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Abstract We introduce a mesoscopic hydrodynamic model for drops of binary mixtures of volatile partially
wetting liquids on brush-covered substrates, i.e., we model the coupled dynamics of spreading, evaporation,
imbibition, diffusion and partial demixing of the two volatile components across the three phases—brush,
drop and gas. The formulation of the model as gradient dynamics on an underlying free energy functional
allows us to systematically account for cross-couplings between the six scalar fields needed to describe the
dynamics of both components within each of the three phases. The energy accounts for concentration-
and brush state-dependent capillarity and wettability, miscibility of the two components within drop and
brush, and entropy in the gas. Finally, the usage of the model is illustrated by employing numerical time
simulations to study the dynamics of a sessile drop.

1 Introduction

Overall, the statics and dynamics of the (de)wetting of simple nonvolatile liquids on rigid inert solid substrates
are rather well understood [1]. However, at present, flexible and adaptive substrates, e.g., (hydro)gels and polymer
brushes, are attracting much interest [2–6]. In general, films and drops of liquids on solid substrates are often
modeled employing mesoscopic hydrodynamics in the form of thin-film (or lubrication) models that incorporate
capillarity and wettability [7–9]. Particularly instructive and convenient is their formulation in the form of gradient
dynamics on underlying energy functionals [5, 6, 10–12]. Then, consistency between macroscopic and mesoscopic
modeling descriptions is ensured by relations between macroscopic interface energies and mesoscopic wetting
energies [6, 13, 14].

In the case of polymer brush-covered substrates [15–22], thin-film models in gradient dynamics formulation [6]
incorporate the free energy of the polymer brush, e.g., via an Alexander-de Gennes approach [23, 24]. In the
simplest case, it accounts for mixing energy and entropy of the brush polymer and the imbibing liquid [25, 26]. As
the polymers are grafted to the supporting solid, their translational entropy does not contribute and is replaced
by entropic stretching. The resulting thin-film models may be employed to investigate the spreading of drops of
nonvolatile [6, 26] and volatile [6, 27] liquids on polymer brushes, the stick–slip motion of three-phase contact lines
advancing over an initially dry brush [6, 28], as well as sliding drops on such substrates [6]. Thereby, evaporation
and vapor dynamics are incorporated into the gradient dynamics model following an approach recently proposed
for drops of volatile simple one-component liquids in a gap [29].

Here, we provide a major extension of such models by incorporating the description of liquid mixtures, i.e.,
for a binary mixture both components are present in brush, drop, and vapor. Although, this is of large present
interest [19, 22, 25, 30], to our knowledge, the coupled dynamics of spreading, evaporation, imbibition, diffusion
and (partial) demixing of the two volatile components across the three phases—brush, drop, and gas—has not
yet been modeled. We emphasize that the gradient dynamics-based approach “semi-automatically” guarantees
thermodynamic consistency and nevertheless incorporates the relevant dissipation channels. Otherwise, this con-
sistency might easily get lost when modeling such complex interface-dominated physico-chemical systems. Note,
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however, that we restrict our attention to isothermal settings as gradient dynamics-based thin-film models that
incorporate heat transport are, to our knowledge, not yet available.

Note that binary mixtures of nonvolatile liquids on rigid inert solids are already described by mesoscopic hydro-
dynamic models [31–34]. This allows, e.g., to investigate dewetting processes that are triggered by the coupling of
fluctuations in film thickness and concentration [33]. Surface activity due to insoluble or soluble surfactants may
also be incorporated [14, 35].

As mentioned above, evaporation and vapor diffusion for volatile liquids are accounted for in thin-film modeling
by confining the system into a small gap between two parallel plates as then vapor diffusion is predominantly
lateral while concentrations equilibrate fast across the gap [29]. In contrast to earlier thin-film models including
evaporation, see Refs. [7, 8] and the discussion and references in the introduction of Ref. [29], this allows one to
describe the full parameter range from phase transition-limited to diffusion-limited evaporation/condensation. An
application of the evaporation model of Ref. [29] to droplets of a simple weakly volatile liquid spreading on a brush
[27] shows that even a small lateral vapor leakage from a closed system may result in the formation of a long-lived
stationary halo of macroscopic extension in the brush profile.

