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Employing a two-species Cahn-Hilliard model with nonreciprocal interactions, we show that the
interplay of nonreciprocity and conservation laws results in the robust coexistence of uniform stationary
and oscillatory phases as well as of uniform and crystalline phases. For nonequilibrium models with a
spurious gradient dynamics structure, such coexistences between two or more nonequilibrium phases and
resulting phase diagrams can, nevertheless, be predicted by a Maxwell double-tangent construction. This
includes phases with sustained regular or irregular out-of-equilibrium dynamics as further corroborated by
bifurcation studies and time simulations.
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Thermodynamic out-of-equilibrium processes like phase
separation are often described by gradient dynamics mod-
els, i.e., with continuum theories for the overdamped time
evolution of densitylike order parameter fields. The exist-
ence of an underlying thermodynamic potential results in a
monotonic relaxation toward an equilibrium state. Mass
conservation may imply that different phases coexist in
extensive parameter ranges, e.g., for a decomposing mix-
ture as described by the classical Cahn-Hilliard (CH) model
[1]. In the thermodynamic limit, the coexisting phases are
predicted by a common-tangent Maxwell construction [2].
Recently, active mixtures that remain permanently out of

equilibrium, e.g., due to an underlying chemomechanical
coupling, have gained much attention. Descriptions by
continuum theories arise from coarse-graining the dynam-
ics of active particles [3–5], as phenomenological models
[6–8], and as amplitude equations [9–11]. Examples like
active model B (AMB) [12–14] and the nonreciprocal
Cahn-Hilliard (NRCH) model [6–8,15] correspond to non-
variational generalizations of CH models. Thereby, AMB
arises for motility-induced phase separation [4], while
NRCH models describe active ternary or higher-order
mixtures. Furthermore, the latter capture universal large-
scale oscillatory dynamics for systems with two conserva-
tion laws [9]. Remarkably, for the single-species AMB
case, a Maxwell-like construction predicts coexisting
densities even though the system is nonvariational [12,16].

Here, we explain why, for an entire third class of
multispecies models between classic passive (thermody-
namic) ones and fully active ones, generalized Maxwell-
type constructions predict nonequilibrium phase diagrams
in the thermodynamic limit. We show that this is a further
consequence of their spurious gradient dynamics form as
introduced in Ref. [17] to explain the unexpected existence
of steady asymmetric states in several common nonvaria-
tional models. This third class contains, e.g., selected active
phase-field-crystal (aPFC) [18,19] and NRCH models. In
consequence, for the entire model class, one can even
capture the behavior of nonequilibrium phases that exist
only due to activity. Figures 1(a)–1(d) illustrate the pre-
dicted coexistence of uniform and oscillatory states and of
uniform and crystalline states, respectively [20]. Figure 1(a)
gives a large-scale impression of two-phase coexistence
where an oscillatory phase shows irregular waves, while
Fig. 1(b) illustrates the sequence of regular and irregular
wave patterns at small sizes of the oscillatory patch
(cf. Movies 1 and 2 in Supplemental Material [21]).
Figure 1(c) showcases that even three-phase coexistence
of two uniform and one oscillatory phase can be predicted
by the Maxwell construction.
Here, the Maxwell construction for spurious gradient

dynamics models and the resulting phase behavior is
illustrated employing the linearly coupled two-species
NRCH model [8]
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For i ¼ 1, 2, the two conservation laws describe a mixture
of nonreciprocally interacting species of densities u1ðx⃗; tÞ
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and u2ðx⃗; tÞ, where the nonequilibrium chemical po-
tentials are μnr1 ¼ −αu2 and μnr2 ¼ þαu1. The underlying
energy is F ¼ F 1½u1& þ F 2½u2& þ F 12½u1; u2& with F 12 ¼R
Ω f12dnx where f12 ¼ −ρu1u2, and F i ¼

R
Ω½ðκi=2Þ

j∇⃗uij2 þ fi&dnx where fi ¼ ðai=2Þu2i þ ðbi=4Þu4i . The
two Qi represent diffusional mobilities [27]. By scaling
space, time, and fields, we set b1, b2, κ1, and Q1 to one.
Then, κ ¼ κ2=κ1 represents the rigidity ratio. For simplic-
ity, we set a1 ¼ a2 ¼ a andQ2 ¼ 1, and n is the number of
spatial dimensions. Reciprocal and nonreciprocal inter-
actions are parametrized through respective symmetric
(ρ) and antisymmetric (α) coupling strengths.
The nonreciprocity parameter ξ ¼ α2 − ρ2 distinguishes

cases of dominant reciprocal (ξ < 0) and dominant non-
reciprocal (ξ > 0) coupling. For purely reciprocal coupling
(α ¼ 0), Eq. (1) represent a proper gradient dynamics;
see [8,28–31].
The nonreciprocal interaction breaks Newton’s third law,

similar to a predator-prey attraction-repulsion interaction.
As a result, for dominant nonreciprocity (ξ > 0), the NRCH

model features conserved-Hopf and -Turing instabilities
[9,32], suppression of coarsening [8], localized patterns
[33], sustained traveling and standing waves [7,8,34,35],
and more complex spatiotemporal patterns [6,8] that are all
not possible in passive CH models. The conserved-Hopf
instability results in large-scale oscillatory behavior as in
the central clusters in Figs. 1(a) and 1(c). The conserved-
Turing instability occurs only for unequal rigidities (κ ≠ 1)
[32] and gives rise to small-scale stationary patterns; see
Fig. 1(d). Dispersion relations and spinodals are deter-
mined in Sec. S2 in Supplemental Material [21].
At first sight, one might assume that only in the passive

case (α ¼ 0) can coexisting states (binodals) be obtained
via a common-tangent Maxwell construction. However, for
Eq. (1), this holds even for dominant nonreciprocal
coupling (ξ > 0). Specifically, introducing the spurious
energy F̃ ¼ ½ρ=ðρþ αÞ&F 1 þ ½ρ=ðρ − αÞ&F 2 þ F 12 and
mobilities M̃1 ¼ ½ðρþ αÞ=ρ& and M̃2 ¼ ½ðρ − αÞ=ρ&,
Eq. (1) can be written as a spurious gradient dynamics.
It is spurious as for ξ > 0 the energy F̃ is not bounded
from below and the mobilities M̃i are not both positive;
i.e., basic thermodynamic principles are not fulfilled any
more. Nevertheless, as we show next, a resulting spurious
Maxwell construction allows us to obtain coexisting states,
i.e., binodals and tie lines, from a double-tangent con-
struction on F̃ . These have to be carefully scrutinized, as in
the nonreciprocal case the binodals represent only part of
the picture. Taken in combination with linear stability
results, the spurious Maxwell construction allows us to
obtain nonequilibrium phase diagrams that, e.g., predict the
coexistences in Fig. 1.
Note that the resulting phase diagram features the spino-

