SM Exercises 1

To be handed in on 22.04.14

1. (25%) Evaluate the following structure constants of $S U(3)$: f^{123}, f^{126}, $f^{147}, f^{148}, f^{156}, f^{157}, f^{246}, f^{257}, f^{345}, f^{346}, f^{367}, f^{456}, f^{458}, f^{678}$. Take into account that the standard basis for the fundamental representation of $S U(3)$ is

$$
\begin{array}{ll}
t^{1}=\frac{1}{2}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & t^{2}=\frac{1}{2}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad t^{3}=\frac{1}{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \\
t^{4}=\frac{1}{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad t^{5}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \quad t^{6}=\frac{1}{2}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
t^{7}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \quad t^{8}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) .
\end{array}
$$

2. (30%) This exercise shows how to construct all the irreducible representations of $S U(2)$. The generators of $S U(2)$ satisfy the commutation relation $\left[J_{a}, J_{b}\right]=i \varepsilon_{a b c} J_{c}$, where $\varepsilon_{a b c}$ is the totally antisymmetric Levi-Civita symbol and $\varepsilon_{123}=1$.

- Define the raising and lowering operators as $J_{ \pm} \equiv J_{1} \pm i J_{2}$. Obtain the commutation relations between $J_{ \pm}$and J_{3} and write J^{2} in terms of them.
- Consider an eigenstate of J^{2} and J_{3} with eigenvalues λ and m : $J^{2}|\lambda, m\rangle=\lambda|\lambda, m\rangle, J_{3}|\lambda, m\rangle=m|\lambda, m\rangle$. Show that the states $J_{ \pm}|\lambda, m\rangle$ are also eigenstates of J_{3} but with eigenvalues $m \pm 1$ and the same λ. One can then write $J_{ \pm}|\lambda, m\rangle=C_{ \pm}(\lambda, m)|\lambda, m \pm 1\rangle$, where the $C_{ \pm}(\lambda, m)$ s are constants to be determined.
- Explain why for a given λ the values of m are bounded by $\lambda-m^{2} \geq 0$. Let j and j^{\prime} be respectively the largest and the smallest value of m. Obtain the relation between j, j^{\prime}, λ. Justify why $2 j$ must be an integer.
- Find $C_{ \pm}(\lambda, m)$ in terms of j, m.

The states $|j, m\rangle$ with $m=j, j-1, \cdots-j$ form the basis of an $S U(2)$ irreducible representation, characterized by j which is either an integer or half-integer. Thus, the dimension of the representation is $2 j+1$.
3. (20%) Calculate the generators J_{a} for the $S U(2)$ representation whose basis is given by

$$
\begin{align*}
& \binom{1}{0}=\frac{1}{\sqrt{2}}(|1 / 2,1 / 2\rangle+|1 / 2,-1 / 2\rangle) \tag{1}\\
& \binom{0}{1}=\frac{1}{\sqrt{2}}(|1 / 2,1 / 2\rangle-|1 / 2,-1 / 2\rangle) \tag{2}
\end{align*}
$$

4. (25%) Calculate the generators J_{a} for the $S U(2)$ representation whose basis is given by

$$
\left(\begin{array}{l}
1 \tag{3}\\
0 \\
0
\end{array}\right)=|1,1\rangle, \quad\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=|1,0\rangle, \quad\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=|1,-1\rangle
$$

Check that they indeed satisfy the commutation relations.