The model is introduced in Sect. 2 by detailing the six scalar fields representing the amount of the two substances
in the three phases brush, drop and gas, and the corresponding dynamic equations. Details regarding the underlying
energy functional and mobility functions are provided in Appendices A and B, respectively. Using the established
model, Sect. 3 presents exemplary results obtained by numerical time simulations. Finally, Sect. 4 summarizes our
results, points out possible applications of the developed model, and proposes future extensions that may alleviate
present limitations.

2 Mesoscopic hydrodynamic model in gradient dynamics form

We consider an isothermal system as sketched in Fig. 1: A drop of a binary mixture of volatile liquids is located
on a swelling polymer brush. Described are the amounts of the two liquid components in the drop and brush by
effective heights ζdi and ζbi (with i = 1, 2), respectively, the thickness of the drop is hd = ζd1 + ζd2, while the
brush thickness is hb = ζb1 + ζb2 + ζp. Here, ζp is the uniform and constant effective height of polymers, i.e., the
dry brush height ζp = σNlK, with σ the relative grafting density, N the number of monomers per polymer chain
and lK the Kuhn length. We consider the system to be positioned inside a narrow gap between two horizontal
plates of distance d , therefore, the height of the gas phase is hv = d − hd − hb.

Thin-film models for liquid films and drops involving mixtures are conveniently written in gradient dynamics
form employing (effective) heights [33–36]. However, when vapor is incorporated, it is preferable to express the
amounts of each component in each phase—brush, drop, and gas—as particle number densities per substrate area
ψi(r, t), where r = (x, y)T denotes the substrate coordinates [6, 27]. Here, we use the six fields (ψ1, ψ2, ψ3, ψ4,
ψ5, ψ6) = (ρl1ζd1, ρl1ζb1, ρv1hv, ρl2ζd2, ρl2ζb2, ρv2hv) where the ρl1 and ρl2 denote reference number densities per
volume of the pure liquids 1 and 2, respectively. We emphasize that the system geometry is identical to the one
presented in [6, 27]. However, here we provide a major extension of earlier work by incorporating the description
of a binary mixture, i.e., two substances (instead of only one) contribute to the dynamics in each bulk phase.

Employing the introduced fields ψi in the gradient dynamics model yields the generic form [6, 12, 35]

∂tψi = ∇ ·
⎡
⎣

6∑
j=1

Qij∇ δF
δψj

⎤
⎦ −

6∑
j=1

Mij
δF
δψj

i = 1, . . . , 6, (1)

Fig. 1 Sketch showing a drop of thickness hd of a binary volatile liquid mixture on an adaptive substrate, namely, a polymer
brush of thickness hb, confined in a narrow gap of width d . The amounts of the two components in each phase—brush, drop,
and gas—may be given as effective layer heights ζd1, ζd2, ζb1, ζb2 and vertically averaged number densities per volume ρv1,
ρv2 or as particle number densities per substrate area ψi (see main text). In the sketch the ζ’s are illustrated as ’layering’
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where Q and M are positive semi-definite and symmetric 6 × 6 matrices representing the mobilities for the con-
served and nonconserved parts of the dynamics, respectively. The individual components of both mobility matrices
are discussed in Appendix B. Note that the mobilities of Refs. [6, 27, 33, 34] are recovered as limiting cases. The
functional F corresponds to the underlying free energy, i.e., the functional derivatives δF/δψi represent chemical
potentials. Their gradients within each phase and differences between phases drive the conserved (advection, dif-
fusion) and nonconserved (evaporation/condensation, imbibition/desiccation) parts of the dynamics, respectively.
We use

