Non-perturbative relation between the bare and the RGI heavy quark mass in finite-volume two-flavour QCD

M. Della Morte J. Heitger H. Meyer
H. Simma R. Sommer

Patrick Fritzsch*

*Westfälische Wilhelms-Universität Münster, Institut für Theoretische Physik $\$$

Lattice 2007, Regensburg, Jul 30 - Aug 04, 2007

Towards an accurate determination of $\kappa_{\mathrm{h}}(z)$

Renormalization and $\mathbf{O}(\mathrm{a})$-improvement program using Wilson fermions

Prerequisite: mass-independent renormalization scheme, SF ($m_{1} \equiv 0$) renormalization of

- all bare parameters like couplings and masses

$$
\begin{aligned}
g_{\mathrm{R}}^{2} & =Z_{\mathrm{g}}\left(\tilde{g}_{0}^{2}, a \mu\right) \tilde{g}_{0}^{2}, & & \tilde{g}_{0}^{2}=g_{0}^{2}\left(1+b_{\mathrm{g}} a m_{\mathrm{q}}\right) \\
m_{\mathrm{R}} & =Z_{\mathrm{m}}\left(\tilde{g}_{0}^{2}, a \mu\right) \widetilde{m}_{\mathrm{q}}, & & \widetilde{m}_{\mathrm{q}}=m_{\mathrm{q}}\left(1+b_{\mathrm{m}} a m_{\mathrm{q}}\right)
\end{aligned}
$$

- fields $\phi_{\mathrm{R}}(x)=Z_{\phi}\left(\tilde{g}_{0}^{2}, a \mu\right)\left(1+b_{\phi} a m_{\mathrm{q}}\right) \phi_{\mathrm{I}}(x)$
with $b_{\mathrm{X}}=b_{\mathrm{X}}\left(g_{0}^{2}\right)$ [quenched: $b_{g}=0 ; a m_{\mathrm{q}}=0$ in $N_{\mathrm{f}}=2$]
main goal of this talk: determination of renormalization constants and improvement coefficients by methods used in [Guagnelli etal;Nucl.Phys B595(2001)44] and [Heitger,Wennekers;JHEP02(2004)064] in the relevant parameter region to perform numerical simulations at several, precisely fixed values of the RGI heavy quark mass

strategy

renormalization in $\mathrm{O}(\mathrm{a})$-improved theory $\left(N_{\mathrm{f}}=2\right)$ at $\mu_{0}=1 / \mathrm{L}_{0}$
Connection of any renormalized heavy mass to RGI mass M via

$$
M=\frac{M}{\bar{m}_{\mathrm{h}}\left(\mu_{0}\right)} \times \frac{\bar{m}_{\mathrm{h}}\left(\mu_{0}\right)}{m_{\mathrm{h}}^{\text {bare }}} \times m_{\mathrm{h}}^{\text {bare }} \quad, \quad \mu_{0}=\frac{1}{L_{0}}
$$

- 1st factor non-perturbatively known in the continuum

$$
\begin{aligned}
h\left(L_{0}\right) \equiv \frac{M}{\bar{m}_{\mathrm{h}}\left(\mu_{0}\right)} & =\frac{\bar{m}_{\mathrm{h}}(\mu)}{\bar{m}_{\mathrm{h}}\left(\mu_{0}\right)} \frac{M}{\bar{m}_{\mathrm{h}}(\mu)} \\
\frac{M}{\bar{m}_{\mathrm{h}}(\mu)} & =\left[2 b_{0} \bar{g}^{2}\right]^{-\frac{d_{0}}{2 b_{0}}} \exp \left\{-\int_{0}^{\bar{g}} \mathrm{~d} g\left[\frac{\tau(g)}{\beta(g)}-\frac{d_{0}}{b_{0} g}\right]\right\}
\end{aligned}
$$

using step scaling of the coupling, σ [ALPHA, 2004], and of the mass, σ_{P} [ALPHA, 2005]

