Next: About this document ...
Up: Mixtures of Gaussian process
Previous: Conclusions
Contents
-
- 1
-
Berger, J.O.:
Statistical Decision Theory and Bayesian Analysis.
New York: Springer Verlag, 1980.
- 2
-
Doob, J.L.:
Stochastic Processes.
New York: Wiley, 1953 (New edition 1990).
- 3
-
Everitt, B.S. & Hand, D.J.:
Finite Mixture Distributions.
Chapman & Hall, 1981.
- 4
-
Gelman A., Carlin, J.B., Stern, H.S., & Rubin, D.B.:
Bayesian Data Analysis.
New York: Chapman & Hall, 1995.
- 5
-
Girosi, F., Jones, M., & Poggio, T.:
Regularization Theory and Neural Networks Architectures.
Neural Computation 7 (2), 219-269, 1995.
- 6
-
Lemm, J.C.:
Prior Information and Generalized Questions.
A.I.Memo No. 1598, C.B.C.L. Paper No. 141,
Massachusetts Institute of Technology, 1996.
(available at http://pauli.uni-muenster.de/
lemm)
- 7
-
Lemm, J.C.:
How to Implement A Priori Information: A Statistical Mechanics Approach.
Technical Report MS-TP1-98-12, Universität Münster, 1998.
(cond-mat/9808039,
also available at http://pauli.uni-muenster.de/
lemm.)
- 8
-
Lemm, J.C.:
Quadratic Concepts.
In Niklasson, L, Boden, M, Ziemke, T.(eds.): Proceedings of the 8th
International Conference on Artificial Neural Networks (ICANN 98),
Skövde, Sweden, September 2-4, 1998,
Springer Verlag, 1998.
- 9
-
Lemm, J.C.:
Bayesian Field Theory.
Technical Report MS-TP1-99-1, Universität Münster, 1999.
(available at http://pauli.uni-muenster.de/
lemm.)
- 10
-
Lemm, J.C., Uhlig, J., & Weiguny, A.:
A Bayesian Approach to Inverse Quantum Statistics.
Technical Report MS-TP1-99-6, Universität Münster, 1999.
(cond-mat/9907013,
also available at http://pauli.uni-muenster.de/
lemm.)
- 11
-
Robert, C.P.:
The Bayesian Choice.
New York: Springer Verlag, 1994.
- 12
-
Sivia, D.S.:
Data Analysis: A Bayesian Tutorial.
Oxford: Oxford University Press, 1996.
- 13
-
Tikhonov A.N. & Arsenin V.:
Solution of Ill-posed Problems.
New York: Wiley, 1977.
- 14
-
Williams, C.K.I. &
Rasmussen, C.E.:
Gaussian processes for regression.
In Proc. NIPS8,
MIT Press, 1996.
- 15
-
Vapnik, V.N.:
Estimation of dependencies based on empirical data.
New York: Springer Verlag, 1982.
- 16
-
Vapnik, V.N.:
Statistical Learning Theory.
New York: Wiley, 1998.
- 17
-
Wahba, G.:
Spline Models for Observational Data.
Philadelphia:
SIAM, 1990.
- 18
-
Whittaker, E.T.,
On a new method of graduation.
Proc. Edinborough Math. Assoc., 78, 81-89, 1923.
Joerg_Lemm
1999-12-21