Next: About this document ...
Up: Hartree-Fock approximation for inverse
Previous: Hartree-Fock approximation for inverse
-
- 1
-
R. Newton, Inverse Schrödinger Scattering in Three Dimensions (Springer
Verlag, Berlin, 1989).
- 2
-
K. Chadan, D. Colton, L. Päivärinta, and W. Rundell, An Introduction
to Inverse Scattering and Inverse Spectral Problems (SIAM, Philadelphia,
1997).
- 3
-
A. Tikhonov and V. Arsenin, Solution of Ill-posed Problems (Wiley, New
York, 1977).
- 4
-
D. Sivia, Data Analysis: A Bayesian Tutorial (Oxford University Press,
Oxford, 1996).
- 5
-
Introductions to Bayesian statistics can be found at: http://bayes.wustl.edu/.
- 6
-
J. Lemm, J. Uhlig, and A. Weiguny, cond-mat/9907013, submitted to PRL.
- 7
-
J. Eisenberg and W. Greiner, Microscopic Theory of the Nucleus
(North-Holland, Amsterdam, 1972).
- 8
-
P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer Verlag,
New York, 1980).
- 9
-
K. Goeke, R. Cusson, F. Grümmer, P.-G. Reinhard, and H. Reinhardt, Prog.
Theor. Phys. (Suppl.) 74 & 75, 33 (1983).
- 10
-
J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems (The MIT
Press, Cambridge, MA, 1986).
- 11
-
C. K. I. Williams and C. E. Rasmussen, in Advances in Neural Information
Processing Systems 8, edited by D. S. Touretzky, M. C. Mozer, and M. E.
Hasselmo (The MIT Press, Cambridge, MA, 1996), pp. 514-520.
- 12
-
C. Williams and D. Barber, IEEE Trans. on Pattern Analysis and Machine
Intelligence 20, 1342 (1998).
- 13
-
J. Lemm, Technical Report No. MS-TP1-99-1, Univ. of Münster.
- 14
-
J. C. Lemm, Annals of Physics 244, 136 (1995).
Joerg_Lemm
1999-12-21