dals and binodals for all uniform and crystalline phases. For
two coexisting uniform phases A and B, the double-tangent
construction corresponds to the conditions μ̃1ðuðAÞÞ ¼
μ̃1ðuðBÞÞ, μ̃2ðuðAÞÞ ¼ μ̃2ðuðBÞÞ, and p̃ðuðAÞÞ ¼ p̃ðuðBÞÞ,
where uðAÞ and uðBÞ are the respective densities, the
spurious chemical potentials are μ̃i ¼ ∂f̃=∂ui with f̃ ¼
½ρ=ðρþ αÞ&f1 þ ½ρ=ðρ − αÞ&f2 þ f12, and the spurious
pressure is p̃ ¼ μ̃1u1 þ μ̃2u2 − f̃. The generalization for
cases involving crystalline phases is provided in Sec. S1
in Supplemental Material [21].
Resulting phase diagrams are given in Fig. 2. The

reciprocal reference case in Fig. 2(a) features four uniform
phases (with high and low densities ui as indicated by the
arrows in the four corners) and allows for five two- and two
three-phase coexistences. Nonreciprocity results in various
changes in the phase behavior [Figs. 2(b)–2(d)]: Because
α ≠ 0, Figs. 2(b)–2(d) do not show the field exchange
symmetry (u1 ↔ u2) of Fig. 2(a); however, field inversion
[ðu1; u2Þ ↔ ð−u1;−u2Þ] is retained. Only the outer regions
where at least one jūij is large, are qualitatively as in
Fig. 2(a), as the reciprocal nonlinear parts of the fi
dominate. Changes due to nonreciprocity are strongest in

FIG. 1. Predicted phase coexistences in active phase decom-
position [NRCH model (1)]. (a) Displays a snapshot of the
density u1 for the coexistence of a central cluster of an oscillatory
phase with irregular wave dynamics about the high-density state
u1;↓↑ and a uniform low-density state u1;↓↓ (blue). (b) Illustrates
the transition from (left) a steady state to (middle) regular and
(right) irregular wave dynamics with increasing size of the central
domain for otherwise identical parameters as in (a). (c) Shows
three-phase coexistence (red/blue/white) using two snapshots that
illustrate (top) a “calm” period and (bottom) one of the occasional
burst of wave activity in the ↓↓ phase (blue). (d) Shows a central
cluster of a stationary crystalline phase that coexists with a
uniform phase (u1;↓↑). Coexisting (mean) densities in (a, b), (c)
and (d) are marked by square symbols in Figs. 2(b)–2(d),
respectively. The parameters are (a)–(d) a ¼ −1.5, ρ ¼ 1, (a),
(b) ζ ¼ 3, κ ¼ 1, (c) ζ ¼ 0.69, κ ¼ 1, and (d) ζ ¼ 8, κ ¼ 20. The
domain size in (a), (c), and (d) is 80π × 80π and in (b) 30π × 30π
(only 15π × 15π is shown). For numeric details and accompany-
ing movies, see Supplemental Material [21].

PHYSICAL REVIEW LETTERS 134, 018303 (2025)

018303-2



the central region of low jūij. In Fig. 2(b) (ξ ¼ 0.69), the
three-phase coexistence has become unstable, as the coex-
isting phase of lowest jūij has crossed the threshold of the
oscillatory instability. Furthermore, the stable coexistence
of ↓↓ and ↑↑ phases has disappeared. Example bifurcation
structures and density profiles along the highlighted red tie
lines in Figs. 2(a) and 2(b) are discussed in Secs. S3 and S4
in Supplemental Material [21], respectively.
At larger nonreciprocity [ξ ¼ 3, Fig. 2(c)], the four pairs

of binodals have entirely separated, triple-point regions and
↓↓-↑↑ coexistence have disappeared, and the Hopf

threshold now forms a closed curve that, most importantly,
intersects some binodals. In other words, part of the
coexisting states are oscillatory unstable, thereby predicting
the coexistence of a uniform state and an oscillatory state of
different mean densities. This effectively predicts the
behavior found in Figs. 1(a) and 1(b) and can be further
appreciated in the dramatically changed bifurcation struc-
ture; see Fig. 3(a). There, branches of steady states are
analyzed as one follows the red tie line in Fig. 2(c), where
the binodal at small jūij corresponds to a Hopf-unstable ↓↑
state. At the spinodals, a branch of steady phase-separated

FIG. 2. Phase diagrams in the ðū1; ū2Þ plane for the NRCH model for increasing nonreciprocity ξ ¼ α2 − ρ2 (left to right) at (a)–(c)
unity (κ ¼ 1) and (d) nonunity (κ ¼ 20) rigidity ratio. For coexisting uniform phases, solid thick black and thin gray lines represent
(stable and metastable) binodals and tie lines, respectively. Purple lines in (d) represent binodals for coexisting uniform and crystalline
phases (tie lines are pink). Dashed black lines indicate unstable binodals; i.e., the coexisting state is unstable. The dark [light] gray area
in (a) [(b)] marks stable [unstable] three-phase coexistence. The white areas in the four corners are single-phase regions, e.g., top left of
the ↓↑ phase (low u1, high u2). Green, orange, and blue lines indicate spinodals for Cahn-Hilliard, conserved-Turing, and (oscillatory)
conserved-Hopf instabilities, respectively. Remaining parameters are ρ ¼ 1 and a ¼ −1.5. For red straight lines, see the main text.

FIG. 3. (a) Bifurcation diagram giving the (mean) pressure ¯̃p over ū1 along the red tie line in the phase diagram Fig. 2(c)
[ū2 ¼ 1.116ū1 þ 1.081]. Branches of uniform and phase-separated states are given as blue and green lines, respectively. For the latter,
curves are given for three domain sizes L ¼ 20π, 40π, and 160π (top to bottom). The red line and squares indicate the Maxwell
construction in the thermodynamic limit. Insets give the profiles at the Hopf bifurcations on the three branches. (b) Magnification of the
branch of stationary phase-separated states for L ¼ 40π including more Hopf bifurcations than (a) and the first emerging branches of
time-periodic states. The insets show space-time plots of different states where patches of oscillatory states coexist with the uniform
steady background state. Solid [dashed] lines indicate linearly stable [unstable] states. Circles [diamonds] mark Cahn-Hilliard [Hopf]
instabilities. Small diamonds in (b) indicate torus bifurcations, i.e., Hopf bifurcations of oscillatory states.
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states (green, shown for three domain sizes L) emerges
from the branch of uniform states (blue) and undergoes
saddle-node bifurcations (on the left and on the right).
For large domains, the almost horizontal central part
approaches the red Maxwell line. However, in stark
contrast to Figs. S2 and S3 in Supplemental Material
[21], here, when increasing ū1 the steady phase-separated
state becomes oscillatory unstable at a Hopf bifurcation.
For all considered L, this occurs when the unstable
↓↑ phase has grown to a critical size lc ≈ 12π [insets in
Fig. 3(a)] [36].
The magnification in Fig. 3(b) shows that more such

