have an exact harmonic shape as predicted by the ampli-
tude equation. The inset of Fig. 4(b) shows that the velocity of

the traveling waves does not depend on the control parameter and
scales linearly with the periodicity n. This quantitatively agrees
with the dispersion relation that yields the traveling wave velocity
vtw = �(kn)/kn = ωkn.

Next, we discuss time simulations performed close to the crit-
ical point, here at µ = 1/16, to verify that the amplitude equation
also correctly reflects the transient dynamics from an arbitrary ini-
tial condition toward a stable traveling wave. We chose the domain
size l = 50π in contrast to l = 20π in Fig. 4, such that the previous
analytical consideration predicts, that the (n = 4)-traveling wave is
the stable solution with the largest wavenumber. Figures 5(a)–5(f)
show space–time plots for various initial conditions, namely, (top)
white noise, (center) an unstable (n = 6)-traveling wave solution
and (bottom) an (n = 4)-standing wave solution. The latter two are
superposed with white noise of small amplitude (∼10−3). Panels
(b1), (d1), and (f1) show the field ua predicted from the ampli-
tude equation, whereas panels (b2), (d2), and (f2) show the full
dynamics of u. As we cannot visually resolve all oscillations over the
whole simulation time, we show intermediate time intervals at crit-
ical times, i.e., when transitions occur. With the exception of (e),

FIG. 6. Space–time plots for the amplitude Im(a) [panels (a) and (c)], the approximate dynamics for ua obtained from the amplitude equation [panels (b1) and (d1)] and
the full dynamics u of the NRCH model [panels (b2) and (d2)] with white noise initial condition (∼10−3) at µ = 0.28 (first row) and µ = 0.32 (second row) and l = 20π .
Panel (e) shows the temporal evolution of the L2-norm ‖u‖L2 of the middle (right)column as dashed (solid) lines as well as their signed relative deviation. The blue line that
corresponds to panel (b) ends at t = 1600 as the numerical simulation has already converged to a stationary state. The spatial discretization consists of 512 points and the
adapted timestep is usually around 8 × 10−4 for the full dynamics and 3 × 10−3 for the amplitude equation.
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we only show Im(a) and u because Re(a) and v are qualitatively
similar due to the underlying symmetries. For all initial conditions,
the adapted timestep for the amplitude dynamics is persistently
around one order of magnitude larger than for the full model, which
roughly coincides with the ratio between fast and slow timescale of
ε2 = µ = 1/16.

As u and ua are visually indistinguishable in all panels, we con-
clude that the dynamics is well described by the amplitude equation,
even after long simulation times. All the considered initial condi-
tions settle to the (n = 4)-traveling wave state. Simulations with
white noise are repeated 10 times (not shown) and always yield
the same final state, with left- and right-traveling waves appearing
approximately equally often. This indicates that the basin of attrac-
tion of the (n = 4)-solution is large compared to the one of the stable
traveling wave states of lower periodicity. This is supported by the
fact that it has the largest growth rate in the linear regime.

In the case of the unstable (n = 6)-traveling-wave in Figs. 5(c)
and 5(d), one observes that it does not transition to an interme-
diate (n = 5)-state, but after nearly staying the same until t ≈ 5
× 103 directly transitions into the (n = 4)-state. The standing wave
solution in panels (e) and (f) also remains nearly unchanged until at
t ≈ 104, it transitions into a traveling wave. As the standing wave
initial condition here corresponds to a zero real part of the ampli-
tude, real and imaginary parts show qualitatively different behaviors.
The imaginary part stays unchanged and the real part grows until
it reaches the same magnitude at t ≈ 1.5 × 104. As expected for a
single-mode state, real and imaginary parts of the amplitude are
phase shifted by π/2.

In Fig. 5(g), we compare the temporal evolution of the
L2-norm, Eq. (36) between the dynamics reconstructed from the
amplitude equation and determined with the underlying NRCH
model. The largest relative error (‖ua|‖L2 − ‖u|‖L2)/‖u|‖L2 is
smaller than 10% and occurs during the transition regime at
t ≈ 5000, whereas it almost vanishes for the final states. To conclude
the discussion of the behavior close to the onset of the instability,
we emphasize that time simulations have to be treated with special
care when judging the stability of time periodic states. Despite being
unstable, all intermediate states in panels (b), (d), and (f) of Fig. 5
stay qualitatively unchanged for many temporal periods, here up
to 50 periods for the standing wave state. This is not unique to the
conserved-Hopf bifurcation as any multiscale analysis aims to sepa-
rate a slow transient at the onset of instability. However, here the lin-
ear Schrödinger-type relationship between fast and slow timescales
causes intricate transient oscillations on the fast timescale. In con-
trast to this, in panels (a), (c), and (e) of Fig. 5, i.e., on the slow
timescale, the dynamics looks surprisingly simple.

Finally, we briefly demonstrate that further away from the
onset of the instability we start to see qualitative differences between
the amplitude equation and the full dynamics. Following the previ-
ous discussion of the bifurcation analysis, we note in Fig. 4 that at
µ = 0.28 both models predict the (n = 4)-traveling wave state to be
unstable. At µ = 0.32 though, the amplitude equation predicts it to
have stabilized, whereas the full model predicts it to be still unstable
(see the dotted vertical lines in Fig. 4). The result of time simulations
at these two µ-values with white noise initial conditions is displayed
in Fig. 6. The observed final states are in all cases in line with the
stability results of the respective bifurcation analysis.

Figures 6(a) and 6(b) at µ = 0.28 retain the qualitative agree-
ment between amplitude and full dynamics. Note that during the
formation of the pattern, i.e., at t ≈ 350 intermediate (n = 4)-
structures appear that due to their instability later give way to
the final (n = 3)-state. These (n = 4)-structures similarly appear
in Figs. 6(c) and 6(d) at µ = 0.32, with the difference that they
are stable and represent the final state obtained with the ampli-
tude equation, but not with the full model. Until t ≈ 500, panels
(d1) and (d2) look qualitatively similar. Although both then transi-
tion into an (n = 4)-traveling wave state, there the full dynamics in
panel (d2) starts to show a modulation, i.e., individual peaks become
thinner (wider) and higher (lower) with a higher period than the
traveling wave, until at t ≈ 1500 two peaks merge and the dynam-
ics settles to a stable (n = 3)-traveling wave state. This is also visible
in the temporal evolution of the L2-norm in Fig. 6(e), as for both
cases, the curves for reconstructed and full dynamics qualitatively
agree until t ≈ 1500. Consequently, the relative error is below 5%
with the exception of the final state in (d), where the deviation is
approximately 15%.

