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Introduction

Complex Langevin dynamics provides a way to simulate theories with
complex actions === no importance sampling, no sign problem!

It opens the way to QCD simulations at pp # 0

The method was introduced in 1983 by G.Parisi and J.R.Klauder but shortly
after it was clear that correct results are not garanteed

We do not have a FULL UNDERSTANDING of the problem yet!

A combination of analytical and numerical results, also on simple models,
can help us!

Recently the importance of the properties of the probability distribution
(generated by the Langevin process) in the complexified configuration space
has been clarified: the distribution has to drop very rapidly (in particular in
the imaginary direction) === this can be formalised in a criterion for

correctness [G. Aarts, F. A. James, E. Seiler and I. -O. Stamatescu, Eur. Phys. J. C
71 (2011) 1756]



The goal of this work

Here we study the probability distribution (by brute force and solving the
Fokker-Planck Equation, FPE) and then we relate the results to the criterion

for correctness

We have a complete characterisation of the dynamics by studying:

= Classical flow
= Criterion for correctness
= EXxplicit solution of the FPE

We show moreover that:

= |f the distribution has support only on a strip of the complexified
configuration space, then correct results are obtained !



The model + CL
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The toy model:  Z = / dre >, S = 50@*2 + Z)‘x4’ ceC,AeR

— 0

Analytic solution: 7 — \/4;&651(_;(5) E=0%/(8\) = (z")
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Complex Langevin (CL) equation: 2z = —825(2) +n
Complexification: » = z + 4y, n =ngr + i1, o=A+1B
CLisnow: & = K,(z,y) +nr, 9= Ky(z,y) +nr

Drift: K, = —Red.S(z) = —Az + By — Az (z° — 3y?)
K, = —Imd,S(z) = —Ay — Bz — \y (322 — °)

Noise:
(mr(t)nr(t')) = 2Ngré(t —t'), (nr(t)nr(t)) =2Nré(t —t'), Nr—N;r=1



Criterion for correctness

Averaging over the noise we can determine the expectation values (O),

The probability distribution P(z, y;t) describes how the configuration space
IS sampled and its evolution in time is given by the Fokker-Planck Equation:

P(z,y;t) = LT P(x,y; 1), LY =0, (Ngrd, — K,) + 0, (N0, — K,

The expectation value is given by:
(O)p) = [ dedy Pla.y: )0 + i)

But we know that: S
O>p(t) — /dmp(x7t)0(m)7 p(m) =€

Therefore we want that:  (0) .,y = (O) p(y)

Introducing the Langevin Operator: L = [, — (8,5(z))] 0.,
the criterion for correctness is given by:
(to be satisfied for a complete set of observables)



Real noise
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Perfect agreement and criterion for correctness satisfied!



Complex noise
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= Note: C2 always consistent with zero; strong fluctuation for large N;



Solving FPE

We want to solve the FP equation: P(z,y;t) = LT P(z, y; t)
To do that we solve the eigenvalue problem: —L?P.(z,y) =k Pi(x,y)

If we have a unique ground state Fo with eigenvaue = 0, then the solution
IS: P(x,y;t) = Po(z,y) + Yo " Pulz,y)

In [A.Duncan, M.Niedermaier, Annals Phys.329 (2013) 93] P(x,y) is
expanded in a basis of Hermite functions:

P(z,y) = S0 S0 e Hy, (V) Hy (vwy)

This was done introducing creation and annihilation operators, a and b:

x—\/;—w( —I—aT), pmz—iaxzi\/g(aT—a),
y:@(b+bT)7 py = —i0y = i./F (b7 —b)

We determine the matrix elements: (ki|LT|mn) where |mn) = maTmbT”|0>
and therefore H,,(y/wzx) = (z|m)

Note: w and Ny



Complex noise (eigenvalues & 3d distr.)
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= The eigenvalues around the origin are independent of w

= Ground state: w = 1.5 and Ny = 150
=  We find that there is an interval for w for which:

= There is always an eigenvalue consistent with zero
= The other eigenvalues are in the right half-plane

= The ground state is stable under variation of w and Ny
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Complex noise (integrat. distr. & power decay)
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Manifestation of the truncation in Ng

We observe a power decay with power 5:

This suggests: P(z,y) ~

1
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Real noise (eigenvalues & distr.)
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= There is an eigenvalue at the origin but in general they depend on w
= From P, (y) we see convergence only for large values of w

= Distribution very localised, drops to zero around y ~ 0.28
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Real noise (truncation & 3d plot)
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Classical flow

(Kz(x,y), Ky(z,y)) forc=1+iand A =1
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e N = An attractive point at (x,y)=(0,0)
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= Two repulsive points at (+0.455, F1.10)

: = 3 fixed points (where K, (z,y) = K,(z,y) =0):

Blue lines where K,(x,y) changes sign

Dynamics confined between the dashed lines!!!
(we have: —0.3029 < y < 0.3029)
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Conservation law

The classical flow result can be made more rigorous

We note that the FPE takes the form of a conservation law:
P(x,y;t) = OpJu(z, y; ) + 0y Jy(z,y;t)

J. = (Ng0, — K,) P, J,= (N9, — K,)P

We can now introduce the charge Q(y,t) = [~ dz Jy(z,y;t)

Assuming sufficient decay, i.e. K, ,(z,y)P(z,y) — 0 and real noise we
have: Q(y) = [°, dz Ky(x,y)P(z,y) = 0

Since P(z,y) is not negative, if K,(x,y) has a definite sign as a function of
x for a given y, then P(z,y) has to vanish for this y value

s = The distribution is strictly zero in the two

— strips provided that 342 > B2 and N; = 0
= Where:

X
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Absence of strips
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= Increasing B similar to I |
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Criterion for correctness vs B
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= Also from here we see that the effect of increasing B is very similar
to increasing the value of Ny
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Universal decay behaviour

= |tis possible to understand the universal power decay!

= Starting from FPE: P(z,y;t) = LT P(z, y;t)
C

= And substituting the Ansatz: P(z,y) :( )
T Yy )«

=  We find that:
2 — y? + 2a(Ngrx? + Nyy?)
(8%
($2 _|_ y2>2

+ Al —a) + A8 —a)(z* —y?) =0
= Atlarge x and y, only the last term dominates and we have: o = 3

= And therefore: P, (x) ~ %, P,(y) ~ L
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Conclusions

In order to justify the results obtained with CL the probability distribution has
to be sufficiently localised

Here we have studied the properties of the distribution via a number of
methods: classical flow, histogram by brute force, explicit solution of FPE,
criterion for correctness

We have found:

= Forreal noise as 342 > B2, the distribution has support only in a strip
and it has an exponential decay in the real direction; criterion for
correctness satisfied and correct results obtained!

= When 342 < B?or the noise is complex the distribution is NOT localised;
the distribution has a power law: P(z,y) ~ (22 + y?)~3, because of this
slow decay high moments are not well-defined; criterion for correctness
suffer of large fluctuations: signal of failure!

A consistent picture of the dynamics can be obtained already from a
combination of partially integrated distribution and criterion for correctness

These tools are readily available to study SU(N) gauge theories (plus gauge
cooling...) 19
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