Heavy quark production in pp, pA and AA collisions

Michael Topp

Institute for Theoretical Physics WWU Münster

12.11.2012

Table of Contents

Introduction

- Heavy quarks and heavy hadrons
- DIS and LO processes
- 2 "Infinity"
 - Dealing with UV and IR divergencies
- 3 Non-perturbative aspects
 - Factorization and PDFs
 - Fragmentation
- 4 From protons to heavy ions
 - Modifications in pA collisions

- Heavy quarks and heavy hadrons
- DIS and LO processes
- 2 "Infinity"
 - Dealing with UV and IR divergencies
- 3 Non-perturbative aspects
 - Factorization and PDFs
 - Fragmentation
- From protons to heavy ions
 - Modifications in pA collisions

5 Outlook / Summary

"Infinity"

lon-perturbative aspects

From protons to heavy ions

Outlook / Summary

SM particle content

Elementary Particles

• 3 generations - increasing mass

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

SM particle content

Elementary Particles

- 3 generations increasing mass
- c-quark discovered in 1970 @ SLAC (J/Ψ production)
- b-quark discovered in 1977 @ Fermilab (bottonium)

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

SM particle content

Elementary Particles

- 3 generations increasing mass
- c-quark discovered in 1970 @ SLAC (J/Ψ production)
- b-quark discovered in 1977 @ Fermilab (bottonium)

From protons to heavy ions

Outlook / Summary

Masses of heavy quarks

Quark masses / GeV					
d	и	S	С	b	t
$3 - 9 \cdot 10^{-3}$	$1-5\cdot 10^{-3}$	$75 - 170 \cdot 10^{-3}$	1.15 – 1.35	4 – 4.4	174.3 ± 5.1

- $m_{u,d,s} = 0$ in calculations because of small masses
- $m_{c,b,t} \neq 0$

From protons to heavy ions

Outlook / Summary

Masses of heavy quarks

Quark masses / GeV					
d	и	s	С	b	t
$3 - 9 \cdot 10^{-3}$	$1-5\cdot 10^{-3}$	$75 - 170 \cdot 10^{-3}$	1.15 – 1.35	4 – 4.4	174.3 ± 5.1

• $m_{u,d,s} = 0$ in calculations because of small masses

•
$$m_{c,b,t} \neq 0$$

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Heavy mesons

Mesons	with	C/	/c̄-content	
--------	------	----	-------------	--

Pseudoscalar mesons	Vector mesons	Quark content
D ⁰	<i>D</i> * ⁰	сū
D^+	D^{*+}	сđ
D_s^+	D_s^{*+}	сŝ
$\overline{D^0}$	$\overline{D^{*0}}$	иē
D^-	D^{*-}	dē
D_s^-	D_s^{*-}	sī

• Quarkonia: important example J/Ψ with $c\bar{c}$ content

Mesons with b/\bar{b} -content

- Same nomenclature with $D \leftrightarrow B$, $c \leftrightarrow b$, $\bar{c} \leftrightarrow \bar{b}$,
- Quarkonia: important example Υ with $b\bar{b}$ content

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Heavy mesons

Mesons with	c/\bar{c} -content
-------------	----------------------

Pseudoscalar mesons	Vector mesons	Quark content
D^0	D*0	сū
D^+	D^{*+}	сā
D_s^+	D_{s}^{*+}	сŝ
$\overline{D^0}$	$\overline{D^{*0}}$	uē
D^-	D^{*-}	dīc
D_s^-	D_s^{*-}	sīc

• Quarkonia: important example J/Ψ with $c\bar{c}$ content

Mesons with b/\bar{b} -content

- Same nomenclature with $D \leftrightarrow B$, $c \leftrightarrow b$, $\bar{c} \leftrightarrow \bar{b}$,
- Quarkonia: important example Υ with $b\bar{b}$ content

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Heavy baryons

Baryons with *c*-content

Baryon	Quark content	
Ω_{ccc}^{++}	ССС	Spin ³ / ₂
Ω_{cc}^+	SCC	
Ω_c^0	SSC	
\equiv^{++}_{cc}	UCC	
Ξ_{cc}^+	dcc	
Ξ_c^+	USC	
Ξ_c^0	dsc	
Σ_{c}^{++}	uuc	
Σ_c^+	udc	
Σ_c^0	ddc	
Λ_c^+	udc	$Spin\frac{1}{2}$

		Outlook / Summary
	DIS	

$e^{-}(k^{\mu}) + p(p^{\mu}) \rightarrow e^{-}(k'^{\mu}) + X$

- Momentum transfer $Q^2 = -q^2$ with $q^{\mu} = k^{\mu} k'^{\mu}$
- $M^2 = p^2$ (M: proton mass)
- Define $Mv = p \cdot q$ and $x = Q^2/(2Mv)$

• Bjorken limit: $Q^2, \nu \to \infty$ with x fixed

				Outlook / Summary			
DIO							

DIS ...

$e^-(k^\mu)+p(p^\mu) ightarrow e^-(k'^\mu)+X$

- Momentum transfer $Q^2 = -q^2$ with $q^{\mu} = k^{\mu} k'^{\mu}$
- $M^2 = p^2$ (M: proton mass)
- Define $Mv = p \cdot q$ and $x = Q^2/(2Mv)$
- Bjorken limit: $Q^2, v \to \infty$ with x fixed
- Structure functions $F_i(x, Q^2) \rightarrow F_i(x)$ (finite!)
- $\Rightarrow \gamma *$ scatters off pointlike partons

		Outlook / Summary
	510	

DIS ...

$e^-(k^\mu)+p(p^\mu) ightarrow e^-(k'^\mu)+X$

- Momentum transfer $Q^2 = -q^2$ with $q^{\mu} = k^{\mu} k'^{\mu}$
- $M^2 = p^2$ (M: proton mass)
- Define $Mv = p \cdot q$ and $x = Q^2/(2Mv)$
- Bjorken limit: $Q^2, \nu \to \infty$ with x fixed
- Structure functions $F_i(x, Q^2) \rightarrow F_i(x)$ (finite!)
- $\Rightarrow \gamma *$ scatters off pointlike partons
- Momentum fraction carried by parton $p_q^\mu = \xi p^\mu$
- ⇒ Matrix element calculable (e⁻ + u/d → e⁻ + u/d) (and we find x = ξ because outgoing u/d is on-shell)

		From protons to heavy ions	Outlook / Summary
000	00		

DIS ...

$\overline{e^-(k^\mu)+p(p^\mu)} ightarrow e^-(k'^\mu)+X'$

- Momentum transfer $Q^2 = -q^2$ with $q^{\mu} = k^{\mu} k'^{\mu}$
- $M^2 = p^2$ (M: proton mass)
- Define $Mv = p \cdot q$ and $x = Q^2/(2Mv)$
- Bjorken limit: $Q^2, \nu \to \infty$ with x fixed
- Structure functions $F_i(x, Q^2) \rightarrow F_i(x)$ (finite!)
- $\Rightarrow \gamma *$ scatters off pointlike partons
- Momentum fraction carried by parton $p_q^\mu = \xi p^\mu$
- ⇒ Matrix element calculable (e⁻ + u/d → e⁻ + u/d) (and we find x = ξ because outgoing u/d is on-shell)

		Outlook / S

... and the naive parton model

- One finds $\hat{F}_2 = x e_q^2 \delta(x \xi) = 2x \hat{F}_1$ (partonic)
- q(ξ) dξ probability that quark q carries momentum fraction ∈ [ξ; ξ + dξ] 0 ≤ ξ ≤ 1

From protons to heavy ions

Outlook / Summary

... and the naive parton model

- One finds $\hat{F}_2 = x e_q^2 \delta(x \xi) = 2x \hat{F}_1$ (partonic)
- q(ξ) dξ probability that quark q carries momentum fraction ∈ [ξ; ξ + dξ] 0 ≤ ξ ≤ 1
- Proton structure function

$$F_{2}(x) = \sum_{q,\bar{q}} \int d\xi \, q(\xi) \, x \, e_{q}^{2} \, \delta(x-\xi) = \sum_{q,\bar{q}} e_{q}^{2} \, x \, q(x)$$

$$F_{2} = x \left[\frac{4}{2} (u+\bar{u}) + \frac{1}{2} (d+\bar{d}+s+\bar{s}) \right]$$

"**Infinity**" ೦೦೦೦೦೦೦೦

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

... and the naive parton model

- One finds $\hat{F}_2 = x e_q^2 \delta(x \xi) = 2x \hat{F}_1$ (partonic)
- q(ξ) dξ probability that quark q carries momentum fraction ∈ [ξ; ξ + dξ] 0 ≤ ξ ≤ 1
- Proton structure function

$$\begin{aligned} F_2(x) &= \sum_{q,\bar{q}} \int d\xi \, q(\xi) \, x \, e_q^2 \, \delta(x-\xi) = \sum_{q,\bar{q}} e_q^2 \, x \, q(x) \\ F_2 &= x \Big[\frac{4}{9} (u+\bar{u}) + \frac{1}{9} (d+\bar{d}+s+\bar{s}) \Big] \end{aligned}$$

Experimental results

Proton consists of *uud* and sea of $q\bar{q}$ with $m_q \ll Q$

• At a scale O(1 GeV) and assuming sea symmetric in flavours $\sum_{\substack{q \ 0}} \int_{\substack{q \ 0}}^{1} dx \, x \, [q(x) + \bar{q}(x)] \approx 0.5$ $\rightarrow 50\% \text{ of proton momentum carried by gluons}$ "Infinity"

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

... and the naive parton model

- One finds $\hat{F}_2 = x e_q^2 \delta(x \xi) = 2x \hat{F}_1$ (partonic)
- q(ξ) dξ probability that quark q carries momentum fraction ∈ [ξ; ξ + dξ] 0 ≤ ξ ≤ 1
- Proton structure function

$$\begin{aligned} F_2(x) &= \sum_{q,\bar{q}} \int d\xi \, q(\xi) \, x \, e_q^2 \, \delta(x-\xi) = \sum_{q,\bar{q}} e_q^2 \, x \, q(x) \\ F_2 &= x \Big[\frac{4}{9} (u+\bar{u}) + \frac{1}{9} (d+\bar{d}+s+\bar{s}) \Big] \end{aligned}$$

Experimental results

Proton consists of *uud* and sea of $q\bar{q}$ with $m_q \ll Q$

• At a scale O(1 GeV) and assuming sea symmetric in flavours

$$\sum_{q} \int_{0} \mathrm{d}x \, x \left[q(x) + \bar{q}(x) \right] \approx 0.5$$