VI. LEADING ORDER AMPLITUDE EQUATION:

GENERIC CASE

As shown in Ref. 16, a scalar (multi-field) model that features
a conserved-Hopf instability, i.e., a large-scale oscillatory instability
involving two conservation laws, can in the vicinity of the insta-
bility’s onset always be reduced to a dynamical equation for two
conserved scalar order parameter fields with nonlinearities up to
third order in the fields. The NRCH model (2) we treated in Sec. III
has an additional “odd” field-exchange symmetry (u, v) → (−v, u).
In consequence, the resulting nonlocal amplitude equation (16) has
a gradient dynamics structure that is not generic as will be shown
next.

To treat the generic case, we break the mentioned field-
exchange symmetry by considering the system

∂tu = ∂xx(−σ1u + u3 − ∂xxu − (ρ + α)v),

∂tv = ∂xx(−σ2v + v3 − κ∂xxv − (ρ − α)u), (37)

with
1

l

∫ l

0

u dx = ū and
1

l

∫ l

0

v dx = v̄.

Note that we do not use the general system obtained in Ref. 16.
Instead, to keep the calculations manageable, we only additionally
introduce the rigidity ratio κ and a reciprocal linear coupling of
strength ρ besides the nonreciprocal one of strength α. Further, we
use two different self-interactions σ1 and σ2. (Although, in principle,
one could still eliminate one of the σ ’s via a proper rescaling of time,
we abstain from doing this as it is advantageous if both these param-
eters are able to smoothly cross zero. Specifically, all nondegenerate
cases could be rescaled such that σ1 = ±1.)

Furthermore, non-zero mean concentrations ū, v̄ break the
field inversion symmetry (u, v) → (−u, −v) that equivalently can
be broken by introducing quadratic nonlinearities, i.e., one may
employ an affine transformation (u, v) → (u − ū, v − v̄) to retain
zero mean values but incorporate quadratic nonlinearities 3ūu2 and
3v̄v2.
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Linearizing about the trivial state (u, v) = (ū, v̄) and expanding
for k � 1 yields the dispersion relation (1) of the conserved-Hopf
instability (see Appendix B 1). In contrast to Sec. III, here, the
coefficients are

µ = σ1 + 3ū2 + σ2 + 3v̄2

2
, δ′ = 1 + κ

2
,

ω =
√

α2 − ρ2 − c2 and ω′ = c(1 − κ)

2ω
,

where c = σ1 + 3ū2 − σ2 − 3v̄2

2
.

(38)

Breaking the field inversion symmetry results in rather tedious
calculations. Therefore, next, we focus on the case of zero mean val-
ues, i.e., Eq. (37) with ū = v̄ = 0. The consequences of lifting this
restriction are discussed in the conclusion.

A. General case with field inversion symmetry

Proceeding analogously to the minimal example in Sec. III, we
obtain an amplitude equation of similar form as the previous ampli-
tude equation (17). However, due to the more general setting, the
inner gradient term and the nonlinearity pick up prefactors that
algebraically depend on the parameters in Eq. (38). Again, applying
a Fredholm alternative at order ε5, we obtain as amplitude equation

∂ta = ∂xx

[

−µa − ν∂xxa + 3

2
γ
(

2a〈|a|2〉 − F
−1[ã|ã|2]

)

]

, (39)

with the complex coefficients

ν = δ′ − iω′ and γ = 1 − i
cρ

αω
, (40)

where the expressions are derived in Appendix B 2. Note that the
fields in Eq. (37) are scaled such that the cubic nonlinearities have
prefactor one. For the amplitude equation, this implies Re γ = 1.

The dynamics of the amplitudes a(x, t) is related to the original
dynamics via the linear Schrödinger-type relation

u(x, t) = eiωt∂xx a(x, t)e++ e−iωt∂xx a∗(x, t)e−,
(41)

with e± =
√

α − ρ

2α

(

c±iω
α−ρ
1

)

.

Here, we only discuss key properties of Eq. (39) and leave an
exhaustive study of its solutions and their stability for the future.
First, we note that linearizing (39) about the trivial solution a = 0,
we obtain the dispersion relation λ(k2) = k2µ− νk4 = k2µ− δ′k4

− iω′k4, which corresponds to Eq. (37) without the fast timescale
oscillation ∼iωk2. In other words, again, the fast timescale is fully
separated and the equation only captures the slow timescale dynam-
ics that may now include oscillations.

In the generic case, ν and γ are complex parameters and, there-
fore, the gradient dynamics structure shown by Eq. (16) is lost in
Eq. (39). However, Eqs. (38) and (40) reveal two nongeneric cases,
where the amplitude equation has a gradient dynamics structure and
reduces to Eq. (16): First, if simultaneously reciprocal interactions
are absent (ρ = 0) and the two fields have equal rigidity (κ = 1), and
second if the self-interactions are symmetric (σ1 = σ2), see Table I.

Due to the complex coefficients, harmonic solutions (22)
of Eq. (16) become traveling wave states a(x, t) = a0 ei(kx−ft) for
Eq. (39). Inserting this ansatz and treating real and imaginary part
separately, we obtain

Re(39) : 0 = −µ+ k2δ′ + 3

2
|a0|2, (42)

Im(39) : f = k2

(

k2ω′ − 3

2
|a0|2

cρ

αω

)

. (43)

Hence, for a traveling wave with wavenumber k, the amplitude |a0|
is determined by Eq. (42) and then the frequency f is determined
by Eq. (43) and features quartic and quadratic dependencies on
wavenumber. Further, Eq. (42) ensures supercriticality, i.e., all bifur-
cations on the trivial branch are supercritical as |a0|2 = 2(µ− µc)/3
with µc = k2δ′.