F =
∫

Ω

⎡
⎢⎣fb(ζb1, ζb2)︸ ︷︷ ︸

brush bulk

+ fd(ζd1, ζd2)︸ ︷︷ ︸
drop bulk

+hvfg(ρv1, ρv2)︸ ︷︷ ︸
gas bulk

+ ξdgγdg(ζd1, ζd2)︸ ︷︷ ︸
drop-gas interface

+ ξbdγbd(ζb1, ζb2, ζd1, ζd2)︸ ︷︷ ︸
brush-drop interface

+ ξbdfwet(ζb1, ζb2, ζd1, ζd2)︸ ︷︷ ︸
wetting

⎤
⎥⎦d2r, (2)

where ξdg =
√

1 + |∇(hd + hb)|2 and ξbd =
√

1 + |∇hb|2 denote the metric factors for the two interfaces, and
we use the h’s, ζ’s, and ρ’s as abbreviations for lengthy expressions only involving dependencies on the fields ψi.
In total, there are bulk energies for the three phases, two interface energies and one wetting energy. The latter
ultimately accounts for the brush–gas interface energy within the mesoscopic description [6, 14]. The specific forms
of the individual contributions extend cases already considered in the literature while recovering them as limiting
cases. Examples include drops of simple nonvolatile and volatile liquids on polymer brushes [6], and drops of
nonvolatile mixtures on rigid substrates [33]. The individual expressions of all contributions to F are discussed in
Appendix A.

Alternatively, instead of the thermodynamic formulation as gradient dynamics (1), one may present the same
model in hydrodynamic form in terms of advective and diffusive fluxes and transfer rates between the phases.
As the formulation is fully equivalent we abstain from showing it here, but see Ref. [6] for details regarding the
“translation” between the two formulations (at the example of a simple liquid).

3 Results

Having completed the model, we next illustrate its usage by briefly discussing the relaxational spreading, evapora-
tion and imbibition dynamics of a binary mixture of volatile liquids on an initially dry polymer brush. We employ
numerical time simulations based on the fully adaptive (time and space discretization) finite-element methods pro-
vided in the package oomph-lib [37] and consider the full-curvature formulation of our model as described in Sect. 2
and the appendices. We remind the reader that our gradient dynamics approach only resolves lateral concentration
gradients within the mixtures, i.e., densities are vertically averaged within brush, drop, and gas, respectively.

Figure 2 presents snapshots from an exemplary simulation with an initial drop of homogeneous concentration
φ0

d1 = 0.2 and contact angle of θ0 ≈ 45 ◦ on a nearly completely dry brush (φ0
bp > 0.999). The initial contact line

position is x0
cl ≈ 365. The equilibrium contact angle of such a mixture on the dry polymer would be θref ≈ 26.3 ◦ <

θ0, i.e., when disallowing particle exchange between phases (all M ’s equal zero) the drop just spreads. However,
here, we allow all transfers to occur and spreading will compete with evaporation and imbibition. The complete
set of employed parameters is given in appendix C. The left and right hand column in Fig. 2 show the state during
the dynamic process at t ≈ 9.1 · 104 and after the system has converged to its equilibrium state, respectively.
Thereby, the top panels give the state of the gas layer in terms of relative humidities for both vapors (ρvi/ρsat

v ), see
Appendix A for the definition of ρsat

v , the center panels show the drop and brush height and concentration profiles,
while the bottom panels magnify the thickness range of the brush. The liquid concentrations φd1 and φ̃b1 within
the drop and the brush, respectively, are encoded as respective blue and red shading (see corresponding color
bars at bottom, and note the different scales for left and right panels). In the brush, φ̃b1 = ζb1/(ζb1 + ζd2) is the
concentration with respect to only the imbibing liquid mixture (not including the polymer). The volume fraction
of polymers may be extracted from the presented brush height (displayed with a shift of ζp) using φbp = ζp/hb.
The actual part per volume concentration of the individual liquids within the brush can then be obtained as
φbi = φ̃bi(1 − φbp).