 \rightarrow 50% of proton momentum carried by gluons

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

LO processes in $pp \rightarrow QQ$

$2 \rightarrow 2$ processes at LO

- $q\bar{q} \rightarrow Q\overline{Q}: \overline{\Sigma}|\mathcal{M}|^2/g_s^4 = \frac{4}{9}\left(\tau_1^2 + \tau_2^2 + \frac{\rho}{2}\right)$
- $gg \to Q\overline{Q}: \overline{\Sigma}|\mathcal{M}|^2/g_s^4 = \left(\frac{1}{6\tau_1\tau_2} \frac{3}{8}\right)\left(\tau_1^2 + \tau_2^2 + \rho \frac{\rho^2}{4\tau_1\tau_2}\right)$ $\tau_1 = \frac{2p_1 \cdot p_3}{s}, \quad \tau_2 = \frac{2p_2 \cdot p_3}{s}, \quad \rho = \frac{4m^2}{s}, \quad s = (p_1 + p_2)^2$

Consider $q\bar{q} \rightarrow Q\overline{Q}$

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

LO processes in $pp \rightarrow QQ$

$2 \rightarrow 2 \text{ processes at LO}$

- $q\bar{q} \rightarrow Q\overline{Q}: \overline{\Sigma}|\mathcal{M}|^2/g_s^4 = \frac{4}{9}\left(\tau_1^2 + \tau_2^2 + \frac{\rho}{2}\right)$
- $gg \to Q\overline{Q}: \overline{\Sigma}|\mathcal{M}|^2/g_s^4 = \left(\frac{1}{6\tau_1\tau_2} \frac{3}{8}\right)\left(\tau_1^2 + \tau_2^2 + \rho \frac{\rho^2}{4\tau_1\tau_2}\right)$ $\tau_1 = \frac{2p_1 \cdot p_3}{s}, \quad \tau_2 = \frac{2p_2 \cdot p_3}{s}, \quad \rho = \frac{4m^2}{s}, \quad s = (p_1 + p_2)^2$

Consider $q\bar{q} \rightarrow Q\overline{Q} \rightarrow$ only s-channel diagram $\rightarrow \overline{\Sigma}|\mathcal{M}|$

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

LO processes in $pp \rightarrow QQ$

$2 \rightarrow 2$ processes at LO

- $q\bar{q} \rightarrow Q\overline{Q}: \overline{\Sigma}|\mathcal{M}|^2/g_s^4 = \frac{4}{9}\left(\tau_1^2 + \tau_2^2 + \frac{\rho}{2}\right)$
- $gg \to Q\overline{Q}: \overline{\Sigma}|\mathcal{M}|^2/g_s^4 = \left(\frac{1}{6\tau_1\tau_2} \frac{3}{8}\right)\left(\tau_1^2 + \tau_2^2 + \rho \frac{\rho^2}{4\tau_1\tau_2}\right)$ $\tau_1 = \frac{2p_1 \cdot p_3}{s}, \quad \tau_2 = \frac{2p_2 \cdot p_3}{s}, \quad \rho = \frac{4m^2}{s}, \quad s = (p_1 + p_2)^2$

Consider $q\bar{q} \rightarrow Q\overline{Q} \longrightarrow$ only s-channel diagram $\longrightarrow \overline{\Sigma}|\mathcal{M}|$

 $\frac{g^4}{s^2}\operatorname{Tr}[t^a t^{a'}] \cdot \operatorname{Tr}[t^a t^{a'}] \cdot \operatorname{Tr}\left[(p_4 - m)\gamma_{\mu'}(p_3 + m)\gamma_{\mu}\right] \cdot \operatorname{Tr}\left[p_2 \gamma^{\mu} p_1 \gamma^{\mu'}\right]$

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

LO processes in $pp \rightarrow QQ$

$2 \rightarrow 2$ processes at LO

- $q\bar{q} \rightarrow Q\overline{Q}: \overline{\Sigma}|\mathcal{M}|^2/g_s^4 = \frac{4}{9}\left(\tau_1^2 + \tau_2^2 + \frac{\rho}{2}\right)$
- $gg \to Q\overline{Q}: \overline{\Sigma}|\mathcal{M}|^2/g_s^4 = \left(\frac{1}{6\tau_1\tau_2} \frac{3}{8}\right)\left(\tau_1^2 + \tau_2^2 + \rho \frac{\rho^2}{4\tau_1\tau_2}\right)$ $\tau_1 = \frac{2p_1 \cdot p_3}{s}, \quad \tau_2 = \frac{2p_2 \cdot p_3}{s}, \quad \rho = \frac{4m^2}{s}, \quad s = (p_1 + p_2)^2$

Consider $q\bar{q} \rightarrow Q\overline{Q} \longrightarrow$ only s-channel diagram $\longrightarrow \overline{\Sigma}|\mathcal{M}|$

 $\frac{g^4}{s^2} \operatorname{Tr}[t^a t^{a'}] \cdot \operatorname{Tr}[t^a t^{a'}] \cdot \operatorname{Tr}\left[(p_4 - m)\gamma_{\mu'}(p_3 + m)\gamma_{\mu}\right] \cdot \operatorname{Tr}\left[p_2 \gamma^{\mu} p_1 \gamma^{\mu'}\right]$ $\operatorname{Tr}[t^a t^{a'}] = \frac{1}{2} \delta_{aa'} \Rightarrow \operatorname{Tr}[t^a t^{a'}] \cdot \operatorname{Tr}[t^a t^{a'}] = 2$

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

LO processes in $pp \rightarrow QQ$

$2 \rightarrow 2$ processes at LO

- $q\bar{q} \rightarrow Q\overline{Q}: \overline{\Sigma}|\mathcal{M}|^2/g_s^4 = \frac{4}{9}\left(\tau_1^2 + \tau_2^2 + \frac{\rho}{2}\right)$
- $gg \to Q\overline{Q}: \overline{\Sigma}|\mathcal{M}|^2/g_s^4 = \left(\frac{1}{6\tau_1\tau_2} \frac{3}{8}\right)\left(\tau_1^2 + \tau_2^2 + \rho \frac{\rho^2}{4\tau_1\tau_2}\right)$ $\tau_1 = \frac{2p_1 \cdot p_3}{s}, \quad \tau_2 = \frac{2p_2 \cdot p_3}{s}, \quad \rho = \frac{4m^2}{s}, \quad s = (p_1 + p_2)^2$

Consider $q\bar{q} \rightarrow Q\overline{Q} \longrightarrow$ only s-channel diagram $\longrightarrow \overline{\Sigma}|\mathcal{M}|$

$$\frac{g^4}{s^2} \operatorname{Tr}[t^a t^{a'}] \cdot \operatorname{Tr}[t^a t^{a'}] \cdot \operatorname{Tr}\left[(p_4 - m)\gamma_{\mu'}(p_3 + m)\gamma_{\mu}\right] \cdot \operatorname{Tr}\left[p_2 \gamma^{\mu} p_1 \gamma^{\mu'}\right]$$
$$\operatorname{Tr}[t^a t^{a'}] = \frac{1}{2} \delta_{aa'} \Rightarrow \operatorname{Tr}[t^a t^{a'}] \cdot \operatorname{Tr}[t^a t^{a'}] = 2$$

- Averaging over spin, color of incoming particles \rightarrow additional factor of $\frac{1}{36}$

- Calculate traces with form

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

LO processes in $pp \rightarrow QQ$

$2 \rightarrow 2$ processes at LO

- $q\bar{q} \rightarrow Q\overline{Q}: \overline{\Sigma}|\mathcal{M}|^2/g_s^4 = \frac{4}{9}\left(\tau_1^2 + \tau_2^2 + \frac{\rho}{2}\right)$
- $gg \to Q\overline{Q}: \overline{\Sigma}|\mathcal{M}|^2/g_s^4 = \left(\frac{1}{6\tau_1\tau_2} \frac{3}{8}\right)\left(\tau_1^2 + \tau_2^2 + \rho \frac{\rho^2}{4\tau_1\tau_2}\right)$ $\tau_1 = \frac{2p_1 \cdot p_3}{s}, \quad \tau_2 = \frac{2p_2 \cdot p_3}{s}, \quad \rho = \frac{4m^2}{s}, \quad s = (p_1 + p_2)^2$

Consider $q\bar{q} \rightarrow Q\overline{Q} \longrightarrow$ only s-channel diagram $\longrightarrow \overline{\Sigma}|\mathcal{M}|$

$$\frac{g^4}{s^2} \operatorname{Tr}[t^a t^{a'}] \cdot \operatorname{Tr}[t^a t^{a'}] \cdot \operatorname{Tr}\left[(p_4 - m)\gamma_{\mu'}(p_3 + m)\gamma_{\mu}\right] \cdot \operatorname{Tr}\left[p_2 \gamma^{\mu} p_1 \gamma^{\mu'}\right]$$
$$\operatorname{Tr}[t^a t^{a'}] = \frac{1}{2} \delta_{aa'} \Rightarrow \operatorname{Tr}[t^a t^{a'}] \cdot \operatorname{Tr}[t^a t^{a'}] = 2$$

- Averaging over spin, color of incoming particles
 - \rightarrow additional factor of $\frac{1}{36}$
- Calculate traces with form

- Heavy quarks and heavy hadrons
- DIS and LO processes

2 "Infinity"

- Dealing with UV and IR divergencies
- 3 Non-perturbative aspects
 - Factorization and PDFs
 - Fragmentation
- From protons to heavy ions
 - Modifications in pA collisions

5 Outlook / Summary

"Infinity" ●○○○○○○ Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

"Problems" at NLO

UV- and IR-divergencies

- UV due to loops ~ ∫ d⁴k ¹/_{k²ⁿ} (self-energy diagrams, vertex corrections)
- IR due to participating massless particles occur in 2 → 3 processes (real gluon emission)

and in virtual corrections

"Infinity" ●○○○○○○○ Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

"Problems" at NLO

UV- and IR-divergencies

- UV due to loops ~ ∫ d⁴k ¹/_{k²ⁿ} (self-energy diagrams, vertex corrections)
- IR due to participating massless particles occur in 2 → 3 processes (real gluon emission)

and in virtual corrections

"Infinity" ●○○○○○○○ Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

"Problems" at NLO

UV- and IR-divergencies

- UV due to loops ~ ∫ d⁴k ¹/_{k²ⁿ} (self-energy diagrams, vertex corrections)
- IR due to participating massless particles occur in 2 → 3 processes (real gluon emission)

and in virtual corrections

Types of IR-divergencies

- soft: 1 massless particle (emitted gluon)
- collinear: 2 massless particles (massless quark/gluon that emits massless gluon)

"Infinity" ●○○○○○○○ Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

"Problems" at NLO

UV- and IR-divergencies

- UV due to loops ~ ∫ d⁴k ¹/_{k²ⁿ} (self-energy diagrams, vertex corrections)
- IR due to participating massless particles occur in 2 → 3 processes (real gluon emission)

and in virtual corrections

Types of IR-divergencies

- soft: 1 massless particle (emitted gluon)
- collinear: 2 massless particles (massless quark/gluon that emits massless gluon)

Introduction "I

●0000000

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Regularization

Regularization: method to make divergent integral manageable

Renormalization: getting rid of divergencies (redefinition of fields, masses and couplings; absorptions)

Regularizations methods

- Dimensional regularization $\int \frac{d^4k}{(2\pi)^4} \to \int \frac{d^Dk}{(2\pi)^D}$ with $D = 4 (2)\epsilon$
- Mass regularization (gluon mass λ)
- (Cut-off, Pauli-Villars, Analytic, Lattice, ...)