In terms of the fields u and v of the full nonrecipro-
cal Cahn–Hilliard model (37), the relative modulation strength
||u||L2/||v||L2 , as well as the phase shift 1φ between u and v are

TABLE I. Summary of special (nongeneric) cases for the parameters of the NRCH model (37) at ū = v̄ = 0, the effect on the dispersion relation (38), and the resulting

parameters in the amplitude Eq. (40). This indicates that there are two independent limiting cases where (40) reduces to (16).
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encoded in the eigenvector e+ in Eq. (41), namely,

||u||L2

||v||L2

=
∣

∣

∣

∣

c ± iω

α − ρ

∣

∣

∣

∣

=
√
ω2 + c2

|α − ρ| =
√

α2 − ρ2

|α − ρ| =
√

∣

∣

∣

∣

α + ρ

α − ρ

∣

∣

∣

∣

, (44)

tan(1φ) =
Im c±iω

α−ρ

Re c±iω
α−ρ

= ω

c
. (45)

Hence, while purely nonreciprocal coupling (ρ = 0) results in
identical modulation strength of u and v, any reciprocal coupling
(ρ 6= 0) gives rise to a difference in modulation strength of the two

original fields. Equally, while identical (symmetric) self-interactions
(σ1 = σ2 → c = 0) result in a phase shift between u and v of π/2,
any corresponding asymmetry (c 6= 0) implies a phase shift that dif-
fers from π/2. Note that the introduced measures (44) and (45) are
well behaved as for a conserved-Hopf instability always |α| > |ρ|.
The nongeneric cases and the resulting consequences for the param-
eters on the amplitude level and the dynamics are summarized in
Table I.

To test our predictions for the generic case, we fix µ = 1/16
as in Fig. 5, i.e., we stay close to the onset of the conserved-
Hopf instability (ε = 1/4), choose a generic set of parameters
and a larger domain l = 100π . The results are shown in Fig. 7.

FIG. 7. Space–time plots of (a) the amplitude Im(a), (b1) the dynamics of ua reconstructed from the amplitude equation and (b2) the full dynamics u1 of the NRCH model,
all with identical white noise initial condition (∼10−1). Panels (c)–(f) show corresponding example profiles at (second row) t = 1.5 × 103 and (third row) t = 8 × 104.
The parameters are σ1 = 17/16, σ2 = −15/16, ρ = 1, α = 2, and κ = 0.1. The corresponding parameters of the amplitude equation areµ = 1/16, ν = 0.55 + 0.318i,
and γ = 1 + 0.354i. Panel (g) shows the temporal evolution of the L2-norm ‖u‖L2 of the middle (right) column as dashed (solid) lines as well as their signed relative deviation.
The domain size is l = 100π with a spatial discretisation of 2048 points and the adapted timestep is usually around 1 × 10−2 for the full dynamics and 1 × 10−1 for the
amplitude equation.
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Again, the reconstructed dynamics obtained via Eqs. (39) and (41)
shows excellent agreement with the full model (37). Both, tran-
sients and the final states, coincide and only at very late times
[t ∼ 8 × 104, panels (f1) and (f2)] the reconstructed and the full
dynamics have run slightly out of phase. Further, we find the
relative modulation strength of the final state, ||u||L2/||v||L2 =
1.733, to be in very good agreement with the theoretical pre-

diction; here

√

∣

∣

∣

α+ρ
α−ρ

∣

∣

∣
=

√
3 = 1.732. Similarly, a numerical esti-

mate of the phase shift gives 1φ = 2.160 also in good agree-
ment with the theoretical prediction of 2.186 obtained from
Eq. (45). Numerically, we calculate the phase shift as cos1φ

=
1
l

∫ l/2
−l/2

uv dx

||u||
L2 ||v||

L2
, which becomes exact, if u and v are harmonic func-

tions, i.e., u = A cos(kx +1φ), ν = B cos(kx).
In contrast to the cases of Figs. 5 and 6, the temporal evolu-

tion of the L2-norms is nonmonotonic and oscillatory during the
transient toward a traveling wave state [Fig. 5(g)] for both the recon-
structed and the full dynamics. This is closely connected to the now
absent gradient dynamics structure of the amplitude equation, i.e.,
due to the complex coefficients. This allows for oscillatory behavior
also on the slow timescale. Although the relative error is sometimes
up to 15% and, therefore, larger than in the simple case treated in
Secs. I–V, even the transient dynamics still qualitatively coincide
[see insets in Fig. 5(g)].

VII. CONCLUSION

We have considered a large-scale oscillatory instability with
conservation laws, i.e., the conserved-Hopf instability, which may
occur in a wide spectrum of systems featuring (at least) two con-
servation laws. Examples of such systems include liquid two-layer
films heated from below51 where spatiotemporal oscillation pat-
terns may be readily observed,27,28 and a full cell polarity model52

that represents a reaction–diffusion (RD) system with more than
one conservation law. Recently, RD systems with conservation
laws gained renewed prominence as they are highly relevant for
spatiotemporal protein patterns in biochemical processes. There,
reactions result in the switching of protein conformations on a
timescale where the overall protein density is conserved, e.g., MinE
and MinD in ATP-driven Min oscillations.12,29,53–55 Further examples
include two-species chemotactic systems,24 mechanochemical waves
in cytoskeleton and cytosol as modeled by active poroelastica,10

oscillations in lipid-protein dynamics in cell membranes,25 as well
as liquid layers covered by self-propelled surfactants.26

Although such an oscillatory instability with conservation laws
has been mentioned in the classification of instabilities in spa-
tially extended systems by Cross and Hohenberg,2 it has not yet
been systematically studied. One may in general say that the role
of conservation laws in pattern formation still holds quite a num-
ber of open questions.56 A recently proposed alternative classifica-
tion of instabilities in homogeneous isotropic systems into eight
categories16,34 (based on three properties: large vs small scale, station-
ary vs oscillatory, and nonconserved vs conserved) focused attention
on the fact that weakly nonlinear theories (amplitude equations)
were developed and analyzed for all of them with the excep-
tion of the conserved-Hopf instability. The general nonreciprocal

