SM Exercises 1

To be handed in on 22.04.14

1. (25%) Evaluate the following structure constants of SU(3): f^{123} , f^{126} , f^{147} , f^{148} , f^{156} , f^{157} , f^{246} , f^{257} , f^{345} , f^{346} , f^{367} , f^{456} , f^{458} , f^{678} . Take into account that the standard basis for the fundamental representation of SU(3) is

$$\begin{split} t^{1} &= \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad t^{2} &= \frac{1}{2} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad t^{3} &= \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ t^{4} &= \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad t^{5} &= \frac{1}{2} \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad t^{6} &= \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \\ t^{7} &= \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad t^{8} &= \frac{1}{2\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}. \end{split}$$

- 2. (30%) This exercise shows how to construct all the irreducible representations of SU(2). The generators of SU(2) satisfy the commutation relation $[J_a, J_b] = i\varepsilon_{abc}J_c$, where ε_{abc} is the totally antisymmetric Levi-Civita symbol and $\varepsilon_{123} = 1$.
 - Define the raising and lowering operators as $J_{\pm} \equiv J_1 \pm i J_2$. Obtain the commutation relations between J_{\pm} and J_3 and write J^2 in terms of them.
 - Consider an eigenstate of J^2 and J_3 with eigenvalues λ and m: $J^2|\lambda,m\rangle = \lambda|\lambda,m\rangle$, $J_3|\lambda,m\rangle = m|\lambda,m\rangle$. Show that the states $J_{\pm}|\lambda,m\rangle$ are also eigenstates of J_3 but with eigenvalues $m\pm 1$ and the same λ . One can then write $J_{\pm}|\lambda,m\rangle = C_{\pm}(\lambda,m)|\lambda,m\pm 1\rangle$, where the $C_{\pm}(\lambda,m)$ s are constants to be determined.
 - Explain why for a given λ the values of m are bounded by $\lambda m^2 \ge 0$. Let j and j' be respectively the largest and the smallest value of m. Obtain the relation between j, j', λ . Justify why 2j must be an integer.
 - Find $C_{\pm}(\lambda, m)$ in terms of j, m.

The states $|j,m\rangle$ with $m = j, j - 1, \dots - j$ form the basis of an SU(2) irreducible representation, characterized by j which is either an integer or half-integer. Thus, the dimension of the representation is 2j + 1.

3. (20%) Calculate the generators J_a for the SU(2) representation whose basis is given by

$$\binom{1}{0} = \frac{1}{\sqrt{2}} \left(|1/2, 1/2\rangle + |1/2, -1/2\rangle \right) \tag{1}$$

$$\begin{pmatrix} 0\\1 \end{pmatrix} = \frac{1}{\sqrt{2}} \left(|1/2, 1/2\rangle - |1/2, -1/2\rangle \right).$$
(2)

4. (25%) Calculate the generators J_a for the SU(2) representation whose basis is given by

$$\begin{pmatrix} 1\\0\\0 \end{pmatrix} = |1,1\rangle, \quad \begin{pmatrix} 0\\1\\0 \end{pmatrix} = |1,0\rangle, \quad \begin{pmatrix} 0\\0\\1 \end{pmatrix} = |1,-1\rangle.$$
(3)

Check that they indeed satisfy the commutation relations.