As the drop spreads on the brush-covered substrate, the two components of the mixture are absorbed into the
brush and evaporate in a differentiated manner as controlled by the underlying energies. As a result, thickness
profiles of drop and brush change as do the concentration profiles in drop, brush and gas. The snapshot on the
left of Fig. 2 approximately captures the instant when spreading has ceased and the dynamics becomes dominated
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Fig. 2 Snapshots from a simulation of a spreading, evaporating and imbibing drop of a binary mixture of volatile partially
wetting liquids on an initially dry polymer brush in 1d. On the left hand side an intermediate state is shown while the right
hand side presents the final equilibrium state. Top, center, and bottom panels give concentration/thickness profiles in gas,
drop, and brush, respectively. For initial state, parameters, and a discussion of further details and main features, see the
main text and appendix C. Lateral boundary conditions are applied and only half the computational domain is shown

by evaporation and imbibition alone.1 The vapor above the drop is nearly saturated and the brush has strongly
swelled underneath the drop with a macroscopic halo in the brush profile outside the drop (cf. [27]). This halo
is matched by corresponding vapor concentration gradients in the gas phase above the brush beyond the drop.
Careful inspection shows that the vapor density of liquid 1 decays faster than the one of liquid 2 indicating that
the concentration in the brush may change non-monotonically (assuming approximate local equilibrium between
vapor and brush state). Indeed, the lower panel on the left indicates such a behavior with a minimum in φ̃b1 at
x ≈ 575.

When equilibrium is reached (right panels of Fig. 2), the vapor concentrations are homogeneous across the
system (diffusion has ceased), and approximately fulfill Raoult’s law (partial pressures of components in the mixed
vapor phase equal the vapor pressure above a pure liquid weighted by their mole fraction [39]) with respect to
the mixing ratio of an ideal liquid mixture in a drop. A small deviation (

∑2
i=1 ρvi/ρsat

v ≈ 1.03 > 1) results from
our consideration of non-ideal mixtures (χi �= 0). Also the brush has reached its swelling equilibrium that only
slightly differs underneath and beyond the drop in thickness (cf. section “Sorption isotherm of a polymer brush” of
[6]) and concentration. Note that the transition between the two plateau values of the concentration seems to be
nearly step-wise—this should in the future be amended by incorporating an energy penalty for steep concentration
gradients. The final equilibrium brush profile nicely shows that a wetting ridge has emerged in the three-phase
contact line region. There, the concentration within the drop and brush are both locally influenced by wettability:
coming from the drop side where φd1 = 0.182 [φ̃b1 = 0.119] the concentration φd1 [φ̃b1] first increases [decreases]
in the contact line region before it decreases [increases] again toward the adsorption layer [brush] outside the drop
to φd1 = 0.179 [φ̃b1 = 0.121]. Overall, one can see that concentration differences across the system are smaller in
the final equilibrium state than in the course of the dynamics. Overall, the example simulation shows all features
of the process expected on general grounds and allows one to study many specific properties of the interacting
dynamical processes consistently driven by the underlying energy.

1For spreading and evaporating drops of simple liquids on solid substrates this state has been analyzed in Ref. [38].
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4 Conclusion

We have introduced a mesoscopic hydrodynamic model for drops of a binary mixture of volatile liquids on brush-
covered substrates in a narrow-gap geometry. Our work corresponds to a major extension of earlier work on gradient
dynamics-based thin-film descriptions of drops of volatile simple liquids in a gap [29] as well as of nonvolatile and
volatile simple liquids on brush-covered substrates [6]. Although, here we have only presented the full-curvature
version of the model (indicated by the usage of the exact metric factors), a long-wave version is easily obtained by
approximating the metric factors for small interface slopes, see, e.g., pertinent discussions in Refs. [6, 12].