Cahn–Hilliard model that was recently derived in Ref. 16 as a
generic weakly nonlinear model valid in the vicinity of a conserved-
Hopf instability (using n-field reaction–diffusion systems with two
conservation laws as specific example to calculate all coefficients)
is not an envelope equation, i.e., it does not reduce the consid-
ered time and/or length scales by describing the time evolution of
the amplitudes of temporal, spatial, or spatiotemporal harmonic
modes. Instead, as pointed out in the discussion of Ref. 16, it rather
corresponds to an amplitude equation (of the zero-mode) on a
higher level of a hierarchy of such universal equations valid in the
vicinity of higher-codimension points. In consequence, it features
other instabilities besides the conserved-Hopf instability, namely,
conserved-Turing and Cahn–Hilliard instabilities (cf. conclusion
and supplementary material of Ref. 16). Amplitude equations that
are not envelope equations can arise at specific points of higher
codimension where no reduction scheme based on scale separa-
tion can be employed. This occurs, e.g., at transitions between an
oscillatory and a stationary instability (there, the critical frequency
approaches zero, i.e., no timescale separation) or between a large-
scale and a small-scale instability (critical wavenumber approaches
zero, i.e., no length scale separation). The argument is further
strengthened by the present work, since the complexity of the inves-
tigated NRCH models could only be reduced far away from a
higher-codimension point, in particular, far away from the transi-
tion point between Cahn–Hilliard instability and conserved-Hopf
instability as there the NRCH model is its own amplitude equation.16

The general nonreciprocal Cahn–Hilliard model derived in Ref. 16
is closely related to the model proposed for oscillatory phase separa-
tion by Förtsch and Zimmermann, as documented in Ref. 42 [their
GTOPS model in the forms of their Eqs. (9.3) or (9.4), also called
CHEOPS57]. The various models with simpler local contributions
to the (non)equilibrium chemical potentials and constant mobili-
ties analyzed in Refs. 30–35 and 40 all correspond to special cases of
the model derived in Ref. 16 (see their supplementary material). The
simplest version that still retains the conserved-Hopf instability, fea-
tures a fully linearized second equation and purely linear couplings
between fields,38,39,41,42 and is called “Minimal Model” in Ref. 42. It
corresponds to the conserved equivalent of a FitzHugh–Nagumo
reaction–diffusion model.

In constrast to all these studies, the present work provides
a derivation and first analysis of the amplitude equation for the
conserved-Hopf instability on the lowest hierarchy level, i.e., the
“missing” number eight. It is an amplitude equation that corre-
sponds to an envelope equation, i.e., it properly reduces the con-
sidered time scales by describing the evolution on the slow timescale
of the amplitude of fast harmonics. Now, the obtained versions of
the equation can be employed to investigate in depth the universal
behavior in the vicinity of the instability onset. A key observation
on the linear level has been that in the conserved case, the slow and
the fast dynamics of the amplitude equation and the original sys-
tem, respectively, are related via a linear Schrödinger equation, i.e.,
reconstructing the full multi-scale dynamics from the dynamics of
the complex amplitude obtained in the weakly nonlinear model is
similar to applying a quantum-mechanical time evolution opera-
tor in the case of a free-particle hamiltonian. It will be interesting
to investigate in the future whether this analogy can be further
exploited.
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We have obtained the amplitude equation as a result of an
intricate calculation up to fifth order. We have discussed it in two
flavors: First, we have considered a nonreciprocal Cahn–Hilliard
model with a field-exchange symmetry and purely nonreciprocal
coupling and obtained the evolution equation (16) for the com-
plex amplitude that features only real coefficients and has a gradient
dynamics form. Second, breaking the field-exchange symmetry, we
have obtained the evolution equation (39) for the complex ampli-
tude that features complex coefficients and is nonvariational. In
both cases, we have still assumed that the two fields of the full
model have zero mean value. In Appendix B 3, we sketch the cal-
culation for the case when this restriction is lifted. Conceptually,
one again obtains an amplitude equation at order ε5 with addi-
tional terms arising from the quadratic nonlinearity. However, as
these terms are rather involved their practical use seems quite lim-
ited. The approach may now be used to analyze such equations for
all mentioned versions of the nonreciprocal Cahn–Hilliard model
and other more complicated models that show the conserved-Hopf
instability.

Note that the operator-like relation between the levels of
description was also noted by Förtsch and Zimmermann.42,57 How-
ever, in contrast to our exact approach resulting in Eqs. (16)
and (39), they Taylor-expand and truncate the exponential operator
to finally obtain a local amplitude equation with ten complex param-
eters [Eq. (10.23) of Ref. 42] that is hard to analyze in general but still
features analytic insights into certain simplified cases. It would be
instructive to see a quantitative comparison of their reduced models
and the dynamics of the full model.

The here-obtained amplitude equation has only a few param-
eters but features two types of nonlocal terms: one involves the
mean value of a squared amplitude and the other is cubic in Fourier
space, i.e., corresponds to a double convolution. Terms similar to the
first one have also been discussed by Knobloch18 for counterpropa-
gating wavetrains with velocities of order one in systems without
conservation laws. There, the resulting amplitude equations are two
complex Ginzburg–Landau equations with mean-field coupling.58

Such equations are also derived in the context of waves along certain
combustion fronts.59

Analyzing the two obtained amplitude equations, we have
found that the version with real coefficients has a variational struc-
ture, i.e., can be written as a gradient dynamics on the underlying
energy functional (19). Further, we have shown that all its steady
states can be analytically obtained as combinations of harmonic
modes with amplitudes given as solutions of an inhomogeneous lin-
ear system of equations. They correspond to various wave states
of the full dynamics. The energy functional allows one to predict
which wave state will ultimately be selected in a long-time limit.
For wave number q, the single-mode states correspond to a mean

energy density of G/l = −(µ− q2)
2
/3, i.e., the domain-filling mode

always ultimately dominates. The full spectrum of all energies of
steady states included in Fig. 4(a) is given in Fig. 8 using identical
line styles. We believe that the two-mode state that bifurcates from
a one-mode state at the respective final stabilizing pitchfork bifur-
cation corresponds to the threshold state that has to be overcome to
transition to a state of lower energy. Therefore, the corresponding
nondimensional energy difference 1G will allow one to obtain an
estimate for the probability of remaining in a local energy minimum

FIG. 8. Energy density G/l, i.e., Eq. (19), for all steady states of the amplitude
equation (16) that are included in Fig. 4(a) shown here with identical line styles.

