Introduction to the Standard Model Problem sheet 9

Deadline: Monday 22 June 2015 (12 am) at Dr. Giudice's office (KP 301) and Dr. Piemonte's office (KP 412)

Topics covered: theory of weak interactions

- 1. a) (2 P) Show that a free massless neutrino can be described by a two-component spinor.
 - b) (2 P) Starting from the Dirac equation derive the two-component wave equation for a free massless neutrino (Weyl equation).
 - c) (2 P) The helicity of a particle is defined as

$$\lambda = \vec{S} \cdot \frac{\vec{p}}{|\vec{p}|},$$

where \vec{S} is spin and \vec{p} is momentum. Derive the relation between helicity and chirality for massless neutrinos.

- 2. Consider scattering of leptons in the framework of Fermi's theory, e.g. $\nu_{\mu} \, e^- \to \mu^- \, \nu_e$.
 - a) (1 P) Refresh your knowledge of partial wave analysis of quantum mechanical scattering theory. What is the upper bound on the s-wave contribution to the total cross section?
 - b) (1 P) Bring forward an argument that in Fermi's theory only s-wave scattering occurs.
- 3. The Lagrangian for a real vector boson field is given by

$$\mathscr{L} = -\frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \frac{m^2}{2}B_{\mu}B^{\mu} \,,$$

where

$$G_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} \,.$$

- a) (2 P) Calculate the propagator $D_{F,\mu\nu}(k)$ of the vector boson in momentum space.
- b) (2 P) Calculate its transversal and longitudinal parts, $D_{F,\mu\nu}^{(T)}(k)$ and $D_{F,\mu\nu}^{(L)}(k)$, and compare their behaviour for large k with that of the photon propagator.
- 4. a) (2 P) The semileptonic decays of strange hadrons, like $K^- \to \pi^0 e^- \bar{\nu}_e$ or $K^+ \to \pi^0 e^+ \nu_e$ or $\Sigma^- \to n e^- \bar{\nu}_e$, obey the rule $\Delta S = \Delta Q$, where ΔS and ΔQ are the changes of strangeness S and charge Q of the hadron. Explain this rule in the framework of V-A-theory in the quark picture.
 - b) (1 P) Strangeness-changing weak decays, like the above ones, are suppressed relative to strangeness-conserving ones, like $n \to p \, e^- \, \bar{\nu}_e$ or $\pi^- \to \pi^0 \, e^- \, \bar{\nu}_e$, by a factor of about 20. Explain this.