We have shown that the formulation as a gradient dynamics on an underlying free energy functional allows one
to ’quasi-automatically’ account for all energetic cross-couplings between the individual fields and the resulting
dynamic processes. In particular, the needed six scalar fields represent the two liquid components of the mixture
within the brush and the drop as well as the two components of the vapor in the gas phase. All contributions
to the energy have been detailed in Appendix A while the matrices of mobility functions for the conserved and
nonconserved parts of the dynamics are discussed in Appendix B. The energy accounts for concentration- and brush
state-dependent capillarity and wettability, miscibility of the two components within drop and brush, as well as
entropy in the gas phase. The developed model may account for the coupled spreading, absorption, imbibition,
diffusion, evaporation/condensation, demixing/mixing and swelling dynamics that occurs when a drop of binary
mixture is placed on a dry polymer brush. We have briefly illustrated this by employing an exemplary numerical
time simulation of such a process. It has shown that the dynamic model seems to well describe the intricate coupled
processes and may in the future serve in detailed studies of a variety of particular processes and phenomena related
to the interaction of volatile mixtures and brushes. Examples include the experimental study of the influence of
saturated vapors of different liquids on the wetting properties of brush-covered substrates that show atmosphere-
dependent swelling [22]. Similarly, the presence of different organic vapors in the gas phase influences contact
angle hysteresis for and resulting velocity of water drops on tilted brush-covered substrates as compared to the
case without such vapors [40].

Note, however, that the developed model only represents a first step in modeling the dynamics of droplets of
mixtures of volatile liquids on adaptive substrates. Although here we have shown that the gradient dynamics
form of mesoscopic hydrodynamics is well suited to extend the reach of thin-film models toward liquid mixtures, a
number of improvements of the presented basic model should be pursued in the future: (i) One may refine the brush
energy accounting for more subtle interactions between brush, liquid mixture (and vapors). For instance, using
the energy proposed in [25] should facilitate studies of the dynamics of various processes related to co-nonsolvency
[20, 22, 41–43]. (ii) The present model does not account for advective flows driven by solutal Marangoni forces
resulting from concentration dependencies of interface energies. However, they are highly relevant for sessile drops
of mixtures [44] or the merging of drops of different liquids [45]. They may be incorporated into the presented
model by employing two additional fields that describe the enrichment of components at the brush–drop and the
drop–gas interface, respectively. This is similar to the incorporation of a surfactant concentration field as done in
the gradient dynamics formulations in Refs. [35, 46]. In principle, following the approach in section IV.B of Ref. [35],
one may then apply an approximation to again eliminate the additional fields still keeping the Marangoni effect (at
the price of slightly breaking the gradient dynamics structure). (iii) Besides the bulk energies, one may also refine
the concentration dependencies of interface and wetting energies beyond the here-employed linear interpolations
between known limiting cases (see, e.g., [47]). There, a discussion is needed that considers relations between the
concentration dependencies of interface and wetting energies and the bulk mixing energy. (iv) Phase separation
within the liquid mixture may result in micro-phase separation and very steep concentration gradients (as already
visible in the contact line region in the studied example). To avoid such steep gradients, one may incorporate an
energy penalty for concentration gradients, e.g., using square-gradient terms in the energies for drop and brush
phase similar to Cahn–Hilliard type energy densities [33]. (v) As in [6], we have assumed that transport of the
two liquids within the brush is by diffusion only. This neglects any dynamic coupling between the lateral motion
of the liquids within the brush and within the drop. Instead, one may model the motion within the brush similar
to a (brush state-dependent) porous layer or, alternatively, introduce a brush state-dependent effective slip at
the brush–drop interface (see, e.g., [48]). The former would add further nondiagonal terms to Q while the latter
would only amend existing nonzero components of Q. (vi) Our work has assumed an isothermal setting, although
effects driven by latent heat and subsequent diffusion of heat are often relevant when considering evaporation [49].
To alleviate this limitation one would need to consistently incorporate the transport of heat into the gradient
dynamics formalism. To our knowledge, this has not yet been done.