[as 1 − exp(−1G)]. Additionally, we have determined the linear
stability of single-mode states. The obtained dispersion relation for
perturbations of the single-mode state shows that it is a stationary
large-scale instability not unlike the Eckhaus instability,3 however,
with a different prefactor in the condition for onset and a different
meaning of the wavenumber of the considered mode. For the Eck-
haus instability, it corresponds to the offset with respect to the
finite critical wavenumber while here it is the offset with respect
to zero. A subsequent comparison of analytically and numerically
obtained bifurcation diagrams for the steady states of the ampli-
tude equation and the traveling waves of the full model, respectively,
has shown excellent agreement with only small differences emerg-
ing when moving away from the onset of the first mode. We have
also compared transient dynamics for various initial conditions
and also found very good agreement. Further, in our time simu-
lations on the level of the amplitude equation, we have observed
the expected reduction in numerical effort as compared to the full
model. The expected ratio of characteristic timesteps on the two lev-
els of description roughly corrresponds to the factor ε2 between fast
and slow timescales.

The generic amplitude equation with complex coefficients has a
nonvariational structure. Here, we have only analytically determined
single-mode traveling wave states of the amplitude equation. Fur-
ther, we have compared the transient toward such a state as obtained
from the reconstructed dynamics of the amplitude equation and
from the full model. Also, here the agreement has been very good. A
discussion of further states and of their stability is left for the future.
It will be particularly interesting to explore whether the derived
complex equation allows for chaotic dynamics similar to its coun-
terpart for nonconserved dynamics, the complex Ginzburg–Landau
equation.17

In general, we believe that the approach can be further devel-
oped in several directions: On the one hand, employing a more gen-
eral scaling (i.e., not fixing the prefactors of the cubic terms to one),
one can assess how the amplitude equation simplifies when con-
sidering the above discussed simplest version of the NRCH model
that still retains the conserved-Hopf instability, recently analyzed in
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some detail in Ref. 41. One the other hand, further cubic coupling
terms may be introduced into the derivation, e.g., to assess how the
parameters of the complex amplitude equation change when con-
sidering the complex Cahn–Hilliard equation that is a limiting case
of a model studied in Ref. 60 or other versions of the NRCH model
considered in Refs. 30–32, 40, and 61.

Finally, we point out that Ref. 27 presents a review of
mainly hydrodynamic models with conservation laws that show
large-scale oscillatory behavior “outside the world of the complex
Ginzburg–Landau equation.” Specifically, similar oscillatory insta-
bilities as the one discussed here occur in a liquid confined between
two plates in Refs. 27 and 62, where the conservation of a con-
centration field and the approximate conservation of temperature
in the limit of small Biot numbers can give rise to a large scale
oscillatory instability. References 27 and 62 discuss several weakly
and strongly nonlinear approaches, and it will be interesting to
determine detailed relations to the here discussed real and complex
versions of the amplitude equation for the conserved-Hopf instabil-
ity. In particular, Ref. 62 presents an amplitude equation that has a
limiting case similar to the equation obtained and analyzed here.

Overall, the approach we have presented may prove useful to
gain a more unified understanding of all mentioned cases of large-
scale oscillatory pattern formation.
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APPENDIX A: CLASSIFICATION INTO EIGHT

INSTABILITY TYPES

Table II lists the eight instability types alluded to in Sec. I and
their relation to the traditional classification. Each of eight types is
characterized by the linear modes that dominate at and close to the
corresponding instability threshold. Here, we also follow the nam-
ing convention given in the table. The traditional classification by
Cross and Hohenberg2 only distinguishes six cases. It is included for
reference. We remark that the statement “type II can often be scaled
to resemble type I” on page 870 of Ref. 2 is not correct, otherwise
Cahn–Hilliard and Swift–Hohenberg equations would have similar
dynamics close to onset. Furthermore, their remarks on frequencies
in the context of the oscillatory case II should be replaced by the
present discussion in Sec. II.

APPENDIX B: CALCULATIONS FOR THE GENERIC

CASE

In Sec. III, we have explained how to derive the ampli-
tude equation (16) as weakly nonlinear model in the vicinity of
a conserved-Hopf bifurcation for a nonreciprocal Cahn–Hilliard

TABLE II. Overview of the classification and employed naming convention of linear instabilities and corresponding bifurcations of spatially extended homogeneous isotropic

systems based on the three dichtomous properties: large-scale (L) vs small-scale (S) instability, stationary (s) vs oscillatory (o) instability, and nonconserved (N) vs conserved

(C) dynamics of relevant linear mode(s). For comparison, in parentheses, the (incomplete) classification of Cross and Hohenberg2 is also given. Reprinted with permission from

Frohoff-Hülsmann and Thiele, Phys. Rev. Lett. 131, 107201 (2023).16 Copyright 2024 the American Physical Society. Also, see the discussion in Ref. 34.

Nonconserved dynamics Conserved dynamics

Homogeneous/large-scale, stationary Allen–Cahn (IIIs) Cahn–Hilliard (IIs)
Homogeneous/large-scale, oscillatory Hopfa (IIIo) Conserved-Hopf (IIo)
Small-scale, stationary Turing (Is) Conserved-Turing (–)
Small-scale, oscillatory Waveb (Io) Conserved-wave (–)

aAlso known as “Poincaré–Andronov–Hopf.”
bAlso called “finite-wavelength Hopf” or “oscillatory Turing.”
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model with a field inversion symmetry and an additional field-
exchange symmetry. Here, we generalize the procedure to the case
where the field-exchange symmetry is broken, i.e., we show how
to obtain the version with complex coefficients (39) as amplitude
equation in the vicinity of the conserved-Hopf bifurcation for the
more general nonreciprocal Cahn–Hilliard model (37).

1. Dispersion relation

Inserting the ansatz u = u0 + ε eikx+λtδu, with u0 = (ū, v̄) into
(37) and linearizing in ε yields the linear eigenvalue problem

λδu = k2

(

σ1 + 3ū2 − k2 (ρ + α)

(ρ − α) σ2 + 3v̄2 − κk2

)

δu, (B1)

with eigenvalues

λ1,2(k
2) = k2

[

µ− δ′k2 ±
√

(c − c̃ k2)
2 + ρ2 − α2

]

, (B2)

where we introduced

µ = σ1 + 3ū2 + σ2 + 3v̄2

2
, δ′ = 1 + κ

2
,

c = σ1 + 3ū2 − σ2 − 3v̄2

2
, c̃ = 1 − κ

2
.