bifurcations follow and result in the emergence of several
branches of time-periodic states. Intriguingly, these indeed
correspond to the stable coexistence of a uniform ↓↓ phase
with an oscillatory ↓↑ phase with domain sizes defined by
the lever rule [branch in Fig. 3(b) that bifurcates super-
critically at ū1 ≈ −1.47 and eventually destabilizes at a
torus bifurcation]. Corresponding time simulations in 1D
(see Sec. S4 in Supplemental Material [21]) confirm the
prediction of Fig. 3. The robustness of the predicted
uniform-oscillatory coexistence is further evidenced by
the 2D case already presented in Fig. 1(a). Interestingly,
large domains of the irregular oscillatory state tend to split
(in 1D) or develop inner holes filled by the uniform phase
(in 2D). Although this might seem similar to the “bubbly
phase separation” observed for AMBþ in 2D [13], close
inspection reveals that here the holes evolve very slowly
and do practically not fuse with each other or with the
domain interface [37]. If the oscillatory domain is suffi-
ciently small, three-, four-, or fivefold waves are observed,
the latter circling a periodically appearing self-organized
ring structure around a central hole [Fig. 1(b) and
Movie 1(b) in Supplemental Material [21] ]. Further-
more, Fig. 2(b) even predicts three-phase coexistence of
two stable uniform phases with a weakly unstable oscil-
latory one. This is indeed found in Fig. 1(c), where the blue
unstable phase shows irregular bursts of waves interspersed
with long “calm” phases.
Focusing next on the phase diagram in Fig. 2(d), we see

that further increasing the nonreciprocity ξ separates the
binodals from the Hopf-unstable region. In contrast to the
previous cases, Fig. 2(d) features a conserved-Turing
instability (case of nonunity rigidity ratio, κ ≠ 1) giving
rise to crystalline phases. The resulting (purple) binodals
represent their coexistence with uniform phases; see the
magnification in Fig. 4(a). With increasing jū2j, the lattice
spacing of the crystalline states increases and finally
diverges at ðū1; ū2Þ ≈ ð0; 1.9Þ (not shown). In other words,
the crystalline phase transforms into a phase-separated state
with a smooth transition between the binodals. In contrast,
when decreasing jū2j, the coexistence ranges shrink till they
terminate in tricritical points where the phase transition
changes from first to second order. Figures 4(b) and 4(c)
show the bifurcation structure along the red tie line in

Fig. 4(a) in terms of mean energy and pressure, respec-
tively. Where the uniform state (stable at small ū1)
undergoes the conserved-Turing instability, a branch of
periodic (crystalline) states emerges, itself soon spawning
two branches of localized states forming the typical
“snakes and ladders” structure [38–40]. The ensuing
multistability represents phase coexistence: The heavy
lines in Figs. 4(b) and 4(c) highlight respective states of
minimal spurious energy F̃. Also see the example of a 2D
crystallite in Fig. 1(d). In this way, Fig. 4(c) reveals that
the resulting piecewise curve defines a narrow horizontal
band centered about the coexistence pressure. With
increasing domain size, the band will become thinner
and approach the Maxwell line as known from the passive
PFC model [41]. The validity of the approach of [41] for
the studied NRCH model impressively evidences the
power of the spurious gradient dynamics form.
In conclusion, we have shown that several aspects of the

equilibrium thermodynamics of phase transitions can be

FIG. 4. (a) Magnifies part of Fig. 2(d) focusing on the
coexistence region of uniform and crystalline phases. (b),(c) An-
alyze the bifurcation structure along the red tie line in
(a) [ū2 ¼ −0.353ū1 þ 1.431] providing mean energy and pres-
sure ¯̃p over ū1, respectively. Shown are uniform (blue), periodic
(magenta), and even [odd] (green [yellow]) localized states, i.e.,
crystallites. (b),(c) Highlight the states of lowest energy as
piecewise thick lines, thereby in (c) illustrating how the Maxwell
line (red horizontal) is approached. Parameters are as in Fig. 4(d)
and L ¼ 80π.
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applied to a third class of models between passive and
active systems that features a spurious gradient dynamics
structure. In particular, employing a specific NRCH model,
we have illustrated that the resulting (spurious) Maxwell
construction allows one to predict its phase behavior,
intriguingly, including the nonequilibrium two- and
three-phase coexistence of uniform and oscillatory states
featuring large-amplitude regular or irregular waves. We
expect such coexistences to widely occur in systems with
conservation laws that show large-scale oscillatory insta-
bilities [9,32,42]; see, e.g., [43,44]. Notably, this includes
crystalline (or microphase-separated) states that also
emerge only due to nonreciprocity. Extending the calcu-
lation of spurious pressure and chemical potential to
crystalline phases (see Supplemental Material [21]), we
have further shown that the full characterization of first-
order phase transitions via bifurcation diagrams developed
for PFC models [41] applies in the present nonequili-
brium case.
Our analysis of the specific NRCH model already

indicates the validity of the approach for all models in
the class of spurious gradient dynamics, like active PFC
models [18,19,45], coupled Cahn-Hilliard and Swift-
Hohenberg models [17], and the FitzHugh-Nagumo RD
model [46,47]. All of these could be (re)investigated
defining corresponding nonequilibrium chemical potentials
μ̃i and pressures p̃ as described in Supplemental Material
[21] which, in turn, can be combined with extensions of
mechanistic views of microscopic systems [49,50].
Resulting nonequilibrium multispecies coexistence condi-
tions, e.g., [51,52], may then be further unified and
employed to further elucidate the interplay of conservation
laws and nonreciprocity.
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S1. SPURIOUS MAXWELL CONSTRUCTION INCLUDING CRYSTALLINE PHASES

Here, we explain how the spurious Maxwell construction arises from the underlying spurious gradient dynamics

structure employing the linearly coupled nonreciprocal Cahn-Hilliard (NRCH) model as example. Note that the

concept of spurious gradient dynamics was established in Ref. [1] where, however, the entire discussion focused on

the explanation of the unexpected existence of resting asymmetric (“broken-parity”) states numerically observed for

a diverse set of nonvariational models with purely mass-conserving, purely non-mass-conserving and mixed dynamics.

Before, it was assumed that all asymmetric states in nonvariational models must move. The detailed mathematical

argument of Ref. [1] showed that asymmetric states may indeed remain at rest if the model is of a certain special

form, termed “spurious gradient dynamics.” Ref. [1] analyzed a number and variety of examples and explained

why the bifurcation diagrams for all these models feature branches of resting asymmetric states. However, further

physical consequences, in particular, regarding the nonequilibrium phase behavior were not considered. The present

work discusses the spurious Maxwell construction as a further far-reaching implication of such a structure that in

combination with linear stability analyses allows one to quite precisely predict a range of intricate nonequilibrium

coexistences of two or more uniform and oscillatory phases. This is only possible for two or more species.