Note, finally, that the proposed model does not only allow one to describe dynamic processes for binary drops
on adaptive substrates formed by polymer brushes. It may also serve as a blueprint for the development of similar
models for most other types of adaptive substrates discussed in [3].
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Appendix A: Free energy contributions

Here, we briefly discuss the individual contributions to the energy density, i.e., to the integrand of the energy
functional F , i.e., Eq. (2) of the main text. First, we consider the brush energy per substrate area fb. As the brush
consists of end-tethered polymer chains without cross-coupling, we use an amended Flory-Huggins free energy
of mixing. In particular, in contrast to a standard model of a ternary mixture the translational entropy of the
polymers is replaced by an entropic spring term ultimately employing an Alexander-de Gennes approach [23, 24],
as discussed in Ref. [19, 25]. Writing the expression in terms of ζ’s we have

fb = kT

[
ρl1ζb1 ln

ζb1

ζb1 + ζb2 + ζp
+ ρl2ζb2 ln

ζb2

ζb1 + ζb2 + ζp
+

ζp · (χ1pρl1ζb1 + χ2pρl2ζb2)
ζb1 + ζb2 + ζp

+χ12
ρl1ζb1ζb2

ζb1 + ζb2 + ζp
+

3σ2

2ζpl3K
(ζb1 + ζb2 + ζp)2

]
+ cl1ζb1 + cl2ζb2, (A1)

where σ is the relative grafting density while χ12, χ1p, and χ2p are the Flory-Huggins χ-parameters for the
interactions of liquid 1 with liquid 2, liquid 1 with polymer, and liquid 2 with polymer, respectively. The final two
terms account for the liquid bulk energy as compared to vapor bulk, and are relevant for evaporation/condensation
(cf. Ref. [29]), i.e., for the direct exchange between brush and gas. This ensures full consistency of the description of
the drop energy with the limiting case of a fully saturated brush. Note that the terms are not present in Ref. [27].
The parameters cl1 and cl2 are constant energies per volume for the two pure liquids. They may be expressed in
terms of relative humidities (see below).

The liquid bulk energy per substrate area fd is similar to the brush energy in the limit without polymers ζp,
σ → 0, i.e.,

fd = kT

[
ρl1ζd1 ln

ζd1

ζd1 + ζd2
+ ρl2ζd2 ln

ζd2

ζd1 + ζd2
+ χ12

ρl1ζd1ζd2

ζd1 + ζd2

]
+ cl1ζd1 + cl2ζd2 , (A2)

i.e., it combines standard Flory–Huggins mixing energy with the two bulk liquid energies.
Within the gas phase, we consider both components to be of sufficiently low density to be described as ideal

gases. Following [29] we assume the total gas pressure ρtot to be constant and uniform on the time scale of the
considered processes. Therefore, the number density (per volume) of the air the vapors diffuse in is

ρair(r, t) = ρtot − ρv1 − ρv2 = ρtot − ψ3(r, t)
hv(r, t)

− ψ6(r, t)
hv(r, t)

, (A3)

where hv = d − hd − hb is the local vertical extension of the gas phase (cf. Fig. 1). Thus, the gas bulk energy is

fg = kT
2∑

j=1

ρvj ln(Λ3ρvj) + kTρair ln(Λ3ρair) − kTρtot, (A4)

where Λ is the standard thermal de Broglie wavelength.
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Table 1 All considered
limiting cases for the
brush–drop interface energy
γbd

Brush state Drop state

Pure liquid 1 (φd1 = 1) Pure liquid 2 (φd2 = 1)

Dry brush (φbp = 1) γpl1 γpl2

Saturated with liquid 1 (φb1 = 1) 0 γ12 � γpl2

Saturated with liquid 2 (φb2 = 1) γ12 � γpl1 0

Considering a macroscopically thick flat layer of a pure liquid 1 or 2 in coexistence with saturated vapor, the
influence of wetting and interface energies on the equilibrium state can be neglected. Then, the condition of equal
chemical potentials reduces to

∂fd

∂ψi
+

∂(hvfg)
∂ψi

=
∂(hvfg)
∂ψi+2

for i = 1, 4 . (A5)

As normally ρtot � ρli we may omit the second term on the left hand side allowing us to express the constants
cdi in Eq. (A2) as cdi = kTρli ln[ρsat

vi /(ρtot − ρsat
vi )] as in section 2.2.4 of [29], i.e., in terms of number densities of

saturated pure vapor ρsat
vi which are parameters in our model.