(B3)

The condition for large-scale oscillatory modes is a negative discrim-
inant at k2 � 1, i.e., the contribution of the nonreciprocal coupling
α2 has to be sufficiently large. Expanding the root in (B2) for k2 � 1,
we obtain

λ1,2(k
2) = k2

[

µ− δ′k2 ± i
(

ω − ω′ k2
)]

, (B4)

where we have furthermore introduced

ω =
√

α2 − ρ2 − c2, ω′ = cc̃

ω
. (B5)

This corresponds to the dispersion relation (1) without the O(k6)

terms that are not relevant for our calculation. The system is close to
the onset of a conserved-Hopf instability if |µ| � 1 and ω = O(1).

2. Case of intact field inversion symmetry

First, we retain the field inversion symmetry by assuming
v̄ = ū = 0. Using the introduced parametrization, the system reads

∂tu = D∂xxu − D2∂xxxxu + ∂xxN3(u)− µ∂xxu,

with D =
(

c −(ρ + α)

−(ρ − α) −c

)

, D2 =
(

1 0
0 κ

)

, (B6)

and N3(u) =
(

u3

v3

)

.

Then, we again formally expand the field in orders of ε =
√

|µ|
and introduce the scalings ∂t = ε2∂τ + ε4∂T and ∂x = ε∂X with
u = εu1(X, τ , T)+ h.o.t. We start solving Eq. (B6) order by order.
The linear equation arising at O(ε3) reads

Lu1 = 0, with L = 1∂τ − D∂XX. (B7)

This equation is of linear Schrödinger-type and solved by

u1 = eiωτ∂XXA(X, T)e++c.c.,

e± =
√

α − ρ

2α





c ± iω

α − ρ

1



 ,
(B8)

where e± are normalized eigenvectors of D with eigenvalues ±iω. To
apply the Fredholm alternative at higher orders, we need the kernel
of the adjoint linear operator L† = −1∂τ − D†∂XX. The modes in the
kernel are given by

m = eiωτ∂XX B(X)e
†
++e−iωτ∂XX C(X)e

†
−,

(B9)

with e
†
±=
√

α + ρ

2α

(−c±iω
α+ρ
1

)

,

where e
†
± are eigenvectors of D† with eigenvalues ∓iω. Further note

that 〈e†
+; e−〉 = 0. Hence, we can project Eq. (B8) onto the amplitude

A(X̂, T) using B(X) = δ(X − X̂) and C(X) = 0.
At O(ε5), we obtain the system

Lu3 = −D2∂XXXXu1 − µ̃∂XXu1 − ∂Tu1 + ∂XXN3(u1). (B10)

As in the main text, we treat linear and nonlinear terms separately.
For the linear terms, the Fredholm alternative yields

0 = 〈eiωτ∂XXδ(X − X̂)e
†
+; (−D2∂XXXXu(1) − µ̃∂XXu(1) − ∂Tu1)e+〉

⇔ 〈e†
+; e+〉∂TA = −〈e†

+; D2e+〉∂X̂X̂X̂X̂A − 〈e†
+; e+〉µ̃∂X̂X̂A.

(B11)
Next, we deal with the cubic contributions ∂XXN3(u). Expressed by
the amplitudes, they read

∂XXN3(u) = ∂XX

(

u3
1

v3
1

)

= ∂XX

[

(

eiωτ∂XXA(X, T)
)3

w(1)

+ 3
(

e−iωτ∂XX A∗(X, T)
) (

eiωτ∂XX A(X, T)
)2

w(2)

+ 3
(

e−iωτ∂XX A∗(X, T)
)2 (

eiωτ∂XX A(X, T)
)

w(3)

+
(

e−iωτ∂XX A∗(X, T)
)3

w(4)
]

, (B12)

where w(i) are given by

w(1) =
(

(e+)
3
1

(e+)
3
2

)

, w(2) =
(

(e+)
2
1(e−)1

(e+)
2
2(e−)2

)

,

w(3) =
(

(e+)1(e−)
2
1

(e+)2(e−)
2
2

)

, and w(4) =
(

(e−)
3
1

(e−)
3
2

)

. (B13)
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The Fredholm alternative for the term ∼w(2) then yields the contribution

3
〈

eiωτ∂XXδ(X − X̂)e
†
+; ∂XX

(

e−iωτ∂XX A∗(X, T)
) (

eiωτ∂XX A(X, T)
)2

w(2)
〉

= 3

2

〈

eiωτ∂XX
∑

Q

eiQ(X−X̂)e
†
+; ∂XX

(

e−iωτ∂XX
∑

K

Ã∗(K, T) e−iKX

)(

eiωτ∂XX
∑

K

Ã(K, T) eiKX

)2

w(2)

〉

= 3�min

L
〈e†

+; w(2)〉
∑

Q,K,K′ ,K′′
eiQX̂Ã∗(K, T)Ã(K′, T)Ã(K′′, T)

(

−Q2
)

∫ 1/�min

0

eiωτ(Q2+K2−K′2−K′′2) dτ

∫ L

0

eiX(−Q−K+K′+K′′) dX

= 3〈e†
+; w(2)〉

[

2
∑

Q

eiQX̂(−Q2)Ã(Q, T)
∑

K

Ã∗(K, T)Ã(K, T)−
∑

eiQX′
(−Q2)Ã(Q, T)Ã(Q, T)Ã∗(Q, T)

]

= 3〈e†
+; w(2)〉∂X̂X̂

(

2F−1[Ã(K, T)
∑

K′
|Ã(K′, T)|2] − F

−1[Ã(K, T)|Ã(K, T)|2]
)

. (B14)

Collecting all terms and introducing the original scales, we obtain the amplitude equation

∂ta = ∂xx

[

−µa − ν∂xxa + 3

2
γ
(

2a〈|a|2〉 − F
−1[ã|ã|2]

)

]

, (B15)

where the general complex coefficients are given as

ν = 1

〈e†
+; e+〉

〈e†
+; D2e+〉 = δ′ − iω′,

γ = 2

〈e†
+; e+〉

〈e†
+; w(2)〉 = 1 − i

cρ

αω
.