The specific NRCH model used is

ωtui =
ε→ ·

[
Qi

ε→

(
ϑF

ϑui
+ µnr

i

)]
. (S1)

with µnr
1 = ↑ϖu2, µnr

2 = +ϖu1 and Q1 = Q2 = 1. The underlying energy is F = F1[u1] + F2[u2] + F12[u1, u2],

where Fi[ui] =
∫
!

[
ωi
2 |

ε→ui|
2
+ fi(ui)

]
d
nx, fi(ui) = aui + u3

i , ϱ1 = 1, ϱ2 = ϱ and F12 =
∫
! f12(u1, u2)d

nx with

f12 = ↑ςu1u2. Without nonequilibrium chemical potentials µnr
i , i.e., for ϖ = 0 Eq. (S1) represents a proper gradient

dynamics that describes the temporal evolution of the two scalar fields u = (u1(εx, t), u2(εx, t)), i.e., the Mi are positive

and F is a proper Lyapunov functional.

However, as discussed in the main text, even for ϖ ↓= 0 it can be formally written in gradient dynamics form:

ωtu = ε→ ·

[
M̃ ε→

ϑF̃

ϑu

]
, (S2)

with the transformed functional

F̃ =
ς

ς+ ϖ
F1 +

ς

ς↑ ϖ
F2 + F12 and mobility matrix M̃ =

(
ε+ϑ
ε 0

0
ε↑ϑ
ε

)
. (S3)

In contrast to the passive case (ϖ = 0) the gradient dynamics is now “spurious” as for dominant nonreciprocity

φ = ϖ2
↑ ς2 > 0, the mobility matrix is not positive definite and the functional F̃ is not bounded from below.

However, in the analysis of the model we can formally proceed as for a proper gradient dynamics. To clearly mark all

quantities and procedures determined on this basis we will accordingly call them “spurious”, e.g., spurious pressure

or spurious Maxwell construction.

We set ωtu = 0 in Eq. (S2), integrate, and set the first integration constant to zero to impose the condition of zero

net flow across the boundaries (e.g., realized by Neumann or periodic boundary conditions). We multiply with M̃
↑1

and integrate again to obtain

ϑF̃

ϑu
= µ̃ = const. (S4)

Hence, the steady state equations (S4) can be seen as arising from the functional variation of a spurious grand potential

”̃ = F̃ ↑
∫
! uµ̃dnx =

∫
! ↼̃dnx, with the spurious grand potential density

↼̃ =
ς

ς+ ϖ

[
f1(u1) +

1

2
|ε→u1|

2

]
+

ς

ς↑ ϖ

[
f2(u2) +

ϱ

2
|ε→u2|

2
]
+ f12(u1, u2)↑ u1µ̃1 ↑ u2µ̃2. (S5)

Note that for heterogeneous (e.g., crystalline) states ↼̃ is normally not uniform in space but in analogy to analytical

mechanics may be seen as a spatial Lagrangian. Then, we can determine the corresponding spatial Hamiltonian H̃

that is indeed uniform in space. To do so, we identify the ui as generalized positions and define the appropriate

generalized momenta as ε↽i =
ϖϱ̃

ϖ(ς↓ui)
to obtain

H̃ = ↼̃ ↑

2∑

i=1

ε↽i ·
ε→ui =

ς

ς+ ϖ

[
f1(u1)↑

1

2
|ε→u1|

2

]
+

ς

ς↑ ϖ

[
f2(u2)↑

ϱ

2
|ε→u2|

2
]
+ f12 ↑ u1µ̃1 ↑ u2µ̃2. (S6)
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H̃ is a first integral of the steady state equation (S4), i.e. a spatially conserved quantity fulfilling ε→H̃ = ε0. Hence, in
the context of phase coexistence the value of H̃ is equal for all coexisting phases and even across all interfaces. For

coexisting uniform states, the spatial derivatives within H̃ are zero in the respective phases resulting in the spurious

pressure

p̃ = u1µ̃1 + u2µ̃2 ↑ f̃ , (S7)

where f̃ =
ε

ε+ϑf1+
ε

ε↑ϑf2+ f12 and the spurious chemical potential reduces to µ̃i = ωf̃/ωui. Hence, the combination

of Eqs. (S4) and (S7) gives the binodals for two coexisting uniform phases A and B. Three of the values of the

coexisting concentrations are determined by

µ̃1(u
(A)

) = µ̃1(u
(B)

), µ̃2(u
(A)

) = µ̃2(u
(B)

)

and p̃(u(A)
) = p̃(u(B)

) (S8)

while the fourth provides a degree of freedom, i.e., binodals are pairs of lines in the (ū1, ū2)-plane, see e.g., Fig. 2 of the

main text. The described construction generalizes the standard Maxwell construction of equilibrium thermodynamics

to coexisting uniform steady states in spurious gradient dynamics, i.e., it provides a “spurious Maxwell construction”.

The resulting binodals are obtained by numerical continuation [2].

Next, we extend the Maxwell construction to crystalline phases, i.e., for cases where a spatially periodic phase

coexists with a uniform phase. Here we focus on one spatial dimension where the lattice constant of the crystal

simply corresponds to a spatial period L.
In the thermodynamic limit, the periodic phase assumes the value of L of extremal grand potential for one period

at fixed chemical potential, i.e. (
ϖ
ϖL ”̃/L)µ=const. = 0 (or equivalently of extremal free energy for one period at fixed

mean particle density (
ϖ
ϖL F̃/L)ū=const. = 0). Therefore, the relevant L is obtained using the additional condition

1

(
ω

ωL

”̃[u(L)]

L

)

µ=const.

= ↑
2

L2

∫ L

0

[
ς

2(ς+ ϖ)
|ωxu1|

2
+

ϱς

2(ς↑ ϖ)
|ωxu2|

2

]
dx = 0. (S9)

To obtain the thermodynamic quantities necessary to construct the binodals, we numerically solve Eqs. (S4) in a

domain corresponding to one period L of the periodic phase (see Ref. [2]), where we allow for L to adjust via

enforcement of Eq. (S9) as a side condition.

Further, note that averaging Eqs. (S5), (S7) over one period and adding multiples of Eq. (S9) yields ↑ ¯̃p = ¯̃↼ = H̃

for the periodic phase, i.e., although the spurious pressure and grand potential density di!er and vary within one

period of the crystalline phase, their spatial averages are identical and can – equivalently to the spatial Hamiltonian

– be used as a coexistence condition, i.e. Eqs. (S8) still hold for periodic phases when p̃ is replaced by its spatial

average ¯̃p.

