Next: About this document ...
Up: Bayesian Inverse Quantum Theory
Previous: Acknowledgements
Contents
-
- 1
-
Hadamard, J.:
Lectures on the Cauchy Problem in Linear Partial Differential Equations.
New Haven: Yale University Press 1923
- 2
-
Tikhonov, A.N.:
Solution of incorrectly formulated problems
and the regularization method.
Soviet Math. Dokl. 4, 1035-1038 (1963)
- 3
-
Tikhonov, A.N.,
Arsenin, V.:
Solution of Ill-posed Problems.
New York: Wiley 1977
- 4
-
Vapnik, V.N.:
Estimation of dependencies based on empirical data.
New York: Springer 1982
- 5
-
Keller, J.B.:
Ann. Math. Mon. 83, 107-118 (1976)
- 6
-
Louis, A.K.:
Inverse und schlecht gestellte Probleme.
Stuttgart: Teubner 1989
- 7
-
Kirsch, A.:
An Introduction to the Mathematical Theory of Inverse Problems.
New York: Springer 1996
- 8
-
Hofmann, B.:
Mathematik inverser Probleme.
Leibzig: Teubner 1999
- 9
-
Gel'fand, I.M.,
Levitan, B.M.:
Trans. Amer. Soc. 1, 253-302 (1951)
- 10
-
Kac, M.:
Am. Math. Mon. 73, 1-23 (1966)
- 11
-
Marchenko, V.A.:
Sturm-Liouville Operators and Applications.
Basel: Birkhauser 1986
- 12
-
Chadan, K., Colton, D., Päivärinta, L., Rundell, W.:
An Introduction to Inverse Scattering and Inverse Spectral Problems.
Philadelphia: SIAM, 1997
- 13
-
Zakhariev, B.N.,
Chabanov, V.M.:
Inverse Problems. 13, R47-R79 (1997)
- 14
-
Newton, R.G.:
Inverse Schrödinger Scattering in Three Dimensions.
New York: Springer 1989
- 15
-
Chadan, K., Sabatier, P.C.:
Inverse Problems in Quantum Scattering Theory.
Berlin: Springer 1989
- 16
-
Wahba, G.:
Spline Models for Observational Data.
Philadelphia: SIAM 1990
- 17
-
Vapnik, V.N.:
The Nature of Statistical Learning Theory.
New York: Springer 1995
- 18
-
Vapnik, V.N.:
Statistical Learning Theory.
New York: Wiley 1998
- 19
-
Hastie,T.J.,
Tibshirani, R.J.:
Generalized Additive Models.
London: Chapman & Hall 1990
- 20
-
Huber, P-J.:
Ann. Statist. 13(2), 435-475 (1985)
- 21
-
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.:
Classification and Regression Trees,
New York: Chapman & Hall 1993
- 22
-
Bishop, C.M.:
Neural Networks for Pattern Recognition.
Oxford: Oxford University Press 1995
- 23
-
Lauritzen, S.L.:
Graphical Models.
Oxford: Clarendon Press, 1996
- 24
-
Michie, D.,
Spiegelhalter, D.J.,
Taylor, C.C. (eds.):
Machine Learning, Neural and Statistical Classification.
New York: Ellis Horwood 1994
- 25
-
Box, G.E.P.,
Tiao, G.C.:
Bayesian Inference in Statistical Analysis.
New York: Wiley 1992
(Originally published in 1973
by Addison-Wesley, Reading, MA)
- 26
-
Berger, J.O.:
Statistical Decision Theory and Bayesian Analysis.
New York: Springer-Verlag 1980
- 27
-
Loredo T.:
From Laplace to Supernova SN 1987A: Bayesian Inference in Astrophysics.
In Fougère, P.F. (ed.)
Maximum-Entropy and Bayesian Methods, Dartmouth, 1989, 81-142.
Dordrecht: Kluwer 1990.
Available at http://bayes.wustl.edu/gregory/gregory.html.
- 28
-
Bernado, J.M., Smith, A.F.:
Bayesian Theory.
New York: John Wiley 1994
- 29
-
Robert, C.P.:
The Bayesian Choice.