(B16)

The particular coefficients arise from the NRCH model (37), i.e.,

〈e†
+; e+〉 =

√

α + ρ

2α

√

α − ρ

2α

(−c − iω

α + ρ

c + iω

α − ρ
+ 1

)

=
√

α2 − ρ2

2α

ω2 − c2 + α2 − ρ2 − 2iωc

α2 − ρ2
= ω2 − iωc

α
√

α2 − ρ2
,

〈e†
+; D2e+〉 =

√

α + ρ

2α

√

α − ρ

2α

(−c − iω

α + ρ

c + iω

α − ρ
+ κ

)

=
√

α2 − ρ2

2α

ω2 − c2 + κ(α2 − ρ2)− 2iωc

α2 − ρ2

=
ω2 (1+κ)

2
− c2 (1−κ)

2
− iωc

α
√

α2 − ρ2

=⇒ ν =
ω2 (1+κ)

2
− c2 (1−κ)

2
− iωc

ω2 − iωc

= 1

ω4 + ω2c2

[

ω4 (1 + κ)

2
+ ω2c2 (1 − κ)

2
+ ω2c2 + iωc

(

ω2 (1 + κ)

2
− c2 (1 − κ)

2
− ω2

)]

= δ′ − iω′, (B17)
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〈e†
+; w(2)〉 =

√

α + ρ

2α

√

α − ρ

2α

3
[

−c − iω

α + ρ

(

c + iω

α − ρ

)2
c − iω

α − ρ
+ 1

]

=
√

α2 − ρ2(α − ρ)

4α2

[

(ω2 + c2)(ω2 − c2 − 2iωc)

(α2 − ρ2)(α − ρ)2
+ 1

]

=
√

α2 − ρ2

4α2(α − ρ)

[

ω2 − c2 − 2iωc + (α − ρ)2
]

=
√

α2 − ρ2

2α2(α − ρ)

[

α2 − c2 − ρα − iωc
]

=⇒ γ = 2(α2 − ρ2)

2α(α − ρ)

α2 − c2 − ρα − iωc

ω2 − iωc

= α + ρ

αω

1

ω2 + c2

[

ωα2 − ωc2 − ραω + ωc2 + iωc(α2 − c2 − ρα − ω2)
]

= 1 − i
cρ

αω
.

3. Case of broken field inversion symmetry

Finally, we break the field inversion symmetry by assuming v̄ 6= 0 and ū 6= 0. We use an affine transformation (û(x, t), v̂(x, t))
= (u(x, t)− ū, v(x, t)− v̄), where the new fields (with hat) represent the deviations from the average of the old fields. From Eq. (37), we
obtain the system

∂tû = ∂xx

[

(σ1 + 3ū2)û + 3ūû2 + û3 − ∂xxû − (ρ + α)v̂
]

,

∂tv̂ = ∂xx

[

(σ2 + 3v̄3)v̂ + 3v̄v̂2 + v̂3 − κ∂xxv̂ − (ρ − α)û
]

, (B18)

with
1

l

∫ l

0

û dx = 0 and
1

l

∫ l

0

v̂ dx = 0,

where we already dropped all constant terms from the brackets as they are eliminated by the outer derivatives. Dropping the hats, the system
reads

∂tu = D∂xxu − D2∂xxxxu + ∂xxN2(u)+ ∂xxN3(u)− µ∂xxu,

with N2(u) =
(

3ūu2

3v̄v2

)

.
(B19)

The remaining expressions (D, D2, N2(u)) are as in Eq. (B6), i.e., the quadratic nonlinearity ∂xxN2(u) is the only difference to the previous
case. The linear problem at O(ε) is the same as before. However, now we have to refine our ansatz to u = εu1 + ε2u2 to deal with the
inhomogeneity that appears at O(ε4), where the corresponding equation reads

Lu2 = ∂XXN2(u1). (B20)

The Fredholm alternative at O(ε4) is automatically fulfilled. To demonstrate this, we pick an arbitrary quadratic term in the amplitudes
that arises after inserting the amplitudes u1 into N2(u1(X, τ , τ ′)) and multiplying out the binomial,

〈

m; ∂XX

(

e−iω̂τA∗(X, T)
) (

eiω̂τA(X, T)
)

w̃
〉

=
〈

eiωτ∂XX
∑

Q

eiQ(X−X′)e
†
+; ∂XX

(

e−iωτ∂XX
∑

K

Ã∗(K, T) e−iKX

)(

eiωτ∂XX
∑

K

Ã(K, T) eiKX

)

w̃

〉

∼
∑

Q,K,K′
eiQX′

Ã∗(K, T)Ã(K′, T)
(

−(Q)2
)

∫

eiωτ(Q2+K2−K′2) dτ

∫

eiX(Q+K−K′) dX. (B21)
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Hence, nonzero contributions have to fulfill

Q2 + K2 − K′2 = 0 and Q + K − K′ = 0, (B22)

which can only hold if either Q = 0 and K = K′ or K = 0 and Q = K′. The two terms do not contribute as the first one vanishes due to the
factor Q2 in (B21) and the second one as Ã∗(0, T) = 0. A similar argument holds for all contributions in N2. Hence, the solvability conditon is
always fulfilled. In other words, there is no nontrivial elastic 1 → 2 or 2 → 1 scattering process of particles with equal mass in one dimension.

