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State of matter at high temperature
“Big bang” “Little bang”

[1201.0784]

strong interactions at finite T and finite µ

complicated dynamics: time evolution, influence of
electromagnetic fields

simplification: equation of state for the strongly interacting
matter
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State of matter at high density

[Reddy, Schladming 2013]
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QCD at finite temperature and density

critical temperature: confinement ↔ deconfinement

critical temperature: chiral symmetry restoration

properties of the phases: ε(T ), p(T ), screening length, ...
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QCD thermodynamics

S [A, ψ̄, ψ;µ] =

∫ 1
T

0

[
1

4
TrFµνF

µν +
∑

f

ψ̄f

(
/D + mf + γ0µ

)
ψf

]

QCD partition function

Z (T ;µ) = Tr(e−(H−µQ)/T ) =

∫

bc.
DAD(ψ̄, ψ) e−S[A,ψ̄,ψ;µ]

temperature → boundary conditions:
bosons: periodic
fermions: antiperiodic

Thermodynamic quantities

f = −T

V
logZ ; p =

∂T logZ

∂V
; n =

T

V

∂ logZ

∂µ
. . .
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Effective theories from perturbative investigations

structure of perturbation theory different at finite T : zero
mode Matsubara frequencies

resummation to effective mass: reorganization of perturbation
theory

no thermal mass for colour magnetic fields: can not be treated
perturbatively (Linde problem)

“Helsinki approach” integrate out perturbative degrees of
freedom, non-perturbative effective three dimensional theory

(scale separation g2T
π << gT << πT )

fails below 5Tc , breaks center symmetry

here: three dimensional effective theory starting form the low
temperature confined phase
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QCD thermodynamics on the lattice
Discretized QCD partition function

Z (T ) = Tr(e−H/T ) =

∫

bc.

∏

n

dU(n, µ)d(ψ̄n, ψn) e−S[U,ψ̄,ψ]

gauge fields: links = U = Pe ig
∫ x+µ̂
x dxµAµ

matter fields ψ:
temperature: lattice boundary conditions T = 1

Lt
= 1

aNt
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The QCD lattice action

S = SYM + Sferm = −β
6

∑

p

(TrUp + TrU†p) +
∑

f

ψ̄f (D[U] + mf )ψf

Up =

Path integral: Haar measure dU

invariant under gauge transformations
Uµ(x)→ Ω(x)−1Uµ(x)Ω(x + µ)

fermions are integrated out:
Sferm. eff. = − log(

∏
f det(D[U] + mf ))
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The two faces of the Polyakov loop: Gauge observable

Polyakov loop:

L(x) = TrW (x) = Tr[
Nt∏

τ=0

U0(x, τ)] = Pe ig
∫ 1

T
0 dτA0(x,τ)

Gauge invariant quantity

naturally obtained with constant background gauge field
A0

resembles gauge dynamics / interaction with gauge
background
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The two faces of the Polyakov loop: Heavy quark

Polyakov loop: world line of a static quark

L puts infinitely heavy quark in the theory

〈L〉 = exp(−(FQ − F0)/T )

confinement (no free quarks) FQ →∞: 〈L〉 = 0

deconfinement: 〈L〉 6= 0

− log < L(0)L(R) > at T → 0: static quark-antiquark
potential

11/40



Intro eff. th. YM QCD Conclusions

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 4.5  5  5.5  6  6.5

<
|L

|>

β

first order phase transition at βc

short range: Coulomb like
V (R) = − c

R

long range: linear rise with
string tension V (R) = σR

12/40



Intro eff. th. YM QCD Conclusions

Z (Nc) center symmetry

Hidden symmetry of the pure gauge theory

multiply all links on one timeslice with center element

zn = e i
2π
Nc

n
1

SYM invariant

L picks up phase: order parameter for Z (Nc) symmetry
breaking

confinement ↔ spontaneous symmetry breaking

with fermions: symmetry “washed out”
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Non-perturbative effective theories

Guided by phenomenological observations:

MIT-Bag model

Hadron resonance gas model

Guided by symmetries (chiral symmetry, center symmetry)

NJL, PNJL model
→ models gauge dynamics by Polyakov loops

Advantage: simple description of relevant properties and processes

Here: Simple effective model follows naturally from the strong
coupling expansion of lattice QCD
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Effective action for the Polyakov loop

e−Seff[L] =

∫
[dUi ]