●0000000

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Regularization

Regularization: method to make divergent integral manageable

Renormalization: getting rid of divergencies (redefinition of fields, masses and couplings; absorptions)

Regularizations methods

- Dimensional regularization $\int \frac{d^4k}{(2\pi)^4} \to \int \frac{d^Dk}{(2\pi)^D}$ with $D = 4 (2)\epsilon$
- Mass regularization (gluon mass λ)
- (Cut-off, Pauli-Villars, Analytic, Lattice, ...)

"Infinity" ○○●○○○

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Identifying types of IR divergencies

Consider vertex correction to $q\bar{q} \rightarrow Q\overline{Q}$ $\Lambda_{\mu} = g^2 C_{\mathsf{F}} \int \frac{\mathrm{d}^4 k}{(2\pi)^4 \mathrm{i}} \frac{1}{k^2 - \lambda^2} \gamma_{\rho} \frac{1}{m - k + k_1} \gamma_{\mu} \frac{1}{m - k + k_2} \gamma^{\rho}$

Ignore UV-divergence and $\lambda \to 0$ $\Lambda_{\mu} = g^2 C_{\mathsf{F}} \int \frac{\mathrm{d}^4 k}{(2\pi)^4 \mathrm{i}} \frac{\gamma_{\rho} (m+k-k_1)\gamma_{\mu} (m+k+k_2)\gamma^{\rho}}{k^2 (k^2-2k\cdot k_1)(k^2+2k\cdot k_2)}$ "Infinity" ○○●○○○○

Introduction

y" No Doodoo oo

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Identifying types of IR divergencies

Consider vertex correction to $q\bar{q} \rightarrow Q\overline{Q}$ $\Lambda_{\mu} = g^2 C_{\mathsf{F}} \int \frac{\mathrm{d}^4 k}{(2\pi)^4 \mathrm{i}} \frac{1}{k^2 - \lambda^2} \gamma_{\rho} \frac{1}{m - k + k_1} \gamma_{\mu} \frac{1}{m - k + k_2} \gamma^{\rho}$

Ignore UV-divergence and $\lambda \to 0$ $\Lambda_{\mu} = g^2 C_{\mathsf{F}} \int \frac{\mathrm{d}^4 k}{(2\pi)^4 \mathrm{i}} \frac{\gamma_{\rho}(m+k-k_1)\gamma_{\mu}(m+k+k_2)\gamma^{\rho}}{k^2(k^2-2k\cdot k_1)(k^2+2k\cdot k_2)}$

Write $\frac{1}{k^2} = \frac{1}{2\omega} \left(\frac{1}{k_0 - \omega + i\epsilon} - \frac{1}{k_0 + \omega - i\epsilon} \right)$ with $\omega = |\vec{k}|$ and perform k_0 integration on the komplex k_0 -plane "Infinity" ○○●○○○○

Introduction

ty" No 00000 01

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Identifying types of IR divergencies

Consider vertex correction to
$$q\bar{q} \rightarrow Q\overline{Q}$$

 $\Lambda_{\mu} = g^2 C_{\mathsf{F}} \int \frac{\mathsf{d}^4 k}{(2\pi)^4 \mathsf{i}} \frac{1}{k^2 - \lambda^2} \gamma_{\rho} \frac{1}{m - \mathsf{k} + \mathsf{k}_1} \gamma_{\mu} \frac{1}{m - \mathsf{k} + \mathsf{k}_2} \gamma^{\rho}$

Ignore UV-divergence and $\lambda \to 0$ $\Lambda_{\mu} = g^2 C_{\mathsf{F}} \int \frac{\mathrm{d}^4 k}{(2\pi)^{4_{\mathsf{i}}}} \frac{\gamma_{\rho}(m+k-k_{1})\gamma_{\mu}(m+k+k_{2})\gamma^{\rho}}{k^2(k^2-2k\cdot k_1)(k^2+2k\cdot k_2)}$

Write $\frac{1}{k^2} = \frac{1}{2\omega} \left(\frac{1}{k_0 - \omega + i\epsilon} - \frac{1}{k_0 + \omega - i\epsilon} \right)$ with $\omega = |\vec{k}|$ and perform k_0 integration on the komplex k_0 -plane

$$\Lambda_{\mu} = \frac{g^2 C_{\rm F}}{8(2\pi)^3} \int_{0}^{2\pi} d\phi \int_{0}^{\pi} \sin \theta \, d\theta \int_{0}^{\infty} \frac{d\omega}{\omega} \frac{...}{(k_{10} - |\vec{k}_1| \cos \theta)(k_{20} + |\vec{k}_2| \cos \theta)}$$

with $k_{i0} = (\vec{k}_i^2 + m^2)^{\frac{1}{2}}$

"Infinity" ○○●○○○○

Introduction

y" Noi

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Identifying types of IR divergencies

Consider vertex correction to
$$q\bar{q} \rightarrow Q\overline{Q}$$

 $\Lambda_{\mu} = g^2 C_{\mathsf{F}} \int \frac{\mathsf{d}^4 k}{(2\pi)^4 \mathsf{i}} \frac{1}{k^2 - \lambda^2} \gamma_{\rho} \frac{1}{m - \mathsf{k} + \mathsf{k}_1} \gamma_{\mu} \frac{1}{m - \mathsf{k} + \mathsf{k}_2} \gamma^{\rho}$

Ignore UV-divergence and $\lambda \to 0$ $\Lambda_{\mu} = g^2 C_{\mathsf{F}} \int \frac{\mathrm{d}^4 k}{(2\pi)^{4_{\mathsf{i}}}} \frac{\gamma_{\rho}(m+\not{k}-\not{k}_1)\gamma_{\mu}(m+\not{k}+\not{k}_2)\gamma^{\rho}}{k^2(k^2-2k\cdot k_1)(k^2+2k\cdot k_2)}$

Write $\frac{1}{k^2} = \frac{1}{2\omega} \left(\frac{1}{k_0 - \omega + i\epsilon} - \frac{1}{k_0 + \omega - i\epsilon} \right)$ with $\omega = |\vec{k}|$ and perform k_0 integration on the komplex k_0 -plane

$$\begin{split} \Lambda_{\mu} &= \frac{g^2 C_{\rm F}}{8(2\pi)^3} \int_{0}^{2\pi} {\rm d}\phi \int_{0}^{\pi} \sin\theta \, {\rm d}\theta \int_{0}^{\infty} \frac{{\rm d}\omega}{\omega} \frac{...}{(k_{10} - |\vec{k}_1|\cos\theta)(k_{20} + |\vec{k}_2|\cos\theta)} \\ \text{with } k_{i0} &= (\vec{k}_i^2 + m^2)^{\frac{1}{2}} \end{split}$$

ightarrow Divergency because of low momentum singularity 1/ ω
Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Identifying types of IR divergencies

Consider vertex correction to
$$q\bar{q} \rightarrow Q\overline{Q}$$

 $\Lambda_{\mu} = g^2 C_{\mathsf{F}} \int \frac{\mathsf{d}^4 k}{(2\pi)^4 \mathsf{i}} \frac{1}{k^2 - \lambda^2} \gamma_{\rho} \frac{1}{m - \mathsf{k} + \mathsf{k}_1} \gamma_{\mu} \frac{1}{m - \mathsf{k} + \mathsf{k}_2} \gamma^{\rho}$

Ignore UV-divergence and $\lambda \to 0$ $\Lambda_{\mu} = g^2 C_{\mathsf{F}} \int \frac{\mathrm{d}^4 k}{(2\pi)^{4_{\mathsf{i}}}} \frac{\gamma_{\rho}(m+\not{k}-\not{k}_1)\gamma_{\mu}(m+\not{k}+\not{k}_2)\gamma^{\rho}}{k^2(k^2-2k\cdot k_1)(k^2+2k\cdot k_2)}$

Write $\frac{1}{k^2} = \frac{1}{2\omega} \left(\frac{1}{k_0 - \omega + i\epsilon} - \frac{1}{k_0 + \omega - i\epsilon} \right)$ with $\omega = |\vec{k}|$ and perform k_0 integration on the komplex k_0 -plane

$$\begin{split} \Lambda_{\mu} &= \frac{g^2 C_{\rm F}}{8(2\pi)^3} \int_{0}^{2\pi} {\rm d}\phi \int_{0}^{\pi} \sin\theta \, {\rm d}\theta \int_{0}^{\infty} \frac{{\rm d}\omega}{\omega} \frac{...}{(k_{10} - |\vec{k}_1|\cos\theta)(k_{20} + |\vec{k}_2|\cos\theta)} \\ \text{with } k_{i0} &= (\vec{k}_i^2 + m^2)^{\frac{1}{2}} \end{split}$$

 \rightarrow Divergency because of low momentum singularity 1/ ω

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Identifying types of IR divergencies

$$\begin{split} \Lambda_{\mu} &= \frac{g^2 C_{\rm F}}{8(2\pi)^3} \int_{0}^{2\pi} {\rm d}\phi \int_{0}^{\pi} \sin\theta \, {\rm d}\theta \int_{0}^{\infty} \frac{{\rm d}\omega}{\omega} \frac{...}{(k_{10} - |\vec{k_1}|\cos\theta)(k_{20} + |\vec{k_2}|\cos\theta)} \\ \text{with } k_{i0} &= (\vec{k}_i^2 + m^2)^{\frac{1}{2}} \end{split}$$

Now
$$m \to 0 \Rightarrow k_{i0} = |\vec{k}_i| = \omega_i$$

$$\Lambda_\mu = \frac{g^2 C_F}{8(2\pi)^3 \omega_1 \omega_2} \int_0^\infty \frac{d\omega}{\omega} \int_0^{2\pi} d\phi \int_0^\pi \sin\theta \, d\theta \frac{\cdots}{1 - \cos^2\theta}$$