- determine $\bar{m}_{\mathrm{h}}\left(\mu_{0}\right) / m_{\mathrm{h}}^{\text {bare }}$ in $\mathrm{O}(\mathrm{a})$ improved theory, $\left(N_{\mathrm{f}}=2\right)$, accurately in dependence of g_{0}

strategy

renormalization in $\mathrm{O}(\mathrm{a})$-improved theory $\left(N_{\mathrm{f}}=2\right)$ at $\mu_{0}=1 / \mathrm{L}_{0}$
Connection of any renormalized heavy mass to RGI mass M via

$$
M=h\left(L_{0}\right) \times \frac{\bar{m}_{\mathrm{h}}\left(\mu_{0}\right)}{m_{\mathrm{h}}^{\text {bare }}} \times m_{\mathrm{h}}^{\text {bare }} \quad, \quad \mu_{0}=\frac{1}{L_{0}}
$$

- 1st factor non-perturbatively known in the continuum

$$
\begin{aligned}
h\left(L_{0}\right) \equiv & M \\
\bar{m}_{\mathrm{h}}\left(\mu_{0}\right) & =\frac{\bar{m}_{\mathrm{h}}(\mu)}{\bar{m}_{\mathrm{h}}\left(\mu_{0}\right)}\left[2 b_{0} \bar{g}^{2}\right]^{-\frac{d_{0}}{2 b_{0}}} \exp \left\{-\int_{0}^{\bar{g}} \operatorname{dg}\left[\frac{\tau(g)}{\beta(g)}-\frac{d_{0}}{b_{0} g}\right]\right\} \\
\frac{\bar{m}_{\mathrm{h}}(\mu)}{\bar{m}_{\mathrm{h}}\left(\mu_{0}\right)} & =\frac{Z_{\mathrm{P}}\left(L_{0}\right)}{Z_{\mathrm{P}}\left(2^{-n} L_{0}\right)}=\left[\prod_{k=1}^{n} \sigma_{\mathrm{P}}\left(u_{i}\right)\right]^{-1}, u_{i}=\bar{g}^{2}\left(\mu_{i}\right)
\end{aligned}
$$

using step scaling of the coupling, σ [ALPHA, 2004], and of the mass, σ_{P} [ALPHA, 2005]

- determine $\bar{m}_{\mathrm{h}}\left(\mu_{0}\right) / m_{\mathrm{h}}^{\text {bare }}$ in $\mathrm{O}(\mathrm{a})$ improved theory, $\left(N_{\mathrm{f}}=2\right)$, accurately in dependence of g_{0}

strategy

renormalization in $\mathrm{O}(\mathrm{a})$-improved theory $\left(N_{\mathrm{f}}=2\right)$ at $\mu_{0}=1 / \mathrm{L}_{0}$
Connection of any renormalized heavy mass to RGI mass M via

$$
M=h\left(L_{0}\right) \times \frac{\bar{m}_{\mathrm{h}}\left(\mu_{0}\right)}{m_{\mathrm{h}}^{\text {bare }}} \times m_{\mathrm{h}}^{\text {bare }} \quad, \quad \mu_{0}=\frac{1}{L_{0}}
$$

- 1st factor non-perturbatively known in the continuum

$$
\begin{aligned}
h\left(L_{0}\right) \equiv \frac{M}{\bar{m}_{\mathrm{h}}\left(\mu_{0}\right)} & =\frac{\bar{m}_{\mathrm{h}}(\mu)}{\bar{m}_{\mathrm{h}}\left(\mu_{0}\right)}\left[2 b_{0} \bar{g}^{2}\right]^{-\frac{d_{0}}{2 b_{0}}} \exp \left\{-\int_{0}^{\bar{g}} \mathrm{~d} g\left[\frac{\tau(g)}{\beta(g)}-\frac{d_{0}}{b_{0} g}\right]\right\} \\
& =1.521(14)
\end{aligned}
$$

using step scaling of the coupling, σ [ALPHA, 2004], and of the mass, σ_{P} [ALPHA, 2005]