New York: Springer 1994
- 30
-
Gelman, A.,
Carlin, J.B.,
Stern, H.S.,
Rubin, D.B.:
Bayesian Data Analysis.
New York: Chapman & Hall 1995
- 31
-
Sivia, D.S.:
Data Analysis: A Bayesian Tutorial.
Oxford: Oxford University Press 1996
- 32
-
Lemm, J.C.:
Prior Information and Generalized Questions.
A.I.Memo No. 1598, C.B.C.L. Paper No. 141,
Massachusetts Institute of Technology 1996.
Available at http://pauli.uni-muenster.de/
lemm.
- 33
-
Lemm, J.C.:
How to Implement A Priori Information:
A Statistical Mechanics Approach.
Technical Report,
MS-TP1-98-12,
Münster University 1998,
arXiv:cond-mat/9808039.
- 34
-
Lemm, J.C.:
Bayesian Field Theory.
Nonparametric approaches to density estimation, regression, classification,
and inverse quantum problems.
Technical Report,
MS-TP1-99-1,
Münster University 1999,
arXiv: physics/9911077.
- 35
-
Jeffrey, R.:
Probabilistic Thinking. 1999.
Available at http://www.princeton.edu/
bayesway/.
- 36
-
Jaynes, E.T.:
Probability Theory: The Logic Of Science.
(In preparation)
Available at http://bayes.wustl.edu/etj/prob.html.
- 37
-
Doob, J.L:
Stochastic Processes.
New York: Wiley 1953
(New edition 1990)
- 38
-
Lemm, J.C., Uhlig, J., Weiguny, A.:
Phys. Rev. Lett. 84, 2068 (2000)
- 39
-
Schulman, L.S.:
Techniques and Applications of Path Integration.
New York: Wiley 1981
- 40
-
Glimm, J.,
Jaffe, A.:
Quantum Physics. A Functional Integral Point of View.
(2nd ed.) New York: Springer 1987
- 41
-
Hammersley, J.M.,
Handscomb, D.C.:
Monte Carlo Methods.
London: Chapman & Hall 1964
- 42
-
Binder, K. (ed.):
The Monte Carlo Method in Condensed Matter Physics.
Berlin: Springer 1992
- 43
-
Winkler, G.:
Image Analysis, Random Fields and Dynamic Monte Carlo Methods.
Berlin: Springer Verlag 1995
- 44
-
Neal, R.M.:
Technical Report No. 9702, Dept. of Statistics,
Univ. of Toronto, Canada 1997
- 45
-
de Bruijn, N.G.: Asymptotic Methods in Analysis.
Amsterdam: North-Holland, 1961.
- 46
-
Bleistein, N. , Handelsman, N.:
Asymptotic Expansions of Integrals.
New York: Dover 1986
(Originally published in 1975
by Holt, Rinehart and Winston, New York)
- 47
-
Honerkamp, J:
Statistical Physics.
Berlin: Springer-Verlag 1998
- 48
-
Williams, C.K.I.,
Rasmussen, C.E.:
Gaussian Processes for Regression.
In Advances in Neural Information Processing Systems 8,
D.S. Touretzky et al (eds.), 515-520,
Cambridge, MA: MIT Press 1996
- 49
-
MacKay, D.J.C.:
Introduction to Gaussian processes.
In Bishop, C., (ed.)
Neural Networks and Machine Learning.
NATO Asi Series. Series F, Computer and Systems Sciences, Vol. 168,
1998
- 50
-
Whittaker, E.T.:
Proc. Edinborough Math. Assoc.
78, 81-89 (1923)
- 51
-
Shiller, R.:
Econometrica 41, 775-778 (1973)
- 52
-
Akaike, H.:
In Bayesian Statistics.
J.M. Bernanda, M.H. De Groot, D.V. Lindley, A.F.M. Smith (eds.),
143-166,
Valencia: Valencia University Press 1980
- 53
-
Green, P.J.,
Silverman, B.W.:
Nonparametric Regression and Generalized Linear Models.
A roughness penalty approach.