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Identifying types of IR divergencies

$$\begin{split} \Lambda_{\mu} &= \frac{g^2 C_{\rm F}}{8(2\pi)^3} \int_{0}^{2\pi} {\rm d}\phi \int_{0}^{\pi} \sin\theta \, {\rm d}\theta \int_{0}^{\infty} \frac{{\rm d}\omega}{\omega} \frac{...}{(k_{10} - |\vec{k_1}|\cos\theta)(k_{20} + |\vec{k_2}|\cos\theta)} \\ \text{with } k_{i0} &= (\vec{k}_i^2 + m^2)^{\frac{1}{2}} \end{split}$$

Now
$$m \to 0 \Rightarrow k_{i0} = |\vec{k_i}| = \omega_i$$

$$\Lambda_{\mu} = \frac{g^2 C_F}{8(2\pi)^3 \omega_1 \omega_2} \int_0^\infty \frac{d\omega}{\omega} \int_0^{2\pi} d\phi \int_0^\pi \sin\theta \, d\theta \frac{\dots}{1 - \cos^2\theta}$$

 \rightarrow Divergency because of angles $\theta=0,\pi$

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Identifying types of IR divergencies

$$\begin{split} \Lambda_{\mu} &= \frac{g^2 C_{\rm F}}{8(2\pi)^3} \int_{0}^{2\pi} {\rm d}\phi \int_{0}^{\pi} \sin\theta \, {\rm d}\theta \int_{0}^{\infty} \frac{{\rm d}\omega}{\omega} \frac{...}{(k_{10} - |\vec{k_1}|\cos\theta)(k_{20} + |\vec{k_2}|\cos\theta)} \\ \text{with } k_{i0} &= (\vec{k}_i^2 + m^2)^{\frac{1}{2}} \end{split}$$

Now
$$m \to 0 \Rightarrow k_{i0} = |\vec{k}_i| = \omega_i$$

$$\Lambda_{\mu} = \frac{g^2 C_F}{8(2\pi)^3 \omega_1 \omega_2} \int_0^\infty \frac{d\omega}{\omega} \int_0^{2\pi} d\phi \int_0^\pi \sin\theta \, d\theta \frac{\dots}{1 - \cos^2 \theta}$$

 \rightarrow Divergency because of angles $\theta = 0, \pi$

More convenient to use dimensional regularization \rightarrow simpler expressions

ightarrow but hard to distinguish the types of divergencies

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Identifying types of IR divergencies

$$\begin{split} \Lambda_{\mu} &= \frac{g^2 C_{\rm F}}{8(2\pi)^3} \int_{0}^{2\pi} {\rm d}\phi \int_{0}^{\pi} \sin\theta \, {\rm d}\theta \int_{0}^{\infty} \frac{{\rm d}\omega}{\omega} \frac{...}{(k_{10} - |\vec{k_1}|\cos\theta)(k_{20} + |\vec{k_2}|\cos\theta)} \\ \text{with } k_{i0} &= (\vec{k}_i^2 + m^2)^{\frac{1}{2}} \end{split}$$

Now
$$m \to 0 \Rightarrow k_{i0} = |\vec{k}_i| = \omega_i$$

$$\Lambda_{\mu} = \frac{g^2 C_F}{8(2\pi)^3 \omega_1 \omega_2} \int_0^\infty \frac{d\omega}{\omega} \int_0^{2\pi} d\phi \int_0^\pi \sin\theta \, d\theta \frac{\dots}{1 - \cos^2 \theta}$$

 \rightarrow Divergency because of angles $\theta = 0, \pi$

More convenient to use dimensional regularization \rightarrow simpler expressions

 \rightarrow but hard to distinguish the types of divergencies

"Infinity" 0000●000 Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Renormalization

Renormalization schemes

- MS / $\overline{\text{MS}} \rightarrow$ massless particles
- on-shell → massive particles

General idea

• Fields, couplings, gauge parameters, masses get Z factors: e.g. $A^a_\mu = \sqrt{Z_3} A^a_{r\mu}$, $g = Z_g g_r$, ...

"Infinity" ○○○○●○○○ Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Renormalization

Renormalization schemes

- MS / $\overline{\text{MS}} \rightarrow$ massless particles
- on-shell \rightarrow massive particles

General idea

- Fields, couplings, gauge parameters, masses get Z factors:
 e.g. A^a_μ = √Z₃A^a_{rμ}, g = Z_gg_r, ...
- Then rewrite $\mathcal{L} = \mathcal{L}_G + \mathcal{L}_{GF} + \mathcal{L}_{FP} + \mathcal{L}_F = \mathcal{L}_0 + \mathcal{L}_I$
- with renormalized quantities $\mathcal{L}_r = \mathcal{L}_{r0} + \mathcal{L}_{rl} + \mathcal{L}_C$ where \mathcal{L}_C contains "*Z*-terms"

"Infinity" ○○○○●○○○ Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Renormalization

Renormalization schemes

- MS / $\overline{\text{MS}} \rightarrow$ massless particles
- on-shell \rightarrow massive particles

General idea

- Fields, couplings, gauge parameters, masses get Z factors: e.g. $A^a_\mu = \sqrt{Z_3} A^a_{r\mu}$, $g = Z_g g_r$, ...
- Then rewrite $\mathcal{L} = \mathcal{L}_G + \mathcal{L}_{GF} + \mathcal{L}_{FP} + \mathcal{L}_F = \mathcal{L}_0 + \mathcal{L}_I$
- with renormalized quantities $\mathcal{L}_r = \mathcal{L}_{r0} + \mathcal{L}_{rl} + \mathcal{L}_C$ where \mathcal{L}_C contains "Z-terms"
- Devergencies (+finite terms) absorbed in Z-factors
 → scheme dependence

"Infinity" ○○○○●○○○ Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Renormalization

Renormalization schemes

- MS / $\overline{\text{MS}} \rightarrow$ massless particles
- on-shell \rightarrow massive particles

General idea

- Fields, couplings, gauge parameters, masses get Z factors: e.g. $A^a_\mu = \sqrt{Z_3} A^a_{r\mu}$, $g = Z_g g_r$, ...
- Then rewrite $\mathcal{L} = \mathcal{L}_G + \mathcal{L}_{GF} + \mathcal{L}_{FP} + \mathcal{L}_F = \mathcal{L}_0 + \mathcal{L}_I$
- with renormalized quantities $\mathcal{L}_r = \mathcal{L}_{r0} + \mathcal{L}_{rl} + \mathcal{L}_C$ where \mathcal{L}_C contains "Z-terms"
- Devergencies (+finite terms) absorbed in Z-factors
 → scheme dependence

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Gluon self-energy

Treat n_{lf} flavors of light quarks as massless and add one heavy flavor $n_f = n_{lf} + 1$

Consider gluon self-energy $-i\Pi_{\mu\nu}^{ab}$ Lorentz structure due to Slavnov Taylor identity known: $\Pi_{\mu\nu}^{ab}(k) = \delta^{ab}(k_{\mu}k_{\nu} - q^{2}g_{\mu\nu})\Pi(k^{2})$ \Rightarrow calculate only $\Pi(k^{2})$

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Gluon self-energy

Treat n_{lf} flavors of light quarks as massless and add one heavy flavor $n_f = n_{lf} + 1$

Consider gluon self-energy $-i\Pi_{\mu\nu}^{ab}$ Lorentz structure due to Slavnov Taylor identity known: $\Pi_{\mu\nu}^{ab}(k) = \delta^{ab}(k_{\mu}k_{\nu} - q^{2}g_{\mu\nu})\Pi(k^{2})$ \Rightarrow calculate only $\Pi(k^{2})$

(Bojak; 2000)

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Gluon self-energy

Treat n_{lf} flavors of light quarks as massless and add one heavy flavor $n_f = n_{lf} + 1$

Consider gluon self-energy $-i\Pi_{\mu\nu}^{ab}$ Lorentz structure due to Slavnov Taylor identity known: $\Pi_{\mu\nu}^{ab}(k) = \delta^{ab}(k_{\mu}k_{\nu} - q^{2}g_{\mu\nu})\Pi(k^{2})$ \Rightarrow calculate only $\Pi(k^{2})$

(Bojak; 2000)

"Infinity" ○○○○○○●○ Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Gluon self-energy

•
$$\frac{2}{\hat{\epsilon}} = \frac{2}{\epsilon} + \gamma_{\mathsf{E}} - \ln(4\pi)$$

• $\frac{2}{\hat{\epsilon}_m} = \frac{2}{\hat{\epsilon}} - \ln\frac{\mu^2}{m_r^2}$

$$\Pi(k^{2}) \underbrace{\stackrel{(a)+(b)}{=}}_{(d)} -C_{A} \frac{g_{r}^{2}}{16\pi^{2}} \frac{5}{3} \left[\frac{2}{\hat{\epsilon}} + \ln\left(-\frac{k^{2}}{\mu^{2}}\right) - \frac{31}{15} \right]$$

$$\Pi(k^{2}) \underbrace{=}_{(d)} \frac{g_{r}^{2}}{4\pi^{2}} \frac{1}{6} \begin{cases} \frac{2}{\hat{\epsilon}} + \ln\left(-\frac{k^{2}}{\mu^{2}}\right) - \frac{5}{3} & \text{for } m_{r} = 0 \\ \frac{2}{\hat{\epsilon}_{m}} - \frac{4m_{r}^{2}}{k^{2}} + \dots & \text{for } m_{r} \neq 0 \end{cases}$$

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Gluon self-energy

•
$$\frac{2}{\hat{\epsilon}} = \frac{2}{\epsilon} + \gamma_{\mathsf{E}} - \ln(4\pi)$$