To solve the inhomogeneous linear partial differential equation (PDE) (B20) at O(ε4), we insert the Fourier-transformed amplitudes
into N2 and express the vectorial parts in the basis {e+, e−},

N2 =
(

3ūu2
1

3v̄v2
1

)

=
∑

K′K′′
A(K′)A(K′′) eiX(K′+K′′) e−iωτ(K′2+K′′2)

(

3ū(e+)
2
1

3v̄(e+)
2
2

)

+ 2
∑

K′K′′
Ã(K′)Ã∗(K′′) eiX(K′−K′′) e−iωτ(K′2−K′′2)

(

3ū(e+)1(e−)1

3v̄(e+)2(e−)2

)

+
∑

K′K′′
Ã∗(K′)Ã∗(K′′) eiX(−K′−K′′) eiωτ(K′2+K′′2)

(

3ū(e−)
2
1

3v̄(e−)
2
2

)

=
∑

K′K′′
Ã(K′)Ã(K′′) eiX(K′+K′′) e−iωτ(K′2+K′′2)(η1e++η2e−)

+ 2
∑

K′K′′
Ã(K′)Ã∗(K′′) eiX(K′−K′′) e−iωτ(K′2−K′′2)(η3e++η∗

3e−)

+
∑

K′K′′
Ã∗(K′)Ã∗(K′′) eiX(−K′−K′′) eiωτ(K′2+K′′2)(η∗

2e++η∗
1e−), (B23)

where the coefficients are given by

η1 = 3α

iω
(ū(e+)

2
1(e−)2 − v̄(e+)

2
2(e−)1),

η2 = −3α

iω
(ū(e+)

2
1(e+)2 − v̄(e+)

2
2(e+)1),

η3 = 3α

iω
(v̄(e+)2(e−)2(e−)1 − ū(e+)1(e−)1(e−)2).

(B24)

The occurence of the complex conjugated factors arises from the fact that N2 ∈ R
2.

We can then find a solution for each contribution, e.g., for the first term, we employ the ansatz

u2 ∼
∑

K′K′′
f(K′, K′′) eiX(K′+K′′) e−iωτ(K′2+K′′2)e+. (B25)

Then, applying L, we obtain

Lu2 =
∑

K′K′′
f
(

K′, K′′)iω
[

(

K′ + K′′)2 −
(

K′2 + K′′2)
]

eiX(K′+K′′) e−iωτ(K′2+K′′2)e+, (B26)

and comparison to the first term in ∂XXN2 yields that

f(K′, K′′) = η1

iω
Ã(K′)Ã(K′′)

−(K′ + K′′)2

(K′ + K′′)2 − (K′2 + K′′2)
. (B27)
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Therefore, we find the solution

u2 =
∑

K′ ,K′′

1

iω

{

Ã(K′)Ã(K′′) eiX(K′+K′′) e−iωτ(K′2+K′′2)(K′ + K′′)
2

[

η1

(K′2 + K′′2)− (K′ + K′′)2
e++ η2

(K′2 + K′′2)+ (K′ + K′′)2
e−

]

+ 2Ã(K′)Ã∗(K′′) eiX(K′−K′′) e−iωτ(K′2−K′′2)(K′ − K′′)
2

[

η3

(K′2 − K′′2)− (K′ − K′′)2
e++ η∗

3

(K′2 − K′′2)+ (K′ − K′′)2
e−

]

+ Ã∗(K′)Ã∗(K′′) eiX(−K′−K′′) e−iωτ(−K′2−K′′2)(K′ + K′′)
2

[

η∗
2

(K′2 + K′′2)+ (K′ + K′′)2
e++ η∗

1

−(K′2 + K′′2)+ (K + K′′)2
e−

]}

=
∑

K′ ,K′′

1

2iω

{

Ã(K′)Ã(K′′) eiX(K′+K′′) e−iωτ(K′2+K′′2)(K′ + K′′)
2

[

− η1

K′K′′ e++ η2

K′2 + K′K′′ + K′′2 e−

]

+ 2Ã(K′)Ã∗(K′′) eiX(K′−K′′) e−iωτ(K′2−K′′2)(K′ − K′′)

[

η3

K′′ e+−η
∗
3

K′ e−

]

+ Ã∗(K′)Ã∗(K′′) eiX(−K′−K′′) e−iωτ(−K′2−K′′2)(K′ + K′′)
2

[

η∗
2

K′2 + K′K′′ + K′′2 e++ η∗
1

K′K′′ e−

]}

. (B28)

At O(ε5), the relevant contributions arise from the combinations of the first term with A∗ and from the second term with A. These read

2

(

3ūu1u2

3v̄v1v2

)

= 1

2iω

∑

KK′K′′
Ã∗(K)Ã(K′)Ã(K′′) eiX(−K+K′+K′′) e−iωτ(−K2+K′2+K′′2)(K′ + K′′)

2

[

η1

K′K′′ y1 + η2

K′2 + K′K′′ + K′′2 y2

]

+ 1

iω

∑

KK′K′′
Ã(K)Ã(K′)Ã∗(K′′) eiX(K+K′−K′′) e−iωτ(K2+K′2−K′′2)(K′ − K′′)

[

η3

K′′ y2 − η∗
3

K′ y1

]

+ . . .

= 1

2iω

∑

KK′K′′
Ã∗(K)Ã(K′)Ã(K′′) eiX(−K+K′+K′′) e−iωτ(−K2+K′2+K′′2)

×
{[

η1

(K′ + K′′)2

K′K′′ + 2η∗
3

K′ − K

K′

]

y1 +
[

η2

(K′ + K′′)2

K′2 + K′K′′ + K′′2 + 2η3

K′ − K

K

]

y2

}

. (B29)

Finally, we apply the Fredholm alternative, where only the combinations with Q = K′ and K = K′′ or Q = K′′ and K = K′ survive, and
we again have to account for the overcounted contribution. We, therefore, obtain the additional contribution Nqn from the quadratic
nonlinearity

Nqn = 1

iω

∑

Q

Q2 eiQX̂Ã(Q)
∑

K

Ã(K)Ã∗(K)

{

〈e†
+; y1〉

[

η1

(Q + K)2

QK
+ η∗

3

Q − K

Q

]

+ 〈e†
+; y2〉

[

η2

(Q + K)2

Q2 + QK + K2
+ η3

Q − K

K

]}

− 1

2iω
(4〈e†

+; y1〉η1 + 4

3
〈e†

+; y2〉η2)
∑

Q

Q2 eiQX̂Ã(Q)|Ã(Q)|2 (B30)

in the amplitude equation. Conceptually, these terms represent the proper contribution from the quadratic nonlinearity at O(ε5). However,
this is of little practical use, since these terms are both hard to analyze and to compute, arguably even more than the original dynamics.
Therefore, one might consider further approximations (with or without asymptotical rigor) to obtain a proper contribution from the quadratic
nonlinearity.
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