London: Chapman & Hall 1994
- 54
-
Girosi, F.,
Jones, M.,
Poggio, T.:
Neural Computation 7 (2), 219-269 (1995)
- 55
-
Kitagawa, G.,
Gersch, W.:
Smoothness Priors Analysis of Time Series.
New York: Springer 1996
- 56
-
Honerkamp, J., Weese J.:
Cont. Mech. Thermodyn. 2, 17-30 (1990)
- 57
-
Messiah, A.:
Quantum Mechanics.
Amsterdam: North-Holland, 1961
- 58
-
Balian, R.:
From Microphysics to Macrophysics.
Vol. I.
Berlin: Springer 1991
- 59
-
Choquet-Bruhat, Y.,
DeWitt-Morette, C.,
Dillard-Bleick, M.:
Analysis, Manifolds and Physics.
(rev. ed.) Amsterdam: North-Holland 1982
- 60
-
Lifshits, M.A.:
Gaussian Random Functions.
Kluwer Academic Publ. 1995
- 61
-
Neal, R.M.:
Bayesian Learning for Neural Networks.
New York: Springer 1996
- 62
-
Williams, C.K.I., Barber, D.:
IEEE Trans. on Pattern Analysis and Machine Intelligence.
20(12), 1342-1351 (1998)
- 63
-
Lemm, J.C.:
Mixtures of Gaussian Process Priors.
In Proceedings of the Ninth International Conference
on Artificial Neural Networks (ICANN99),
IEEE Conference Publication No. 470.
London: Institution of Electrical Engineers 1999
- 64
-
Hochstadt, H.,
Lieberman, B.:
SIAM J. Appl. Math. 34, 676-680 (1976)
- 65
-
Zhu, W., Rabitz, H.:
J. Chem. Phys.
111, 472-480 (1999)
- 66
-
Lemm, J.C.:
Inverse Time-Dependent Quantum Mechanics.
Technical Report, MS-TP1-00-1,
Münster University 2000,
arXiv:quant-ph/0002010.
- 67
-
Lemm, J.C.:
Quadratic Concepts.
In: Niklasson; L., Bodén, M., Ziemke, T. (eds.)
Proceedings of the 8th
International Conference on Artificial Neural Networks,
Skövde, Sweden, 2-4 September 1998., 579-584,
London: Springer 1998
- 68
-
Pierre, D.A.:
Optimization Theory with Applications.
New York: Dover 1986. (Original edition Wiley, 1969).
- 69
-
Fletcher, R.:
Practical Methods of Optimization.
New York: Wiley 1987
- 70
-
Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P.:
Numerical Recipes in C.
Cambridge: Cambridge University Press 1992
- 71
-
Bazaraa, M.S., Sherali, H.D., & Shetty, C.M.:
Nonlinear Programming. (2nd ed.)
New York: Wiley 1993
- 72
-
Bertsekas, D.P.:
Nonlinear Programming.
Belmont, MA: Athena Scientific 1995
- 73
-
Airapetyan, R.G., Puzynin, I.V.:
Comp. Phys. Comm. 102, 97-108 (1997)
- 74
-
Eisenberg, J.M.,
Greiner, W.:
Microscopic Theory of the Nucleus.
Amsterdam: North-Holland 1972
- 75
-
Ring, P.,
Schuck, P.:
The Nuclear Many-Body Problem.
New York: Springer Verlag 1980
- 76
-
Blaizot, J.-P.,
Ripka, G.:
Quantum Theory of Finite Systems.
Cambridge, MA: The MIT Press 1986
- 77
-
Negele, J.W.,
Orland, H.:
Quantum Many-Particle Systems.
Frontiers In Physics Series, Vol. 68,
Redwood City, CA: Addison-Wesley 1988
- 78
-
Lemm, J. C.:
Annals of Physics 244 (1), 136-200 (1995)
- 79
-
Lemm, J.C., Uhlig, J.:
Phys. Rev. Lett. 84, 4517 (2000)
- 80
-
Lemm, J. C.,
Giraud, B.G.,
Weiguny A.:
Phys. Rev. Lett. 73, 420-423 (1994)
Joerg_Lemm
2000-06-06