∏

p

e
β
6
Tr
(
Up+U†

p

)
, Z =

∫
[dL]e−Seff[L]

integrating out spatial links

final result depends only on Polyakov lines L

dimensional reduction from 3 + 1D to 3D

Seff expanded in terms of interactions / interaction distances

numerical methods:
inverse MC, demon methods [Heinzl, Kästner, Wozar, Wipf, Wellegehausen],
relative weights [Langfeld,Greensite]

Here: strong coupling approach, can be applied also when
Monte-Carlo fails
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Strong coupling expansion in lattice gauge theory

Z =

∫
[dUµ]

∏

p

e
β
6
Tr
(
Up+U†

p

)

expansion in β = 6/g2 (opposite to weak coupling)

similar to high temperature expansion in statistical physics

at low orders: simple integration rules for products of
plaquette contributions

∫
dU U =

∫
dU U† = 0;

∫
dU UU† =

1

3
1
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Static quark-antiquark potential in strong coupling limit

simplest example: 〈 Wilson loop 〉

→ ∝
(
β
18

)RT

first contribution: Loop filled with plaquettes

confinement:
V (R) = − limT →∞

1
T log〈W 〉 = −σR

extension: O =
∑

n Onβ
n

more convenient expansion parameter u = β
18 + . . .

17/40



Intro eff. th. YM QCD Conclusions

Effective action from strong coupling

Integrating out spacial links to get effective theory

+ + −→ −→

[Polonyi, Szlachanyi]
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Effective action from strong coupling and simulations

Seff = λ1Sdistance 1 + λ2Sdistance
√

2 + . . .

ordering principle for the interactions
higher representations and long distances are suppressed
(uNt ; u2Nt ; u2Nt+2)
effective couplings exponentiate:
λ1 = uNt exp(NtP(u)) (resummation)
collect similar terms to log (resummation)

Snearest neighbors =
∑

<ij>

(λ1<LiL∗j − (λ1<LiL∗j )2 + . . .)

=
∑

<ij>

log(1 + λ1<LiL∗j )
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Numerical lattice simulations of the effective theory

Remaining path integral of the effective theory

∫
[dL]e−Seff[L]

several effective model studies consider only mean field for the
effective theory

here: numerical Monte-Carlo simulation

full non-perturbative dynamics of the effective degrees of
freedom
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Correct representation of the Z (Nc) symmetry
and phase transition

effective action: Z (Nc)-symmetric combinations of L

Z (Nc) gets spontaneously broken at larger values of λ1

first order phase transition
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Confinement - deconfinement phase transition

Strong coupling relation λ(β): mapping back λc to βc

Yang-Mills relation a(β) ⇒ Tc = 1
a(βc )Nt

Extrapolation of continuum limit from strong coupling result!
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Corrections in the expansion

Two possible corrections:
λ1 = uNtexp(Nt(4u4 + 12u5 + . . .))
Seff = λ1Sdistance 1 + λ2Sdistance

√
2 +

. . .

Next to nearest neighbors, adjoint rep. ...

... suppressed with uNt , not important for the phase transition in
continuum limit.
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Is Yang-Mills theory that simple?

Free energy of
static quark-antiquark pair

〈L(~0)L†(~R)〉 = exp(−F (|~R|,T )/T )
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(R
,T

)/
T

R/r0

T/TC = 61%

Nt = 4
Nt = 6
Nt = 8
Nt = 10
Nt = 12
Nt = 14
Nt = 16

precise check of long and short range correlations

short range (like zero temperature), long range: temperature
dependent string tension σ(T )
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Precise measurements
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“Lattice structure” in the effective theory

β = 5.0
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String tension from the effective theory
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Yang-Mills thermodynamics from the effective theory
can not compute Z (T ) directly, use derivatives

∆S(β) = N4
t

V

(
d log Z
dβ

∣∣∣
T
− d log Z

dβ

∣∣∣
T=0

)

fr
T 4

∣∣β
β0

= −
∫ β
β0
dβ′∆S(β′)
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Conclusions of pure Yang-Mills results

effective theory captures main features of the phase transition

continuum results can be extrapolated from the effective
theory

some measurements depend on suppressed long range
interactions – not handled precise enough in strong coupling
approach (→ can be improved)

beside the phase transition, might be able to extract
thermodynamic properties – especially in low temperature
region