• $\frac{2}{\hat{\epsilon}_m} = \frac{2}{\hat{\epsilon}} - \ln\frac{\mu^2}{m_r^2}$

$$\Pi(k^{2}) \underbrace{\stackrel{(a)+(b)}{=}}_{(d)} -C_{A} \frac{g_{r}^{2}}{16\pi^{2}} \frac{5}{3} \left[\frac{2}{\hat{\epsilon}} + \ln\left(-\frac{k^{2}}{\mu^{2}}\right) - \frac{31}{15} \right]$$

$$\Pi(k^{2}) \underbrace{=}_{(d)} \frac{g_{r}^{2}}{4\pi^{2}} \frac{1}{6} \begin{cases} \frac{2}{\hat{\epsilon}} + \ln\left(-\frac{k^{2}}{\mu^{2}}\right) - \frac{5}{3} & \text{for } m_{r} = 0 \\ \frac{2}{\hat{\epsilon}_{m}} - \frac{4m_{r}^{2}}{k^{2}} + \dots & \text{for } m_{r} \neq 0 \end{cases}$$

$$\Pi(k^2) = \frac{g_r^2}{16\pi^2} \left[(2C_A - \beta_0) \frac{2}{\hat{\epsilon}} + \frac{2}{3} \frac{2}{\hat{\epsilon}_m} + \dots \right]$$
$$= \frac{g_r^2}{16\pi^2} \left[(2C_A - \beta_0^f) \frac{2}{\hat{\epsilon}} - \frac{2}{3} \ln \frac{\mu^2}{m_r^2} + \dots \right]$$

with $\beta_0 = (11C_A - 2n_{lf})/3$ and $\beta_0^f = (11C_A - 2n_f)/3$

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Gluon self-energy

•
$$\frac{2}{\hat{\epsilon}} = \frac{2}{\epsilon} + \gamma_{\mathsf{E}} - \ln(4\pi)$$

• $\frac{2}{\hat{\epsilon}_m} = \frac{2}{\hat{\epsilon}} - \ln\frac{\mu^2}{m_r^2}$

$$\Pi(k^{2}) \underbrace{\stackrel{(a)+(b)}{=}}_{(d)} - C_{A} \frac{g_{r}^{2}}{16\pi^{2}} \frac{5}{3} \left[\frac{2}{\hat{\epsilon}} + \ln\left(-\frac{k^{2}}{\mu^{2}}\right) - \frac{31}{15} \right]$$

$$\Pi(k^{2}) \underbrace{=}_{(d)} \frac{g_{r}^{2}}{4\pi^{2}} \frac{1}{6} \begin{cases} \frac{2}{\hat{\epsilon}} + \ln\left(-\frac{k^{2}}{\mu^{2}}\right) - \frac{5}{3} & \text{for } m_{r} = 0 \\ \frac{2}{\hat{\epsilon}_{m}} - \frac{4m_{r}^{2}}{k^{2}} + \dots & \text{for } m_{r} \neq 0 \end{cases}$$

$$\Pi(k^2) = \frac{g_r^2}{16\pi^2} \left[(2C_A - \beta_0) \frac{2}{\hat{\epsilon}} + \frac{2}{3} \frac{2}{\hat{\epsilon}_m} + \dots \right]$$
$$= \frac{g_r^2}{16\pi^2} \left[(2C_A - \beta_0^f) \frac{2}{\hat{\epsilon}} - \frac{2}{3} \ln \frac{\mu^2}{m_r^2} + \dots \right]$$

with $\beta_0 = (11C_A - 2n_{lf})/3$ and $\beta_0^f = (11C_A - 2n_f)/3$

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Gluon self-energy

$$\mathcal{L}_{C} = \frac{1}{2} (Z_{3} - 1) \delta^{ab} A^{a}_{r\mu} (g^{\mu\nu} \Box - \partial^{\mu} \partial^{\nu}) A^{b}_{r\nu} + \dots$$
$$\rightarrow Z_{3} - 1 = \frac{g^{2}_{r}}{16\pi^{2}} \left[(2C_{A} - \beta^{f}_{0}) \frac{2}{\hat{\epsilon}} - \frac{2}{3} \ln \frac{\mu^{2}}{m^{2}_{r}} \right]$$

Introduction "Infin

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Gluon self-energy

$$\begin{split} \mathcal{L}_{C} &= \frac{1}{2} (Z_{3} - 1) \delta^{ab} A^{a}_{r\mu} (g^{\mu\nu} \Box - \partial^{\mu} \partial^{\nu}) A^{b}_{r\nu} + ... \\ &\to Z_{3} - 1 = \frac{g^{2}_{r}}{16\pi^{2}} \left[(2C_{A} - \beta^{f}_{0}) \frac{2}{\hat{\epsilon}} - \frac{2}{3} \ln \frac{\mu^{2}}{m^{2}_{r}} \right] \end{split}$$

Pure $\overline{\text{MS}}$: do not subtract $-\frac{2}{3} \ln \frac{\mu^2}{m^2}$

but then we keep $\ln(-k^2/\mu^2)$ [(a)+(b)+massless (d)] and $\ln(\mu^2/m_r^2)$ [massive (d)]

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Gluon self-energy

$$\begin{split} \mathcal{L}_{C} &= \frac{1}{2} (Z_{3} - 1) \delta^{ab} A^{a}_{r\mu} (g^{\mu\nu} \Box - \partial^{\mu} \partial^{\nu}) A^{b}_{r\nu} + ... \\ &\to Z_{3} - 1 = \frac{g^{2}_{r}}{16\pi^{2}} \left[(2C_{A} - \beta^{f}_{0}) \frac{2}{\hat{\epsilon}} - \frac{2}{3} \ln \frac{\mu^{2}}{m^{2}_{r}} \right] \end{split}$$

Pure $\overline{\text{MS}}$: do not subtract $-\frac{2}{3} \ln \frac{\mu^2}{m^2}$

but then we keep ln($-k^2/\mu^2$) [(a)+(b)+massless (d)] and ln(μ^2/m_r^2) [massive (d)]

For low energies $|k^2| \ll |m_r^2| \rightarrow \text{at least one large In (at abitrary }\mu)$

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Gluon self-energy

$$\begin{aligned} \mathcal{L}_{C} &= \frac{1}{2} (Z_{3} - 1) \delta^{ab} A^{a}_{r\mu} (g^{\mu\nu} \Box - \partial^{\mu} \partial^{\nu}) A^{b}_{r\nu} + \dots \\ &\to Z_{3} - 1 = \frac{g^{2}_{r}}{16\pi^{2}} \left[(2C_{A} - \beta^{f}_{0}) \frac{2}{\hat{\epsilon}} - \frac{2}{3} \ln \frac{\mu^{2}}{m^{2}_{r}} \right] \end{aligned}$$

Pure $\overline{\text{MS}}$: do not subtract $-\frac{2}{3} \ln \frac{\mu^2}{m^2}$

but then we keep ln($-k^2/\mu^2$) [(a)+(b)+massless (d)] and ln(μ^2/m_r^2) [massive (d)]

For low energies $|k^2| \ll |m_r^2| \rightarrow \text{at least one large In (at abitrary } \mu)$

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

On-shell renormalization of b-mass

Calculating the loop $-i\Sigma$ in quark self-energy diagram yields $\Sigma(p, m_r) = \delta_{ij}[Am_r + B(p - m_r)]$ with $A, B = A, B(\frac{2}{\hat{\epsilon}_m} - \ln \frac{\mu^2}{m_r^2}, ...)$

and the counterterm contribution is $\Sigma_{C} = -\delta_{ij}[(Z_{2} - 1)p - (Z_{2}Z_{m} - 1)m_{r}]$ $\overset{O(\alpha_{s})}{\simeq} \delta_{ij}[(Z_{m} - 1)m_{r} - (Z_{2} - 1)(p - m_{r})]$

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

On-shell renormalization of *b*-mass

Calculating the loop $-i\Sigma$ in quark self-energy diagram yields $\Sigma(p, m_r) = \delta_{ij}[Am_r + B(p - m_r)]$ with $A, B = A, B(\frac{2}{\hat{\epsilon}_m} - \ln \frac{\mu^2}{m_r^2}, ...)$

and the counterterm contribution is $\Sigma_{C} = -\delta_{ij}[(Z_{2} - 1)p - (Z_{2}Z_{m} - 1)m_{r}]$ $\overset{O(\alpha_{s})}{\simeq} \delta_{ij}[(Z_{m} - 1)m_{r} - (Z_{2} - 1)(p - m_{r})]$

 $\Sigma + \Sigma_C = \delta_{ij} \{ [A + (Z_m + 1)]m_r + [B - (Z_2 - 1)](p - m_r) \}$ has to be UV finite.

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

On-shell renormalization of *b*-mass

Calculating the loop $-i\Sigma$ in quark self-energy diagram yields $\Sigma(p, m_r) = \delta_{ij}[Am_r + B(p - m_r)]$ with $A, B = A, B(\frac{2}{\hat{\epsilon}_m} - \ln \frac{\mu^2}{m_r^2}, ...)$

and the counterterm contribution is $\Sigma_{C} = -\delta_{ij}[(Z_{2} - 1)p - (Z_{2}Z_{m} - 1)m_{r}]$ $\overset{O(\alpha_{s})}{\simeq} \delta_{ij}[(Z_{m} - 1)m_{r} - (Z_{2} - 1)(p - m_{r})]$

 $\Sigma + \Sigma_C = \delta_{ij} \{ [A + (Z_m + 1)]m_r + [B - (Z_2 - 1)](p - m_r) \}$ has to be UV finite.

Fixing the renormalized mass at the pole mass

$$\Gamma^{(2)}(p,m_r) = -\mathrm{i}[p - m_r - (\Sigma + \Sigma_C)] \stackrel{!}{=} 0 \text{ at } p = m_r$$

$$m_r \neq 0$$
: $(\Sigma + \Sigma_C)\Big|_{p=m_r} \stackrel{!}{=} 0 \Rightarrow Z_m - 1 = -A|_{p=m_r}$

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

On-shell renormalization of *b*-mass

Calculating the loop $-i\Sigma$ in quark self-energy diagram yields $\Sigma(p, m_r) = \delta_{ij}[Am_r + B(p - m_r)]$ with $A, B = A, B(\frac{2}{\hat{\epsilon}_m} - \ln \frac{\mu^2}{m_r^2}, ...)$

and the counterterm contribution is $\Sigma_{C} = -\delta_{ij}[(Z_{2} - 1)p - (Z_{2}Z_{m} - 1)m_{r}]$ $\overset{O(\alpha_{s})}{\simeq} \delta_{ij}[(Z_{m} - 1)m_{r} - (Z_{2} - 1)(p - m_{r})]$

 $\Sigma + \Sigma_C = \delta_{ij} \{ [A + (Z_m + 1)]m_r + [B - (Z_2 - 1)](p - m_r) \}$ has to be UV finite.