1
This nontrivial identity can be obtained as follows. We introduce a length scale x̂ = x/L to rescale one period to unit length. In terms

of the new scales, we then have

!̃[u(L)]

L
=

ˆ̃
![u(L), L] =

∫ 1

0

ˆ̃ωdx̂

with ˆ̃ω =
ε

ε+ ϑ

[
f1(u1) +

1

2

∣∣∣∣
1

L
ϖx̂u1

∣∣∣∣
2
]
+

ε

ε→ ϑ

[
f2(u2) +

ϱ

2

∣∣∣∣
1

L
ϖx̂u2

∣∣∣∣
2
]
+ f12 → u1µ̃1 → u2µ̃2.

Note, that the dependence of
ˆ̃
! on L is both explicit and implicit as the fields u depend on L. This is due to the solution of a partial

di”erential equation (PDE) depending on the domain extend, i.e., the shape of the profile depends on the length of a period. The PDE

rescales as

ς!̃

ςu
= 0 with periodic BC on [0,L], =↑

ς ˆ̃!

ςu
= 0 with periodic BC on [0,1],

where the period L no longer occurs in the BC but in the derivatives ϖx ↓ 1
Lϖx̂. We can then evaluate the derivative using the functional

chain rule for the implicit derivative
(

ϖ

ϖL

!̃[u(L)]

L

)

µ=const.

=

(
ϖ

ϖL
ˆ̃
![u(L), L]

)

µ=const.

=

∫ 1

0

ς ˆ̃!

ςu︸︷︷︸
=0

ϖu

ϖL
dx̂+

∫ 1

0

ϖ ˆ̃ω

ϖL
dx̃

= →
2

L

∫ 1

0

[
ε

2(ε+ ϑ)

∣∣∣∣
1

L
ϖx̂u1

∣∣∣∣
2

+
ϱε

2(ε→ ϑ)

∣∣∣∣
1

L
ϖx̂u2

∣∣∣∣
2
]
dx̂

= →
2

L2

∫ L

0

[
ε

2(ε+ ϑ)
|ϖxu1|2 +

ϱε

2(ε→ ϑ)
|ϖxu2|2

]
dx,

where in the last step we reintroduced the original lengthscale x.
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FIG. S1. Linear stability thresholds for uniform steady states in the plane of mean concentrations for the NRCH model for

increasing nonreciprocity parameter ω = ε2
→ ϑ2 (left to right) as well as unity (ϖ = 1, top row) and nonunity (ϖ = 20)

rigidity ratio, i.e., without and with a conserved-Turing instability, respectively. Further, a = →1.5. Instability is indicated by

orange shading. Green, orange and blue thick [thin] lines indicate primary [secondary] Cahn-Hilliard, conserved-Turing and

conserved-Hopf instabilities, respectively.

S2. SPINODALS – LINEAR STABILITY ANALYSIS

Since the NRCH model describes two conserved quantities any homogeneous state (ū1, ū2) is steady, i.e., time

independent. However, their linear stability with respect to small perturbations may di!er. To determine the in-

stability thresholds and their dependence on the rigidity ratio ϱ and the nonreciprocity parameter ⇀ = ϖ2
↑ ς2

we perform a linear stability analysis. Thereby, we adapt the analyses presented in Refs. [3, 4]. Using the ansatz

(u1, u2) = (ū1, ū2) + ⇁(û1, û2) exp(λt+ iεk · εx) and linearizing in the smallness parameter ⇁ ↔ 1 we obtain

(
↑k2L(k2)↑ λ1

) (
û2

û2

)
= 0 (S10)

with the reduced Jacobi matrix
2

L(k) =

(
k2 + a+ 3ū2

1 ↑(ς+ ϖ)
↑(ς↑ ϖ) ϱk2 + a+ 3ū2

2

)
. (S11)

Solving the linear system, the two eigenvalues are

λ±(k) = ↑k2λ̃±(k) =↑
k2

2

(
TrL(k2)±


(TrL(k))2 ↑ 4DetL(k2)

)
, (S12)

with TrL(k2) = 2a+ 3(ū2
1 + ū2

2) + k2(1 + ϱ) (S13)

and DetL(k2) = (a+ 3ū2
1)(a+ 3ū2

2) + ⇀ + k2[ϱ(a+ 3ū2
1) + (a+ 3ū2

2)] + ϱk4. (S14)

As further explained in Ref. [4] the linear stability of the NRCH model is simply the conserved pendant with an

overall factor (↑k2) in (S12) of the linear stability of a two-component (nonconserved) reaction-di!usion system [5].

Then, the NRCH model exhibits three di!erent instabilities [3, 4] as we briefly summarize (using the classification

introduced in the Supplementary Material of Ref. [6]):

2
Note that, in a more general case with a non-identity mobility matrix M, which can possibly also depend on u, the linearized equation

instead reduces to
(
→k2M0L(k

2
)→ φ1

 (
û2

û2

)
= 0,

where M0 = M(ū1, ū2). This may alter the thresholds for conserved-Hopf and conserved-Turing instabilities whereas Cahn-Hilliard

thresholds remain unchanged.
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(i) The Cahn-Hilliard instability: A conserved large-scale stationary instability that occurs when the real-valued

λ̃+(kc = 0) crosses zero. Therefore, the threshold is at DetL(k = 0) = 0 for TrL(k = 0) < 0, i.e.,

(a+ 3ū2
1)(a+ 3ū2

2) + ⇀ = 0 and 2a+ 3(ū2
1 + ū2

2) < 0. (S15)

(ii) The conserved-Hopf instability: A conserved large-scale oscillatory instability that occurs when ↗λ̃±(k = 0)

crosses zero while ↘λ̃±(k = 0) ↓= 0 (see Ref. [7] for an extended discussion of this type of instability). Therefore,

the threshold is at TrL(k = 0) = 0 for DetL(k = 0) > 0, i.e.,

2a+ 3(ū2
1 + ū2

2) = 0 and (a+ 3ū2
1)(a+ 3ū2

2) + ⇀ > 0. (S16)

(iii) The conserved-Turing instability: A conserved small-scale stationary instability that occurs when a maximum

of λ̃+ crosses zero for a nonvanishing kT, i.e., when λ̃+(k = kT) = 0 and ωλ̃+/ω(k2)(k = kT) = 0. This results

in (cf. Ref. [4])

k2T = ↑
a+ 3ū2

2 + ϱ(a+ 3ū2
1)

2ϱ
(S17)

and the instability occurs when


ϱ(a+ 3ū2

1)↑ (a+ 3ū2
2)
2

↑ 4ϱ⇀ = 0 and k2T > 0. (S18)

Note that sometimes the notion “Turing instability” is used in a narrow sense for a small-scale stationary

instability in a reaction-di!usion system (as caused by an activator and an inhibitor with a contrast in di!usion)

or even confusingly for any stationary instability in such systems. Here we employ the notion for any small-scale
stationary instability.