$$
\left[N_{\mathrm{f}}=0: h\left(L_{0}\right)=1.544(14)\right]
$$

- determine $\bar{m}_{\mathrm{h}}\left(\mu_{0}\right) / m_{\mathrm{h}}^{\text {bare }}$ in $\mathrm{O}(\mathrm{a})$ improved theory, $\left(N_{\mathrm{f}}=2\right)$, accurately in dependence of g_{0}

strategy

renormalization in $\mathrm{O}(\mathrm{a})$-improved theory $\left(N_{\mathrm{f}}=2\right)$ at $\mu_{0}=1 / \mathrm{L}_{0}$
Connection of any renormalized heavy mass to RGI mass M via

$$
M=h\left(L_{0}\right) \times \frac{\bar{m}_{\mathrm{h}}\left(\mu_{0}\right)}{m_{\mathrm{h}}^{\text {bare }}} \times m_{\mathrm{h}}^{\text {bare }}+O\left(a^{2}\right), \quad \quad \mu_{0}=\frac{1}{L_{0}}
$$

usually 2 versions of a renormalized mass:
(1) by current renormalization in PCAC relation, $\partial \mathrm{A}=2 m_{\mathrm{h}} \mathrm{P}$,
(2) by definition of mass renormalization, $m_{\mathrm{q}}=m_{0}-m_{\mathrm{c}}$,

$$
\begin{align*}
& \bar{m}_{\mathrm{h}}\left(\mu_{0}\right)=\frac{Z_{\mathrm{A}}\left(g_{0}\right)\left(1+b_{\mathrm{A}} a m_{\mathrm{q}, \mathrm{~h}}\right)}{Z_{\mathrm{P}}\left(g_{0}, L_{0}\right)\left(1+b_{\mathrm{P}} a m_{\mathrm{q}, \mathrm{~h}}\right)} \times m_{\mathrm{h}}+O\left(a^{2}\right) \tag{1}\\
& \bar{m}_{\mathrm{h}}\left(\mu_{0}\right)=Z_{\mathrm{m}}\left(g_{0}, L_{0}\right)\left(1+b_{\mathrm{m}} a m_{\mathrm{q}, \mathrm{~h}}\right) m_{\mathrm{q}, \mathrm{~h}}+O\left(a^{2}\right) \tag{2}
\end{align*}
$$

strategy

renormalization in $\mathrm{O}(\mathrm{a})$-improved theory $\left(N_{\mathrm{f}}=2\right)$ at $\mu_{0}=1 / \mathrm{L}_{0}$
Connection of any renormalized heavy mass to RGI mass M via

$$
M=h\left(L_{0}\right) \times \frac{\bar{m}_{\mathrm{h}}\left(\mu_{0}\right)}{m_{\mathrm{h}}^{\text {bare }}} \times m_{\mathrm{h}}^{\text {bare }}+O\left(a^{2}\right), \quad \quad \mu_{0}=\frac{1}{L_{0}}
$$

usually 2 versions of a renormalized mass:
(1) by current renormalization in PCAC relation, $\partial \mathrm{A}=2 m_{\mathrm{h}} \mathrm{P}$,
(2) by definition of mass renormalization, $m_{\mathrm{q}}=m_{0}-m_{\mathrm{c}}$,

$$
\begin{align*}
& \bar{m}_{\mathrm{h}}\left(\mu_{0}\right)=\frac{Z_{\mathrm{A}}\left(g_{0}\right)\left(1+b_{\mathrm{A}} a m_{\mathrm{q}, \mathrm{~h}}\right)}{Z_{\mathrm{P}}\left(g_{0}, L_{0}\right)\left(1+b_{\mathrm{P}} a m_{\mathrm{q}, \mathrm{~h}}\right)} \times m_{\mathrm{h}}+O\left(a^{2}\right) \tag{1}\\
& \bar{m}_{\mathrm{h}}\left(\mu_{0}\right)=Z_{\mathrm{m}}\left(g_{0}, L_{0}\right)\left(1+b_{\mathrm{m}} a m_{\mathrm{q}, \mathrm{~h}}\right) m_{\mathrm{q}, \mathrm{~h}}+O\left(a^{2}\right) \tag{2}
\end{align*}
$$