After introducing the bulk energies for the three phases we turn to the energies of the interfaces between
them. Macroscopically, brush and/or mixture state-dependent interface energies are assigned to brush–drop (γbd),
drop–gas (γdg), and brush–gas (γbg) interfaces. However, as we employ a mesoscopic description of the system
only energies γbd and γdg enter while γbg is encoded in the employed wetting energy fwet. As the gas is of low
density γdg and γbg are independent of its state. For all other dependencies, we assume a linear interpolation (as
a function of liquid concentrations) between known limiting cases involving pure liquids. For instance, γdg linearly
interpolates between the liquid 1-gas value γl1g and the liquid 2-gas value γl2g as

γdg = φd1γl1g + φd2γl2g , (A6)

where φd1 = ζd1/hd and φd2 = 1 − φd1 denote the respective local vertically averaged volume fraction of liquid 1
and liquid 2 within the drop. For the brush–drop interface energy more limiting cases have to be accounted for, as
summarized in Table 1. As the two liquids are miscible or weakly immiscible (depending on χ12), the energy γ12

is comparatively small. Linear interpolation gives

γbd = φbpφd1γpl1 + φbpφd2γpl2 + [φb1φd2 + φb2φd1]γ12 . (A7)

Similarly, the macroscopic brush–gas interface energy is

γbg = φb1γl1g + φb2γl2g + φbpγpg . (A8)

In Eqs. (A7) and (A8), φb1, φb2 and φbp = (1 − φb1 − φb2) with φbi = ζbi/hb denote the local vertically averaged
volume fraction of liquid 1, liquid 2, and polymer within the brush, respectively.

The macroscopic energy γbg enters the mesoscopic model only implicitly via the definition of the wetting energy
fwet. Here, we employ a simple expression commonly used for partially wetting liquids. It consists of the combination
of two power laws [11]

fwet(hd) =
A

2h2
d

(
2h3

a

5h3
d

− 1
)

, (A9)

where ha is an adsorption layer height that, for simplicity, is assumed constant. However, the Hamaker “constant”
A depends on the various concentrations and is determined via the consistency condition relating mesoscopic and
macroscopic description [6, 14], namely, γbg = γbd + γdg + fwet(ha). As fwet(ha) = −3A/10h2

a, this implies

A = −10
3

h2
a (γbg − γbd − γdg), (A10)

where the γ’s are given by (A6), (A7), and (A8).
Having defined all terms contributing to the energy functional (2), we emphasize that the dependencies written

as functions of effective thicknesses (the ζ’s) and volume fractions (the φ’s) have to be expressed in terms of
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particle number densities (the ψ’s) before performing the variations entering the gradient dynamics model (1).
This is cumbersome but straightforward.

Appendix B: Mobilities

Finally, we briefly discuss the 6 × 6 mobility matrices Q and M that encode the various dissipation channels
associated with the conserved and nonconserved dynamics, respectively, in the gradient dynamics model (1). As
we base the sequence of fields in the state vector (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6) first on substance and second on phase
(drop, brush and gas), both matrices can be written in block form using 3 × 3 sub-matrices, namely, Q = ((Q

1
,

Q
mix

), (QT

mix
, Q

2
)) and M = ((M1, Mmix), (MT

mix, M2)). The particular expressions are all based on known
limiting cases. We emphasize that positive definiteness and symmetry of the matrices ensure thermodynamic
consistency (corresponding to Onsager reciprocal relations between transport coefficients).