These three conditions result in linear stability thresholds (spinodals) that are displayed, e.g., in the (ū1, ū2)-plane,

see e.g., Fig. S1. Note that Fig. 2 of the main text contains the thresholds from the three panels on the left of the

top row and from the final panel on the right of the bottom row of Fig. S1.

S3. BIFURCATION ANALYSIS FOR THE PASSIVE CASE

To allow for a comparison to the active cases, we briefly review the passive (reciprocal) case (ϖ = 0) that is

extensively analyzed elsewhere [3]. It allows for five two- and two three-phase coexistences of the four uniform phases

characterized by the arrows in the four corners (e.g., ≃⇐ indicates high u1 and low u2). The bifurcation structure along

the two highlighted lines in Fig. S2(a) is given in panels (b) and (c) in terms of the pressure p̃ and consists of branches

of uniform and phase-separated states. For two-phase [three-phase] coexistence, Fig. S2(b) [Fig. S2(c)] follows a tie

line [crosses a triple point region]. Although the considered domain is not very large (see insets), Fig. S2(a) indicates

how the Maxwell line (in red) is approached (cf. [8]) and all insets of Fig. S2 show the step-like fronts between phases.

Further, the plateau values along the Maxwell line and in the triple point region coincide with the predicted values

from the phase diagram (bright dashed lines). Note that for the three-phase coexistence we have in total six equations

for the coexisting six concentrations in phases A, B and C. This implies that there is no freedom and coexistence is

restricted to triplets of points in the (ū1, ū2)-plane (corners of the gray triangles in Fig. S2(a)).

S4. SPATIAL EIGENVALUES AND OSCILLATORY TAILS

Similar to the (temporal) eigenvalues (EVs) that have been calculated in the linear stability analysis in section S2,

on may determine the spatial EVs. They describe how plateau values of steady states are approached in a small

perturbation regime. Here, the ansatz is

u(x) = ū+ ûeφx (S19)

where β is the spatial EV. Linearizing in the perturbation û and solving for EVs β gives

β1,2,3,4 = ±
1

⇒
2ϱ



a(1 + ϱ) + 3(ϱū2
1 + ū2

2)±


[a(1↑ ϱ) + 3(ϱū2

1 ↑ u2
2)]

2
↑ 4ϱ⇀ . (S20)
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ū1

�2

0

2

ū
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FIG. S2. Bifurcation diagrams in terms of the pressure p̃ as a function of ū1 in the passive case ε = 0 for a finite domain size

(L = 20ϱ). Panels (b) and (c) show the behavior along the two tie lines [(b) ū2 = ū1 → 0.151 and (c) ū2 = 1.116 ū1 + 1.153]
marked in panel (a) corresponding to Fig. 2(a) of the main text. Blue [green] lines correspond to branches of uniform [phase-

separated] states while solid [dashed] lines indicate stability [instability]. Circles mark pitchfork bifurcations, and insets show

typical concentration profiles for two- and three-phase coexistence, where the dashed horizontal lines indicate the predicted

plateau values, i.e., the binodal values.

The four spatial EVs describe the leading edge behavior of the “fronts” that represent the interfaces between uniform

phases. For two-phase coexistence the profile may approach the two plateau values monotonically (real β) or oscillatory
(complex β). For parity-symmetric systems as the present one, β1 = ↑β2 and β3 = ↑β4 always hold. In the dominantly

reciprocal case (⇀ < 0), the inner root is always positive, spatial EVs with nonzero real and imaginary parts can not

occur. Thus, all phase-separated states can only exhibit monotonic exponential approaches to the plateau value as

known from the passive Cahn-Hilliard case. However, in the dominantly nonreciprocal case (⇀ > 0) complex EVs with

nonzero real and imaginary parts can occur, i.e., plateaus may be approached in an oscillatory manner.

�1 0 1 ū1
0

1

2

ū
2

�� ��
(a)

0.2 0.4 0.6 0.8 1.0
|��|/|��| �1 0 1

ū1

17.3

17.4

17.5

¯̃ p

(b)
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ū1
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�0.3

�0.2

�0.1

0.0

(c)

FIG. S3. Panel (a) magnifies part of Fig. 2(b) of the main text, i.e., the weakly active case at ω = 0.69 while (b) and (c)

give the bifurcation diagrams (p̃ over ū1) along the red tie lines in (a) for L = 60ϱ, i.e., (b) ū2(ū1) = →0.037 ū1 + 1.785 and

(c) ū2(ū1) = →0.236 ū1 + 0.929. The blue shading in (a) encodes the ratio |↑ς/↓ς| for spatial EVs of stable uniform states.

Dashed horizontal lines in the in the insets in panels (b) and (c) indicate the predicted plateau values, i.e., the binodals.

The occurrence of complex EV is indicated in Fig. S3 (a magnified part of Fig. 2(b) of the main text) by blue

shading whose strength indicates the relative importance of the imaginary part as compared to the real part. Then, the

bifurcation diagrams Fig. S3 (b) and (c) correspond to cuts through the (ū1, ū2)-plane along the tie lines highlighted in

Fig. S3 (a). First, they clearly confirm the validity of the spurious Maxwell construction: For large systems, coexisting
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concentrations approach the predicted binodal values, the relative domain extensions are governed by the lever rule

and the branch of stable phase-separated states indeed approaches the horizontal Maxwell line of constant pressure

as well known from the passive case [8].

Nevertheless, Fig. S3 (c) reveals that in contrast to passive phase separation the profile can be nonmonotonic, i.e.,

starting on the low-concentration plateau on the left, the red profile overshoots the concentration value of the upper

plateau and approaches it in a (strongly damped) spatial oscillation, consistent with the occurrence of complex spatial

EVs.

Their relevance is shown in Fig. S3 (a) by the blue shading that indicates the ratio of imaginary part and real part

of the spatial EVs. In the regions of darker blue the ratio becomes large and the oscillatory tails are more prominent

as confirmed by the insets in Fig. S3 (c): As the right [left] plateau value corresponds to a dark [light] blue region in

Fig. S3 (a) the right [left] plateau is approached with a more [less] pronounced spatial oscillation. The overshoot for

the right plateau is of the order of 10
↑1

and well visible in the magnifying insets while the one for the left plateau is

much smaller (of order 10
↑5

) and not visible at the same magnification. Such an overshooting can have far reaching

consequences and ultimately result in the suppression of coarsening as the interaction between neighboring interfaces

changes nonmonotonically (not shown).