Fixing the renormalized mass at the pole mass

$$\Gamma^{(2)}(p,m_r) = -\mathrm{i}[p-m_r-(\Sigma+\Sigma_C)] \stackrel{!}{=} 0 \text{ at } p = m_r$$

$$m_r \neq 0$$
: $(\Sigma + \Sigma_C)|_{p=m_r} \stackrel{!}{=} 0 \Rightarrow Z_m - 1 = -A|_{p=m_r}$

- Heavy quarks and heavy hadrons
- DIS and LO processes
- 2 "Infinity"
 - Dealing with UV and IR divergencies

3 Non-perturbative aspects

- Factorization and PDFs
- Fragmentation
- 4 From protons to heavy ions
 - Modifications in pA collisions

5 Outlook / Summary

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Factorization theorem

Short-distance and long-distance dependences factorize in DIS (Collins, Soper, Sterman; 1989)

New scale μ_f introduced in addition to renormalization scale μ to define separation of short and long-distance effects

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Factorization theorem

Short-distance and long-distance dependences factorize in DIS (Collins, Soper, Sterman; 1989)

New scale μ_f introduced in addition to renormalization scale μ to define separation of short and long-distance effects

$$F_{2}^{(h)}(x,Q^{2}) = \sum_{i=q,\bar{q},g} \int_{0}^{1} d\xi C_{2}^{i}(x/\xi,Q^{2}/\mu^{2},\mu_{f}^{2}/\mu^{2},\alpha_{s}(\mu^{2})) \\ \times \phi_{i/h}(\xi,\mu_{f},\mu^{2})$$

 C_2^i : Hard-scattering function $\phi_{i/h}$: Parton distribution

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Factorization theorem

Short-distance and long-distance dependences factorize in DIS (Collins, Soper, Sterman; 1989)

New scale μ_f introduced in addition to renormalization scale μ to define separation of short and long-distance effects

$$F_{2}^{(h)}(x,Q^{2}) = \sum_{i=q,\bar{q},g} \int_{0}^{1} d\xi C_{2}^{i}(x/\xi,Q^{2}/\mu^{2},\mu_{f}^{2}/\mu^{2},\alpha_{s}(\mu^{2})) \\ \times \phi_{i/h}(\xi,\mu_{f},\mu^{2})$$

 C_2^i : Hard-scattering function $\phi_{i/h}$: Parton distribution

			Outlook / Summa
	Propert	ies	

C_2^i

- IR safe and calculable in pQCD
- Independent of long-distance effects
- Independent of the specific hadron h (e.g. p or n)

$\phi_{i/h}$

- Contains all the IR sensitivity
- Depends on the specifiv hadron h and on μ_f
- Universal (= independent on the hard-scattering process)
- Has to be extracted from experiments

			Outlook / Summ
	Propert	ies	

C_2^i

- IR safe and calculable in pQCD
- Independent of long-distance effects
- Independent of the specific hadron h (e.g. p or n)

$\phi_{i/h}$

- Contains all the IR sensitivity
- Depends on the specifiv hadron h and on μ_f
- Universal (= independent on the hard-scattering process)
- Has to be extracted from experiments

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Evolution of parton distributions

Consequence of factorization:

Parton distributions at any scale can be predicted Evolution from μ to μ' if μ, μ' large ($\rightarrow \alpha_s(\mu), \alpha_s(\mu')$ small)

Similar to RGE but for partons

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu} \phi_{i/h}(x,\mu,\mu^2) = \sum_{j=q,\bar{q},g} \int_0^1 \frac{\mathrm{d}\xi}{\xi} P_{ij}\left(\frac{x}{\xi},\alpha_{\mathrm{s}}(\mu^2)\right) \phi_{j/h}(\xi,\mu,\mu^2)$$

(Gribov, Lipatov; 1972 and Altarelli, Parisi; 1977)

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

(D)GLAP

Evolution of parton distributions

Consequence of factorization:

Parton distributions at any scale can be predicted Evolution from μ to μ' if μ, μ' large ($\rightarrow \alpha_s(\mu), \alpha_s(\mu')$ small)

Similar to RGE but for partons

$$\mu^2 \frac{\mathsf{d}}{\mathsf{d}\mu} \phi_{i/h}(x,\mu,\mu^2) = \sum_{j=q,\bar{q},g} \int_0^1 \frac{\mathsf{d}\xi}{\xi} \mathsf{P}_{ij}\left(\frac{x}{\xi},\alpha_{\mathsf{s}}(\mu^2)\right) \phi_{j/h}(\xi,\mu,\mu^2)$$

(Gribov, Lipatov; 1972 and Altarelli, Parisi; 1977)

		Outlook / Summary

- Hard-scattering function Cⁱ is independent of external hadrons
- → Replace external hadrons by partons

			Outlook / Summary
	Factorization	schemes	

- Hard-scattering function Cⁱ is independent of external hadrons
- \rightarrow Replace external hadrons by partons
- Now we need distribution of a parton in a parton φ_{i/j} and prescription to seperate out the hard scattering from φ_{i/j}

		Outlook / Su

- Hard-scattering function Cⁱ is independent of external hadrons
- \rightarrow Replace external hadrons by partons
- Now we need distribution of a parton in a parton φ_{i/j} and prescription to seperate out the hard scattering from φ_{i/j}
- \rightarrow Scheme needed to define C^i and $\phi_{i/i}$

Outlook / Summary

- Hard-scattering function Cⁱ is independent of external hadrons
- \rightarrow Replace external hadrons by partons
- Now we need distribution of a parton in a parton φ_{i/j} and prescription to seperate out the hard scattering from φ_{i/j}
- \rightarrow Scheme needed to define C^i and $\phi_{i/j}$
- Then discard perturbative $\phi_{i/j}$ (dominated by IR effects)

Outlook / Summary

- Hard-scattering function Cⁱ is independent of external hadrons
- → Replace external hadrons by partons
- Now we need distribution of a parton in a parton $\phi_{i/i}$ and prescription to separate out the hard scattering from $\phi_{i/i}$
- \rightarrow Scheme needed to define C^i and $\phi_{i/i}$
- Then discard perturbative $\phi_{i/i}$ (dominated by IR effects)
- Require reproduction of Born cross section: $\phi_{i,i}^0(\xi) = \delta(1-\xi)$
| | From p |
|--|--------|
| | |

Outlook / Summary

- Hard-scattering function Cⁱ is independent of external hadrons
- \rightarrow Replace external hadrons by partons
- Now we need distribution of a parton in a parton φ_{i/j} and prescription to seperate out the hard scattering from φ_{i/j}
- \rightarrow Scheme needed to define C^i and $\phi_{i/j}$
- Then discard perturbative $\phi_{i/j}$ (dominated by IR effects)
- Require reproduction of Born cross section: $\phi_{i/i}^0(\xi) = \delta(1-\xi)$
- Beyond LO ambiguity in seperating C^i from $\phi_{i/j}$

Outlook / Summary

- Hard-scattering function Cⁱ is independent of external hadrons
- \rightarrow Replace external hadrons by partons
- Now we need distribution of a parton in a parton φ_{i/j} and prescription to seperate out the hard scattering from φ_{i/j}
- \rightarrow Scheme needed to define C^i and $\phi_{i/j}$
- Then discard perturbative $\phi_{i/j}$ (dominated by IR effects)
- Require reproduction of Born cross section: $\phi_{i/i}^0(\xi) = \delta(1-\xi)$
- Beyond LO ambiguity in seperating C^i from $\phi_{i/j}$
- $\rightarrow \phi_{i/j}$ must satisfy $\phi_{i/j}^0(\xi) = \delta(1 \xi)$ and absorb long-distance effects at higher order

Outlook / Summary

- Hard-scattering function Cⁱ is independent of external hadrons
- \rightarrow Replace external hadrons by partons
- Now we need distribution of a parton in a parton φ_{i/j} and prescription to seperate out the hard scattering from φ_{i/j}
- \rightarrow Scheme needed to define C^i and $\phi_{i/j}$
- Then discard perturbative $\phi_{i/j}$ (dominated by IR effects)
- Require reproduction of Born cross section: $\phi_{i/i}^0(\xi) = \delta(1-\xi)$
- Beyond LO ambiguity in seperating C^i from $\phi_{i/j}$
- $\rightarrow \phi_{i/j}$ must satisfy $\phi_{i/j}^{0}(\xi) = \delta(1 \xi)$ and absorb long-distance effects at higher order
- \rightarrow distribute finite parts at higher order among C^{i} and $\phi_{i/i}$

	From

Outlook / Summary

- Hard-scattering function Cⁱ is independent of external hadrons
- \rightarrow Replace external hadrons by partons
- Now we need distribution of a parton in a parton φ_{i/j} and prescription to seperate out the hard scattering from φ_{i/j}
- \rightarrow Scheme needed to define C^i and $\phi_{i/j}$
- Then discard perturbative $\phi_{i/j}$ (dominated by IR effects)
- Require reproduction of Born cross section: $\phi_{i/i}^0(\xi) = \delta(1-\xi)$
- Beyond LO ambiguity in seperating C^i from $\phi_{i/j}$
- $\rightarrow \phi_{i/j}$ must satisfy $\phi_{i/j}^0(\xi) = \delta(1 \xi)$ and absorb long-distance effects at higher order
- \rightarrow distribute finite parts at higher order among C^i and $\phi_{i/j}$

Introduction	" Infinity " 000000000	Non-perturbative aspects ○○○○●○○○○○ ○○	From protons to heavy ions	Outlook / Summary
FENS and ZM-VENS				

- How to treat heavy quarks when evolving from Q₀² ~ 1 GeV²?
- Start with massless (u, d, s) At transition points: include (c, b) in PDFs or keep (c, b) as final-state particles?

				Outlook / Summary
FF		FFNS and ZN	M-VFNS	

- How to treat heavy quarks when evolving from $Q_0^2 \sim 1 \text{ GeV}^2$?
- Start with massless (u, d, s) At transition points: include (c, b) in PDFs or keep (c, b) as final-state particles?

(Martin, Stirling, Thorne, Watt; 2009)

- How to treat heavy quarks when evolving from $Q_0^2 \sim 1 \text{ GeV}^2$?
- Start with massless (u, d, s)
 At transition points: include (c, b) in PDFs or keep (c, b) as final-state particles?