Problem: $b_{\mathrm{A}}-b_{\mathrm{P}}, b_{\mathrm{m}}, Z_{\mathrm{P}}, Z_{\mathrm{m}}$ currently not NP known in the relevant β region

strategy

renormalization in $\mathrm{O}(\mathrm{a})$-improved theory $\left(N_{\mathrm{f}}=2\right)$ at $\mu_{0}=1 / \mathrm{L}_{0}$
Connection of any renormalized heavy mass to RGI mass M via

$$
M=h\left(L_{0}\right) \times \frac{\bar{m}_{\mathrm{h}}\left(\mu_{0}\right)}{m_{\mathrm{h}}^{\text {bare }}} \times m_{\mathrm{h}}^{\text {bare }}+O\left(a^{2}\right), \quad \quad \mu_{0}=\frac{1}{L_{0}}
$$

usually 2 versions of a renormalized mass:
(1) by current renormalization in PCAC relation, $\partial \mathrm{A}=2 m_{\mathrm{h}} \mathrm{P}$,
(2) by definition of mass renormalization, $m_{\mathrm{q}}=m_{0}-m_{\mathrm{c}}$,

$$
\begin{align*}
& m_{\mathrm{h}}\left(\mu_{0}\right)=\frac{Z_{\mathrm{A}}\left(g_{0}\right)\left(1+b_{\mathrm{A}} a m_{\mathrm{q}, \mathrm{~h}}\right)}{Z_{\mathrm{P}}\left(g_{0}, L_{0}\right)\left(1+b_{\mathrm{P}} a m_{\mathrm{q}, \mathrm{~h}}\right)} \times m_{\mathrm{h}}+O\left(a^{2}\right) \tag{1}\\
& \bar{m}_{\mathrm{h}}\left(\mu_{0}\right)=Z_{\mathrm{m}}\left(g_{0}, L_{0}\right)\left(1+b_{\mathrm{m}} a m_{\mathrm{q}, \mathrm{~h}}\right) m_{\mathrm{q}, \mathrm{~h}}+O\left(a^{2}\right) \tag{2}
\end{align*}
$$

Strategy: eliminate Z_{m} in favor of $Z \equiv Z_{\mathrm{m}} Z_{\mathrm{P}} / Z_{\mathrm{A}}$
[$Z_{\mathrm{A}}\left(g_{0}^{2}\right) \mathrm{NP}$ known from [Della Morte etal;JHEP07(2005)007]]

definitions and conventions

- match both definitions to get dependency $m_{\mathrm{h}}=m_{\mathrm{h}}\left(m_{\mathrm{q}, \mathrm{h}}\right)$

$$
m_{\mathrm{h}}=Z \times \frac{\left(1+b_{\mathrm{P}} a m_{\mathrm{q}, \mathrm{~h}}\right)\left(1+b_{\mathrm{m}} a m_{\mathrm{q}, \mathrm{~h}}\right)}{\left(1+b_{\mathrm{A}} a m_{\mathrm{q}, \mathrm{~h}}\right)} \times m_{\mathrm{q}, \mathrm{~h}}+O\left(a^{2}\right)
$$

with in the SF O(a) improved PCAC mass

$$
m_{i j}\left(x_{0} ;\{L / a, T / L, \theta\}\right)=\frac{\tilde{\partial}_{0} f_{\mathrm{A}}^{i j}\left(x_{0}\right)+a c_{\mathrm{A}} \partial_{0}^{*} \partial_{0} f_{\mathrm{P}}^{i j}\left(x_{0}\right)}{2 f_{\mathrm{P}}^{i j}\left(x_{0}\right)}
$$

defined through $\partial_{\mu} A_{\mu}=\left(m_{i}+m_{j}\right) P$,

$$
m_{1}=m_{1}, \quad m_{2}=m_{\mathrm{h}}, \quad m_{3}=\left(m_{1}+m_{2}\right) / 2
$$