S5. SPURIOUS GRADIENT DYNAMICS AND ACTIVE MODEL B

As pointed out in the main text and above in section S1 the here studied two-field NRCH model corresponds

to a specific example of the general spurious gradient dynamics established in [1] for an arbitrary number of scalar

fields with either purely mass-conserving, purely non-mass-conserving or mixed dynamics. In consequence, the here

discussed spurious Maxwell construction and resulting phase coexistencies can equally be studied for the entire class

of multi-field spurious gradient dynamics models.

Noting the parallels to the Maxwell construction for the one-field active model B (AMB) discussed in Refs. [9, 10],

here, we furthermore show that both are limiting cases of a more general multi-species spurious gradient dynamics

structure. However, we also emphasize that there exists a step-change between one-field and multi-field cases where

the considered two-field case may be seen as the simplest example: on the coarse-grained (continuum) level the

one-component systems always approach a stationary state with steady coexisting phases. For multi-field systems

with nonreciprocal interactions phases with oscillatory particle densities can be present even on the coarse-grained

mean-field level of description (for simulation results see Refs. [11, 12]). The resulting possible phase coexistence of

uniform and oscillatory phases is expected to widely occur in systems with conservation laws that show large-scale

oscillatory instabilities. This makes extensions to multi-field cases particularly interesting.

Restricting our attention (in contrast to [1]) to purely mass-conserving dynamics, we note that AMB and NRCH

model can both be written as

ωtu = ε→ ·

(
Q(u)ε→

(
M̃(u)

ϑF̃ [u]

ϑu

))
, (S21)

with u = (u1, u2, . . . , uN ), matrices Q(u),M(u) ⇑ RN↔N
and a local functional F̃ [u]. Here, Q(u) is symmetric and

positive definite. The general properties of M̃ are discussed further below.

For the specific NRCH model of the main text, N = 2, M̃ is diagonal and constant, while Q̃ = 1. Therefore, M̃ and

ε→ commute and M̃ formally takes the role of a possibly indefinite mobility matrix. Note that already this restricted

form describes further active, nonreciprocally coupled field theories, when higher order coupling terms in the energy

functional F̃ are considered. E.g., an energetic coupling term ⇓ (ε→u1) · (
ε→u2) results in non-reciprocal cross di!usion

µnr
1 = ϖε→2u2, µnr

2 = ↑ϖε→2u1. Likewise, a higher order coupling energy ⇓ u2
1u

2
2 results in a nonlinear nonreciprocal

interaction µnr
1 = ϖu1u2

2 and µnr
2 = ↑ϖu2

1u2. However, obviously nonreciprocal interactions that arise from a constant

diagonal matrix M̃(u) are always of the form µnr
1 = ϖϑF12/ϑu1 and µnr

2 = ↑ϖϑF12/ϑu2.

In general, nonconstant M̃(u) can be incorporated, that do not commute with ε→, which is the case for AMB. The

version of AMB presented in [10] is the one-field model

ωtu = ε→ · (Q(u)ε→g(u)) with g(u) = g0(u) + λ(u)|ε→u|2 ↑ ϱ(u)ε→2u . (S22)

In Ref. [10], it is shown
3
that (S22) can be written as (S21) with N = 1. There, the energy is given as

3
In particular, in the notation of Eq. (7) of Ref. [10] the dynamical equation is ε̇ = ↼↔ · [M [ε]↼↔ ωF

ωR ] with the scalar field variable ε and

a field transformation R(ε). The variational chain rule for the functional derivative
ωF
ωR =

εϑ
εR

ωF
ωϑ and comparison to (S21) yields that

m(u) coincides with
εϑ
εR , and R↑

=
εR
εϑ in Eq. (4) of [10] coincides with

1
m(u) . Therefore, the expressions given here in terms of m

slightly di”er from those in terms of R in [10]. In particular, the relation (S24) has a positive sign on the r.h.s. compared to Eq. (4) of

[10].
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F̃ [u] =

∫

!

[
f̃h(u) +

ϱ(u)

2m(u)
|ε→u|2

]
d
nx with f̃h(u) =

∫ u g0(û)

m(û)
dû (S23)

where the function m(u) solves the di!erential equation

ϱm↗
(u) = (2λ(u) + ϱ↗

(u))m(u) (S24)

In other words, it is given by

m(u) = exp

[∫
2λ(u) + ϱ↗

(u)

ϱ(u)
du

]
, (S25)

and M̃ corresponds to m(u).
Coming back to the general form (S21) we next consider stationary states. They are obtained if one sets ωtu = 0,

integrates once, and chooses the integration constant to be zero (i.e., assuming zero net flow across the boundaries).

Multiplying by Q(u)↑1
and integrating again one obtains the steady state equation

M̃(u)
ϑF̃ [u]

ϑu
= µ = const., (S26)

If the matrix M̃ corresponds to the Jacobian of a transformation of variables u ⇔ ω, i.e., M̃ = ωu/ωω then one has

ωu

ωω

ϑF̃ [u]

ϑu
=

ϑF̃ [u(ω)]

ϑω
= µ (S27)

and the stationary states correspond to extrema of the spurious grand potential ”̃[ω] = F̃ [ω]↑ µω.
In consequence, one may then for all these models (as done above in section S1 for the specific NRCH example)

define spurious momenta and a spatial Hamiltonian, obtain the generalized spurious pressure p̃ as the third coexistence

condition needed for the spurious Maxwell construction.

Note, that in general, a mobility matrix Q(u), even a nonsymmetric or a not positive definite one, does not a!ect

the spurious Maxwell construction for the system (S21) (as long as Q is invertible). However, the linear stability

thresholds depend on Q(u), and therefore changing the mobility can render stable coexisting states unstable and vice

versa. Finally, note that the additional incorporation of a mass matrix multiplying the time derivatives of the fields

on the left hand side of (S21) in analogy to the (purely non-mass-conserving case) of the skew-gradient dissipative

systems discussed in [13] does not change the main argument. Although in this way the di!erent approaches seem

to converge into the discussed more general form, we expect further mathematical generalizations to exist and to be

discovered in the future.

S6. NUMERICAL DETAILS, ACCOMPANYING FIGURES AND VIDEOS

The time simulations shown in the main text are computed on 1D or 2D domains with periodic boundary conditions.

We separate the linear diagonal part of the r.h.s. of Eq. (S1), i.e.,

ωtu = LDu+NL(u)

where LD =

(
aε→2

+ ε→4
0

0 aε→2
+ ϱε→4

)

and NL(u) = ε→2

(
u3
1 ↑ (ς+ ϖ)u2

u3
2 ↑ (ς↑ ϖ)u1

)
.

(S28)

We then use a pseudo-spectral method with semi-implicit Euler timestepping whereLD is treated implicitly andNL(u)
is treated explicitly. The timestep is adaptively controlled by a half-step method, where the maximal permitted local

error per timestep is usually chosen to be of order ⇓ 10
↑5

and the resulting timestep usually varies between 10
↑3

and

10
↑1

.

