Introduction to Quantum Field Theory Problem sheet 2

Deadline: Wednesday 11 November 2015 (12 am) at Dr. Giudice's office (KP 301)

Topics covered: Dirac equation and γ -matrices.

1. (3 P) Show that if $\psi(x)$ is a solution of the Dirac equation in an electromagnetic field, then it satisfies

$$\left[\left(\partial_{\mu} + \mathrm{i}eA_{\mu} \right) \left(\partial^{\mu} + \mathrm{i}eA^{\mu} \right) + \frac{e}{2} \sigma_{\mu\nu} F^{\mu\nu} + m^2 \right] \psi(x) = 0,$$

which is a generalized form of the Klein-Gordon equation. In this equation e is the charge of the particle, $\sigma_{\mu\nu} = \frac{i}{2} [\gamma_{\mu}, \gamma_{\nu}]$ and $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$.

2. (4 P) The Weyl representation of the γ -matrices is

$$\gamma^0 = - \begin{pmatrix} 0 & \mathbf{1} \\ \mathbf{1} & 0 \end{pmatrix}, \quad \gamma^{\kappa} = \begin{pmatrix} 0 & \sigma_k \\ -\sigma_k & 0 \end{pmatrix}.$$

- a) Show that they obey the Clifford algebra;
- b) Calculate γ_5 in this representation.
- 3. (4 P) Show that:
 - a) $\bar{u}^{(r)}(\vec{k})u^{(s)}(\vec{k}) = 2mc^2\delta_{rs},$
 - b) $\bar{v}^{(r)}(\vec{k})v^{(s)}(\vec{k}) = -2mc^2\delta_{rs},$
 - c) $\bar{u}^{(r)}(\vec{k})v^{(s)}(\vec{k}) = 0,$
 - d) $\bar{v}^{(r)}(\vec{k})u^{(s)}(\vec{k}) = 0.$

Hint: use the fact that $\bar{u}^{(r)}(\vec{k})u^{(s)}(\vec{k}),\ldots$, are Lorentz invariant.

4. (3 P) Show that:

$$\omega^{\nu\mu}\gamma_{\mu} = -\frac{\mathrm{i}}{4}\omega^{\alpha\beta}[\gamma^{\nu},\sigma_{\alpha\beta}].$$