- use std. \& improved derivatives:

$$
\tilde{\partial}_{0} \rightarrow \tilde{\partial}_{0}\left(1-\frac{1}{6} a^{2} \partial_{0}^{*} \partial_{0}\right), \quad \partial_{0}^{*} \partial_{0} \rightarrow \partial_{0}^{*} \partial_{0}\left(1-\frac{1}{12} a^{2} \partial_{0}^{*} \partial_{0}\right)
$$

to reduce errors to $O\left(g_{0}^{2} a^{2}, a^{4}\right)$

mass ratios

How to extract improvement coefficients?
Definition

$$
\begin{aligned}
R_{\mathrm{AP}} & =\frac{2\left(2 m_{12}-m_{11}-m_{22}\right)}{\left(m_{11}-m_{22}\right)\left(a m_{\mathrm{q}, 1}-a m_{\mathrm{q}, 2}\right)}=b_{\mathrm{A}}-b_{\mathrm{P}}+O\left(a m_{\mathrm{q}, 1}+a m_{\mathrm{q}, 2}\right) \\
R_{\mathrm{m}} & =\frac{4\left(m_{12}-m_{33}\right)}{\left(m_{11}-m_{22}\right)\left(a m_{\mathrm{q}, 1}-a m_{\mathrm{q}, 2}\right)}=b_{\mathrm{m}} \quad+O\left(a m_{\mathrm{q}, 1}+a m_{\mathrm{q}, 2}\right) \\
R_{\mathrm{Z}} & =\frac{m_{11}-m_{22}}{m_{\mathrm{q}, 1}-m_{\mathrm{q}, 2}}+\left[b_{\mathrm{A}}-b_{\mathrm{P}}-b_{\mathrm{m}}\right]\left(a m_{11}+a m_{22}\right)=Z+O\left(a^{2}\right)
\end{aligned}
$$

with a priori local ratios $R_{\mathrm{X}}=R_{\mathrm{X}}\left(x_{0}\right)$ like masses
setting up the constant physics condition by

$$
\bar{g}^{2}\left(L_{1} / 2\right)=2.989, \quad m_{1}=0, \quad z=L M=\text { const } .
$$

defines any improvement coefficient exactly

mass ratios

How to extract improvement coefficients?
Definition

$$
\begin{aligned}
R_{\mathrm{AP}} & =\frac{2\left(2 m_{12}-m_{11}-m_{22}\right)}{\left(m_{11}-m_{22}\right)\left(a m_{\mathrm{q}, 1}-a m_{\mathrm{q}, 2}\right)}=b_{\mathrm{A}}-b_{\mathrm{P}}+O\left(a m_{\mathrm{q}, 1}+a m_{\mathrm{q}, 2}\right) \\
R_{\mathrm{m}} & =\frac{4\left(m_{12}-m_{33}\right)}{\left(m_{11}-m_{22}\right)\left(a m_{\mathrm{q}, 1}-a m_{\mathrm{q}, 2}\right)}=b_{\mathrm{m}} \quad+O\left(a m_{\mathrm{q}, 1}+a m_{\mathrm{q}, 2}\right) \\
R_{\mathrm{Z}} & =\frac{m_{11}-m_{22}}{m_{\mathrm{q}, 1}-m_{\mathrm{q}, 2}}+\left[R_{\mathrm{AP}}-R_{\mathrm{m}}\right]\left(a m_{11}+a m_{22}\right)=Z+O\left(a^{2}\right)
\end{aligned}
$$

with a priori local ratios $R_{\mathrm{X}}=R_{\mathrm{X}}\left(x_{0}\right)$ like masses computed for 2 choices of constant physics condition, $z=$ const.,

$$
z=0.5, \quad z=2.5
$$

referred to as 'set1' and 'set2' respectively (to check that intrinsic O(a) ambiguities vanishes as $a \rightarrow 0$)

simulation parameters

small volume $\left(L=L_{0}\right)$ lattice QCD

L_{0} / a	β	\bar{g}^{2}	κ_{c}	Z_{P}	$a m$	$\tilde{\kappa}_{\mathrm{c}}$
20	6.6380	$2.989(43)$	0.135163	$0.5962(22)$	$+0.00091(10)$	0.1351937
16	6.5113	$2.989(28)$	0.135441	$0.6016(24)$	$-0.00056(16)$	0.1354220
12	6.3158	$2.989(28)$	0.135793	$0.6087(10)$	$-0.00062(17)$	0.1357721
10	6.1906	$2.989(21)$	0.136016	$0.6111(6)$	$-0.00055(8)$	0.1359972