To obtain bifurcation diagrams, we employ the Matlab FEM continuation package pde2path [14, 15] and numerically

follow steady (temporally periodic) states of Eqs. (S1) with periodic boundary conditions for Figs. 3 and 4 of the main

text and with Neumann (homogeneous) boundary condition for Figs. S2 and S3. To follow a specific straight path’
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TABLE I. Summary of movies accompanying Figure 1 of the main text.

Panel corresponding Movie Param. domain (grid) description remarks

(a) 1a-cookie state.mp4 a = →1.5
ϖ = 1

ϑ = 1

ε = 2

80ϱ ↔ 80ϱ
(512↔ 512)

cluster of oscillatory

phase with irregular wave

dynamics

initial transient not shown

(video starts at t = 10
4
)

corresponds to binodal high-

lighted in Fig. 2(c)

(c) 1b-emergence.mp4 a = →1.5
ϖ = 1

ϑ = 1

ε = 2

30ϱ ↔ 30ϱ
(256↔ 256)

Emergence of irregular wave

dynamics with increasing

domain size with radii vary-

ing from 4ϱ to 9ϱ

corresponds to binodal high-

lighted in Fig. 2(c)

(b) 1c-three phase.mp4 a = →1.5
ϖ = 1

ϑ = 1

ε = 1.3

80ϱ ↔ 80ϱ
(512↔ 512)

three-phase coexistence

with occasional bursts of

irregular wave activity

corresponds to triplepoint

highlighted in Fig. 2(b)

additional data see Fig. S4

(d) 1d-liquid crystal.mp4 a = →1.5
ϖ = 20

ϑ = 1

ε = 3

80ϱ ↔ 80ϱ
(1024↔ 1024)

Formation of crystallite (lo-

calized state) with hexago-

nal order

corresponds to binodal in

Fig. 2(d)/4(a)

through the (ū1, ū2)-plane, we employ the average concentration of species ū1 as our main continuation parameter

and fix the second average concentration, e.g., such as to stay on a tie line or on a straight line through a three-phase

region (ū2 = mū1 + b with fixed parameters m and b). The spatial resolution of Fig. 4 of the main text corresponds

to 1024 grid points. To obtain the branches of time-periodic states in Fig. 3 of the main text, we use a regular

grid consisting of 256 spatial grid points and 96 temporal grid points. The linear stability of time-periodic states

is calculated using Floquet algorithm 1 of pde2path (see section 2.4 of Ref. [15]), where we calculate the 16 largest

Floquet multipliers for each state.

A. Additional information for Fig. 1 of the main text

Table I gives an overview of the movies provided as part of the Supplementary Material that accompany the

snapshots from the dynamics highlighted in Fig. 1 of the main text. All simulations are initialized with a phase-

separated state where a central circular patch of the high-concentration phase is embedded in a background of the

low-concentration phase. Smooth interfaces are used as well as small additional noise of amplitude ⇓ 10
↑2

. The

plateau values correspond to the binodal values as obtained from the spurious Maxwell construction and indicated in

Fig. 2 of the main text. For instance, for Fig. 1 (a) of the main text, the initial condition for u1 is given by

u1(εx) = u1,↘↘ + (u1,↘≃ ↑ u1,↘↘)
1

2
[1 + tanh (r ↑ |εx|)] + “noise” (S29)

with r = 25↽.
Fig. S4 provides additional information for the three-phase coexistence displayed in Fig. 1 (c) of the main text. Here,

the ≃≃-phase (red) and white ≃⇐-phase are stable, whereas the nonreciprocity is just strong enough to render the third

coexisting ⇐⇐-phase (blue) weakly oscillatory unstable. Hence, the system is close to a quasi-variational, stationary

phase separation, but still includes an active, oscillatory phase. This is reflected in Fig. S4 and the accompanying

movie: For the mayor part of the simulation time, the system shows the usual slow coarsening dynamics known from

passive Cahn-Hilliard models, which is reflected in the spurious thermodynamic quantities µ̃1, µ̃2 and H̃ being almost

spatially constant and the energy F̃ decreasing slowly. However, occasionally, the active blue phase destabilizes and

waves spread in an explosive burst, which is also reflected in the spurious thermodynamic quantities, that strongly

fluctuate during the bursts.

B. Additional information for Fig. 3 of the main text

To strengthen the results of the bifurcation analysis presented in Fig. 3 of the main text, we also perform time

simulations that are initialized with the unstable stationary phase-separated state with small added noise. Fig. S5
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FIG. S4. Additional data corresponding to Fig. 1 (c) of the main text (see supplementary movie 1b-three phase.mp4 ). Panels

(a) to (c) additionally show the fields u1 and u2 at three selected times and additionally the spatially resolved spurious

thermodynamic quantities µ̃1, µ̃2, φ̃ and H̃ according to Eqs. (S4),(S5) and (S6). The lower row displays the temporal

evolution of the L2
norm, the spurious energy F̃ (S3) and the spurious grand potential !̃.

shows spacetime-plots and exemplary profiles of states that emerge after an initial transient (t > 10
5
). The spurious

Maxwell construction approximately governs the plateau concentration of the uniform stable phase and the average

concentration of the oscillatory phase (Fig. S5 (f)-(i)). In a sense, the classical coexistence of uniform stationary

phases is replaced by a coexistence of a stationary phase with an oscillatory phase

Close to but beyond the oscillatory instability of the upper plateau at ū1 ↖ ↑1.46 the system settles to the states

with simple periodicity (Figs. S5(a) and S5(b) of the main text), that correspond to the first two time-periodic

branches in the bifurcation diagram Fig. (4) (b). Increasing ū1, i.e., increasing the extent of the oscillatory domain

leads to intricate spatio-temporal patterns within this domain (Figs. S5(c) and S5 (d)). Finally, close to the right

binodal (Fig. S5 (e)), where nearly the whole domain is filled by the oscillatory phase, the domain of the uniform

stationary phase is reduced to a few “holes” and the oscillatory dynamics becomes system filling and rather irregular.
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FIG. S5. Panels (a) to (e) show space-time plots of species u1 at ū1 = →1.46, ū1 = →1.42, ū1 = →1.40, ū1 = →1.17 and

ū1 = →0.87, respectively. Snapshots at the respective solid and dashed black horizontal lines are depicted in matching line

styles in panels (f) to (j) where the green lines indicate the temporal average and the dotted lines mark the values predicted by

the Maxwell construction. The parameters are the same as in Fig. 4 of the main text, i.e. ū2 = 1.116ū1 + 1.081. The domain

size is L = 40ϱ. The spatial discretization consists of 256 points.

S7. DATA AVAILABILITY

The data sets and plot functions for all figures as well as examples of Matlab codes for the employed numerical

path continuation are provided on the open source platform zenodo [16].
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