(Martin, Stirling, Thorne, Watt; 2009)

Introduction	"Infinity" 000000000	Non-perturbative aspects ○○○○○●○○○○ ○○	From protons to heavy ions	Outlook / Summary

FFNS

Factorization theorem (in n_f FS): $F(x, Q^2) = \sum_{\substack{j=g, \ q, \ q}} C_j^{n_f$ FS}(Q^2/m_h^2) \otimes f_j^n(Q^2)

When passing transition point: $f_j^{n+1}(\mu_f^2) = \sum_k A_{jk}(\mu_f^2/m_h^2) \otimes f_k^n(\mu_f^2)$

perturbative matrix elements $A_{jk}(\mu_f^2/m_h^2)$ contain $\ln(\mu_f^2/m_h^2)$ terms

				Outlook / Summary
0000	00000000	000000000 00	000	00

FFNS

Factorization theorem (in n_f FS):

$$F(x,Q^2) = \sum_{j=g, \underline{q}, \overline{q}} C_j^{n_f FS}(Q^2/m_h^2) \otimes f_j^n(Q^2)$$

When passing transition point: $f_j^{n+1}(\mu_f^2) = \sum_k A_{jk}(\mu_f^2/m_h^2) \otimes f_k^n(\mu_f^2)$ perturbative matrix elements $A_{jk}(\mu_f^2/m_h^2)$ contain $\ln(\mu_f^2/m_h^2)$ terms

But in FFNS: fixed $n = 3 \Rightarrow m_h$ dependence in C

$$F(x,Q^2) = \sum_{j=u,d,s,g} C_j^{\mathsf{FF},n_f}(Q^2/m_h^2) \otimes f_j^3(Q^2)$$

Does not sum $\alpha_{\rm S}^m \ln^l (Q^2/m_h^2) \ (l \le m)$

 \rightarrow Accuracy at fixed order increasingly uncertain for increasing Q^2 , $Q^2 > m_h^2$

				Outlook / Summary
0000	00000000	000000000 00	000	00

FFNS

Factorization theorem (in *n*_fFS):

$$F(x,Q^2) = \sum_{j=g, \underline{q}, \overline{q}} C_j^{n_f FS}(Q^2/m_h^2) \otimes f_j^n(Q^2)$$

When passing transition point: $f_j^{n+1}(\mu_f^2) = \sum_k A_{jk}(\mu_f^2/m_h^2) \otimes f_k^n(\mu_f^2)$ perturbative matrix elements $A_{jk}(\mu_f^2/m_h^2)$ contain $\ln(\mu_f^2/m_h^2)$ terms

But in FFNS: fixed $n = 3 \Rightarrow m_h$ dependence in *C*

$$F(x,Q^2) = \sum_{j=u,d,s,g} C_j^{\mathsf{FF},n_f}(Q^2/m_h^2) \otimes f_j^3(Q^2)$$

Does not sum $\alpha_{\rm S}^m \ln^l (Q^2/m_h^2) \ (l \le m)$

 \rightarrow Accuracy at fixed order increasingly uncertain for increasing Q^2 , $Q^2 > m_h^2$ Introduction "In

nfinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

ZM-VFNS

Poblems of FFNS solved

$$F(x, Q^2) = \sum_j C_j^{n_i Z \mathsf{MVF}} \otimes f_j^n(Q^2)$$

Heavy quarks turned on at transition points, behave as massless quarks at high energies Resummation of large logs achieved through heavy quark f_i Introduction "Inf

finity" 0000000 Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

ZM-VFNS

Poblems of FFNS solved

$$\mathsf{F}(x, Q^2) = \sum_j C_j^{n_f \mathsf{ZMVF}} \otimes f_j^n(Q^2)$$

Heavy quarks turned on at transition points, behave as massless quarks at high energies Resummation of large logs achieved through heavy quark f_i

Does not take into account $O(m_h^2/Q^2)$ corrections to Cs

→ Not a good scheme for $Q^2 \gtrsim m_h^2$ neglecting corrections leads to large errors in fits Introduction "In

nfinity" 00000000 Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

ZM-VFNS

Poblems of FFNS solved

$$\mathsf{F}(x, Q^2) = \sum_j C_j^{n_f \mathsf{ZMVF}} \otimes f_j^n(Q^2)$$

Heavy quarks turned on at transition points, behave as massless quarks at high energies Resummation of large logs achieved through heavy quark f_i

Does not take into account $O(m_h^2/Q^2)$ corrections to Cs

→ Not a good scheme for $Q^2 \gtrsim m_h^2$ neglecting corrections leads to large errors in fits

• Solution: GM-VFNS acts like a bridge over the Q²-validity gap

Introduction "Inf

finity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

ZM-VFNS

Poblems of FFNS solved

$$\mathsf{F}(x, Q^2) = \sum_j C_j^{n_f \mathsf{ZMVF}} \otimes f_j^n(Q^2)$$

Heavy quarks turned on at transition points, behave as massless quarks at high energies Resummation of large logs achieved through heavy quark f_i

Does not take into account $O(m_h^2/Q^2)$ corrections to Cs

- → Not a good scheme for $Q^2 \gtrsim m_h^2$ neglecting corrections leads to large errors in fits
 - Solution: GM-VFNS acts like a bridge over the Q²-validity gap

 Introduction
 "Infinity"
 Non-perturbative aspects

 0000
 00000000
 000000000

From protons to heavy ions

Outlook / Summary

(DESY: 2010)

HERA-PDF 1.0

- DIS data taken from HERA, ZEUS and H1 collaborations
- Heavy quarks treated in GM-VFNS, MS factorization scheme

 "Infinity"
 Non-perturbative aspects

 000000000
 00000000

Introduction

From protons to heavy ions

Outlook / Summary

(DESY: 2010)

HERA-PDF 1.0

- DIS data taken from HERA, ZEUS and H1 collaborations
- Heavy quarks treated in GM-VFNS, MS factorization scheme

Introduction	"Infinity" 000000000	Non-perturbative aspects ○○○○○○○●○ ○○	From protons to heavy ions	Outlook / Summary

Procedure for global fits

Use computer program to numerically solve DGLAP

2 Choose set of experimental data

Introduction "Infinity" |

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

- Use computer program to numerically solve DGLAP
- Choose set of experimental data
- Select factorization scheme and make choices on factorization scale for processes

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

- Use computer program to numerically solve DGLAP
- Choose set of experimental data
- Select factorization scheme and make choices on factorization scale for processes
- Choose parametric form for input parton distribution at μ_0 and evolve to values $\mu_f (\phi(x, \mu_0) = A_0 x^{A_1} (1 - x)^{A_2} P(x))$

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

- Use computer program to numerically solve DGLAP
- Choose set of experimental data
- Select factorization scheme and make choices on factorization scale for processes
- Choose parametric form for input parton distribution at μ_0 and evolve to values $\mu_f (\phi(x, \mu_0) = A_0 x^{A_1} (1 - x)^{A_2} P(x))$
- Solution Use results to calculate χ^2 between theory and data and minimize χ^2 by adjuncting parameters of input

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

- Use computer program to numerically solve DGLAP
- Choose set of experimental data
- Select factorization scheme and make choices on factorization scale for processes
- Choose parametric form for input parton distribution at μ_0 and evolve to values $\mu_f (\phi(x, \mu_0) = A_0 x^{A_1} (1 - x)^{A_2} P(x))$
- Use results to calculate χ^2 between theory and data and minimize χ^2 by adjuncting parameters of input
- Parametrize final parton distribution at discrete values of x and μ_f by analytical functions

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

- Use computer program to numerically solve DGLAP
- Choose set of experimental data
- Select factorization scheme and make choices on factorization scale for processes
- Choose parametric form for input parton distribution at μ_0 and evolve to values $\mu_f (\phi(x, \mu_0) = A_0 x^{A_1} (1 - x)^{A_2} P(x))$
- Use results to calculate χ^2 between theory and data and minimize χ^2 by adjuncting parameters of input
- Parametrize final parton distribution at discrete values of x and μ_f by analytical functions

Introduction "Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Need for global fits

Why $e^- + p \xrightarrow{\gamma} e^- + X$ is insufficient

- g(x) suppressed, information recoverable only through scattering at NLO
- S(x) hard to extract

What to include

- p + p: g(x) accessible through scattering at LO, $\bar{q}(x)$
- Z + p: Z couples in a different way to quarks then γ does
- $W^{\pm} + p$: exploit asymmetry of number valence quarks

Introduction "Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Need for global fits

Why $e^- + p \xrightarrow{\gamma} e^- + X$ is insufficient

- *g*(*x*) suppressed, information recoverable only through scattering at NLO
- S(x) hard to extract

What to include

- p + p: g(x) accessible through scattering at LO, $\bar{q}(x)$
- Z + p: Z couples in a different way to quarks then γ does
- $W^{\pm} + p$: exploit asymmetry of number valence quarks

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Fragmentation functions - FFs

- Factorization theorem allows separation of high and low energy scale components
- → Formation of hadrons in the final state described non-perturbatively

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Fragmentation functions - FFs

- Factorization theorem allows separation of high and low energy scale components
- → Formation of hadrons in the final state described non-perturbatively
- FFs $\widehat{=}$ "reverse" PDFs

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Fragmentation functions - FFs

- Factorization theorem allows separation of high and low energy scale components
- → Formation of hadrons in the final state described non-perturbatively
- D^h_i(x, μ²_t): probability for a parton *i* at μ_t to fragment to a hadron *h* carrying away fraction *x* of its momentum

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Fragmentation functions - FFs

- Factorization theorem allows separation of high and low energy scale components
- → Formation of hadrons in the final state described non-perturbatively
- D^h_i(x, μ²_f): probability for a parton *i* at μ_f to fragment to a hadron *h* carrying away fraction *x* of its momentum

- Usually extracted from $e^+ + e^- \rightarrow (\gamma, Z) \rightarrow q + \bar{q} \rightarrow h + X$
- Albino, Kniehl and Kramer (Hamburg) working on FFs

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Fragmentation functions - FFs

- Factorization theorem allows separation of high and low energy scale components
- → Formation of hadrons in the final state described non-perturbatively
- D^h_i(x, μ²_f): probability for a parton *i* at μ_f to fragment to a hadron *h* carrying away fraction *x* of its momentum

- Usually extracted from $e^+ + e^-
 ightarrow (\gamma, Z)
 ightarrow q + ar q
 ightarrow h + X$
- · Albino, Kniehl and Kramer (Hamburg) working on FFs

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Peterson function

Q(P) gets a light antiquark attached to it \rightarrow new momentum: zP

Energy difference before and after fragmentation $\Delta E \approx \frac{m_h^2}{2P} \left[1 - \frac{1}{z} - \frac{\epsilon}{1-z} \right] \quad \text{with} \quad \epsilon = m^2 / m_h^2$ Introduction "Infinity" Non-perturbative aspects From protons to heavy ions Outlook / Summary

Peterson function

Q(P) gets a light antiquark attached to it \rightarrow new momentum: zPEnergy difference before and after fragmentation $\Delta E \approx \frac{m_h^2}{2P} \left[1 - \frac{1}{z} - \frac{\epsilon}{1-z} \right]$ with $\epsilon = m^2/m_h^2$ Peterson function $D_Q^H(z) = \frac{N_H}{z} \left[1 - \frac{1}{z} - \frac{\epsilon}{1-z} \right]^{-2}$