- Z_{P} computed on $L_{0}^{4} \mathrm{SF} N_{\mathrm{f}}=2$ config.s at $x_{0}=T / 2$
- PCAC mass am (x_{0}) computed on ($\left.L_{0}, T=\frac{3}{2} L_{0}\right)$ SF $N_{\mathrm{f}}=2$ configurations at $x_{0}=T / 2$
- $\tilde{\kappa}_{\mathrm{c}} \equiv \kappa_{\mathrm{c}}\left[L_{1}\right]$ estimated by shifting w.r.t.

$$
\tilde{\kappa}_{\mathrm{c}}=\kappa_{\mathrm{c}}+a m \cdot 2 \kappa_{\mathrm{c}}^{2} / Z, \quad Z\left(g_{0}^{2}\right)=1+0.0905 \cdot g_{0}^{2}
$$

setup of simulations

Algorithms etc.

- $O($ a) improved Schrödinger Functional setup with $\mathcal{B} \mathcal{F}=0$ and $\theta=0.5$
- HMC with multiple timescale integration with $T=3 L_{0} / 2$ for $L_{0} \in\{10,12,16,20\}$ and $T=L_{1}$ for $L_{1}=2 L_{0} \in\{20,24,32,40\}$
- even-odd preconditioning
- mass preconditioning, [Hasenbusch, 2001], with optimized $\rho=\left\{\left\langle\lambda_{\text {min }}\right\rangle\left\langle\lambda_{\text {max }}\right\rangle\right\}^{1 / 4}$
H.Meyer etal;'Exploring the HMC trajectory-length dependence of autocorrelation times in lattice QCD',Comput.Phys.Commun.176:91-97(2007)

setting up the condition of constant physics

small volume $\left(L=L_{0}\right)$ lattice QCD

L_{0} / a	β	$\tilde{z}=L m_{2}$		$z=L m_{2}$		\#meas*\#rep
		set1	set2	set1	set2	
20	6.6380	$0.5602(13)$	$2.6314(12)$	$0.5019(12)$	$2.5030(14)$	$20 * 8$
16	6.5113	$0.5398(23)$	$2.5983(21)$	$0.4949(13)$	$2.4955(13)$	$200 * 1$
12	6.3158	$0.5375(13)$	$2.5858(15)$	$0.50082(90)$	$2.50071(97)$	$74 * 8$
10	6.1906	$0.5379(10)$	$2.5832(11)$	$0.50045(61)$	$2.50096(71)$	$30 * 64$

- plateau averaged dimensionless PCAC masses

$$
z=N \cdot \sum_{x_{0}=T / 3}^{2 T / 3} L m\left(x_{0}\right)
$$

- to estimate κ corresponding to $z=0.5$, interpolate between $L m_{2}\left(\kappa_{2}\right)$ and $L m_{3}\left(\kappa_{3}\right)$ coming from a first computation with low statistic

Results

L_{0} / a	β	$b_{\mathrm{A}}-b_{\mathrm{P}}$	b_{m}	Z	$b_{\mathrm{A}}-b_{\mathrm{P}}-b_{\mathrm{m}}$
20	6.6380	$-0.0042(40)$	$-0.6693(37)$	$+1.10404(24)$	$+0.6651(32)$
16	6.5113	$-0.0059(23)$	$-0.6672(31)$	$+1.10438(22)$	$+0.6614(22)$
12	6.3158	$-0.0028(15)$	$-0.6681(17)$	$+1.10499(20)$	$+0.6653(13)$
10	6.1906	$-0.0006(9)$	$-0.6643(9)$	$+1.10455(13)$	$+0.6637(8)$