First, we consider the conserved part. Within the drop, we use the established mobilities for a film of binary
liquid mixture written in symmetric form [34]; while in the brush and the gas phases, we consider only diffusive
transport. In the gas, as expected, one obtains the standard diffusion equation in the limit ρair � ρv1, ρv2. However,
in the brush, the assumption of transport by diffusion only is a rather strong approximation strictly valid for large
φbp only. Here, we use it as a sensible first approximation that gives reasonable results as already shown for simple
liquids [6]. Considering within brush and gas only transport by diffusion implies that there is no dynamic coupling
between the three phases. Thus, we obtain

Q
i
=

⎛
⎜⎝

(ζd1+ζd2)ψ2
di

3η + ρ2
li

ζd1ζd2
ζd1+ζd2

Dd
kT 0 0

0 ρ2
liζbi

Db
kT 0

0 0 ψvi
Dv
kT

⎞
⎟⎠ for i = 1, 2 , (B11)

for the block matrices on the diagonal of Q, and

Q
mix

=

⎛
⎜⎝

(ζd1+ζd2)ψd1ψd2
3η − ρl1ρl2

ζd1ζd2
ζd1+ζd2

Dd
kT 0 0

0 0 0
0 0 0

⎞
⎟⎠ (B12)

for the off-diagonal block matrix. Here, Dd, Db, and Dv denote the diffusion coefficients in the drop, brush and
gas phase, respectively. Note that cross-diffusion is neglected in brush and gas.

Considering the nonconserved dynamics, the matrix M has no off-diagonal part (Mmix = 0) because substances
1 and 2 do not chemically transform into each other. The block matrices on the diagonal are

Mi =

⎛
⎝

Mdb
i + Mdg

i − Mdb
i − Mdg

i

−Mdb
i Mdb

i + Mbg
i − Mbg

i

−Mdg
i − Mbg

i Mdg
i + Mbg

i

⎞
⎠ for i = 1, 2 . (B13)

They are identical to the corresponding matrix for a one-component brush–drop–gas system discussed in Ref. [6]. In
particular, Mdg

i and Mbg
i represent the evaporation rates of liquid from drop to gas and brush to gas, respectively

(negative rates indicate condensation). Furthermore, Mdb
i is the imbibition rate from drop into brush (negative

rate indicates desiccation). Note that the sums of all components add up to zero for each row and column. This
indicates material conservation across the overall system, i.e., summing up the respective first and second three
equations of the model (1) results in two conservation laws.

Appendix C: Parameters

Here, we briefly present the parameters used in Sect. 3. An effective nondimensionalization of the dynamic equations
is obtained by setting η, kT , ha, ρl1 = 1 and by accordingly rescaling all other parameters. Therefore all parameter
values given here and in the main text are nondimensional. In particular, the brush-specific parameters are the
grafting density σ = 0.2, the number of monomers per polymer chain N = 75, and the Flory–Huggins χ-parameters
(χ12, χ1p, χ2p) = (0.1, 0.25, 0.85). The reference interface energies are (γpl1, γpl2, γpg, γ12, γl1g, γl2g) = (14, 15,
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20, 0.05, 5, 6). In the conserved and nonconserved mobilities we have (Dd, Db, Dv) = (0.005, 0.001, 0.1) and
(Mdb

1 = Mdg
1 = Mbg

1 , Mdb
2 = Mdg

2 = Mbg
2 ) = (1 · 10−4, 2 · 10−4), respectively.

Furthermore, for simplicity, we use lK = Λ = ha (implying ζp = σNlK = 15) and 103ρtot = 105ρsat
v1 = 105ρsat

v2 =
ρl2 = ρl1. The identical vapor saturation densities ρsat

v1 = ρsat
v2 for the two pure liquids are denoted by ρsat

v . In
consequence, cd1 = cd2 = −4.6.

After reformulation in terms of densities ρ = p/kT and only considering our choice ρl2 = ρl1, Raoult’s law [39]
becomes (ρv1 + ρv2)/ρsat

v = φd1 + φd2 = 1. As Raoult’s law only holds for ideal mixtures, we see a small deviation
as mentioned in Sect. 3.
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