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Peterson function

$$\begin{split} Q(P) \text{ gets a light antiquark attached to it} &\to \text{new momentum: } zP \\ \text{Energy difference before and after fragmentation} \\ \Delta E &\approx \frac{m_h^2}{2P} \left[1 - \frac{1}{z} - \frac{\epsilon}{1-z} \right] \quad \text{with} \quad \epsilon = m^2 / m_h^2 \\ \text{Peterson function } D_Q^H(z) &= \frac{N_H}{z} \left[1 - \frac{1}{z} - \frac{\epsilon}{1-z} \right]^{-2} \end{split}$$

Introduction

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

Peterson function

Q(P) gets a light antiquark attached to it \rightarrow new momentum: zPEnergy difference before and after fragmentation $\Delta E \approx \frac{m_h^2}{2P} \left[1 - \frac{1}{z} - \frac{\epsilon}{1-z} \right]$ with $\epsilon = m^2/m_h^2$ Peterson function $D_Q^H(z) = \frac{N_H}{z} \left[1 - \frac{1}{z} - \frac{\epsilon}{1-z} \right]^{-2}$

- Heavy quarks and heavy hadrons
- DIS and LO processes
- 2 "Infinity"
 - Dealing with UV and IR divergencies
- 3 Non-perturbative aspects
 - Factorization and PDFs
 - Fragmentation
- 4 From protons to heavy ions
 - Modifications in pA collisions

5 Outlook / Summary

Partons: free hadrons vs. nucleons

$$R_{F_2}^A(x,Q^2) = rac{F_2^A(x,Q^2)}{AF_2^{
m nucleon}(x,Q^2)}$$

(Armesto; 2006)

Introduction

Non-perturbative aspects

From protons to heavy ions $\circ \bullet \circ$

Outlook / Summary

Shadowing effect

Generalized Vector Meson Dominance (GVMD) models

- γ^* fluctuates between bare γ^* and vector mesons (ρ , ω , ϕ)
- Vector mesons interact hadronically with nucleus A
- Absorbed mainly at its surface → inner nucleons shadowed
"Infinity"

Introduction

Non-perturbative aspects

From protons to heavy ions $\circ \bullet \circ$

Outlook / Summary

Shadowing effect

Generalized Vector Meson Dominance (GVMD) models

- γ^* fluctuates between bare γ^* and vector mesons (ρ , ω , ϕ)
- · Vector mesons interact hadronically with nucleus A
- Absorbed mainly at its surface \rightarrow inner nucleons shadowed

2 Partonic models

"Infinity"

Introduction

Non-perturbative aspects

From protons to heavy ions $\circ \bullet \circ$

Outlook / Summary

Shadowing effect

Generalized Vector Meson Dominance (GVMD) models

- γ^* fluctuates between bare γ^* and vector mesons (ρ, ω, ϕ)
- · Vector mesons interact hadronically with nucleus A
- Absorbed mainly at its surface \rightarrow inner nucleons shadowed

Partonic models

- Consider Breit frame
 (exchanged bosons completely spacelike)
- Low x partons spread over large longitudinal distance (uncertaincy principle)
- Leads to overlap and partons fuse
 → number of low x partons reduced

"Infinity"

Introduction

Non-perturbative aspects

From protons to heavy ions $\circ \bullet \circ$

Outlook / Summary

Shadowing effect

Generalized Vector Meson Dominance (GVMD) models

- γ^* fluctuates between bare γ^* and vector mesons (ρ , ω , ϕ)
- · Vector mesons interact hadronically with nucleus A
- Absorbed mainly at its surface \rightarrow inner nucleons shadowed

Partonic models

- Consider Breit frame
 (exchanged bosons completely spacelike)
- Low x partons spread over large longitudinal distance (uncertaincy principle)
- Leads to overlap and partons fuse
 - \rightarrow number of low x partons reduced

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

EMC effect

- Nuclear potential effects a reduced effective nucleon mass
- $x = Q^2/(2M\nu)$ implies a shift to higher x for reduced masses
- $\bullet \ \rightarrow \text{valence quark distribution gets softened}$
- Mass shift accompanied by an increased density of virtual $\pi^{\pm/0}$

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

EMC effect

- Nuclear potential effects a reduced effective nucleon mass
- $x = Q^2/(2M\nu)$ implies a shift to higher x for reduced masses
- \rightarrow valence quark distribution gets softened
- Mass shift accompanied by an increased density of virtual $\pi^{\pm/0}$
- 2 "Increment of confinement size" models

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

EMC effect

- Nuclear potential effects a reduced effective nucleon mass
- $x = Q^2/(2M\nu)$ implies a shift to higher x for reduced masses
- \rightarrow valence quark distribution gets softened
- Mass shift accompanied by an increased density of virtual $\pi^{\pm/0}$
- 2 "Increment of confinement size" models
 - Assume nucleon radius to swell or Disappearance of nucleon d.o.f. within the nucleus in favor formation of multi-quark clusters or even QGP
 - Models require quarks to have reduced Fermi momentum (uncertaincy principle)
 - $\bullet \rightarrow$ reduction of the width of peak in the quark PDFs

"Infinity"

Non-perturbative aspects

From protons to heavy ions

Outlook / Summary

EMC effect

- Nuclear potential effects a reduced effective nucleon mass
- $x = Q^2/(2Mv)$ implies a shift to higher x for reduced masses
- \rightarrow valence quark distribution gets softened
- Mass shift accompanied by an increased density of virtual $\pi^{\pm/0}$
- Increment of confinement size models
 - Assume nucleon radius to swell or Disappearance of nucleon d.o.f. within the nucleus in favor formation of multi-quark clusters or even QGP
 - Models require quarks to have reduced Fermi momentum (uncertaincy principle)
 - \rightarrow reduction of the width of peak in the quark PDFs

- Heavy quarks and heavy hadrons
- DIS and LO processes
- 2 "Infinity"
 - Dealing with UV and IR divergencies
- 3 Non-perturbative aspects
 - Factorization and PDFs
 - Fragmentation
- 4 From protons to heavy ions
 - Modifications in pA collisions

- \rightarrow Test existence of QGP in AA collisions
 - Require different interaction of J/ψ with hadrons and deconfined partons
 - Consider all possible sources for suppression (e.g. nuclear modifications of $Q\overline{Q}$ production through modified gluon distribution in a nucleus; $J/\psi \rightarrow 2D$ due to altered in-medium $m_{J/\psi}$, m_D)

- \rightarrow Test existence of QGP in AA collisions
 - Require different interaction of *J*/ψ with hadrons and deconfined partons
 - Consider all possible sources for suppression (e.g. nuclear modifications of $Q\overline{Q}$ production through modified gluon distribution in a nucleus; $J/\psi \rightarrow 2D$ due to altered in-medium $m_{J/\psi}$, m_D)

Size of heavy quarkonium small
 → probe short-distance properties of light hadrons

- \rightarrow Test existence of QGP in AA collisions
 - Require different interaction of *J*/ψ with hadrons and deconfined partons
 - Consider all possible sources for suppression (e.g. nuclear modifications of $Q\overline{Q}$ production through modified gluon distribution in a nucleus; $J/\psi \rightarrow 2D$ due to altered in-medium $m_{J/\psi}$, m_D)
 - Size of heavy quarkonium small
 → probe short-distance properties of light hadrons
 - ${f 2}$ Cross section σ can be related to gluon PDF

- \rightarrow Test existence of QGP in AA collisions
 - Require different interaction of *J*/ψ with hadrons and deconfined partons
 - Consider all possible sources for suppression (e.g. nuclear modifications of $Q\overline{Q}$ production through modified gluon distribution in a nucleus; $J/\psi \rightarrow 2D$ due to altered in-medium $m_{J/\psi}$, m_D)
 - Size of heavy quarkonium small
 → probe short-distance properties of light hadrons
 - 2 Cross section σ can be related to gluon PDF
 - 3 One finds thats a hadron gas with T < 0.5 GeV does not provide such energetic gluons to break up J/ψ
 - Oeconfined partonic system contains such gluons

- \rightarrow Test existence of QGP in AA collisions
 - Require different interaction of *J*/ψ with hadrons and deconfined partons
 - Consider all possible sources for suppression (e.g. nuclear modifications of $Q\overline{Q}$ production through modified gluon distribution in a nucleus; $J/\psi \rightarrow 2D$ due to altered in-medium $m_{J/\psi}$, m_D)
 - Size of heavy quarkonium small
 → probe short-distance properties of light hadrons
 - 2 Cross section σ can be related to gluon PDF
 - 3 One finds thats a hadron gas with T < 0.5 GeV does not provide such energetic gluons to break up J/ψ
 - Deconfined partonic system contains such gluons

Ou		

Summary

Heavy quarks, mesons and baryons

2 DIS and Bjorken limit \rightarrow (naive) parton model

 Introduction
 "Infinity"
 Non-perturbative aspects

 0000
 000000000
 000000000

pects From protons

Outlook / Summary

Summary

• Heavy quarks, mesons and baryons

2 DIS and Bjorken limit \rightarrow (naive) parton model

Output State S

- Heavy quarks, mesons and baryons
- 2 DIS and Bjorken limit \rightarrow (naive) parton model
- ③ Using pQCD for hard part of scattering $LO + NLO \rightarrow Renormalization$
- 0 Factorization, different schemes (ZM-VFNS, FFNS) \rightarrow PDFs

- Heavy quarks, mesons and baryons
- 2 DIS and Bjorken limit \rightarrow (naive) parton model
- Output States State
- Factorization, different schemes (ZM-VFNS, FFNS) \rightarrow PDFs
- **(5)** Fragmentation \rightarrow Peterson function for heavy quarks

heavy ions

- Heavy quarks, mesons and baryons
- 2 DIS and Bjorken limit \rightarrow (naive) parton model
- Output States State
- Factorization, different schemes (ZM-VFNS, FFNS) \rightarrow PDFs
- **5** Fragmentation \rightarrow Peterson function for heavy quarks
- **(** Heavy ions involved \rightarrow (anti)shadowing, EMC, Fermi motion

- Heavy quarks, mesons and baryons
- 2 DIS and Bjorken limit \rightarrow (naive) parton model
- Using pQCD for hard part of scattering LO + NLO → Renormalization
- Factorization, different schemes (ZM-VFNS, FFNS) \rightarrow PDFs
- **5** Fragmentation \rightarrow Peterson function for heavy quarks
- Heavy ions involved \rightarrow (anti)shadowing, EMC, Fermi motion

Thank you for your attention!