Results $\left(N_{\mathrm{f}}=2\right)$

\ldots for $Z, b_{\mathrm{A}}-b_{\mathrm{P}}, b_{\mathrm{m}}$

ren. cond. of $N_{\mathrm{f}}=2$ simul. imposed:
$\bar{g}^{2}\left(L_{0}\right)=2.989$ fixed,$\quad L_{0}=L_{1} / 2$
corresponding to matching volume

$$
L_{1} \approx 0.4-0.5 \mathrm{fm}
$$

Results $\left(N_{\mathrm{f}}=0\right)$

\ldots for $Z, b_{\mathrm{A}}-b_{\mathrm{P}}, b_{\mathrm{m}}$

compared to renorm. condition with

$$
\bar{g}^{2}=1.8811 \text { fixed }
$$

in quenched simulations

Results

O (a) ambiguities in $b_{\mathrm{A}}-b_{\mathrm{P}}$ and b_{m}

$\exists_{\text {ILPHA }}$

Results

$\mathrm{O}(\mathrm{a})$ ambiguities in Z and b_{m}

$$
\Delta Z\left(g_{0}^{2}\right)=\left.Z\left(g_{0}^{2}\right)\right|_{\mathrm{set} 1}-\left.Z\left(g_{0}^{2}\right)\right|_{\mathrm{set} 2}
$$

$\Delta b_{\mathrm{m}}\left(g_{0}^{2}\right)=\left.b_{\mathrm{m}}\left(g_{0}^{2}\right)\right|_{\text {set } 1}-\left.b_{\mathrm{m}}\left(g_{0}^{2}\right)\right|_{\text {set } 2}$

Results for κ_{h}

for given values of

$$
z=L_{1} M=L_{1} Z_{\mathrm{M}} \widetilde{m}_{\mathrm{q}, \mathrm{~h}}=L_{1} h\left(L_{0}\right) Z_{\mathrm{m}} \widetilde{m}_{\mathrm{q}, \mathrm{~h}} \quad \Leftrightarrow \quad a \widetilde{m}_{\mathrm{q}, \mathrm{~h}}=\frac{a}{L_{0}} \frac{z}{Z_{\mathrm{M}}}
$$

in the b-quark region use

$$
a m_{\mathrm{q}, \mathrm{~h}}=\left(\kappa_{\mathrm{h}}^{-1}-\kappa_{\mathrm{c}}^{-1}\right) / 2, \quad a \widetilde{m}_{\mathrm{q}, \mathrm{~h}}=a m_{\mathrm{q}, \mathrm{~h}}\left(1+b_{\mathrm{m}} a m_{\mathrm{q}, \mathrm{~h}}\right)
$$

and invert for $\kappa_{h}(z)$:

L_{1} / a	β	$\kappa_{\mathrm{h}}(z=10.0)$	$\kappa_{\mathrm{h}}(z=12.0)$	$\kappa_{\mathrm{h}}(z=14.0)$
20	6.1906	0.1208197	0.1209418	0.1210709
24	6.3158	0.1205529	0.1206457	0.1207425
32	6.5113	0.1201557	0.1202201	0.1202864
40	6.6380	0.1198801	0.1199283	0.1199776

error estimation not yet done, but will be of order $\sim 1 \%$ because it is dominated by $h\left(L_{0}\right)$ (as in the quenched case)

Status \& Outlook

so far so good

TODO:

- produce L_{1}^{4} configurations (on the way) and ...
- compute heavy-light meson correlation functions in LQCD ...
- to do the matching in small volume as explained by J.Heitger
future plans:
- computation of $b_{\mathrm{A}}-b_{\mathrm{P}}, b_{\mathrm{m}}, Z$ also for the β range relevant for $N_{\mathrm{f}}=2$ simulations in physically large volume (needed e.g. for the computation of the mass of the charm quark)
- test of HQET in finite volume for $N_{\mathrm{f}}=2$, similar to earlier quenched works of the ALPHA-Coll.