Effective theory nice tool to explore regions inaccessible by ordinary
simulations, especially to investigate phase transitions.
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QCD on the lattice: fermions

∑

x ,y

ψ̄(x)(D + m)x ,yψ(y) =
∑

x

[
(m + 4r)ψ̄(x)ψ(x)

− 1

2

∑

µ

ψ̄(x)
(
(1− γµ)Uµ(x)ψ(x + µ̂) + (1 + γµ)U†µ(x − µ̂)ψ(x − µ̂)

)]

= C
∑

x ,y

ψ̄(x)
[
δx ,y − κH

]
ψ(y)

derivatives → gauge invariant difference operators

hopping parameter κ = 1
2m+8

naive expectation: κ < 0.125

real simulations: κ < κc(β), but still small
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Hopping parameter expansion

Sq = − log

[∏

f

det(D −m)

]
= −NfTr log(1− κH) = Nf

∑

l

κl

l
TrH l

expansion around κ = 0, infinitely heavy quarks

H: spacial (S = (1− γi )Ui ), temporal (T = (1− γ0)U0) hops

expansion represented in terms of closed loops of hops

effective action: integrating out spacial links in strong
coupling expansion

⇒ expansion in u and κ
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Static determinant

First contribution: no spacial hops!

det(D −m) ≈ det(1 + T− + T+)

det(1 + T− + T+) =
∏

n

(1 + hLn + h2L†n + h3)2(1 + h̄L†n + h̄2Ln + h̄3)2

h̄ = h = (2κ)Nt + gauge corrections

as expected: quarks break center symmetry!
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Higher orders: Let them propagate!
different contributions at higher order in u and κ

gluon-like contributions from quarks

⇒ λ(β, κ) (shift of β)

gluon modifications of quark lines

⇒ h(κ, β)

interaction between quarks

⇒ LiLj interaction

So far
included:
κ2, κ4

corrections

33/40



Intro eff. th. YM QCD Conclusions

Heavy quark QCD results

reproduce phase transition in heavy quark limit

mapping critical values of effective theory to QCD:
around 5% error (Nt = 4)
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Lattice QCD and finite density

Z (T , µ) = Tr(e−(H−µQ)/T )

continuum physics: extra term µψ̄γ0ψ

on the lattice modification of D

ψ̄(x)
(
(r − γ0)eaµU0(x)ψ(x + 0̂) + (r + γ0)e−aµU†0(x − 0̂)ψ(x − 0̂)

)

γ5D(µ)†γ5 = D(−µ∗) ⇒ det(D(µ)) = det(D(−µ∗))∗

complex measure ⇒ lattice methods fail at large µ

⇒ any information about the model at finite µ is helpful

⇒ need playground to test methods and find possible effects.
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Effective model at finite density

general form of the action

∑

i

λiScenter symm.i +
∑

i

hiSasi +
∑

i

h̄iS
†
asi

finite µ introduces factor e±aµ for temporal up/down hops
⇒ h 6= h̄

h(µ) = h̄(−µ) ⇒ mild sign problem

simple model: can cure the sign problem by reweighting

alternative algorithm: complex Langevin (works!)
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Results with quark matter and finite density

Phase transition at finite densities

Nf = 2, Nt = 6
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Is QCD that simple?

Yang-Mills part: same limitations as in pure gauge theory

additional limitation for QCD: truncation of hopping
parameter expansion

conf.-deconf. phase transition: limited to small Nt

Gauge corrections u(β)Nt ⇒ small at low T = 1
a(β)Nt

!
Heavy quark region: mπ ≈ 20 GeV
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Results with quark matter and finite density

Nuclear transition:

continuum extrapolation ⇒ nB ≈ 0.16fm−3
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Conclusions and outlook

systematic derivation of effective theory: spatial strong
coupling expansion

reproduces main features of QCD (phase transitions!)

quarks are included in a hopping expansion

phase transitions in the heavy-dense limit

great progress towards higher orders in κ ⇒ lower masses

further improvement: corrections of long range interactions in
pure gauge part
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